WO2012106957A1 - 转换器及信号转换方法 - Google Patents

转换器及信号转换方法 Download PDF

Info

Publication number
WO2012106957A1
WO2012106957A1 PCT/CN2011/080587 CN2011080587W WO2012106957A1 WO 2012106957 A1 WO2012106957 A1 WO 2012106957A1 CN 2011080587 W CN2011080587 W CN 2011080587W WO 2012106957 A1 WO2012106957 A1 WO 2012106957A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
voltage
output
output frequency
signal
Prior art date
Application number
PCT/CN2011/080587
Other languages
English (en)
French (fr)
Inventor
尤勇
刘真南
刘雨
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012106957A1 publication Critical patent/WO2012106957A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/86Digital/analogue converters with intermediate conversion to frequency of pulses

Definitions

  • the present invention relates to the field of electronics, and in particular to a converter and signal conversion method. Background technique
  • D/A (converting digital signals to analog signals) conversion technology is currently used in almost any field related to electronics, controlling analog voltage output through digital inputs.
  • the commonly used D/A converters are based on RC networks, electronic switches and op amps.
  • FIG. 1 is a schematic structural diagram of a conventional D/A converter including an electronic switch network, an operational amplifier and a RC network, a digital decoding circuit, and a reference voltage source, wherein the reference voltage source determines D/A
  • the output range, the digital decoding circuit determines the voltage division coefficient of the reference voltage source by controlling the electronic switch, thereby realizing the D/A conversion function.
  • the accuracy of this D/A converter is usually related to the bit width of the digital decoding circuit.
  • the commonly used MAX515 is a 10-bit wide D/A device. Its analog voltage output range is 0 ⁇ 5V, then its output accuracy is 521 (), i.e., precision output range of about 3 1/10.
  • the disadvantage of this type of D/A converter is that as the accuracy is increased, the complexity of the RC network is necessarily doubled, and the cost of the high-precision D/A converter is very high.
  • a converter is provided.
  • the converter according to the present invention comprises: a controller for configuring setting data of a data signal; a programmable voltage controlled oscillator VCO chip for obtaining an output frequency of the programmable VCO chip according to setting data of the digital signal; frequency conversion A voltage module is configured to obtain an output frequency and output an analog voltage signal corresponding to the output frequency.
  • the converter further includes: an isolator that acquires an analog voltage signal, and isolates the analog voltage signal to output the processed analog voltage signal.
  • the setting data includes: a center frequency and a voltage control variation range.
  • the frequency conversion voltage module includes: a frequency generator for generating a reference frequency; and a conversion circuit for comparing the output frequency with the reference frequency to convert the comparison result into an analog voltage signal.
  • the conversion circuit includes: a phase detector for comparing a phase relationship between the output frequency and the reference frequency to obtain a difference in the phase relationship, and expressing the difference as an UP/DOWN signal; and a loop filter circuit for The UP/DOWN signal is converted into a voltage-controlled voltage, and the voltage-controlled voltage is fed back to the programmable VCO chip to control the output frequency of the programmable VCO chip output; wherein, when the reference frequency is equal to the output frequency, the analog voltage signal is output.
  • a signal conversion method is provided.
  • the signal conversion method includes: configuring the setting data of the data signal by the controller; the programmable voltage controlled oscillator VCO chip acquires the output frequency of the programmable VCO chip according to the setting data of the digital signal; and acquires the frequency of the programmable VCO chip through the frequency conversion voltage module The output frequency is output, and an analog voltage signal corresponding to the output frequency is output.
  • the method further includes: acquiring an analog voltage signal through the isolator, and isolating the analog voltage signal, and outputting the processed signal Analog voltage signal.
  • the setting data includes: a center frequency and a voltage control variation range.
  • the step of obtaining an output frequency by the frequency conversion voltage module and outputting the analog voltage signal corresponding to the output frequency specifically includes: generating a reference frequency by a frequency generator of the frequency conversion voltage module; and outputting the output circuit through the frequency conversion voltage module The frequency is compared to the reference frequency to convert the comparison result to an analog voltage signal.
  • the step of converting the comparison result to the analog voltage signal by the conversion circuit and converting the comparison result into the analog voltage signal specifically includes: comparing the phase relationship between the output frequency and the reference frequency by the phase detector of the conversion circuit to obtain the phase relationship The difference, and the difference is expressed as
  • v c ⁇ ( F ° ut ⁇ Fset )v max + -y max ,
  • the maximum input voltage of the VCO chip, and the range of the output frequency is the first output frequency to the second output frequency F max , wherein the first output frequency
  • a controller is used for configuring setting data of a data signal; a programmable voltage controlled oscillator VCO chip is configured to obtain an output frequency of the programmable VCO chip according to setting data of the digital signal; a frequency conversion voltage module, It is used to obtain the output frequency and output the analog voltage signal corresponding to the output frequency, which solves the problem of high cost of the high-precision D/A converter of the prior art, and achieves the effect of realizing a low-cost D/A converter.
  • 1 is a schematic structural view of a conventional D/A converter
  • Embodiment 1 of a D/A converter in the present invention is a schematic structural view of Embodiment 1 of a D/A converter in the present invention
  • FIG. 3 is a schematic structural view of a second embodiment of a D/A converter according to the present invention.
  • Figure 4 is a schematic structural view of a third embodiment of the D/A converter of the present invention.
  • Figure 5 is a flow chart showing an embodiment of a D/A signal conversion method in the present invention. detailed description
  • the converter includes: a controller, a Voltage Controlled Oscillator (VCO) chip, and a frequency conversion voltage module.
  • the controller is configured to configure setting data of the digital signal;
  • the programmable VCO chip is configured to obtain an output frequency of the programmable VCO chip according to the setting data of the digital signal;
  • the frequency conversion voltage module is configured to obtain the output frequency, and Outputs an analog voltage signal corresponding to the output frequency.
  • the setting data may include: a center frequency and a voltage control variation range.
  • the controller for example, a CPU
  • the corresponding analog voltage signal is output through the frequency conversion voltage module, and the analog voltage signal can output the converted voltage through the voltage follower, thereby realizing D/A conversion.
  • the D/A converter has good performance and low cost. Output any frequency and implement any voltage control range through a programmable program.
  • the programmable VCO chip can be used in a phase-locked loop circuit by changing the programmable VCO chip
  • the heart frequency is used to adjust the analog voltage of the voltage control terminal of the programmable VCO chip to realize D/A conversion.
  • the frequency conversion voltage module in the embodiment of the present invention may be a frequency conversion voltage chip.
  • the D/A converter may further include: an isolator for acquiring an analog voltage signal output by the frequency conversion voltage module, and isolating the analog voltage signal, and outputting the processed analog voltage signal, The effect of isolating the latter stage circuit on the pre-stage phase-locked loop circuit.
  • the isolator can be a voltage follower, where the voltage follower acts as an isolation stage to approximate the output voltage to the input voltage amplitude, and has a high-impedance state to the pre-stage circuit and a low-resistance state to the subsequent-stage circuit. It acts as an "isolation" for the front and rear stages.
  • Fig. 3 is a schematic structural view of a second embodiment of the D/A converter of the present invention.
  • the D/A converter includes: a controller for configuring setting data of the digital signal; a programmable VCO chip for obtaining an output frequency of the programmable VCO chip according to the setting data of the digital signal; and a frequency conversion voltage module for The output frequency is obtained, and an analog voltage signal corresponding to the output frequency is output.
  • the setting data may include: a center frequency and a pressure control variation range.
  • the frequency conversion voltage module specifically includes a frequency generator and a conversion circuit.
  • the frequency generator is used to generate a reference frequency; the conversion circuit compares the output frequency with the reference frequency, and converts the comparison result into an analog voltage signal.
  • the conversion circuit can be a frequency difference to voltage (AF/V) conversion circuit, and the AF/V conversion circuit is a frequency difference to voltage circuit.
  • the controller (for example, the CPU) sets the center frequency of the programmable programmable VCO chip through a digital interface, and the center frequency is compared with the reference frequency generated and output by the frequency generator in the conversion circuit, and the two frequencies are The difference is converted to an analog voltage signal that can be D/A converted through the isolator.
  • Embodiment 4 is a schematic structural view of a third embodiment of the D/A converter of the present invention. As shown in FIG. 4, Embodiment 3 further optimizes Embodiment 1 and Embodiment 2.
  • the D/A converter includes: a controller for configuring setting data of the digital signal; a programmable VCO chip for obtaining an output frequency of the programmable VCO chip according to setting data of the digital signal; a frequency conversion voltage module, use Obtain an output frequency and output an analog voltage signal corresponding to the output frequency.
  • the setting data may include: a center frequency and a pressure control variation range.
  • the frequency conversion voltage module specifically includes a frequency generator and a conversion circuit.
  • the frequency generator can be a temperature compensated crystal.
  • the conversion circuit can include: a phase detector and a loop filter circuit.
  • the phase detector is configured to compare the phase relationship between the output frequency of the programmable VCO chip and the reference frequency to obtain the difference of the phase relationship, and represent the difference as an UP/DOWN signal; the loop filter circuit, which will be UP/ The DOWN signal is converted into a voltage control voltage, and the voltage control voltage is fed back to the programmable VCO chip to control the output frequency of the programmable VCO chip output; wherein, when the reference frequency is equal to the output frequency, the analog voltage signal is output, at this time, the simulation The voltage signal is a voltage controlled voltage.
  • the overall D/A converter of the third embodiment is based on a conventional analog phase-locked loop circuit, but the programmable single-frequency programmable VCO chip in the conventional analog phase-locked loop circuit is replaced with a programmable programmable circuit.
  • the VCO chip is constructed by simultaneously connecting an isolator, that is, a voltage follower, to the VC end of the programmable programmable VCO chip.
  • the UP/DOWN signal is passed to the loop filter circuit, which converts the UP/DOWN signal into a voltage-controlled voltage (V c ) that controls the programmable programmable VCO chip to change the frequency output to form a negative feedback, thereby repeating the above All processes.
  • V c voltage-controlled voltage
  • the third embodiment programs the center frequency (F set ) and the voltage control variation range (SCOPE ) of the programmable programmable VCO chip through the controller. After setting these two values, the output frequency range of the programmable programmable VCO chip can be determined as
  • V min 0, V is linear with the output frequency range (F ⁇ , F max ):
  • V ref is known
  • V max is known
  • V c voltage of V c can be determined.
  • the circuit obtains an analog analog voltage output (VJ) by digital signal setting (F set and SCOPE), and a low-cost D/A converter is completed.
  • the D/A converter may further include: an isolator that acquires an analog voltage signal, and isolates the analog voltage signal, and outputs the processed analog voltage signal to isolate the rear stage circuit from the front stage lock. The effect of the phase loop circuit.
  • Figure 5 is a flow chart of an embodiment of a signal conversion method of the present invention, the signal conversion method comprising the following steps:
  • Step 402 Configure setting data of the data signal by using a controller.
  • the setting data may include: a center frequency F set and a voltage control variation range SCOPE.
  • Step 404 The programmable VCO chip acquires an output frequency of the programmable VCO chip according to setting data of the digital signal.
  • Step 406 Acquire an output frequency through a frequency conversion voltage module, and output an analog voltage signal corresponding to the output frequency.
  • the controller (such as a CPU) of the embodiment inputs a digital signal into a programmable programmable VCO chip through a digital interface, and configures setting data of a digital signal of the programmable programmable VCO chip to obtain an output frequency, and the output frequency directly passes
  • the frequency conversion voltage module outputs a voltage corresponding to the set frequency, and the voltage can output the converted voltage through the voltage follower, thereby realizing D/A conversion.
  • the D/A converter has good performance and low cost.
  • the output frequency is obtained by the frequency conversion voltage module, and is output.
  • the method further includes: obtaining an analog voltage signal through the isolator, and isolating the analog voltage signal, and outputting the processed analog voltage signal.
  • the isolator can be a voltage follower, wherein the voltage follower acts as an isolation stage to make the output voltage approximate the input voltage amplitude, and has a high resistance state to the front stage circuit and a low resistance state to the rear stage circuit. Thereby achieving "isolation" effect on the front and rear stage circuits.
  • the step of obtaining an output frequency by the frequency conversion voltage module and outputting the analog voltage signal corresponding to the output frequency may include: generating a reference frequency by the frequency generator; comparing the output frequency and the reference frequency by the conversion circuit, The comparison result is converted to an analog voltage signal.
  • the step of comparing the output frequency and the reference frequency by the conversion circuit in the embodiment, and converting the comparison result into the analog voltage signal may include: comparing the phase relationship between the output frequency and the reference frequency by the phase detector to obtain the phase relationship The difference is expressed as a UP/DOWN signal; the UP/DOWN signal is converted into a voltage-controlled voltage by a loop filter circuit, and the voltage-controlled voltage is fed back to the programmable VCO chip to control the output of the programmable VCO chip output. Frequency; wherein, when the reference frequency is equal to the output frequency, an analog voltage signal is output, and at this time, the analog voltage signal is a voltage controlled voltage.
  • V mi + ⁇ V miX where F. Ut is the output frequency of the programmable VCO chip
  • F set is the center frequency
  • is the maximum input voltage of the programmable VCO chip
  • the frequency conversion voltage module in the above various embodiments of the present invention may be a frequency conversion voltage chip.
  • the present invention changes the structure of the conventional D/A converter by a completely innovative implementation method, achieving high precision and low speed through a completely new device. Cost D/A converter.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into a plurality of integrated circuit modules, or they may be Multiple modules or steps in the fabrication are implemented as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

本发明公开了一种转换器及信号转换方法,其中,该转换器包括:控制器,用于配置数据信号的设置数据;可编程电压控制振荡器VCO芯片,用于根据数字信号的设置数据,来获取可编程VCO芯片的输出频率;频率转换电压模块,用于获取输出频率,并输出与输出频率对应的模拟电压信号。通过本发明,能够实现低成本的D/A转换器。

Description

转换器及信号转换方法 技术领域
本发明涉及电子领域, 具体而言, 尤其涉及一种转换器及信号转换方 法。 背景技术
D/A (将数字信号转换为模拟信号 )转换技术是目前几乎任何与电子 相关的领域都在使用的技术, 通过数字量输入控制模拟电压输出。 目前常 用的 D/A转换器是基于阻容网络、 电子开关和运放构成。
图 1是现有的 D/A转换器结构示意图, D/A转换器包括电子开关网络、 运放和阻容网络、数字译码电路和参考电压源, 其中, 参考电压源决定 D/A 的输出范围, 数字译码电路通过控制电子开关决定参考电压源的分压系数, 从而实现 D/A转换功能。 这种 D/A转换器的精度通常与数字译码电路的位 宽有关, 比如常用的 MAX515 , 它是 10位宽的 D/A器件, 它的模拟电压输 出范围是 0~5V, 那么它的输出精度就是 5 21() , 即精度约为输出范围的 1/103。 这种 D/A转换器的缺点就是随着精度的提高, 必然成倍增加阻容网 络的复杂度, 使高精度的 D/A转换器的成本非常高。
针对上述现有技术的高精度 D/A转换器成本高的问题, 目前尚未提出 有效的解决方案。 发明内容
有鉴于此, 本发明的主要目的在于提供一种转换器及信号转换方法, 以解决现有技术的高精度 D/A转换器成本高的问题。
为了实现上述目的, 根据本发明的一方面, 提供了一种转换器。 根据本发明的转换器包括: 控制器, 用于配置数据信号的设置数据; 可编程电压控制振荡器 VCO芯片, 用于根据数字信号的设置数据, 来获取 可编程 VCO芯片的输出频率; 频率转换电压模块, 用于获取输出频率, 并 输出与输出频率对应的模拟电压信号。
进一步地, 转换器还包括: 隔离器, 获取模拟电压信号, 并对模拟电 压信号进行隔离处理, 输出处理后的模拟电压信号。
进一步地, 设置数据包括: 中心频率和压控变化范围。
进一步地, 频率转换电压模块包括: 频率发生器, 用于生成基准频率; 转换电路, 用于对输出频率和基准频率进行比较, 将比较结果转换为模拟 电压信号。
进一步地, 转换电路包括: 鉴相器, 用于比较输出频率和基准频率的 相位关系, 以获取相位关系的差值, 并将差值表示为 UP/DOWN信号; 环 路滤波电路, 用于将 UP/DOWN信号转化为压控电压, 并将压控电压反馈 给可编程 VCO芯片来控制可编程 VCO芯片输出的输出频率; 其中, 当基 准频率等于输出频率时, 输出模拟电压信号。
为了实现上述目的, 根据本发明的另一个方面, 提供了一种信号转换 方法。
根据本发明的信号转换方法包括: 通过控制器来配置数据信号的设置 数据; 可编程电压控制振荡器 VCO芯片根据数字信号的设置数据来获取可 编程 VCO芯片的输出频率; 通过频率转换电压模块获取输出频率, 并输出 与输出频率对应的模拟电压信号。
进一步地, 在通过频率转换电压模块获取输出频率, 并输出与输出频 率对应的模拟电压信号之后, 还包括: 通过隔离器来获取模拟电压信号, 并对模拟电压信号进行隔离处理, 输出处理后的模拟电压信号。
进一步地, 设置数据包括: 中心频率和压控变化范围。 进一步地, 通过频率转换电压模块获取输出频率, 并输出与输出频率 对应的模拟电压信号的步驟具体包括: 通过频率转换电压模块的频率发生 器生成基准频率; 通过频率转换电压模块的转换电路对输出频率和基准频 率进行比较, 将比较结果转换为模拟电压信号。
进一步地, 通过转换电路对输出频率和基准频率进行比较, 将比较结 果转换为模拟电压信号的步驟具体包括: 通过转换电路的鉴相器来比较输 出频率和基准频率的相位关系, 以获取相位关系的差值, 并将差值表示为
UP/DOWN信号; 通过转换电路的环路滤波电路将 UP/DOWN信号转化为 压控电压 Vc , 并将压控电压反馈给可编程 VCO芯片来控制可编程 VCO芯 片输出的输出频率; 其中, 当基准频率等于输出频率时, 输出模拟电压信
进一步地, 通过以下公式获取压控电压 vc: vc =-( F°ut ~ Fset )vmax + -ymax ,
2 ^ SCOPE J 2 其中, F。ut是可编程 VCO芯片的输出频率, Fset是中心频率, 是可编程
VCO芯片的最大输入电压, 且输出频率的范围是第一输出频率 至第二 输出频率 Fmax, 其中, 第一输出频率
Figure imgf000005_0001
第二输出频率为 Fmax=Fset+SCOPE, 所述 SCOPE为压控变化范围。
通过本发明, 采用控制器, 用于配置数据信号的设置数据; 可编程电 压控制振荡器 VCO 芯片, 用于根据数字信号的设置数据, 来获取可编程 VCO芯片的输出频率; 频率转换电压模块, 用于获取输出频率, 并输出与 输出频率对应的模拟电压信号, 解决了现有技术的高精度 D/A转换器成本 高的问题, 达到了实现低成本 D/A转换器的效果。 附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本发明的一 部分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发 明的不当限定。 在附图中:
图 1是现有的 D/A转换器的结构示意图;
图 2是本发明中 D/A转换器实施例一的结构示意图;
图 3是本发明中 D/A转换器实施例二的结构示意图;
图 4是本发明中 D/A转换器实施例三的结构示意图; 以及
图 5是本发明中 D/A信号转换方法实施例的流程图。 具体实施方式
为了使本发明所要解决的技术问题、 技术方案及有益效果更加清楚、 明白, 以下结合附图和实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。
图 2是本发明中 D/A转换器实施例一的结构示意图, 该转换器包括: 控制器、 可编程电压控制振荡器(Voltage Controlled Oscillator, VCO )芯片 和频率转换电压模块。 其中, 控制器, 用于配置数字信号的设置数据; 可 编程 VCO芯片, 用于根据数字信号的设置数据, 来获取可编程 VCO芯片 的输出频率; 频率转换电压模块, 用于获取输出频率, 并输出与输出频率 对应的模拟电压信号。 其中, 设置数据可以包括: 中心频率和压控变化范 围。
本实施例中的控制器(例如 CPU )通过数字接口将数字信号输入可编 程的可编程 VCO芯片, 并配置可编程的可编程 VCO芯片的数字信号的设 置数据以获取输出频率, 该输出频率直接通过频率转换电压模块输出对应 的模拟电压信号, 该模拟电压信号可以通过电压跟随器输出转化后的电压, 从而实现了 D/A转换。 该 D/A转换器工作性能好、 且成本低廉。 通过可编程程序来输出任意一种频率和实现任意一种压控范围。 该可编程 VCO芯片可以应用在锁相环电路中, 可以通过改变可编程 VCO芯片的中 心频率来调节可编程 VCO芯片压控端的模拟电压, 从而实现 D/A转换。 本发明实施例中的频率转换电压模块可以是一种频率转换电压芯片。 且在上述实施例中, D/A转换器还可以包括: 隔离器, 用于获取频率 转换电压模块输出的模拟电压信号, 并对模拟电压信号进行隔离处理, 输 出处理后的模拟电压信号, 用以隔离后级电路对前级锁相环电路的影响。 该隔离器可以为一种电压跟随器,此处的电压跟随器作为隔离级来使得输 出电压近似输入电压幅度, 并对前级电路呈高阻状态, 对后级电路呈低 阻状态, 从而实现对前后级电路起到 "隔离 "作用。
图 3是本发明中 D/A转换器实施例二的结构示意图。 D/A转换器包括: 控制器, 用于配置数字信号的设置数据; 可编程 VCO芯片, 用于根据数字 信号的设置数据,来获取可编程 VCO芯片的输出频率;频率转换电压模块, 用于获取输出频率, 并输出与输出频率对应的模拟电压信号。 其中, 设置 数据可以包括: 中心频率和压控变化范围。 频率转换电压模块具体包括频 率发生器和转换电路。
其中, 频率发生器, 用于生成基准频率; 转换电路, 对输出频率和基 准频率进行比较, 将比较结果转换为模拟电压信号。 转换电路可以是频率 差值转电压( AF/V )转换电路, AF/V转换电路是一种频率差值转电压电路。
在实施例二中, 控制器(例如 CPU )通过数字接口设置可编程的可编 程 VCO芯片的中心频率,该中心频率与频率发生器生成并输出的基准频率 在转换电路中进行比较, 两个频率的差值转换为模拟电压信号, 该模拟电 压信号可以经过隔离器后完成 D/A转换。
图 4是本发明中 D/A转换器实施例三的结构示意图。 如图 4所示, 实 施例三进一步优化了实施例一和实施例二。 其中, D/A转换器包括: 控制 器, 用于配置数字信号的设置数据; 可编程 VCO芯片, 用于根据数字信号 的设置数据, 来获取可编程 VCO芯片的输出频率; 频率转换电压模块, 用 于获取输出频率, 并输出与输出频率对应的模拟电压信号。 其中, 设置数 据可以包括: 中心频率和压控变化范围。 频率转换电压模块具体包括频率 发生器和转换电路。 频率发生器可以为温补晶振。 转换电路可以包括: 鉴 相器和环路滤波电路。
其中, 鉴相器, 用于比较可编程 VCO芯片的输出频率和基准频率的相 位关系, 以获取相位关系的差值, 并将差值表示为 UP/DOWN信号; 环路 滤波电路, 将 UP/DOWN信号转化为压控电压, 并将压控电压反馈给可编 程 VCO芯片来控制可编程 VCO芯片输出的输出频率; 其中, 当基准频率 等于输出频率时, 输出模拟电压信号, 此时, 该模拟电压信号是压控电压。
实施例三的整体 D/A转换器是基于传统模拟锁相环电路构成, 但与之 不同的是将传统模拟锁相环电路中的单频点的可编程 VCO芯片更换为可编 程的可编程 VCO芯片, 同时在可编程的可编程 VCO芯片的 VC端接入隔 离器、 即电压跟随器构成。
将温补晶振产生的基准频率( Fref )与可编程的可编程 VCO芯片产生的 输出频率(F。ut )在鉴相器中比较相位关系(频率关系), 并将比较的差值表 示为 UP/DOWN信号传递给环路滤波电路, 后者将 UP/DOWN信号转化为 压控电压 (Vc ), 该电压控制可编程的可编程 VCO芯片改变频率输出, 形 成负反馈, 进而反复上述的全部过程。 当电路调整到 Fref与 F。ut频率完全相 同时, 整个电路进入到稳态, Vc电压不再变化, 可编程的可编程 VCO芯片 的输出频率也不再变化。 那么该电路的最终状态是: F。ut=Fref, 形成相位锁 定。
实施例三通过控制器来编程设置可编程的可编程 VCO芯片的中心频率 ( Fset )和压控变化范围( SCOPE )。 在设置这两个值之后, 可编程的可编程 VCO芯片的输出频率范围可以确定为
Figure imgf000008_0001
Fmax=Fset+SCOPE。 已知, 可编程的可编程 VCO芯片的 VC端输入电压范围 V -V
(Vmin=0, V 与输出频率范围 (F^, Fmax)成线性关系:
F - F F - F
I F^ - F
简化后得到: V( + -ymax , 在 D/A转换器的电路进入到稳态
21 SCOPE 状态下, 可得到
Figure imgf000009_0001
Fref已知 , Vmax已知 , 在 CPU设置 Fset和 SCOPE成功之后 , Vc的电压就可 以得到确定。 Vc电压通过电压跟随器隔离掉后级电路对前级锁相环电路的 影响,输出 A ut, A ut=Vc。于是,该电路通过数字信号设置(Fset和 SCOPE ), 得到模拟量模拟电压输出 (VJ, 就完成了低成本的 D/A转换器。
上述各个实施例中, D/A转换器还可以包括: 隔离器, 获取模拟电压 信号, 并对模拟电压信号进行隔离处理, 输出处理后的模拟电压信号, 用 以隔离后级电路对前级锁相环电路的影响。
图 5是本发明中信号转换方法实施例的流程图, 该信号转换方法包括 如下步驟:
步驟 402, 通过控制器来配置数据信号的设置数据。 其中, 设置数据可 以包括: 中心频率 Fset和压控变化范围 SCOPE。
步驟 404, 可编程 VCO 芯片根据数字信号的设置数据来获取可编程 VCO芯片的输出频率。
步驟 406,通过频率转换电压模块获取输出频率, 并输出与输出频率对 应的模拟电压信号。
本实施例的控制器(如 CPU )通过数字接口将数字信号输入可编程的 可编程 VCO芯片, 并配置可编程的可编程 VCO芯片的数字信号的设置数 据以获取输出频率, 该输出频率直接通过频率转换电压模块输出所设频率 对应的电压, 该电压可以通过电压跟随器输出转化后的电压, 从而实现了 D/A转换。 该 D/A转换器工作性能好、 且成本低廉。
优选的, 本实施例中在通过频率转换电压模块获取输出频率, 并输出 与输出频率对应的模拟电压信号之后, 还可以包括: 通过隔离器来获取模 拟电压信号, 并对模拟电压信号进行隔离处理, 输出处理后的模拟电压信 号。 其中, 该隔离器可以是一种电压跟随器, 此处的电压跟随器作为隔离 级来使得输出电压近似输入电压幅度, 并对前级电路呈高阻状态, 对后 级电路呈低阻状态, 从而实现对前后级电路起到 "隔离 "作用。
本实施例中, 通过频率转换电压模块获取输出频率, 并输出与输出频 率对应的模拟电压信号的步驟可以包括: 通过频率发生器生成基准频率; 通过转换电路对输出频率和基准频率进行比较, 将比较结果转换为模拟电 压信号。
该实施例中的通过转换电路对输出频率和基准频率进行比较, 将比较 结果转换为模拟电压信号的步驟可以包括: 通过鉴相器来比较输出频率和 基准频率的相位关系,以获取相位关系的差值,并将差值表示为 UP/DOWN 信号; 通过环路滤波电路将 UP/DOWN信号转化为压控电压, 并将压控电 压反馈给可编程 VCO芯片来控制可编程 VCO芯片输出的输出频率;其中, 当基准频率等于输出频率时, 输出模拟电压信号, 此时, 模拟电压信号是 压控电压。
该方法实施例可以通过以下公式获取压控电压 ^:
Vmi + ^VmiX , 其中, F。ut是可编程 VCO芯片的输出频率,
2 SCOPE J 2
Fset是中心频率, ^皿是可编程 VCO芯片的最大输入电压, 且输出频率的范 围是第一输出频率 至第二输出频率 Fmax , 其中, 第一输出频率 Fmin=Fset-SCOPE, 第二输出频率为 Fmax=Fset+SCOPE, SCOPE为压控变化范 围。
本发明上述各个实施例中的频率转换电压模块可以是一种频率转换电 压芯片。
需要说明的是, 本发明实施例在附图的流程图示出的步驟可以在诸如 一组计算机可执行指令的计算机系统中执行, 并且, 虽然在流程图中示出 了逻辑顺序, 但是在某些情况下, 可以以不同于此处的顺序执行所示出或 描述的步驟。
从以上的实施例描述中, 可以看出, 本发明实现了如下技术效果: 本 发明通过完全革新的实现方法来改变以往 D/A转换器的结构, 通过一种全 新的器件实现高精度、 低成本的 D/A转换器。
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步驟 可以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者 分布在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执 行的程序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来 执行, 或者将它们分别制作成多个集成电路模块, 或者将它们中的多个模 块或步驟制作成单个集成电路模块来实现。 这样, 本发明不限制于任何特 定的硬件和软件结合。
上述说明示出并描述了本发明的一个优选实施例, 但如前所述, 应当 理解本发明并非局限于本文所披露的形式, 不应看作是对其他实施例的排 除, 而可用于各种其他组合、 修改和环境, 并能够在本文所述发明构想范 围内, 通过上述教导或相关领域的技术或知识进行改动。 而本领域人员所 进行的改动和变化不脱离本发明的精神和范围, 则都应在本发明所附权利 要求的保护范围内。

Claims

权利要求书
1、 一种转换器, 其特征在于, 包括:
控制器, 用于配置数据信号的设置数据;
可编程电压控制振荡器 VCO芯片,用于根据所述数字信号的设置数据, 来获取所述可编程 VCO芯片的输出频率;
频率转换电压模块, 用于获取所述输出频率, 并输出与所述输出频率 对应的模拟电压信号。
2、 根据权利要求 1所述的转换器, 其特征在于, 所述转换器还包括: 隔离器, 获取所述模拟电压信号, 并对所述模拟电压信号进行隔离处理, 输出处理后的所述模拟电压信号。
3、 根据权利要求 1或 2所述的转换器, 其特征在于, 所述设置数据包 括: 中心频率和压控变化范围。
4、 根据权利要求 1或 2所述的转换器, 其特征在于, 所述频率转换电 压模块包括:
频率发生器, 用于生成基准频率;
转换电路, 用于对所述输出频率和所述基准频率进行比较, 将比较结 果转换为所述模拟电压信号。
5、 根据权利要求 4所述的转换器, 其特征在于, 所述转换电路包括: 鉴相器, 用于比较所述输出频率和所述基准频率的相位关系, 以获取 所述相位关系的差值, 并将所述差值表示为 UP/DOWN信号;
环路滤波电路, 用于将所述 UP/DOWN信号转化为压控电压, 并将所 述压控电压反馈给所述可编程 VCO芯片来控制所述可编程 VCO芯片输出 的输出频率;
其中, 当所述基准频率等于所述输出频率时, 输出所述模拟电压信号。
6、 一种信号转换方法, 其特征在于, 包括: 通过控制器来配置数据信号的设置数据;
可编程电压控制振荡器 VCO芯片根据所述数字信号的设置数据来获取 所述可编程 VCO芯片的输出频率;
通过频率转换电压模块获取所述输出频率, 并输出与所述输出频率对 应的模拟电压信号。
7、 根据权利要求 6所述的方法, 其特征在于, 在通过频率转换电压模 块获取所述输出频率, 并输出与所述输出频率对应的模拟电压信号之后, 还包括:
通过隔离器来获取所述模拟电压信号, 并对所述模拟电压信号进行隔 离处理, 输出处理后的所述模拟电压信号。
8、根据权利要求 6或 7所述的方法,其特征在于, 所述设置数据包括: 中心频率和压控变化范围。
9、 根据权利要求 6或 7所述的方法, 其特征在于, 通过频率转换电压 模块获取所述输出频率, 并输出与所述输出频率对应的模拟电压信号的步 驟具体包括:
通过所述频率转换电压模块的频率发生器生成基准频率;
通过所述频率转换电压模块的转换电路对所述输出频率和所述基准频 率进行比较, 将比较结果转换为所述模拟电压信号。
10、 根据权利要求 9所述的方法, 其特征在于, 通过转换电路对所述 输出频率和所述基准频率进行比较, 将比较结果转换为所述模拟电压信号 的步驟具体包括:
通过所述转换电路的鉴相器来比较所述输出频率和所述基准频率的相 位关系, 以获取所述相位关系的差值, 并将所述差值表示为 UP/DOWN信 通过所述转换电路的环路滤波电路将所述 UP/DOWN信号转化为压控 电压 Vc ,并将所述压控电压反馈给所述可编程 VCO芯片来控制所述可编程 VCO芯片输出的输出频率;
其中, 当所述基准频率等于所述输出频率时, 输出所述模拟电压信号。
11、 根据权利要求 10所述的方法, 其特征在于, 通过以下公式获取所 述压控电压
Figure imgf000014_0001
其中, F ^是可编程 vco芯片的输出频率,
Fset是中心频率, Vmax是所述可编程 VCO芯片的最大输入电压;
且所述输出频率的范围是第一输出频率 至第二输出频率 Fmax, 其 中, 所述第一输出频率
Figure imgf000014_0002
, 所述第二输出频率为 Fmax=Fset+SCOPE, 所述 SCOPE为压控变化范围。
PCT/CN2011/080587 2011-02-11 2011-10-09 转换器及信号转换方法 WO2012106957A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110036233.3 2011-02-11
CN201110036233.3A CN102176677B (zh) 2011-02-11 2011-02-11 转换器及信号转换方法

Publications (1)

Publication Number Publication Date
WO2012106957A1 true WO2012106957A1 (zh) 2012-08-16

Family

ID=44519786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080587 WO2012106957A1 (zh) 2011-02-11 2011-10-09 转换器及信号转换方法

Country Status (2)

Country Link
CN (1) CN102176677B (zh)
WO (1) WO2012106957A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176677B (zh) * 2011-02-11 2015-09-16 中兴通讯股份有限公司 转换器及信号转换方法
CN104202051A (zh) * 2014-08-25 2014-12-10 长沙瑞达星微电子有限公司 一种量化范围可编程的dac结构
CN110440833A (zh) * 2019-09-03 2019-11-12 中核核电运行管理有限公司 信号转换装置及信号转换板卡

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030179123A1 (en) * 2002-03-22 2003-09-25 Devilbiss Alan D. Analog-to-digital conversion using a counter
CN101098130A (zh) * 2006-06-27 2008-01-02 中兴通讯股份有限公司 一种信号幅度的转换装置
CN102176677A (zh) * 2011-02-11 2011-09-07 中兴通讯股份有限公司 转换器及信号转换方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2395891A1 (en) * 2002-08-12 2004-02-12 Ralph Dickson Mason Injection locking using direct digital tuning
CN201623700U (zh) * 2009-12-30 2010-11-03 上海迦美信芯通讯技术有限公司 一种可校准频率综合器
CN101783677B (zh) * 2010-03-26 2012-04-11 海能达通信股份有限公司 一种锁相环的锁定方法及锁定电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030179123A1 (en) * 2002-03-22 2003-09-25 Devilbiss Alan D. Analog-to-digital conversion using a counter
CN101098130A (zh) * 2006-06-27 2008-01-02 中兴通讯股份有限公司 一种信号幅度的转换装置
CN102176677A (zh) * 2011-02-11 2011-09-07 中兴通讯股份有限公司 转换器及信号转换方法

Also Published As

Publication number Publication date
CN102176677B (zh) 2015-09-16
CN102176677A (zh) 2011-09-07

Similar Documents

Publication Publication Date Title
US8170169B2 (en) Serializer deserializer circuits
EP3134973B1 (en) Circuit for generating accurate clock phase dignals for a high-speed serializer/deserializere
US10181844B1 (en) Clock duty cycle calibration and frequency multiplier circuit
CN109639272B (zh) 一种自适应宽带锁相环电路
US9246670B2 (en) Compact low-power fully digital CMOS clock generation apparatus for high-speed SerDes
US7417477B2 (en) PLL circuit
WO2012106957A1 (zh) 转换器及信号转换方法
TW201820790A (zh) 頻率合成裝置及其方法
TWI681634B (zh) 時脈資料回復電路
TW201112640A (en) ADC-based mixed-mode digital phase-locked loop
TWI328355B (en) Phase-locked loop circuit and mixed mode loop filter
WO2020123587A1 (en) Phase-locked loop (pll) with direct feedforward circuit
US8269533B2 (en) Digital phase-locked loop
US9673826B2 (en) Receiving device
CN102801416B (zh) 锁相回路电路
TWI446721B (zh) 振盪訊號產生裝置與振盪訊號產生裝置之控制訊號產生電路
EP1538754A1 (en) Frequency and phase correction in a phase-locked loop
CN211239830U (zh) 一种采样率可动态配置的高速adc采集系统
CN109547017A (zh) 一种应用于fpga的双环路锁相环模拟核心电路及锁相环
US20170295428A1 (en) Audio signal processing circuit and electronic apparatus including the same
US11799460B1 (en) Dynamic phase adjustment for high speed clock signals
CN115102549B (zh) 一种用于adc采集系统的数据通道建立方法
WO1996029785A1 (fr) Synthetiseur de frequence a gain de boucle variable
CN210053394U (zh) 一种支持低输入参考频率的混合结构锁相环
WO2021102927A1 (zh) 一种时钟产生电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858250

Country of ref document: EP

Kind code of ref document: A1