WO2012106927A1 - 通信设备用散热柜 - Google Patents

通信设备用散热柜 Download PDF

Info

Publication number
WO2012106927A1
WO2012106927A1 PCT/CN2011/077607 CN2011077607W WO2012106927A1 WO 2012106927 A1 WO2012106927 A1 WO 2012106927A1 CN 2011077607 W CN2011077607 W CN 2011077607W WO 2012106927 A1 WO2012106927 A1 WO 2012106927A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
evaporator
heat dissipation
phase change
heat
Prior art date
Application number
PCT/CN2011/077607
Other languages
English (en)
French (fr)
Inventor
陈宏亮
冯踏青
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180001201.8A priority Critical patent/CN102318457B/zh
Priority to PCT/CN2011/077607 priority patent/WO2012106927A1/zh
Publication of WO2012106927A1 publication Critical patent/WO2012106927A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20663Liquid coolant with phase change, e.g. heat pipes
    • H05K7/20681Liquid coolant with phase change, e.g. heat pipes within cabinets for removing heat from sub-racks

Definitions

  • Embodiments of the present invention relate to a heat dissipation technology, and in particular, to a heat dissipation device for a communication device. Background technique
  • Embodiments of the present invention provide a communication device that uses heat dissipation to improve heat dissipation and reduce noise.
  • Embodiments of the present invention provide a heat dissipation rejection of a communication device, including:
  • the rejecting body comprises a plurality of wall plates, wherein at least one of the plurality of wall plates is a condensation plate, and the condensation plate is provided with a condensation pipe;
  • At least one evaporator the evaporator being located at an end of the reject body away from the ground, the steaming
  • the inside of the generator has a phase change medium, and the evaporator is connected to the condensation line to form a circulation loop of the phase change medium movement, and the phase change medium absorbs heat by phase change at the evaporator end
  • the communication device as described above is thermally dissipated.
  • the evaporator further comprises auxiliary means for driving the phase change medium to move in the circulation loop.
  • the communication device as described above is thermally dissipated.
  • the auxiliary device is a capillary structure or a power driving device, and the auxiliary device is located inside the evaporator.
  • the communication device as described above is thermally dissipated, and preferably, the evaporator is a parallel flow heat exchanger.
  • the communication device as described above is thermally dissipated, and preferably, the evaporator has a channel structure.
  • the communication device as described above is thermally dissipated, and preferably, the phase change medium is any one of ammonia, water, acetone, and hydrofluorocarbon refrigerant.
  • the communication device as described above is thermally dissipated, and preferably, the condensing plate has fins on a side facing the outside of the body.
  • the communication device as described above is thermally dissipated, and preferably, the condensing line is formed in the condensing plate by an inflation technique.
  • the communication device as described above is thermally dissipated, and preferably, the material of the condensing plate is any one of aluminum, magnesium, copper, and heat conductive plastic.
  • the communication device as described above is cooled by heat dissipation.
  • a pipe connected between the evaporator and the condensing plate projects from the lower end of the condensing plate and is bent upward to the evaporator.
  • the communication device provided by the embodiment of the invention is configured to dissipate heat by using one of the wall plates of the reject body and the evaporator is placed at one end of the reject body away from the ground, so that the communication device has better heat dissipation rejection. Cooling function, small size and low noise.
  • FIGS. 2A to 2C are schematic cross-sectional views showing an evaporator having a channel structure for heat dissipation in a communication device according to a second embodiment of the present invention
  • FIG. 3 is a schematic structural view of a heat dissipation device for a communication device having fins according to a third embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a heat dissipation device of a communication device according to Embodiment 4 of the present invention. detailed description
  • FIG. 1 is a schematic structural diagram of a heat dissipation device for a communication device according to Embodiment 1 of the present invention.
  • the communication device heat dissipation 100 includes a reject body 101 and at least one evaporator 102.
  • the reject body 101 includes a plurality of wall plates, at least one of the plurality of wall plates is a condensation plate 103, and the condensation plate 103 is provided with a condensation pipe 104, and the evaporator 102 is located in the reject body 101 away from the ground.
  • the evaporator 102 has a phase change medium inside, and the evaporator 102 is connected with the condensing line 104 to form a circulation loop for the phase change medium movement, and the phase change medium absorbs the heat energy through the phase change at the end of the evaporator 102, and The absorbed heat energy is released in the condensing line 104 by a phase change.
  • a fan (not shown) may be disposed in the heat dissipation 100 of the communication device, and the fan may accelerate the exchange of phase change medium and heat in the evaporator 102. Since the communication device is sealed with the heat dissipation 100, even if a fan is present inside, the noise is reduced due to the sound insulation of the body.
  • connection between the evaporator 102 and the condensing line 104 in this embodiment is as shown in FIG.
  • the outlet and inlet of the phase change medium can both be located on the same side of the evaporator 102, which results in less consumables for the connecting line between the evaporator 102 and the condensing line 104, reducing production costs.
  • the material for making the condensing plate 103 may be any one of aluminum alloy, stainless steel, and plastic.
  • the condensing line 104 of the cold condensing plate 103 may be formed in a welded manner on the condensing plate 103.
  • the condensing line 104 is formed in the condensing plate 103 by an inflation technique.
  • the condensing line 104 is integrated with the condensing plate 103, that is, the movement of the phase change medium in the condensing pipe 104 is moved in the condensing plate 103, so that it can make maximum contact with the outside without having to go through other Equipment or piping can transfer heat to the outside world, enhancing heat dissipation.
  • the evaporator 102 may employ a parallel flow heat exchanger.
  • the specific working principle of the above-mentioned communication device using heat dissipation 100 is that after the phase change medium in the evaporator 102 absorbs enough heat generated by the communication device, a physical phase change occurs, for example, from a liquid phase to a gas phase, due to its own
  • the physical action or external force acting on the phase change medium causes the phase change medium in which the phase change has occurred to move into the condensing line 104 in the condensing plate 103. Since the condensing plate 103 is a part of the rejecting body 101 and is in direct contact with the outside, the phase change medium can exchange heat with the outside when passing through the condensing plate 103, i.e., dissipate heat.
  • phase change medium When the heat emitted by the phase change medium reaches a certain level, the phase change medium will return to the normal temperature state, for example, from the gas phase to the liquid phase, and through the physical action of the phase change medium itself and/or to the phase change medium.
  • the external force is returned to the evaporator 102 using a circulation loop between the condensing line 104 and the evaporator 102. This cycle is used to achieve the purpose of dissipating heat for the communication device.
  • the phase change medium is any one of ammonia, water, acetone, and hydrofluorocarbon refrigerant, wherein the hydrofluorocarbon refrigerant may specifically be R134 refrigerant.
  • the phase change medium is a liquid at room temperature, and after a certain amount of heat is absorbed, it becomes a gas, and due to the diffusibility of the gas itself, it will enter the condensation line 104, and exchange heat with the outside world. The heat can be dissipated, the phase change medium is returned to the liquid state, and returned to the evaporator 102.
  • the entire circulation line has a phase change medium inside.
  • the port from which the phase change medium flows out from the evaporator 102 is set as an outlet, and the inflow port is set as an inlet. It can flow through the auxiliary device (not shown) located in the heat dissipation rejection 100 of the communication device.
  • the auxiliary device is for example a capillary structure or a power drive, both close to the evaporator 102, for example directly below the evaporator 102.
  • a phase change medium which is a liquid at a normal temperature and a heat is absorbed, and is capable of moving in the capillary structure by itself, so that the evaporator 102
  • a power drive device such as a pump
  • the flow of the phase change medium in the liquid phase can be accelerated to enhance the heat absorption and heat dissipation effects of the phase change medium.
  • the noise of the power drive is generally much smaller than that of the fan, so the noise can be reduced to a certain extent compared with the conventional technology.
  • the evaporator 102 by mounting the evaporator 102 at the upper end portion of the reject body 101, that is, the end portion away from the ground, since the heat is moved upward, the heat is mainly concentrated for the heat dissipation 100 of the communication device.
  • the evaporator 102 is mounted on the upper end portion of the reject body 101 to absorb heat to the utmost extent, and since the communication device is usually heavy and has a fine circuit structure, it is generally not possible to increase it arbitrarily. Any device is placed on the side wall of the reject body, otherwise it will affect its communication effect or even its performance. Therefore, the communication device is usually placed at the bottom of the reject body 101.
  • the evaporator 102 is disposed at the upper end portion of the rejecting body 101, so that the place where the communication device is occupied can be avoided, thereby reducing the size of the heat dissipation of the entire communication device.
  • the evaporator 102 is disposed at the upper end portion of the reject body 101, for example, the evaporator 102 is directly welded to the reject body 101, or the hook is welded to the evaporator 102 at a corresponding position inside the top surface of the reject body 101. A place where the hook is connected is provided to suspend the evaporator 102 from the end of the reject body 101 away from the ground.
  • the distance between the evaporator 102 and the condensing plate 103 can also be set according to the actual setting.
  • the pipeline between the evaporator 102 and the condensing line 104 is correspondingly shorter, and The fastest speed sends the phase change medium into the condensing line 104 for heat dissipation, which not only reduces the cost, but also enhances the heat dissipation capability, and prevents the phase change medium from partially reaching the condensing line 104.
  • the heat is re-discharged in the reject 101.
  • the communication device using the embodiment of the present invention can reduce or even avoid the generation of noise by using the heat dissipation rejection 100, and the heat dissipation capability is 50% or more compared with the conventional technology. If the communication device is designed to be closed with a heat dissipation 100, the risk of dust accumulation can also be avoided.
  • the communication device of the first embodiment is further improved by using heat dissipation.
  • a channel structure is provided in the evaporator 102, as shown in Figs. 2A, 2B and 2C, which are schematic views of various cross sections of the evaporator 102 having a channel structure, respectively.
  • the channel structure can enlarge the heat absorbing area of the evaporator 102, which further enhances the heat dissipation capability of the communication device with the heat dissipation 100.
  • the communication device of the first embodiment and the second embodiment is further improved by the heat dissipation rejection 100.
  • the heat dissipation rejection 100 As shown in FIG. 3, in the third embodiment, at least one fin 202 is provided on a side of the condensing plate 103 facing the external environment, and the fin 202 enhances the heat dissipation capability of the condensing plate 103, so that the communication device uses heat dissipation to reject 100. The heat dissipation capability is further enhanced.
  • the communication device of the above embodiment is improved in heat dissipation.
  • a schematic diagram of the structure of the heat dissipation rejection 400 of the communication device according to the fourth embodiment is shown in FIG.
  • the outlet and the inlet of the phase change medium of the communication device 400 are located on opposite sides of the evaporator 102, the outlet is located on the side of the evaporator 102 near the condensation plate 101, and the inlet is located on the side of the evaporator 102 away from the condensation plate 101.
  • Other structures are the same as those in the first embodiment, and will not be described here.
  • the phase change medium exits the outlet and enters the condensing line 104 for heat dissipation, and then flows out of the condensing line 104 along the connecting line between the condensing line 104 and the evaporator 102 to return to the evaporator 102. Since the connecting line is long, the phase change medium is present for a longer period of time in the connecting line, which can absorb heat to some extent and carry this part of the heat back to the evaporator 102.
  • the heat absorbing area of the phase change medium is expanded in a disguised manner, and the heat absorbing effect of the heat dissipation refusal 400 of the communication device is enhanced, and accordingly, the heat dissipation effect of the heat dissipation refusal 400 of the communication device is enhanced.
  • the shape of the connecting line between the evaporator 102 and the condensing line 104 can be designed according to needs or according to the position of the communication device in the heat dissipation rejection 400 of the communication device, without affecting the In the case of communication equipment, as close as possible to the communication equipment to make the phase change
  • the heat absorption effect of the medium is better to further heat the heat.
  • the communication device uses the heat dissipation 400, and the outlet and the inlet of the phase change medium on the evaporator 102 are respectively disposed on opposite sides of the evaporator 102, and the evaporator 102 and the condensation line 104 are extended as much as possible.
  • the length of the interconnecting pipe increases the heat absorbing area of the evaporator 102 in a phase-change manner, and further enhances the heat-dissipating effect of the heat-dissipating device 400 of the communication device.
  • the communication device provided by the embodiment of the present invention can be used for various communication devices, such as a switch, a power supply, a lightning protection box, etc., and the actual size of the communication device for heat dissipation can be designed according to these communication devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

通信设备用散热拒
技术领域
本发明实施例涉及散热技术, 尤其涉及一种通信设备用散热拒。 背景技术
目前, 为了使通信设备中的电子设备免于受外界破坏, 业界通常将这些 通信设备安装在机拒中。 而随着通信设备的功率的不断增加, 通信设备在工 作过程中产生的热量也不断增加 , 这样如何为安装在机拒中的通信设备散热 就成为亟需解决的一个问题。
在实现本发明的过程中, 发明人发现现有技术提供的多种散热方式均存 在缺陷: 现有技术中的一种方式是采用直通风方式进行散热。 但是如果机拒 放置在楼道内或一些户外场景, 这种方式容易产生拒内积尘和噪音的问题。 为了避免拒内积尘和噪音的问题, 现有技术中又有一种使用双层壁技术进行 散热的方式, 但是这种方式散热效果很差。 现有技术中还有一种通过循环风 扇与换热器芯进行散热的方法, 虽然这种方式的散热能力比直通风方式的散 热能力高, 但是其成本较高、 散热拒所占空间较大且重量较大, 并且由于外 循环风扇的存在还会产生一定的噪音。 发明内容
本发明实施例提供一种通信设备用散热拒, 用以提高散热功能以及降低 噪音。
本发明实施例提供一种通信设备用散热拒, 包括:
拒体, 所述拒体包括多个壁板, 其中所述的多个壁板中的至少一个壁板 为冷凝板, 所述冷凝板上设置有冷凝管路;
至少一个蒸发器, 所述蒸发器位于所述拒体中远离地面的一端, 所述蒸 发器内部具有相变媒介, 所述蒸发器与所述冷凝管路相连接以形成所述相变 媒介运动的循环回路, 所述相变媒介在所述蒸发器端通过相变的方式吸收热 如上所述的通信设备用散热拒, 优选地, 所述蒸发器还包括辅助装置, 用于驱动所述相变媒介在所述循环回路中运动。
如上所述的通信设备用散热拒, 优选地, 所述辅助装置为毛细结构或动 力驱动装置, 所述辅助装置位于所述蒸发器的内部。
如上所述的通信设备用散热拒, 优选地, 所述蒸发器为平行流换热器。 如上所述的通信设备用散热拒, 优选地, 所述蒸发器中具有槽道结构。 如上所述的通信设备用散热拒, 优选地, 所述相变媒介是氨、 水、 丙酮 和氢氟烃制冷剂中的任意一种。
如上所述的通信设备用散热拒, 优选地, 所述冷凝板朝向所述拒体外的 一侧具有翅片。
如上所述的通信设备用散热拒, 优选地, 所述冷凝管路通过吹胀技术形 成于所述冷凝板中。
如上所述的通信设备用散热拒, 优选地, 所述冷凝板的材料是铝、 镁、 铜和导热塑料中的任意一种。
如上所述的通信设备用散热拒, 优选地, 所述蒸发器和所述冷凝板之间 连接的管路从所述冷凝板下端伸出, 向上弯折至所述蒸发器。
本发明实施例提供的通信设备用散热拒, 通过将拒体的其中一个壁板设 置为冷凝板并且将蒸发器放置于拒体中远离地面的一端, 使得该通信设备用 散热拒具有较好的散热功能, 体积小且噪音小。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为根据本发明实施例一的通信设备用散热拒的结构示意图; 图 2A至 2C为根据本发明实施例二的通信设备用散热拒中具有槽道结构 的蒸发器的截面示意图;
图 3为根据本发明实施例三的具有翅片的通信设备用散热拒的结构示意 图;
图 4为根据本发明实施例四的通信设备用散热拒的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1所示为本发明实施例一提供的通信设备用散热拒的结构示意图。 如 图 1所示, 通信设备用散热拒 100包括拒体 101和至少一个蒸发器 102。
其中, 拒体 101 包括多个壁板, 其中的多个壁板中的的至少一个壁板为 冷凝板 103 , 冷凝板 103上设置有冷凝管路 104, 蒸发器 102位于拒体 101中 远离地面的一端,蒸发器 102内部具有相变媒介,蒸发器 102与冷凝管路 104 相连接以形成相变媒介运动的循环回路, 相变媒介在蒸发器 102端通过相变 的方式吸收热能, 并在冷凝管路 104中通过相变的方式释放所吸收的热能。
可选地, 还可以在该通信设备用散热拒 100中设置风机 (图中未示出), 风机可以加快蒸发器 102内的相变媒介与热量的交换。 由于该通信设备用散 热拒 100是密封的, 即使其内部还存在有风机, 也会由于拒体的隔音作用使 得噪音较小。
本实施例中的蒸发器 102与冷凝管路 104之间的连接方式如图 1所示, 相变媒介的出口和入口可以均位于蒸发器 102中的同一侧, 这样会使得蒸发 器 102与冷凝管路 104之间的连接管路的耗材较少, 降低生产成本。
制作冷凝板 103的材料可以是铝合金、 不锈钢和塑料中的任意一种。 冷 凝板 103的冷凝管路 104可以以焊接的方式形成于冷凝板 103上, 优选地, 冷凝管路 104通过吹胀技术形成于冷凝板 103中。 这样, 冷凝管路 104与冷 凝板 103成为一体, 也就是说相变媒介在冷凝管 104中的运动即是在冷凝板 103 中运动, 能够与外界做最大限度地接触, 而不需要再经过其它设备或管 路才能将热量传递到外界, 增强了散热能力。 可选地, 蒸发器 102可以采用 平行流换热器。
上述通信设备用散热拒 100的具体工作原理是, 蒸发器 102中的相变媒 介吸收了足够的、 由通信设备产生的热量之后, 发生物理相变, 例如从液相 变化到气相, 由于自身的物理作用或者作用到该相变媒介的外部作用力, 使 得发生了相变的相变媒介运动到冷凝板 103中的冷凝管路 104中。 由于冷凝 板 103是作为拒体 101的一部分, 与外界直接接触, 所以相变媒介可以在通 过冷凝板 103时与外界做热量交换 , 即进行散热。 当相变媒介散发出的热量 到一定程度时, 相变媒介会重新回到常温下的状态, 例如从气相回到液相, 并通过相变媒介自身的物理作用和 /或作用到相变媒介的外部作用力, 利用冷 凝管路 104和蒸发器 102之间的循环回路重新回到蒸发器 102中。如此循环, 以达到为该通信设备用散热拒 100散热的目的。
可选地, 相变媒介是氨、 水、 丙酮和氢氟烃制冷剂中的任意一种, 其中, 氢氟烃制冷剂具体可为 R134制冷剂。 这样, 相变媒介在室温状态下是液体, 而吸收一定的热量之后就会变成气体, 由于气体本身的扩散性, 其将会进入 到冷凝管路 104中, 通过与外界的热交换, 就可以将热量散发掉, 相变媒介 重新回到液体的状态, 并返回至蒸发器 102。 当相变媒介在运动时, 整个循 环管路内部就都具有相变媒介,对于蒸发器 102来说,相变媒介从蒸发器 102 流出的口设定为出口, 流入的口设定为入口。 可通过位于该通信设备用散热拒 100中的辅助装置 (图中未示出) , 所 路中流动。辅助装置例如是毛细管结构或者动力驱动装置,均靠近蒸发器 102, 例如位于蒸发器 102的正下方。 例如, 当采用能够提供毛细力的毛细管结构 且循环回路内具有一定的负压时, 常温下为液体、 吸收热量后为气体的相变 媒介, 能够自行在毛细管结构中运动, 这样该蒸发器 102就不需要采用任何 会产生噪音的辅助装置了, 大大降低了噪声扰民的可能性。 采用动力驱动装 置时, 例如泵, 可以加快液相的相变媒介的流动以增强该相变媒介的吸热和 散热效果。 动力驱动装置的噪声一般较风机来说要小的多, 因此, 与传统技 术相比较, 能够在一定程度上降低噪声。
根据上述实施例, 通过将蒸发器 102安装在拒体 101的上端部分, 即远 离地面的一端, 由于热量都是向上运动的, 因此, 对于该通信设备用散热拒 100来说, 热量主要是集中在拒体 101的上部, 因此将蒸发器 102安装在拒 体 101 的上端部分能够最大限度的吸收热量, 而且, 由于通信设备通常较沉 重且具有精细的电路结构, 一般不能在其上再任意增加任何装置以将其挂置 在拒体侧壁上, 否则会影响其通信效果甚至破坏其性能, 因此通常都是将通 信设备放置于拒体 101的底部。本发明实施例中将蒸发器 102设置在拒体 101 的上端部分, 能够避免占用通信设备的地方, 从而减小整个通信设备用散热 拒的尺寸。 将蒸发器 102设置在拒体 101的上端部分有很多种方式, 例如在 蒸发器 102直接焊接在拒体 101上, 或者在蒸发器 102上焊接挂钩并在拒体 101 的顶面内部的相应位置设置连接挂钩的地方, 从而将蒸发器 102悬挂于 拒体 101远离地面的一端。
另外, 还可以根据实际设置蒸发器 102与冷凝板 103之间的距离, 当两 者之间的距离较小时,蒸发器 102与冷凝管路 104之间的管路相应地就较短, 可以以最快的速度将相变媒介送入冷凝管路 104中进行散热, 不仅降低了成 本, 而且增强了散热能力, 避免相变媒介在未到达冷凝管路 104时又将部分 热量重新散发在拒体 101 中。 使用本发明实施例的通信设备用散热拒 100, 能够减小甚至避免噪音的产生, 散热能力与传统技术相比提供 50%以上。 如 果将该通信设备用散热拒 100设计成封闭式, 还能够避免积尘的风险。
本实施例二对实施例一的通信设备用散热拒做进一步地改进。 本实施例 二中, 在蒸发器 102中设置槽道结构, 如图 2A、 2B和 2C所示, 分别为具有 槽道结构的蒸发器 102的各种截面示意图。 槽道结构能够扩大蒸发器 102的 吸热面积, 这样也就进一步地增强了该通信设备用散热拒 100的散热能力。
本实施例三对实施例一和实施例二的通信设备用散热拒 100做进一步地 改进。 如图 3所示, 本实施例三中, 在冷凝板 103朝向外界环境的一侧具有 至少一个翅片 202, 该翅片 202增强冷凝板 103的散热能力, 使得该通信设 备用散热拒 100的散热能力进一步增强。
本实施例四对上述实施例的通信设备用散热拒进行改进。 图 4中示出了 根据本实施例四的通信设备用散热拒 400的结构示意图。 该通信设备用散热 拒 400的相变媒介的出口与入口位于蒸发器 102相对的两侧, 出口位于蒸发 器 102靠近冷凝板 101的一侧,入口位于蒸发器 102远离冷凝板 101的一侧, 其它结构均与实施例一中的结构一致, 在此不再进行赞述。
这样, 相变媒介从出口出来进入到冷凝管路 104进行散热, 再从冷凝管 路 104中流出沿着冷凝管路 104与蒸发器 102之间的连接管路返回到蒸发器 102 中。 由于这段连接管路较长, 因此相变媒介在这段连接管路中存在的时 间就较长, 可以在一定程度上吸收热量, 并携带这部分热量回到蒸发器 102 中。 这样, 也就是变相地扩大了相变媒介的吸热面积, 增强了该通信设备用 散热拒 400的吸热效果, 相应地, 也就增强了该通信设备用散热拒 400的散 热效果。
在实际应用中, 可以根据需要或者根据通信设备在该通信设备用散热拒 400中的摆放位置, 来设计蒸发器 102和冷凝管路 104之间的连接管路的形 状, 在尽量不影响到通信设备的情况下, 尽可能地靠近通信设备, 以使相变 媒介的吸热效果更好, 以进一步地更好地散热。
根据本实施例四的通信设备用散热拒 400,通过将相变媒介在蒸发器 102 上的出口和入口分别设置在蒸发器 102的相对两侧, 并尽量延长蒸发器 102 和冷凝管路 104之间连接管路的长度, 以变相地扩大该蒸发器 102的吸热面 积, 进一步地, 增强该通信设备用散热拒 400的散热效果。
本发明实施例提供的通信设备用散热拒可以用于各种通信设备, 例如交 换机、 电源和防雷盒等等, 可以根据这些通信设备来设计通信设备用散热拒 的实际尺寸。
在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没有 详述的部分, 可以参见其他实施例的相关描述。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM , 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要求
1、 一种通信设备用散热拒, 其特征在于, 包括:
拒体, 所述拒体包括多个壁板, 其中所述的多个壁板中的至少一个壁板 为冷凝板, 所述冷凝板上设置有冷凝管路;
至少一个蒸发器, 所述蒸发器位于所述拒体中远离地面的一端, 所述蒸 发器内部具有相变媒介, 所述蒸发器与所述冷凝管路相连接以形成所述相变 媒介运动的循环回路, 所述相变媒介在所述蒸发器端通过相变的方式吸收热
2、 根据权利要求 1所述的通信设备用散热拒, 其特征在于, 所述通信设 备用散热拒中还包括辅助装置, 用于驱动所述相变媒介在所述循环回路中运 动。
3、 根据权利要求 2所述的通信设备用散热拒, 其特征在于, 所述辅助装 置为形成在所述循环回路中的毛细结构或动力驱动装置。
4、 根据权利要求 1所述的通信设备用散热拒, 其特征在于, 所述蒸发器 为平行流换热器。
5、 根据权利要求 1所述的通信设备用散热拒, 其特征在于, 所述蒸发器 中具有槽道结构。
6、 根据权利要求 1所述的通信设备用散热拒, 其特征在于, 所述相变媒 介是氨、 水、 丙酮和氢氟烃制冷剂中的任意一种。
7、 根据权利要求 1所述的通信设备用散热拒, 其特征在于, 所述冷凝板 朝向所述拒体外的一侧具有翅片。
8、 根据权利要求 1所述的通信设备用散热拒, 其特征在于, 所述冷凝管 路通过吹胀技术形成于所述冷凝板中。
9、 根据权利要求 1所述的通信设备用散热拒, 其特征在于, 所述冷凝板 的材料是铝合金、 不锈钢和塑料中的任意一种。
10、 根据权利要求 1所述的通信设备用散热拒, 其特征在于, 所述蒸发 器和所述冷凝板之间连接的管路从所述冷凝板下端伸出 , 并向上弯折至所述 蒸发器。
PCT/CN2011/077607 2011-07-26 2011-07-26 通信设备用散热柜 WO2012106927A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180001201.8A CN102318457B (zh) 2011-07-26 2011-07-26 通信设备用散热柜
PCT/CN2011/077607 WO2012106927A1 (zh) 2011-07-26 2011-07-26 通信设备用散热柜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/077607 WO2012106927A1 (zh) 2011-07-26 2011-07-26 通信设备用散热柜

Publications (1)

Publication Number Publication Date
WO2012106927A1 true WO2012106927A1 (zh) 2012-08-16

Family

ID=45429456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077607 WO2012106927A1 (zh) 2011-07-26 2011-07-26 通信设备用散热柜

Country Status (2)

Country Link
CN (1) CN102318457B (zh)
WO (1) WO2012106927A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217635A (zh) * 2018-09-12 2019-01-15 珠海格力电器股份有限公司 模块冷却机构和变频器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721123A (zh) * 2012-05-11 2012-10-10 常州新德冷机有限公司 一体封闭式中央空调室外机柜
DK3136033T3 (en) 2015-08-26 2018-10-29 Abb Schweiz Ag Device for cooling a closed cabinet
CN109714932A (zh) * 2018-12-13 2019-05-03 中国联合网络通信集团有限公司 网络基站散热柜
CN110086088A (zh) * 2019-04-30 2019-08-02 江苏铭安电气有限公司 一种高效散热开关柜
CN110061428A (zh) * 2019-04-30 2019-07-26 江苏铭安电气有限公司 一种防尘散热开关柜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436093A (zh) * 2008-11-03 2009-05-20 北京市研祥兴业国际智能科技有限公司 密闭工业控制计算机的散热系统
EP1825346B1 (en) * 2004-11-12 2010-04-28 Stulz S.p.a. Cooling system for electric cabinets
CN101959388A (zh) * 2009-07-17 2011-01-26 阿尔西制冷工程技术(北京)有限公司 一种带制冷剂循环换热的电信机柜及其冷却方法
JP2011029341A (ja) * 2009-07-23 2011-02-10 Nec Corp 電子機器冷却システム及び電子機器冷却方法,プログラム
CN201854539U (zh) * 2010-11-06 2011-06-01 北京纳源丰科技发展有限公司 一种机柜节能散热背板系统
CN201860524U (zh) * 2010-11-05 2011-06-08 张永红 门板嵌入式热管散热网络机柜
CN102098902A (zh) * 2009-12-11 2011-06-15 华为技术有限公司 散热设备、通信设备的散热方法及通信设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1832156A (zh) * 2005-03-09 2006-09-13 台达电子工业股份有限公司 散热装置的结构及其制造方法
EP2117288A1 (en) * 2008-05-07 2009-11-11 3M Innovative Properties Company Heat-management system for a cabinet containing electronic equipment
CN101652054A (zh) * 2009-06-17 2010-02-17 谢逢华 超节能户外通信设备恒温系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1825346B1 (en) * 2004-11-12 2010-04-28 Stulz S.p.a. Cooling system for electric cabinets
CN101436093A (zh) * 2008-11-03 2009-05-20 北京市研祥兴业国际智能科技有限公司 密闭工业控制计算机的散热系统
CN101959388A (zh) * 2009-07-17 2011-01-26 阿尔西制冷工程技术(北京)有限公司 一种带制冷剂循环换热的电信机柜及其冷却方法
JP2011029341A (ja) * 2009-07-23 2011-02-10 Nec Corp 電子機器冷却システム及び電子機器冷却方法,プログラム
CN102098902A (zh) * 2009-12-11 2011-06-15 华为技术有限公司 散热设备、通信设备的散热方法及通信设备
CN201860524U (zh) * 2010-11-05 2011-06-08 张永红 门板嵌入式热管散热网络机柜
CN201854539U (zh) * 2010-11-06 2011-06-01 北京纳源丰科技发展有限公司 一种机柜节能散热背板系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217635A (zh) * 2018-09-12 2019-01-15 珠海格力电器股份有限公司 模块冷却机构和变频器

Also Published As

Publication number Publication date
CN102318457B (zh) 2014-12-03
CN102318457A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
WO2012106927A1 (zh) 通信设备用散热柜
CN106855741B (zh) 一种用于刀片服务器芯片的散热装置和系统
TWI438388B (zh) 液冷式散熱裝置
CN107846813B (zh) 一种充电桩的散热装置、散热方法和充电桩
US20110304981A1 (en) Computer server system and computer server thereof
CN104851857A (zh) 一种芯片冷却系统
CN110647223A (zh) 一种智能化cpu冷却装置
US20180132386A1 (en) Radiator and server cooling system including the same
CN106132177A (zh) 一种逆变器的冷却系统
JP3213430U (ja) グラフィックカードの放熱装置
US20140054009A1 (en) Cooling plate and water cooling device having the same
CN114003111A (zh) 一种用于计算机芯片的散热设备
CN106371535B (zh) 一种并联式cpu散热冷却装置
CN206162347U (zh) 一种密封水冷机箱
CN105828575B (zh) 用于轨道交通的射流两相换热冷板及冷却系统
US20200173741A1 (en) Heat sink and vending machine
CN106937517B (zh) 一种用于机架服务器芯片的散热装置
CN201547898U (zh) 一种用于机房或机柜的带气泵分离式热虹吸管散热装置
JP6825615B2 (ja) 冷却システムと冷却器および冷却方法
CN210321359U (zh) 一种分离式微槽道毛细虹吸管式热交换机
CN108323099B (zh) 翅片式热管耦合散热器
CN106993393A (zh) 一种散热设备及终端
CN209821750U (zh) 一种具有散热结构的服务器
CN113593616A (zh) 一种存储器用散热装置
CN210168376U (zh) 一种数据中心水冷散热机柜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001201.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858198

Country of ref document: EP

Kind code of ref document: A1