WO2012107656A1 - Terminal bi-bande a acces concurrents operant dans deux bandes adjacentes - Google Patents

Terminal bi-bande a acces concurrents operant dans deux bandes adjacentes Download PDF

Info

Publication number
WO2012107656A1
WO2012107656A1 PCT/FR2012/050086 FR2012050086W WO2012107656A1 WO 2012107656 A1 WO2012107656 A1 WO 2012107656A1 FR 2012050086 W FR2012050086 W FR 2012050086W WO 2012107656 A1 WO2012107656 A1 WO 2012107656A1
Authority
WO
WIPO (PCT)
Prior art keywords
mimo
band
signals
antennas
circuit
Prior art date
Application number
PCT/FR2012/050086
Other languages
English (en)
Inventor
Jean-Yves Le Naour
Jean-Luc Robert
Dominique Lo Hine Tong
Ali Louzir
Original Assignee
Thomson Licensing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing filed Critical Thomson Licensing
Priority to EP12704866.8A priority Critical patent/EP2673888B1/fr
Priority to US13/984,063 priority patent/US20130315117A1/en
Priority to CN2012800083431A priority patent/CN103348600A/zh
Priority to KR1020137021175A priority patent/KR20140045322A/ko
Priority to JP2013553002A priority patent/JP2014509491A/ja
Priority to BR112013018583A priority patent/BR112013018583A2/pt
Publication of WO2012107656A1 publication Critical patent/WO2012107656A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present invention relates to a terminal for high speed transmission of video, audio or data signals in a home environment. It applies more particularly in the context of terminals operating according to the IEEE 802.1 1 ⁇ standard and employing several frequency channels simultaneously.
  • WiFi technology compliant with IEEE 802.1 1 a / b / g or 1 1 n standards is currently the most widely used for high-speed wireless transmission in a home environment.
  • the IEEE 802.1 1 ⁇ standard provides some improvements over IEEE 802.1 1 a / b / g. It notably allows the use of MIMO (Multiple Input Multiple Output) technology which is a multi-antenna technique that improves the transmission rate and its robustness in an environment, such as the home environment, which is dominated by interference.
  • MIMO Multiple Input Multiple Output
  • the IEEE 802.1 1 ⁇ standard operates in the 2.4 to 2.5 GHz band and the 4.9 to 5.9 GHz band. These two bands are hereinafter referred to as the 2.4 GHz band and the 5 GHz band. Terminals operating simultaneously in these two bands exist. Patent application FR 2 91 1739 describes such a terminal. It is able to receive and / or simultaneously transmit a signal in the 2.4 GHz band and a signal in the 4.9 to 5.9 GHz band.
  • the 5 GHz band is used for video transmission and the 2.4 GHz band for data transmission.
  • An object of the present invention is to propose a MIMO terminal overcoming the aforementioned drawback
  • the present invention proposes a wireless communication terminal able to transmit and / or simultaneously receive video, audio or data signals in a predetermined frequency band, comprising
  • a MIMO device able to generate N MIMO signals in said predetermined frequency band from n baseband signals or to generate n baseband signals from N MIMO signals in said predetermined frequency band, with N> n> 2,
  • a switching device for connecting the MIMO device to
  • each antenna of the terminal is connected to two MIMO circuits operating in subbands distinct from the predetermined frequency subband and a filtering device is associated with each antenna to isolate the MIMO signal from the antenna.
  • first sub-band of the MIMO signal of the second sub-band received or transmitted by the antenna.
  • the predetermined frequency band corresponds to the 5 GHz WiFi band.
  • the first subband is the band [4.9 GHz, 5.35 GHz] and the second subband is the band [5.47 GHz, 5.875 GHz].
  • the predetermined frequency band is a frequency band [790MHz-862MHz] of the digital dividend or is in the UHF band [470MHz-790MHz].
  • the antennas are antennas with a single access and the filtering device is a diplexer.
  • the switching device consists of two switching circuits, one for the MIMO signals of the first sub-band and the other for the MIMO signals of the second sub-band.
  • the switching device then comprises first and second switching circuits for respectively connecting the first and second MIMO circuits to the filtering device associated with each antenna.
  • the switching device further comprises a front module mounted between said first and second switching circuits and the filtering device associated with each antenna for amplifying the MIMO signals originating from the antennas and / or the MIMO signals originating from the first and second circuits.
  • Each front module includes, for example, a low noise amplifier for amplifying the MIMO signals to the first and second MIMO circuits and a power amplifier for amplifying the MIMO signals to the antennas. These amplifiers notably have the role of compensating at least in part for the signal losses introduced by the filtering devices associated with the antennas and / or the switching circuits of the terminal.
  • the switching circuit further comprises N1 bandpass filters, mounted between the first MIMO circuit and the first switching circuit, each having a bandwidth corresponding substantially to the first sub-band for filtering the MIMO signals to or from from the first MIMO circuit and / or N2 bandpass filters, mounted between the second MIMO circuit and the second switching circuit, having a bandwidth substantially corresponding to the second sub-band for filtering the MIMO signals to or from the second MIMO circuit.
  • the switching device also comprises amplification means mounted between the first and second MIMO circuits and the first and second switching circuits for amplifying the MIMO signals from the first and second MIMO circuits and amplification means mounted between the first and second MIMO circuits and the first and second switching circuits for amplifying the MIMO signals from the first and second switching circuits.
  • amplification means have the role of compensating at least in part for the signal losses introduced by the bandpass filters.
  • the antennas of the terminal are directional antennas each covering a clean angular sector.
  • the combination of sectorization with MIMO techniques provides a Significant gain in coverage and performance in an environment where there is a lot of interference, such as the home environment.
  • the M antennas cover together an angular sector of 360 °.
  • FIG. 2 the detailed block diagram of a basic brick of the terminal of FIG. 1
  • FIG. 3 the partial block diagram of a terminal according to the invention comprising two MIMO circuits 2 * 2 operating in two distinct subbands of a predetermined frequency band.
  • the invention will be described in the context of a terminal of a wireless transmission system MIMO operating in the 5GHz WiFi band, said terminal being able to transmit and / or simultaneously receive at least 2 signals in this band.
  • the 5 GHz band comprises two sub-bands: a first sub-band ranging from 5.150 GHz to 5.350 GHz, called a low sub-band, and a second sub-band ranging from 5.470 GHz to 5.725 GHz for Europe, or ranging from from 5.470 GHz to 5.835 GHz for the United States, referred to as the high subband.
  • the two low and high subbands are close and spaced by only 120 MHz, which requires the establishment of efficient radio frequency filtering means in the transmission and reception channels of the terminal.
  • the powers allowed for transmission in the 5 GHz band depend on the sub-band (low or high) and of the region where the transmission system is deployed. The allowable transmit power is higher in the United States than in Europe for some parts of the high and low subbands.
  • FIG. 1 represents the block diagram of a terminal according to the invention able to transmit and / or simultaneously receive signals in the 5 GHz band. It comprises a baseband digital processing circuit 10, a MIMO device 20 for generating MIMO signals in the 5GHz frequency band from the baseband signals delivered by the circuit 10 or generating baseband signals. from MIMO signals in the 5GHz frequency band, a switching device 30 for connecting the MIMO device 20 to M antennas 40, with M ⁇ N where N is the number of MIMO signals.
  • each antenna 40 is able to simultaneously transmit or receive one of the N1 signals MIMO of the high subband and one of the N2 signals MIMO of the subband.
  • the MIMO circuit 20a comprises N1 input terminals RX1 to RXN1 for receiving MIMO signals and N1 output terminals TX1 to TXN1 for transmitting MIMO signals.
  • the MIMO circuit 20b has N2 input terminals RX1 to RXN2 for receiving MIMO signals and N2 output terminals TX1 to TXN2 for transmitting MIMO signals.
  • the switching device 30 is adapted to selectively connect an input or output terminal of the MIMO circuit 20a (high subband) and an input or output terminal of the MIMO circuit 20b (subband bass) at each antenna 40.
  • the switching device 30 comprises two switching matrices, one 32a for the MIMO signals of the sub-circuit. high band and the other 32b for MIMO signals of the low subband.
  • the switching matrix 32a is connected to the input and output terminals of the MIMO circuit 20a via selectors 31a.
  • a selector 31a is thus associated with each pair of terminals RXi TXi, ie [1 ..N1], to selectively connect the terminal RXi or the terminal TXi to the switching matrix 32a.
  • a selector 31b is associated with each pair of terminals RXj TXj, j ⁇ [1 ..N2] to selectively connect the terminal RXj or the terminal TXj to the switching matrix 32b.
  • the switching device further comprises a filtering device 34, mounted between the switching matrices 32a, 32b and each of the antennas 40, for isolating the MIMO signal from the high sub-band of the MIMO signal of the low subband every two receipts or issued by the associated antenna.
  • the filter device 34 is a dual port diplexer. Each diplexer is connected, via a switching matrix 32a or 32b and a selector 31a or 31b, to an input or output terminal of the MIMO circuit 20a (upper subband) and to an input or output terminal. MIMO 20b circuit output (low sub-band).
  • the switching device 30 comprises M front modules 33a connected between the switching matrix 32a and one of the accesses of the diplexers 34 and M front modules 33b connected between the switching matrix 32b and the other access of the diplexers to amplify the received MIMO signals and / or MIMO signals to be transmitted by the terminal.
  • each diplexer 34 is connected to a front module 33a and a front module 33b.
  • FIG. 2 shows a basic block of the terminal of FIG. 1.
  • the latter comprises M basic bricks each associated with one of M antennas 40.
  • This basic brick includes all the circuits involved in the processing of MIMO signals received or transmitted by the associated antenna.
  • Each basic brick thus comprises a diplexer connected to the antenna 40 of the basic brick.
  • the diplexer 34 is connected by one of its accesses to the MIMO circuit 20a (high sub-band) via a selector 31a, the switching matrix 32a and a front module 33a and by the other of its accesses to the MIMO circuit 20b (under -band low) via a selector 31b, the switching matrix 32b and a front module 33b.
  • the front module 33a comprises a low noise amplifier 332a for amplifying the high subband MIMO signals received by the antenna 40 and a power amplifier 331a for amplifying the MIMO signals of the high subband to be transmitted. These amplifiers are connected, via a first switch SPDT (for Single Double Throw Pole in English language) referenced 330a, to the switching matrix 32a and, via a second SPDT switch referenced 333a, to the high subband access of the diplexer 41 .
  • SPDT Single Double Throw Pole in English language
  • the front-end module 33b includes a low-noise amplifier 332b for amplifying the low-sub-band MIMO signals received by the antenna 40 and a power amplifier 331b for amplifying the MIMO signals of the low-sub-band. issue. These amplifiers are connected, via an SPDT switch 330b, to the switching matrix 32b and, via an SPDT switch 333b, to the lower subband access of the diplexer 34.
  • the amplifiers 331a and 331b have the function of compensating at least in part for the signal losses introduced by the switching matrix 32a or 32b and the switch 330a or 330b.
  • the amplifiers 332a and 332b serve to compensate at least in part for the signal losses introduced by the filtering device 34 and the switch 333a or 333b.
  • the amplifiers 331a and 331b are substantially identical.
  • the amplifiers 332a and 332b are substantially identical.
  • the front modules are arranged between the switching circuits and the filtering devices of the antennas to compensate for the losses introduced by them, which makes it possible to minimize the power to be delivered by the power amplifiers 331a and 331b and to increase the sensitivity of the terminal in reception. This also has the effect of reducing the consumption and the heat dissipation of the entire terminal.
  • the selector 31a comprises an SPDT switch 312a for selecting the TXi terminal or the RXi terminal of the MIMO circuit 20a and connecting it to the switching matrix 32a.
  • the selector 31 has advantageously a band-pass filter 313a having a bandwidth corresponding substantially to the high subband.
  • the filter 313a is mounted between the switch 312a and the switching matrix 32a.
  • the selector 31a also comprises a power amplifier 310a mounted between the TXi terminal of the MIMO circuit 20a and the SPDT switch 312a, and a low-noise amplifier 31 1 mounted between the RXi terminal of the MIMO circuit 20a and the SPDT switch 312a.
  • An identical circuit for the selector 31b is provided on the other side of the switching matrix 32b, this circuit comprising an SPD switch 312b, a band-pass filter 313b and two amplifiers 310b and 31b, the assembly being mounted. as described above for the selector 31b.
  • the high and low sub-bands being relatively close (120 MHz between the last channel of the low subband and the first channel of the high subband), the simultaneous and independent operation of the terminal on two distinct channels (a channel in the low sub-band and a channel in the high subband) generates filtering constraints on the one hand at the filters of the diplexer 34 and on the other hand at the level of the band-pass filters 313a and 313b.
  • the filtering constraints at the diplexer 34 are defined by the useful off-channel noise generated by the amplifier 331a. (respectively 331 b) on the high subband access (respectively lower sub-band) of the diplexer and the reception threshold on the low subband access (or under high band).
  • the isolation required between the high subband access and the the low-band diplexer access denoted ISO_DIPL, must be the following:
  • ISO_DIPL NF_PA + Gain_PA - NF_LNA + MARGE
  • NF_PA is the noise factor of amplifiers 331a and 331b;
  • Gain_PA is the gain of the amplifiers 331a and 331b;
  • NF_LNA is the noise factor of the amplifiers 332a and 332b.
  • NF_PA 10 dB
  • Gain_PA 30 dB
  • NF_LNA 5dB
  • margin of 5dB the insulation required at the two accesses of the diplexer 34 is 40dB.
  • the complementary filtering constraints at the level of the filters 313a and 313b are defined by the useful out-of-band noise of the MIMO signal generated by the MIMO circuit 20a (or 20b) for the transmission and the protection needed to receive the MIMO 20b circuit. (or 20a) to not degrade the performance of the terminal during a broadcast.
  • the necessary rejection is mainly determined by the useful non-channel spurious emission of the MIMO circuits. As a first approximation this required rejection 'REJECTION' is defined by the following expression:
  • - NF_MIMO is the apparent noise factor of the MIMO circuits 20a and 20b;
  • - NF_PA ' is the noise factor of the amplifiers 310a and 310b;
  • This terminal can be used with directional antennas each covering a clean angular sector.
  • the M antennas cover together a complete angular sector of 360 °, the angular sectors of the antennas being overlapping or non-overlapping.
  • the angular sector associated with each of the antennas is then involved in the antenna selection process operated by the switching device.
  • the low subband is advantageously used for data transmission and the high subband is used for the transmission of video signals.
  • FIG. 3 gives an example of a terminal according to the invention comprising two MIMO circuits 2 * 2.
  • the terminal of FIG. 3 comprises two MIMO circuits 2 * 2, one 20a operating in the high subband and the other 20b operating in the low subband, connected to 4 antennas 40, directives or not, via a switching device comprising two selectors 31a, two selectors 31b, the two switching matrices 32a and 32b, four front modules 33a, four front modules 33b and four diplexers 34.
  • a switching device comprising two selectors 31a, two selectors 31b, the two switching matrices 32a and 32b, four front modules 33a, four front modules 33b and four diplexers 34.
  • Each antenna 40 transmits or receives a MIMO signal in the high subband and a MIMO signal in the low subband.
  • the diplexer is dual access and the antennas are single access. These cover both low and high subbands.
  • This assembly could be replaced by dual access antennas having a very good insulation between their access and independent filters mounted on each access.
  • the filters 313a and 313b are arranged between the MIMO circuits and the switching matrices. It could be envisaged to arrange them elsewhere, for example between the switching matrices and SPDT switches 330a, 330b.
  • the particular concept of user terminal architecture proposed here makes it possible to implement dual-band MIMO WiFi solutions in the wished 5GHz band associated or not with directional antennas.
  • This concept allows simultaneous and independent transmission on at least two channels in the 5GHz band.
  • This concept can be extended in a frequency band such as, for example, the released UHF band corresponding to the digital dividend.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Radio Transmission System (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

La présente invention concerne un terminal pour la transmission haut débit de signaux vidéo, audio ou de données dans un environnement domestique. Elle s'applique plus particulièrement dans le cadre des terminaux fonctionnant selon la standard IEEE 802.1 1 η et employant simultanément plusieurs canaux fréquentiels dans une bande de fréquences prédéterminée, par exemple la bande WiFi des 5 GHz. Le terminal comporte M antennes (40), un dispositif MIMO (20) apte à générer des signaux MIMO dans ladite bande de fréquence prédéterminée à partir de signaux en bande de base ou inversement, ledit dispositif MIMO étant apte à traiter N signaux MIMO simultanément, et un dispositif de commutation (30) pour connecter le dispositif MIMO aux M antennes. Selon l'invention, le dispositif MIMO comprend deux circuits MIMO (20a, 20b), l'un opérant dans une première sous-bande de la bande prédéterminée et l'autre dans une deuxième sous- bande de la bande prédéterminée, les deux sous-bandes étant non recouvrantes et le dispositif de commutation (30) est adapté pour connecter lesdits deux circuits MIMO (20a, 20b) aux antennes (40) de manière à ce que chacune desdites M antennes soit apte à recevoir ou transmettre l'un des signaux MIMO du premier circuit MIMO et à recevoir ou transmettre l'un des signaux MIMO du deuxième circuit MIMO simultanément. Le dispositif de commutation comprend en outre un dispositif de filtrage (34) associé à chaque antenne pour isoler, en réception, le signal MIMO de la première sous-bande du signal MIMO de la deuxième sous-bande reçus ou émis tous deux par ladite antenne.

Description

TERMINAL BI-BANDE A ACCES CONCURRENTS OPERANT DANS DEUX
BANDES ADJACENTES
Domaine de l'invention
La présente invention concerne un terminal pour la transmission haut débit de signaux vidéo, audio ou de données dans un environnement domestique. Elle s'applique plus particulièrement dans le cadre des terminaux fonctionnant selon le standard IEEE 802.1 1 η et employant simultanément plusieurs canaux fréquentiels.
Arrière-plan technologique
La technologie WiFi conforme aux standards IEEE 802.1 1 a/b/g ou 1 1 n est actuellement la plus utilisée pour la transmission sans fil haut débit dans un environnement domestique. Le standard IEEE 802.1 1 η apporte quelques améliorations par rapport à IEEE 802.1 1 a/b/g. Il autorise notamment l'emploi de la technologie MIMO (pour Multiple Input Multiple Output en langue anglaise) qui est une technique multi-antennes permettant d'améliorer le débit des transmissions et leur robustesse dans un environnement, tel que l'environnement domestique, qui est dominé par les interférences.
Le standard IEEE 802.1 1 η opère dans la bande 2,4 à 2,5 GHz et la bande 4,9 à 5,9 GHz. Ces deux bandes sont appelées dans la suite de la description bande des 2,4 GHz et bande des 5 GHz. Des terminaux opérant simultanément dans ces deux bandes existent. La demande de brevet FR 2 91 1 739 décrit un tel terminal. Celui-ci est apte à recevoir et/ou émettre simultanément un signal dans la bande des 2,4 GHz et un signal dans la bande 4,9 à 5,9 GHz. La bande des 5 GHz est employée pour la transmission de la vidéo et la bande des 2,4 GHz pour la transmission des données.
S'il existe des stations de base mettant en œuvre le découpage d'une bande en sous-bandes affectées chacune à un utilisateur dans le cadre de la téléphonie mobile 3G ou 4G, comme décrit dans la demande de brevet US 2010/0166098, il n'existe actuellement aucun terminal MIMO utilisant simultanément deux canaux fréquentiels dans la bande des 5 GHz en raison de la proximité fréquentielle des canaux. D'une manière plus générale, il n'existe pas à ce jour de terminal MIMO fonctionnant dans le domaine de la Wifi apte à transmettre et/ou à recevoir simultanément des signaux contenus dans des canaux fréquentiels très proches.
Résumé de l'invention
Un but de la présente invention est de proposer un terminal MIMO palliant l'inconvénient précité,
A cet effet, la présente invention propose un terminal de communication sans fil apte à émettre et/ou recevoir simultanément des signaux vidéo, audio ou de données dans une bande de fréquences prédéterminée, comportant
- un dispositif MIMO apte à générer N signaux MIMO dans ladite bande de fréquence prédéterminée à partir de n signaux en bande de base ou à générer n signaux en bande de base à partir de N signaux MIMO dans ladite bande de fréquences prédéterminée, avec N>n>2,
- M antennes pour recevoir et/ou transmettre les N signaux MIMO, avec M≥N/2 ; et
- un dispositif de commutation pour connecter le dispositif MIMO aux
M antennes,
caractérisé en ce que le dispositif MIMO comprend un premier circuit MIMO apte à générer, à partir d'un signal en bande de base, N1 signaux MIMO dans une première sous-bande de ladite bande de fréquence prédéterminée ou à générer, à partir de N1 signaux MIMO dans ladite première sous-bande, un signal en bande de base, et un deuxième circuit MIMO apte à générer, à partir d'un signal en bande de base, N2 signaux MIMO dans une deuxième sous-bande de ladite bande de fréquence prédéterminée ou à générer, à partir de N2 signaux MIMO dans ladite première sous-bande, un signal en bande de base, avec N1 +N2=N, lesdites première et deuxième sous-bandes étant non recouvrantes, et en ce que le dispositif de commutation comporte une première et une seconde voies adaptées pour connecter lesdits premier et deuxième circuits MIMO aux antennes de manière à ce que chacune desdites M antennes soit apte à recevoir ou transmettre l'un des N1 signaux MIMO du premier circuit MIMO et à recevoir ou transmettre l'un des N2 signaux MIMO du deuxième circuit MIMO simultanément et comprend en outre un dispositif de filtrage associé à chaque antenne et connecté respectivement à la première et à la seconde voies pour isoler, le signal MIMO de la première sous-bande du signal MIMO de la deuxième sous-bande reçus ou émis tous deux par ladite antenne.
Ainsi, selon l'invention, chaque antenne du terminal est raccordée à deux circuits MIMO opérant dans des sous-bandes distinctes de la sous- bande de fréquences prédéterminée et un dispositif de filtrage est associé à chaque antenne pour isoler, le signal MIMO de la première sous- bande du signal MIMO de la deuxième sous-bande reçus ou émis par l'antenne.
Selon un mode de réalisation particulier, la bande de fréquences prédéterminée correspond à la bande WiFi 5 GHz. La première sous-bande est la bande [4,9 GHz , 5,35GHz] et la deuxième sous-bande est la bande [5,47 GHz , 5,875GHz].
En variante, la bande de fréquences prédéterminée est une bande de fréquences [790MHz-862MHz] du dividende numérique ou se trouve dans la bande UHF [470MHz-790MHz].
Selon une particularité de l'invention, les antennes sont des antennes à un seul accès et le dispositif de filtrage est un diplexeur.
Selon un mode de réalisation particulier, le dispositif de commutation est constitué de deux circuits de commutation, l'un pour les signaux MIMO de la première sous-bande et l'autre pour les signaux MIMO de la deuxième sous-bande. Le dispositif de commutation comporte alors des premier et deuxième circuits de commutation pour connecter respectivement les premier et deuxième circuits MIMO au dispositif de filtrage associé à chaque antenne. Avantageusement, le dispositif de commutation comporte en outre un module frontal monté entre lesdits premier et deuxième circuits de commutation et le dispositif de filtrage associé à chaque antenne pour amplifier les signaux MIMO provenant des antennes et/ou les signaux MIMO provenant des premier et deuxième circuits MIMO. Chaque module frontal comprend par exemple un amplificateur à faible bruit pour amplifier les signaux MIMO à destination des premier et deuxième circuits MIMO et un amplificateur de puissance pour amplifier les signaux MIMO à destination des antennes. Ces amplificateurs ont notamment pour rôle de compenser au moins en partie les pertes de signal introduites par les dispositifs de filtrage associés aux antennes et/ou les circuits de commutation du terminal.
Avantageusement, le circuit de commutation comporte en outre N1 filtres passe-bande, montés entre le premier circuit MIMO et le premier circuit de commutation, ayant chacun une bande passante correspondant sensiblement à la première sous-bande pour filtrer les signaux MIMO à destination ou en provenance du premier circuit MIMO et/ou N2 filtres passe- bande, montés entre le deuxième circuit MIMO et le deuxième circuit de commutation, ayant une bande passante correspondant sensiblement à la deuxième sous-bande pour filtrer les signaux MIMO à destination ou en provenance du deuxième circuit MIMO.
De préférence, le dispositif de commutation comporte également des moyens d'amplification montés entre les premier et deuxième circuits MIMO et les premier et deuxième circuits de commutation pour amplifier les signaux MIMO provenant des premier et deuxième circuits MIMO et des moyens d'amplification montés entre les premier et deuxième circuits MIMO et les premier et deuxième circuits de commutation pour amplifier les signaux MIMO provenant des premier et deuxième circuits de commutation. Ces moyens d'amplification ont pour rôle de compenser au moins en partie les pertes de signal introduites par les filtres passe-bande.
Selon un mode de réalisation particulier, les antennes du terminal sont des antennes directives couvrant chacune un secteur angulaire propre. L'association de la sectorisation aux techniques MIMO procure un gain significatif en termes de couverture et de performances dans un environnement où les interférences sont nombreuses, tel que l'environnement domestique. Avantageusement, les M antennes couvrent ensemble un secteur angulaire de 360°.
Brève description des figures
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages apparaîtront plus clairement au cours de la description explicative détaillée qui va suivre, en se référant ci-dessous aux dessins annexés, lesquels représentent:
- la figure 1 , le schéma fonctionnel d'un terminal conforme à l'invention ;
- la figure 2, le schéma fonctionnel détaillé d'une brique de base du terminal de la figure 1 , et
- la figure 3, le schéma fonctionnel partiel d'un terminal conforme à l'invention comprenant deux circuits MIMO 2*2 fonctionnant dans deux sous-bandes distinctes d'une bande de fréquences prédéterminée.
Description détaillée d'un mode de réalisation
L'invention sera décrite dans le cadre d'un terminal d'un système de transmission sans fil MIMO opérant dans la bande WiFi des 5GHz, ledit terminal étant apte à émettre et/ou recevoir simultanément au moins 2 signaux dans cette bande.
La bande des 5 GHz comprend deux sous-bandes : une première sous-bande allant de 5,150 GHz à 5,350 GHz, appelée sous-bande basse, et une deuxième sous-bande allant de 5,470 GHz à 5,725 GHz pour l'Europe, ou allant de 5,470 GHz à 5,835 GHz pour les Etats-Unis, appelée sous-bande haute. Les deux sous-bandes basse et haute sont proches et espacées de seulement 120MHz, ce qui requiert la mise en place de moyens de filtrage radiofréquence efficaces dans les chaînes d'émission et de réception du terminal. A noter que les puissances autorisées à l'émission dans la bande des 5 GHz dépendent de la sous-bande (basse ou haute) et de la région où est déployé le système de transmission. La puissance autorisée à l'émission est plus élevée aux Etats-Unis qu'en Europe pour certaines parties de la sous-bande haute et de la sous-bande basse.
La figure 1 représente le schéma fonctionnel d'un terminal conforme à l'invention apte à émettre et/ou recevoir simultanément des signaux dans la bande des 5 GHz. Il comprend un circuit de traitement numérique en bande de base 10, un dispositif MIMO 20 pour générer des signaux MIMO dans la bande de fréquence des 5GHz à partir des signaux en bande de base délivrés par le circuit 10 ou générer des signaux en bande de base à partir de signaux MIMO dans la bande de fréquence des 5GHz, un dispositif de commutation 30 pour connecter le dispositif MIMO 20 à M antennes 40, avec M≥N où N représente le nombre de signaux MIMO.
Selon l'invention, le dispositif MIMO 20 est apte à traiter simultanément N signaux MIMO et comporte deux circuits MIMO indépendants, l'un 20a apte à générer, à partir de n signaux en bande de base, N1 signaux MIMO dans la sous-bande haute ou inversement, l'autre 20b apte à générer, à partir de signaux en bande de base, N2 signaux MIMO dans la sous-bande basse ou inversement, N étant la somme de N1 et N2 (N=N1 +N2) et N>n>2. De plus, chaque antenne 40 est apte à transmettre ou recevoir simultanément un des N1 signaux MIMO de la sous-bande haute et un des N2 signaux MIMO de la sous-bande basse.
En référence à la figure 1 , le circuit MIMO 20a comporte N1 bornes d'entrée RX1 à RXN1 pour recevoir des signaux MIMO et N1 bornes de sortie TX1 à TXN1 pour émettre des signaux MIMO. De même, Le circuit MIMO 20b comporte N2 bornes d'entrée RX1 à RXN2 pour recevoir des signaux MIMO et N2 bornes de sortie TX1 à TXN2 pour émettre des signaux MIMO. Selon l'invention, le dispositif de commutation 30 est conçu pour connecter sélectivement une borne d'entrée ou de sortie du circuit MIMO 20a (sous-bande haute) et une borne d'entrée ou de sortie du circuit MIMO 20b (sous-bande basse) à chaque antenne 40.
A cet effet, le dispositif de commutation 30 comporte deux matrices de commutation, l'une 32a destinée aux signaux MIMO de la sous- bande haute et l'autre 32b destinée aux signaux MIMO de la sous-bande basse. La matrice de commutation 32a est reliée aux bornes d'entrée et sortie du circuit MIMO 20a via des sélecteurs 31 a. Un sélecteur 31 a est ainsi associé à chaque couple de bornes RXi TXi, i e [1 ..N1 ], pour relier sélectivement la borne RXi ou la borne TXi à la matrice de commutation 32a. De même, un sélecteur 31 b est associé à chaque couple de bornes RXj TXj, j <≡[1 ..N2], pour relier sélectivement la borne RXj ou la borne TXj à la matrice de commutation 32b.
Le dispositif de commutation comporte en outre un dispositif de filtrage 34, monté entre les matrices de commutation 32a, 32b et chacune des antennes 40, pour isoler le signal MIMO de la sous-bande haute du signal MIMO de la sous-bande basse tous les deux reçus ou émis par l'antenne associée. Dans le mode de réalisation illustré, le dispositif de filtrage 34 est un diplexeur double accès. Chaque diplexeur est connecté, via une matrice de commutation 32a ou 32b et un sélecteur 31 a ou 31 b, à une borne d'entrée ou de sortie du circuit MIMO 20a (sous-bande haute) et à une borne d'entrée ou de sortie du circuit MIMO 20b (sous-bande basse).
Avantageusement, le dispositif de commutation 30 comporte M modules frontaux 33a connectés entre la matrice de commutation 32a et l'un des accès des diplexeurs 34 et M modules frontaux 33b connectés entre la matrice de commutation 32b et l'autre accès des diplexeurs pour amplifier les signaux MIMO reçus et/ou les signaux MIMO à émettre par le terminal. Ainsi, selon l'invention, chaque diplexeur 34 est relié à un module frontal 33a et un module frontal 33b.
Les sélecteurs 31 a et 31 b et les modules frontaux 33a et 33b seront décrits plus en détail en référence à la figure 2 qui représente une brique de base du terminal de la figure 1 . Ce dernier comprend M briques de base associées chacune à une des M antennes 40. Cette brique de base comprend tous les circuits intervenant dans le traitement des signaux MIMO reçus ou émis par l'antenne associée. Chaque brique de base comprend donc un diplexeur connecté à l'antenne 40 de la brique de base. Le diplexeur 34 est connecté par un de ses accès au circuit MIMO 20a (sous-bande haute) via un sélecteur 31 a, la matrice de commutation 32a et un module frontal 33a et par l'autre de ses accès au circuit MIMO 20b (sous-bande basse) via un sélecteur 31 b, la matrice de commutation 32b et un module frontal 33b.
Le module frontal 33a comprend un amplificateur à faible bruit 332a pour amplifier les signaux MIMO de la sous-bande haute reçus par l'antenne 40 et un amplificateur de puissance 331 a pour amplifier les signaux MIMO de la sous-bande haute à émettre. Ces amplificateurs sont raccordés, via un premier commutateur SPDT (pour Single Pôle Double Throw en langue anglaise) référencé 330a, à la matrice de commutation 32a et, via un deuxième commutateur SPDT référencé 333a, à l'accès sous-bande haute du diplexeur 41 .
De même, le module frontal 33b comprend un amplificateur à faible bruit 332b pour amplifier les signaux MIMO de la sous-bande basse reçus par l'antenne 40 et un amplificateur de puissance 331 b pour amplifier les signaux MIMO de la sous-bande basse à émettre. Ces amplificateurs sont raccordés, via un commutateur SPDT 330b, à la matrice de commutation 32b et, via un commutateur SPDT 333b, à l'accès sous-bande basse du diplexeur 34.
Les amplificateurs 331 a et 331 b ont pour rôle de compenser au moins en partie les pertes de signal introduites par la matrice de commutation 32a ou 32b et le commutateur 330a ou 330b. Les amplificateurs 332a et 332b ont pour rôle de compenser au moins en partie les pertes de signal introduites par le dispositif de filtrage 34 et le commutateur 333a ou 333b.
Les sous-bandes haute et basse étant relativement proches (120 MHz entre le dernier canal de la sous-bande basse et le premier canal de la sous-bande haute), les amplificateurs 331 a et 331 b sont sensiblement identiques. De même, les amplificateurs 332a et 332b sont sensiblement identiques. Les modules frontaux sont disposés entre les circuits de commutation et les dispositifs de filtrage des antennes pour compenser les pertes introduites par ceux-ci, ce qui permet de minimiser la puissance à délivrer par les amplificateurs de puissance 331 a et 331 b et d'augmenter la sensibilité du terminal en réception. Ceci a également pour conséquence de réduire la consommation et la dissipation thermique de l'ensemble du terminal.
De l'autre coté de la matrice de commutation 32a, le sélecteur 31 a comprend un commutateur SPDT 312a pour sélectionner la borne TXi ou la borne RXi du circuit MIMO 20a et la raccorder à la matrice de commutation 32a. Le sélecteur 31 a comporte avantageusement un filtre passe-bande 313a ayant une bande passante correspondant sensiblement à la sous-bande haute. Le filtre 313a est monté entre le commutateur 312a et la matrice de commutation 32a. Le sélecteur 31 a comprend également un amplificateur de puissance 310a monté entre la borne TXi du circuit MIMO 20a et le commutateur SPDT 312a ainsi qu'un amplificateur à faible bruit 31 1 a monté entre la borne RXi du circuit MIMO 20a et le commutateur SPDT 312a pour compenser au moins en partie les pertes de signal introduites par le filtre passe-bande 313a. Un circuit identique pour le sélecteur 31 b est prévu de l'autre côté de la matrice de commutation 32b, ce circuit comprenant un commutateur SPD 312b, un filtre passe-bande 313b et deux amplificateurs 310b et 31 1 b, l'ensemble étant monté comme décrit ci-dessus pour le sélecteur 31 b.
Les sous-bandes haute et basse étant relativement proches (120 MHz entre le dernier canal de la sous-bande basse et le premier canal de la sous-bande haute), le fonctionnement simultané et indépendant du terminal sur deux canaux distincts (un canal dans la sous-bande basse et un canal dans la sous-bande haute) engendre des contraintes de filtrage d'une part au niveau des filtres du diplexeur 34 et d'autre part au niveau des filtres passe-bandes 313a et 313b.
Les contraintes de filtrage au niveau du diplexeur 34 sont définies par le bruit hors canal utile généré par l'amplificateur 331 a (respectivement 331 b) sur l'accès sous-bande haute (resp. sous-bande basse) du diplexeur et le seuil de réception sur l'accès sous-bande basse (resp. sous bande haute). En première approximation, si on considère que l'amplificateur 331 a est sensiblement identique à l'amplificateur 331 b et que l'amplificateur 332a est sensiblement identique à l'amplificateur 332b, l'isolation requise entre l'accès sous-bande haute et l'accès sous-bande basse du diplexeur, notée ISO_DIPL, doit être la suivante :
ISO_DIPL=NF_PA + Gain_PA - NF_LNA + MARGE où :
- NF_PA est le facteur de bruit des amplificateurs 331 a et 331 b ;
- Gain_PA est le gain des amplificateurs 331 a et 331 b ;
- NF_LNA est le facteur de bruit des amplificateurs 332a et 332b ; et
- MARGE est une marge de sécurité.
Si, à titre d'exemple, on considère des amplificateurs 331 a,
331 b, 332a et 332b avec les caractéristiques suivantes : NF_PA=10 dB, Gain_PA= 30 dB, NF_LNA= 5dB et une marge de 5dB, l'isolation requise au niveau des deux accès du diplexeur 34 vaut 40dB.
De même, les contraintes de filtrage complémentaire au niveau des filtres 313a et 313b sont définies par le bruit hors bande utile du signal MIMO généré par le circuit MIMO 20a (ou 20b) pour l'émission et la protection nécessaire en réception du circuit MIMO 20b (ou 20a) pour ne pas dégrader les performances du terminal lors d'une émission. La réjection nécessaire est principalement déterminée par l'émission parasite hors canal utile des circuits MIMO. En première approximation cette réjection requise 'REJECTION' est définie par l'expression suivante :
REJECTION=NF_MIMO - NF_PA' + MARGE
où :
- NF_MIMO est le facteur de bruit apparent des circuits MIMO 20a et 20b; - NF_PA' est le facteur de bruit des amplificateurs 310a et 310b ;
- MARGE est une marge de sécurité supplémentaire.
Si, on considère des amplificateurs 310a, 310b et des circuits MIMO 20a et 20b avec les caractéristiques suivantes : NF_MIMO=41 dB, NF_PA'= 10 dB et une marge de 5dB, la réjection requise pour les deux filtres 313a et 313b vaut 36dB
Ce terminal peut être employé avec des antennes directives couvrant chacune un secteur angulaire propre. De préférence, les M antennes couvrent ensemble un secteur angulaire complet de 360°, les secteurs angulaires des antennes étant recouvrants ou non recouvrants. Le secteur angulaire associé à chacune des antennes intervient alors dans le processus de sélection des antennes opéré par le dispositif de commutation.
Dans le cas d'une transmission de données et de signaux vidéo, la sous-bande basse est avantageusement utilisée pour la transmission des données et la sous-bande haute est utilisée pour la transmission des signaux vidéo.
La figure 3 donne un exemple de terminal conforme à l'invention comportant deux circuits MIMO 2*2. Dans cette figure, les éléments qui sont identiques aux éléments des schémas des figures 1 et 2 portent les mêmes références. Le terminal de la figure 3 comporte deux circuits MIMO 2*2, l'un 20a opérant dans la sous-bande haute et l'autre 20b opérant dans la sous-bande basse, raccordés à 4 antennes 40, directives ou non, via un dispositif de commutation comportant deux sélecteurs 31 a, deux sélecteurs 31 b, les deux matrices de commutation 32a et 32b, quatre modules frontaux 33a, quatre modules frontaux 33b et quatre diplexeurs 34. Dans cet exemple, on a donc N1 =4, N2=4, N=N1 +N2=8 et M=4. Chaque antenne 40 émet ou reçoit un signal MIMO dans la sous-bande haute et un signal MIMO dans la sous-bande basse.
Bien que l'invention ait été décrite en liaison avec un mode de réalisation particulier, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
Dans le mode de réalisation illustré, le diplexeur est double accès et les antennes sont mono-accès. Ces dernières couvrent les deux sous-bandes basse et haute. Ce montage pourrait être remplacé par des antennes double accès ayant une très bonne isolation entre leurs accès et des filtres indépendants montés sur chacun des accès.
Dans le mode de réalisation illustré, les filtres 313a et 313b sont disposés entre les circuits MIMO et les matrices de commutation. Il pourrait être envisagé de les disposer ailleurs, par exemple entre les matrices de commutation et les commutateurs SPDT 330a, 330b.
Enfin, dans le cadre du déploiement des réseaux multimédias haut débits dans un environnement domestique, le concept particulier d'architecture de terminal utilisateur proposé ici permet d'implémenter des solutions WiFi MIMO bi-bande dans la bande convoitée des 5GHz associées ou non à des antennes directives. Ce concept permet une transmission simultanée et indépendante sur au moins deux canaux dans la bande des 5GHz. Ce concept peut être étendu dans une bande de fréquence telle que par exemple la bande UHF libérée correspondant au dividende numérique.

Claims

REVENDICATIONS
1 ) Terminal de communication sans fil apte à émettre et/ou recevoir simultanément des signaux dans une bande de fréquences prédéterminée, comportant
- un dispositif MIMO (20) apte à générer N signaux MIMO dans ladite bande de fréquence prédéterminée à partir de n signaux en bande de base ou à générer n signaux en bande de base à partir de N signaux MIMO dans ladite bande de fréquences prédéterminée, avec N>n>2;
- M antennes (40) pour recevoir et/ou transmettre les N signaux
MIMO, avec M≥N/2 ; et
- un dispositif de commutation (30) pour connecter le dispositif MIMO aux M antennes,
caractérisé en ce que le dispositif MIMO comprend un premier circuit MIMO (20a) apte à générer, à partir d'un signal en bande de base, N1 signaux MIMO dans une première sous-bande de ladite bande de fréquence prédéterminée ou à générer, à partir de N1 signaux MIMO dans ladite première sous-bande, un signal en bande de base, et un deuxième circuit MIMO (20b) apte à générer, à partir d'un signal en bande de base, N2 signaux MIMO dans une deuxième sous-bande de ladite bande de fréquence prédéterminée ou à générer, à partir de N2 signaux MIMO dans ladite première sous-bande, un signal en bande de base, avec N1 +N2=N, lesdites première et deuxième sous-bandes étant non recouvrantes,
et en ce que le dispositif de commutation (30) comporte une première et une seconde voies adaptées pour connecter lesdits premier et deuxième circuits MIMO (20a, 20b) aux antennes (40) de manière à ce que chacune desdites M antennes soit apte à recevoir ou transmettre l'un des N1 signaux MIMO du premier circuit MIMO et à recevoir ou transmettre l'un des N2 signaux MIMO du deuxième circuit MIMO simultanément et comprend en outre un dispositif de filtrage (34) associé à chaque antenne comportant une première et une seconde voies pour isoler, le signal MIMO de la première sous-bande du signal MIMO de la deuxième sous-bande reçus ou émis tous deux par ladite antenne.
2) Terminal selon la revendication 1 , caractérisé en ce que la bande de fréquences prédéterminée correspond à la bande WiFi 5 GHz.
3) Terminal selon la revendication 2, caractérisé en ce que la première sous-bande est la bande [4,9 GHz, 5,35GHz] et la deuxième sous- bande est la bande [5,47 GHz, 5,875GHz].
4) Terminal selon l'une quelconque des revendications précédentes, caractérisé en ce que les antennes (40) sont des antennes à un seul accès et le dispositif de filtrage (34) associé à chaque antenne est un diplexeur. 5) Terminal selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif de commutation (30) comporte des premier et deuxième circuits de commutation (32a, 32b) pour connecter respectivement les premier et deuxième circuits MIMO (20a, 20b) au dispositif de filtrage associé à chaque antenne.
6) Terminal selon la revendication 5, caractérisé en ce que le dispositif de commutation (30) comporte en outre un module frontal (33a, 33b) monté entre lesdits premier et deuxième circuits de commutation et le dispositif de filtrage associé à chaque antenne pour amplifier les signaux MIMO provenant des antennes et/ou les signaux MIMO provenant des premier et deuxième circuits MIMO.
7) Terminal selon la revendications 5 ou 6, caractérisé en ce que le circuit de commutation (30) comporte en outre N1 filtres passe-bande (313a), montés entre le premier circuit MIMO et le premier circuit de commutation, ayant chacun une bande passante correspondant sensiblement à la première sous-bande pour filtrer les signaux MIMO à destination ou en provenance du premier circuit MIMO et/ou N2 filtres passe-bande (313b), montés entre le deuxième circuit MIMO et le deuxième circuit de commutation, ayant une bande passante correspondant sensiblement à la deuxième sous-bande pour filtrer les signaux MIMO à destination ou en provenance du deuxième circuit MIMO.
8) Terminal selon la revendication 7, caractérisé en ce que le dispositif de commutation (30) comporte en outre des moyens d'amplification (310a, 310b) montés entre les premier et deuxième circuits MIMO et les premier et deuxième circuits de commutation pour amplifier les signaux MIMO provenant des premier et deuxième circuits MIMO.
9) Terminal selon la revendication 7 ou 8, caractérisé en ce que le dispositif de commutation (30) comporte en outre des moyens d'amplification (31 1 a, 31 1 b) montés entre les premier et deuxième circuits MIMO et les premier et deuxième circuits de commutation pour amplifier les signaux MIMO provenant des premier et deuxième circuits de commutation.
10) Terminal selon l'une quelconque des revendications précédentes, caractérisé en ce que les antennes (40) sont des antennes directives couvrant chacune un secteur angulaire propre, les M antennes couvrant ensemble de préférence un secteur angulaire de 360°.
PCT/FR2012/050086 2011-02-10 2012-01-13 Terminal bi-bande a acces concurrents operant dans deux bandes adjacentes WO2012107656A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12704866.8A EP2673888B1 (fr) 2011-02-10 2012-01-13 Terminal bi-bande a acces concurrents operant dans deux bandes adjacentes
US13/984,063 US20130315117A1 (en) 2011-02-10 2012-01-13 Concurrent-access dual-band terminal operating in two adjacent bands
CN2012800083431A CN103348600A (zh) 2011-02-10 2012-01-13 在两个相邻频带中工作的同时接入的双频带终端
KR1020137021175A KR20140045322A (ko) 2011-02-10 2012-01-13 두 인접 대역에서 동작하는 동시 액세스 이중-대역 단말기
JP2013553002A JP2014509491A (ja) 2011-02-10 2012-01-13 2つの隣接するバンドにおいて動作する同時アクセスデュアルバンド端末
BR112013018583A BR112013018583A2 (pt) 2011-02-10 2012-01-13 terminal de duas faixas com acesso simultâneo operando em duas faixas adjacentes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1151063A FR2971655A1 (fr) 2011-02-10 2011-02-10 Terminal bi-bande a acces concurrents operant dans deux bandes adjacentes
FR1151063 2011-02-10

Publications (1)

Publication Number Publication Date
WO2012107656A1 true WO2012107656A1 (fr) 2012-08-16

Family

ID=45688891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/050086 WO2012107656A1 (fr) 2011-02-10 2012-01-13 Terminal bi-bande a acces concurrents operant dans deux bandes adjacentes

Country Status (9)

Country Link
US (1) US20130315117A1 (fr)
EP (1) EP2673888B1 (fr)
JP (2) JP2014509491A (fr)
KR (1) KR20140045322A (fr)
CN (2) CN103348600A (fr)
BR (1) BR112013018583A2 (fr)
FR (1) FR2971655A1 (fr)
TW (1) TWI526005B (fr)
WO (1) WO2012107656A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI528741B (zh) 2014-04-10 2016-04-01 智邦科技股份有限公司 通訊裝置
US9385795B1 (en) * 2015-02-02 2016-07-05 Amazon Technologies, Inc. Four-by-four downlink (4×4 DL) multiple-input-multiple output (MIMO) with existing antenna structures
US9496932B1 (en) * 2015-05-20 2016-11-15 Dell Products Lp Systems and methods of dynamic MIMO antenna configuration and/or reconfiguration for portable information handling systems
KR20160141560A (ko) 2015-06-01 2016-12-09 삼성전기주식회사 무선 통신 장치 및 이를 이용한 운용 방법
US9565566B1 (en) * 2015-08-21 2017-02-07 Qualcomm Incorporated 5 GHz sub-band operations
CN106100645A (zh) * 2016-05-25 2016-11-09 广东欧珀移动通信有限公司 合路器系统、共用天线系统、终端设备、及信号处理方法
CN106211276A (zh) * 2016-06-27 2016-12-07 联想(北京)有限公司 一种控制方法及装置
JP7384547B2 (ja) 2017-03-30 2023-11-21 三井化学東セロ株式会社 食品用包装体および食品用包装体の使用方法
JP2021180357A (ja) * 2020-05-11 2021-11-18 株式会社村田製作所 高周波モジュールおよび通信装置
CN212872946U (zh) * 2020-08-18 2021-04-02 欧必翼太赫兹科技(北京)有限公司 全息成像安检系统
CN114640371B (zh) * 2020-12-16 2023-05-05 Oppo广东移动通信有限公司 射频收发系统及通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060276227A1 (en) * 2005-06-02 2006-12-07 Qualcomm Incorporated Multi-antenna station with distributed antennas
FR2911739A1 (fr) 2007-01-22 2008-07-25 Thomson Licensing Sa Terminal et methode pour la transmission simultanee de videos et de data haut debit.
US20100166098A1 (en) 2008-12-31 2010-07-01 Motorola, Inc. Method and apparatus for antenna selection and power control in a multiple input multiple output wireless communication system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1502364A4 (fr) * 2002-04-22 2010-03-31 Ipr Licensing Inc Emetteur-recepteur radio a entrees et sorties multiples
US8320301B2 (en) * 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
WO2005125025A1 (fr) * 2004-06-08 2005-12-29 Thomson Licensing Appareil et procede permettant de traiter des signaux dans un recepteur multicanaux
JP2007019939A (ja) * 2005-07-08 2007-01-25 Renesas Technology Corp 無線通信装置及びそれを用いた携帯電話端末
WO2007074376A2 (fr) * 2005-12-27 2007-07-05 Nokia Corporation Appareil, procede et progiciel pour fournir une efficacite de codage optimisee avec des sequences de puissance
CN101401317B (zh) * 2006-01-17 2012-09-26 日立金属株式会社 高频电路部件及利用了该高频电路部件的通信装置
US20090117859A1 (en) * 2006-04-07 2009-05-07 Belair Networks Inc. System and method for frequency offsetting of information communicated in mimo based wireless networks
US8781522B2 (en) * 2006-11-02 2014-07-15 Qualcomm Incorporated Adaptable antenna system
CN101043227A (zh) * 2007-02-01 2007-09-26 宇龙计算机通信科技(深圳)有限公司 一种多模移动通信终端及其射频接收和发射电路、方法
EP2238694B1 (fr) * 2008-02-01 2016-05-04 Marvell World Trade Ltd. Stratégies de sondage et d estimation de canal pour la sélection de l antenne dans les systèmes mimo
KR101457704B1 (ko) * 2008-06-19 2014-11-04 엘지전자 주식회사 무선 송수신기와 이를 구비한 중계국
JP5472672B2 (ja) * 2008-10-09 2014-04-16 日立金属株式会社 高周波回路部品およびこれを用いた通信装置
TW201025726A (en) * 2008-12-30 2010-07-01 Arcadyan Technology Corp Dual-band printed monopole antenna
US20120182948A1 (en) * 2009-07-20 2012-07-19 Commonwealth Scientific And Industrial Research Organisation Wireless Data Communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060276227A1 (en) * 2005-06-02 2006-12-07 Qualcomm Incorporated Multi-antenna station with distributed antennas
FR2911739A1 (fr) 2007-01-22 2008-07-25 Thomson Licensing Sa Terminal et methode pour la transmission simultanee de videos et de data haut debit.
US20100166098A1 (en) 2008-12-31 2010-07-01 Motorola, Inc. Method and apparatus for antenna selection and power control in a multiple input multiple output wireless communication system

Also Published As

Publication number Publication date
US20130315117A1 (en) 2013-11-28
CN103348600A (zh) 2013-10-09
EP2673888B1 (fr) 2015-04-08
TW201234792A (en) 2012-08-16
JP6270968B2 (ja) 2018-01-31
BR112013018583A2 (pt) 2016-09-27
JP2017063474A (ja) 2017-03-30
EP2673888A1 (fr) 2013-12-18
KR20140045322A (ko) 2014-04-16
FR2971655A1 (fr) 2012-08-17
CN107196687A (zh) 2017-09-22
JP2014509491A (ja) 2014-04-17
TWI526005B (zh) 2016-03-11

Similar Documents

Publication Publication Date Title
EP2673888B1 (fr) Terminal bi-bande a acces concurrents operant dans deux bandes adjacentes
US8059963B2 (en) Time division duplexing remote station having low-noise amplifier shared for uplink and downlink operations and wired relay method using the same
KR101240839B1 (ko) 무선 통신 디바이스용 인터페이스
KR101763997B1 (ko) 전송 무선 주파수 신호와 수신 무선 주파수 신호 간의 개선된 격리에 관한 시스템 및 방법
US7680510B2 (en) Diversity-switched front end base station transceiver system
FR2911739A1 (fr) Terminal et methode pour la transmission simultanee de videos et de data haut debit.
TW201836310A (zh) 用於低損耗多頻帶多工的技術
US11223379B2 (en) Front-end architecture of multiband radio
FR2983016A1 (fr) Procede de reduction de la consommation de puissance dans un terminal de communication sans fil et terminal de communication mettant en oeuvre ledit procede
EP3900219B1 (fr) Procédé pour fournir une connectivité radiomobile dans un espace confiné par une antenne de télévision extérieure et système associé
US8315670B2 (en) Base station antenna interface system for antenna cable reduction in dual band deployments
US8099133B2 (en) Apparatus and a method for directing a received signal in an antenna system
EP1283599A1 (fr) Système d&#39;émission/réception pour téléphone mobile multibande et multimode
WO2020128301A2 (fr) Dispositif répéteur et système d&#39;extension de couverture d&#39;un point d&#39;accès wi-fi
EP0533545B1 (fr) Station de base pour système de communication à accès multiple par répartition dans le temps
US20230299797A1 (en) Radio frequency unit, antenna, and signal processing method
US20240223226A1 (en) Radio frequency module with reduced intermodulation distortion
WO2013087748A1 (fr) Station d&#39;emission et de reception comprenant une tete radio distribuee
WO2004032360A1 (fr) Procede de reception de signaux dans un system de telecommunicat ions a etalement de spectre a repeteurs terrestres presentant une source complementaire
FR2828626A1 (fr) Systeme d&#39;emission/reception pour telephone mobile multibande et multimode
CN118337351A (zh) 一种带间载波聚合电路
FR2823019A1 (fr) Antenne de telecommunications et dispositif de filtrage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12704866

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012704866

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013553002

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13984063

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137021175

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013018583

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013018583

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130719