WO2012105657A1 - Process for production of hard foam synthetic resin - Google Patents

Process for production of hard foam synthetic resin Download PDF

Info

Publication number
WO2012105657A1
WO2012105657A1 PCT/JP2012/052420 JP2012052420W WO2012105657A1 WO 2012105657 A1 WO2012105657 A1 WO 2012105657A1 JP 2012052420 W JP2012052420 W JP 2012052420W WO 2012105657 A1 WO2012105657 A1 WO 2012105657A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
mass
rigid foam
synthetic resin
producing
Prior art date
Application number
PCT/JP2012/052420
Other languages
French (fr)
Japanese (ja)
Inventor
勝彦 清水
茂夫 波田野
孝之 佐々木
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012555960A priority Critical patent/JP5664669B2/en
Publication of WO2012105657A1 publication Critical patent/WO2012105657A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/10Rigid foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the present invention relates to a method for producing a rigid foam synthetic resin.
  • Rigid foam synthetic resin such as rigid polyurethane foam, rigid urethane modified polyisocyanurate foam or rigid polyurea foam by reacting active hydrogen compound such as polyol with polyisocyanate compound in the presence of foam stabilizer, catalyst and foaming agent ( Hereinafter, the production of rigid foams is generally performed.
  • chlorinated fluorinated carbon compounds chlorofluorocarbon compounds, so-called CFCs such as CCl 3 F
  • chlorinated fluorinated hydrocarbon compounds chlorinated fluorinated hydrocarbon compounds
  • hydrofluorinated hydrocarbon compounds such as CHF 2 CH 2 CF 3 and CH 3 CF 2 CH 2 CF 3
  • HFCs hydrofluorocarbons
  • ODP ozone layer depletion potential
  • GWP global warming potential
  • HFOs Hydrofluoroolefins
  • Patent Documents 1 to 4 listed below describe hydrofluoroolefins as blowing agents that do not destroy the ozone layer even when released into the atmosphere. That is, Patent Document 1 describes cis-1,1,1,4,4,4-hexafluoro-2-butene, and Patent Document 2 describes R F CH ⁇ CHR F ′ (R F , R F ′ is a perfluoroalkyl group) or a brominated hydrofluoroolefin. Patent Document 3 describes hydrochlorofluoroolefin, and Patent Document 4 describes the use of trans-1,1,1,3-tetrafluoropropene as a part of the foaming agent.
  • Patent Document 1 cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336) is used as a foaming agent, and an aromatic amine-based polyol is used as a polyol.
  • HFO-1336 cis-1,1,1,4,4,4-hexafluoro-2-butene
  • Patent Document 2 uses HFO-1438mzz or HFO-1336mmz as a foaming agent and foams in a closed mold using a general sucrose / glycerin polyol as a polyol (hereinafter also referred to as a casting method).
  • Patent Document 3 describes a rigid foam obtained by free rise using HFO-1233zd or HFO-1234ze and using a nonylphenol-based Mannich polyol as part of the polyol.
  • Patent Document 4 describes a rigid foam using HFO1234ze as a foaming agent.
  • Patent Documents 1 to 4 there has been little study on the combination of a hydrofluoroolefin (which may be referred to as HFO hereinafter), which is a foaming agent, and a polyol. Not obtained. In particular, no consideration has been given to reducing the weight of foams required in recent years.
  • HFO hydrofluoroolefin
  • the present invention has been made in view of the above circumstances, and the present invention A uses a hydrofluoroolefin as a foaming agent to obtain a rigid foam having good characteristics, particularly dimensional stability even when reduced in weight. With the goal.
  • Another object of the present invention is to obtain a rigid foam having good characteristics by using HFO as a foaming agent, particularly by using an injection method.
  • the object of the present invention B is to obtain a rigid foam produced by a continuous board method having good characteristics by using hydrofluoroolefins as a foaming agent, particularly a rigid foam having good dimensional stability even when the weight is reduced.
  • the present invention C has been made in view of the above circumstances, and an object thereof is to obtain a rigid foam having good characteristics by using hydrofluoroolefins as a foaming agent.
  • the object is to obtain a rigid foam with good properties using HFO as a blowing agent, in particular using a spray method.
  • the present invention A includes the following [1] to [9].
  • [1] A method for producing a rigid foamed synthetic resin by reacting a polyol composition (Pa) with a polyisocyanate compound in the presence of a foaming agent, a foam stabilizer and a catalyst,
  • the polyol composition (Pa) contains 30 to 70% by mass of the following polyol (Aa) and 0.002 to 30% by mass of polymer particles, and the polyol composition (Pa) has an average number of hydroxyl groups of 2 to 8, Hydrofluoroolefins (I) having a value of 100 to 800 mg KOH / g and the blowing agent represented by the following formula (I) R 1 CH ⁇ CHR 2 (I) (Wherein R 1 is a perfluoroalkyl group having 1 to 6 carbon atoms and R 2 is a perfluoroalkyl group having 1 to 6 carbon atoms or a halogen atom).
  • Polyol (Ba) A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using a polyhydric alcohol having 5 to 12 active hydrogen atoms as an initiator, and containing ethylene oxide in the total amount of the alkylene oxide A polyether polyol having an amount of 0 to 20% by mass and a hydroxyl value of 100 to 800 mgKOH / g. [4] The method for producing a rigid foam synthetic resin according to [1] to [3], wherein the polyol composition (Pa) contains 10 to 40% by mass of the following polyol (Ca).
  • Polyol (Ca) A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an aliphatic amine having 2 to 4 active hydrogen atoms as an initiator, and containing ethylene oxide in the total amount of the alkylene oxide A polyether polyol having an amount of 0 to 50% by mass and a hydroxyl value of 100 to 800 mgKOH / g. [5] The method for producing a rigid foam synthetic resin according to [1] to [4], wherein the polyol composition (Pa) contains 10 to 60% by mass of the following polyol (Da).
  • the polymer particles are polymer particles derived from a polymer-dispersed polyol (Wa), and the polyol composition (Pa) contains 0.01 to 50% by mass of the polymer-dispersed polyol (Wa). 5] The method for producing a hard foam synthetic resin.
  • the gist of invention B is the following [1] to [7].
  • [1] A method for producing a rigid foam synthetic resin by reacting and foaming a polyol composition (Pb) and a polyisocyanate compound in the presence of a foaming agent, a foam stabilizer and a catalyst by a continuous board molding method.
  • the polyol composition (Pb) contains 5 to 99.998 mass of the following polyol (Ab) and 0.002 to 30 mass% of polymer particles, and the polyol composition (Pb) has an average number of hydroxyl groups of 2 to 8, Hydrofluoroolefins (I) having a hydroxyl value of 100 to 800 mg KOH / g and the blowing agent represented by the following formula (I) R 1 CH ⁇ CHR 2 (I) (Wherein R 1 is a perfluoroalkyl group having 1 to 6 carbon atoms and R 2 is a perfluoroalkyl group having 1 to 6 carbon atoms or a halogen atom). Production method.
  • Polyol (C) A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an aromatic amine (excluding Mannich condensation product) as an initiator.
  • the gist of the present invention C is the following [1] to [9].
  • a method for producing a rigid foamed synthetic resin by reacting a polyol composition (Pc) with a polyisocyanate compound in the presence of a foaming agent, a foam stabilizer and a catalyst,
  • the polyol composition (Pc) contains 20 to 99.998 mass% of the following polyol (Ac) and 0.002 to 30 mass% of polymer particles, and the polyol composition (Pc) has an average number of hydroxyl groups of 2 to 8, Hydrofluoroolefins (I) having an average hydroxyl value of 100 to 800 mgKOH / g and the blowing agent represented by the following formula (I) R 1 CH ⁇ CHR 2 (I) (Wherein R 1 is a perfluoroalkyl group having 1 to 6 carbon atoms and R 2 is a perfluoroalkyl group having 1 to 6 carbon atoms or a halogen atom).
  • Polyol (Ac) A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using a Mannich condensation product obtained by reacting phenols, aldehydes and alkanolamines as an initiator.
  • Polyol (Dc) Polyester polyol produced by polycondensation of a monomer mixture containing an aromatic compound.
  • A, B, and C it is possible to produce a rigid foam having good characteristics, particularly dimensional stability even when the weight is reduced, using hydrofluoroolefins as a foaming agent.
  • a rigid foam having good characteristics in the injection method it is possible to produce a rigid foam having good characteristics in the injection method.
  • the “polyol composition (Pa)” in the present specification is a mixture of all polyols (including polymer-dispersed polyols) used for the reaction with the polyisocyanate compound.
  • the “polyol system liquid” is a liquid to be reacted with a polyisocyanate compound.
  • a blending agent as necessary such as a foaming agent, a foam stabilizer, a catalyst and the like. Contains liquid.
  • the “Mannich condensation product” generally means a compound obtained by a condensation reaction of an aromatic compound such as aniline or phenol, an aldehyde, and an amine.
  • the “polymer-dispersed polyol” in the present invention A is obtained by polymerizing a monomer having a polymerizable unsaturated bond in a base polyol (Wa ′) such as a polyether polyol or a polyester polyol to form polymer particles. It is a polyol (Wa) in which the polymer particles are dispersed in the base polyol (Wa ').
  • the polyol composition (Pa) in the present invention A contains a polyol (Aa).
  • the polyol (Aa) is a polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an aromatic amine as an initiator.
  • As the polyol (Aa) only one type may be used, or two or more types may be used in combination.
  • An aromatic amine as an initiator is an amine having an aromatic ring having 4 to 12 active hydrogen atoms.
  • Specific examples thereof include phenylenediamine, tolylenediamine, diaminodiphenylmethane, and Mannich condensate.
  • the Mannich condensation product is preferably a compound obtained by reacting phenols such as phenol and nonylphenol; aldehydes such as formaldehyde; and alkanolamines such as monoethanolamine and diethanolamine.
  • the molecular weight of the Mannich condensation product is preferably about 200 to 10,000.
  • tolylenediamine is particularly preferable because low thermal conductivity is obtained.
  • o-tolylenediamine and m-tolylenediamine are preferable.
  • alkylene oxide used in the production of the polyol (Aa) it is preferable to use ethylene oxide (hereinafter also referred to as EO) and / or propylene oxide (hereinafter also referred to as PO).
  • EO ethylene oxide
  • PO propylene oxide
  • butylene oxide, isobutylene oxide, styrene oxide or the like may be used in combination.
  • any of the following methods may be used. (1) A method of ring-opening addition polymerization of EO alone. (2) A method of ring-opening addition polymerization of PO alone. (3) A method of ring-opening addition polymerization of a mixture of PO and EO.
  • the ethylene oxide content (total EO content) in the total amount of alkylene oxide used in the production of the polyol (Aa) is preferably 0 to 60% by mass, more preferably 0 to 45% by mass, and particularly preferably 0 to 30% by mass. preferable.
  • the moldability is good because it has an appropriate reactivity.
  • the alkylene oxide undergoes ring-opening addition to produce a polyol having an oxyalkylene group.
  • Hydroxyalkyl group is formed by ring-opening addition of one molecule of alkylene oxide to active hydrogen atom, and alkylene oxide is ring-opening addition to the hydroxyl group, and this reaction is repeated to form a chain of oxyalkylene groups.
  • the alkylene oxide is EO, the oxyethylene group is linked, and when the alkylene oxide is PO, the oxypropylene group is linked.
  • the amount of EO (terminal EO content) to be subjected to ring-opening addition polymerization after the addition of EO and PO in this order is determined by the polyol ( It is preferably 1 to 40% by weight, more preferably 1 to 30% by weight, particularly preferably 1 to 20% by weight, based on the total amount of alkylene oxide used for the production of Aa).
  • the viscosity of polyol (Aa) does not become too high as it is below the upper limit of the said range, and the reactivity of polyol (Aa) improves that it is more than a lower limit.
  • the number of hydroxyl groups of the polyol (Aa) is 4 to 12, preferably 4 to 10, and particularly preferably 4 to 8.
  • the hydroxyl value of the polyol (Aa) is 100 to 800 mgKOH / g, preferably 200 to 600 mgKOH / g, particularly preferably 300 to 500 mgKOH / g.
  • the content of the polyol (Aa) in the polyol composition (Pa) is 30 to 70% by mass, preferably 30 to 60% by mass, particularly preferably 30 to 50% by mass.
  • the content of the polyol (Aa) is not less than the lower limit of the above range, the closed cell rate is improved and good thermal conductivity is obtained.
  • the viscosity of the polyol system liquid does not become too high and handling is easy.
  • the content of the polyol (Aa) is not more than the upper limit of the above range, cell roughening is unlikely to occur.
  • the polyol (Ba) is a polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using a polyhydric alcohol having 5 to 12 active hydrogen atoms as an initiator.
  • the polyol composition (Pa) preferably contains a polyol (Ba) in addition to the polyol (Aa).
  • the polyol (Ba) contributes to an improvement in the compressive strength of the rigid foam and good dimensional stability. Moreover, it can also prevent that the viscosity of a polyol composition (Pa) becomes high too much by using a polyol (Ba) other than a polyol (Aa).
  • As the polyol (Ba) only one type may be used, or two or more types may be used in combination.
  • Saccharides are preferably used as polyhydric alcohols having 5 to 12 active hydrogen atoms, which are initiators.
  • Specific examples of the saccharide include fructose, sorbitol, sucrose and the like. Of these, sorbitol or sucrose is preferred.
  • Examples of the alkylene oxide used for the production of the polyol (Ba) include ethylene oxide, propylene oxide, butylene oxide and the like. It is preferable that at least propylene oxide or butylene oxide is contained, and at least propylene oxide is particularly preferably contained.
  • the alkylene oxide used for the production of the polyol (Ba) is preferably propylene oxide alone or a combination of ethylene oxide and propylene oxide.
  • ethylene oxide and propylene oxide may be reacted after being mixed or sequentially.
  • the ethylene oxide content (total EO content) in the total amount of alkylene oxide used in the production of the polyol (Ba) is 0 to 20% by mass, preferably 0 to 10% by mass, and 0% by mass, ie, PO alone. Particularly preferred.
  • the ethylene oxide content is not more than the upper limit of the above range, the reactivity can be easily controlled.
  • the number of hydroxyl groups in the polyol (Ba) is 5 to 12, preferably 5 to 10, and particularly preferably 5 to 8.
  • the hydroxyl value of the polyol (Ba) is 100 to 800 mgKOH / g, preferably 200 to 600 mgKOH / g, particularly preferably 300 to 500 mgKOH / g.
  • the content of the polyol (Ba) in the polyol composition (Pa) is preferably 1 to 50% by mass, more preferably 2 to 45% by mass, and particularly preferably 5 to 45% by mass.
  • the compressive strength of the rigid foam is improved, shrinkage is suppressed, and good dimensional stability is easily obtained.
  • the amount is not more than the upper limit of the above range, it is easy to ensure good curing characteristics (curing properties) when molding a rigid foam.
  • the polyol (Ca) is a polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an aliphatic amine as an initiator.
  • the polyol composition (Pa) preferably contains a polyol (Ca) in addition to the polyol (Aa).
  • the polyol (Ca) contributes to improvement of moldability and reactivity. Moreover, it can also prevent that the viscosity of a polyol composition (Pa) becomes high too much by using a polyol (Ca) other than a polyol (Aa).
  • a polyol (Ca) may use only 1 type and may use 2 or more types together.
  • An aliphatic amine as an initiator is an aliphatic amine having 2 to 4 active hydrogen atoms.
  • alkanolamines such as monoethanolamine, diethanolamine and triethanolamine
  • alkylamines such as ethylenediamine, propylenediamine and 1,6-hexanediamine. Of these, ethylenediamine, monoethanolamine or diethanolamine is preferred.
  • alkylene oxide used for the production of the polyol (Ca) include ethylene oxide, propylene oxide, butylene oxide and the like. Use of propylene oxide alone or a combination of ethylene oxide and propylene oxide is preferred. When used in combination, ethylene oxide and propylene oxide may be reacted after being mixed or sequentially.
  • the ethylene oxide content (total EO content) in the total amount of alkylene oxide used in the production of the polyol (Ca) is 0 to 50% by mass, preferably 0 to 48% by mass, more preferably 0 to 45% by mass. 0 mass%, that is, PO alone is particularly preferred.
  • the content of ethylene oxide is not more than the upper limit of the above range, the reactivity during foaming can be easily controlled, and good moldability can be secured.
  • the number of hydroxyl groups in the polyol (Ca) is 2-4. When the number of hydroxyl groups of the polyol (Ca) is less than or equal to the upper limit of the above range, the viscosity is in an appropriate range and handling is easy.
  • the hydroxyl value of the polyol (Ca) is 100 to 800 mgKOH / g, preferably 200 to 600 mgKOH / g, particularly preferably 300 to 500 mgKOH / g. When the hydroxyl value of the polyol (Ca) is not less than the lower limit of the above range, the compression strength of the rigid polyurethane foam is improved, shrinkage is suppressed, and good dimensional stability is obtained.
  • the content of the polyol (Ca) in the polyol composition (P) is preferably 10 to 40% by mass, more preferably 10 to 30% by mass, and particularly preferably 10 to 25% by mass.
  • the content of the polyol (Ca) is not less than the lower limit of the above range, the curing property becomes good, and the workability at the time of demolding is easily improved. It is easy to control the reactivity at the time of foaming as it is below the upper limit of the said range.
  • the polyol (Da) is a polyester polyol produced by polycondensation of a monomer mixture containing an aromatic compound.
  • a polyol composition (Pa) may contain a polyol (Da) as needed.
  • the polyol (Da) contributes to the improvement of flame retardancy.
  • the monomer mixture used for the production of the polyol (Da) preferably contains a dicarboxylic acid compound and a polyhydric alcohol, and one or both of the dicarboxylic acid compound and the polyhydric alcohol contain a compound having an aromatic ring.
  • the polyol (Da) preferably contains an aromatic polyester polyol obtained by polycondensation reaction between a dicarboxylic acid having an aromatic ring and a polyhydric alcohol not having an aromatic ring.
  • the dicarboxylic acid having an aromatic ring include terephthalic acid, isophthalic acid, and orthophthalic acid. Terephthalic acid is more preferable in terms of improving heat resistance.
  • Examples of the polyhydric alcohol having no aromatic ring include ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol, dipropylene glycol (DPG), 1,4-butanediol, 1,6-hexanediol (1,6 -HD), diol compounds such as neopentyl glycol; and triol compounds such as glycerin and trimethylolpropane.
  • Ethylene glycol or diethylene glycol is more preferable, and diethylene glycol is particularly preferable in that the viscosity of the polyol (Da) can be lowered and a good flame retardancy improving effect can be easily obtained.
  • the average number of hydroxyl groups of the polyol (Da) is 2 to 3, and is preferably 2. When the average number of hydroxyl groups is 3 or less, the viscosity can be kept low and the handling is easy.
  • the hydroxyl value of the polyol (Da) is 100 to 500 mgKOH / g, preferably 150 to 350 mgKOH / g, particularly preferably 180 to 300 mgKOH / g. When the hydroxyl value of the polyol (Da) is not less than the lower limit of the above range, the shrinkage of the rigid foam is easily suppressed, and when it is not more than the upper limit of the above range, the brittleness of the rigid foam is suppressed and good physical properties are easily obtained. .
  • the content of the polyol (Da) in the polyol composition (Pa) is preferably 10 to 60% by mass, more preferably 10 to 50% by mass, and particularly preferably 10 to 40% by mass. If the content of the polyol (Da) is not less than the lower limit of the above range, the effect of improving flame retardancy can be sufficiently obtained. When the amount is not more than the upper limit of the above range, the shrinkage of the rigid foam is suppressed, and good dimensional stability is easily obtained.
  • the polyol composition (Pa) contains polymer particles. Specifically, it is preferable to prepare a polymer-dispersed polyol (Wa) in which polymer particles are dispersed in a base polyol (Wa '), and to contain the polymer-dispersed polyol (Wa) in the polyol composition (Pa). .
  • the presence of polymer particles in the polyol composition (Pa) can suppress the shrinkage of the rigid foam and improve the dimensional stability. This effect is particularly useful when producing a lower density rigid urethane foam.
  • the polymer-dispersed polyol (Wa) may be one type or a combination of two or more types.
  • the content of the polymer particles in the entire polyol composition (Pa) is preferably 0.002 to 30% by mass, more preferably 0.02 to 20% by mass, and particularly preferably 0.5 to 10% by mass. Within the above range, shrinkage of the obtained rigid foam can be effectively suppressed while maintaining heat insulation performance. Moreover, the storage stability at normal temperature and the storage stability at high temperature are good.
  • the average hydroxyl value of the polymer-dispersed polyol (Wa) is preferably 100 to 800 mgKOH / g, more preferably 150 to 800 mgKOH / g.
  • the average hydroxyl value of the polymer-dispersed polyol (Wa) in the present specification is a value obtained by measuring the average hydroxyl value of a polyol in which polymer particles are dispersed in the base polyol (Wa '). It becomes lower than the average hydroxyl value of the base polyol (Wa ').
  • the average hydroxyl value of the polymer-dispersed polyol (Wa) is at least the lower limit of the above range, the compatibility with other polyols is good, and when it is below the upper limit of the above range, the dispersion stability of the polymer particles is It is good.
  • the polymer-dispersed polyol (Wa) is produced by a method of precipitating polymer particles by polymerizing a monomer having a polymerizable unsaturated group in the base polyol (Wa ′) in the presence of a solvent as necessary.
  • a monomer having a polymerizable unsaturated bond which is used for forming the polymer particles, a monomer having one polymerizable unsaturated bond is usually used, but is not limited thereto.
  • the monomer examples include cyano group-containing monomers such as acrylonitrile, methacrylonitrile, and 2,4-dicyanobutene-1; styrene monomers such as styrene, ⁇ -methylstyrene, and halogenated styrene; acrylic acid, methacrylic acid, or Acrylic monomers such as alkyl esters, acrylamide and methacrylamide; vinyl ester monomers such as vinyl acetate and vinyl propionate; isoprene, butadiene and other diene monomers; unsaturated fatty acids such as maleic acid diester and itaconic acid diester Esters; vinyl halides such as vinyl chloride, vinyl bromide, vinyl fluoride; vinylidene halides such as vinylidene chloride, vinylidene bromide, vinylidene fluoride; methyl vinyl ether, ethyl vinyl ether, isopropyl Vinyl ether monomers such as vinyl ether; and
  • a combination of 20 to 90% by mass of acrylonitrile and 10 to 80% by mass of another monomer is preferable, and styrene, alkyl acrylate ester, alkyl methacrylate ester, or vinyl acetate is preferable as the other monomer. Two or more of these other monomers may be used in combination.
  • fluorine-containing acrylate or fluorine-containing methacrylate (hereinafter sometimes referred to as “fluorine-containing monomer”) is used as a part or all of the monomer having a polymerizable unsaturated group. It is also preferable.
  • fluorine-containing monomer By using the fluorine-containing monomer, the dispersion stability of the polymer particles in the base polyol (Wa ′) becomes better.
  • the compatibility between the polymer-dispersed polyol (Wa) and other polyols is enhanced, and improvement in dimensional stability and heat insulation performance in the rigid foam can be expected.
  • the monomer represented by following formula (1) is mentioned.
  • R f is a polyfluoroalkyl group having 1 to 18 carbon atoms.
  • R f has 1 to 18 carbon atoms, preferably 1 to 10, and more preferably 3 to 8.
  • R f is preferably such that the proportion of fluorine atoms in the alkyl group (the proportion of the number of hydrogen atoms in the alkyl group substituted by fluorine atoms) is 80% or more, and all the hydrogen atoms are fluorine atoms. It is particularly preferred that it is substituted. When the number of carbon atoms is 18 or less, the foam stability is favorable during foaming in the production of rigid foam, which is preferable.
  • R is a hydrogen atom or a methyl group.
  • Z is a divalent linking group containing no fluorine atom, preferably a hydrocarbon group, such as an alkylene group or an arylene group, and more preferably an alkylene group.
  • the alkylene group is preferably an alkylene group having 1 to 10 carbon atoms, particularly preferably an alkylene group having 1 to 5 carbon atoms, which may be linear or branched.
  • Z and R f are separated so that the number of carbon atoms in R f is small.
  • Specific examples of the monomer represented by the formula (1) include compounds represented by the following formulas (1-1) to (1-3).
  • the said fluorine-containing monomer can be used individually by 1 type or in combination of 2 or more types.
  • the amount used is preferably 10 to 100% by mass, more preferably 30 to 80% by mass, based on all monomers having a polymerizable unsaturated group.
  • the monomer represented by the formula (1) when used, it is preferably 20 to 100% by mass, more preferably 30 to 60% by mass in the total monomers having a polymerizable unsaturated group. 40 to 60% by mass is most preferable.
  • the proportion of the monomer represented by the formula (1) is 20% by mass or more, particularly 30% by mass or more, good heat insulating performance is easily obtained when a rigid foam is obtained.
  • a macromonomer may be used in combination with the monomer having a polymerizable unsaturated bond listed above.
  • the “macromonomer” refers to a low molecular weight polymer or oligomer having a radical polymerizable unsaturated group at one end.
  • the total amount of monomers having a polymerizable unsaturated bond used for forming the polymer particles is not particularly limited, but the content of the polymer particles in the polymer-dispersed polyol (Wa) is 1 to 50% by mass, more preferably The amount is preferably 2 to 45% by mass, particularly preferably 10 to 30% by mass.
  • a polymerization initiator that generates a free radical and starts polymerization is suitably used.
  • the polymerization initiator include 2,2′-azobis-isobutyronitrile (AIBN), 2,2′-azobis-2-methylbutyronitrile (AMBN), 2,2′-azobis-2, Examples include 4-dimethylvaleronitrile, benzoyl peroxide, diisopropyl peroxydicarbonate, acetyl peroxide, di-tert-butyl peroxide, persulfate, and the like.
  • AIBN 2,2′-azobis-isobutyronitrile
  • AMBN 2,2′-azobis-2-methylbutyronitrile
  • Examples include 4-dimethylvaleronitrile, benzoyl peroxide, diisopropyl peroxydicarbonate, acetyl peroxide, di-tert-butyl peroxide, persulfate, and the like.
  • AMBN is preferable.
  • Examples of the base polyol (Wa ′) include polyether polyols, polyester polyols, and hydrocarbon polymers having a hydroxyl group at the terminal. In particular, it is preferable to use only a polyether polyol or to use a small amount of a polyester polyol or a hydrocarbon-based polymer having a hydroxyl group at the terminal as a main component.
  • Examples of the polyether polyol include polyether polyols obtained by adding cyclic ethers such as alkylene oxides to initiators such as polyhydroxy compounds such as polyhydric alcohols and polyhydric phenols and amines.
  • the polyether polyol used as the base polyol (Wa ′) may be the same as any of the polyols (Aa) to (Da).
  • the base polyol (Wa ′) is the following polyether polyol (X).
  • the polyether polyol (X) is one having a hydroxyl value of 84 mgKOH / g or less and an oxyethylene group content of 40% by mass or more based on the entire polyether polyol (X).
  • the polyether polyol (X) is preferably obtained by using a polyhydric alcohol as an initiator and adding ethylene oxide or ethylene oxide and another cyclic ether.
  • a polyhydric alcohol glycerin, trimethylolpropane, 1,2,6-hexanetriol and the like are preferable.
  • propylene oxide, isobutylene oxide, 1-butene oxide and 2-butene oxide are preferable, and propylene oxide is particularly preferable.
  • the upper limit of the hydroxyl value is preferably 84 mgKOH / g or less, preferably 67 mgKOH / g or less, particularly preferably 60 mgKOH / g or less.
  • a polymer-dispersed polyol (Wa) in which polymer particles are stably dispersed is easily obtained.
  • the lower limit of the hydroxyl value is preferably 5 mgKOH / g or more, more preferably 8 mgKOH / g or more, further preferably 20 mgKOH / g or more, and particularly preferably 30 mgKOH / g or more.
  • the dispersion stability of the polymer particles becomes good.
  • polyether polyol (X) the minimum of oxyethylene group content with respect to the whole polyether polyol (X) is 40 mass% or more, 50 mass% or more is more preferable, and 55 mass% or more is especially preferable.
  • the upper limit of the oxyethylene group content may be 100% by mass, that is, polyether polyol (X) in which only ethylene oxide is added to the initiator. From the viewpoint of dispersion stability of the polymer particles, the oxyethylene group content is more preferably 90% by mass or less.
  • the lower limit of the content of the polyether polyol (X) in the base polyol (Wa ′) is preferably 5% by mass or more, and particularly preferably 10% by mass or more. When it is the above lower limit, a polymer-dispersed polyol (Wa) having good dispersibility is easily obtained.
  • the upper limit of the content of the polyether polyol (X) is not particularly limited, but it is preferable to set the hydroxyl value of the entire polymer-dispersed polyol (Wa) within the above-mentioned preferable range.
  • the base polyol (Wa ′) is a mixture of 5 to 90% by mass of the polyether polyol (X) and 10 to 95% by mass of the polyol (Y) having a hydroxyl value of 400 to 850 mgKOH / g.
  • a mixture of 30 to 80% by mass of the polyether polyol (X) and 20 to 70% by mass of the polyol (Y) is more preferable.
  • the hydroxyl value of the polyol (Y) is more preferably 400 to 800 mgKOH / g.
  • polyether polyol (Y) those having a hydroxyl value in the above range among the polyether polyols mentioned as the base polyol (Wa ') can be used. Among them, those obtained by adding propylene oxide using polyhydric alcohols or amines as initiators are preferable.
  • the polyether polyol (Y) may be one type or a combination of two or more types.
  • the content of the polymer-dispersed polyol (Wa) in the entire polyol composition (Pa) is preferably 0.01 to 50% by mass, more preferably 0.1 to 30% by mass, and particularly preferably 0.1 to 20% by mass. .
  • the polyol composition (Pa) contains other polyol (Ea) that does not belong to any of the polyol (Aa), polyol (Ba), polyol (Ca), polyol (Da), or polymer-dispersed polyol (Wa). You may let them.
  • the other polyol (Ea) include polyether polyol, polyester polyol, polycarbonate polyol, and acrylic polyol.
  • the hydroxyl value of the polyol (Ea) is preferably 5 to 1,000 mgKOH / g, more preferably 10 to 800 mgKOH / g, and particularly preferably 20 to 700 mgKOH / g.
  • the content of the polyol (Ea) in the polyol composition (Pa) is preferably 30% by mass or less, more preferably 25% by mass or less, and particularly preferably 20% by mass or less.
  • the polyol composition (Pa) preferably contains a polyol (Aa) and polymer particles, and further contains one or more selected from polyol (Ba), polyol (Ca), and polyol (Da). Optionally, other polyol (Ea) may be contained.
  • the polymer particles are preferably derived from a polymer-dispersed polyol (Wa).
  • the average number of hydroxyl groups as a whole of the polyol composition (Pa) is 2 to 8, preferably 2.5 to 7.5. When the average number of hydroxyl groups is not less than the lower limit of the above range, the compression strength of the rigid foam is improved and shrinkage can be suppressed, so that the dimensional stability is good.
  • the average hydroxyl value of the entire polyol composition (Pa) is 100 to 800 mgKOH / g, preferably 200 to 700 mgKOH / g, particularly preferably 300 to 600 mgKOH / g.
  • the average hydroxyl value is not less than the lower limit of the above range, the shrinkage of the rigid foam is suppressed and the dimensional stability becomes good, and when it is not more than the upper limit, the brittleness of the rigid foam is suppressed.
  • all of the polyol composition (Pa) may be polyol (Aa) and polymer particles.
  • Preferred combinations of the polyol composition (Pa) are shown below. (Combination 3) 30 to 50% by mass of polyol (Aa), 5 to 45% by mass of polyol (Ba), 10 to 20% by mass of polyol (Ca), and polymer-dispersed polyol (Wa), containing polymer particles The amount is 0.01 to 20% by mass.
  • Combination 4 30 to 50% by weight of polyol (Aa), 5 to 45% by weight of polyol (Ba), 10 to 30% by weight of polyol (Ca), 10 to 60% by weight of polyol (Da), polymer dispersion It consists of polyol (Wa), and the content of polymer particles is 0.01 to 20% by mass.
  • polyisocyanate compound examples include aromatic, alicyclic, and aliphatic polyisocyanates having two or more isocyanate groups; modified polyisocyanates obtained by modifying these. Specific examples include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenylene polyisocyanate (common name: crude MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HMDI), and the like.
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • MDI dimethyl methane diisocyanate
  • XDI xylylene diisocyanate
  • IPDI isophorone diisocyanate
  • HMDI hexamethylene diisocyanate
  • polyisocyanates or their prepolymer-type modified products, isocyanurates, urea-modified products, carbodiimide-modified products, and the like.
  • crude MDI or a modified product thereof is preferable, and a modified product of crude MDI is particularly preferable.
  • the polyisocyanate compound may be used alone or in combination of two or more.
  • the amount of polyisocyanate compound used is represented by 100 times the number of isocyanate groups relative to the total number of active hydrogen atoms in the polyol composition (Pa) and other active hydrogen compounds present in the polyol system liquid (hereinafter referred to as this A numerical value expressed by 100 times is referred to as “isocyanate index (INDEX)”, preferably 50 to 400.
  • isocyanate index preferably 50 to 400.
  • the amount of polyisocyanate compound used is preferably 50 to 170, particularly preferably 70 to 150 in terms of the isocyanate index.
  • the amount of the polyisocyanate compound used is preferably 110 to 400, more preferably 150 to 350 in terms of the isocyanate index. ⁇ 300 is particularly preferred.
  • the foaming agent contains at least hydrofluoroolefins (I).
  • the melting point of the foaming agent is preferably 10 ° C. or less, particularly preferably 0 ° C. or less.
  • the boiling point of the foaming agent is preferably 15 to 80 ° C., particularly preferably 15 to 60 ° C. When the boiling point is not less than the lower limit of the above range, handling is easy. When it is not more than the upper limit of the above range, the foaming efficiency is good.
  • R 1 is a C 1-6 perfluoroalkyl group
  • R 2 is a C 1-6 perfluoroalkyl group or a halogen atom.
  • R 1 and R 2 may be a cis form (hereinafter sometimes referred to as Z-) in which double bonds are present on the same side, and a trans form (hereinafter referred to as E-) present on the opposite side. May also be).
  • Z- cis form
  • E- trans form
  • the trans type (E-) is preferable in terms of low ODP and GWP and low environmental impact.
  • Hydrofluoroolefins (I) can be produced by a known method, and can also be obtained from commercial products.
  • the halogen atom as R 2 is preferably any one of fluorine (F), chlorine (Cl), and bromine (Br), and chlorine (Cl) is particularly preferable from the viewpoint of economical advantage.
  • the carbon number of the perfluoroalkyl group as R 1 and R 2 is 6 or less, the boiling point becomes an appropriate region, the foaming efficiency is good, and handling is easy.
  • the carbon number is preferably 1 to 5, and particularly preferably 1 to 4.
  • perfluoroalkyl group examples include CF 3 , C 2 F 5, CF 2 CF 2 CF 3 , CF (CF 3 ) 2 , CF 2 CF 2 CF 2 CF 3 , CF (CF 3 ) CF 2 CF 3 CF 2 CF (CF 3 ) 2 , C (CF 3 ) 3 , CF 2 CF 2 CF 2 CF 3 , CF 2 CF 2 CF (CF 3 ) 2 , C (CF 3 ) 2 C 2 F 5 , CF 2 CF 2 CF 2 CF 2 CF 3 , CF (CF 3 ) CF 2 CF 2 C 2 F 5 , C (CF 3 ) 2 CF 2 C 2 F 5, and the like can be given.
  • CF 3 and C 2 F 5 are particularly preferable in terms of cost.
  • E-CF 3 CH ⁇ CHCF 3 E-1,1,1,4,4,4-hexafluoro-2-butene
  • Z—CF 3 CH ⁇ CHCl Z-1-chloro-3,3, 3-trifluoro-propene
  • the foaming agent preferably contains at least HFO-1336mzz or HCFO-1233zd, which is easy to handle and particularly preferable in terms of cost.
  • foaming agents other than hydrofluoro olefins (I) as a foaming agent in the range which does not impair the effect of this invention A.
  • Known foaming agents include water.
  • the amount of the known blowing agent used is preferably 1 to 25 parts by mass with respect to 100 parts by mass of the polyol composition (Pa).
  • the amount of water used as a known blowing agent is preferably 0 to 25 parts by mass, more preferably 1 to 10 parts by mass, and particularly preferably 1 to 5 parts by mass with respect to 100 parts by mass of the polyol composition (Pa). .
  • the main component of the foaming agent is preferably hydrofluoroolefins (I), and specifically 50 to 100% by mass of the total foaming agent is preferably hydrofluoroolefins (I). .
  • the amount of the hydrofluoroolefins (I) used as the blowing agent is preferably 1 to 100 parts by weight, more preferably 3 to 80 parts by weight, with respect to 100 parts by weight of the polyol composition (Pa). Part is particularly preferred.
  • the amount of HFCs used is 0 to 50 masses per 100 mass parts of the polyol composition (Pa). Part, preferably 0.01 to 50 parts by weight, more preferably 1 to 40 parts by weight, and particularly preferably 1 to 20 parts by weight.
  • a urethanization catalyst that promotes a urethanization reaction and / or a trimerization reaction promotion catalyst that promotes a trimerization reaction of an isocyanate group is used.
  • a tertiary amine is preferred as the urethanization catalyst.
  • trimerization promoting catalyst tin salts, lead salts, metal salts excluding mercury salts, and / or quaternary ammonium salts are preferable.
  • the combined use of a urethanization catalyst and a trimerization reaction promoting catalyst is preferable, and it is more preferable to use a tertiary amine in combination with the metal salt and / or the quaternary ammonium salt.
  • carboxylic acid metal salts such as potassium acetate, potassium 2-ethylhexanoate and bismuth 2-ethylhexanoate are preferable.
  • carboxylic acid metal salts such as potassium acetate, potassium 2-ethylhexanoate and bismuth 2-ethylhexanoate are preferable.
  • the quaternary ammonium salt include tetraalkylammonium halides such as tetramethylammonium chloride; tetraalkylammonium hydroxides such as tetramethylammonium hydroxide; tetramethylammonium 2-ethylhexanoate, 2-hydroxy Tetraalkylammonium organic acid salts such as propyltrimethylammonium formate and 2-hydroxypropyltrimethylammonium 2-ethylhexanoate; tertiary amines such as N, N, N ′, N′-tetramethylethylenediamine and carbonic acid die
  • the amount of the catalyst used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polyol composition (Pa).
  • a foam stabilizer is used to form good bubbles.
  • the foam stabilizer include silicone foam stabilizers and fluorine-containing compound foam stabilizers. These can use a commercial item.
  • the amount of the foam stabilizer used can be appropriately selected, but is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polyol composition (Pa).
  • compounding agents include fillers such as calcium carbonate and barium sulfate; anti-aging agents such as antioxidants and UV absorbers; flame retardants, plasticizers, colorants, anti-fungal agents, foam breakers, dispersants, discoloration prevention Agents and the like.
  • the amount of other compounding agents can be appropriately selected, but is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polyol composition (Pa).
  • the method for producing a rigid foam of the present invention A is a method for producing a rigid foamed synthetic resin by reacting a polyol composition (Pa) with a polyisocyanate compound in the presence of a foaming agent, a foam stabilizer and a catalyst.
  • a polyol composition (Pa) with a polyisocyanate compound in the presence of a foaming agent, a foam stabilizer and a catalyst.
  • the present invention A is applied to a so-called injection method in which a rigid foam raw material is injected into a frame such as a mold and foamed, it is preferable in that the effect that cell roughening hardly occurs even near the injection point is obtained. .
  • the injection method can be performed, for example, by a method using a high pressure foaming device or a low pressure foaming device.
  • a high pressure foaming device or a low pressure foaming device When a high pressure foaming device or a low pressure foaming device is used, the above foaming agent is blended into a polyol system liquid, injected into various molds, and then foamed and cured to produce a rigid foam.
  • the foaming agent may be blended in advance in the polyol system liquid, or may be blended when foaming with a foaming apparatus.
  • blending in the raw material system in advance means blending only in the polyol system liquid, or blending in both the polyol system liquid and the polyisocyanate compound.
  • Articles that can be manufactured using the injection method include refrigeration equipment such as electric refrigerators, panels for freezing / refrigerated vehicles, and the like.
  • the present invention A can also be applied to the production of rigid foams by a continuous board molding method or a spray method.
  • the continuous board molding method is a method of manufacturing a laminate in which a rigid foam is sandwiched between two face materials by supplying a foam material between two face materials and foaming it. It is used for the manufacture of heat insulating materials.
  • the spray method is a method in which a rigid foam is sprayed and applied. The spray method is roughly classified into an air spray method and an airless spray method. Of these, the airless spray method in which the blended liquid is mixed with a mixing head and foamed is particularly preferable.
  • a heat insulating material for architectural use can be cited.
  • a rigid foam having good characteristics can be obtained by using the hydrofluoroolefins (I) as a foaming agent.
  • the polyol system liquid has good storage stability, good moldability, and good dimensional stability even when the density is reduced. .
  • the present invention A it is possible to obtain a rigid foam in which all of these characteristics are good.
  • the high temperature storage stability of the polyol system liquid is improved.
  • a rigid foam having good dimensional stability and low thermal conductivity, that is, good heat insulation performance can be obtained.
  • the “polyol composition (Pb)” in the present invention B is a mixture of all the polyols (including polymer-dispersed polyols) used for the reaction with the polyisocyanate compound.
  • the “polyol system liquid” in the present invention B is a liquid to be reacted with the polyisocyanate compound, and in addition to the polyol composition (Pb), a blending agent as necessary, such as a foaming agent, a foam stabilizer, a catalyst and the like. Contains liquid.
  • the “foaming stock solution composition” in the present invention B is a liquid obtained by mixing a polyol system liquid, a polyisocyanate compound, and optionally the remaining components.
  • the “Mannich condensation product” in the present invention B is generally a condensation reaction of aromatic compounds such as aromatic amines and phenols, aldehydes, and amines (hereinafter sometimes referred to as Mannich condensation reaction). Means the compound obtained.
  • the “polymer dispersed polyol” in the present invention B is obtained by polymerizing a monomer having a polymerizable unsaturated bond in a base polyol (Wb ′) such as a polyether polyol or a polyester polyol to form polymer particles. It is a polyol (Wb) in which the polymer particles are dispersed in the base polyol (Wb ′).
  • the polyol composition (Pb) in the present invention B contains a polyol (Ab).
  • the polyol (Ab) is obtained by ring-opening addition polymerization of alkylene oxide using a Mannich condensation product obtained by reacting phenols and / or aromatic amines, aldehydes, and alkanolamines as an initiator.
  • Polyether polyol Mannich polyol.
  • the Mannich polyol contributes to the improvement of flame retardancy.
  • the phenol is at least one selected from the group consisting of phenol and a phenol derivative having a hydrogen atom in at least one ortho position with respect to the hydroxyl group of phenol. That is, it suffices to have a hydrogen atom in at least one ortho position with respect to the hydroxyl group of phenol, which may be phenol or a phenol derivative. One type of phenol may be used, or two or more types may be used in combination.
  • the phenol derivative has a hydrogen atom in at least one ortho position with respect to the hydroxyl group of phenol, and at least one of the other hydrogen atoms bonded to the aromatic ring is an alkyl group having 1 to 15 carbon atoms. Substituted alkylphenols are preferred.
  • the substitution position of the alkyl group in the alkylphenol may be any of the ortho, meta, and para positions.
  • the number of hydrogen atoms substituted with an alkyl group is 1 to 4, preferably 1 to 2, and particularly preferably 1.
  • the carbon number of the alkyl group in the alkylphenol is preferably 1-10.
  • alkylphenol nonylphenol and cresol are preferably used.
  • Nonylphenol is particularly preferable in terms of improving the compatibility between the polyol (Ab) and the polyisocyanate compound and improving the cell appearance.
  • aromatic amines examples include aniline, phenylenediamine, tolylenediamine, and diaminodiphenylmethane.
  • aniline is preferred from the viewpoints of liquidity at room temperature and easy handling, the viscosity of Mannich polyol does not become too high, and cost.
  • aldehydes one or a mixture of formaldehyde and acetaldehyde is used. Of these, formaldehyde is preferable in terms of the reactivity of the Mannich reaction.
  • Formaldehyde may be used in any form. Specifically, it can be used as a formalin aqueous solution, a methanol solution, or paraformaldehyde. When used as paraformaldehyde, paraformaldehyde may be heated to form formaldehyde, and the formaldehyde may be used in the reaction of this step. The amount used is calculated as the number of moles in terms of formaldehyde.
  • the alkanolamines are at least one selected from the group consisting of monoethanolamine, diethanolamine and 1-amino-2-propanol. Of these, diethanolamine is preferable in that a low-viscosity Mannich polyol is easily obtained.
  • the Mannich condensation product used as an initiator is a reaction product obtained by subjecting the above-mentioned phenols and / or aromatic amines, aldehydes, and alkanolamines to a Mannich condensation reaction.
  • the reaction product includes unreacted substances remaining after the reaction.
  • the Mannich condensation reaction can be carried out by a known method.
  • the ratio of aldehydes to 1 mol of the total of phenols and aromatic amines is preferably 0.3 mol or more and 3 mol or less. When the ratio of the aldehydes is at least the lower limit of the above range, good dimensional stability of the rigid foam can be easily obtained.
  • Mannich polyol If it is not more than the upper limit, it becomes easy to obtain a low-viscosity Mannich polyol. Further, from the viewpoint that the viscosity of Mannich polyol tends to be lower, it is preferably 0.3 mol or more and less than 0.9 mol, and more preferably 0.9 mol or more and 1.5 mol or less from the viewpoint of the strength of the resulting rigid foam. .
  • the ratio of alkanolamines to 1 mol of aldehydes is preferably 0.7 mol or more and 12 mol or less.
  • the ratio of the alkanolamines is at least the lower limit of the above range, a rigid foam having good strength can be easily obtained.
  • the amount is not more than the upper limit value, a favorable flame-retardant rigid foam is easily obtained.
  • 0.7 mol or more and 5 mol or less are preferable. From the point of obtaining a low-viscosity Mannich polyol, it is preferably from 0.7 mol to 5 mol, particularly preferably from 0.7 mol to 3.5 mol.
  • the alkylene oxide used for the production of Mannich polyol is preferably at least one selected from the group consisting of ethylene oxide (hereinafter also referred to as EO), propylene oxide (hereinafter also referred to as PO), and butylene oxide.
  • EO ethylene oxide
  • PO propylene oxide
  • butylene oxide any of the following methods may be used.
  • the alkylene oxide undergoes ring-opening addition to produce a polyol having an oxyalkylene group.
  • Hydroxyalkyl group is formed by ring-opening addition of one molecule of alkylene oxide to active hydrogen atom, and alkylene oxide is ring-opening addition to the hydroxyl group, and this reaction is repeated to form a chain of oxyalkylene groups.
  • the alkylene oxide is EO, the oxyethylene group is linked, and when the alkylene oxide is PO, the oxypropylene group is linked.
  • the addition amount of alkylene oxide added to the initiator is preferably 2 to 30 mol, particularly preferably 4 to 20 mol, based on 1 mol of the total of phenols and aromatic amines used in the Mannich condensation reaction.
  • the added amount of alkylene oxide is not less than the lower limit of the above range, the hydroxyl value and viscosity of the produced Mannich polyol tend to be low. It is easy to suppress shrinkage
  • the hydroxyl value of the polyol (Ab) is preferably from 100 to 800 mgKOH / g, more preferably from 200 to 700 mgKOH / g, particularly preferably from 250 to 650 mgKOH / g. It is preferable that the hydroxyl value of the polyol (Ab) is not less than the lower limit of the above range because the strength of the resulting rigid foam can be easily secured and good dimensional stability can be easily obtained. On the other hand, when the amount is not more than the upper limit of the above range, the amount of the alkylene oxide-derived oxyalkylene chain present in the Mannich polyol increases, and the viscosity of the Mannich polyol tends to decrease. Moreover, the brittleness of the manufactured rigid foam is suppressed, the adhesiveness with the base material is easily obtained, and the compressive strength is improved.
  • the content of the polyol (Ab) in the polyol composition (Pb) is 5 to 100% by mass, preferably 5 to 80% by mass, more preferably 5 to 60% by mass, and particularly preferably 5 to 50% by mass.
  • the content of the polyol (Ab) is not less than the lower limit of the above range, a rigid foam having good adhesion and flame retardancy can be obtained.
  • it is at most the upper limit of the above range the viscosity of the polyol system liquid does not become too high and handling is easy.
  • the polyol (Bb) is a polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an aliphatic amine as an initiator.
  • the polyol composition (Pb) preferably contains a polyol (Bb) in addition to the polyol (Ab).
  • the polyol (Bb) contributes to lowering the viscosity and improving the reactivity of the polyol system liquid.
  • the polyol (Bb) only one type may be used, or two or more types may be used in combination.
  • the aliphatic amine as the initiator is preferably an aliphatic amine having 2 to 4 active hydrogen atoms.
  • alkanolamines such as monoethanolamine, diethanolamine and triethanolamine
  • alkylamines such as ethylenediamine, propylenediamine and 1,6-hexanediamine. Of these, ethylenediamine is preferred.
  • alkylene oxide used for producing the polyol (Bb) include ethylene oxide, propylene oxide, butylene oxide and the like. It is preferable that at least propylene oxide or butylene oxide is contained, and at least propylene oxide is particularly preferably contained.
  • the use of propylene oxide alone or the combined use of ethylene oxide and propylene oxide is preferable.
  • ethylene oxide and propylene oxide may be reacted after being mixed or sequentially.
  • the content of ethylene oxide (hereinafter also referred to as total ethylene oxide content or total EO content) in the total amount of alkylene oxide used in the production of polyol (Bb) is preferably 5 to 55% by mass, 10 to 50% by mass is more preferable, and 15 to 45% by mass is particularly preferable.
  • the total EO content is not less than the lower limit of the above range, the polyol does not have too high a viscosity and is easy to handle.
  • the number of hydroxyl groups in the polyol (Bb) is preferably 2-4. When it is at least the lower limit of the above range, the strength of the rigid foam is improved and shrinkage is suppressed. When it is at most the upper limit of the above range, the viscosity of the polyol does not become too high and handling is easy, and the fluidity during molding is also good.
  • the hydroxyl value of the polyol (Bb) is preferably from 300 to 1,000 mgKOH / g, more preferably from 350 to 900 mgKOH / g, particularly preferably from 400 to 800 mgKOH / g.
  • the hydroxyl value of the polyol (Bb) is not less than the lower limit of the above range, the reaction with the polyisocyanate compound is promoted, and the curing property at the time of molding is improved.
  • the amount is not more than the upper limit of the above range, the brittleness of the rigid foam is suppressed, and the strength of the rigid foam becomes good.
  • the content of the polyol (Bb) in the polyol composition (Pb) is preferably 20 to 70% by mass, more preferably 25 to 65% by mass, and particularly preferably 30 to 60% by mass.
  • the content of the polyol (Bb) is not less than the lower limit of the above range, the compatibility between the polyol composition (Pb) and the hydrofluoroolefins (I) is improved, and separation of the polyol system liquid is suppressed.
  • the curing property at the time of molding is also good. Separation of a polyol system liquid is suppressed as it is below the upper limit of the said range.
  • the polyol (Cb) is a polyether polyol obtained by ring-opening addition polymerization of an alkylene oxide using an aromatic amine (excluding a Mannich condensation product) as an initiator.
  • an aromatic amine excluding a Mannich condensation product
  • the polyol (Cb) only one type may be used, or two or more types may be used in combination.
  • aromatic amine As the aromatic amine as the initiator, amines having an aromatic ring having 4 to 12 active hydrogen atoms are preferably used. Specific examples thereof include phenylenediamine, tolylenediamine, diaminodiphenylmethane and the like. Of these initiators, tolylenediamine is particularly preferred because of its low thermal conductivity. Tolylenediamine may be o-tolylenediamine or m-tolylenediamine.
  • alkylene oxide used for the production of the polyol (Cb) examples include ethylene oxide, propylene oxide, butylene oxide and the like. It is preferable to contain at least ethylene oxide, and the combined use of ethylene oxide and propylene oxide is preferable. Ethylene oxide and propylene oxide may be reacted after mixing or sequentially.
  • the ethylene oxide content (total EO content) in the total amount of alkylene oxide used in the production of the polyol (Cb) is preferably 0 to 60% by mass, more preferably 0 to 45% by mass, and particularly preferably 0 to 30% by mass. preferable. If the total EO content is less than or equal to the upper limit of the above range, the moldability is good because of the appropriate reactivity.
  • the number of hydroxyl groups in the polyol (Cb) is preferably 4 to 12, more preferably 4 to 10, and particularly preferably 4 to 8.
  • the hydroxyl value of the polyol (Cb) is preferably 100 to 800 mgKOH / g, more preferably 200 to 600 mgKOH / g, and particularly preferably 300 to 500 mgKOH / g.
  • the hydroxyl value of the polyol (Cb) is not less than the lower limit of the above range, the closed cell rate of the rigid foam is improved and good thermal conductivity is obtained. If it is not more than the upper limit of the above range, the brittleness of the rigid foam is suppressed and the strength of the rigid foam is improved.
  • the content of the polyol (Cb) in the polyol composition (Pb) is preferably 20 to 60% by mass, more preferably 30 to 55% by mass, and particularly preferably 30 to 50% by mass.
  • Thermal conductivity becomes favorable in content of a polyol (Cb) being more than the lower limit of the said range.
  • the amount is not more than the upper limit of the above range, an increase in the viscosity of the polyol system liquid is suppressed, handling is easy, and fluidity during foaming / molding of the rigid foam is improved.
  • the polyol composition (Pb) contains polymer particles. Specifically, it is preferable to prepare a polymer-dispersed polyol (Wb) in which polymer particles are dispersed in the base polyol (Wb ′), and to contain the polymer-dispersed polyol (Wb) in the polyol composition (Pb). .
  • the presence of polymer particles in the polyol composition (Pb) can suppress the shrinkage of the rigid foam and improve the dimensional stability. This effect is particularly useful in producing lower density rigid foams.
  • the polymer-dispersed polyol (Wb) may be one type or a combination of two or more types.
  • the content of the polymer particles in the entire polyol composition (Pb) is preferably 0.002 to 30% by mass, more preferably 0.02 to 20% by mass, and particularly preferably 0.5 to 10% by mass. Within the above range, shrinkage of the obtained rigid foam can be effectively suppressed while maintaining heat insulation performance. Moreover, the storage stability at normal temperature and the storage stability at high temperature are good.
  • the polymer-dispersed polyol (Wb) in the present invention C is the same as the polymer-dispersed polyol (Wa) in the present invention A including preferred embodiments.
  • the base polyol (Wb ′) in the production of the polymer-dispersed polyol (Wb) in the present invention C is the same as the base polyol (Wa ′) in the present invention A, including preferred embodiments.
  • the base polyol (Wb ′) may be the same as any of the polyols (Ab) to (Cb).
  • the polyol composition (Pb) may contain other polyol (Eb) that does not belong to any of the polyol (Ab), the polyol (Bb), the polyol (Cb), or the polymer-dispersed polyol (Wb).
  • the other polyol (Eb) include polyether polyol, polyester polyol, polycarbonate polyol, and acrylic polyol.
  • the hydroxyl value of the polyol (Eb) is preferably 200 to 800 mgKOH / g, more preferably 200 to 600 mgKOH / g, and particularly preferably 200 to 500 mgKOH / g.
  • the content of the polyol (Eb) in the polyol composition (Pb) is preferably 80% by mass or less, more preferably 50% by mass or less, further preferably 25% by mass or less, and particularly preferably 20% by mass or less.
  • the polyol composition (Pb) preferably contains a polyol (Ab) and polymer particles, and further contains one or more selected from polyol (Bb) and polyol (Cb). Optionally, other polyol (Eb) may be included.
  • the polymer particles are preferably derived from a polymer-dispersed polyol (Wb).
  • the average number of hydroxyl groups as a whole of the polyol composition (Pb) is 2 to 8, preferably 2.5 to 7.5. When the average number of hydroxyl groups is within the above range, the compression strength of the rigid foam is improved and shrinkage can be suppressed, so that the dimensional stability is good.
  • the average hydroxyl value of the polyol composition (Pb) as a whole is 100 to 800 mgKOH / g, preferably 200 to 700 mgKOH / g, particularly preferably 200 to 600 mgKOH / g.
  • the average hydroxyl value is in the above range, rapid thickening behavior during foaming and molding is suppressed, and fluidity and moldability are improved.
  • all of the polyol composition (Pb) may be polyol (Ab) and polymer particles. Preferred combinations in the case of producing a rigid polyurethane foam with the urethane formulation described below are shown below.
  • the polyol composition (Pb) comprises 5 to 80 mass% of the polyol (Ab), 20 to 70 mass% of the polyol (Bb), 10 to 60 mass% of the polyol (Cb), and the polyol (Eb ) And a polyol (Wb), and the content of polymer particles is 0.002 to 10% by mass.
  • the polyol composition (Pb) 5 to 60 mass of the polyol (Ab); 20 to 65% by mass of the polyol (Bb), 20 to 55% by mass of the polyol (Cb); 0 to 25% by mass of the polyol (Eb); A polyol (Wb), The polymer particle content is 0.01 to 10% by mass.
  • the polyol composition (Pb) 5 to 50 mass of the polyol (Ab); 20 to 60% by mass of the polyol (Bb), 20 to 50% by mass of the polyol (Cb); 0 to 25% by mass of the polyol (Eb); A polyol (Wb), The polymer particle content is 0.01 to 7% by mass.
  • the polyol composition (Pb) comprises 20 to 100% by mass of the polyol (Ab) and 0 to 80% by mass of the polyol (Eb).
  • the polyol composition (Pb) is composed of 20 to 100% by mass of the polyol (Ab), 0 to 80% by mass of the polyol (Eb), and the polyol (Wb). 0.01 to 7% by mass.
  • the polyisocyanate compound in the present invention B is the same as the polyisocyanate compound in the present invention A including preferred embodiments.
  • the amount of polyisocyanate compound used is preferably 100 to 350, preferably 100 to 300 in terms of the isocyanate index. Particularly preferred.
  • the foaming agent in the present invention B is the same as the foaming agent in the present invention A including preferred embodiments.
  • the hydrofluoroolefins represented by formula (I) are the same as the hydrofluoroolefins represented by formula (I) in Invention A, including preferred embodiments.
  • the catalyst in the present invention B is the same as the catalyst in the present invention A including preferred embodiments.
  • the foam stabilizer in the present invention B is the same as the foam stabilizer in the present invention A including preferred embodiments.
  • Other compounding agents in the present invention B are the same as other compounding agents in the present invention A, including preferred embodiments.
  • the manufacturing method of the rigid foam of the present invention B is a rigid foam synthesis by reacting and foaming a polyol composition (Pb) and a polyisocyanate compound in the presence of a foaming agent, a foam stabilizer and a catalyst by a continuous board molding method.
  • This is a method for producing a resin.
  • the continuous board molding method is to produce a laminate in which a rigid foam is sandwiched between these face materials by supplying the foamed stock solution composition between two continuously supplied face materials and foaming.
  • This method is used for manufacturing a heat insulating material for architectural use.
  • Rigid foam as a building material needs flame retardance from the viewpoint of fire resistance.
  • a fluidity capable of satisfactorily pouring the foaming stock solution composition is required.
  • the polyol composition (Pb) contains Mannich polyol in particular, high flame retardancy is easily obtained. Further, when the present invention B is applied to the continuous board molding method, the fluidity and the curing property are good, so that the moldability is excellent.
  • Representative examples of the face material include kraft paper, vinyl chloride film and sheet, iron plate, slate plate, gypsum plate and the like.
  • Typical examples of the use of the rigid foam obtained by the continuous board molding method include a heat insulating material for buildings, a heat insulating material for refrigeration equipment such as a vending machine, and the like.
  • the present invention B can also be applied to the production of rigid foams by spraying or pouring.
  • the spray method is a method in which a rigid foam is sprayed and applied.
  • the spray method is roughly classified into an air spray method and an airless spray method.
  • the airless spray method in which the blended liquid is mixed with a mixing head and foamed is particularly preferable.
  • the method in Invention C can be used.
  • the injection method is a method in which a rigid foam material is injected into a frame such as a mold and foamed.
  • the method in Invention A can be used.
  • a rigid foam having good characteristics can be obtained by using the hydrofluoroolefins (I) as the foaming agent.
  • the polyol system liquid has good storage stability, good moldability, and good dimensional stability even when the density is reduced. .
  • a rigid foam having good dimensional stability and low thermal conductivity that is, having good heat insulation performance can be obtained.
  • the high-temperature storage stability of the polyol system liquid is improved.
  • the “polyol composition (Pc)” in the present invention C is a mixture of all polyols (including polymer-dispersed polyols) used for the reaction with the polyisocyanate compound.
  • the “polyol system liquid” in the present invention C is a liquid to be reacted with the polyisocyanate compound, and in addition to the polyol composition (Pc), a blending agent as necessary, such as a foaming agent, a foam stabilizer, a catalyst and the like. Contains liquid.
  • the “Mannich condensation product” in the present invention C is generally obtained by subjecting an aromatic compound such as aniline or phenols, an aldehyde, and an amine to a condensation reaction (hereinafter sometimes referred to as a Mannich condensation reaction). Means a compound.
  • the “polymer-dispersed polyol” in the present invention C is obtained by polymerizing a monomer having a polymerizable unsaturated bond in a base polyol (Wc ′) such as a polyether polyol or a polyester polyol to form polymer particles. It is a polyol (Wc) in which the polymer particles are dispersed in the base polyol (Wc ′).
  • the polyol composition (Pc) in the present invention C contains a polyol (Ac).
  • Polyol (Ac) is a polyether polyol (Mannich polyol) obtained by ring-opening addition polymerization of alkylene oxide using a Mannich condensation product obtained by reacting phenols, aldehydes and alkanolamines as an initiator. .
  • the Mannich polyol contributes to the improvement of flame retardancy.
  • the phenol is at least one selected from the group consisting of phenol and a phenol derivative having a hydrogen atom in at least one ortho position with respect to the hydroxyl group of phenol. That is, it suffices to have a hydrogen atom in at least one ortho position with respect to the hydroxyl group of phenol, which may be phenol or a phenol derivative.
  • One type of phenol may be used, or two or more types may be used in combination.
  • the phenol derivative has a hydrogen atom in at least one ortho position with respect to the hydroxyl group of phenol, and at least one of the other hydrogen atoms bonded to the aromatic ring is an alkyl group having 1 to 15 carbon atoms.
  • Substituted alkylphenols are preferred.
  • the substitution position of the alkyl group in the alkylphenol may be any of the ortho, meta, and para positions.
  • the number of hydrogen atoms substituted with an alkyl group is 1 to 4, preferably 1 to 2, and particularly preferably 1.
  • the number of carbon atoms of the alkyl group in the alkylphenol is preferably 1-10.
  • nonylphenol and cresol are preferably used as the alkylphenol.
  • Nonylphenol is particularly preferable in terms of improving the compatibility between the polyol (Ac) and the polyisocyanate compound and improving the cell appearance.
  • aldehydes one or a mixture of formaldehyde and acetaldehyde is used. Of these, formaldehyde is preferable in terms of the reactivity of the Mannich reaction.
  • Formaldehyde may be used in any form. Specifically, it can be used as a formalin aqueous solution, a methanol solution, or paraformaldehyde. When used as paraformaldehyde, paraformaldehyde may be heated to form formaldehyde, and the formaldehyde may be used in the reaction of this step. The amount used is calculated as the number of moles in terms of formaldehyde.
  • the alkanolamines are at least one selected from the group consisting of monoethanolamine, diethanolamine and 1-amino-2-propanol. Of these, diethanolamine is preferable in that a low-viscosity Mannich polyol is easily obtained.
  • the Mannich condensation product used as an initiator is a reaction product obtained by subjecting the above phenols, aldehydes, and alkanolamines to a Mannich condensation reaction. The reaction product includes unreacted substances remaining after the reaction.
  • the Mannich condensation reaction can be carried out by a known method.
  • the ratio of aldehydes to 1 mol of phenols is preferably 0.3 mol or more and 3 mol or less.
  • the ratio of the aldehydes is at least the lower limit of the above range, good dimensional stability of the rigid foam can be easily obtained. If it is not more than the upper limit, it becomes easy to obtain a low-viscosity Mannich polyol.
  • the viscosity of Mannich polyol tends to be lower, it is preferably 0.3 mol or more and less than 0.9 mol, and more preferably 0.9 mol or more and 1.5 mol or less from the viewpoint of the strength of the resulting rigid foam. .
  • the ratio of alkanolamines to 1 mol of aldehydes is preferably 0.7 mol or more and 12 mol or less.
  • the ratio of the alkanolamines is at least the lower limit of the above range, a rigid foam with good strength can be easily obtained.
  • the amount is not more than the upper limit, a good flame-retardant rigid foam can be easily obtained.
  • 0.7 mol or more and 5 mol or less are preferable. From the point of obtaining a low-viscosity Mannich polyol, it is preferably from 0.7 mol to 5 mol, particularly preferably from 0.7 mol to 3.5 mol.
  • the alkylene oxide used for the production of Mannich polyol is preferably at least one selected from the group consisting of ethylene oxide (hereinafter also referred to as EO), propylene oxide (hereinafter also referred to as PO), and butylene oxide.
  • the alkylene oxide preferably contains ethylene oxide, more preferably ethylene oxide alone or a combination of ethylene oxide and propylene oxide.
  • any of the following methods may be used. (1) A method of ring-opening addition polymerization of EO alone. (2) A method of ring-opening addition polymerization of PO alone. (3) A method of ring-opening addition polymerization of a mixture of PO and EO. (4) A method of ring-opening addition polymerization by arbitrarily combining the above methods (1) to (3).
  • the addition amount of alkylene oxide added to the initiator is preferably 2 to 30 mol, particularly preferably 4 to 20 mol, relative to 1 mol of the phenols used in the Mannich condensation reaction.
  • the ethylene oxide content (hereinafter also referred to as total ethylene oxide content or total EO content) in the total amount of alkylene oxide used in the ring-opening addition polymerization reaction is preferably 10 to 100% by mass, and 20 to 100% by mass Is particularly preferred.
  • the Mannich polyol viscosity tends to be low, which is preferable for reducing the viscosity of the polyol composition (Pc) and the polyol system solution.
  • the total EO content is a value of the entire polyol (Ac).
  • alkylene oxide By reacting an alkylene oxide with the active hydrogen atom of the initiator, the alkylene oxide undergoes ring-opening addition to produce a polyol having an oxyalkylene group. Hydroxyalkyl group is formed by ring-opening addition of one molecule of alkylene oxide to active hydrogen atom, and alkylene oxide is ring-opening addition to the hydroxyl group, and this reaction is repeated to form a chain of oxyalkylene groups. To do.
  • the hydroxyl value of the polyol (Ac) is preferably from 100 to 800 mgKOH / g, more preferably from 200 to 550 mgKOH / g, particularly preferably from 250 to 450 mgKOH / g. It is preferable for the hydroxyl value of the polyol (Ac) to be equal to or greater than the lower limit of the above range since the strength of the resulting rigid foam can be easily secured and good dimensional stability can be easily obtained. On the other hand, when the amount is not more than the upper limit of the above range, the amount of the alkylene oxide-derived oxyalkylene chain present in the Mannich polyol increases, and the viscosity of the Mannich polyol tends to decrease. Further, the brittleness of the manufactured rigid foam is suppressed, and the adhesiveness is likely to be obtained.
  • the content of the polyol (Ac) in the polyol composition (Pc) is 20 to 100% by mass, preferably 20 to 70% by mass, more preferably 25 to 60% by mass, further preferably 30 to 60% by mass, 30 to 50% by mass is particularly preferable.
  • the content of the polyol (Ac) is not less than the lower limit of the above range, a rigid foam having good adhesion and flame retardancy can be obtained.
  • the viscosity is not more than the upper limit of the above range, the viscosity of the polyol system liquid does not become too high and handling is easy.
  • the polyol (Bc) is a polyether polyol obtained by subjecting an alkylene oxide to ring-opening addition polymerization using an amine compound (excluding a Mannich condensation product) as an initiator.
  • the polyol (Bc) contributes to the effect of increasing the initial activity of the urethanization reaction.
  • the polyol (Bc) only one type may be used, or two or more types may be used in combination.
  • the number of active hydrogen atoms of the amine compound as an initiator is preferably 2 to 6, more preferably 3 to 6, and particularly preferably 3 to 4.
  • amine compounds that are initiators include aliphatic amine compounds such as alkanolamines (monoethanolamine, diethanolamine, triethanolamine, etc.) and alkylamines (ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine).
  • Saturated aromatic amine compounds such as N-aminomethylpiperazine and N- (2-aminoethyl) piperazine; aromatic amine compounds such as aniline, tolylenediamine, xylylenediamine, and diphenylmethanediamine (not including Mannich condensation products) can be mentioned. From the viewpoint of the effect of increasing the initial activity of the urethanization reaction, an aliphatic amine compound or a saturated cyclic amine compound is preferred.
  • alkylene oxide used in the production of polyol (Bc) examples include ethylene oxide, propylene oxide, butylene oxide and the like. Use of propylene oxide alone or a combination of ethylene oxide and propylene oxide is preferred. When used in combination, ethylene oxide and propylene oxide may be reacted after being mixed or sequentially.
  • the number of hydroxyl groups in the polyol (Bc) is preferably 2 to 6, more preferably 3 to 6, and particularly preferably 3 to 4.
  • the hydroxyl value of the polyol (Bc) is preferably 100 to 800 mgKOH / g, more preferably 200 to 600 mgKOH / g, and particularly preferably 300 to 500 mgKOH / g.
  • the hydroxyl value of the polyol (Bc) is not less than the lower limit of the above range, the strength of the rigid foam is improved, shrinkage is suppressed, and the dimensional stability is improved.
  • the viscosity does not become too high and handling is easy.
  • the polyol (Bc) is not essential, but when the polyol (Bc) is used, the content of the polyol (Bc) in the polyol composition (Pc) is preferably more than 0% by mass and 70% by mass or less. 1 to 40% by mass is more preferable, 3 to 35% by mass is further preferable, and 3 to 30% by mass is particularly preferable.
  • the content of the polyol (Bc) is not less than the lower limit of the above range, the shrinkage of the rigid foam is suppressed, and good dimensional stability is easily obtained.
  • it is at most the upper limit of the above range it is easy to ensure good curing characteristics (curing properties) during molding of the rigid foam.
  • the polyol (Cc) is a polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using a polyhydric alcohol having 2 to 8 active hydrogen atoms as an initiator.
  • polyol (Cc) in addition to polyol (Ac), it is possible to prevent the viscosity of the polyol composition (Pc) from becoming too high.
  • the polyol (Cc) only one type may be used, or two or more types may be used in combination.
  • polyhydric alcohol examples include water, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, neopentyl glycol, 3-methyl-1,5-pentanediol, 1,4-butanediol, 1,6- Dihydric alcohols such as hexanediol; trihydric alcohols such as glycerin, trimethylolpropane, 1,2,6-hexanetriol; tetrahydric alcohols such as pentaerythritol, diglycerin, tetramethylolcyclohexane, methylglucoside; sorbitol, mannitol, Hexavalent alcohols such as dulcitol; octavalent alcohols such as sucrose.
  • glycerin is preferred in terms of a good balance between dimensional stability and viscosity.
  • alkylene oxide used for the production of the polyol (Cc) examples include ethylene oxide, propylene oxide, butylene oxide and the like. Use of propylene oxide alone or a combination of ethylene oxide and propylene oxide is preferred. When used in combination, ethylene oxide and propylene oxide may be reacted after being mixed or sequentially.
  • the ethylene oxide content (total EO content) in the total amount of alkylene oxide is more than 0% by mass, preferably 50% by mass or less, more preferably 5 to 40% by mass. Preferably, 10 to 20% by mass is particularly preferable.
  • the ethylene oxide content is at least the lower limit of the above range, the reactivity is good, and when it is at most the upper limit of the above range, the brittleness of the resulting rigid foam is suppressed.
  • the number of hydroxyl groups in the polyol (Cc) is 2 to 8, more preferably 2 to 6, and particularly preferably 2 to 4.
  • the hydroxyl value of the polyol (Cc) is preferably from 100 to 800 mgKOH / g, more preferably from 200 to 700 mgKOH / g, particularly preferably from 300 to 600 mgKOH / g.
  • the hydroxyl value of the polyol (Cc) is not less than the lower limit of the above range, the strength of the rigid foam becomes good and shrinkage is suppressed.
  • the viscosity is not more than the upper limit of the above range, the viscosity is not excessively high and handling is easy, and the mixing property between the polyisocyanate and the compound is improved.
  • the polyol (Cc) is not essential, but when the polyol (Cc) is used, the content of the polyol (Cc) in the polyol composition (Pc) is preferably more than 0% by mass and 40% by mass or less. 1 to 35% by mass is more preferable, and 3 to 30% by mass is particularly preferable.
  • the content of the polyol (Cc) is not less than the lower limit of the above range, the polyol system liquid can be reduced in viscosity, and good moldability is easily obtained.
  • the amount is not more than the upper limit of the above range, good compressive strength of the rigid foam is easily obtained.
  • the polyol (Dc) is a polyester polyol produced by polycondensation of a monomer mixture containing an aromatic compound.
  • the polyol composition (Pc) may contain a polyol (Dc) as necessary.
  • the polyol (Dc) contributes to the improvement of flame retardancy.
  • the monomer mixture used for producing the polyol (Dc) preferably contains a dicarboxylic acid compound and a polyhydric alcohol, and one or both of the dicarboxylic acid compound and the polyhydric alcohol contain a compound having an aromatic ring.
  • the polyol (Dc) preferably contains an aromatic polyester polyol obtained by polycondensation reaction between a dicarboxylic acid having an aromatic ring and a polyhydric alcohol not having an aromatic ring.
  • the dicarboxylic acid having an aromatic ring include terephthalic acid, isophthalic acid, and orthophthalic acid. Terephthalic acid is more preferable in terms of improving heat resistance.
  • Examples of the polyhydric alcohol having no aromatic ring include ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol, dipropylene glycol (DPG), 1,4-butanediol, 1,6-hexanediol (1,6 -HD), diol compounds such as neopentyl glycol; and triol compounds such as glycerin and trimethylolpropane.
  • Ethylene glycol or diethylene glycol is more preferable, and diethylene glycol is particularly preferable in that the viscosity of the polyol (Dc) can be lowered and a good flame retardancy improving effect can be easily obtained.
  • the average number of hydroxyl groups in the polyol (Dc) is preferably 2 to 3, and 2 is particularly preferable. When the average number of hydroxyl groups is 3 or less, the viscosity can be kept low and the handling is easy.
  • the hydroxyl value of the polyol (Dc) is preferably 100 to 500 mgKOH / g, more preferably 150 to 350 mgKOH / g, and particularly preferably 180 to 300 mgKOH / g. When the hydroxyl value of the polyol (Dc) is not less than the lower limit of the above range, the shrinkage of the rigid foam is easily suppressed, and when it is not more than the upper limit of the above range, the brittleness of the rigid foam is suppressed and good physical properties are easily obtained.
  • the polyol (Dc) is not essential, but when the polyol (Dc) is used, the content of the polyol (Dc) in the polyol composition (Pc) is preferably more than 0% by mass and 70% by mass or less. 10 to 65% by mass is more preferable, and 30 to 60% by mass is particularly preferable.
  • the content of the polyol (Dc) is not less than the lower limit of the above range, an effect of reducing the viscosity of the polyol system liquid is easily obtained.
  • the amount is not more than the upper limit of the above range, shrinkage of the rigid foam is easily suppressed.
  • the polyol composition (Pc) contains polymer particles. Specifically, it is preferable to prepare a polymer-dispersed polyol (Wc) in which polymer particles are dispersed in the base polyol (Wc ′), and to contain the polymer-dispersed polyol (Wc) in the polyol composition (Pc). .
  • the presence of polymer particles in the polyol composition (Pc) can suppress the shrinkage of the rigid foam and improve the dimensional stability. This effect is particularly useful in producing lower density rigid foams.
  • the polymer-dispersed polyol (Wc) may be one type or a combination of two or more types.
  • the content of the polymer particles in the entire polyol composition (Pc) is preferably 0.002 to 30% by mass, more preferably 0.02 to 20% by mass, and particularly preferably 0.02 to 10% by mass. Within the above range, shrinkage of the obtained rigid foam can be effectively suppressed while maintaining heat insulation performance. Moreover, the storage stability at normal temperature and the storage stability at high temperature are good.
  • the polymer-dispersed polyol (Wc) in the present invention C is the same as the polymer-dispersed polyol (Wa) in the present invention A including preferred embodiments.
  • the base polyol (Wc ′) in the production of the polymer-dispersed polyol (Wc) in the present invention C is the same as the base polyol (Wa ′) in the present invention A including preferred embodiments.
  • the base polyol (Wc ′) may be the same as any of the polyols (Ac) to (Cc).
  • the polyol composition (Pc) contains other polyol (Ec) that does not belong to any of the polyol (Ac), polyol (Bc), polyol (Cc), polyol (Dc), or polymer-dispersed polyol (Wc). You may let them.
  • the other polyol (Ec) include polyether polyol, polyester polyol, polycarbonate polyol, and acrylic polyol.
  • the hydroxyl value of the polyol (Ec) is preferably 5 to 1,000 mgKOH / g, more preferably 10 to 800 mgKOH / g, and particularly preferably 20 to 700 mgKOH / g.
  • the content of the polyol (Ec) in the polyol composition (Pc) is preferably 30% by mass or less, more preferably 25% by mass or less, and particularly preferably 20% by mass or less.
  • the polyol composition (Pc) preferably contains a polyol (Ac) and polymer particles, and further contains one or more selected from polyol (Bc), polyol (Cc), and polyol (Dc). Optionally, other polyols (Ec) may be included.
  • the polymer particles are preferably derived from a polymer-dispersed polyol (Wc).
  • the average number of hydroxyl groups as a whole of the polyol composition (Pc) is 2 to 8, preferably 2.5 to 7.5. When the average number of hydroxyl groups is not less than the lower limit of the above range, shrinkage of the rigid foam is suppressed and dimensional stability is improved.
  • the average hydroxyl value of the whole polyol composition (Pc) is 100 to 800 mgKOH / g, preferably 150 to 700, more preferably 200 to 600.
  • the average hydroxyl value is at least the lower limit of the above range, the shrinkage of the rigid foam is suppressed and the dimensional stability is improved. The brittleness of a rigid foam is suppressed as it is below an upper limit.
  • the polyol composition (Pc) may be all polyol (Ac) and polymer particles.
  • a more preferable composition of the polyol composition (Pc) is as follows. Preferred combinations for producing a rigid polyisocyanurate foam with the isocyanurate formulation described below are shown below. (Combination 1)
  • the polyol composition (Pc) comprises 30 to 50% by mass of the polyol (A), 1 to 30% by mass of the polyol (Bc), 30 to 70% by mass of the polyol (Dc), Wc), and the polymer particle content is 0.02 to 7% by mass.
  • the polyol composition (Pc) comprises 30 to 50% by mass of the polyol (Ac), 1 to 30% by mass of the polyol (Bc), 1 to 30% by mass of the polyol (Cc), It is composed of 10 to 60% by mass of Dc) and polyol (Wc), and the content of polymer particles is 0.02 to 7% by mass.
  • the polyol composition (Pc) comprises 30 to 70% by mass of the polyol (Ac), 10 to 50% by mass of the polyol (Bc), 5 to 30% by mass of the polyol (Cc), Wc), and the polymer particle content is 0.02 to 7% by mass.
  • the polyol composition (Pc) comprises 30 to 60% by mass of the polyol (Ac), 10 to 60% by mass of the polyol (Bc), 5 to 20% by mass of the polyol (Cc), Wc), and the polymer particle content is 0.02 to 7% by mass.
  • the polyisocyanate compound in the present invention C is the same as the polyisocyanate compound in the present invention A including preferred embodiments.
  • the polyisocyanate compound include aromatic, alicyclic, and aliphatic polyisocyanates having two or more isocyanate groups; modified polyisocyanates obtained by modifying these. Specific examples include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenyl polyisocyanate (common name: crude MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HMDI).
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • MDI polymethylene polyphenyl polyisocyanate
  • XDI xylylene diisocyanate
  • IPDI isophorone diisocyanate
  • polyisocyanates such as these, or prepolymer-modified products thereof, isocyanurates, urea-modified products, and carbodiimide-modified products.
  • crude MDI or a modified product thereof is preferable, and a modified product of crude MDI is particularly preferable.
  • the polyisocyanate compound may be used alone or in combination of two or more.
  • the amount of polyisocyanate compound used is represented by 100 times the number of isocyanate groups relative to the total number of active hydrogen atoms of the polyol composition (Pc) and other active hydrogen compounds present in the polyol system liquid (hereinafter referred to as this A numerical value expressed by 100 times is referred to as “isocyanate index (INDEX)”, preferably 50 to 400.
  • isocyanate index preferably 50 to 400.
  • the amount of polyisocyanate compound used is preferably 50 to 170, particularly preferably 70 to 150 in terms of the isocyanate index.
  • the amount of the polyisocyanate compound used is preferably 100 to 350, more preferably 100 to 300, in terms of the isocyanate index. Is particularly preferred.
  • the foaming agent in the present invention C is the same as the foaming agent in the present invention A including preferred embodiments.
  • the hydrofluoroolefins represented by the formula (I) are the same as the hydrofluoroolefins represented by the formula (I) described above including preferred embodiments.
  • ⁇ Catalyst> The catalyst in the present invention C is the same as the catalyst in the present invention A including preferred embodiments.
  • the foam stabilizer in the present invention C is the same as the foam stabilizer in the present invention A including preferred embodiments.
  • a foam stabilizer is used to form good bubbles.
  • the foam stabilizer include silicone foam stabilizers and fluorine-containing compound foam stabilizers. These can use a commercial item.
  • the amount of the foam stabilizer used can be appropriately selected, but is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polyol composition (Pc).
  • the other compounding agents in Invention C are the same as the other compounding agents in Invention A, including preferred embodiments.
  • a known compounding agent can be used in addition to the polyol composition (Pc), polyisocyanate compound, catalyst, foaming agent, and foam stabilizer described above.
  • Compounding agents include fillers such as calcium carbonate and barium sulfate; anti-aging agents such as antioxidants and UV absorbers; flame retardants, plasticizers, colorants, anti-fungal agents, foam breakers, dispersants, discoloration prevention Agents and the like.
  • the amount of other compounding agents can be appropriately selected, but is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polyol composition (Pc).
  • the method for producing a rigid foam of the present invention C is a method for producing a rigid foam synthetic resin by reacting a polyol composition (Pc) with a polyisocyanate compound in the presence of a foaming agent, a foam stabilizer and a catalyst.
  • a spray method in which a rigid foam is sprayed and applied can be suitably used.
  • a polyol system liquid and a polyisocyanate compound are each sent by a pump, reacted while sprayed from a spray gun onto a substrate such as a wall surface to be constructed, and foamed on the substrate to insulate. It is a method of using a material or the like.
  • the spray method is roughly classified into an air spray method and an airless spray method.
  • the airless spray method in which the blended liquid is mixed with a mixing head and foamed is particularly preferable.
  • a spray method is often used in construction sites.
  • Such a rigid foam as a building material needs flame retardancy from the viewpoint of fire resistance.
  • flame retardancy is required from the viewpoint of preventing fire accidents caused by welding sparks at the construction site.
  • the polyol composition (Pc) contains Mannich polyol, high flame retardancy is easily obtained.
  • a hard synthetic foamed resin can be obtained by a spray method having good dimensional stability and good flame retardancy.
  • the spray method it is preferable that the polyol system liquid and the polyisocyanate compound are sprayed on the base material and then cured at a high speed so that the liquid does not flow.
  • the rise time is preferably 8 to 25 seconds, particularly preferably 10 to 20 seconds.
  • the substrate include plywood, plywood, slate board, gypsum board and the like.
  • the articles that can be manufactured using the spray method include residential dew-preventing heat insulating materials, refrigerated warehouse heat insulating materials, and the like.
  • the present invention C is also applicable to the production of rigid foams by a continuous board molding method or an injection method.
  • the continuous board molding method is a method of manufacturing a laminate in which a rigid foam is sandwiched between two face materials by supplying a foam material between two face materials and foaming it. It is used for the manufacture of heat insulating materials.
  • the injection method is a method in which a rigid foam material is injected into a frame such as a mold and foamed.
  • a rigid foam having good characteristics can be obtained using the hydrofluoroolefins (I) as the foaming agent.
  • the polyol system liquid has good storage stability, good moldability, and good dimensional stability even when the density is reduced. .
  • a rigid foam having good dimensional stability and low thermal conductivity that is, good heat insulation performance
  • the high temperature storage stability of the polyol system liquid is improved.
  • the hydroxyl value of the polyol is a value measured according to JIS K 1557 (1970 edition).
  • the raw materials used in the following examples of the present invention A are as follows.
  • Polyol (Aa) Polyol Aa1: obtained by ring-opening addition polymerization of EO to m-tolylenediamine, followed by ring-opening addition polymerization of alkylene oxide in the order of PO and EO in the presence of a potassium hydroxide catalyst, the water base value being 450 mgKOH / g Polyether polyol.
  • the E content total EO content
  • the EO content at the end is 3% by mass.
  • Polyol Aa2 obtained by ring-opening addition polymerization of EO to m-tolylenediamine, followed by ring-opening addition polymerization of alkylene oxide in the order of PO and EO in the presence of a potassium hydroxide catalyst, having a hydroxyl value of 350 mgKOH / g Polyether polyol. Of the total of EO and PO, the EO content (total EO content) is 25% by mass. The EO content at the end is 11% by mass.
  • Polyol Aa3 A polyether polyol having a hydroxyl value of 350 mgKOH / obtained by ring-opening addition polymerization of only PO as an alkylene oxide to m-tolylenediamine.
  • Polyol Aa4 hydroxyl value obtained by ring-opening addition polymerization of only PO as alkylene oxide to a Mannich condensation product obtained by condensing nonylphenol, diethanolamine and formaldehyde at a ratio of 1 mol / 2.2 mol / 1.5 mol 470 mg KOH / g, polyether polyol having an average number of functional groups of 4.
  • Polyol (Ba) Polyol Ba1: A polyether polyol having a hydroxyl value of 500 mgKOH / g, obtained by ring-opening addition polymerization of only PO as an alkylene oxide to sorbitol.
  • Polyol Ba2 A polyether polyol having a hydroxyl value of 385 mgKOH / g, obtained by ring-opening addition polymerization of only PO as an alkylene oxide to sorbitol.
  • Polyol Ba3 A polyether polyol having a hydroxyl value of 450 mgKOH / g, obtained by subjecting a mixture of sucrose and glycerin (mass ratio 2: 1) to ring-opening addition polymerization of only PO as an alkylene oxide.
  • Polyol (Ca) Polyol Ca1: A polyether polyol having a hydroxyl value of 760 mgKOH / g obtained by ring-opening addition polymerization of only PO as an alkylene oxide to ethylenediamine.
  • Polyol Ca2 A polyether polyol having a hydroxyl value of 500 mgKOH / g, obtained by ring-opening addition polymerization of only PO as an alkylene oxide to monoethanolamine.
  • Polyol Ca3 A polyether polyol having a hydroxyl value of 450 mgKOH / g, obtained by ring-opening addition polymerization of PO as an alkylene oxide to ethylenediamine, followed by ring-opening polymerization of EO in the presence of a potassium hydroxide catalyst.
  • the EO content is 41% by mass.
  • Polyol (Da)] Polyol Da1 Polyester polyol obtained by polycondensation of diethylene glycol and terephthalic acid and having an average hydroxyl number of 2 and a hydroxyl value of 250 mgKOH / g (product name: Terol 563, manufactured by Oxide).
  • Polyol Ea1 A polyether polyol having a hydroxyl value of 56 mgKOH / g, obtained by ring-opening addition polymerization of PO as alkylene oxide to glycerin and ring-opening addition polymerization of EO in the presence of a potassium hydroxide catalyst.
  • the EO content total EO content is 13% by mass.
  • Polyol Ea2 A polyether polyol having a hydroxyl value of 56 mgKOH / g obtained by ring-opening addition polymerization of PO as alkylene oxide to glycerin and ring-opening addition polymerization of EO in the presence of a potassium hydroxide catalyst. Of the total of EO and PO, the EO content (total EO content) is 20% by mass.
  • Polyol Ea3 A polyether polyol having a hydroxyl value of 410 mgKOH / g, obtained by subjecting pentaerythritol to ring-opening addition polymerization of only PO as an alkylene oxide.
  • Polyol Ea4 A polyether polyol having a hydroxyl value of 450 mgKOH / obtained by ring-opening addition polymerization of only PO as an alkylene oxide to dipropylene glycol.
  • Polymer-dispersed polyol (Wa) As the polymer-dispersed polyol (Wa), polymer-dispersed polyols Wa1 to Wa6 produced by the method of the following production example with the composition shown in Table 1 below were used. The unit of the blending ratio in Table 1 is “part by mass”.
  • Examples of the monomer having a polymerizable unsaturated bond for forming polymer particles include acrylonitrile (AN), vinyl acetate (Vac), methyl methacrylate (MMA), and polyfluoroalkyl methacrylate represented by the formula (1-1). (FMA) was used.
  • Polyisocyanate compound Polyisocyanate compound 1: Polymethylene polyphenylene polyisocyanate (crude MDI) (manufactured by Nippon Polyurethane Industry Co., Ltd., product name: Millionate MR-200).
  • Foaming agent Foaming agent 1: E-1-chloro-3,3,3-trifluoro-propene.
  • Foaming agent 2 Z-1,1,1,4,4,4-hexafluoro-2-butene.
  • Foaming agent 3 water.
  • Flame retardant 1 Tris ( ⁇ -chloropropyl) phosphate (manufactured by Spresta Japan, product name: Pyrol PCF).
  • Catalyst 1 Pentamethyldiethylenetriamine (manufactured by Tosoh Corporation, product name: TOYOCAT DT).
  • Catalyst 2 N, N, N ′, N′-tetramethylhexamethylenediamine (manufactured by Tosoh Corporation, product name: TOYOCAT MR).
  • Urethane catalyst 1 Mixture of catalyst 1 / catalyst 1/3 (mass ratio).
  • Foam stabilizer 1 Silicone foam stabilizer (manufactured by Dow Corning Toray, product name: SH-193).
  • ⁇ Production Example 1> In a 5 L pressurized reaction vessel, 300 parts by mass of the following polyether polyol (X1), 150 parts by mass of the following polyether polyol (Y1), 300 parts by mass of the following polyether polyol (Y2), 50 parts by mass of acrylonitrile, acetic acid After charging 200 parts by mass of vinyl and 10 parts by mass of 2,2-azobis-2-methylbutyronitrile (AMBN) as a polymerization initiator, heating was started while stirring, and the reaction solution was brought to 80 ° C. The reaction was allowed to proceed for 10 hours. The monomer reaction rate was 80% or more. After completion of the reaction, the unreacted monomer was removed by heating under reduced pressure at 110 ° C.
  • ABN 2,2-azobis-2-methylbutyronitrile
  • polyol Wa1 a polymer-dispersed polyol
  • the hydroxyl value of the obtained polymer-dispersed polyol Wa1, the viscosity at 25 ° C., and the content of polymer particles in Wa1 are shown in Table 1 (the same applies hereinafter).
  • Polyether polyol (X1) Polyol having a hydroxyl value of 50 mgKOH / g and an oxyethylene group content of 70% by mass obtained by randomly adding PO and EO in the presence of a potassium hydroxide catalyst using glycerol as an initiator.
  • Examples 1 to 50 Examples 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 are examples, Examples 1-18, 20, 22, 24, 26, 28 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 are comparative examples.
  • Rigid foams are produced with the formulations shown in Tables 2, 3, 4, and 5.
  • the unit of the numerical values of the formulations shown in the table is parts by mass.
  • the compounding amount of the polyisocyanate compound is represented by an isocyanate index (INDEX).
  • the table shows the average number of hydroxyl groups and the average hydroxyl value in the whole polyol composition (Pa).
  • each polyol, urethanization catalyst, foam stabilizer, mixed foaming agent, and a predetermined amount of water are mixed to prepare a polyol system liquid.
  • the blending amount of the urethanization catalyst was set to an amount that would make the gel time 100 seconds.
  • the liquid temperatures of the polyol system liquid and the polyisocyanate compound are adjusted to 20 ° C., respectively.
  • ⁇ Panel form evaluation method> [Total panel density] The total panel density (unit: kg / m 3 ) is measured for the whole obtained panel foam by a method according to JIS A 9511. [Formability] (1) Presence or absence of shrinkage after demolding: The obtained panel foam is allowed to stand at 20 ° C. for 30 hours, and then the appearance is observed. Evaluation is based on the following criteria. ⁇ (good): No deformation. Good. ⁇ (possible): Partial deformation occurs due to shrinkage. X (impossible): The whole is crushed by shrinkage. Bad.
  • Low temperature dimensional stability Specimens are stored in a constant temperature bath at -30 ° C for 24 hours.
  • Humid heat dimensional stability Specimens are stored for 24 hours in a thermostatic chamber at 70 ° C. in an atmosphere with a relative humidity of 95%.
  • the ratio of the changed dimension to the dimension before storage in the three directions x, y, and z of the test piece is expressed as a dimensional change rate (unit:%).
  • a negative value means shrinkage
  • a large absolute value means that a dimensional change is large.
  • the compressive strength of the panel foam was measured according to JIS A 9511. As for the size of the sample piece, the length (x) and the width (y) are cut out to 50 mm each, and the height direction (z) is kept at 40 mm which is the thickness of the panel foam without cutting out the surface skin layer. Measure the compressive strength.
  • Thermal conductivity The thermal conductivity (unit: W / m ⁇ K) of the panel foam is based on JIS A 9511, and is averaged using a thermal conductivity measuring device (product name: Auto-Lambda HC-074, manufactured by Eiko Seiki Co., Ltd.). Measurement was performed at a temperature of 24 ° C.
  • Examples 1 to 18 in which the polyol composition does not contain polymer particles have poor storage stability at high temperatures of the polyol system.
  • the rigid foams of Examples 19 and 21 of the present invention have good dimensional stability and moldability even when the box-free density is reduced and reduced in weight compared to Examples 20 and 22, and the polyol system Stability is good and storage stability at high temperature is also good.
  • Examples 23 and 25 using polyester polyol (polyol (Da)) which has a stronger tendency to shrink than polyether polyols, foam shrinkage is suppressed as compared with Examples 24 and 26, and moldability, dimensional stability, Compressive strength, thermal conductivity and the storage stability of the polyol system are all improved.
  • hydroxyl value of the polyol is a value measured according to JIS K 1557 (1970 edition).
  • Each raw material used in the following examples is as follows.
  • Polyol (Ab) Polyol Ab1: PO is subjected to ring-opening addition polymerization using a reaction product obtained by reacting 1.5 mol of formaldehyde and 2.2 mol of diethanolamine with 1 mol of nonylphenol, followed by hydroxylation.
  • the amount of alkylene oxide added is 15.4 moles per mole of nonylphenol.
  • the ratio of EO to the total amount of PO and EO added (total EO content) is 58% by mass.
  • Polyol Ab2 PO is ring-opening addition polymerized with the reaction product obtained by reacting 2.2 mol of formaldehyde and 2.2 mol of diethanolamine with 1 mol of nonylphenol, and then hydroxylated.
  • the addition amount of alkylene oxide is 6.3 mol per 1 mol of nonylphenol.
  • the ratio of EO to the total amount of added PO and EO (total EO content) is 23% by mass.
  • Polyol Ab3 Obtained by ring-opening addition polymerization of PO alone using a reaction product obtained by reacting 1.5 mol of formaldehyde and 2.2 mol of diethanolamine with 1 mol of nonylphenol.
  • the amount of alkylene oxide added is 5.5 moles per mole of nonylphenol.
  • Polyol Ab4 obtained by subjecting 1 mol of aniline to 1 mol of phenol, 0.6 mol of formaldehyde and 2.2 mol of diethanolamine, and using PO as the initiator for ring-opening addition polymerization.
  • the amount of alkylene oxide added is 6.9 moles per mole of aniline.
  • Polyol Ab5 obtained by subjecting 1 mol of nonylphenol to 1.5 mol of formaldehyde and 2.2 mol of diethanolamine as an initiator and subjecting only EO to ring-opening addition polymerization
  • the addition amount of alkylene oxide is 2.6 mol per 1 mol of nonylphenol.
  • Polyol (Bb) A polyether polyol having a hydroxyl value of 450 mgKOH / g, obtained by subjecting PO to ring-opening addition polymerization to ethylenediamine and then subjecting EO to ring-opening addition polymerization in the presence of a potassium hydroxide catalyst. Of the total of EO and PO, the EO content (total EO content) is 41% by mass.
  • Polyol Bb2 A polyether polyol having a hydroxyl value of 760 mgKOH / g, obtained by ring-opening addition polymerization of only PO as an alkylene oxide to ethylenediamine.
  • Polyol Bb3 A polyether polyol having a hydroxyl value of 500 mgKOH / g, obtained by ring-opening addition polymerization of only PO as an alkylene oxide to monoethanolamine.
  • Polyol (Cb) Polyol Cb1: obtained by ring-opening addition polymerization of EO to m-tolylenediamine, followed by ring-opening addition polymerization of alkylene oxide in the order of PO and EO in the presence of a potassium hydroxide catalyst, having a hydroxyl value of 450 mgKOH / g Polyether polyol.
  • the EO content is 25% by mass.
  • the EO content at the end is 3% by mass.
  • Polyol Cb2 obtained by ring-opening addition polymerization of EO to m-tolylenediamine, followed by ring-opening addition polymerization of alkylene oxide in the order of PO and EO in the presence of a potassium hydroxide catalyst, having a hydroxyl value of 350 mgKOH / g Polyether polyol. Of the total of EO and PO, the EO content (total EO content) is 25% by mass. The EO content at the end is 11% by mass.
  • Polyol Cb3 A polyether polyol having a hydroxyl value of 350 mgKOH / obtained by ring-opening addition polymerization of only PO as an alkylene oxide to m-tolylenediamine.
  • Polyol Eb1 Polyester polyol having a hydroxyl value of 250 mgKOH / g, obtained by polycondensation of diethylene glycol and terephthalic acid (product name: Terol 563, manufactured by Oxide).
  • polymer-dispersed polyol (Wb) polymer-dispersed polyols Wb1 to W6 produced by the method of the following production example with the composition shown in Table 1 below were used.
  • the unit of the blending ratio in Table 1 is “part by mass”.
  • Examples of the monomer having a polymerizable unsaturated bond for forming polymer particles include acrylonitrile (AN), vinyl acetate (Vac), methyl methacrylate (MMA), and polyfluoroalkyl methacrylate represented by the formula (1-1). (FMA) was used.
  • Polyol E Glycerol is used as an initiator.
  • Base polyol (Wb ′) As the base polyol (Wb ′), the following polyols X1, Z1, and Z2 were used.
  • Polyol X1 A polyether polyol having a hydroxyl value of 50 mgKOH / g, obtained by random ring-opening addition polymerization of EO and PO using glycerin as an initiator. The ratio of EO to the total amount of PO and EO added is 70% by mass. The content of EO groups in the entire polyol X1 is 68% by mass.
  • Polyol Y1 A polyether polyol having a hydroxyl value of 650 mgKOH / g, obtained by ring-opening addition polymerization of PO using glycerol as an initiator.
  • Polyol Y2 A polyether polyol obtained by ring-opening addition polymerization of PO using ethylenediamine as an initiator and having a hydroxyl value of 760 mgKOH / g.
  • Polyisocyanate compound Polyisocyanate compound 1: Polymethylene polyphenylene polyisocyanate (crude MDI) (manufactured by Nippon Polyurethane Industry Co., Ltd., product name: Millionate MR-200).
  • Foaming agent Foaming agent 1: E-1-chloro-3,3,3-trifluoro-propene.
  • Foaming agent 2 Z-1,1,1,4,4,4-hexafluoro-2-butene.
  • Foaming agent 3 water.
  • Flame retardant 1 Tris ( ⁇ -chloropropyl) phosphate (manufactured by Spresta Japan, product name: Pyrol PCF).
  • Catalyst 1 Pentamethyldiethylenetriamine (manufactured by Tosoh Corporation, product name: TOYOCAT DT).
  • Catalyst 2 N, N, N ′, N′-tetramethylhexamethylenediamine (manufactured by Tosoh Corporation, product name: TOYOCAT MR).
  • Catalyst 3 Potassium octylate (manufactured by Nippon Chemical Industry Co., Ltd., product name: PACCAT 15G).
  • Urethane catalyst 1 Mixture of catalyst 1 / catalyst 1/3 (mass ratio).
  • Foam stabilizer 1 Silicone foam stabilizer (manufactured by Dow Corning Toray, product name: SH-193).
  • Examples 1 to 16, 21 to 34> Free-foam foam and panel foam samples were prepared with the formulations shown in Tables 2, 3, 6 and 7.
  • Tables 2 and 3 are blends of polyurethane foam (urethane formulation)
  • Tables 6 and 7 are blends of polyisocyanurate foam (isocyanurate formulation).
  • Examples 3 to 4, 11 to 24, 33 to 34, 37 to 38, and 41 to 57 are Examples, and Examples 1 to 2, 5 to 10, 25 to 32, 35 to 36, 39 to 40, and 58 to 59 are compared. It is an example.
  • the unit of the numerical values of the formulations shown in the table is parts by mass.
  • the compounding amount of the polyisocyanate compound is represented by an isocyanate index (INDEX).
  • the table shows the average number of hydroxyl groups and the average hydroxyl value in the whole polyol composition (Pb).
  • the foaming direction is the thickness direction.
  • a predetermined amount of each component excluding the polyisocyanate compound is weighed into a plastic container, and stirred and mixed at 3,000 rpm for 30 seconds using a mixer with a stirring blade, to obtain a polyol system solution.
  • the liquid temperature of the polyol system liquid is kept at 25 ° C.
  • a predetermined amount of the polyisocyanate compound is weighed into a plastic container, and the liquid temperature is kept at 20 ° C.
  • the polyisocyanate compound is charged into the polyol system solution, and stirred and mixed at 3,000 rpm for 5 seconds using a mixer to prepare a foaming stock solution composition.
  • FIG. 1 is a perspective view of a mold 1 used for manufacturing a panel foam.
  • the mold 1 includes an aluminum lower mold 2 and an upper lid 3.
  • the lower mold 2 is a rectangular parallelepiped having a length in the longitudinal direction (X) of 800 mm, a length in the lateral direction (Y) of 400 mm, and a length in the thickness direction (t) of 40 mm in the thickness direction (t).
  • the upper opening 4 is formed by removing the vertical upper surface
  • the side opening 5 is formed by removing one side surface perpendicular to the longitudinal direction (X).
  • the lower mold 2 includes a bottom surface 2a, two side surfaces 2c perpendicular to the horizontal direction (Y), and one side surface 2b perpendicular to the vertical direction (X).
  • the upper lid 3 has a plate shape that closes the upper opening 4 of the lower mold 2, and is hinged to the upper end of one side surface 2 c perpendicular to the lateral direction (Y) of the lower mold 2.
  • the temperature of the mold 1 is adjusted to 60 ° C. in advance, and after the foaming stock solution composition is prepared by the above procedure, it is immediately charged into the charging position 6 in the lower mold 2.
  • the amount to be charged is an amount (just pack) in which the mold volume (800 mm ⁇ 400 mm ⁇ 40 mm) is just filled after foaming.
  • the charging position 6 is a central portion in the horizontal direction (Y) of the bottom surface 2a in the vicinity of the side surface 2b perpendicular to the vertical direction (X).
  • the foaming stock solution composition charged to the charging position 6 flows along the vertical direction (X) toward the side opening 5 on the bottom surface 2a.
  • the upper lid 3 Immediately after the entire amount is charged, the upper lid 3 is closed and foamed to produce a panel foam.
  • the mixing start time of the polyol system liquid and the polyisocyanate compound is set to 0 second, and after 10 minutes, the upper lid 3 is opened and the product (panel foam) is taken out.
  • ⁇ Panel form evaluation method [Panel core density] The density (unit: kg / m 3 ) is measured for a test piece cut out to a length of 10 cm and a thickness of 2.5 cm excluding the skin portion from the center portion of the panel foam produced as described above. [Formability] The following items are observed on the panel form to evaluate the moldability. (1) Presence / absence of edge shrinkage: Observe the appearance of the foam at the edge of the side opening 5 (hereinafter referred to as the flow edge) out of both ends in the longitudinal direction (X) of the panel foam. Evaluate with. ⁇ (good): There is no deformation (shrinkage) near the flow end. Good.
  • a panel foam core part is cut into a length of 150 mm, a width of 50 mm, and a thickness of 13 mm, a flame is applied to one end of the foam with a Bunsen burner, and a combustion time (second) and a combustion distance (mm) are measured.
  • No turbidity, separation, precipitation or solidification occurs, and it is transparent.
  • X impossible: One or more of turbidity, separation, precipitation, and solidification occurs.
  • XX more impossible: Two or more of turbidity, separation, precipitation and solidification occur. More bad.
  • Examples 3 to 4 and 11 to 24 containing polyol (Ab) and polymer particles are panels having good moldability and physical properties. A form can be obtained.
  • the polyol system solution has good room temperature storage stability and high temperature storage stability.
  • the foams obtained in Examples 1-2, 5-10, and 25-30, which do not contain polyol (Ab) and / or polymer particles, are insufficient in the high-temperature storage stability of the polyol system liquid.
  • Examples 33 to 34, 37 to 38 and 41 to 57 containing polyol (Ab) and polymer particles are panel foams having good moldability and physical properties. Obtainable.
  • the foams obtained in Examples 31 to 32, 35 to 36, 39 to 40, and 58 to 59 containing no polyol (Ab) and / or polymer particles are insufficient in the high temperature storage stability of the polyol system liquid. is there.
  • Example 3 ⁇ Examples of Invention C> (Example 3)
  • the hydroxyl value of the polyol is a value measured according to JIS K 1557 (1970 edition).
  • the raw materials used in the following examples are as follows.
  • Polyol (Ac) Polyol Ac1: PO is subjected to ring-opening addition polymerization using a reaction product obtained by reacting 1.5 mol of formaldehyde and 2.2 mol of diethanolamine with 1 mol of nonylphenol, and then potassium hydroxide.
  • the amount of alkylene oxide added is 15.4 moles per mole of nonylphenol.
  • the ratio of EO to the total amount of added PO and EO is 58% by mass.
  • Polyol Ac2 EO was subjected to ring-opening addition polymerization using a reaction product obtained by reacting 0.75 mol of formaldehyde and 2.2 mol of diethanolamine with 1 mol of nonylphenol, and then potassium hydroxide.
  • the amount of alkylene oxide added is 18.0 moles per mole of nonylphenol.
  • the ratio of EO to the total amount of added PO and EO is 75% by mass.
  • Polyol Ac3 PO is subjected to ring-opening addition polymerization using a reaction product obtained by reacting 2.2 mol of formaldehyde and 2.2 mol of diethanolamine with 1 mol of nonylphenol, and then potassium hydroxide.
  • the addition amount of alkylene oxide is 6.3 mol per 1 mol of nonylphenol.
  • the ratio of EO to the total amount of added PO and EO is 23% by mass.
  • Polyol Ac4 Obtained by ring-opening addition polymerization of PO alone using a reaction product obtained by reacting 1.5 mol of formaldehyde and 2.2 mol of diethanolamine with 1 mol of nonylphenol.
  • the amount of alkylene oxide added is 5.5 moles per mole of nonylphenol.
  • Polyol (Bc) A polyether polyol having a hydroxyl value of 760 mgKOH / g, obtained by ring-opening addition polymerization of only PO with ethylenediamine.
  • Polyol Bc2 A polyether polyol having a hydroxyl value of 500 mgKOH / g, obtained by ring-opening addition polymerization of PO alone with monoethanolamine.
  • Polyol (Cc) A polyether polyol having a hydroxyl value of 56 mgKOH / g obtained by ring-opening addition polymerization of PO to glycerin and then ring-opening addition polymerization of EO in the presence of a potassium hydroxide catalyst. Of the total of EO and PO, the EO content is 13% by mass.
  • Polyol Cc2 A polyether polyol having a hydroxyl value of 56 mgKOH / g obtained by ring-opening addition polymerization of PO to glycerin and then ring-opening addition polymerization of EO in the presence of a potassium hydroxide catalyst.
  • Polyol Cc3 A polyether polyol having a hydroxyl value of 400 mgKOH / g, obtained by ring-opening addition polymerization of only PO with glycerin.
  • Polyol Ec1 A polyether polyol having a hydroxyl value of 150 mgKOH / g, in which bisphenol A is used as an initiator and only EO is subjected to ring-opening addition polymerization in the presence of a potassium hydroxide catalyst.
  • Polymer-dispersed polyol (Wc) As the polymer-dispersed polyol (Wc), polymer-dispersed polyols Wc1 to Wc6 having the composition shown in the following Table 1 and produced by the method of the following production examples were used.
  • the unit of the blending ratio in Table 1 is “part by mass”.
  • Examples of the monomer having a polymerizable unsaturated bond for forming polymer particles include acrylonitrile (AN), vinyl acetate (Vac), methyl methacrylate (MMA), and polyfluoroalkyl methacrylate represented by the formula (1-1). (FMA) was used.
  • Polyisocyanate compound Polyisocyanate compound 1: polymethylene polyphenylene polyisocyanate (crude MDI) (product name: Coronate 1130, manufactured by Nippon Polyurethane Industry Co., Ltd., isocyanate group content: 31% by mass).
  • Polyisocyanate compound 2 polymethylene polyphenylene polyisocyanate (crude MDI), (product name: Millionate MR-200, manufactured by Nippon Polyurethane Industry Co., Ltd., isocyanate group content: 31% by mass)
  • Foaming agent 1 E-1-chloro-3,3,3-trifluoro-propene.
  • Foaming agent 2 Z-1,1,1,4,4,4-hexafluoro-2-butene.
  • Foaming agent 3 water.
  • Catalyst 1 Urethane catalyst (1,3,5-tris (N, N-dimethylaminopropyl) hexahydro-S-triazine, product name: Polycat 41, manufactured by Air Products).
  • Catalyst 2 A mixture of a quaternary ammonium salt and ethylene glycol (product name: TOYOCAT TRX, manufactured by Tosoh Corporation).
  • Catalyst 3 Urethane catalyst (N, N, N ′, N ′,-tetramethylhexamethylenediamine, product name: TOYOCAT MR, manufactured by Tosoh Corporation).
  • Catalyst 4 Urethane catalyst (triethylenediamine, product name: TEDA-L33, manufactured by Tosoh Corporation).
  • Catalyst 5 Trimerization reaction promoting catalyst (potassium octylate, product name: PACCAT 15G, manufactured by Nippon Chemical Industry Co., Ltd.).
  • Foam stabilizer 1 Silicone foam stabilizer (product name: SH-193, manufactured by Toray Dow Corning).
  • Flame retardant 1 Tris ( ⁇ -chloropropyl) phosphate (Product name: Pyrol PCF, manufactured by Spresta Japan).
  • polyol Wc1 a polymer-dispersed polyol
  • the hydroxyl value of the obtained polymer-dispersed polyol Wc1, the viscosity at 25 ° C., and the content of polymer particles in Wc1 are shown in Table 1 (the same applies hereinafter).
  • Polyether polyol (X1) Polyol having a hydroxyl value of 50 mgKOH / g and an oxyethylene group content of 70% by mass obtained by randomly adding PO and EO in the presence of a potassium hydroxide catalyst using glycerol as an initiator.
  • Examples 1 to 52 Production and evaluation of rigid foam> Examples 1-2, Examples 5-6, 9-24, 27-28, 31-46, 49-50 are Examples, Examples 3-4, 7-8, 21-22, 25-26, 47-48, Reference numerals 51 to 52 are comparative examples.
  • Examples 1 to 24 are blends of polyisocyanurate foams (isocyanurate formulations)
  • Examples 25 to 52 are blends of polyurethane foams (urethane formulations).
  • Rigid foams were produced with the formulations shown in Tables 2-6.
  • the unit of the numerical values of the formulations shown in the table is parts by mass.
  • the compounding quantity of a polyisocyanate compound uses the same volume as a polyol system liquid.
  • polyisocyanate compound 1 is used in Examples 1 to 24, and polyisocyanate compound 2 is used in Examples 25 to 52.
  • the table shows the average number of hydroxyl groups and the average hydroxyl value in the whole polyol composition (Pc).
  • a polyol system liquid was prepared by mixing predetermined amounts of each polyol, catalyst, foam stabilizer, mixed foaming agent and foaming agent 4 (water). The liquid temperatures of the polyol system liquid and the polyisocyanate compound are adjusted to 10 ° C., respectively.
  • ⁇ Evaluation method of spray construction form> [density] The density of the sprayed foam is measured by a method according to JIS K 9511. [Moldability (state inside the foam)] Cut the end of the spray construction form, check the cross-section and evaluate it according to the following criteria.
  • [Dimensional change rate] A sample cut into a 100 mm ⁇ 100 mm ⁇ 40 mm rectangular parallelepiped from the core part of the spray construction foam is used as a test piece, and the high temperature dimensional change rate and the low temperature dimensional change rate are measured. After storage under the following conditions, the length increased in the direction perpendicular to the foaming direction of the test piece is defined as a dimensional change rate (%) with respect to the length before storage. In the dimensional change rate, a negative value means shrinkage, and a large absolute value means that a dimensional change is large. The measurement is performed under the following conditions. High temperature dimensional change rate: Measured after storing the test piece in a thermostat at 70 ° C. for 24 hours.
  • Low temperature dimensional change rate Measured after storing the test piece in a thermostatic bath at ⁇ 30 ° C. for 24 hours.
  • Compressive strength The compressive strength of the spray construction foam is measured by a method according to JIS K 7220. Measure in the direction parallel to the spraying direction.
  • Thermal conductivity (unit: W / m ⁇ K) of the sprayed foam conforms to JIS A 1412-2, and uses a thermal conductivity measuring device (Product name: Auto-Lambda HC-074, manufactured by Eihiro Seiki Co., Ltd.) The average temperature was 20 ° C. The lower the thermal conductivity, the better the heat insulation performance.
  • the spray construction foam including the flexible plate is cut to a thickness of 20 mm, and a test using a cone calorimeter based on ISO 5660 is performed.
  • No turbidity, separation, precipitation or solidification occurs, and it is transparent.
  • X impossible: One or more of turbidity, separation, precipitation, and solidification occurs.
  • XX more impossible: Two or more of turbidity, separation, precipitation and solidification occur. More bad.
  • Examples 1-2 and Examples 5-6, 9-24 which contain polyol (Ac) and polymer particles, have good moldability in the spray application test even if the core density is lowered and the weight is reduced. And a polyisocyanurate spray foam having physical properties can be obtained. Moreover, the storage stability at normal temperature and the storage stability at high temperature of the polyol system liquid are also good. On the other hand, the rigid foams obtained in Examples 3 to 4 containing no polyol (Ac) and polymer particles are insufficient in moldability, dimensional stability, compressive strength and flame retardancy. Also, the storage stability of the polyol system liquid at normal temperature is insufficient.
  • Examples 7 to 8 containing no polymer particles are insufficient in the high-temperature storage stability of the polyol system liquid. From the results of Tables 9, 10 and 11, in Examples 23 to 24, 27 to 46 and 49 to 50 containing polyol (Ac) and polymer particles, it is possible to obtain a polyurethane spray foam having good thermal conductivity and physical properties.
  • the polyol system solution also has good storage stability at normal temperature and storage stability at high temperature.
  • Examples 51 and 52 containing no polyol (Ac) and polymer particles are insufficient in moldability, dimensional stability, compressive strength and thermal conductivity. Further, the storage stability at normal temperature and the storage stability at high temperature of the polyol system liquid are insufficient.
  • Examples 25, 26, 29, 30, 47, and 48 that do not contain polymer particles have insufficient high-temperature storage stability.

Abstract

A hard foam having good properties can be produced by reacting a polyol composition with a polyisocyanate compound in the presence of a foaming agent, a foam control agent and a catalyst, wherein a hydrofluoroolefin is used as the foaming agent. The foaming agent comprises a hydrofluoroolefin (I) represented by the formula: R1CH=CHR2 (wherein R1 represents a perfluoroalkyl group having 1-6 carbon atoms, and R2 represents a perfluoroalkyl group having 1-6 carbon atoms or a halogen atom). The polyol composition to be used is any one of three types of compositions [i.e., a polyol composition (Pa), a polyol composition (Pb) and a polyol composition (Pc)], each containing polymer particles.

Description

硬質発泡合成樹脂の製造方法Manufacturing method of rigid foam synthetic resin
 本発明は硬質発泡合成樹脂の製造方法に関する。 The present invention relates to a method for producing a rigid foam synthetic resin.
 ポリオール等の活性水素化合物とポリイソシアネート化合物とを整泡剤、触媒および発泡剤の存在下で反応させて、硬質ポリウレタンフォーム、硬質ウレタン変性ポリイソシアヌレートフォームまたは硬質ポリウレアフォーム等の硬質発泡合成樹脂(以下総称して、硬質フォームという。)を製造することは広く行われている。 Rigid foam synthetic resin such as rigid polyurethane foam, rigid urethane modified polyisocyanurate foam or rigid polyurea foam by reacting active hydrogen compound such as polyol with polyisocyanate compound in the presence of foam stabilizer, catalyst and foaming agent ( Hereinafter, the production of rigid foams is generally performed.
 発泡剤に関しては、従来用いられてきた塩素化フッ素化炭素化合物(クロロフルオロカーボン化合物、CClF等のいわゆるCFC類)および塩素化フッ素化炭化水素化合物(ハイドロクロロフルオロカーボン化合物、CClFCH等のいわゆるHCFC類は、環境保護(オゾン層保護)の観点から使用が規制されているため、これらに代わる発泡剤が求められてきた。 With respect to the blowing agent, conventionally used chlorinated fluorinated carbon compounds (chlorofluorocarbon compounds, so-called CFCs such as CCl 3 F) and chlorinated fluorinated hydrocarbon compounds (hydrochlorofluorocarbon compounds, CCl 2 FCH 3 etc.) Since the use of so-called HCFCs is restricted from the viewpoint of environmental protection (protection of the ozone layer), a foaming agent that replaces these has been demanded.
 上記問題の解決策として、水素化フッ素化炭化水素化合物(CHFCHCF、CHCFCHCF等のハイドロフルオロカーボン(HFC)類)が用いられている。しかしながら、該HFC類はオゾン層破壊係数(ODP)がゼロであるが、高い地球温暖化係数(GWP)を有するため、さらなる代替発泡剤が求められている。その候補物質の1つとしてハイドロフルオロオレフィン(HFO)類が提唱されている。 As a solution to the above problem, hydrofluorinated hydrocarbon compounds (hydrofluorocarbons (HFCs) such as CHF 2 CH 2 CF 3 and CH 3 CF 2 CH 2 CF 3 ) are used. However, the HFCs have zero ozone layer depletion potential (ODP), but have a high global warming potential (GWP), and therefore there is a need for further alternative blowing agents. Hydrofluoroolefins (HFOs) have been proposed as one of the candidate substances.
 下記、特許文献1~4には、大気中に放出された場合にもオゾン層を破壊しない発泡剤として、ハイドロフルオロオレフィン類が記載されている。
 すなわち、特許文献1には、シス-1,1,1,4,4,4-ヘキサフルオロ-2-ブテンが記載されており、特許文献2には、RCH=CHR’(R、R’はパーフルオロアルキル基)で表されるハイドロフルオロオレフィン、または臭素化ハイドロフルオロオレフィン等が記載されている。特許文献3には、ハイドロクロロフルオロオレフィンが記載されており、特許文献4には、発泡剤の一部としてトランス-1,1,1,3-テトラフルオロプロペンを用いることが記載されている。
Patent Documents 1 to 4 listed below describe hydrofluoroolefins as blowing agents that do not destroy the ozone layer even when released into the atmosphere.
That is, Patent Document 1 describes cis-1,1,1,4,4,4-hexafluoro-2-butene, and Patent Document 2 describes R F CH═CHR F ′ (R F , R F ′ is a perfluoroalkyl group) or a brominated hydrofluoroolefin. Patent Document 3 describes hydrochlorofluoroolefin, and Patent Document 4 describes the use of trans-1,1,1,3-tetrafluoropropene as a part of the foaming agent.
 特許文献1には発泡剤としてシス-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336)を用い、ポリオールとして芳香族アミン系ポリオールを用いてフリーライズで得られた硬質フォームが記載されている。特許文献2には発泡剤としてHFO-1438mzzまたはHFO-1336mmzを用い、ポリオールとして一般的なシュークロース/グリセリン系ポリオールを用いて密閉金型内で発泡(以降注形法とも記載する)して得られた硬質フォームが記載されている。特許文献3にはHFO-1233zdまたはHFO-1234zeを用い、ポリオールとしてノニルフェノール系マンニッヒポリオールをポリオールの一部に用いてフリーライズで得られた硬質フォームが記載されている。特許文献4にはHFO1234zeを発泡剤として用いた硬質フォームが記載されている。 In Patent Document 1, cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336) is used as a foaming agent, and an aromatic amine-based polyol is used as a polyol. The resulting rigid foam is described. Patent Document 2 uses HFO-1438mzz or HFO-1336mmz as a foaming agent and foams in a closed mold using a general sucrose / glycerin polyol as a polyol (hereinafter also referred to as a casting method). The resulting rigid foam is described. Patent Document 3 describes a rigid foam obtained by free rise using HFO-1233zd or HFO-1234ze and using a nonylphenol-based Mannich polyol as part of the polyol. Patent Document 4 describes a rigid foam using HFO1234ze as a foaming agent.
特開平5-179043号公報Japanese Patent Laid-Open No. 5-179043 特表2009-513815号公報Special table 2009-513815 gazette 米国特許出願公開第2010/0105788号明細書US Patent Application Publication No. 2010/0105788 米国特許出願公開第2009/0253820号明細書US Patent Application Publication No. 2009/0253820
 しかし、特許文献1~4では、発泡剤であるハイドロフルオロオレフィン類(以降HFOと記載することもある)とポリオールとの組み合わせについての検討はほとんどなされておらず、必ずしも特性が良好な硬質フォームが得られるわけでない。特に近年求められるフォームの軽量化については検討がなされていない。 However, in Patent Documents 1 to 4, there has been little study on the combination of a hydrofluoroolefin (which may be referred to as HFO hereinafter), which is a foaming agent, and a polyol. Not obtained. In particular, no consideration has been given to reducing the weight of foams required in recent years.
 本発明は前記事情に鑑みてなされたもので、本発明Aは、発泡剤としてハイドロフルオロオレフィン類を用いて、良好な特性、特に軽量化した場合でも寸法安定性が良好な硬質フォームを得ることを目的とする。
 また発泡剤としてHFOを用いて、特に注入法を用いて良好な特性を有する硬質フォームを得ることを目的とする。
 本発明Bは、発泡剤としてハイドロフルオロオレフィン類を用いて、良好な特性を有する連続ボード法により製造される硬質フォーム、特に軽量化した場合でも寸法安定性が良好な硬質フォームを得ることを目的とする。
The present invention has been made in view of the above circumstances, and the present invention A uses a hydrofluoroolefin as a foaming agent to obtain a rigid foam having good characteristics, particularly dimensional stability even when reduced in weight. With the goal.
Another object of the present invention is to obtain a rigid foam having good characteristics by using HFO as a foaming agent, particularly by using an injection method.
The object of the present invention B is to obtain a rigid foam produced by a continuous board method having good characteristics by using hydrofluoroolefins as a foaming agent, particularly a rigid foam having good dimensional stability even when the weight is reduced. And
 本発明Cは前記事情に鑑みてなされたもので、発泡剤としてハイドロフルオロオレフィン類を用いて、良好な特性を有する硬質フォームが得られるようにすることを目的とする。発泡剤としてHFOを用いて、特にスプレー法を用いて良好な特性を有する硬質フォームを得ることを目的とする。 The present invention C has been made in view of the above circumstances, and an object thereof is to obtain a rigid foam having good characteristics by using hydrofluoroolefins as a foaming agent. The object is to obtain a rigid foam with good properties using HFO as a blowing agent, in particular using a spray method.
 本発明Aは以下の[1]~[9]を要旨とする。
[1]ポリオール組成物(Pa)とポリイソシアネート化合物とを、発泡剤、整泡剤および触媒の存在下で反応させて硬質発泡合成樹脂を製造する方法であって、
 前記ポリオール組成物(Pa)が下記ポリオール(Aa)を30~70質量%、ポリマー粒子を0.002~30質量%含み、該ポリオール組成物(Pa)の平均水酸基数が2~8、平均水酸基価が100~800mgKOH/gであり、前記発泡剤が下式(I)で表されるハイドロフルオロオレフィン類(I)
 RCH=CHR …(I)
(式中、Rは炭素数1~6のペルフルオロアルキル基であり、Rは炭素数1~6のペルフルオロアルキル基またはハロゲン原子である。)を含むことを特徴とする硬質発泡合成樹脂の製造方法。
 ポリオール(Aa):活性水素原子数が4~12の芳香族アミンを開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオールであって、該アルキレンオキシドの全量中におけるエチレンオキシドの含有量が0~60質量%であり、水酸基価が100~800mgKOH/gである、ポリエーテルポリオール。
The present invention A includes the following [1] to [9].
[1] A method for producing a rigid foamed synthetic resin by reacting a polyol composition (Pa) with a polyisocyanate compound in the presence of a foaming agent, a foam stabilizer and a catalyst,
The polyol composition (Pa) contains 30 to 70% by mass of the following polyol (Aa) and 0.002 to 30% by mass of polymer particles, and the polyol composition (Pa) has an average number of hydroxyl groups of 2 to 8, Hydrofluoroolefins (I) having a value of 100 to 800 mg KOH / g and the blowing agent represented by the following formula (I)
R 1 CH═CHR 2 (I)
(Wherein R 1 is a perfluoroalkyl group having 1 to 6 carbon atoms and R 2 is a perfluoroalkyl group having 1 to 6 carbon atoms or a halogen atom). Production method.
Polyol (Aa): A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an aromatic amine having 4 to 12 active hydrogen atoms as an initiator, and containing ethylene oxide in the total amount of the alkylene oxide A polyether polyol having an amount of 0 to 60% by mass and a hydroxyl value of 100 to 800 mgKOH / g.
[2]前記ポリマー粒子が重合性不飽和基を有するモノマーを重合させて得られるポリマー粒子である、[1]に記載の硬質発泡合成樹脂の製造方法。
[3]前記ポリオール組成物(Pa)が、下記ポリオール(Ba)を1~50質量%含む、[1]または[2]に硬質発泡合成樹脂の製造方法。
 ポリオール(Ba):活性水素原子数が5~12の多価アルコールを開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオールであって、該アルキレンオキシドの全量中におけるエチレンオキシドの含有量が0~20質量%であり、水酸基価が100~800mgKOH/gである、ポリエーテルポリオール。
[4]前記ポリオール組成物(Pa)が、下記ポリオール(Ca)を10~40質量%含む、[1]~[3]の硬質発泡合成樹脂の製造方法。
 ポリオール(Ca):活性水素原子数が2~4の脂肪族アミンを開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオールであって、該アルキレンオキシドの全量中におけるエチレンオキシドの含有量が0~50質量%であり、水酸基価が100~800mgKOH/gである、ポリエーテルポリオール。
[5]前記ポリオール組成物(Pa)が、下記ポリオール(Da)を10~60質量%含む、[1]~[4]の硬質発泡合成樹脂の製造方法。
 ポリオール(Da):芳香族化合物を含むモノマー混合物を重縮合して製造された、平均水酸基数が2~3、水酸基価が100~500mgKOH/gである、ポリエステルポリオール。
[6]前記ポリマー粒子が、ポリマー分散ポリオール(Wa)由来のポリマー粒子であり、前記ポリオール組成物(Pa)がポリマー分散ポリオール(Wa)を0.01~50質量%含む、[1]~[5]の硬質発泡合成樹脂の製造方法。
[2] The method for producing a rigid foam synthetic resin according to [1], wherein the polymer particles are polymer particles obtained by polymerizing a monomer having a polymerizable unsaturated group.
[3] The method for producing a rigid foam synthetic resin in [1] or [2], wherein the polyol composition (Pa) contains 1 to 50% by mass of the following polyol (Ba).
Polyol (Ba): A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using a polyhydric alcohol having 5 to 12 active hydrogen atoms as an initiator, and containing ethylene oxide in the total amount of the alkylene oxide A polyether polyol having an amount of 0 to 20% by mass and a hydroxyl value of 100 to 800 mgKOH / g.
[4] The method for producing a rigid foam synthetic resin according to [1] to [3], wherein the polyol composition (Pa) contains 10 to 40% by mass of the following polyol (Ca).
Polyol (Ca): A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an aliphatic amine having 2 to 4 active hydrogen atoms as an initiator, and containing ethylene oxide in the total amount of the alkylene oxide A polyether polyol having an amount of 0 to 50% by mass and a hydroxyl value of 100 to 800 mgKOH / g.
[5] The method for producing a rigid foam synthetic resin according to [1] to [4], wherein the polyol composition (Pa) contains 10 to 60% by mass of the following polyol (Da).
Polyol (Da): Polyester polyol produced by polycondensation of a monomer mixture containing an aromatic compound and having an average hydroxyl number of 2 to 3 and a hydroxyl value of 100 to 500 mgKOH / g.
[6] The polymer particles are polymer particles derived from a polymer-dispersed polyol (Wa), and the polyol composition (Pa) contains 0.01 to 50% by mass of the polymer-dispersed polyol (Wa). 5] The method for producing a hard foam synthetic resin.
[7]前記ハイドロフルオロオレフィン類(I)が、Z-CFCH=CHCFを含む、[1]~[6]の硬質発泡合成樹脂の製造方法。
[8]前記ハイドロフルオロオレフィン類(I)が、E-CFCH=CHClを含む、[1]~[6]の硬質発泡合成樹脂の製造方法。
[9]前記製造方法が注形法である、[1]~[8]の硬質発泡合成樹脂の製造方法。
[7] The method for producing a rigid foamed synthetic resin according to [1] to [6], wherein the hydrofluoroolefin (I) contains Z—CF 3 CH═CHCF 3 .
[8] The method for producing a rigid foam synthetic resin according to [1] to [6], wherein the hydrofluoroolefin (I) contains E-CF 3 CH═CHCl.
[9] The method for producing a rigid foam synthetic resin according to [1] to [8], wherein the production method is a casting method.
 本発明Bは以下の[1]~[7]を要旨とする。
[1]連続ボード成形法により、ポリオール組成物(Pb)とポリイソシアネート化合物とを、発泡剤、整泡剤および触媒の存在下で反応、発泡させて硬質発泡合成樹脂を製造する方法であって、
 前記ポリオール組成物(Pb)が下記ポリオール(Ab)を5~99.998質量、ポリマー粒子を0.002~30質量%含み、該ポリオール組成物(Pb)の平均水酸基数が2~8、平均水酸基価が100~800mgKOH/gであり、前記発泡剤が下式(I)で表されるハイドロフルオロオレフィン類(I)
 RCH=CHR …(I)
(式中、Rは炭素数1~6のペルフルオロアルキル基であり、Rは炭素数1~6のペルフルオロアルキル基またはハロゲン原子である。)を含むことを特徴とする硬質発泡合成樹脂の製造方法。
 ポリオール(Ab):フェノール類および/または芳香族アミン類と、アルデヒド類と、アルカノールアミン類とを反応させて得られるマンニッヒ縮合物を開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオール。
The gist of invention B is the following [1] to [7].
[1] A method for producing a rigid foam synthetic resin by reacting and foaming a polyol composition (Pb) and a polyisocyanate compound in the presence of a foaming agent, a foam stabilizer and a catalyst by a continuous board molding method. ,
The polyol composition (Pb) contains 5 to 99.998 mass of the following polyol (Ab) and 0.002 to 30 mass% of polymer particles, and the polyol composition (Pb) has an average number of hydroxyl groups of 2 to 8, Hydrofluoroolefins (I) having a hydroxyl value of 100 to 800 mg KOH / g and the blowing agent represented by the following formula (I)
R 1 CH═CHR 2 (I)
(Wherein R 1 is a perfluoroalkyl group having 1 to 6 carbon atoms and R 2 is a perfluoroalkyl group having 1 to 6 carbon atoms or a halogen atom). Production method.
Polyol (Ab): Polyol obtained by ring-opening addition polymerization of alkylene oxide using a Mannich condensation product obtained by reacting phenols and / or aromatic amines, aldehydes and alkanolamines as an initiator. Ether polyol.
[2]前記ポリマー粒子が重合性不飽和基を有するモノマーを重合させて得られるポリマー微粒子である、[1]に記載の硬質発泡合成樹脂の製造方法。
[3]前記ポリオール組成物(Pb)が、下記ポリオール(Bb)を20~70質量%含む、[1]または[2]の硬質発泡合成樹脂の製造方法。
 ポリオール(Bb):脂肪族アミンを開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオール。
[4]前記ポリオール組成物(Pb)が、下記ポリオール(C)を20~60質量%含む、[1]~[3]の硬質発泡合成樹脂の製造方法。
 ポリオール(C):芳香族アミン(マンニッヒ縮合物を除く)を開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオール。
[5]前記ポリマー粒子が、ポリマー分散ポリオール(Wb)由来のポリマー粒子であり、前記ポリオール組成物(Pb)がポリマー分散ポリオール(Wb)を含む、[1]~[4]の硬質発泡合成樹脂の製造方法。
[2] The method for producing a rigid foam synthetic resin according to [1], wherein the polymer particles are polymer fine particles obtained by polymerizing a monomer having a polymerizable unsaturated group.
[3] The method for producing a rigid foam synthetic resin according to [1] or [2], wherein the polyol composition (Pb) contains 20 to 70% by mass of the following polyol (Bb).
Polyol (Bb): A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an aliphatic amine as an initiator.
[4] The method for producing a rigid foam synthetic resin according to [1] to [3], wherein the polyol composition (Pb) contains 20 to 60% by mass of the following polyol (C).
Polyol (C): A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an aromatic amine (excluding Mannich condensation product) as an initiator.
[5] The rigid foamed synthetic resin according to [1] to [4], wherein the polymer particles are polymer particles derived from a polymer-dispersed polyol (Wb), and the polyol composition (Pb) contains the polymer-dispersed polyol (Wb). Manufacturing method.
[6]前記ハイドロフルオロオレフィン類(I)が、Z-CFCH=CHCFを含む、[1]~[5]の硬質発泡合成樹脂の製造方法。
[7]前記ハイドロフルオロオレフィン類(I)が、E-CFCH=CHClを含む、[1]~[6]の硬質発泡合成樹脂の製造方法。
[6] The method for producing a rigid foamed synthetic resin according to [1] to [5], wherein the hydrofluoroolefin (I) comprises Z—CF 3 CH═CHCF 3 .
[7] The method for producing a rigid foam synthetic resin according to [1] to [6], wherein the hydrofluoroolefin (I) contains E—CF 3 CH═CHCl.
 本発明Cは以下の[1]~[9]を要旨とする。
[1]ポリオール組成物(Pc)とポリイソシアネート化合物とを、発泡剤、整泡剤および触媒の存在下で反応させて硬質発泡合成樹脂を製造する方法であって、
 前記ポリオール組成物(Pc)が下記ポリオール(Ac)を20~99.998質量%、ポリマー粒子を0.002~30質量%含み、該ポリオール組成物(Pc)の平均水酸基数が2~8、平均水酸基価が100~800mgKOH/gであり、前記発泡剤が下式(I)で表されるハイドロフルオロオレフィン類(I)
 RCH=CHR …(I)
(式中、Rは炭素数1~6のペルフルオロアルキル基であり、Rは炭素数1~6のペルフルオロアルキル基またはハロゲン原子である。)を含むことを特徴とする硬質発泡合成樹脂の製造方法。
 ポリオール(Ac):フェノール類、アルデヒド類、およびアルカノールアミン類を反応させて得られるマンニッヒ縮合物を開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオール。
The gist of the present invention C is the following [1] to [9].
[1] A method for producing a rigid foamed synthetic resin by reacting a polyol composition (Pc) with a polyisocyanate compound in the presence of a foaming agent, a foam stabilizer and a catalyst,
The polyol composition (Pc) contains 20 to 99.998 mass% of the following polyol (Ac) and 0.002 to 30 mass% of polymer particles, and the polyol composition (Pc) has an average number of hydroxyl groups of 2 to 8, Hydrofluoroolefins (I) having an average hydroxyl value of 100 to 800 mgKOH / g and the blowing agent represented by the following formula (I)
R 1 CH═CHR 2 (I)
(Wherein R 1 is a perfluoroalkyl group having 1 to 6 carbon atoms and R 2 is a perfluoroalkyl group having 1 to 6 carbon atoms or a halogen atom). Production method.
Polyol (Ac): A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using a Mannich condensation product obtained by reacting phenols, aldehydes and alkanolamines as an initiator.
[2]前記ポリマー粒子が重合性不飽和基を有するモノマーを重合させて得られるポリマー粒子である、[1]に記載の硬質発泡合成樹脂の製造方法。
[3]前記ポリオール組成物(Pc)が、下記ポリオール(Bc)を0質量%超、70質量%以下含む、[1]または[2]の硬質発泡合成樹脂の製造方法。
 ポリオール(Bc):アミン化合物(マンニッヒ縮合物を除く)を開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオール。
[4]前記ポリオール組成物(Pc)が、下記ポリオール(Cc)を0質量%超、40質量%以下含む、[1]~[3]の硬質発泡合成樹脂の製造方法。
 ポリオール(Cc):活性水素原子数が2~6の多価アルコールを開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオール。
[5]前記ポリオール組成物(Pc)が、下記ポリオール(Dc)を0質量%超、70質量%以下含む、[1]~[4]の硬質発泡合成樹脂の製造方法。
 ポリオール(Dc):芳香族化合物を含むモノマー混合物を重縮合して製造されたポリエステルポリオール。
[6]前記ポリマー粒子が、ポリマー分散ポリオール(Wc)由来のポリオール粒子であり、前記ポリオール組成物(P)がポリマー分散ポリオール(W)を含む、[1]~[4]の硬質発泡合成樹脂の製造方法。
[2] The method for producing a rigid foam synthetic resin according to [1], wherein the polymer particles are polymer particles obtained by polymerizing a monomer having a polymerizable unsaturated group.
[3] The method for producing a rigid foam synthetic resin according to [1] or [2], wherein the polyol composition (Pc) contains the following polyol (Bc) in an amount of more than 0% by mass and 70% by mass or less.
Polyol (Bc): A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an amine compound (excluding the Mannich condensation product) as an initiator.
[4] The method for producing a rigid foam synthetic resin according to [1] to [3], wherein the polyol composition (Pc) contains the following polyol (Cc) in an amount of more than 0% by mass and 40% by mass or less.
Polyol (Cc): A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using a polyhydric alcohol having 2 to 6 active hydrogen atoms as an initiator.
[5] The method for producing a hard foam synthetic resin according to [1] to [4], wherein the polyol composition (Pc) contains the following polyol (Dc) in an amount of more than 0% by mass and 70% by mass or less.
Polyol (Dc): Polyester polyol produced by polycondensation of a monomer mixture containing an aromatic compound.
[6] The rigid foam synthetic resin according to [1] to [4], wherein the polymer particles are polyol particles derived from a polymer-dispersed polyol (Wc), and the polyol composition (P) includes the polymer-dispersed polyol (W). Manufacturing method.
[7]前記ハイドロフルオロオレフィン類(I)が、Z-CFCH=CHCFを含む、[1]~[6]の硬質発泡合成樹脂の製造方法。
[8]前記ハイドロフルオロオレフィン類(I)が、E-CFCH=CHClを含む、[1]~[6]の硬質発泡合成樹脂の製造方法。
[9]スプレー法を用いる、[1]~[8]のいずれかの硬質発泡合成樹脂の製造方法。
[7] The method for producing a rigid foamed synthetic resin according to [1] to [6], wherein the hydrofluoroolefin (I) contains Z—CF 3 CH═CHCF 3 .
[8] The method for producing a rigid foam synthetic resin according to [1] to [6], wherein the hydrofluoroolefin (I) contains E-CF 3 CH═CHCl.
[9] The method for producing a hard foam synthetic resin according to any one of [1] to [8], wherein a spray method is used.
 本発明A、B、Cによれば、発泡剤としてハイドロフルオロオレフィン類を用いて、良好な特性、特に軽量化した場合でも寸法安定性が良好な硬質フォームを製造することができる。特に注入法において良好な特性を有する硬質フォームを製造することができる。 According to the present invention A, B, and C, it is possible to produce a rigid foam having good characteristics, particularly dimensional stability even when the weight is reduced, using hydrofluoroolefins as a foaming agent. In particular, it is possible to produce a rigid foam having good characteristics in the injection method.
実施例においてパネルフォームの製造に用いた金型を示す斜視図である。It is a perspective view which shows the metal mold | die used for manufacture of the panel foam in the Example.
<本発明Aについての説明>
 本明細書における「ポリオール組成物(Pa)」とは、ポリイソシアネート化合物との反応に用いるポリオール(ポリマー分散ポリオールを含む)の全部の混合物である。
 本明細書における「ポリオールシステム液」とは、ポリイソシアネート化合物と反応させる相手の液であり、ポリオール組成物(Pa)のほかに発泡剤、整泡剤、触媒等、必要に応じた配合剤を含む液である。
 本明細書における「マンニッヒ縮合物」とは、一般にアニリン、フェノール類等の芳香族化合物と、アルデヒド類と、アミン類とを縮合反応させて得られる化合物を意味する。
 本発明Aにおける「ポリマー分散ポリオール」とは、ポリエーテルポリオールまたはポリエステルポリオール等のベースポリオール(Wa’)中で、重合性不飽和結合を有するモノマーを重合させてポリマー粒子を形成することによって得られるもので、該ベースポリオール(Wa’)中に該ポリマー粒子を分散させたポリオール(Wa)である。
<Description of Invention A>
The “polyol composition (Pa)” in the present specification is a mixture of all polyols (including polymer-dispersed polyols) used for the reaction with the polyisocyanate compound.
In the present specification, the “polyol system liquid” is a liquid to be reacted with a polyisocyanate compound. In addition to the polyol composition (Pa), a blending agent as necessary, such as a foaming agent, a foam stabilizer, a catalyst and the like. Contains liquid.
In the present specification, the “Mannich condensation product” generally means a compound obtained by a condensation reaction of an aromatic compound such as aniline or phenol, an aldehyde, and an amine.
The “polymer-dispersed polyol” in the present invention A is obtained by polymerizing a monomer having a polymerizable unsaturated bond in a base polyol (Wa ′) such as a polyether polyol or a polyester polyol to form polymer particles. It is a polyol (Wa) in which the polymer particles are dispersed in the base polyol (Wa ').
[ポリオール(Aa)]
 本発明Aにおけるポリオール組成物(Pa)は、ポリオール(Aa)を含む。
 ポリオール(Aa)は、芳香族アミンを開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオールである。ポリオール(Aa)は、1種のみを用いてもよく、2種以上を併用してもよい。
[Polyol (Aa)]
The polyol composition (Pa) in the present invention A contains a polyol (Aa).
The polyol (Aa) is a polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an aromatic amine as an initiator. As the polyol (Aa), only one type may be used, or two or more types may be used in combination.
 開始剤である芳香族アミンは、活性水素原子数が4~12の、芳香環を有するアミン類である。その具体例としては、フェニレンジアミン、トリレンジアミン、ジアミノジフェニルメタン、マンニッヒ縮合物等が挙げられる。
 マンニッヒ縮合物は、フェノール、ノニルフェノール等のフェノール類;ホルムアルデヒド等のアルデヒド類;および、モノエタノールアミン、ジエタノールアミン等のアルカノールアミン類を反応させて得られる化合物が好ましい。マンニッヒ縮合物の分子量は、200~10,000程度が好ましい。
 これらの開始剤のうち、低い熱伝導率が得られる点から、トリレンジアミンが特に好ましい。トリレンジアミンとしては、o-トリレンジアミン、m-トリレンジアミンが好ましい。
An aromatic amine as an initiator is an amine having an aromatic ring having 4 to 12 active hydrogen atoms. Specific examples thereof include phenylenediamine, tolylenediamine, diaminodiphenylmethane, and Mannich condensate.
The Mannich condensation product is preferably a compound obtained by reacting phenols such as phenol and nonylphenol; aldehydes such as formaldehyde; and alkanolamines such as monoethanolamine and diethanolamine. The molecular weight of the Mannich condensation product is preferably about 200 to 10,000.
Of these initiators, tolylenediamine is particularly preferable because low thermal conductivity is obtained. As tolylenediamine, o-tolylenediamine and m-tolylenediamine are preferable.
 ポリオール(Aa)の製造に用いるアルキレンオキシドとしては、エチレンオキシド(以下、EOともいう。)および/またはプロピレンオキシド(以下、POともいう。)を用いることが好ましい。そのほかにブチレンオキシド、イソブチレンオキシド、スチレンオキシド等を併用してもよい。EOおよび/またはPOを使用する場合、以下のいずれの方法を用いてもよい。(1)EOを単独で開環付加重合する方法。(2)POを単独で開環付加重合する方法。(3)POとEOの混合物を開環付加重合する方法。(4)上記(1)~(3)の方法を任意に組み合わせて開環付加重合する方法。
 硬質フォームに良好な物性を付与するためには、(1)と(2)の組合せまたは、(2)の方法によることが好ましい。(1)と(2)を組み合わせる場合、(1)-(2)-(1)の順で開環付加重合を行うことがより好ましい。
 ポリオール(Aa)の製造に用いるアルキレンオキシドの全量中における、エチレンオキシドの含有量(全EO含有量)は0~60質量%が好ましく、0~45質量%がより好ましく、0~30質量%が特に好ましい。上記範囲の上限値以下であると、適度な反応性を有するため成形性が良好となる。
 開始剤の活性水素原子にアルキレンオキシドを反応させることにより、アルキレンオキシドが開環付加してオキシアルキレン基を有するポリオールが生成する。活性水素原子に1分子のアルキレンオキシドが開環付加することによりヒドロキシアルキル基が生成し、また、その水酸基に引き続きアルキレンオキシドが開環付加し、この反応が繰り返されてオキシアルキレン基の連鎖が生成する。アルキレンオキシドがEOの場合は、オキシエチレン基が連鎖し、アルキレンオキシドがPOの場合は、オキシプロピレン基が連鎖する。
 上記(1)-(2)-(1)の順で開環付加重合を行う場合、EO、POの順に付加した後に開環付加重合させるEOの量(末端のEO含有量)は、ポリオール(Aa)の製造に用いるアルキレンオキシドの全量中1~40質量%が好ましく、1~30質量%がより好ましく、1~20質量%が特に好ましい。上記範囲の上限値以下であるとポリオール(Aa)の粘度が高くなりすぎず、下限値以上であると、ポリオール(Aa)の反応性が向上する。(1)-(2)-(1)の順で開環付加重合を行って得られるポリオール(Aa)は、開始剤にオキシエチレン基が連鎖し、続いてオキシプロピレン基が連鎖し、末端にオキシエチレン基が連鎖したポリオールである。
As the alkylene oxide used in the production of the polyol (Aa), it is preferable to use ethylene oxide (hereinafter also referred to as EO) and / or propylene oxide (hereinafter also referred to as PO). In addition, butylene oxide, isobutylene oxide, styrene oxide or the like may be used in combination. When using EO and / or PO, any of the following methods may be used. (1) A method of ring-opening addition polymerization of EO alone. (2) A method of ring-opening addition polymerization of PO alone. (3) A method of ring-opening addition polymerization of a mixture of PO and EO. (4) A method of ring-opening addition polymerization by arbitrarily combining the above methods (1) to (3).
In order to impart good physical properties to the rigid foam, it is preferable to use a combination of (1) and (2) or a method of (2). When combining (1) and (2), it is more preferable to perform ring-opening addition polymerization in the order of (1)-(2)-(1).
The ethylene oxide content (total EO content) in the total amount of alkylene oxide used in the production of the polyol (Aa) is preferably 0 to 60% by mass, more preferably 0 to 45% by mass, and particularly preferably 0 to 30% by mass. preferable. When it is at most the upper limit of the above range, the moldability is good because it has an appropriate reactivity.
By reacting the alkylene oxide with the active hydrogen atom of the initiator, the alkylene oxide undergoes ring-opening addition to produce a polyol having an oxyalkylene group. Hydroxyalkyl group is formed by ring-opening addition of one molecule of alkylene oxide to active hydrogen atom, and alkylene oxide is ring-opening addition to the hydroxyl group, and this reaction is repeated to form a chain of oxyalkylene groups. To do. When the alkylene oxide is EO, the oxyethylene group is linked, and when the alkylene oxide is PO, the oxypropylene group is linked.
When ring-opening addition polymerization is carried out in the order of (1)-(2)-(1) above, the amount of EO (terminal EO content) to be subjected to ring-opening addition polymerization after the addition of EO and PO in this order is determined by the polyol ( It is preferably 1 to 40% by weight, more preferably 1 to 30% by weight, particularly preferably 1 to 20% by weight, based on the total amount of alkylene oxide used for the production of Aa). The viscosity of polyol (Aa) does not become too high as it is below the upper limit of the said range, and the reactivity of polyol (Aa) improves that it is more than a lower limit. In the polyol (Aa) obtained by performing ring-opening addition polymerization in the order of (1)-(2)-(1), an oxyethylene group is linked to the initiator, followed by an oxypropylene group, A polyol in which oxyethylene groups are chained.
 ポリオール(Aa)の水酸基数は4~12であり、4~10が好ましく、4~8が特に好ましい。ポリオール(Aa)の水酸基数が上記範囲の下限値以上であると硬質フォームの収縮が抑制されやすく、上限値以下であると粘度が適度な範囲となり、取り扱いが容易である。
 ポリオール(Aa)の水酸基価は100~800mgKOH/gであり、200~600mgKOH/gが好ましく、300~500mgKOH/gが特に好ましい。ポリオール(Aa)の水酸基価が上記範囲の下限値以上であると硬質フォームの圧縮強さが向上し、独立気泡率も向上して熱伝導率も良好となる。上記範囲の上限値以下であると硬質フォームの脆性が抑えられる。
 ポリオール組成物(Pa)におけるポリオール(Aa)の含有量は、30~70質量%であり、30~60質量%が好ましく、30~50質量%が特に好ましい。ポリオール(Aa)の含有量が、上記範囲の下限値以上であると、独泡率が向上して良好な熱伝導率が得られる。上記範囲の上限値以下であるとポリオールシステム液の粘度が高くなりすぎず取り扱いが容易である。
 特に注形法の場合、ポリオール(Aa)の含有量が上記範囲の上限値以下であるとセル荒れが発生しにくい。
The number of hydroxyl groups of the polyol (Aa) is 4 to 12, preferably 4 to 10, and particularly preferably 4 to 8. When the number of hydroxyl groups of the polyol (Aa) is not less than the lower limit of the above range, the shrinkage of the rigid foam is easily suppressed, and when it is not more than the upper limit, the viscosity becomes an appropriate range and handling is easy.
The hydroxyl value of the polyol (Aa) is 100 to 800 mgKOH / g, preferably 200 to 600 mgKOH / g, particularly preferably 300 to 500 mgKOH / g. When the hydroxyl value of the polyol (Aa) is not less than the lower limit of the above range, the compression strength of the rigid foam is improved, the closed cell ratio is improved, and the thermal conductivity is improved. The brittleness of a rigid foam is suppressed as it is below the upper limit of the said range.
The content of the polyol (Aa) in the polyol composition (Pa) is 30 to 70% by mass, preferably 30 to 60% by mass, particularly preferably 30 to 50% by mass. When the content of the polyol (Aa) is not less than the lower limit of the above range, the closed cell rate is improved and good thermal conductivity is obtained. When the viscosity is not more than the upper limit of the above range, the viscosity of the polyol system liquid does not become too high and handling is easy.
In particular, in the case of the casting method, when the content of the polyol (Aa) is not more than the upper limit of the above range, cell roughening is unlikely to occur.
[ポリオール(Ba)]
 ポリオール(Ba)は活性水素原子数が5~12の多価アルコールを開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオールである。
 ポリオール組成物(Pa)は、ポリオール(Aa)のほかにポリオール(Ba)を含むことが好ましい。ポリオール(Ba)は硬質フォームの圧縮強さの向上および良好な寸法安定性に寄与する。またポリオール(Aa)のほかにポリオール(Ba)を用いることによりポリオール組成物(Pa)の粘度が高くなりすぎるのを防止することもできる。
 ポリオール(Ba)は、1種のみを用いてもよく、2種以上を併用してもよい。
[Polyol (Ba)]
The polyol (Ba) is a polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using a polyhydric alcohol having 5 to 12 active hydrogen atoms as an initiator.
The polyol composition (Pa) preferably contains a polyol (Ba) in addition to the polyol (Aa). The polyol (Ba) contributes to an improvement in the compressive strength of the rigid foam and good dimensional stability. Moreover, it can also prevent that the viscosity of a polyol composition (Pa) becomes high too much by using a polyol (Ba) other than a polyol (Aa).
As the polyol (Ba), only one type may be used, or two or more types may be used in combination.
 開始剤である、活性水素原子数が5~12の多価アルコールとして糖類を用いることが好ましい。該糖類の具体例としてはフルクトース、ソルビトール、シュークロース等が挙げられる。このうちソルビトールまたはシュークロースが好ましい。
 ポリオール(Ba)の製造に用いるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等が例示できる。少なくとも、プロピレンオキシドまたはブチレンオキシドを含むことが好ましく、少なくともプロピレンオキシドを含むことが特に好ましい。
 ポリオール(Ba)の製造に用いるアルキレンオキシドは、プロピレンオキシド単独の使用、またはエチレンオキシドとプロピレンオキシドとの併用が好ましい。併用する場合、エチレンオキシドとプロピレンオキシドは、混合してから反応させても、順次反応させてもよい。
 ポリオール(Ba)の製造に用いるアルキレンオキシドの全量中における、エチレンオキシドの含有量(全EO含有量)は0~20質量%であり、0~10質量%が好ましく、0質量%、すなわちPO単独が特に好ましい。エチレンオキシドの含有量が上記範囲の上限値以下であると反応性の制御が容易である。
Saccharides are preferably used as polyhydric alcohols having 5 to 12 active hydrogen atoms, which are initiators. Specific examples of the saccharide include fructose, sorbitol, sucrose and the like. Of these, sorbitol or sucrose is preferred.
Examples of the alkylene oxide used for the production of the polyol (Ba) include ethylene oxide, propylene oxide, butylene oxide and the like. It is preferable that at least propylene oxide or butylene oxide is contained, and at least propylene oxide is particularly preferably contained.
The alkylene oxide used for the production of the polyol (Ba) is preferably propylene oxide alone or a combination of ethylene oxide and propylene oxide. When used in combination, ethylene oxide and propylene oxide may be reacted after being mixed or sequentially.
The ethylene oxide content (total EO content) in the total amount of alkylene oxide used in the production of the polyol (Ba) is 0 to 20% by mass, preferably 0 to 10% by mass, and 0% by mass, ie, PO alone. Particularly preferred. When the ethylene oxide content is not more than the upper limit of the above range, the reactivity can be easily controlled.
 ポリオール(Ba)の水酸基数は5~12であり、5~10が好ましく、5~8が特に好ましい。ポリオール(Ba)の水酸基数が上記範囲の下限値以上であると硬質フォームの収縮が抑制されやすく、上限値以下であると粘度が適度な範囲となり、取り扱いが容易である。
 ポリオール(Ba)の水酸基価は100~800mgKOH/gであり、200~600mgKOH/gが好ましく、300~500mgKOH/gが特に好ましい。ポリオール(Ba)の水酸基価が上記範囲の下限値以上であると、硬質フォームの収縮が抑制でき、寸法安定性が良好となる。上記範囲の上限値以下であると、硬質ポリウレタンフォームの脆性が抑制できる。
 ポリオール組成物(Pa)におけるポリオール(Ba)の含有量は、1~50質量%が好ましく、2~45質量%がより好ましく、5~45質量%が特に好ましい。ポリオール(Ba)の含有量が、上記範囲の下限値以上であると、硬質フォームの圧縮強さが向上し、また、収縮が抑制されて、良好な寸法安定性が得られやすい。上記範囲の上限値以下であると硬質フォームの成形時において良好な硬化特性(キュアー性)が確保されやすい。
The number of hydroxyl groups in the polyol (Ba) is 5 to 12, preferably 5 to 10, and particularly preferably 5 to 8. When the number of hydroxyl groups of the polyol (Ba) is not less than the lower limit of the above range, the shrinkage of the rigid foam is easily suppressed, and when it is not more than the upper limit, the viscosity becomes an appropriate range and handling is easy.
The hydroxyl value of the polyol (Ba) is 100 to 800 mgKOH / g, preferably 200 to 600 mgKOH / g, particularly preferably 300 to 500 mgKOH / g. When the hydroxyl value of the polyol (Ba) is not less than the lower limit of the above range, the shrinkage of the rigid foam can be suppressed and the dimensional stability becomes good. The brittleness of a rigid polyurethane foam can be suppressed as it is below the upper limit of the said range.
The content of the polyol (Ba) in the polyol composition (Pa) is preferably 1 to 50% by mass, more preferably 2 to 45% by mass, and particularly preferably 5 to 45% by mass. When the content of the polyol (Ba) is not less than the lower limit of the above range, the compressive strength of the rigid foam is improved, shrinkage is suppressed, and good dimensional stability is easily obtained. When the amount is not more than the upper limit of the above range, it is easy to ensure good curing characteristics (curing properties) when molding a rigid foam.
[ポリオール(Ca)]
 ポリオール(Ca)は、脂肪族アミンを開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオールである。
 ポリオール組成物(Pa)は、ポリオール(Aa)のほかにポリオール(Ca)を含むことが好ましい。ポリオール(Ca)は成形性および反応性の向上に寄与する。また、ポリオール(Aa)のほかにポリオール(Ca)を用いることによりポリオール組成物(Pa)の粘度が高くなりすぎるのを防止することもできる。
 ポリオール(Ca)は、1種のみを用いてもよく、2種以上を併用してもよい。
[Polyol (Ca)]
The polyol (Ca) is a polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an aliphatic amine as an initiator.
The polyol composition (Pa) preferably contains a polyol (Ca) in addition to the polyol (Aa). The polyol (Ca) contributes to improvement of moldability and reactivity. Moreover, it can also prevent that the viscosity of a polyol composition (Pa) becomes high too much by using a polyol (Ca) other than a polyol (Aa).
A polyol (Ca) may use only 1 type and may use 2 or more types together.
 開始剤である脂肪族アミンは、活性水素原子数が2~4の脂肪族アミンである。具体例としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類;エチレンジアミン、プロピレンジアミン、1,6-ヘキサンジアミン等のアルキルアミン類が挙げられる。これらのうち、エチレンジアミン、モノエタノールアミンまたはジエタノールアミンが好ましい。
 ポリオール(Ca)の製造に用いるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等が例示できる。プロピレンオキシド単独の使用、またはエチレンオキシドとプロピレンオキシドとの併用が好ましい。併用する場合、エチレンオキシドとプロピレンオキシドは、混合してから反応させても、順次反応させてもよい。
 ポリオール(Ca)の製造に用いるアルキレンオキシドの全量中における、エチレンオキシドの含有量(全EO含有量)は0~50質量%であり、0~48質量%が好ましく、0~45質量%がより好ましく、0質量%、すなわちPO単独が特に好ましい。エチレンオキシドの含有量が上記範囲の上限値以下であると発泡時の反応性を制御しやすく、良好な成形性を確保できる。
An aliphatic amine as an initiator is an aliphatic amine having 2 to 4 active hydrogen atoms. Specific examples include alkanolamines such as monoethanolamine, diethanolamine and triethanolamine; alkylamines such as ethylenediamine, propylenediamine and 1,6-hexanediamine. Of these, ethylenediamine, monoethanolamine or diethanolamine is preferred.
Examples of the alkylene oxide used for the production of the polyol (Ca) include ethylene oxide, propylene oxide, butylene oxide and the like. Use of propylene oxide alone or a combination of ethylene oxide and propylene oxide is preferred. When used in combination, ethylene oxide and propylene oxide may be reacted after being mixed or sequentially.
The ethylene oxide content (total EO content) in the total amount of alkylene oxide used in the production of the polyol (Ca) is 0 to 50% by mass, preferably 0 to 48% by mass, more preferably 0 to 45% by mass. 0 mass%, that is, PO alone is particularly preferred. When the content of ethylene oxide is not more than the upper limit of the above range, the reactivity during foaming can be easily controlled, and good moldability can be secured.
 ポリオール(Ca)の水酸基数は2~4である。ポリオール(Ca)の水酸基数が上記範囲の上限値以下であると粘度が適度な範囲となり、取り扱いが容易である。
 ポリオール(Ca)の水酸基価は100~800mgKOH/gであり、200~600mgKOH/gが好ましく、300~500mgKOH/gが特に好ましい。ポリオール(Ca)の水酸基価が上記範囲の下限値以上であると、硬質ポリウレタンフォームの圧縮強さが向上し、収縮も抑制され、良好な寸法安定性となる。上記範囲の上限値以下であると、粘度が高くなりすぎず取り扱いが容易である。
 ポリオール組成物(P)におけるポリオール(Ca)の含有量は、10~40質量%が好ましく、10~30質量%がより好ましく、10~25質量%が特に好ましい。ポリオール(Ca)の含有量が、上記範囲の下限値以上であると、キュアー性が良好となり、脱型する際の作業性が向上しやすい。上記範囲の上限値以下であると、発泡時の反応性の制御がしやすい。
The number of hydroxyl groups in the polyol (Ca) is 2-4. When the number of hydroxyl groups of the polyol (Ca) is less than or equal to the upper limit of the above range, the viscosity is in an appropriate range and handling is easy.
The hydroxyl value of the polyol (Ca) is 100 to 800 mgKOH / g, preferably 200 to 600 mgKOH / g, particularly preferably 300 to 500 mgKOH / g. When the hydroxyl value of the polyol (Ca) is not less than the lower limit of the above range, the compression strength of the rigid polyurethane foam is improved, shrinkage is suppressed, and good dimensional stability is obtained. When it is below the upper limit of the above range, the viscosity does not become too high and handling is easy.
The content of the polyol (Ca) in the polyol composition (P) is preferably 10 to 40% by mass, more preferably 10 to 30% by mass, and particularly preferably 10 to 25% by mass. When the content of the polyol (Ca) is not less than the lower limit of the above range, the curing property becomes good, and the workability at the time of demolding is easily improved. It is easy to control the reactivity at the time of foaming as it is below the upper limit of the said range.
[ポリオール(Da)]
 ポリオール(Da)は、芳香族化合物を含むモノマー混合物を重縮合して製造されたポリエステルポリオールである。
 ポリオール組成物(Pa)は、必要に応じてポリオール(Da)を含有してもよい。ポリオール(Da)は難燃性の向上に寄与する。
 ポリオール(Da)は、1種のみを用いてもよく、2種以上を併用してもよい。
[Polyol (Da)]
The polyol (Da) is a polyester polyol produced by polycondensation of a monomer mixture containing an aromatic compound.
A polyol composition (Pa) may contain a polyol (Da) as needed. The polyol (Da) contributes to the improvement of flame retardancy.
As the polyol (Da), only one type may be used, or two or more types may be used in combination.
 ポリオール(Da)の製造に用いるモノマー混合物は、ジカルボン酸化合物と多価アルコールとを含み、該ジカルボン酸化合物および多価アルコールの一方または両方が、芳香環を有する化合物を含むことが好ましい。
 特にポリオール(Da)が、芳香環を有するジカルボン酸と、芳香環を有しない多価アルコールとを重縮合反応させて得られる芳香族ポリエステルポリオールを含むことが好ましい。
 芳香環を有するジカルボン酸としては、テレフタル酸、イソフタル酸、オルトフタル酸等が挙げられる。耐熱性が向上する点でテレフタル酸がより好ましい。
 芳香環を有しない多価アルコールとしては、エチレングリコール(EG)、ジエチレングリコール(DEG)、トリエチレングリコール、ジプロピレングリコール(DPG)、1,4-ブタンジオール、1,6-ヘキサンジオール(1,6-HD)、ネオペンチルグリコール等のジオール化合物;グリセリン、トリメチロールプロパン等のトリオール化合物が挙げられる。ポリオール(Da)の粘度を低くでき、かつ、良好な難燃性向上効果が得られやすい点で、エチレングリコールまたはジエチレングリコールがより好ましく、ジエチレングリコールが特に好ましい。
The monomer mixture used for the production of the polyol (Da) preferably contains a dicarboxylic acid compound and a polyhydric alcohol, and one or both of the dicarboxylic acid compound and the polyhydric alcohol contain a compound having an aromatic ring.
In particular, the polyol (Da) preferably contains an aromatic polyester polyol obtained by polycondensation reaction between a dicarboxylic acid having an aromatic ring and a polyhydric alcohol not having an aromatic ring.
Examples of the dicarboxylic acid having an aromatic ring include terephthalic acid, isophthalic acid, and orthophthalic acid. Terephthalic acid is more preferable in terms of improving heat resistance.
Examples of the polyhydric alcohol having no aromatic ring include ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol, dipropylene glycol (DPG), 1,4-butanediol, 1,6-hexanediol (1,6 -HD), diol compounds such as neopentyl glycol; and triol compounds such as glycerin and trimethylolpropane. Ethylene glycol or diethylene glycol is more preferable, and diethylene glycol is particularly preferable in that the viscosity of the polyol (Da) can be lowered and a good flame retardancy improving effect can be easily obtained.
 ポリオール(Da)の平均水酸基数は2~3であり、2であることが好ましい。該平均水酸基数が3以下であると粘度を低く抑えることができ、取り扱いが容易である。
 ポリオール(Da)の水酸基価は100~500mgKOH/gであり、150~350mgKOH/gが好ましく、180~300mgKOH/gが特に好ましい。ポリオール(Da)の水酸基価が上記範囲の下限値以上であると硬質フォームの収縮が抑制されやすく、上記範囲の上限値以下であると硬質フォームの脆性が抑制されて良好な物性が得られやすい。
 ポリオール組成物(Pa)におけるポリオール(Da)の含有量は、10~60質量%が好ましく、10~50質量%がより好ましく、10~40質量%が特に好ましい。ポリオール(Da)の含有量が、上記範囲の下限値以上であると難燃性の向上効果が充分に得られやすい。上記範囲の上限値以下であると硬質フォームの収縮が抑制され、良好な寸法安定性が得られやすい。
The average number of hydroxyl groups of the polyol (Da) is 2 to 3, and is preferably 2. When the average number of hydroxyl groups is 3 or less, the viscosity can be kept low and the handling is easy.
The hydroxyl value of the polyol (Da) is 100 to 500 mgKOH / g, preferably 150 to 350 mgKOH / g, particularly preferably 180 to 300 mgKOH / g. When the hydroxyl value of the polyol (Da) is not less than the lower limit of the above range, the shrinkage of the rigid foam is easily suppressed, and when it is not more than the upper limit of the above range, the brittleness of the rigid foam is suppressed and good physical properties are easily obtained. .
The content of the polyol (Da) in the polyol composition (Pa) is preferably 10 to 60% by mass, more preferably 10 to 50% by mass, and particularly preferably 10 to 40% by mass. If the content of the polyol (Da) is not less than the lower limit of the above range, the effect of improving flame retardancy can be sufficiently obtained. When the amount is not more than the upper limit of the above range, the shrinkage of the rigid foam is suppressed, and good dimensional stability is easily obtained.
[ポリマー分散ポリオール(Wa)]
 ポリオール組成物(Pa)はポリマー粒子を含有する。具体的には、ベースポリオール(Wa’)中にポリマー粒子が分散しているポリマー分散ポリオール(Wa)を調製し、該ポリマー分散ポリオール(Wa)をポリオール組成物(Pa)に含有させることが好ましい。
 ポリオール組成物(Pa)中にポリマー粒子を存在させることにより、硬質フォームの収縮を抑制して、寸法安定性を向上させることができる。この効果は、より低密度の硬質ウレタンフォームを製造する際に、特に有用である。ポリマー分散ポリオール(Wa)は1種でもよく、2種以上を併用してもよい。
[Polymer-dispersed polyol (Wa)]
The polyol composition (Pa) contains polymer particles. Specifically, it is preferable to prepare a polymer-dispersed polyol (Wa) in which polymer particles are dispersed in a base polyol (Wa '), and to contain the polymer-dispersed polyol (Wa) in the polyol composition (Pa). .
The presence of polymer particles in the polyol composition (Pa) can suppress the shrinkage of the rigid foam and improve the dimensional stability. This effect is particularly useful when producing a lower density rigid urethane foam. The polymer-dispersed polyol (Wa) may be one type or a combination of two or more types.
 ポリオール組成物(Pa)全体におけるポリマー粒子の含有量は0.002~30質量%が好ましく、0.02~20質量%がより好ましく、0.5~10質量%が特に好ましい。上記範囲内であると、断熱性能を維持しながら、得られる硬質フォームの収縮を効果的に抑制できる。また、常温の貯蔵安定性および高温の貯蔵安定性が良好となる。
 ポリマー分散ポリオール(Wa)の平均水酸基価は100~800mgKOH/gが好ましく、150~800mgKOH/gがより好ましい。本明細書におけるポリマー分散ポリオール(Wa)の平均水酸基価とは、ベースポリオール(Wa’)中にポリマー粒子が分散しているポリオールについて平均水酸基価を測定して得られる値であり、通常は、ベースポリオール(Wa’)の平均水酸基価よりも低くなる。
 ポリマー分散ポリオール(Wa)の平均水酸基価が上記範囲の下限値以上であると、他のポリオールとの相溶性が良好であり、上記範囲の上限値以下であると、ポリマー粒子の分散安定性が良好である。
The content of the polymer particles in the entire polyol composition (Pa) is preferably 0.002 to 30% by mass, more preferably 0.02 to 20% by mass, and particularly preferably 0.5 to 10% by mass. Within the above range, shrinkage of the obtained rigid foam can be effectively suppressed while maintaining heat insulation performance. Moreover, the storage stability at normal temperature and the storage stability at high temperature are good.
The average hydroxyl value of the polymer-dispersed polyol (Wa) is preferably 100 to 800 mgKOH / g, more preferably 150 to 800 mgKOH / g. The average hydroxyl value of the polymer-dispersed polyol (Wa) in the present specification is a value obtained by measuring the average hydroxyl value of a polyol in which polymer particles are dispersed in the base polyol (Wa '). It becomes lower than the average hydroxyl value of the base polyol (Wa ').
When the average hydroxyl value of the polymer-dispersed polyol (Wa) is at least the lower limit of the above range, the compatibility with other polyols is good, and when it is below the upper limit of the above range, the dispersion stability of the polymer particles is It is good.
 ポリマー分散ポリオール(Wa)は、必要に応じて溶媒の存在下、ベースポリオール(Wa’)中で重合性不飽和基を有するモノマーを重合させてポリマー粒子を析出させる方法で製造される。
 ポリマー粒子の形成に用いられる、重合性不飽和結合を有するモノマーとしては、通常、重合性不飽和結合を1個有するモノマーが使用されるが、これに限らない。
 該モノマーの具体例としては、アクリロニトリル、メタクリロニトリル、2,4-ジシアノブテン-1等のシアノ基含有モノマー;スチレン、α-メチルスチレン、ハロゲン化スチレン等のスチレン系モノマー;アクリル酸、メタクリル酸またはそれらのアルキルエステルやアクリルアミド、メタクリルアミド等のアクリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル系モノマー;イソプレン、ブタジエン、その他のジエン系モノマー;マレイン酸ジエステル、イタコン酸ジエステル等の不飽和脂肪酸エステル類;塩化ビニル、臭化ビニル、フッ化ビニル等のハロゲン化ビニル;塩化ビニリデン、臭化ビニリデン、フッ化ビニリデン等のハロゲン化ビニリデン;メチルビニルエーテル、エチルビニルエーテル、イソプロピルビニルエーテル等のビニルエーテル系モノマー;およびこれら以外のオレフィン、ハロゲン化オレフィンなどがある。
 好ましくはアクリロニトリル20~90質量%と他のモノマー10~80質量%の組み合わせであり、他のモノマーとして好ましいのはスチレン、アクリル酸アルキルエステル、メタクリル酸アルキルエステル、または酢酸ビニルである。これら他のモノマーは2種以上併用してもよい。
The polymer-dispersed polyol (Wa) is produced by a method of precipitating polymer particles by polymerizing a monomer having a polymerizable unsaturated group in the base polyol (Wa ′) in the presence of a solvent as necessary.
As the monomer having a polymerizable unsaturated bond, which is used for forming the polymer particles, a monomer having one polymerizable unsaturated bond is usually used, but is not limited thereto.
Specific examples of the monomer include cyano group-containing monomers such as acrylonitrile, methacrylonitrile, and 2,4-dicyanobutene-1; styrene monomers such as styrene, α-methylstyrene, and halogenated styrene; acrylic acid, methacrylic acid, or Acrylic monomers such as alkyl esters, acrylamide and methacrylamide; vinyl ester monomers such as vinyl acetate and vinyl propionate; isoprene, butadiene and other diene monomers; unsaturated fatty acids such as maleic acid diester and itaconic acid diester Esters; vinyl halides such as vinyl chloride, vinyl bromide, vinyl fluoride; vinylidene halides such as vinylidene chloride, vinylidene bromide, vinylidene fluoride; methyl vinyl ether, ethyl vinyl ether, isopropyl Vinyl ether monomers such as vinyl ether; and other than the above olefin, there is a halogenated olefin.
A combination of 20 to 90% by mass of acrylonitrile and 10 to 80% by mass of another monomer is preferable, and styrene, alkyl acrylate ester, alkyl methacrylate ester, or vinyl acetate is preferable as the other monomer. Two or more of these other monomers may be used in combination.
 また、上記に挙げたモノマーのほかに、該重合性不飽和基を有するモノマーの一部または全部として、含フッ素アクリレートまたは含フッ素メタクリレート(以下、「含フッ素モノマー」ということがある。)を用いることも好ましい。該含フッ素モノマーを用いることにより、ベースポリオール(Wa’)中でのポリマー粒子の分散安定性がより良好となる。また、ポリマー分散ポリオール(Wa)と他のポリオールとの相溶性が高まって、硬質フォームにおける寸法安定性の向上、断熱性能の向上が期待できる。
 含フッ素モノマーの好適なものとしては、下記式(1)で表されるモノマーが挙げられる。
In addition to the monomers listed above, fluorine-containing acrylate or fluorine-containing methacrylate (hereinafter sometimes referred to as “fluorine-containing monomer”) is used as a part or all of the monomer having a polymerizable unsaturated group. It is also preferable. By using the fluorine-containing monomer, the dispersion stability of the polymer particles in the base polyol (Wa ′) becomes better. In addition, the compatibility between the polymer-dispersed polyol (Wa) and other polyols is enhanced, and improvement in dimensional stability and heat insulation performance in the rigid foam can be expected.
As a suitable thing of a fluorine-containing monomer, the monomer represented by following formula (1) is mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中において、Rは、炭素数1~18のポリフルオロアルキル基である。Rにおいて、炭素数は1~18であり、1~10が好ましく、3~8がより好ましい。
 Rは、アルキル基中のフッ素原子の割合(アルキル基中の水素原子がフッ素原子に置換されている個数の割合)が、80%以上であることが好ましく、全部の水素原子がフッ素原子で置換されていることが特に好ましい。炭素数が18以下であると、硬質フォーム製造における発泡時、フォームの安定性が良好となり好ましい。
 Rは、水素原子またはメチル基である。
 Zは、フッ素原子を含まない2価の連結基であり、炭化水素基が好ましく、たとえばアルキレン基、アリーレン基が挙げられ、アルキレン基がより好ましい。該アルキレン基は、炭素数1~10のアルキレン基が好ましく、炭素数1~5のアルキレン基が特に好ましく、直鎖状であってもよく、分岐鎖状であってもよい。なお、式(1)におけるZとRはRの炭素数が少なくなるように区切る。
 前記式(1)で表されるモノマーの具体例として、下記式(1-1)~(1-3)で表される化合物が挙げられる。
In the formula (1), R f is a polyfluoroalkyl group having 1 to 18 carbon atoms. R f has 1 to 18 carbon atoms, preferably 1 to 10, and more preferably 3 to 8.
R f is preferably such that the proportion of fluorine atoms in the alkyl group (the proportion of the number of hydrogen atoms in the alkyl group substituted by fluorine atoms) is 80% or more, and all the hydrogen atoms are fluorine atoms. It is particularly preferred that it is substituted. When the number of carbon atoms is 18 or less, the foam stability is favorable during foaming in the production of rigid foam, which is preferable.
R is a hydrogen atom or a methyl group.
Z is a divalent linking group containing no fluorine atom, preferably a hydrocarbon group, such as an alkylene group or an arylene group, and more preferably an alkylene group. The alkylene group is preferably an alkylene group having 1 to 10 carbon atoms, particularly preferably an alkylene group having 1 to 5 carbon atoms, which may be linear or branched. In Formula (1), Z and R f are separated so that the number of carbon atoms in R f is small.
Specific examples of the monomer represented by the formula (1) include compounds represented by the following formulas (1-1) to (1-3).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 前記含フッ素モノマーは、1種を単独で、または2種以上を組み合わせて使用することができる。
 含フッ素モノマーを用いる場合、その使用量は、重合性不飽和基を有する全モノマーに対し、10~100質量%であることが好ましく、30~80質量%であることがより好ましい。
 特に、前記式(1)で表されるモノマーを用いる場合は、重合性不飽和基を有する全モノマー中において20~100質量%であることが好ましく、30~60質量%であることがより好ましく、40~60質量%であることが最も好ましい。
 該式(1)で表されるモノマーの割合が、20質量%以上、特に30質量%以上であると、硬質フォームとした際に良好な断熱性能が得られやすい。
The said fluorine-containing monomer can be used individually by 1 type or in combination of 2 or more types.
When a fluorine-containing monomer is used, the amount used is preferably 10 to 100% by mass, more preferably 30 to 80% by mass, based on all monomers having a polymerizable unsaturated group.
In particular, when the monomer represented by the formula (1) is used, it is preferably 20 to 100% by mass, more preferably 30 to 60% by mass in the total monomers having a polymerizable unsaturated group. 40 to 60% by mass is most preferable.
When the proportion of the monomer represented by the formula (1) is 20% by mass or more, particularly 30% by mass or more, good heat insulating performance is easily obtained when a rigid foam is obtained.
 含フッ素モノマーを用いる場合、上記に挙げた重合性不飽和結合を有するモノマーのほかに、マクロモノマーを併用してもよい。「マクロモノマー」とは、片末端にラジカル重合性不飽和基を有する低分子量のポリマーまたはオリゴマーのことをいう。 When a fluorine-containing monomer is used, a macromonomer may be used in combination with the monomer having a polymerizable unsaturated bond listed above. The “macromonomer” refers to a low molecular weight polymer or oligomer having a radical polymerizable unsaturated group at one end.
 ポリマー粒子の形成に用いられる、重合性不飽和結合を有するモノマーの合計の使用量は特に限定されないが、ポリマー分散ポリオール(Wa)中におけるポリマー粒子の含有量が1~50質量%、より好ましくは2~45質量%、特に好ましくは10~30質量%となる量であることが好ましい。 The total amount of monomers having a polymerizable unsaturated bond used for forming the polymer particles is not particularly limited, but the content of the polymer particles in the polymer-dispersed polyol (Wa) is 1 to 50% by mass, more preferably The amount is preferably 2 to 45% by mass, particularly preferably 10 to 30% by mass.
 重合性不飽和結合を有するモノマーの重合は、遊離基を生成して重合を開始させる重合開始剤が好適に用いられる。該重合開始剤の具体例としては2,2’-アゾビス-イソブチロニトリル(AIBN)、2,2’-アゾビス-2-メチルブチロニトリル(AMBN)、2,2’-アゾビス-2,4-ジメチルバレロニトリル、ベンゾイルペルオキシド、ジイソプロピルペルオキシジカーボネート、アセチルペルオキシド、ジ-tert-ブチルペルオキシド、過硫酸塩等が挙げられる。特にAMBNが好ましい。 For polymerization of a monomer having a polymerizable unsaturated bond, a polymerization initiator that generates a free radical and starts polymerization is suitably used. Specific examples of the polymerization initiator include 2,2′-azobis-isobutyronitrile (AIBN), 2,2′-azobis-2-methylbutyronitrile (AMBN), 2,2′-azobis-2, Examples include 4-dimethylvaleronitrile, benzoyl peroxide, diisopropyl peroxydicarbonate, acetyl peroxide, di-tert-butyl peroxide, persulfate, and the like. In particular, AMBN is preferable.
 ベースポリオール(Wa’)としては、ポリエーテルポリオール、ポリエステルポリオール、末端に水酸基を有する炭化水素系ポリマー等が挙げられる。特にポリエーテルポリオールのみからなるか、またはポリエーテルポリオールを主成分として、少量のポリエステルポリオールや末端に水酸基を有する炭化水素系ポリマー等を併用することが好ましい。
 該ポリエーテルポリオールとしては、例えば多価アルコール、多価フェノール等のポリヒドロキシ化合物やアミン類等の開始剤にアルキレンオキシド等の環状エーテルを付加して得られるポリエーテルポリオールが挙げられる。ベースポリオール(Wa’)として用いるポリエーテルポリオールは、前記ポリオール(Aa)~(Da)のいずれかと同じであってもよい。
Examples of the base polyol (Wa ′) include polyether polyols, polyester polyols, and hydrocarbon polymers having a hydroxyl group at the terminal. In particular, it is preferable to use only a polyether polyol or to use a small amount of a polyester polyol or a hydrocarbon-based polymer having a hydroxyl group at the terminal as a main component.
Examples of the polyether polyol include polyether polyols obtained by adding cyclic ethers such as alkylene oxides to initiators such as polyhydroxy compounds such as polyhydric alcohols and polyhydric phenols and amines. The polyether polyol used as the base polyol (Wa ′) may be the same as any of the polyols (Aa) to (Da).
 ベースポリオール(Wa’)のうちの5質量%以上が、下記ポリエーテルポリオール(X)であることが好ましい。該ポリエーテルポリオール(X)は、水酸基価が84mgKOH/g以下であり、かつポリエーテルポリオール(X)全体に対するオキシエチレン基含有量が40質量%以上であるものをいう。
 ポリエーテルポリオール(X)は、開始剤として多価アルコールを使用し、エチレンオキシドまたはエチレンオキシドと他の環状エーテルを付加して得られるものが好ましい。
 多価アルコールとしてはグリセリン、トリメチロールプロパン、1,2,6-ヘキサントリオール等が好ましい。他の環状エーテルとしてはプロピレンオキシド、イソブチレンオキシド、1-ブテンオキシド、2-ブテンオキシドが好ましく、プロピレンオキシドが特に好ましい。
It is preferable that 5 mass% or more of the base polyol (Wa ′) is the following polyether polyol (X). The polyether polyol (X) is one having a hydroxyl value of 84 mgKOH / g or less and an oxyethylene group content of 40% by mass or more based on the entire polyether polyol (X).
The polyether polyol (X) is preferably obtained by using a polyhydric alcohol as an initiator and adding ethylene oxide or ethylene oxide and another cyclic ether.
As the polyhydric alcohol, glycerin, trimethylolpropane, 1,2,6-hexanetriol and the like are preferable. As other cyclic ethers, propylene oxide, isobutylene oxide, 1-butene oxide and 2-butene oxide are preferable, and propylene oxide is particularly preferable.
 ポリエーテルポリオール(X)において、水酸基価の上限は84mgKOH/g以下が好ましく、67mgKOH/g以下が好ましく、60mgKOH/g以下が特に好ましい。上記上限であると、ポリマー粒子が安定に分散したポリマー分散ポリオール(Wa)が得られやすい。水酸基価の下限は5mgKOH/g以上が好ましく、8mgKOH/g以上がより好ましく、20mgKOH/g以上がさらに好ましく、30mgKOH/g以上が特に好ましい。上記下限であると、ポリマー粒子の分散安定性が良好になる。 In the polyether polyol (X), the upper limit of the hydroxyl value is preferably 84 mgKOH / g or less, preferably 67 mgKOH / g or less, particularly preferably 60 mgKOH / g or less. When it is the above upper limit, a polymer-dispersed polyol (Wa) in which polymer particles are stably dispersed is easily obtained. The lower limit of the hydroxyl value is preferably 5 mgKOH / g or more, more preferably 8 mgKOH / g or more, further preferably 20 mgKOH / g or more, and particularly preferably 30 mgKOH / g or more. When it is the above lower limit, the dispersion stability of the polymer particles becomes good.
 ポリエーテルポリオール(X)において、ポリエーテルポリオール(X)全体に対するオキシエチレン基含有量の下限は、40質量%以上であり、50質量%以上がより好ましく、55質量%以上が特に好ましい。上記下限であると、ポリマー分散ポリオール(Wa)におけるポリマー粒子の分散が安定しやすい。オキシエチレン基含有量の上限は、100質量%、すなわち開始剤にエチレンオキシドのみを付加させたポリエーテルポリオール(X)であってもよい。ポリマー粒子の分散安定性の点からは、該オキシエチレン基含有量が90質量%以下であることがより好ましい。
 ベースポリオール(Wa’)のうちのポリエーテルポリオール(X)の含有量の下限は、5質量%以上が好ましく、10質量%以上が特に好ましい。上記下限であると、分散性のよいポリマー分散ポリオール(Wa)が得られやすい。ポリエーテルポリオール(X)の含有量の上限は特にないが、ポリマー分散ポリオール(Wa)全体の水酸基価が上記の好ましい範囲となるように設定することが好ましい。
In polyether polyol (X), the minimum of oxyethylene group content with respect to the whole polyether polyol (X) is 40 mass% or more, 50 mass% or more is more preferable, and 55 mass% or more is especially preferable. When it is the lower limit, the dispersion of polymer particles in the polymer-dispersed polyol (Wa) is likely to be stable. The upper limit of the oxyethylene group content may be 100% by mass, that is, polyether polyol (X) in which only ethylene oxide is added to the initiator. From the viewpoint of dispersion stability of the polymer particles, the oxyethylene group content is more preferably 90% by mass or less.
The lower limit of the content of the polyether polyol (X) in the base polyol (Wa ′) is preferably 5% by mass or more, and particularly preferably 10% by mass or more. When it is the above lower limit, a polymer-dispersed polyol (Wa) having good dispersibility is easily obtained. The upper limit of the content of the polyether polyol (X) is not particularly limited, but it is preferable to set the hydroxyl value of the entire polymer-dispersed polyol (Wa) within the above-mentioned preferable range.
 ベースポリオール(Wa’)は、上記ポリエーテルポリオール(X)の5~90質量%と、水酸基価が400~850mgKOH/gであるポリオール(Y)の10~95質量%との混合物であることが好ましく、ポリエーテルポリオール(X)の30~80質量%と、前記ポリオール(Y)の20~70質量%との混合物であることがより好ましい。
 ポリオール(Y)の水酸基価は400~800mgKOH/gがより好ましい。
The base polyol (Wa ′) is a mixture of 5 to 90% by mass of the polyether polyol (X) and 10 to 95% by mass of the polyol (Y) having a hydroxyl value of 400 to 850 mgKOH / g. A mixture of 30 to 80% by mass of the polyether polyol (X) and 20 to 70% by mass of the polyol (Y) is more preferable.
The hydroxyl value of the polyol (Y) is more preferably 400 to 800 mgKOH / g.
 ポリエーテルポリオール(Y)は、上記ベースポリオール(Wa’)として挙げたポリエーテルポリオールのうち、水酸基価が上記の範囲であるものを用いることができる。そのうち、開始剤として多価アルコールまたはアミン類を用い、プロピレンオキシドを付加して得られるものが好ましい。ポリエーテルポリオール(Y)は1種でもよく、2種以上を併用してもよい。 As the polyether polyol (Y), those having a hydroxyl value in the above range among the polyether polyols mentioned as the base polyol (Wa ') can be used. Among them, those obtained by adding propylene oxide using polyhydric alcohols or amines as initiators are preferable. The polyether polyol (Y) may be one type or a combination of two or more types.
 ポリオール組成物(Pa)にポリマー分散ポリオール(Wa)を含有させる場合は、その含有量は、ポリオール組成物(Pa)全体におけるポリマー粒子の含有量が上記の好ましい範囲となるように設定される。例えばポリオール組成物(Pa)全体におけるポリマー分散ポリオール(Wa)の含有量は0.01~50質量%が好ましく、0.1~30質量%がより好ましく、0.1~20質量%が特に好ましい。 When the polymer-dispersed polyol (Wa) is contained in the polyol composition (Pa), the content is set so that the content of the polymer particles in the entire polyol composition (Pa) is in the above-described preferable range. For example, the content of the polymer-dispersed polyol (Wa) in the entire polyol composition (Pa) is preferably 0.01 to 50% by mass, more preferably 0.1 to 30% by mass, and particularly preferably 0.1 to 20% by mass. .
[その他のポリオール(Ea)]
 ポリオール組成物(Pa)に、ポリオール(Aa)、ポリオール(Ba)、ポリオール(Ca)、ポリオール(Da)、またはポリマー分散ポリオール(Wa)のいずれにも属さない、その他のポリオール(Ea)を含有させてもよい。
 その他のポリオール(Ea)としては、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、アクリルポリオール等が例示できる。ポリオール(Ea)の水酸基価は5~1,000mgKOH/gが好ましく、10~800mgKOH/gがより好ましく、20~700mgKOH/gが特に好ましい。
 ポリオール組成物(Pa)におけるポリオール(Ea)の含有量は30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が特に好ましい。
[Other polyols (Ea)]
The polyol composition (Pa) contains other polyol (Ea) that does not belong to any of the polyol (Aa), polyol (Ba), polyol (Ca), polyol (Da), or polymer-dispersed polyol (Wa). You may let them.
Examples of the other polyol (Ea) include polyether polyol, polyester polyol, polycarbonate polyol, and acrylic polyol. The hydroxyl value of the polyol (Ea) is preferably 5 to 1,000 mgKOH / g, more preferably 10 to 800 mgKOH / g, and particularly preferably 20 to 700 mgKOH / g.
The content of the polyol (Ea) in the polyol composition (Pa) is preferably 30% by mass or less, more preferably 25% by mass or less, and particularly preferably 20% by mass or less.
<ポリオール組成物(Pa)>
 ポリオール組成物(Pa)は、ポリオール(Aa)と、ポリマー粒子を含み、さらにポリオール(Ba)、ポリオール(Ca)、ポリオール(Da)から選ばれる1種以上を含むことが好ましい。任意にその他ポリオール(Ea)を含んでもよい。ポリマー粒子はポリマー分散ポリオール(Wa)由来であることが好ましい。
 ポリオール組成物(Pa)全体としての平均水酸基数は2~8であり、2.5~7.5が好ましい。該平均水酸基数が上記範囲の下限値以上であると硬質フォームの圧縮強さが向上し、収縮も抑制できるため寸法安定性が良好となり、上限値以下であると発泡、成形時の急激な増粘挙動が抑制され、流動性、成形性が良好となる。
 ポリオール組成物(Pa)全体としての平均水酸基価は100~800mgKOH/gであり、200~700mgKOH/gが好ましく、300~600mgKOH/gが特に好ましい。該平均水酸基価が上記範囲の下限値以上であると硬質フォームの収縮が抑制され、寸法安定性が良好となり、上限値以下であると硬質フォームの脆性が抑制される。
<Polyol composition (Pa)>
The polyol composition (Pa) preferably contains a polyol (Aa) and polymer particles, and further contains one or more selected from polyol (Ba), polyol (Ca), and polyol (Da). Optionally, other polyol (Ea) may be contained. The polymer particles are preferably derived from a polymer-dispersed polyol (Wa).
The average number of hydroxyl groups as a whole of the polyol composition (Pa) is 2 to 8, preferably 2.5 to 7.5. When the average number of hydroxyl groups is not less than the lower limit of the above range, the compression strength of the rigid foam is improved and shrinkage can be suppressed, so that the dimensional stability is good. Viscous behavior is suppressed, and fluidity and moldability are improved.
The average hydroxyl value of the entire polyol composition (Pa) is 100 to 800 mgKOH / g, preferably 200 to 700 mgKOH / g, particularly preferably 300 to 600 mgKOH / g. When the average hydroxyl value is not less than the lower limit of the above range, the shrinkage of the rigid foam is suppressed and the dimensional stability becomes good, and when it is not more than the upper limit, the brittleness of the rigid foam is suppressed.
 本発明Aにおいて、ポリオール組成物(Pa)の全部がポリオール(Aa)とポリマー粒子であってもよい。
ポリオール組成物(Pa)の好ましい組み合わせを以下に示す。
(組み合わせ3)
 ポリオール(Aa)の30~50質量%と、ポリオール(Ba)の5~45質量%と、ポリオール(Ca)の10~20質量%と、ポリマー分散ポリオール(Wa)とからなり、ポリマー粒子の含有量が0.01~20質量%。
(組み合わせ4)
 ポリオール(Aa)の30~50質量%と、ポリオール(Ba)の5~45質量%と、ポリオール(Ca)の10~30質量%と、ポリオール(Da)の10~60質量%と、ポリマー分散ポリオール(Wa)とからなり、ポリマー粒子の含有量が0.01~20質量%。
In the present invention A, all of the polyol composition (Pa) may be polyol (Aa) and polymer particles.
Preferred combinations of the polyol composition (Pa) are shown below.
(Combination 3)
30 to 50% by mass of polyol (Aa), 5 to 45% by mass of polyol (Ba), 10 to 20% by mass of polyol (Ca), and polymer-dispersed polyol (Wa), containing polymer particles The amount is 0.01 to 20% by mass.
(Combination 4)
30 to 50% by weight of polyol (Aa), 5 to 45% by weight of polyol (Ba), 10 to 30% by weight of polyol (Ca), 10 to 60% by weight of polyol (Da), polymer dispersion It consists of polyol (Wa), and the content of polymer particles is 0.01 to 20% by mass.
<ポリイソシアネート化合物>
 ポリイソシアネート化合物としては、イソシアネート基を2以上有する、芳香族系、脂環族系、脂肪族系等のポリイソシアネート;これらを変性して得られる変性ポリイソシアネート等が挙げられる。
 具体例としては、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ポリメチレンポリフェニレンポリイソシアネート(通称:クルードMDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HMDI)等のポリイソシアネートまたはこれらのプレポリマー型変性体、イソシアヌレート、ウレア変性体、カルボジイミド変性体等が挙げられる。このうち、クルードMDI、またはその変性体が好ましく、クルードMDIの変性体が特に好ましい。ポリイソシアネート化合物は1種でもよく、2種以上を混合して用いてもよい。
<Polyisocyanate compound>
Examples of the polyisocyanate compound include aromatic, alicyclic, and aliphatic polyisocyanates having two or more isocyanate groups; modified polyisocyanates obtained by modifying these.
Specific examples include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenylene polyisocyanate (common name: crude MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HMDI), and the like. These polyisocyanates or their prepolymer-type modified products, isocyanurates, urea-modified products, carbodiimide-modified products, and the like. Among these, crude MDI or a modified product thereof is preferable, and a modified product of crude MDI is particularly preferable. The polyisocyanate compound may be used alone or in combination of two or more.
 ポリイソシアネート化合物の使用量は、ポリオールシステム液中に存在する、ポリオール組成物(Pa)およびその他の活性水素化合物の活性水素原子の合計数に対するイソシアネート基の数の100倍で表して(以下、この100倍で表した数値を「イソシアネート指数(INDEX)」という)、50~400が好ましい。
 特に、触媒としてウレタン化触媒を主に用いるウレタン処方の場合、ポリイソシアネート化合物の使用量は、前記イソシアネート指数で50~170が好ましく、70~150が特に好ましい。
 また、触媒としてイソシアネート基の三量化反応を促進させる触媒を主に用いるイソシアヌレート処方の場合、ポリイソシアネート化合物の使用量は、前記イソシアネート指数で110~400が好ましく、150~350がより好ましく、180~300が特に好ましい。
The amount of polyisocyanate compound used is represented by 100 times the number of isocyanate groups relative to the total number of active hydrogen atoms in the polyol composition (Pa) and other active hydrogen compounds present in the polyol system liquid (hereinafter referred to as this A numerical value expressed by 100 times is referred to as “isocyanate index (INDEX)”, preferably 50 to 400.
In particular, in the case of a urethane formulation mainly using a urethanization catalyst as a catalyst, the amount of polyisocyanate compound used is preferably 50 to 170, particularly preferably 70 to 150 in terms of the isocyanate index.
In the case of an isocyanurate formulation mainly using a catalyst that promotes a trimerization reaction of an isocyanate group as a catalyst, the amount of the polyisocyanate compound used is preferably 110 to 400, more preferably 150 to 350 in terms of the isocyanate index. ~ 300 is particularly preferred.
<発泡剤>
 本発明Aでは、発泡剤として、少なくとも上式(I)で表されるハイドロフルオロオレフィン類(I)の1種以上を用いる。すなわち、発泡剤は少なくともハイドロフルオロオレフィン類(I)を含む。
 発泡剤の融点は10℃以下が好ましく、0℃以下が特に好ましい。また発泡剤の沸点は15~80℃が好ましく、15~60℃が特に好ましい。該沸点が上記範囲の下限値以上であると、取り扱いが容易である。上記範囲の上限値以下であると、発泡効率が良い。
<Foaming agent>
In the present invention A, at least one hydrofluoroolefin (I) represented by the above formula (I) is used as the foaming agent. That is, the foaming agent contains at least hydrofluoroolefins (I).
The melting point of the foaming agent is preferably 10 ° C. or less, particularly preferably 0 ° C. or less. The boiling point of the foaming agent is preferably 15 to 80 ° C., particularly preferably 15 to 60 ° C. When the boiling point is not less than the lower limit of the above range, handling is easy. When it is not more than the upper limit of the above range, the foaming efficiency is good.
 上式()において、Rは炭素数1~6のペルフルオロアルキル基であり、Rは炭素数1~6のペルフルオロアルキル基またはハロゲン原子である。
 RとRが2重結合に関して同じ側に存在するシス型(以下、Z-と表記することがある。)であってもよく、反対側に存在するトランス型(以下、E-と表記することがある。)であってもよい。特にRがペルフルオロアルキル基である場合は、沸点が常温域にあり取り扱い易さの点で、シス型(Z-)が好ましい。Rがハロゲン原子である場合は、ODPおよびGWPが低く環境負荷が小さい点で、トランス型(E-)が好ましい。
 ハイドロフルオロオレフィン類(I)は公知の方法で製造可能であり、市販品からも入手できる。
In the above formula (), R 1 is a C 1-6 perfluoroalkyl group, and R 2 is a C 1-6 perfluoroalkyl group or a halogen atom.
R 1 and R 2 may be a cis form (hereinafter sometimes referred to as Z-) in which double bonds are present on the same side, and a trans form (hereinafter referred to as E-) present on the opposite side. May also be). In particular, when R 2 is a perfluoroalkyl group, a cis type (Z-) is preferable from the viewpoint of ease of handling since the boiling point is in the normal temperature range. When R 2 is a halogen atom, the trans type (E-) is preferable in terms of low ODP and GWP and low environmental impact.
Hydrofluoroolefins (I) can be produced by a known method, and can also be obtained from commercial products.
 Rとしてのハロゲン原子は、フッ素(F)、塩素(Cl)、臭素(Br)のいずれかであることが好ましく、特に経済的に有利である点で、塩素(Cl)が好ましい。
 R、Rとしてのペルフルオロアルキル基の炭素数が6以下であると、沸点が適度な領域となり発泡効率が良く、取り扱いも容易である。該炭素数は1~5が好ましく、1~4が特に好ましい。
 該ペルフルオロアルキル基の具体例としては、CF、C5、CFCFCF、CF(CF、CFCFCFCF、CF(CF)CFCF、CFCF(CF、C(CF、CFCFCFCFCF、CFCFCF(CF、C(CF、CFCFCFCFCFCF、CF(CF)CFCF、またはC(CFCF等が挙げられる。
 これらのうち、コストの点でCF、Cが特に好ましい。
The halogen atom as R 2 is preferably any one of fluorine (F), chlorine (Cl), and bromine (Br), and chlorine (Cl) is particularly preferable from the viewpoint of economical advantage.
When the carbon number of the perfluoroalkyl group as R 1 and R 2 is 6 or less, the boiling point becomes an appropriate region, the foaming efficiency is good, and handling is easy. The carbon number is preferably 1 to 5, and particularly preferably 1 to 4.
Specific examples of the perfluoroalkyl group include CF 3 , C 2 F 5, CF 2 CF 2 CF 3 , CF (CF 3 ) 2 , CF 2 CF 2 CF 2 CF 3 , CF (CF 3 ) CF 2 CF 3 CF 2 CF (CF 3 ) 2 , C (CF 3 ) 3 , CF 2 CF 2 CF 2 CF 2 CF 3 , CF 2 CF 2 CF (CF 3 ) 2 , C (CF 3 ) 2 C 2 F 5 , CF 2 CF 2 CF 2 CF 2 CF 2 CF 3 , CF (CF 3 ) CF 2 CF 2 C 2 F 5 , C (CF 3 ) 2 CF 2 C 2 F 5, and the like can be given.
Among these, CF 3 and C 2 F 5 are particularly preferable in terms of cost.
 常温で液体であるハイドロフルオロオレフィン類(I)の好ましい例としては、Z-CFCH=CHCF(Z-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン、本明細書ではHFO-1336mzzということもある。)、E-CFCH=CHCl(E-1-クロロ-3,3,3-トリフルオロ-プロペン、本明細書ではHCFO-1233zdということもある。)、E-CFCH=CHCF(E-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン)、Z-CFCH=CHCl(Z-1-クロロ-3,3,3-トリフルオロ-プロペン)等が挙げられる。
 これらのうち、発泡剤が、少なくともHFO-1336mzzまたはHCFO-1233zdを含むことが、取り扱いがし易く、コストの点で特に好ましい。
Preferred examples of hydrofluoroolefins (I) that are liquid at room temperature include Z—CF 3 CH═CHCF 3 (Z-1,1,1,4,4,4-hexafluoro-2-butene, HFO-1336mzz in the document), E-CF 3 CH═CHCl (E-1-chloro-3,3,3-trifluoro-propene, also referred to herein as HCFO-1233zd). E-CF 3 CH═CHCF 3 (E-1,1,1,4,4,4-hexafluoro-2-butene), Z—CF 3 CH═CHCl (Z-1-chloro-3,3, 3-trifluoro-propene) and the like.
Of these, the foaming agent preferably contains at least HFO-1336mzz or HCFO-1233zd, which is easy to handle and particularly preferable in terms of cost.
 また、発泡剤として、ハイドロフルオロオレフィン類(I)以外の公知の発泡剤を、本発明Aの効果を損なわない範囲で使用してもよい。
 公知の発泡剤としては水が挙げられる。公知の発泡剤の使用量は、ポリオール組成物(Pa)の100質量部に対して1~25質量部が好ましい。公知の発泡剤としての水の使用量は、ポリオール組成物(Pa)の100質量部に対して0~25質量部が好ましく、1~10質量部がより好ましく、1~5質量部が特に好ましい。
 本発明Aにおいて、発泡剤の主成分がハイドロフルオロオレフィン類(I)であることが好ましく、具体的には発泡剤全体の50~100質量%がハイドロフルオロオレフィン類(I)であることが好ましい。
 発泡剤としてのハイドロフルオロオレフィン類(I)の使用量は、ポリオール組成物(Pa)の100質量部に対して1~100質量部が好ましく、3~80質量部がより好ましく、5~50質量部が特に好ましい。
 上記ハイドロフルオロオレフィン類(I)に加えその他発泡剤としてハイドロフルオロカーボン類(HFC類)を併用する場合、HFC類の使用量は、ポリオール組成物(Pa)の100質量部に対して0~50質量部が好ましく、0.01~50質量部がより好ましく、1~40質量部がさらに好ましく、1~20質量部が特に好ましい。
Moreover, you may use well-known foaming agents other than hydrofluoro olefins (I) as a foaming agent in the range which does not impair the effect of this invention A.
Known foaming agents include water. The amount of the known blowing agent used is preferably 1 to 25 parts by mass with respect to 100 parts by mass of the polyol composition (Pa). The amount of water used as a known blowing agent is preferably 0 to 25 parts by mass, more preferably 1 to 10 parts by mass, and particularly preferably 1 to 5 parts by mass with respect to 100 parts by mass of the polyol composition (Pa). .
In the present invention A, the main component of the foaming agent is preferably hydrofluoroolefins (I), and specifically 50 to 100% by mass of the total foaming agent is preferably hydrofluoroolefins (I). .
The amount of the hydrofluoroolefins (I) used as the blowing agent is preferably 1 to 100 parts by weight, more preferably 3 to 80 parts by weight, with respect to 100 parts by weight of the polyol composition (Pa). Part is particularly preferred.
When hydrofluorocarbons (HFCs) are used in combination with the hydrofluoroolefins (I) in addition to the hydrofluoroolefins (I), the amount of HFCs used is 0 to 50 masses per 100 mass parts of the polyol composition (Pa). Part, preferably 0.01 to 50 parts by weight, more preferably 1 to 40 parts by weight, and particularly preferably 1 to 20 parts by weight.
<触媒>
 触媒として、ウレタン化反応を促進するウレタン化触媒、および/またはイソシアネート基の三量化反応を促進させる三量化反応促進触媒が用いられる。ウレタン化触媒としては第3級アミンが好ましい。三量化反応促進触媒としては、錫塩、鉛塩、水銀塩を除く金属塩、および/または第4級アンモニウム塩が好ましい。イソシアヌレート処方の場合、ウレタン化触媒と三量化反応促進触媒の併用が好ましく、第3級アミンと、前記金属塩および/または第4級アンモニウム塩とを併用することがより好ましい。
<Catalyst>
As the catalyst, a urethanization catalyst that promotes a urethanization reaction and / or a trimerization reaction promotion catalyst that promotes a trimerization reaction of an isocyanate group is used. A tertiary amine is preferred as the urethanization catalyst. As the trimerization promoting catalyst, tin salts, lead salts, metal salts excluding mercury salts, and / or quaternary ammonium salts are preferable. In the case of an isocyanurate formulation, the combined use of a urethanization catalyst and a trimerization reaction promoting catalyst is preferable, and it is more preferable to use a tertiary amine in combination with the metal salt and / or the quaternary ammonium salt.
 第3級アミンとしては、例えばN,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルプロピレンジアミン、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N,N’,N”,N”-ペンタメチル-(3-アミノプロピル)エチレンジアミン、N,N,N’,N”,N”-ペンタメチルジプロピレントリアミン、N,N,N’,N’-テトラメチルグアニジン、1,3,5-トリス(N,N-ジメチルアミノプロピル)ヘキサヒドロ-S-トリアジン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、トリエチレンジアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N,N’-ジメチルピペラジン、ジメチルシクロヘキシルアミン、N-メチルモルホリン、N-エチルモルホリン、ビス(2-ジメチルアミノエチル)エーテル、1-メチルイミダゾール、1,2-ジメチルイミダゾール、1-イソブチル-2-メチルイミダゾール、1-ジメチルアミノプロピルイミダゾール、N-メチル-N-(N,N-ジメチルアミノエチル)エタノールアミン等の第3級アミン化合物が挙げられる。 As the tertiary amine, for example, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethylpropylenediamine, N, N, N ′, N ″, N ″ — Pentamethyldiethylenetriamine, N, N, N ′, N ″, N ″ -pentamethyl- (3-aminopropyl) ethylenediamine, N, N, N ′, N ″, N ″ -pentamethyldipropylenetriamine, N, N, N ′, N′-tetramethylguanidine, 1,3,5-tris (N, N-dimethylaminopropyl) hexahydro-S-triazine, 1,8-diazabicyclo [5.4.0] undecene-7, triethylenediamine N, N, N ′, N′-tetramethylhexamethylenediamine, N, N′-dimethylpiperazine, dimethylcyclohexylamine, N-methylmorpho , N-ethylmorpholine, bis (2-dimethylaminoethyl) ether, 1-methylimidazole, 1,2-dimethylimidazole, 1-isobutyl-2-methylimidazole, 1-dimethylaminopropylimidazole, N-methyl-N And tertiary amine compounds such as-(N, N-dimethylaminoethyl) ethanolamine.
 錫塩、鉛塩、および水銀塩を除く金属塩としては、酢酸カリウム、2-エチルヘキサン酸カリウム、2-エチルヘキサン酸ビスマス等のカルボン酸金属塩等が好ましい。
 第4級アンモニウム塩としては、例えば、テトラメチルアンモニウムクロライド等のテトラアルキルアンモニウムハロゲン化物;水酸化テトラメチルアンモニウム塩等のテトラアルキルアンモニウム水酸化物;テトラメチルアンモニウム2-エチルヘキサン酸塩、2-ヒドロキシプロピルトリメチルアンモニウムギ酸塩、2-ヒドロキシプロピルトリメチルアンモニウム2-エチルヘキサン酸塩等のテトラアルキルアンモニウム有機酸塩類;N,N,N’,N’-テトラメチルエチレンジアミン等の第3級アミンと炭酸ジエステル類とを反応して得られる4級アンモニウム炭酸塩を、2-エチルヘキサン酸とアニオン交換反応させることで得られる4級アンモニウム化合物等が挙げられる。
 触媒の使用量は、ポリオール組成物(Pa)の100質量部に対して、触媒の合計量が0.1~20質量部であることが好ましい。
 触媒の使用量を調節することで、ポリオール組成物(Pa)とポリイソシアネート化合物、発泡剤、整泡剤の混合の開始時から目視で反応が開始するまでの時間(クリームタイム)、反応開始後から発泡が進行し、樹脂化を挙動を示すまでの時間(ゲルタイム)、発泡が終了するまでの時間(ライズタイム)を調整することができる。
As the metal salt excluding the tin salt, lead salt, and mercury salt, carboxylic acid metal salts such as potassium acetate, potassium 2-ethylhexanoate and bismuth 2-ethylhexanoate are preferable.
Examples of the quaternary ammonium salt include tetraalkylammonium halides such as tetramethylammonium chloride; tetraalkylammonium hydroxides such as tetramethylammonium hydroxide; tetramethylammonium 2-ethylhexanoate, 2-hydroxy Tetraalkylammonium organic acid salts such as propyltrimethylammonium formate and 2-hydroxypropyltrimethylammonium 2-ethylhexanoate; tertiary amines such as N, N, N ′, N′-tetramethylethylenediamine and carbonic acid diesters And a quaternary ammonium compound obtained by reacting 2-ethylhexanoic acid with an anion exchange reaction.
The amount of the catalyst used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polyol composition (Pa).
By adjusting the amount of catalyst used, the time from the start of mixing the polyol composition (Pa) with the polyisocyanate compound, the foaming agent and the foam stabilizer until the reaction starts visually (cream time), after the reaction starts It is possible to adjust the time (foam time) until foaming progresses and shows resination behavior (gel time) and the time until foaming ends (rise time).
<整泡剤>
 本発明Aにおいては良好な気泡を形成するため整泡剤を用いる。整泡剤としては例えば、シリコーン系整泡剤、含フッ素化合物系整泡剤が挙げられる。これらは市販品を使用できる。整泡剤の使用量は適宜選定できるが、ポリオール組成物(Pa)の100質量部に対して0.1~10質量部が好ましい。
<Foam stabilizer>
In the present invention A, a foam stabilizer is used to form good bubbles. Examples of the foam stabilizer include silicone foam stabilizers and fluorine-containing compound foam stabilizers. These can use a commercial item. The amount of the foam stabilizer used can be appropriately selected, but is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polyol composition (Pa).
<その他の配合剤>
 本発明Aでは、上述したポリオール組成物(Pa)、ポリイソシアネート化合物、触媒、発泡剤、整泡剤の他に、公知の配合剤を使用できる。配合剤としては、炭酸カルシウム、硫酸バリウム等の充填剤;酸化防止剤、紫外線吸収剤等の老化防止剤;難燃剤、可塑剤、着色剤、抗カビ剤、破泡剤、分散剤、変色防止剤等が挙げられる。その他の配合剤の使用量は適宜選定できるが、ポリオール組成物(Pa)の100質量部に対して0.1~30質量部が好ましい。
<Other ingredients>
In the present invention A, in addition to the above-described polyol composition (Pa), polyisocyanate compound, catalyst, foaming agent, and foam stabilizer, known compounding agents can be used. Compounding agents include fillers such as calcium carbonate and barium sulfate; anti-aging agents such as antioxidants and UV absorbers; flame retardants, plasticizers, colorants, anti-fungal agents, foam breakers, dispersants, discoloration prevention Agents and the like. The amount of other compounding agents can be appropriately selected, but is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polyol composition (Pa).
<硬質フォームの製造方法>
 本発明Aの硬質フォームの製造方法は、ポリオール組成物(Pa)とポリイソシアネート化合物とを、発泡剤、整泡剤および触媒の存在下で反応させて硬質発泡合成樹脂を製造する方法である。
 特に、金型等の枠内に硬質フォーム原料を注入して発泡させる、いわゆる注入法に本発明Aを適用すると、注入点付近においてもセル荒れが発生しにくい、という効果が得られる点で好ましい。
<Method for manufacturing rigid foam>
The method for producing a rigid foam of the present invention A is a method for producing a rigid foamed synthetic resin by reacting a polyol composition (Pa) with a polyisocyanate compound in the presence of a foaming agent, a foam stabilizer and a catalyst.
In particular, when the present invention A is applied to a so-called injection method in which a rigid foam raw material is injected into a frame such as a mold and foamed, it is preferable in that the effect that cell roughening hardly occurs even near the injection point is obtained. .
 注入法は、例えば高圧発泡装置または低圧発泡装置を用いる方法で行うことができる。高圧発泡装置または低圧発泡装置を用いる場合、上記発泡剤をポリオールシステム液に配合して、種々の金型内に注入後、発泡硬化させて硬質フォームを製造する。発泡剤は、ポリオールシステム液にあらかじめ配合しておいても、発泡装置で発泡する際に配合してもよい。ここで原料系にあらかじめ配合するとは、ポリオールシステム液のみに配合する、または、ポリオールシステム液とポリイソシアネート化合物の両方に配合することを意味する。
 注入法を用いて製造できる物品としては、電気冷蔵庫等の冷凍機器、冷凍・冷蔵車用パネル等が挙げられる。
The injection method can be performed, for example, by a method using a high pressure foaming device or a low pressure foaming device. When a high pressure foaming device or a low pressure foaming device is used, the above foaming agent is blended into a polyol system liquid, injected into various molds, and then foamed and cured to produce a rigid foam. The foaming agent may be blended in advance in the polyol system liquid, or may be blended when foaming with a foaming apparatus. Here, blending in the raw material system in advance means blending only in the polyol system liquid, or blending in both the polyol system liquid and the polyisocyanate compound.
Articles that can be manufactured using the injection method include refrigeration equipment such as electric refrigerators, panels for freezing / refrigerated vehicles, and the like.
 また本発明Aは、連続ボード成形法またはスプレー法による硬質フォームの製造にも適用可能である。
 連続ボード成形法とは、2枚の面材間に硬質フォーム原料を供給して発泡させることにより、これらの面材の間に硬質フォームが挟まれた積層体を製造する方法であり、建築用途の断熱材の製造等に用いられる。
 スプレー法とは、硬質フォームをスプレーで吹き付け施工する方法である。スプレー法は、大きく分けてエアスプレー法とエアレススプレー法がある。このうち特に配合液をミキシングヘッドで混合して発泡させるエアレススプレー法が好ましい。スプレー法を用いて製造できる物品としては、建築用途の断熱材が挙げられる。
The present invention A can also be applied to the production of rigid foams by a continuous board molding method or a spray method.
The continuous board molding method is a method of manufacturing a laminate in which a rigid foam is sandwiched between two face materials by supplying a foam material between two face materials and foaming it. It is used for the manufacture of heat insulating materials.
The spray method is a method in which a rigid foam is sprayed and applied. The spray method is roughly classified into an air spray method and an airless spray method. Of these, the airless spray method in which the blended liquid is mixed with a mixing head and foamed is particularly preferable. As an article which can be manufactured using a spray method, a heat insulating material for architectural use can be cited.
 本発明Aによれば、発泡剤として、ハイドロフルオロオレフィン類(I)を用いて、良好な特性を有する硬質フォームが得られる。
 具体的に、硬質フォームにあっては、低密度化した場合にも、ポリオールシステム液の貯蔵安定性が良好であること、成形性が良好であること、寸法安定性が良好であることが望ましい。本発明Aによれば、これらの特性の全部が良好である硬質フォームを得ることができる。また本発明Aによれば、ポリオールシステム液の高温貯蔵安定性が良好となる。
 また、ポリオール(Aa)およびポリマー粒子とハイドロフルオロオレフィン類(I)を組み合わせることにより、寸法安定性が良好で熱伝導率の低い、すなわち良好な断熱性能を有する硬質フォームを得ることができる。
According to the present invention A, a rigid foam having good characteristics can be obtained by using the hydrofluoroolefins (I) as a foaming agent.
Specifically, for rigid foams, it is desirable that the polyol system liquid has good storage stability, good moldability, and good dimensional stability even when the density is reduced. . According to the present invention A, it is possible to obtain a rigid foam in which all of these characteristics are good. Further, according to the present invention A, the high temperature storage stability of the polyol system liquid is improved.
Further, by combining the polyol (Aa) and polymer particles with the hydrofluoroolefins (I), a rigid foam having good dimensional stability and low thermal conductivity, that is, good heat insulation performance can be obtained.
<本発明Bについての説明>
 本発明Bにおける「ポリオール組成物(Pb)」とは、ポリイソシアネート化合物との反応に用いるポリオール(ポリマー分散ポリオールを含む)の全部の混合物である。
 本発明Bにおける「ポリオールシステム液」とは、ポリイソシアネート化合物と反応させる相手の液であり、ポリオール組成物(Pb)のほかに発泡剤、整泡剤、触媒等、必要に応じた配合剤を含む液である。
 本発明Bにおける「発泡原液組成物」とは、ポリオールシステム液と、ポリイソシアネート化合物と、任意に残りの成分とを混合した液である。
 本発明Bにおける「マンニッヒ縮合物」とは、一般に芳香族アミン類、フェノール類等の芳香族化合物と、アルデヒド類と、アミン類とを縮合反応(以下、マンニッヒ縮合反応ということもある。)させて得られる化合物を意味する。
 本発明Bにおける「ポリマー分散ポリオール」とは、ポリエーテルポリオールまたはポリエステルポリオール等のベースポリオール(Wb’)中で、重合性不飽和結合を有するモノマーを重合させてポリマー粒子を形成することによって得られるもので、該ベースポリオール(Wb’)中に該ポリマー粒子を分散させたポリオール(Wb)である。
<Description of Invention B>
The “polyol composition (Pb)” in the present invention B is a mixture of all the polyols (including polymer-dispersed polyols) used for the reaction with the polyisocyanate compound.
The “polyol system liquid” in the present invention B is a liquid to be reacted with the polyisocyanate compound, and in addition to the polyol composition (Pb), a blending agent as necessary, such as a foaming agent, a foam stabilizer, a catalyst and the like. Contains liquid.
The “foaming stock solution composition” in the present invention B is a liquid obtained by mixing a polyol system liquid, a polyisocyanate compound, and optionally the remaining components.
The “Mannich condensation product” in the present invention B is generally a condensation reaction of aromatic compounds such as aromatic amines and phenols, aldehydes, and amines (hereinafter sometimes referred to as Mannich condensation reaction). Means the compound obtained.
The “polymer dispersed polyol” in the present invention B is obtained by polymerizing a monomer having a polymerizable unsaturated bond in a base polyol (Wb ′) such as a polyether polyol or a polyester polyol to form polymer particles. It is a polyol (Wb) in which the polymer particles are dispersed in the base polyol (Wb ′).
[ポリオール(Ab)]
 本発明Bにおけるポリオール組成物(Pb)は、ポリオール(Ab)を含む。
 ポリオール(Ab)は、フェノール類および/または芳香族アミン類と、アルデヒド類と、アルカノールアミン類とを、反応させて得られるマンニッヒ縮合物を開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオール(マンニッヒポリオール)である。該マンニッヒポリオールは難燃性向上にも寄与する。
[Polyol (Ab)]
The polyol composition (Pb) in the present invention B contains a polyol (Ab).
The polyol (Ab) is obtained by ring-opening addition polymerization of alkylene oxide using a Mannich condensation product obtained by reacting phenols and / or aromatic amines, aldehydes, and alkanolamines as an initiator. Polyether polyol (Mannich polyol). The Mannich polyol contributes to the improvement of flame retardancy.
 フェノール類は、フェノール、およびフェノールの水酸基に対して少なくとも1か所のオルト位に水素原子を有するフェノール誘導体からなる群から選ばれる1種以上である。すなわち、フェノールの水酸基に対して少なくとも1か所のオルト位に水素原子を有していればよく、フェノールであってもよく、フェノール誘導体であってもよい。フェノール類は1種でもよく、2種以上を併用してもよい。
 フェノール誘導体としては、フェノールの水酸基に対して少なくとも1か所のオルト位に水素原子を有し、それ以外の、芳香環に結合した水素原子の1個以上が炭素数1~15のアルキル基で置換されたアルキルフェノールが好ましい。アルキルフェノールにおけるアルキル基の置換位置はオルト位、メタ位、パラ位のいずれでもよい。アルキルフェノールの1分子中、アルキル基で置換された水素原子の数は1~4個であり、1~2個が好ましく、1個が特に好ましい。
The phenol is at least one selected from the group consisting of phenol and a phenol derivative having a hydrogen atom in at least one ortho position with respect to the hydroxyl group of phenol. That is, it suffices to have a hydrogen atom in at least one ortho position with respect to the hydroxyl group of phenol, which may be phenol or a phenol derivative. One type of phenol may be used, or two or more types may be used in combination.
The phenol derivative has a hydrogen atom in at least one ortho position with respect to the hydroxyl group of phenol, and at least one of the other hydrogen atoms bonded to the aromatic ring is an alkyl group having 1 to 15 carbon atoms. Substituted alkylphenols are preferred. The substitution position of the alkyl group in the alkylphenol may be any of the ortho, meta, and para positions. In one molecule of alkylphenol, the number of hydrogen atoms substituted with an alkyl group is 1 to 4, preferably 1 to 2, and particularly preferably 1.
 アルキルフェノールにおけるアルキル基の炭素数は、好ましくは1~10である。該アルキルフェノールとして、ノニルフェノール、クレゾールが好ましく用いられる。特にノニルフェノールは、ポリオール(Ab)とポリイソシアネート化合物との相溶性を向上させ、セル外観を向上させる点で好ましい。 The carbon number of the alkyl group in the alkylphenol is preferably 1-10. As the alkylphenol, nonylphenol and cresol are preferably used. Nonylphenol is particularly preferable in terms of improving the compatibility between the polyol (Ab) and the polyisocyanate compound and improving the cell appearance.
 芳香族アミン類としては、アニリン、フェニレンジアミン、トリレンジアミン、ジアミノジフェニルメタン等が挙げられる。これらの中で、常温下において液状で取り扱いが容易で、マンニッヒポリオールの粘度が高くなりすぎない点、コストの点で、アニリンが好ましい。 Examples of aromatic amines include aniline, phenylenediamine, tolylenediamine, and diaminodiphenylmethane. Among these, aniline is preferred from the viewpoints of liquidity at room temperature and easy handling, the viscosity of Mannich polyol does not become too high, and cost.
 アルデヒド類としては、ホルムアルデヒドおよびアセトアルデヒドの一方または両方の混合物が用いられる。これらのうちで、ホルムアルデヒドがマンニッヒ反応の反応性の点で好ましい。ホルムアルデヒドはどのような形態で使用してもよく、具体的にはホルマリン水溶液、メタノール溶液、またはパラホルムアルデヒドとして使用できる。パラホルムアルデヒドとして使用する場合は、パラホルムアルデヒドを加熱してホルムアルデヒドを生成させ、該ホルムアルデヒドを本工程の反応に用いてもよい。なお、使用量は、ホルムアルデヒド換算のモル数で計算する。 As the aldehydes, one or a mixture of formaldehyde and acetaldehyde is used. Of these, formaldehyde is preferable in terms of the reactivity of the Mannich reaction. Formaldehyde may be used in any form. Specifically, it can be used as a formalin aqueous solution, a methanol solution, or paraformaldehyde. When used as paraformaldehyde, paraformaldehyde may be heated to form formaldehyde, and the formaldehyde may be used in the reaction of this step. The amount used is calculated as the number of moles in terms of formaldehyde.
 アルカノールアミン類は、モノエタノールアミン、ジエタノールアミンおよび1-アミノ-2-プロパノールからなる群から選ばれる1種以上である。これらのうちで、ジエタノールアミンが、低粘度のマンニッヒポリオールが得られやすい点で好ましい。 The alkanolamines are at least one selected from the group consisting of monoethanolamine, diethanolamine and 1-amino-2-propanol. Of these, diethanolamine is preferable in that a low-viscosity Mannich polyol is easily obtained.
 開始剤として用いるマンニッヒ縮合物は、上記フェノール類および/または芳香族アミン類と、アルデヒド類と、アルカノールアミン類とをマンニッヒ縮合反応させて得られる反応生成物である。該反応生成物には反応後に残存する未反応物も含まれるものとする。マンニッヒ縮合反応は公知の方法で実施できる。
 マンニッヒ縮合反応に用いる原料において、フェノール類と芳香族アミン類の合計の1モルに対する、アルデヒド類の割合は0.3モル以上3モル以下が好ましい。該アルデヒド類の割合が上記範囲の下限値以上であると、硬質フォームの良好な寸法安定性が得られやすい。上限値以下であると低粘度のマンニッヒポリオールを得やすくなる。また、マンニッヒポリオールの粘度がより低くなりやすい点では、0.3モル以上0.9モル未満が好ましく、得られる硬質フォームの強度の点からは0.9モル以上1.5モル以下がより好ましい。
The Mannich condensation product used as an initiator is a reaction product obtained by subjecting the above-mentioned phenols and / or aromatic amines, aldehydes, and alkanolamines to a Mannich condensation reaction. The reaction product includes unreacted substances remaining after the reaction. The Mannich condensation reaction can be carried out by a known method.
In the raw material used for the Mannich condensation reaction, the ratio of aldehydes to 1 mol of the total of phenols and aromatic amines is preferably 0.3 mol or more and 3 mol or less. When the ratio of the aldehydes is at least the lower limit of the above range, good dimensional stability of the rigid foam can be easily obtained. If it is not more than the upper limit, it becomes easy to obtain a low-viscosity Mannich polyol. Further, from the viewpoint that the viscosity of Mannich polyol tends to be lower, it is preferably 0.3 mol or more and less than 0.9 mol, and more preferably 0.9 mol or more and 1.5 mol or less from the viewpoint of the strength of the resulting rigid foam. .
 マンニッヒ縮合反応に用いる原料において、アルデヒド類の1モルに対する、アルカノールアミン類の割合は0.7モル以上12モル以下が好ましい。該アルカノールアミン類の割合が上記範囲の下限値以上であると、良好な強度の硬質フォームが得られやすい。上限値以下であると良好な難燃性の硬質フォームが得られやすい。また、得られる硬質フォームの難燃性の点からは、0.7モル以上5モル以下が好ましい。低粘度のマンニッヒポリオールを得る点からは、0.7モル以上5モル以下が好ましく、0.7モル以上3.5モル以下が特に好ましい。 In the raw material used for the Mannich condensation reaction, the ratio of alkanolamines to 1 mol of aldehydes is preferably 0.7 mol or more and 12 mol or less. When the ratio of the alkanolamines is at least the lower limit of the above range, a rigid foam having good strength can be easily obtained. When the amount is not more than the upper limit value, a favorable flame-retardant rigid foam is easily obtained. Moreover, from the flame retardance point of the rigid foam obtained, 0.7 mol or more and 5 mol or less are preferable. From the point of obtaining a low-viscosity Mannich polyol, it is preferably from 0.7 mol to 5 mol, particularly preferably from 0.7 mol to 3.5 mol.
 マンニッヒポリオールの製造に用いるアルキレンオキシドは、エチレンオキシド(以下、EOともいう。)、プロピレンオキシド(以下、POともいう。)、およびブチレンオキシドからなる群から選ばれる1種以上が好ましい。
 EOおよび/またはPOを使用する場合、以下のいずれの方法を用いてもよい。
(1)EOを単独で開環付加重合する方法。
(2)POを単独で開環付加重合する方法。
(3)POとEOの混合物を開環付加重合する方法。
(4)上記(1)~(3)の方法を任意に組み合わせて開環付加重合する方法。
The alkylene oxide used for the production of Mannich polyol is preferably at least one selected from the group consisting of ethylene oxide (hereinafter also referred to as EO), propylene oxide (hereinafter also referred to as PO), and butylene oxide.
When using EO and / or PO, any of the following methods may be used.
(1) A method of ring-opening addition polymerization of EO alone.
(2) A method of ring-opening addition polymerization of PO alone.
(3) A method of ring-opening addition polymerization of a mixture of PO and EO.
(4) A method of ring-opening addition polymerization by arbitrarily combining the above methods (1) to (3).
 開始剤の活性水素原子にアルキレンオキシドを反応させることにより、アルキレンオキシドが開環付加してオキシアルキレン基を有するポリオールが生成する。活性水素原子に1分子のアルキレンオキシドが開環付加することによりヒドロキシアルキル基が生成し、また、その水酸基に引き続きアルキレンオキシドが開環付加し、この反応が繰り返されてオキシアルキレン基の連鎖が生成する。アルキレンオキシドがEOの場合は、オキシエチレン基が連鎖し、アルキレンオキシドがPOの場合は、オキシプロピレン基が連鎖する。
 開始剤に付加するアルキレンオキシドの付加量は、マンニッヒ縮合反応に使用するフェノール類と芳香族アミン類の合計の1モルに対して2~30モルが好ましく、4~20モルが特に好ましい。アルキレンオキシドの付加量が上記範囲の下限値以上であると、生成するマンニッヒポリオールの水酸基価および粘度が低くなりやすい。上記範囲の上限値以下であると、硬質フォームの収縮を抑えやすい。
By reacting the alkylene oxide with the active hydrogen atom of the initiator, the alkylene oxide undergoes ring-opening addition to produce a polyol having an oxyalkylene group. Hydroxyalkyl group is formed by ring-opening addition of one molecule of alkylene oxide to active hydrogen atom, and alkylene oxide is ring-opening addition to the hydroxyl group, and this reaction is repeated to form a chain of oxyalkylene groups. To do. When the alkylene oxide is EO, the oxyethylene group is linked, and when the alkylene oxide is PO, the oxypropylene group is linked.
The addition amount of alkylene oxide added to the initiator is preferably 2 to 30 mol, particularly preferably 4 to 20 mol, based on 1 mol of the total of phenols and aromatic amines used in the Mannich condensation reaction. When the added amount of alkylene oxide is not less than the lower limit of the above range, the hydroxyl value and viscosity of the produced Mannich polyol tend to be low. It is easy to suppress shrinkage | contraction of a rigid foam as it is below the upper limit of the said range.
 ポリオール(Ab)の水酸基価は100~800mgKOH/gが好ましく、200~700mgKOH/gがより好ましく、250~650mgKOH/gが特に好ましい。
 ポリオール(Ab)の水酸基価が上記範囲の下限値以上であると、得られる硬質フォームの強度が確保し易く、良好な寸法安定性が得られやすいため好ましい。一方、上記範囲の上限値以下であると、マンニッヒポリオール中に存在するアルキレンオキシド由来のオキシアルキレン鎖の量が増え、マンニッヒポリオールの粘度が下がりやすく好ましい。また、製造される硬質フォームの脆さが抑制され、基材との接着性が出やすく、圧縮強度も向上する。
The hydroxyl value of the polyol (Ab) is preferably from 100 to 800 mgKOH / g, more preferably from 200 to 700 mgKOH / g, particularly preferably from 250 to 650 mgKOH / g.
It is preferable that the hydroxyl value of the polyol (Ab) is not less than the lower limit of the above range because the strength of the resulting rigid foam can be easily secured and good dimensional stability can be easily obtained. On the other hand, when the amount is not more than the upper limit of the above range, the amount of the alkylene oxide-derived oxyalkylene chain present in the Mannich polyol increases, and the viscosity of the Mannich polyol tends to decrease. Moreover, the brittleness of the manufactured rigid foam is suppressed, the adhesiveness with the base material is easily obtained, and the compressive strength is improved.
 ポリオール組成物(Pb)におけるポリオール(Ab)の含有量は、5~100質量%であり、5~80質量%が好ましく、5~60質量%がより好ましく、5~50質量%が特に好ましい。ポリオール(Ab)の含有量が、上記範囲の下限値以上であると、接着性および難燃性が良好な硬質フォームが得られる。上記範囲の上限値以下であると、ポリオールシステム液の粘度が高くなりすぎず、取り扱いが容易である。 The content of the polyol (Ab) in the polyol composition (Pb) is 5 to 100% by mass, preferably 5 to 80% by mass, more preferably 5 to 60% by mass, and particularly preferably 5 to 50% by mass. When the content of the polyol (Ab) is not less than the lower limit of the above range, a rigid foam having good adhesion and flame retardancy can be obtained. When it is at most the upper limit of the above range, the viscosity of the polyol system liquid does not become too high and handling is easy.
[ポリオール(Bb)]
 ポリオール(Bb)は、脂肪族アミンを開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオールである。
 ポリオール組成物(Pb)は、ポリオール(Ab)のほかにポリオール(Bb)を含むことが好ましい。ポリオール(Bb)はポリオールシステム液の低粘度化と反応性の向上に寄与する。ポリオール(Bb)は、1種のみを用いてもよく、2種以上を併用してもよい。
[Polyol (Bb)]
The polyol (Bb) is a polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an aliphatic amine as an initiator.
The polyol composition (Pb) preferably contains a polyol (Bb) in addition to the polyol (Ab). The polyol (Bb) contributes to lowering the viscosity and improving the reactivity of the polyol system liquid. As the polyol (Bb), only one type may be used, or two or more types may be used in combination.
 開始剤である脂肪族アミンは、活性水素原子数が2~4の脂肪族アミンが好ましい。具体例としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類;エチレンジアミン、プロピレンジアミン、1,6-ヘキサンジアミン等のアルキルアミン類が挙げられる。これらのうち、エチレンジアミンが好ましい。
 ポリオール(Bb)の製造に用いるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等が例示できる。少なくとも、プロピレンオキシドまたはブチレンオキシドを含むことが好ましく、少なくともプロピレンオキシドを含むことが特に好ましい。
The aliphatic amine as the initiator is preferably an aliphatic amine having 2 to 4 active hydrogen atoms. Specific examples include alkanolamines such as monoethanolamine, diethanolamine and triethanolamine; alkylamines such as ethylenediamine, propylenediamine and 1,6-hexanediamine. Of these, ethylenediamine is preferred.
Examples of the alkylene oxide used for producing the polyol (Bb) include ethylene oxide, propylene oxide, butylene oxide and the like. It is preferable that at least propylene oxide or butylene oxide is contained, and at least propylene oxide is particularly preferably contained.
 具体的には、プロピレンオキシド単独の使用、またはエチレンオキシドとプロピレンオキシドとの併用が好ましい。併用する場合、エチレンオキシドとプロピレンオキシドは、混合してから反応させても、順次反応させてもよい。
 エチレンオキシドを用いる場合、ポリオール(Bb)の製造に用いるアルキレンオキシドの全量中における、エチレンオキシドの含有量(以下、全エチレンオキシド含有量、または全EO含有量ともいう。)は5~55質量%が好ましく、10~50質量%がより好ましく、15~45質量%が特に好ましい。該全EO含有量が上記範囲の下限値以上であると、ポリオールの粘度が高くなりすぎず、取り扱いが容易である。上記範囲の上限値以下であると、反応が速くなりすぎず、発泡反応の制御がしやすい。
 なお、本明細書では、プロピレンオキシドを開環付加重合させた後に、エチレンオキシドを開環付加重合させる場合など異なるアルキレンオキシドを順番に開環付加重合していく場合に、アルキレンオキシドの全量中のうち、最後に開環付加重合させたエチレンオキシドの割合を、末端のEO含有量(単位:質量%)ともいう。
Specifically, the use of propylene oxide alone or the combined use of ethylene oxide and propylene oxide is preferable. When used in combination, ethylene oxide and propylene oxide may be reacted after being mixed or sequentially.
When ethylene oxide is used, the content of ethylene oxide (hereinafter also referred to as total ethylene oxide content or total EO content) in the total amount of alkylene oxide used in the production of polyol (Bb) is preferably 5 to 55% by mass, 10 to 50% by mass is more preferable, and 15 to 45% by mass is particularly preferable. When the total EO content is not less than the lower limit of the above range, the polyol does not have too high a viscosity and is easy to handle. When the amount is not more than the upper limit of the above range, the reaction does not become too fast and the foaming reaction is easily controlled.
In this specification, when ring-opening addition polymerization of different alkylene oxides such as when ethylene oxide is ring-opening addition polymerization after propylene oxide ring-opening addition polymerization, out of the total amount of alkylene oxide. The ratio of ethylene oxide finally subjected to ring-opening addition polymerization is also referred to as terminal EO content (unit: mass%).
 ポリオール(Bb)の水酸基数は2~4が好ましい。上記範囲の下限値以上であると、硬質フォームの強度が向上し、収縮が抑制される。上記範囲の上限値以下であると、ポリオールの粘度が高くなりすぎず取り扱いが容易であり、成形時の流動性も良好となる。
 ポリオール(Bb)の水酸基価は300~1,000mgKOH/gが好ましく、350~900mgKOH/gがより好ましく、400~800mgKOH/gが特に好ましい。ポリオール(Bb)の水酸基価が上記範囲の下限値以上であると、ポリイソシアネート化合物との反応が促進され、成形時のキュアー性が向上する。上記範囲の上限値以下であると、硬質フォームの脆性が抑制され、硬質フォームの強度が良好となる。
The number of hydroxyl groups in the polyol (Bb) is preferably 2-4. When it is at least the lower limit of the above range, the strength of the rigid foam is improved and shrinkage is suppressed. When it is at most the upper limit of the above range, the viscosity of the polyol does not become too high and handling is easy, and the fluidity during molding is also good.
The hydroxyl value of the polyol (Bb) is preferably from 300 to 1,000 mgKOH / g, more preferably from 350 to 900 mgKOH / g, particularly preferably from 400 to 800 mgKOH / g. When the hydroxyl value of the polyol (Bb) is not less than the lower limit of the above range, the reaction with the polyisocyanate compound is promoted, and the curing property at the time of molding is improved. When the amount is not more than the upper limit of the above range, the brittleness of the rigid foam is suppressed, and the strength of the rigid foam becomes good.
 ポリオール組成物(Pb)におけるポリオール(Bb)の含有量は、20~70質量%が好ましく、25~65質量%がより好ましく、30~60質量%が特に好ましい。ポリオール(Bb)の含有量が、上記範囲の下限値以上であると、ポリオール組成物(Pb)と、ハイドロフルオロオレフィン類(I)との相溶性が向上し、ポリオールシステム液の分離が抑制される。また、成形時のキュアー性も良好となる。上記範囲の上限値以下であると、ポリオールシステム液の分離が抑制される。 The content of the polyol (Bb) in the polyol composition (Pb) is preferably 20 to 70% by mass, more preferably 25 to 65% by mass, and particularly preferably 30 to 60% by mass. When the content of the polyol (Bb) is not less than the lower limit of the above range, the compatibility between the polyol composition (Pb) and the hydrofluoroolefins (I) is improved, and separation of the polyol system liquid is suppressed. The Further, the curing property at the time of molding is also good. Separation of a polyol system liquid is suppressed as it is below the upper limit of the said range.
[ポリオール(Cb)]
 ポリオール(Cb)は、芳香族アミン(マンニッヒ縮合物を除く)を開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオールである。ポリオール(Cb)は、1種のみを用いてもよく、2種以上を併用してもよい。
[Polyol (Cb)]
The polyol (Cb) is a polyether polyol obtained by ring-opening addition polymerization of an alkylene oxide using an aromatic amine (excluding a Mannich condensation product) as an initiator. As the polyol (Cb), only one type may be used, or two or more types may be used in combination.
 開始剤である芳香族アミンとしては、活性水素原子数が4~12の、芳香環を有するアミン類を用いることが好ましい。その具体例としては、フェニレンジアミン、トリレンジアミン、ジアミノジフェニルメタン等が挙げられる。
 これらの開始剤のうち低い熱伝導率が得られる点から、トリレンジアミンが特に好ましい。トリレンジアミンはo-トリレンジアミンでもよく、m-トリレンジアミンでもよい。
As the aromatic amine as the initiator, amines having an aromatic ring having 4 to 12 active hydrogen atoms are preferably used. Specific examples thereof include phenylenediamine, tolylenediamine, diaminodiphenylmethane and the like.
Of these initiators, tolylenediamine is particularly preferred because of its low thermal conductivity. Tolylenediamine may be o-tolylenediamine or m-tolylenediamine.
 ポリオール(Cb)の製造に用いるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等が例示できる。少なくともエチレンオキシドを含むことが好ましく、エチレンオキシドとプロピレンオキシドとの併用が好ましい。エチレンオキシドとプロピレンオキシドは、混合してから反応させても、順次反応させてもよい。
 ポリオール(Cb)の製造に用いるアルキレンオキシドの全量中における、エチレンオキシドの含有量(全EO含有量)は0~60質量%が好ましく、0~45質量%がより好ましく、0~30質量%が特に好ましい。該全EO含有量が上記範囲の上限値以下であると、適度な反応性を有するため成形性が良好となる。
Examples of the alkylene oxide used for the production of the polyol (Cb) include ethylene oxide, propylene oxide, butylene oxide and the like. It is preferable to contain at least ethylene oxide, and the combined use of ethylene oxide and propylene oxide is preferable. Ethylene oxide and propylene oxide may be reacted after mixing or sequentially.
The ethylene oxide content (total EO content) in the total amount of alkylene oxide used in the production of the polyol (Cb) is preferably 0 to 60% by mass, more preferably 0 to 45% by mass, and particularly preferably 0 to 30% by mass. preferable. If the total EO content is less than or equal to the upper limit of the above range, the moldability is good because of the appropriate reactivity.
 ポリオール(Cb)の水酸基数は4~12が好ましく、4~10がより好ましく、4~8が特に好ましい。上記範囲の下限値以上であると、硬質フォームの強度が良好となり、硬質フォームの収縮が抑制される。上記範囲の上限値以下であると、発泡、成形時の流動性が良好となる。
 ポリオール(Cb)の水酸基価は100~800mgKOH/gが好ましく、200~600mgKOH/gがより好ましく、300~500mgKOH/gが特に好ましい。ポリオール(Cb)の水酸基価が上記範囲の下限値以上であると、硬質フォームの独泡率が向上して良好な熱伝導率が得られる。上記範囲の上限値以下であると、硬質フォームの脆性が抑制されて硬質フォームの強度が向上する。
The number of hydroxyl groups in the polyol (Cb) is preferably 4 to 12, more preferably 4 to 10, and particularly preferably 4 to 8. When it is at least the lower limit of the above range, the strength of the rigid foam becomes good and the shrinkage of the rigid foam is suppressed. When it is at most the upper limit of the above range, the fluidity during foaming and molding will be good.
The hydroxyl value of the polyol (Cb) is preferably 100 to 800 mgKOH / g, more preferably 200 to 600 mgKOH / g, and particularly preferably 300 to 500 mgKOH / g. When the hydroxyl value of the polyol (Cb) is not less than the lower limit of the above range, the closed cell rate of the rigid foam is improved and good thermal conductivity is obtained. If it is not more than the upper limit of the above range, the brittleness of the rigid foam is suppressed and the strength of the rigid foam is improved.
 ポリオール組成物(Pb)におけるポリオール(Cb)の含有量は、20~60質量%が好ましく、30~55質量%がより好ましく、30~50質量%が特に好ましい。ポリオール(Cb)の含有量が、上記範囲の下限値以上であると、熱伝導率が良好となる。上記範囲の上限値以下であると、ポリオールシステム液の粘度上昇が抑制され取り扱いが容易で、かつ硬質フォームの発泡・成形時の流動性が良好となる。 The content of the polyol (Cb) in the polyol composition (Pb) is preferably 20 to 60% by mass, more preferably 30 to 55% by mass, and particularly preferably 30 to 50% by mass. Thermal conductivity becomes favorable in content of a polyol (Cb) being more than the lower limit of the said range. When the amount is not more than the upper limit of the above range, an increase in the viscosity of the polyol system liquid is suppressed, handling is easy, and fluidity during foaming / molding of the rigid foam is improved.
[ポリマー分散ポリオール(Wb)]
 ポリオール組成物(Pb)は、ポリマー粒子を含有する。具体的には、ベースポリオール(Wb’)中にポリマー粒子が分散しているポリマー分散ポリオール(Wb)を調製し、該ポリマー分散ポリオール(Wb)をポリオール組成物(Pb)に含有させることが好ましい。
 ポリオール組成物(Pb)中にポリマー粒子を存在させることにより、硬質フォームの収縮を抑制して、寸法安定性を向上させることができる。この効果は、より低密度の硬質フォームを製造する際に、特に有用である。ポリマー分散ポリオール(Wb)は1種でもよく、2種以上を併用してもよい。
[Polymer-dispersed polyol (Wb)]
The polyol composition (Pb) contains polymer particles. Specifically, it is preferable to prepare a polymer-dispersed polyol (Wb) in which polymer particles are dispersed in the base polyol (Wb ′), and to contain the polymer-dispersed polyol (Wb) in the polyol composition (Pb). .
The presence of polymer particles in the polyol composition (Pb) can suppress the shrinkage of the rigid foam and improve the dimensional stability. This effect is particularly useful in producing lower density rigid foams. The polymer-dispersed polyol (Wb) may be one type or a combination of two or more types.
 ポリオール組成物(Pb)全体におけるポリマー粒子の含有量は0.002~30質量%が好ましく、0.02~20質量%がより好ましく、0.5~10質量%が特に好ましい。上記範囲内であると、断熱性能を維持しながら、得られる硬質フォームの収縮を効果的に抑制できる。また、常温の貯蔵安定性および高温の貯蔵安定性が良好となる。
 本発明Cにおけるポリマー分散ポリオール(Wb)については好ましい態様を含め、発明Aにおけるポリマー分散ポリオール(Wa)と同様である。
 本発明Cにおけるポリマー分散ポリオール(Wb)の製造におけるベースポリオール(Wb’)については好ましい態様を含め、発明Aにおけるベースポリオール(Wa’)と同様である。またベースポリオール(Wb’)は、前記ポリオール(Ab)~(Cb)のいずれかと同じであってもよい。
The content of the polymer particles in the entire polyol composition (Pb) is preferably 0.002 to 30% by mass, more preferably 0.02 to 20% by mass, and particularly preferably 0.5 to 10% by mass. Within the above range, shrinkage of the obtained rigid foam can be effectively suppressed while maintaining heat insulation performance. Moreover, the storage stability at normal temperature and the storage stability at high temperature are good.
The polymer-dispersed polyol (Wb) in the present invention C is the same as the polymer-dispersed polyol (Wa) in the present invention A including preferred embodiments.
The base polyol (Wb ′) in the production of the polymer-dispersed polyol (Wb) in the present invention C is the same as the base polyol (Wa ′) in the present invention A, including preferred embodiments. The base polyol (Wb ′) may be the same as any of the polyols (Ab) to (Cb).
[その他のポリオール(Eb)]
 ポリオール組成物(Pb)に、ポリオール(Ab)、ポリオール(Bb)、ポリオール(Cb)、またはポリマー分散ポリオール(Wb)のいずれにも属さない、その他のポリオール(Eb)を含有させてもよい。
 その他のポリオール(Eb)としては、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、アクリルポリオール等が例示できる。ポリオール(Eb)の水酸基価は200~800mgKOH/gが好ましく、200~600mgKOH/gがより好ましく、200~500mgKOH/gが特に好ましい。
 ポリオール組成物(Pb)におけるポリオール(Eb)の含有量は80質量%以下が好ましく、50質量%以下がより好ましく、25質量%以下がさらに好ましく、20質量%以下が特に好ましい。
[Other polyols (Eb)]
The polyol composition (Pb) may contain other polyol (Eb) that does not belong to any of the polyol (Ab), the polyol (Bb), the polyol (Cb), or the polymer-dispersed polyol (Wb).
Examples of the other polyol (Eb) include polyether polyol, polyester polyol, polycarbonate polyol, and acrylic polyol. The hydroxyl value of the polyol (Eb) is preferably 200 to 800 mgKOH / g, more preferably 200 to 600 mgKOH / g, and particularly preferably 200 to 500 mgKOH / g.
The content of the polyol (Eb) in the polyol composition (Pb) is preferably 80% by mass or less, more preferably 50% by mass or less, further preferably 25% by mass or less, and particularly preferably 20% by mass or less.
<ポリオール組成物(Pb)>
 ポリオール組成物(Pb)は、ポリオール(Ab)とポリマー粒子を含み、さらにポリオール(Bb)、ポリオール(Cb)から選ばれる1種以上を含むことが好ましい。任意にその他ポリオール(Eb)を含んでもよい。また、ポリマー粒子はポリマー分散ポリオール(Wb)由来であることが好ましい。
 ポリオール組成物(Pb)全体としての平均水酸基数は2~8であり、2.5~7.5が好ましい。該平均水酸基数が上記範囲であると、硬質フォームの圧縮強度が向上し、収縮も抑制できるため寸法安定性が良好となる。
 ポリオール組成物(Pb)全体としての平均水酸基価は100~800mgKOH/gであり、200~700mgKOH/gが好ましく、200~600mgKOH/gが特に好ましい。該平均水酸基価が上記範囲であると、発泡、成形時の急激な増粘挙動が抑制され、流動性、成形性が良好となる。
<Polyol composition (Pb)>
The polyol composition (Pb) preferably contains a polyol (Ab) and polymer particles, and further contains one or more selected from polyol (Bb) and polyol (Cb). Optionally, other polyol (Eb) may be included. The polymer particles are preferably derived from a polymer-dispersed polyol (Wb).
The average number of hydroxyl groups as a whole of the polyol composition (Pb) is 2 to 8, preferably 2.5 to 7.5. When the average number of hydroxyl groups is within the above range, the compression strength of the rigid foam is improved and shrinkage can be suppressed, so that the dimensional stability is good.
The average hydroxyl value of the polyol composition (Pb) as a whole is 100 to 800 mgKOH / g, preferably 200 to 700 mgKOH / g, particularly preferably 200 to 600 mgKOH / g. When the average hydroxyl value is in the above range, rapid thickening behavior during foaming and molding is suppressed, and fluidity and moldability are improved.
 本発明Bにおいて、ポリオール組成物(Pb)の全部がポリオール(Ab)およびポリマー粒子であってもよい。
 後述のウレタン処方で硬質ポリウレタンフォームを製造する場合の好ましい組み合わせを以下に示す。
(組み合わせ2)ポリオール組成物(Pb)が、ポリオール(Ab)の5~80質量と、ポリオール(Bb)の20~70質量%と、ポリオール(Cb)の10~60質量%と、ポリオール(Eb)の0~25質量%と、ポリオール(Wb)とからなり、ポリマー粒子の含有量が0.002~10質量%である。
In the present invention B, all of the polyol composition (Pb) may be polyol (Ab) and polymer particles.
Preferred combinations in the case of producing a rigid polyurethane foam with the urethane formulation described below are shown below.
(Combination 2) The polyol composition (Pb) comprises 5 to 80 mass% of the polyol (Ab), 20 to 70 mass% of the polyol (Bb), 10 to 60 mass% of the polyol (Cb), and the polyol (Eb ) And a polyol (Wb), and the content of polymer particles is 0.002 to 10% by mass.
(組み合わせ3)
ポリオール組成物(Pb)が、
ポリオール(Ab)の5~60質量と、
ポリオール(Bb)の20~65質量%と、
ポリオール(Cb)の20~55質量%と、
ポリオール(Eb)の0~25質量%と、
ポリオール(Wb)とからなり、
ポリマー粒子の含有量が0.01~10質量%である。
(組み合わせ4)
ポリオール組成物(Pb)が、
ポリオール(Ab)の5~50質量と、
ポリオール(Bb)の20~60質量%と、
ポリオール(Cb)の20~50質量%と、
ポリオール(Eb)の0~25質量%と、
ポリオール(Wb)とからなり、
ポリマー粒子の含有量が0.01~7質量%である。
(Combination 3)
The polyol composition (Pb)
5 to 60 mass of the polyol (Ab);
20 to 65% by mass of the polyol (Bb),
20 to 55% by mass of the polyol (Cb);
0 to 25% by mass of the polyol (Eb);
A polyol (Wb),
The polymer particle content is 0.01 to 10% by mass.
(Combination 4)
The polyol composition (Pb)
5 to 50 mass of the polyol (Ab);
20 to 60% by mass of the polyol (Bb),
20 to 50% by mass of the polyol (Cb);
0 to 25% by mass of the polyol (Eb);
A polyol (Wb),
The polymer particle content is 0.01 to 7% by mass.
 後述のイソシアヌレート処方で硬質ポリイソシアヌレートフォームを製造する場合の好ましい組み合わせを以下に示す。
(組み合わせ5)ポリオール組成物(Pb)が、ポリオール(Ab)の20~100質量%と、ポリオール(Eb)の0~80質量%とからなる。(組み合わせ6)ポリオール組成物(Pb)が、ポリオール(Ab)の20~100質量%と、ポリオール(Eb)の0~80質量%と、ポリオール(Wb)とからなり、ポリマー粒子の含有量が0.01~7質量%である。
Preferred combinations for producing a rigid polyisocyanurate foam with the isocyanurate formulation described below are shown below.
(Combination 5) The polyol composition (Pb) comprises 20 to 100% by mass of the polyol (Ab) and 0 to 80% by mass of the polyol (Eb). (Combination 6) The polyol composition (Pb) is composed of 20 to 100% by mass of the polyol (Ab), 0 to 80% by mass of the polyol (Eb), and the polyol (Wb). 0.01 to 7% by mass.
<ポリイソシアネート化合物>
 本発明Bにおけるポリイソシアネート化合物は、好ましい態様を含め、本発明Aにおけるポリイソシアネート化合物と同様である。
 本発明Bにおいては、触媒としてイソシアネート基の三量化反応を促進させる触媒を主に用いるイソシアヌレート処方の場合、ポリイソシアネート化合物の使用量は、前記イソシアネート指数で100~350が好ましく、100~300が特に好ましい。
<Polyisocyanate compound>
The polyisocyanate compound in the present invention B is the same as the polyisocyanate compound in the present invention A including preferred embodiments.
In the present invention B, in the case of an isocyanurate formulation mainly using a catalyst that promotes the trimerization reaction of isocyanate groups as a catalyst, the amount of polyisocyanate compound used is preferably 100 to 350, preferably 100 to 300 in terms of the isocyanate index. Particularly preferred.
<発泡剤>
 本発明Bにおける発泡剤は好ましい態様を含め、本発明Aにおける発泡剤と同様である。
 式(I)で表わされるハイドロフルオロオレフィン類は好ましい態様を含め発明Aにおける式(I)で表わされるハイドロフルオロオレフィン類と同様である。
 <触媒>
 本発明Bにおける触媒は、好ましい態様を含め本発明Aにおける触媒と同様である。
 <整泡剤>
 本発明Bにおける整泡剤は好ましい態様を含め、本発明Aにおける整泡剤と同様である。
 <その他の配合剤>
 本発明Bにおけるその他の配合剤は、好ましい態様を含め、本発明Aにおけるその他の配合剤と同様である。 
<Foaming agent>
The foaming agent in the present invention B is the same as the foaming agent in the present invention A including preferred embodiments.
The hydrofluoroolefins represented by formula (I) are the same as the hydrofluoroolefins represented by formula (I) in Invention A, including preferred embodiments.
<Catalyst>
The catalyst in the present invention B is the same as the catalyst in the present invention A including preferred embodiments.
<Foam stabilizer>
The foam stabilizer in the present invention B is the same as the foam stabilizer in the present invention A including preferred embodiments.
<Other ingredients>
Other compounding agents in the present invention B are the same as other compounding agents in the present invention A, including preferred embodiments.
<本発明Bの硬質フォームの製造方法>
 本発明Bの硬質フォームの製造方法は、連続ボード成形法により、ポリオール組成物(Pb)とポリイソシアネート化合物とを、発泡剤、整泡剤および触媒の存在下で反応、発泡させて硬質発泡合成樹脂を製造する方法である。
 連続ボード成形法とは、連続的に供給される2枚の面材間に発泡原液組成物を供給して発泡させることにより、これらの面材の間に硬質フォームが挟まれた積層体を製造する方法であり、建築用途の断熱材の製造等に用いられる。建築材料としての硬質フォームは、防火性の観点から難燃性が必要である。連続ボード成形法において良好な成形性を得るには、発泡原液組成物の流し込みを良好に行うことができる流動性が要求される。
<The manufacturing method of the rigid foam of this invention B>
The manufacturing method of the rigid foam of the present invention B is a rigid foam synthesis by reacting and foaming a polyol composition (Pb) and a polyisocyanate compound in the presence of a foaming agent, a foam stabilizer and a catalyst by a continuous board molding method. This is a method for producing a resin.
The continuous board molding method is to produce a laminate in which a rigid foam is sandwiched between these face materials by supplying the foamed stock solution composition between two continuously supplied face materials and foaming. This method is used for manufacturing a heat insulating material for architectural use. Rigid foam as a building material needs flame retardance from the viewpoint of fire resistance. In order to obtain a good moldability in the continuous board molding method, a fluidity capable of satisfactorily pouring the foaming stock solution composition is required.
 本発明Bは、特に、ポリオール組成物(Pb)がマンニッヒポリオールを含むため、高い難燃性が得られやすい。また連続ボード成形法に本発明Bを適用すると、流動性、キュアー性が良好であるため、成形性に優れる。
 該面材の代表例としては、クラフト紙、塩化ビニル製フィルムおよびシート、鉄板、スレート板、石膏板等が挙げられる。
 連続ボード成形法で得られる硬質フォームの用途の代表例としては、建築用断熱材、自動販売機等の冷凍機器用断熱材等が挙げられる。
In the present invention B, since the polyol composition (Pb) contains Mannich polyol in particular, high flame retardancy is easily obtained. Further, when the present invention B is applied to the continuous board molding method, the fluidity and the curing property are good, so that the moldability is excellent.
Representative examples of the face material include kraft paper, vinyl chloride film and sheet, iron plate, slate plate, gypsum plate and the like.
Typical examples of the use of the rigid foam obtained by the continuous board molding method include a heat insulating material for buildings, a heat insulating material for refrigeration equipment such as a vending machine, and the like.
 また本発明Bは、スプレー法または注入法による硬質フォームの製造にも適用可能である。
 スプレー法とは、硬質フォームをスプレーで吹き付け施工する方法である。スプレー法は、大きく分けてエアスプレー法とエアレススプレー法がある。このうち特に配合液をミキシングヘッドで混合して発泡させるエアレススプレー法が好ましい。具体的なスプレー法の方法は、発明Cにおける方法を用いることができる。
 注入法とは、金型等の枠内に硬質フォーム原料を注入して発泡させる方法である。具体的な注入法の方法は、発明Aにおける方法を用いることができる。
The present invention B can also be applied to the production of rigid foams by spraying or pouring.
The spray method is a method in which a rigid foam is sprayed and applied. The spray method is roughly classified into an air spray method and an airless spray method. Of these, the airless spray method in which the blended liquid is mixed with a mixing head and foamed is particularly preferable. As a specific spray method, the method in Invention C can be used.
The injection method is a method in which a rigid foam material is injected into a frame such as a mold and foamed. As a specific injection method, the method in Invention A can be used.
 本発明Bによれば、発泡剤として、ハイドロフルオロオレフィン類(I)を用いて、良好な特性を有する硬質フォームが得られる。
 具体的に、硬質フォームにあっては、低密度化した場合にも、ポリオールシステム液の貯蔵安定性が良好であること、成形性が良好であること、寸法安定性が良好であることが望ましい。本発明Bによれば、これらの特性の全部が良好である硬質フォームを得ることができる。
 また、ポリオール(Ab)およびポリマー粒子とハイドロフルオロオレフィン類(I)を組み合わせることにより、寸法安定性が良好で熱伝導率の低い、すなわち良好な断熱性能を有する硬質フォームを得ることができる。また本発明Bによれば、ポリオールシステム液の高温貯蔵安定性が良好となる。
According to the present invention B, a rigid foam having good characteristics can be obtained by using the hydrofluoroolefins (I) as the foaming agent.
Specifically, for rigid foams, it is desirable that the polyol system liquid has good storage stability, good moldability, and good dimensional stability even when the density is reduced. . According to the present invention B, it is possible to obtain a rigid foam in which all of these characteristics are good.
Further, by combining the polyol (Ab) and polymer particles with the hydrofluoroolefins (I), a rigid foam having good dimensional stability and low thermal conductivity, that is, having good heat insulation performance can be obtained. Moreover, according to the present invention B, the high-temperature storage stability of the polyol system liquid is improved.
<本発明Cについての説明>
 本発明Cにおける「ポリオール組成物(Pc)」とは、ポリイソシアネート化合物との反応に用いるポリオール(ポリマー分散ポリオールを含む)の全部の混合物である。
 本発明Cにおける「ポリオールシステム液」とは、ポリイソシアネート化合物と反応させる相手の液であり、ポリオール組成物(Pc)のほかに発泡剤、整泡剤、触媒等、必要に応じた配合剤を含む液である。
 本発明Cにおける「マンニッヒ縮合物」とは、一般にアニリン、フェノール類等の芳香族化合物と、アルデヒド類と、アミン類とを縮合反応(以下、マンニッヒ縮合反応ということもある。)させて得られる化合物を意味する。
 本発明Cにおける「ポリマー分散ポリオール」とは、ポリエーテルポリオールまたはポリエステルポリオール等のベースポリオール(Wc’)中で、重合性不飽和結合を有するモノマーを重合させてポリマー粒子を形成することによって得られるもので、該ベースポリオール(Wc’)中に該ポリマー粒子を分散させたポリオール(Wc)である。
<Description of Invention C>
The “polyol composition (Pc)” in the present invention C is a mixture of all polyols (including polymer-dispersed polyols) used for the reaction with the polyisocyanate compound.
The “polyol system liquid” in the present invention C is a liquid to be reacted with the polyisocyanate compound, and in addition to the polyol composition (Pc), a blending agent as necessary, such as a foaming agent, a foam stabilizer, a catalyst and the like. Contains liquid.
The “Mannich condensation product” in the present invention C is generally obtained by subjecting an aromatic compound such as aniline or phenols, an aldehyde, and an amine to a condensation reaction (hereinafter sometimes referred to as a Mannich condensation reaction). Means a compound.
The “polymer-dispersed polyol” in the present invention C is obtained by polymerizing a monomer having a polymerizable unsaturated bond in a base polyol (Wc ′) such as a polyether polyol or a polyester polyol to form polymer particles. It is a polyol (Wc) in which the polymer particles are dispersed in the base polyol (Wc ′).
[ポリオール(Ac)]
 本発明Cにおけるポリオール組成物(Pc)は、ポリオール(Ac)を含む。
 ポリオール(Ac)は、フェノール類とアルデヒド類とアルカノールアミン類とを反応させて得られるマンニッヒ縮合物を開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオール(マンニッヒポリオール)である。該マンニッヒポリオールは難燃性向上にも寄与する。
[Polyol (Ac)]
The polyol composition (Pc) in the present invention C contains a polyol (Ac).
Polyol (Ac) is a polyether polyol (Mannich polyol) obtained by ring-opening addition polymerization of alkylene oxide using a Mannich condensation product obtained by reacting phenols, aldehydes and alkanolamines as an initiator. . The Mannich polyol contributes to the improvement of flame retardancy.
 フェノール類は、フェノール、およびフェノールの水酸基に対して少なくとも1か所のオルト位に水素原子を有するフェノール誘導体からなる群から選ばれる1種以上である。すなわち、フェノールの水酸基に対して少なくとも1か所のオルト位に水素原子を有していればよく、フェノールであってもよく、フェノール誘導体であってもよい。フェノール類は1種でもよく、2種以上を併用してもよい。 The phenol is at least one selected from the group consisting of phenol and a phenol derivative having a hydrogen atom in at least one ortho position with respect to the hydroxyl group of phenol. That is, it suffices to have a hydrogen atom in at least one ortho position with respect to the hydroxyl group of phenol, which may be phenol or a phenol derivative. One type of phenol may be used, or two or more types may be used in combination.
 フェノール誘導体としては、フェノールの水酸基に対して少なくとも1か所のオルト位に水素原子を有し、それ以外の、芳香環に結合した水素原子の1個以上が炭素数1~15のアルキル基で置換されたアルキルフェノールが好ましい。アルキルフェノールにおけるアルキル基の置換位置はオルト位、メタ位、パラ位のいずれでもよい。アルキルフェノールの1分子中、アルキル基で置換された水素原子の数は1~4個であり、1~2個が好ましく、1個が特に好ましい。
 アルキルフェノールにおけるアルキル基の炭素数は、好ましくは1~10である。該アルキルフェノールとして、ノニルフェノール、クレゾールが好ましく用いられる。特にノニルフェノールは、ポリオール(Ac)とポリイソシアネート化合物との相溶性を向上させ、セル外観を向上させる点で好ましい。
The phenol derivative has a hydrogen atom in at least one ortho position with respect to the hydroxyl group of phenol, and at least one of the other hydrogen atoms bonded to the aromatic ring is an alkyl group having 1 to 15 carbon atoms. Substituted alkylphenols are preferred. The substitution position of the alkyl group in the alkylphenol may be any of the ortho, meta, and para positions. In one molecule of alkylphenol, the number of hydrogen atoms substituted with an alkyl group is 1 to 4, preferably 1 to 2, and particularly preferably 1.
The number of carbon atoms of the alkyl group in the alkylphenol is preferably 1-10. As the alkylphenol, nonylphenol and cresol are preferably used. Nonylphenol is particularly preferable in terms of improving the compatibility between the polyol (Ac) and the polyisocyanate compound and improving the cell appearance.
 アルデヒド類としては、ホルムアルデヒドおよびアセトアルデヒドの一方または両方の混合物が用いられる。これらのうちで、ホルムアルデヒドがマンニッヒ反応の反応性の点で好ましい。ホルムアルデヒドはどのような形態で使用してもよく、具体的にはホルマリン水溶液、メタノール溶液、またはパラホルムアルデヒドとして使用できる。パラホルムアルデヒドとして使用する場合は、パラホルムアルデヒドを加熱してホルムアルデヒドを生成させ、該ホルムアルデヒドを本工程の反応に用いてもよい。なお、使用量は、ホルムアルデヒド換算のモル数で計算する。 As the aldehydes, one or a mixture of formaldehyde and acetaldehyde is used. Of these, formaldehyde is preferable in terms of the reactivity of the Mannich reaction. Formaldehyde may be used in any form. Specifically, it can be used as a formalin aqueous solution, a methanol solution, or paraformaldehyde. When used as paraformaldehyde, paraformaldehyde may be heated to form formaldehyde, and the formaldehyde may be used in the reaction of this step. The amount used is calculated as the number of moles in terms of formaldehyde.
 アルカノールアミン類は、モノエタノールアミン、ジエタノールアミンおよび1-アミノ-2-プロパノールからなる群から選ばれる1種以上である。これらのうちで、ジエタノールアミンが、低粘度のマンニッヒポリオールが得られやすい点で好ましい。
 開始剤として用いるマンニッヒ縮合物は、上記フェノール類と、アルデヒド類と、アルカノールアミン類とをマンニッヒ縮合反応させて得られる反応生成物である。該反応生成物には反応後に残存する未反応物も含まれるものとする。マンニッヒ縮合反応は公知の方法で実施できる。
The alkanolamines are at least one selected from the group consisting of monoethanolamine, diethanolamine and 1-amino-2-propanol. Of these, diethanolamine is preferable in that a low-viscosity Mannich polyol is easily obtained.
The Mannich condensation product used as an initiator is a reaction product obtained by subjecting the above phenols, aldehydes, and alkanolamines to a Mannich condensation reaction. The reaction product includes unreacted substances remaining after the reaction. The Mannich condensation reaction can be carried out by a known method.
 マンニッヒ縮合反応に用いる原料において、フェノール類の1モルに対する、アルデヒド類の割合は0.3モル以上3モル以下が好ましい。該アルデヒド類の割合が上記範囲の下限値以上であると、硬質フォームの良好な寸法安定性が得られやすい。上限値以下であると低粘度のマンニッヒポリオールを得やすくなる。また、マンニッヒポリオールの粘度がより低くなりやすい点では、0.3モル以上0.9モル未満が好ましく、得られる硬質フォームの強度の点からは0.9モル以上1.5モル以下がより好ましい。
 マンニッヒ縮合反応に用いる原料において、アルデヒド類の1モルに対する、アルカノールアミン類の割合は0.7モル以上12モル以下が好ましい。該アルカノールアミン類の割合が上記範囲の下限値以上であると、良好な強度の硬質フォームが得られやすい。上限値以下であると良好な難燃性の硬質フォームが得られやすい。また、得られる硬質フォームの難燃性の点からは、0.7モル以上5モル以下が好ましい。低粘度のマンニッヒポリオールを得る点からは、0.7モル以上5モル以下が好ましく、0.7モル以上3.5モル以下が特に好ましい。
In the raw material used for the Mannich condensation reaction, the ratio of aldehydes to 1 mol of phenols is preferably 0.3 mol or more and 3 mol or less. When the ratio of the aldehydes is at least the lower limit of the above range, good dimensional stability of the rigid foam can be easily obtained. If it is not more than the upper limit, it becomes easy to obtain a low-viscosity Mannich polyol. Further, from the viewpoint that the viscosity of Mannich polyol tends to be lower, it is preferably 0.3 mol or more and less than 0.9 mol, and more preferably 0.9 mol or more and 1.5 mol or less from the viewpoint of the strength of the resulting rigid foam. .
In the raw material used for the Mannich condensation reaction, the ratio of alkanolamines to 1 mol of aldehydes is preferably 0.7 mol or more and 12 mol or less. When the ratio of the alkanolamines is at least the lower limit of the above range, a rigid foam with good strength can be easily obtained. When the amount is not more than the upper limit, a good flame-retardant rigid foam can be easily obtained. Moreover, from the flame-retardant point of the rigid foam obtained, 0.7 mol or more and 5 mol or less are preferable. From the point of obtaining a low-viscosity Mannich polyol, it is preferably from 0.7 mol to 5 mol, particularly preferably from 0.7 mol to 3.5 mol.
 マンニッヒポリオールの製造に用いるアルキレンオキシドは、エチレンオキシド(以下、EOともいう。)、プロピレンオキシド(以下、POともいう。)、およびブチレンオキシドからなる群から選ばれる1種以上が好ましい。該アルキレンオキシドがエチレンオキシドを含むことが好ましく、エチレンオキシドのみ、またはエチレンオキシドとプロピレンオキシドとの組み合わせがより好ましい。
 EOおよび/またはPOを使用する場合、以下のいずれの方法を用いてもよい。
(1)EOを単独で開環付加重合する方法。
(2)POを単独で開環付加重合する方法。
(3)POとEOの混合物を開環付加重合する方法。
(4)上記(1)~(3)の方法を任意に組み合わせて開環付加重合する方法。
The alkylene oxide used for the production of Mannich polyol is preferably at least one selected from the group consisting of ethylene oxide (hereinafter also referred to as EO), propylene oxide (hereinafter also referred to as PO), and butylene oxide. The alkylene oxide preferably contains ethylene oxide, more preferably ethylene oxide alone or a combination of ethylene oxide and propylene oxide.
When using EO and / or PO, any of the following methods may be used.
(1) A method of ring-opening addition polymerization of EO alone.
(2) A method of ring-opening addition polymerization of PO alone.
(3) A method of ring-opening addition polymerization of a mixture of PO and EO.
(4) A method of ring-opening addition polymerization by arbitrarily combining the above methods (1) to (3).
 開始剤に付加するアルキレンオキシドの付加量は、マンニッヒ縮合反応に使用するフェノール類の1モルに対して2~30モルが好ましく、4~20モルが特に好ましい。アルキレンオキシドの付加量が上記範囲の下限値以上であると、生成するマンニッヒポリオールの水酸基価および粘度が低くなりやすい。上記範囲の上限値以下であると、硬質フォームの収縮を抑えやすい。
 開環付加重合反応に使用するアルキレンオキシドの全量中における、エチレンオキシドの含有量(以下、全エチレンオキシド含有量、または全EO含有量ともいう。)が10~100質量%が好ましく、20~100質量%が特に好ましい。上記範囲の下限値以上であるとマンニッヒポリオールの粘度が低くなりやすく、ポリオール組成物(Pc)の粘度およびポリオールシステム液の粘度を低くする上で好ましい。
 なお、ポリオール(Ac)して、複数種のマンニッヒポリオールを組み合わせて用いる場合、上記全EO含有量は、ポリオール(Ac)全体としての値である。
The addition amount of alkylene oxide added to the initiator is preferably 2 to 30 mol, particularly preferably 4 to 20 mol, relative to 1 mol of the phenols used in the Mannich condensation reaction. When the added amount of alkylene oxide is not less than the lower limit of the above range, the hydroxyl value and viscosity of the produced Mannich polyol tend to be low. It is easy to suppress shrinkage | contraction of a rigid foam as it is below the upper limit of the said range.
The ethylene oxide content (hereinafter also referred to as total ethylene oxide content or total EO content) in the total amount of alkylene oxide used in the ring-opening addition polymerization reaction is preferably 10 to 100% by mass, and 20 to 100% by mass Is particularly preferred. When the viscosity is not less than the lower limit of the above range, the Mannich polyol viscosity tends to be low, which is preferable for reducing the viscosity of the polyol composition (Pc) and the polyol system solution.
When a plurality of Mannich polyols are used in combination as a polyol (Ac), the total EO content is a value of the entire polyol (Ac).
 開始剤の活性水素原子にアルキレンオキシドを反応させることにより、アルキレンオキシドが開環付加してオキシアルキレン基を有するポリオールが生成する。活性水素原子に1分子のアルキレンオキシドが開環付加することによりヒドロキシアルキル基が生成し、また、その水酸基に引き続きアルキレンオキシドが開環付加し、この反応が繰り返されてオキシアルキレン基の連鎖が生成する。 By reacting an alkylene oxide with the active hydrogen atom of the initiator, the alkylene oxide undergoes ring-opening addition to produce a polyol having an oxyalkylene group. Hydroxyalkyl group is formed by ring-opening addition of one molecule of alkylene oxide to active hydrogen atom, and alkylene oxide is ring-opening addition to the hydroxyl group, and this reaction is repeated to form a chain of oxyalkylene groups. To do.
 ポリオール(Ac)の水酸基価は100~800mgKOH/gが好ましく、200~550mgKOH/gがより好ましく、250~450mgKOH/gが特に好ましい。
 ポリオール(Ac)の水酸基価が上記範囲の下限値以上であると、得られる硬質フォームの強度が確保し易く、良好な寸法安定性が得られやすいため好ましい。一方、上記範囲の上限値以下であると、マンニッヒポリオール中に存在するアルキレンオキシド由来のオキシアルキレン鎖の量が増え、マンニッヒポリオールの粘度が下がりやすく好ましい。また、製造される硬質フォームの脆さが抑制され接着性が出やすい。
The hydroxyl value of the polyol (Ac) is preferably from 100 to 800 mgKOH / g, more preferably from 200 to 550 mgKOH / g, particularly preferably from 250 to 450 mgKOH / g.
It is preferable for the hydroxyl value of the polyol (Ac) to be equal to or greater than the lower limit of the above range since the strength of the resulting rigid foam can be easily secured and good dimensional stability can be easily obtained. On the other hand, when the amount is not more than the upper limit of the above range, the amount of the alkylene oxide-derived oxyalkylene chain present in the Mannich polyol increases, and the viscosity of the Mannich polyol tends to decrease. Further, the brittleness of the manufactured rigid foam is suppressed, and the adhesiveness is likely to be obtained.
 ポリオール組成物(Pc)におけるポリオール(Ac)の含有量は、20~100質量%であり、20~70質量%が好ましく、25~60質量%がより好ましく、30~60質量%がさらに好ましく、30~50質量%が特に好ましい。ポリオール(Ac)の含有量が、上記範囲の下限値以上であると、接着性および難燃性が良好な硬質フォームが得られる。上記範囲の上限値以下であるとポリオールシステム液の粘度が高くなりすぎず取り扱いが容易である。 The content of the polyol (Ac) in the polyol composition (Pc) is 20 to 100% by mass, preferably 20 to 70% by mass, more preferably 25 to 60% by mass, further preferably 30 to 60% by mass, 30 to 50% by mass is particularly preferable. When the content of the polyol (Ac) is not less than the lower limit of the above range, a rigid foam having good adhesion and flame retardancy can be obtained. When the viscosity is not more than the upper limit of the above range, the viscosity of the polyol system liquid does not become too high and handling is easy.
[ポリオール(Bc)]
 ポリオール(Bc)は、アミン化合物(マンニッヒ縮合物を除く)を開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオールである。ポリオール(Bc)はウレタン化反応の初期の活性を高める効果に寄与する。ポリオール(Bc)は、1種のみを用いてもよく、2種以上を併用してもよい。
 開始剤であるアミン化合物の活性水素原子数は2~6が好ましく、3~6がより好ましく、3~4が特に好ましい。
[Polyol (Bc)]
The polyol (Bc) is a polyether polyol obtained by subjecting an alkylene oxide to ring-opening addition polymerization using an amine compound (excluding a Mannich condensation product) as an initiator. The polyol (Bc) contributes to the effect of increasing the initial activity of the urethanization reaction. As the polyol (Bc), only one type may be used, or two or more types may be used in combination.
The number of active hydrogen atoms of the amine compound as an initiator is preferably 2 to 6, more preferably 3 to 6, and particularly preferably 3 to 4.
 開始剤であるアミン化合物としては、アルカノールアミン類(モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等)、アルキルアミン類(エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン)等の脂肪族アミン化合物;N-アミノメチルピペラジン、N-(2-アミノエチル)ピペラジンなどの飽和環状アミン化合物;アニリン、トリレンジアミン、キシリレンジアミン、ジフェニルメタンジアミンなどの芳香族アミン化合物(マンニッヒ縮合物を含まない)が挙げられる。ウレタン化反応の初期の活性を高める効果の点から、脂肪族アミン化合物または飽和環状アミン化合物が好ましい。 Examples of amine compounds that are initiators include aliphatic amine compounds such as alkanolamines (monoethanolamine, diethanolamine, triethanolamine, etc.) and alkylamines (ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine). Saturated aromatic amine compounds such as N-aminomethylpiperazine and N- (2-aminoethyl) piperazine; aromatic amine compounds such as aniline, tolylenediamine, xylylenediamine, and diphenylmethanediamine (not including Mannich condensation products) Can be mentioned. From the viewpoint of the effect of increasing the initial activity of the urethanization reaction, an aliphatic amine compound or a saturated cyclic amine compound is preferred.
 ポリオール(Bc)の製造に用いるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等が例示できる。プロピレンオキシド単独の使用、またはエチレンオキシドとプロピレンオキシドとの併用が好ましい。併用する場合、エチレンオキシドとプロピレンオキシドは、混合してから反応させても、順次反応させてもよい。 Examples of alkylene oxide used in the production of polyol (Bc) include ethylene oxide, propylene oxide, butylene oxide and the like. Use of propylene oxide alone or a combination of ethylene oxide and propylene oxide is preferred. When used in combination, ethylene oxide and propylene oxide may be reacted after being mixed or sequentially.
 ポリオール(Bc)の水酸基数は2~6が好ましく、3~6がより好ましく、3~4が特に好ましい。上記範囲の下限値以上であると硬質フォームの収縮を抑制し、上限値以下であると粘度が適度な範囲となり、取り扱いが容易である。
 ポリオール(Bc)の水酸基価は100~800mgKOH/gが好ましく、200~600mgKOH/gがより好ましく、300~500mgKOH/gが特に好ましい。ポリオール(Bc)の水酸基価が上記範囲の下限値以上であると、硬質フォームの強度が向上し、収縮が抑制されて寸法安定性が向上する。上記範囲の上限値以下であると、粘度が高くなりすぎず取り扱いが容易である。
The number of hydroxyl groups in the polyol (Bc) is preferably 2 to 6, more preferably 3 to 6, and particularly preferably 3 to 4. When it is at least the lower limit of the above range, shrinkage of the rigid foam is suppressed, and when it is at most the upper limit, the viscosity is in an appropriate range and handling is easy.
The hydroxyl value of the polyol (Bc) is preferably 100 to 800 mgKOH / g, more preferably 200 to 600 mgKOH / g, and particularly preferably 300 to 500 mgKOH / g. When the hydroxyl value of the polyol (Bc) is not less than the lower limit of the above range, the strength of the rigid foam is improved, shrinkage is suppressed, and the dimensional stability is improved. When it is below the upper limit of the above range, the viscosity does not become too high and handling is easy.
 本発明Cにおいて、ポリオール(Bc)は必須ではないが、ポリオール(Bc)を用いる場合、ポリオール組成物(Pc)におけるポリオール(Bc)の含有量は、0質量%超、70質量%以下が好ましく、1~40質量%がより好ましく、3~35質量%がさらに好ましく、3~30質量%が特に好ましい。ポリオール(Bc)の含有量が、上記範囲の下限値以上であると、硬質フォームの収縮が抑制されて、良好な寸法安定性が得られやすい。上記範囲の上限値以下であると硬質フォームの成形時において良好な硬化特性(キュアー性)を確保しやすい。 In the present invention C, the polyol (Bc) is not essential, but when the polyol (Bc) is used, the content of the polyol (Bc) in the polyol composition (Pc) is preferably more than 0% by mass and 70% by mass or less. 1 to 40% by mass is more preferable, 3 to 35% by mass is further preferable, and 3 to 30% by mass is particularly preferable. When the content of the polyol (Bc) is not less than the lower limit of the above range, the shrinkage of the rigid foam is suppressed, and good dimensional stability is easily obtained. When it is at most the upper limit of the above range, it is easy to ensure good curing characteristics (curing properties) during molding of the rigid foam.
[ポリオール(Cc)]
 ポリオール(Cc)は、活性水素原子数が2~8の多価アルコールを開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオールである。ポリオール(Ac)のほかにポリオール(Cc)を用いることによりポリオール組成物(Pc)の粘度が高くなりすぎるのを防止することができる。
 ポリオール(Cc)は、1種のみを用いてもよく、2種以上を併用してもよい。
[Polyol (Cc)]
The polyol (Cc) is a polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using a polyhydric alcohol having 2 to 8 active hydrogen atoms as an initiator. By using polyol (Cc) in addition to polyol (Ac), it is possible to prevent the viscosity of the polyol composition (Pc) from becoming too high.
As the polyol (Cc), only one type may be used, or two or more types may be used in combination.
 開始剤である多価アルコールとしては、水、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール等の2価アルコール;グリセリン、トリメチロールプロパン、1,2,6-ヘキサントリオール等の3価アルコール;ペンタエリスリトール、ジグリセリン、テトラメチロールシクロヘキサン、メチルグルコシド等の4価アルコール;ソルビトール、マンニトール、ズルシトール等の6価アルコール;シュークロース等の8価アルコールが挙げられる。
 これらのうち、寸法安定性と粘度のバランスが良い点でグリセリンが好ましい。
Examples of the polyhydric alcohol that is an initiator include water, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, neopentyl glycol, 3-methyl-1,5-pentanediol, 1,4-butanediol, 1,6- Dihydric alcohols such as hexanediol; trihydric alcohols such as glycerin, trimethylolpropane, 1,2,6-hexanetriol; tetrahydric alcohols such as pentaerythritol, diglycerin, tetramethylolcyclohexane, methylglucoside; sorbitol, mannitol, Hexavalent alcohols such as dulcitol; octavalent alcohols such as sucrose.
Of these, glycerin is preferred in terms of a good balance between dimensional stability and viscosity.
 ポリオール(Cc)の製造に用いるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等が例示できる。プロピレンオキシド単独の使用、またはエチレンオキシドとプロピレンオキシドとの併用が好ましい。併用する場合、エチレンオキシドとプロピレンオキシドは、混合してから反応させても、順次反応させてもよい。
 ポリオール(Cc)の製造にエチレンオキシドを併用する場合、アルキレンオキシドの全量中における、エチレンオキシドの含有量(全EO含有量)は0質量%超、50質量%以下が好ましく、5~40質量%がより好ましく、10~20質量%が特に好ましい。エチレンオキシドの含有量が上記範囲の下限値以上であると反応性が良好となり、上記範囲の上限値以下であると、得られる硬質フォームの脆性が抑制される。
Examples of the alkylene oxide used for the production of the polyol (Cc) include ethylene oxide, propylene oxide, butylene oxide and the like. Use of propylene oxide alone or a combination of ethylene oxide and propylene oxide is preferred. When used in combination, ethylene oxide and propylene oxide may be reacted after being mixed or sequentially.
When ethylene oxide is used in combination with the production of the polyol (Cc), the ethylene oxide content (total EO content) in the total amount of alkylene oxide is more than 0% by mass, preferably 50% by mass or less, more preferably 5 to 40% by mass. Preferably, 10 to 20% by mass is particularly preferable. When the ethylene oxide content is at least the lower limit of the above range, the reactivity is good, and when it is at most the upper limit of the above range, the brittleness of the resulting rigid foam is suppressed.
 ポリオール(Cc)の水酸基数は2~8であり、2~6がより好ましく、2~4が特に好ましい。上記範囲の下限値以上であると、硬質フォームの収縮が抑制されて寸法安定性が向上する。上限値以下であると、粘度が高くなりすぎず取り扱いが容易である。
 ポリオール(Cc)の水酸基価は100~800mgKOH/gが好ましく、200~700mgKOH/gがより好ましく、300~600mgKOH/gが特に好ましい。ポリオール(Cc)の水酸基価が上記範囲の下限値以上であると、硬質フォームの強度が良好となり、収縮が抑制される。上記範囲の上限値以下であると、粘度が高くなりすぎず取り扱いが容易であり、ポリイソシアネーとト化合物との混合性も良好となる。
The number of hydroxyl groups in the polyol (Cc) is 2 to 8, more preferably 2 to 6, and particularly preferably 2 to 4. When it is at least the lower limit of the above range, the shrinkage of the rigid foam is suppressed and the dimensional stability is improved. When it is at most the upper limit, the viscosity does not become too high and handling is easy.
The hydroxyl value of the polyol (Cc) is preferably from 100 to 800 mgKOH / g, more preferably from 200 to 700 mgKOH / g, particularly preferably from 300 to 600 mgKOH / g. When the hydroxyl value of the polyol (Cc) is not less than the lower limit of the above range, the strength of the rigid foam becomes good and shrinkage is suppressed. When the viscosity is not more than the upper limit of the above range, the viscosity is not excessively high and handling is easy, and the mixing property between the polyisocyanate and the compound is improved.
 本発明Cにおいて、ポリオール(Cc)は必須ではないが、ポリオール(Cc)を用いる場合、ポリオール組成物(Pc)におけるポリオール(Cc)の含有量は、0質量%超、40質量%以下が好ましく、1~35質量%がより好ましく、3~30質量%が特に好ましい。ポリオール(Cc)の含有量が、上記範囲の下限値以上であると、ポリオールシステム液が低粘度化でき、良好な成形性が得られやすい。上記範囲の上限値以下であると、硬質フォームの良好な圧縮強度が得られやすい。 In the invention C, the polyol (Cc) is not essential, but when the polyol (Cc) is used, the content of the polyol (Cc) in the polyol composition (Pc) is preferably more than 0% by mass and 40% by mass or less. 1 to 35% by mass is more preferable, and 3 to 30% by mass is particularly preferable. When the content of the polyol (Cc) is not less than the lower limit of the above range, the polyol system liquid can be reduced in viscosity, and good moldability is easily obtained. When the amount is not more than the upper limit of the above range, good compressive strength of the rigid foam is easily obtained.
[ポリオール(Dc)]
 ポリオール(Dc)は、芳香族化合物を含むモノマー混合物を重縮合して製造されたポリエステルポリオールである。
 ポリオール組成物(Pc)は、必要に応じてポリオール(Dc)を含有してもよい。ポリオール(Dc)は難燃性の向上に寄与する。
 ポリオール(Dc)は、1種のみを用いてもよく、2種以上を併用してもよい。
[Polyol (Dc)]
The polyol (Dc) is a polyester polyol produced by polycondensation of a monomer mixture containing an aromatic compound.
The polyol composition (Pc) may contain a polyol (Dc) as necessary. The polyol (Dc) contributes to the improvement of flame retardancy.
As the polyol (Dc), only one type may be used, or two or more types may be used in combination.
 ポリオール(Dc)の製造に用いるモノマー混合物は、ジカルボン酸化合物と多価アルコールとを含み、該ジカルボン酸化合物および多価アルコールの一方または両方が、芳香環を有する化合物を含むことが好ましい。
 特にポリオール(Dc)が、芳香環を有するジカルボン酸と、芳香環を有しない多価アルコールとを重縮合反応させて得られる芳香族ポリエステルポリオールを含むことが好ましい。
 芳香環を有するジカルボン酸としては、テレフタル酸、イソフタル酸、オルトフタル酸等が挙げられる。耐熱性が向上する点でテレフタル酸がより好ましい。
 芳香環を有しない多価アルコールとしては、エチレングリコール(EG)、ジエチレングリコール(DEG)、トリエチレングリコール、ジプロピレングリコール(DPG)、1,4-ブタンジオール、1,6-ヘキサンジオール(1,6-HD)、ネオペンチルグリコール等のジオール化合物;グリセリン、トリメチロールプロパン等のトリオール化合物が挙げられる。ポリオール(Dc)の粘度を低くでき、かつ、良好な難燃性向上効果が得られやすい点で、エチレングリコールまたはジエチレングリコールがより好ましく、ジエチレングリコールが特に好ましい。
The monomer mixture used for producing the polyol (Dc) preferably contains a dicarboxylic acid compound and a polyhydric alcohol, and one or both of the dicarboxylic acid compound and the polyhydric alcohol contain a compound having an aromatic ring.
In particular, the polyol (Dc) preferably contains an aromatic polyester polyol obtained by polycondensation reaction between a dicarboxylic acid having an aromatic ring and a polyhydric alcohol not having an aromatic ring.
Examples of the dicarboxylic acid having an aromatic ring include terephthalic acid, isophthalic acid, and orthophthalic acid. Terephthalic acid is more preferable in terms of improving heat resistance.
Examples of the polyhydric alcohol having no aromatic ring include ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol, dipropylene glycol (DPG), 1,4-butanediol, 1,6-hexanediol (1,6 -HD), diol compounds such as neopentyl glycol; and triol compounds such as glycerin and trimethylolpropane. Ethylene glycol or diethylene glycol is more preferable, and diethylene glycol is particularly preferable in that the viscosity of the polyol (Dc) can be lowered and a good flame retardancy improving effect can be easily obtained.
 ポリオール(Dc)の平均水酸基数は2~3が好ましく、2が特に好ましい。該平均水酸基数が3以下であると粘度を低く抑えることができ、取り扱いが容易である。
 ポリオール(Dc)の水酸基価は100~500mgKOH/gが好ましく、150~350mgKOH/gがより好ましく、180~300mgKOH/gが特に好ましい。ポリオール(Dc)の水酸基価が上記範囲の下限値以上であると硬質フォームの収縮が抑制されやすく、上記範囲の上限値以下であると硬質フォームの脆性が抑制されて良好な物性が得られやすい。
 本発明Cにおいて、ポリオール(Dc)は必須ではないが、ポリオール(Dc)を用いる場合、ポリオール組成物(Pc)におけるポリオール(Dc)の含有量は、0質量%超、70質量%以下が好ましく、10~65質量%がより好ましく、30~60質量%が特に好ましい。ポリオール(Dc)の含有量が、上記範囲の下限値以上であると、ポリオールシステム液の粘度の低減効果が得られやすい。上記範囲の上限値以下であると、硬質フォームの収縮が抑制されやすい。
The average number of hydroxyl groups in the polyol (Dc) is preferably 2 to 3, and 2 is particularly preferable. When the average number of hydroxyl groups is 3 or less, the viscosity can be kept low and the handling is easy.
The hydroxyl value of the polyol (Dc) is preferably 100 to 500 mgKOH / g, more preferably 150 to 350 mgKOH / g, and particularly preferably 180 to 300 mgKOH / g. When the hydroxyl value of the polyol (Dc) is not less than the lower limit of the above range, the shrinkage of the rigid foam is easily suppressed, and when it is not more than the upper limit of the above range, the brittleness of the rigid foam is suppressed and good physical properties are easily obtained. .
In the invention C, the polyol (Dc) is not essential, but when the polyol (Dc) is used, the content of the polyol (Dc) in the polyol composition (Pc) is preferably more than 0% by mass and 70% by mass or less. 10 to 65% by mass is more preferable, and 30 to 60% by mass is particularly preferable. When the content of the polyol (Dc) is not less than the lower limit of the above range, an effect of reducing the viscosity of the polyol system liquid is easily obtained. When the amount is not more than the upper limit of the above range, shrinkage of the rigid foam is easily suppressed.
[ポリマー分散ポリオール(Wc)]
 ポリオール組成物(Pc)はポリマー粒子を含有する。具体的には、ベースポリオール(Wc’)中にポリマー粒子が分散しているポリマー分散ポリオール(Wc)を調製し、該ポリマー分散ポリオール(Wc)をポリオール組成物(Pc)に含有させることが好ましい。
 ポリオール組成物(Pc)中にポリマー粒子を存在させることにより、硬質フォームの収縮を抑制して、寸法安定性を向上させることができる。この効果は、より低密度の硬質フォームを製造する際に、特に有用である。ポリマー分散ポリオール(Wc)は1種でもよく、2種以上を併用してもよい。
[Polymer-dispersed polyol (Wc)]
The polyol composition (Pc) contains polymer particles. Specifically, it is preferable to prepare a polymer-dispersed polyol (Wc) in which polymer particles are dispersed in the base polyol (Wc ′), and to contain the polymer-dispersed polyol (Wc) in the polyol composition (Pc). .
The presence of polymer particles in the polyol composition (Pc) can suppress the shrinkage of the rigid foam and improve the dimensional stability. This effect is particularly useful in producing lower density rigid foams. The polymer-dispersed polyol (Wc) may be one type or a combination of two or more types.
 ポリオール組成物(Pc)全体におけるポリマー粒子の含有量は0.002~30質量%が好ましく、0.02~20質量%がより好ましく、0.02~10質量%が特に好ましい。上記範囲内であると、断熱性能を維持しながら、得られる硬質フォームの収縮を効果的に抑制できる。また、常温の貯蔵安定性および高温の貯蔵安定性が良好となる。
 本発明Cにおけるポリマー分散ポリオール(Wc)については好ましい態様を含め、発明Aにおけるポリマー分散ポリオール(Wa)と同様である。
 本発明Cにおけるポリマー分散ポリオール(Wc)の製造におけるベースポリオール(Wc’)については好ましい態様を含め、発明Aにおけるベースポリオール(Wa’)と同様である。またベースポリオール(Wc’)は、前記ポリオール(Ac)~(Cc)のいずれかと同じであってもよい。
The content of the polymer particles in the entire polyol composition (Pc) is preferably 0.002 to 30% by mass, more preferably 0.02 to 20% by mass, and particularly preferably 0.02 to 10% by mass. Within the above range, shrinkage of the obtained rigid foam can be effectively suppressed while maintaining heat insulation performance. Moreover, the storage stability at normal temperature and the storage stability at high temperature are good.
The polymer-dispersed polyol (Wc) in the present invention C is the same as the polymer-dispersed polyol (Wa) in the present invention A including preferred embodiments.
The base polyol (Wc ′) in the production of the polymer-dispersed polyol (Wc) in the present invention C is the same as the base polyol (Wa ′) in the present invention A including preferred embodiments. The base polyol (Wc ′) may be the same as any of the polyols (Ac) to (Cc).
[その他のポリオール(Ec)]
 ポリオール組成物(Pc)に、ポリオール(Ac)、ポリオール(Bc)、ポリオール(Cc)、ポリオール(Dc)、またはポリマー分散ポリオール(Wc)のいずれにも属さない、その他のポリオール(Ec)を含有させてもよい。
 その他のポリオール(Ec)としては、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、アクリルポリオール等が例示できる。ポリオール(Ec)の水酸基価は5~1,000mgKOH/gが好ましく、10~800mgKOH/gがより好ましく、20~700mgKOH/gが特に好ましい。
 ポリオール組成物(Pc)におけるポリオール(Ec)の含有量は30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が特に好ましい。
[Other polyols (Ec)]
The polyol composition (Pc) contains other polyol (Ec) that does not belong to any of the polyol (Ac), polyol (Bc), polyol (Cc), polyol (Dc), or polymer-dispersed polyol (Wc). You may let them.
Examples of the other polyol (Ec) include polyether polyol, polyester polyol, polycarbonate polyol, and acrylic polyol. The hydroxyl value of the polyol (Ec) is preferably 5 to 1,000 mgKOH / g, more preferably 10 to 800 mgKOH / g, and particularly preferably 20 to 700 mgKOH / g.
The content of the polyol (Ec) in the polyol composition (Pc) is preferably 30% by mass or less, more preferably 25% by mass or less, and particularly preferably 20% by mass or less.
<ポリオール組成物(Pc)>
 ポリオール組成物(Pc)は、ポリオール(Ac)と、ポリマー粒子を含み、さらにポリオール(Bc)、ポリオール(Cc)、ポリオール(Dc)から選ばれる1種以上を含むことが好ましい。任意にその他ポリオール(Ec)を含んでもよい。ポリマー粒子はポリマー分散ポリオール(Wc)由来であることが好ましい。 ポリオール組成物(Pc)全体としての平均水酸基数は2~8であり、2.5~7.5が好ましい。該平均水酸基数が上記範囲の下限値以上であると、硬質フォームの収縮が抑制され、寸法安定性が良好になる。上限値以下であると、ポリオールシステム液の粘度が適度となり成形性が良好となる。
 ポリオール組成物(Pc)全体としての平均水酸基価は100~800mgKOH/gであり、150~700が好ましく、200~600がより好ましい。該平均水酸基価が上記範囲の下限値以上であると、硬質フォームの収縮が抑制され、寸法安定性が良好になる。上限値以下であると、硬質フォームの脆性が抑制される。
<Polyol composition (Pc)>
The polyol composition (Pc) preferably contains a polyol (Ac) and polymer particles, and further contains one or more selected from polyol (Bc), polyol (Cc), and polyol (Dc). Optionally, other polyols (Ec) may be included. The polymer particles are preferably derived from a polymer-dispersed polyol (Wc). The average number of hydroxyl groups as a whole of the polyol composition (Pc) is 2 to 8, preferably 2.5 to 7.5. When the average number of hydroxyl groups is not less than the lower limit of the above range, shrinkage of the rigid foam is suppressed and dimensional stability is improved. When it is at most the upper limit value, the viscosity of the polyol system liquid becomes moderate and the moldability becomes good.
The average hydroxyl value of the whole polyol composition (Pc) is 100 to 800 mgKOH / g, preferably 150 to 700, more preferably 200 to 600. When the average hydroxyl value is at least the lower limit of the above range, the shrinkage of the rigid foam is suppressed and the dimensional stability is improved. The brittleness of a rigid foam is suppressed as it is below an upper limit.
 本発明Cにおいて、ポリオール組成物(Pc)の全部がポリオール(Ac)とポリマー粒子であってもよい。
 ポリオール組成物(Pc)のより好ましい組成は以下の通りである。
 後述のイソシアヌレート処方で硬質ポリイソシアヌレートフォームを製造する場合の好ましい組み合わせを以下に示す。
(組み合わせ1)ポリオール組成物(Pc)が、ポリオール(A)の30~50質量%と、ポリオール(Bc)の1~30質量%と、ポリオール(Dc)の30~70質量%と、ポリオール(Wc)とからなり、ポリマー粒子の含有量が0.02~7質量%である。
(組み合わせ2)ポリオール組成物(Pc)が、ポリオール(Ac)の30~50質量%と、ポリオール(Bc)の1~30質量%と、ポリオール(Cc)の1~30質量%と、ポリオール(Dc)の10~60質量%と、ポリオール(Wc)とからなり、ポリマー粒子の含有量が0.02~7質量%である。
In the present invention C, the polyol composition (Pc) may be all polyol (Ac) and polymer particles.
A more preferable composition of the polyol composition (Pc) is as follows.
Preferred combinations for producing a rigid polyisocyanurate foam with the isocyanurate formulation described below are shown below.
(Combination 1) The polyol composition (Pc) comprises 30 to 50% by mass of the polyol (A), 1 to 30% by mass of the polyol (Bc), 30 to 70% by mass of the polyol (Dc), Wc), and the polymer particle content is 0.02 to 7% by mass.
(Combination 2) The polyol composition (Pc) comprises 30 to 50% by mass of the polyol (Ac), 1 to 30% by mass of the polyol (Bc), 1 to 30% by mass of the polyol (Cc), It is composed of 10 to 60% by mass of Dc) and polyol (Wc), and the content of polymer particles is 0.02 to 7% by mass.
 後述のウレタン処方で硬質ポリウレタンフォームを製造する場合の好ましい組み合わせを以下に示す。
(組み合わせ5)ポリオール組成物(Pc)が、ポリオール(Ac)の30~70質量%と、ポリオール(Bc)の10~50質量%と、ポリオール(Cc)の5~30質量%と、ポリオール(Wc)とからなり、ポリマー粒子の含有量が0.02~7質量%である。
(組み合わせ7)ポリオール組成物(Pc)が、ポリオール(Ac)の30~60質量%と、ポリオール(Bc)の10~60質量%と、ポリオール(Cc)の5~20質量%と、ポリオール(Wc)とからなり、ポリマー粒子の含有量が0.02~7質量%である。
Preferred combinations in the case of producing a rigid polyurethane foam with the urethane formulation described below are shown below.
(Combination 5) The polyol composition (Pc) comprises 30 to 70% by mass of the polyol (Ac), 10 to 50% by mass of the polyol (Bc), 5 to 30% by mass of the polyol (Cc), Wc), and the polymer particle content is 0.02 to 7% by mass.
(Combination 7) The polyol composition (Pc) comprises 30 to 60% by mass of the polyol (Ac), 10 to 60% by mass of the polyol (Bc), 5 to 20% by mass of the polyol (Cc), Wc), and the polymer particle content is 0.02 to 7% by mass.
<ポリイソシアネート化合物>
 本発明Cにおけるポリイソシアネート化合物は、好ましい態様を含め、発明Aにおけるポリイソシアネート化合物と同様である。
 ポリイソシアネート化合物としては、イソシアネート基を2以上有する、芳香族系、脂環族系、脂肪族系等のポリイソシアネート;これらを変性して得られる変性ポリイソシアネート等が挙げられる。
 具体例としては、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ポリメチレンポリフェニルポリイソシアネート(通称:クルードMDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HMDI)等のポリイソシアネートまたはこれらのプレポリマー型変性体、イソシアヌレート、ウレア変性体、カルボジイミド変性体等が挙げられる。このうち、クルードMDI、またはその変性体が好ましく、クルードMDIの変性体が特に好ましい。ポリイソシアネート化合物は1種でもよく、2種以上を混合して用いてもよい。
<Polyisocyanate compound>
The polyisocyanate compound in the present invention C is the same as the polyisocyanate compound in the present invention A including preferred embodiments.
Examples of the polyisocyanate compound include aromatic, alicyclic, and aliphatic polyisocyanates having two or more isocyanate groups; modified polyisocyanates obtained by modifying these.
Specific examples include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenyl polyisocyanate (common name: crude MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HMDI). And polyisocyanates such as these, or prepolymer-modified products thereof, isocyanurates, urea-modified products, and carbodiimide-modified products. Among these, crude MDI or a modified product thereof is preferable, and a modified product of crude MDI is particularly preferable. The polyisocyanate compound may be used alone or in combination of two or more.
 ポリイソシアネート化合物の使用量は、ポリオールシステム液中に存在する、ポリオール組成物(Pc)およびその他の活性水素化合物の活性水素原子の合計数に対するイソシアネート基の数の100倍で表して(以下、この100倍で表した数値を「イソシアネート指数(INDEX)」という)、50~400が好ましい。
 特に、触媒としてウレタン化触媒を主に用いるウレタン処方の場合、ポリイソシアネート化合物の使用量は、前記イソシアネート指数で50~170が好ましく、70~150が特に好ましい。
 また、触媒としてイソシアネート基の三量化反応を促進させる触媒を主に用いるイソシアヌレート処方の場合、ポリイソシアネート化合物の使用量は、前記イソシアネート指数で100~350が好ましく、100~300がより好ましく、100~180が特に好ましい。
The amount of polyisocyanate compound used is represented by 100 times the number of isocyanate groups relative to the total number of active hydrogen atoms of the polyol composition (Pc) and other active hydrogen compounds present in the polyol system liquid (hereinafter referred to as this A numerical value expressed by 100 times is referred to as “isocyanate index (INDEX)”, preferably 50 to 400.
In particular, in the case of a urethane formulation mainly using a urethanization catalyst as a catalyst, the amount of polyisocyanate compound used is preferably 50 to 170, particularly preferably 70 to 150 in terms of the isocyanate index.
In the case of an isocyanurate formulation mainly using a catalyst that promotes a trimerization reaction of an isocyanate group as a catalyst, the amount of the polyisocyanate compound used is preferably 100 to 350, more preferably 100 to 300, in terms of the isocyanate index. Is particularly preferred.
<発泡剤>
 本発明Cにおける発泡剤は好ましい態様を含め、発明Aにおける発泡剤と同様である。
 式(I)で表わされるハイドロフルオロオレフィン類は好ましい態様を含め前述の式(I)で表わされるハイドロフルオロオレフィン類と同様である。
 <触媒>
 本発明Cにおける触媒は、好ましい態様を含め、本発明Aにおける触媒と同様である。
<Foaming agent>
The foaming agent in the present invention C is the same as the foaming agent in the present invention A including preferred embodiments.
The hydrofluoroolefins represented by the formula (I) are the same as the hydrofluoroolefins represented by the formula (I) described above including preferred embodiments.
<Catalyst>
The catalyst in the present invention C is the same as the catalyst in the present invention A including preferred embodiments.
<整泡剤>
 本発明Cにおける整泡剤は好ましい態様を含め、本発明Aにおける整泡剤と同様である。
 本発明Cにおいては良好な気泡を形成するため整泡剤を用いる。整泡剤としては例えば、シリコーン系整泡剤、含フッ素化合物系整泡剤が挙げられる。これらは市販品を使用できる。整泡剤の使用量は適宜選定できるが、ポリオール組成物(Pc)の100質量部に対して0.1~10質量部が好ましい。
<Foam stabilizer>
The foam stabilizer in the present invention C is the same as the foam stabilizer in the present invention A including preferred embodiments.
In the present invention C, a foam stabilizer is used to form good bubbles. Examples of the foam stabilizer include silicone foam stabilizers and fluorine-containing compound foam stabilizers. These can use a commercial item. The amount of the foam stabilizer used can be appropriately selected, but is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the polyol composition (Pc).
<その他の配合剤>
 本発明Cにおけるその他の配合剤は、好ましい態様を含め、発明Aにおけるその他の配合剤と同様である。
 本発明Cでは、上述したポリオール組成物(Pc)、ポリイソシアネート化合物、触媒、発泡剤、整泡剤の他に、公知の配合剤を使用できる。配合剤としては、炭酸カルシウム、硫酸バリウム等の充填剤;酸化防止剤、紫外線吸収剤等の老化防止剤;難燃剤、可塑剤、着色剤、抗カビ剤、破泡剤、分散剤、変色防止剤等が挙げられる。その他の配合剤の使用量は適宜選定できるが、ポリオール組成物(Pc)の100質量部に対して0.1~30質量部が好ましい。
<Other ingredients>
The other compounding agents in Invention C are the same as the other compounding agents in Invention A, including preferred embodiments.
In the present invention C, a known compounding agent can be used in addition to the polyol composition (Pc), polyisocyanate compound, catalyst, foaming agent, and foam stabilizer described above. Compounding agents include fillers such as calcium carbonate and barium sulfate; anti-aging agents such as antioxidants and UV absorbers; flame retardants, plasticizers, colorants, anti-fungal agents, foam breakers, dispersants, discoloration prevention Agents and the like. The amount of other compounding agents can be appropriately selected, but is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polyol composition (Pc).
<発明Cの硬質フォームの製造方法>
 本発明Cの硬質フォームの製造方法は、ポリオール組成物(Pc)とポリイソシアネート化合物とを、発泡剤、整泡剤および触媒の存在下で反応させて硬質発泡合成樹脂を製造する方法である。
 特に、硬質フォームをスプレーで吹き付け施工するスプレー法を好適に用いることができる。スプレー法は、例えばポリオールシステム液と、ポリイソシアネート化合物とをそれぞれポンプで送液し、スプレーガンから施工対象となる壁面等の基材に吹きつけながら反応させ、その基材上で発泡させて断熱材等とする方法である。スプレー法は、大きく分けてエアスプレー法とエアレススプレー法がある。このうち特に配合液をミキシングヘッドで混合して発泡させるエアレススプレー法が好ましい。
 例えば、建築現場等においてはスプレー法が多く採用される。このような建築材料としての硬質フォームは、防火性の観点から難燃性が必要である。特にスプレー法を採用する場合には、施工現場での溶接火花による火災事故防止の点からも難燃性が要求される。
<Method for producing rigid foam of invention C>
The method for producing a rigid foam of the present invention C is a method for producing a rigid foam synthetic resin by reacting a polyol composition (Pc) with a polyisocyanate compound in the presence of a foaming agent, a foam stabilizer and a catalyst.
In particular, a spray method in which a rigid foam is sprayed and applied can be suitably used. In the spray method, for example, a polyol system liquid and a polyisocyanate compound are each sent by a pump, reacted while sprayed from a spray gun onto a substrate such as a wall surface to be constructed, and foamed on the substrate to insulate. It is a method of using a material or the like. The spray method is roughly classified into an air spray method and an airless spray method. Of these, the airless spray method in which the blended liquid is mixed with a mixing head and foamed is particularly preferable.
For example, a spray method is often used in construction sites. Such a rigid foam as a building material needs flame retardancy from the viewpoint of fire resistance. In particular, when the spray method is employed, flame retardancy is required from the viewpoint of preventing fire accidents caused by welding sparks at the construction site.
 本発明Cは、特に、ポリオール組成物(Pc)がマンニッヒポリオールを含むため、高い難燃性が得られやすい。またスプレー法に本発明Cを適用すると、寸法安定性が良好で、難燃性も良好なスプレー法による硬質合成発泡樹脂を得ることができる。
 スプレー法においては、基材上でポリオールシステム液と、ポリイソシアネート化合物とを吹き付け後に早い速度で硬化するのが、液流れしない点で好ましい。例えばライズタイムが8~25秒が好ましく、10~20秒が特に好ましい。
 基材としては、ベニヤ板、合板、スレート板、石膏板等が挙げられる。
 スプレー法を用いて製造できる物品としては、住宅用結露防止断熱材、冷凍倉庫断熱材等が挙げられる。
In the invention C, in particular, since the polyol composition (Pc) contains Mannich polyol, high flame retardancy is easily obtained. Further, when the present invention C is applied to a spray method, a hard synthetic foamed resin can be obtained by a spray method having good dimensional stability and good flame retardancy.
In the spray method, it is preferable that the polyol system liquid and the polyisocyanate compound are sprayed on the base material and then cured at a high speed so that the liquid does not flow. For example, the rise time is preferably 8 to 25 seconds, particularly preferably 10 to 20 seconds.
Examples of the substrate include plywood, plywood, slate board, gypsum board and the like.
Examples of the articles that can be manufactured using the spray method include residential dew-preventing heat insulating materials, refrigerated warehouse heat insulating materials, and the like.
 また本発明Cは、連続ボード成形法または注入法による硬質フォームの製造にも適用可能である。
 連続ボード成形法とは、2枚の面材間に硬質フォーム原料を供給して発泡させることにより、これらの面材の間に硬質フォームが挟まれた積層体を製造する方法であり、建築用途の断熱材の製造等に用いられる。注入法とは、金型等の枠内に硬質フォーム原料を注入して発泡させる方法である。
The present invention C is also applicable to the production of rigid foams by a continuous board molding method or an injection method.
The continuous board molding method is a method of manufacturing a laminate in which a rigid foam is sandwiched between two face materials by supplying a foam material between two face materials and foaming it. It is used for the manufacture of heat insulating materials. The injection method is a method in which a rigid foam material is injected into a frame such as a mold and foamed.
 本発明Cによれば、発泡剤として、ハイドロフルオロオレフィン類(I)を用いて、良好な特性を有する硬質フォームが得られる。
 具体的に、硬質フォームにあっては、低密度化した場合にも、ポリオールシステム液の貯蔵安定性が良好であること、成形性が良好であること、寸法安定性が良好であることが望ましい。本発明Cによれば、これらの特性の全部が良好である硬質フォームを得ることができる。
 また、ポリオール(Ac)およびポリマー粒子とハイドロフルオロオレフィン類(I)を組み合わせることにより、寸法安定性が良好で熱伝導率の低い(すなわち良好な断熱性能)を有する硬質フォームを得ることができる。また本発明Cによれば、ポリオールシステム液の高温貯蔵安定性が良好となる。
According to the present invention C, a rigid foam having good characteristics can be obtained using the hydrofluoroolefins (I) as the foaming agent.
Specifically, for rigid foams, it is desirable that the polyol system liquid has good storage stability, good moldability, and good dimensional stability even when the density is reduced. . According to the present invention C, it is possible to obtain a rigid foam having all of these characteristics good.
Further, by combining the polyol (Ac) and polymer particles with the hydrofluoroolefins (I), a rigid foam having good dimensional stability and low thermal conductivity (that is, good heat insulation performance) can be obtained. Further, according to the present invention C, the high temperature storage stability of the polyol system liquid is improved.
 以下に、実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
<本発明Aの実施例について>
 ポリオールの水酸基価は、JIS K 1557(1970年版)に準拠して測定した値である。
 以下の本発明Aの例で用いた各原料は以下の通りである。
[ポリオール(Aa)]
 ポリオールAa1:m-トリレンジアミンにEOを開環付加重合した後、水酸化カリウ触媒存在下でPO、EOの順にアルキレンオキシドを開環付加重合させて得られた、水基価が450mgKOH/gのポリエーテルポリオール。EOとPOの合計のうち、Eの含有量(全EO含有量)は25質量%である。また、末端のEO含有量は3質量%である。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
<Examples of Invention A>
The hydroxyl value of the polyol is a value measured according to JIS K 1557 (1970 edition).
The raw materials used in the following examples of the present invention A are as follows.
[Polyol (Aa)]
Polyol Aa1: obtained by ring-opening addition polymerization of EO to m-tolylenediamine, followed by ring-opening addition polymerization of alkylene oxide in the order of PO and EO in the presence of a potassium hydroxide catalyst, the water base value being 450 mgKOH / g Polyether polyol. Of the total of EO and PO, the E content (total EO content) is 25% by mass. The EO content at the end is 3% by mass.
 ポリオールAa2:m-トリレンジアミンにEOを開環付加重合した後、水酸化カリウム触媒存在下でPO、EOの順にアルキレンオキシドを開環付加重合させて得られた、水酸基価が350mgKOH/gのポリエーテルポリオール。EOとPOの合計のうち、EOの含有量(全EO含有量)は25質量%である。また、末端のEO含有量は11質量%である。
 ポリオールAa3:m-トリレンジアミンにアルキレンオキシドとしてPOのみを開環付加重合させて得られた、水酸基価350mgKOH/のポリエーテルポリオール。
 ポリオールAa4:ノニルフェノール、ジエタノールアミンおよびホルムアルデヒドを1モル/2.2モル/1.5モルの比率で縮合させたマンニッヒ縮合物に、アルキレンオキシドとしてPOのみを開環付加重合させて得られた、水酸基価470mgKOH/g、平均官能基数4のポリエーテルポリオール。
Polyol Aa2: obtained by ring-opening addition polymerization of EO to m-tolylenediamine, followed by ring-opening addition polymerization of alkylene oxide in the order of PO and EO in the presence of a potassium hydroxide catalyst, having a hydroxyl value of 350 mgKOH / g Polyether polyol. Of the total of EO and PO, the EO content (total EO content) is 25% by mass. The EO content at the end is 11% by mass.
Polyol Aa3: A polyether polyol having a hydroxyl value of 350 mgKOH / obtained by ring-opening addition polymerization of only PO as an alkylene oxide to m-tolylenediamine.
Polyol Aa4: hydroxyl value obtained by ring-opening addition polymerization of only PO as alkylene oxide to a Mannich condensation product obtained by condensing nonylphenol, diethanolamine and formaldehyde at a ratio of 1 mol / 2.2 mol / 1.5 mol 470 mg KOH / g, polyether polyol having an average number of functional groups of 4.
[ポリオール(Ba)]
 ポリオールBa1:ソルビトールにアルキレンオキシドとしてPOのみを開環付加重合させて得られた、水酸基価が500mgKOH/gのポリエーテルポリオール。
 ポリオールBa2:ソルビトールにアルキレンオキシドとしてPOのみを開環付加重合させて得られた、水酸基価が385mgKOH/gのポリエーテルポリオール。
 ポリオールBa3:シュークロースとグリセリンの混合物(質量比2:1)にアルキレンオキシドとしてPOのみを開環付加重合させて得られた、水酸基価450mgKOH/gのポリエーテルポリオール。
[Polyol (Ba)]
Polyol Ba1: A polyether polyol having a hydroxyl value of 500 mgKOH / g, obtained by ring-opening addition polymerization of only PO as an alkylene oxide to sorbitol.
Polyol Ba2: A polyether polyol having a hydroxyl value of 385 mgKOH / g, obtained by ring-opening addition polymerization of only PO as an alkylene oxide to sorbitol.
Polyol Ba3: A polyether polyol having a hydroxyl value of 450 mgKOH / g, obtained by subjecting a mixture of sucrose and glycerin (mass ratio 2: 1) to ring-opening addition polymerization of only PO as an alkylene oxide.
[ポリオール(Ca)]
 ポリオールCa1:エチレンジアミンにアルキレンオキシドとしてPOのみを開環付加重合させて得られた、水酸基価が760mgKOH/gのポリエーテルポリオール。
 ポリオールCa2:モノエタノールアミンにアルキレンオキシドとしてPOのみを開環付加重合させて得られた、水酸基価が500mgKOH/gのポリエーテルポリオール。
 ポリオールCa3:エチレンジアミンにアルキレンオキシドとしてPOを開環付加重合させ、続いて水酸化カリウム触媒存在下でEOを開環重合させて得られた、水酸基価が450mgKOH/gのポリエーテルポリオール。EOとPOの合計のうち、EOの含有量(全EO含有量)は41質量%である。
[Polyol (Ca)]
Polyol Ca1: A polyether polyol having a hydroxyl value of 760 mgKOH / g obtained by ring-opening addition polymerization of only PO as an alkylene oxide to ethylenediamine.
Polyol Ca2: A polyether polyol having a hydroxyl value of 500 mgKOH / g, obtained by ring-opening addition polymerization of only PO as an alkylene oxide to monoethanolamine.
Polyol Ca3: A polyether polyol having a hydroxyl value of 450 mgKOH / g, obtained by ring-opening addition polymerization of PO as an alkylene oxide to ethylenediamine, followed by ring-opening polymerization of EO in the presence of a potassium hydroxide catalyst. Of the total of EO and PO, the EO content (total EO content) is 41% by mass.
[ポリオール(Da)]
 ポリオールDa1:ジエチレングリコールとテレフタル酸とを重縮合して得られた、平均水酸基数が2、水酸基価が250mgKOH/gのポリエステルポリオール(製品名:Terol 563、オキシド社製)。
[その他のポリオール(Ea)]
 ポリオールEa1:グリセリンにアルキレンオキシドとしてPOを開環付加重合させ、水酸化カリウム触媒存在下でEOを開環付加重合させて得られた、水酸基価56mgKOH/gのポリエーテルポリオール。EOとPOの合計のうち、EOの含有量(全EO含有量)は13質量%である。
[Polyol (Da)]
Polyol Da1: Polyester polyol obtained by polycondensation of diethylene glycol and terephthalic acid and having an average hydroxyl number of 2 and a hydroxyl value of 250 mgKOH / g (product name: Terol 563, manufactured by Oxide).
[Other polyols (Ea)]
Polyol Ea1: A polyether polyol having a hydroxyl value of 56 mgKOH / g, obtained by ring-opening addition polymerization of PO as alkylene oxide to glycerin and ring-opening addition polymerization of EO in the presence of a potassium hydroxide catalyst. Of the total of EO and PO, the EO content (total EO content) is 13% by mass.
 ポリオールEa2:グリセリンにアルキレンオキシドとしてPOを開環付加重合させ、水酸化カリウム触媒存在下でEOを開環付加重合させて得られた水酸基価56mgKOH/gのポリエーテルポリオール。EOとPOの合計のうち、EOの含有量(全EO含有量)は20質量%である。
 ポリオールEa3:ペンタエリスリトールにアルキレンオキシドとしてPOのみを開環付加重合させて得られた、水酸基価410mgKOH/gのポリエーテルポリオール。
 ポリオールEa4:ジプロピレングリコールにアルキレンオキシドとしてPOのみを開環付加重合させて得られた、水酸基価450mgKOH/のポリエーテルポリオール。
Polyol Ea2: A polyether polyol having a hydroxyl value of 56 mgKOH / g obtained by ring-opening addition polymerization of PO as alkylene oxide to glycerin and ring-opening addition polymerization of EO in the presence of a potassium hydroxide catalyst. Of the total of EO and PO, the EO content (total EO content) is 20% by mass.
Polyol Ea3: A polyether polyol having a hydroxyl value of 410 mgKOH / g, obtained by subjecting pentaerythritol to ring-opening addition polymerization of only PO as an alkylene oxide.
Polyol Ea4: A polyether polyol having a hydroxyl value of 450 mgKOH / obtained by ring-opening addition polymerization of only PO as an alkylene oxide to dipropylene glycol.
[ポリマー分散ポリオール(Wa)]
 ポリマー分散ポリオール(Wa)として、下記表1に示す配合で、下記製造例の方法により製造したポリマー分散ポリオールWa1~Wa6を用いた。表1における配合比の単位は「質量部」である。
[重合性不飽和結合を有するモノマー]
 ポリマー粒子を形成するための重合性不飽和結合を有するモノマーとしては、アクリロニトリル(AN)、酢酸ビニル(Vac)、メタクリル酸メチル(MMA)、前記式(1-1)で表わされるポリフルオロアルキルメタクリレート(FMA)を用いた。
[Polymer-dispersed polyol (Wa)]
As the polymer-dispersed polyol (Wa), polymer-dispersed polyols Wa1 to Wa6 produced by the method of the following production example with the composition shown in Table 1 below were used. The unit of the blending ratio in Table 1 is “part by mass”.
[Monomer having a polymerizable unsaturated bond]
Examples of the monomer having a polymerizable unsaturated bond for forming polymer particles include acrylonitrile (AN), vinyl acetate (Vac), methyl methacrylate (MMA), and polyfluoroalkyl methacrylate represented by the formula (1-1). (FMA) was used.
[マクロモノマー]
 マクロモノマーとして以下の2種を用いた。
 ・マクロモノマーM1:下記のポリオールG、トリレンジイソシアネート(商品名:T-80、日本ポリウレタン工業社製)および2-ヒドロキシエチルメタクリレート(純正化学社製)を、ポリオールG/トリレンジイソシアネート/2-ヒドロキシエチルメタクリレート=1/1/1のモル比率となるように仕込み、60℃で1時間反応させた後さらに80℃で6時間反応させることで得られた、水酸基価40mgKOH/gの重合性不飽和基を有するマクロモノマー。
[Macromonomer]
The following two types were used as macromonomers.
Macromonomer M1: Polyol G / tolylene diisocyanate / 2-polyol G, tolylene diisocyanate (trade name: T-80, manufactured by Nippon Polyurethane Industry Co., Ltd.) and 2-hydroxyethyl methacrylate (made by Junsei Kagaku Co.) Hydroxyethyl methacrylate = 1/1/1 molar ratio was prepared, reacted at 60 ° C for 1 hour, and further reacted at 80 ° C for 6 hours, resulting in a polymerizable non-polymerizable polymer having a hydroxyl value of 40 mgKOH / g. Macromonomer having a saturated group.
 ・マクロモノマーM2:下記のポリオールF、トリレンジイソシアネート(商品名:T-80、日本ポリウレタン工業社製)および2-ヒドロキシエチルメタクリレート(純正化学社製)を、ポリオールF/トリレンジイソシアネート/2-ヒドロキシエチルメタクリレート=1/1/1のモル比率となるように仕込み、60℃で1時間反応させた後さらに80℃で6時間反応させることで得られた、水酸基価21mgKOH/gの重合性不飽和基を有するマクロモノマー。
 ・上記ポリオールG:開始剤としてグリセリンを用い、該グリセリンに、EOを開環付加重合した後、POとEOとの混合物[PO/EO=46.2/53.8(質量比)]を開環付加重合させた、ポリオールG中のオキシエチレン基含有量65質量%、水酸基価が48mgKOH/gのポリオキシアルキレンポリオール。
 ・上記ポリオールF:開始剤としてグリセリンを用い、該グリセリンに、EOを開環付加重合した後、POとEOとの混合物[PO/EO=48.0/52.0(質量比)]を開環付加重合させた、ポリオールF中のオキシエチレン基含有量60質量%、水酸基価が28mgKOH/gのポリオキシアルキレンポリオール。
Macromonomer M2: Polyol F, Tolylene Diisocyanate (trade name: T-80, manufactured by Nippon Polyurethane Industry Co., Ltd.) and 2-hydroxyethyl methacrylate (Pure Chemical Co., Ltd.) Hydroxyethyl methacrylate = 1/1/1 molar ratio was prepared, reacted at 60 ° C for 1 hour, and further reacted at 80 ° C for 6 hours, resulting in a polymerization resistance of 21 mgKOH / g. Macromonomer having a saturated group.
Polyol G: Glycerol is used as an initiator, and EO is subjected to ring-opening addition polymerization to the glycerol, and then a mixture of PO and EO [PO / EO = 46.2 / 53.8 (mass ratio)] is opened. A polyoxyalkylene polyol having an oxyethylene group content of 65% by mass and a hydroxyl value of 48 mgKOH / g in the polyol G, subjected to cycloaddition polymerization.
Polyol F: Glycerol is used as an initiator, and after ring-opening addition polymerization of EO, the mixture of PO and EO [PO / EO = 48.0 / 52.0 (mass ratio)] is opened. A polyoxyalkylene polyol having a content of oxyethylene group in polyol F of 60% by mass and a hydroxyl value of 28 mgKOH / g, which is subjected to cycloaddition polymerization.
[ポリイソシアネート化合物]
 ポリイソシアネート化合物1:ポリメチレンポリフェニレンポリイソシアネート(クルードMDI)(日本ポリウレタン工業社製、製品名:ミリオネートMR-200)。
[発泡剤]
 発泡剤1:E-1-クロロ-3,3,3-トリフルオロ-プロペン。
 発泡剤2:Z-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン。
 発泡剤3:水。
[難燃剤]
 難燃剤1:トリス(β-クロロプロピル)ホスフェート(スプレスタジャパン社製、製品名:ファイロールPCF)。
[触媒]
 触媒1:ペンタメチルジエチレントリアミン(東ソー社製、製品名:TOYOCAT DT)。
 触媒2:N,N,N’,N’-テトラメチルヘキサメチレンジアミン(東ソー社製、製品名:TOYOCAT MR)。
 ウレタン化触媒1:触媒1/触媒2の1/3(質量比)の混合物。
[整泡剤]
 整泡剤1:シリコーン系整泡剤(東レ・ダウコーニング社製、製品名:SH-193)。
[Polyisocyanate compound]
Polyisocyanate compound 1: Polymethylene polyphenylene polyisocyanate (crude MDI) (manufactured by Nippon Polyurethane Industry Co., Ltd., product name: Millionate MR-200).
[Foaming agent]
Foaming agent 1: E-1-chloro-3,3,3-trifluoro-propene.
Foaming agent 2: Z-1,1,1,4,4,4-hexafluoro-2-butene.
Foaming agent 3: water.
[Flame retardants]
Flame retardant 1: Tris (β-chloropropyl) phosphate (manufactured by Spresta Japan, product name: Pyrol PCF).
[catalyst]
Catalyst 1: Pentamethyldiethylenetriamine (manufactured by Tosoh Corporation, product name: TOYOCAT DT).
Catalyst 2: N, N, N ′, N′-tetramethylhexamethylenediamine (manufactured by Tosoh Corporation, product name: TOYOCAT MR).
Urethane catalyst 1: Mixture of catalyst 1 / catalyst 1/3 (mass ratio).
[Foam stabilizer]
Foam stabilizer 1: Silicone foam stabilizer (manufactured by Dow Corning Toray, product name: SH-193).
<製造例1>
 5L加圧反応容器に、下記ポリエーテルポリオール(X1)の300質量部、下記ポリエーテルポリオール(Y1)の150質量部、下記ポリエーテルポリオール(Y2)の300質量部、アクリロニトリルの50質量部、酢酸ビニルの200質量部、および重合開始剤として2,2-アゾビス-2-メチルブチロニトリル(AMBN)の10質量部を仕込んだ後、撹拌しながら昇温を開始し、反応液を80℃に保ちながら10時間反応させた。モノマーの反応率は80%以上を示した。反応終了後、110℃、マイナス0.10MPa(ゲージ圧力)で2時間加熱減圧脱気して未反応モノマーを除去し、ポリマー分散ポリオール(ポリオールWa1)を得た。得られたポリマー分散ポリオールWa1の水酸基価、25℃における粘度、およびWa1中のポリマー粒子の含有量を表1に示す(以下、同様。)。
<Production Example 1>
In a 5 L pressurized reaction vessel, 300 parts by mass of the following polyether polyol (X1), 150 parts by mass of the following polyether polyol (Y1), 300 parts by mass of the following polyether polyol (Y2), 50 parts by mass of acrylonitrile, acetic acid After charging 200 parts by mass of vinyl and 10 parts by mass of 2,2-azobis-2-methylbutyronitrile (AMBN) as a polymerization initiator, heating was started while stirring, and the reaction solution was brought to 80 ° C. The reaction was allowed to proceed for 10 hours. The monomer reaction rate was 80% or more. After completion of the reaction, the unreacted monomer was removed by heating under reduced pressure at 110 ° C. and minus 0.10 MPa (gauge pressure) for 2 hours to obtain a polymer-dispersed polyol (polyol Wa1). The hydroxyl value of the obtained polymer-dispersed polyol Wa1, the viscosity at 25 ° C., and the content of polymer particles in Wa1 are shown in Table 1 (the same applies hereinafter).
<製造例2、3:ポリマー分散ポリオール(Wa2)、(Wa3)の製造>
 5L加圧反応槽に、表1に示したベースポリオール(Wa’)の混合物のうちの70質量%を仕込み、120℃に保ちながら、残りのベースポリオール(Wa’)の混合物とモノマーと重合開始剤(AMBN)との混合物を撹拌しながら2時間かけてフィードし、全フィード終了後同温度下で約0.5時間撹拌を続けた。製造例2、3のいずれにおいても、モノマーの反応率は80%以上を示した。反応終了後、未反応モノマーを120℃、20Paで2時間加熱減圧脱気にて除去し、ポリマー分散ポリオールWa2およびWa3を得た。
<Production Examples 2 and 3: Production of polymer-dispersed polyol (Wa2) and (Wa3)>
Into a 5 L pressurized reaction vessel, 70% by mass of the mixture of the base polyol (Wa ′) shown in Table 1 was charged, and while maintaining at 120 ° C., polymerization of the remaining mixture of the base polyol (Wa ′), the monomer and the start The mixture with the agent (AMBN) was fed over 2 hours with stirring, and stirring was continued for about 0.5 hours at the same temperature after completion of all the feeds. In any of Production Examples 2 and 3, the monomer reaction rate was 80% or more. After completion of the reaction, unreacted monomers were removed by heating under reduced pressure at 120 ° C. and 20 Pa for 2 hours to obtain polymer-dispersed polyols Wa2 and Wa3.
<製造例4~6:ポリマー分散ポリオール(Wa4)、(Wa5)、(Wa6)の製造>
 5L加圧反応槽に、表1に示した配合で、ポリオールX1、ポリオールY1、およびマクロモノマーを仕込み、120℃に保ちつつ、モノマーおよび重合開始剤(AMBN)の混合物を、撹拌しながら2時間かけてフィードし、全フィード終了後、同温度下で約0.5時間撹拌を続けた。その後、未反応モノマーを減圧下、120℃で3時間除去することによりポリマー分散ポリオールWa4、Wa5およびWa6を得た。
<Production Examples 4 to 6: Production of polymer-dispersed polyol (Wa4), (Wa5), (Wa6)>
In a 5 L pressurized reaction vessel, polyol X1, polyol Y1, and macromonomer were charged with the formulation shown in Table 1, and the mixture of monomer and polymerization initiator (AMBN) was stirred for 2 hours while maintaining at 120 ° C. After completion of the entire feed, stirring was continued for about 0.5 hours at the same temperature. Thereafter, unreacted monomers were removed under reduced pressure at 120 ° C. for 3 hours to obtain polymer-dispersed polyols Wa4, Wa5 and Wa6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 ポリエーテルポリオール(X1):グリセリンを開始剤として、水酸化カリウム触媒存在下、POとEOとをランダムに付加して得られる、水酸基価が50mgKOH/g、オキシエチレン基含有量70質量%のポリエーテルポリオール。
 ポリエーテルポリオール(Y1):エチレンジアミンを開始剤として、POのみを付加して得られる、水酸基価が760mgKOH/gのポリエーテルポリオール。
 ポリエーテルポリオール(Y2):グリセリンを開始剤として、水酸化カリウム触媒存在下、POのみを付加して得られる、水酸基価が650mgKOH/gのポリエーテルポリオール。
 ポリマー分散ポリオールの平均水酸基価は、JIS K 1557-1:2007に従って測定した。
Polyether polyol (X1): Polyol having a hydroxyl value of 50 mgKOH / g and an oxyethylene group content of 70% by mass obtained by randomly adding PO and EO in the presence of a potassium hydroxide catalyst using glycerol as an initiator. Ether polyol.
Polyether polyol (Y1): A polyether polyol having a hydroxyl value of 760 mgKOH / g, obtained by adding only PO with ethylenediamine as an initiator.
Polyether polyol (Y2): A polyether polyol having a hydroxyl value of 650 mgKOH / g, obtained by adding only PO in the presence of a potassium hydroxide catalyst using glycerol as an initiator.
The average hydroxyl value of the polymer-dispersed polyol was measured according to JIS K1557-1: 2007.
<例1~50>
 例19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49が実施例、例1~18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50が比較例である。
 表2、3、4、5、に示す配合で硬質フォームを製造する。表に示した配合の数値の単位は質量部である。ただしポリイソシアネート化合物の配合量はイソシアネート指数(INDEX)で表す。表にポリオール組成物(Pa)の全体における平均水酸基数および平均水酸基価を示す。
 まず、各ポリオール、ウレタン化触媒、整泡剤、混合発泡剤および水の所定量を混合してポリオールシステム液を調製する。ウレタン化触媒の配合量はゲルタイムが100秒となる量に設定した。ポリオールシステム液およびポリイソシアネート化合物の液温を、それぞれ20℃に調整する。
<Examples 1 to 50>
Examples 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49 are examples, Examples 1-18, 20, 22, 24, 26, 28 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 are comparative examples.
Rigid foams are produced with the formulations shown in Tables 2, 3, 4, and 5. The unit of the numerical values of the formulations shown in the table is parts by mass. However, the compounding amount of the polyisocyanate compound is represented by an isocyanate index (INDEX). The table shows the average number of hydroxyl groups and the average hydroxyl value in the whole polyol composition (Pa).
First, each polyol, urethanization catalyst, foam stabilizer, mixed foaming agent, and a predetermined amount of water are mixed to prepare a polyol system liquid. The blending amount of the urethanization catalyst was set to an amount that would make the gel time 100 seconds. The liquid temperatures of the polyol system liquid and the polyisocyanate compound are adjusted to 20 ° C., respectively.
[自由発泡フォームの製造]
 上記の手順で調製した、ポリイソシアネート化合物をポリオールシステム液に投入し、日立製作所社製のボール盤に円盤型形状の攪拌翼を装着した攪拌装置を用いて、毎分3,000回転の回転速度で5秒間撹拌・混合して発泡原液組成物を調製する。調製直後の発泡原液組成物を、ポリエチレン製の離型袋を装着した縦、横、高さ各200mmの木箱に素早く投入し、自由発泡フォームを得る。得られた自由発泡フォームのボックスフリー密度を下記の方法で測定する。また、発泡途中には、反応性(クリームタイム、ゲルタイム、タックフリータイム)を下記の方法で測定する。結果を表3および4に示す。
[Manufacture of free foaming foam]
The polyisocyanate compound prepared in the above procedure was charged into the polyol system solution, and using a stirrer equipped with a disc-shaped stirrer blade on a drilling machine manufactured by Hitachi, Ltd., at a rotational speed of 3,000 revolutions per minute. A foaming stock solution composition is prepared by stirring and mixing for 5 seconds. The foamed stock solution composition immediately after preparation is quickly put into a 200 mm long, horizontal, and height wooden box equipped with a polyethylene release bag to obtain a free foaming foam. The box-free density of the obtained free foaming foam is measured by the following method. In the middle of foaming, the reactivity (cream time, gel time, tack free time) is measured by the following method. The results are shown in Tables 3 and 4.
[パネルフォームの製造]
 上記自由発泡フォームの製造と同様な方法で調製した発泡原液組成物を、40℃に温度調整した縦400mm×横800mm×厚さ40mmのアルミニウム製金型に有機系の離型剤を塗布した状態で、ポリオールシステム液とポリイソシアネート化合物との混合直後に投入する。投入量は、金型容積に対し15%の過充填となる量とする。投入後、蓋をして密閉した状態で発泡させて、10分間保持し、該金型から取り出すことでパネルフォームを製造する。
 得られたパネルフォームのパネル全密度(単位:kg/m)を下記の方法で測定する。また、下記の方法で各特性の評価を行う。結果を表3および4に示す。
[Manufacture of panel forms]
A state in which an organic mold release agent is applied to an aluminum mold having a length of 400 mm, a width of 800 mm, and a thickness of 40 mm, the temperature of which is adjusted to 40.degree. And immediately after mixing the polyol system liquid and the polyisocyanate compound. The input amount is set to an amount that is 15% overfilled with respect to the mold volume. After charging, the foamed foam is closed and sealed, held for 10 minutes, and taken out of the mold to produce a panel foam.
The panel total density (unit: kg / m 3 ) of the obtained panel foam is measured by the following method. Each characteristic is evaluated by the following method. The results are shown in Tables 3 and 4.
<自由発泡フォームの評価方法>
[ボックスフリー密度]
 自由発泡で得られたフォームの中央付近を100mm角に切り出した試験片について、JIS A 9511に準拠した方法で密度(単位:kg/m)を測定する。
[反応性]
 ポリオールシステム液とポリイソシアネート化合物との混合開始時刻を0秒とし、クリームタイム、ゲルタイムおよびタックフリータイムを測定する。
 クリームタイム(秒):ポリオールシステム液とポリイソシアネート化合物との混合液が泡立ちを始めるまでの時間。
 ゲルタイム(秒):ゲル化の進行に伴い、細いガラスまたは金属製の棒を発泡中の発泡原液組成物上部に軽く差した後、素早く引き抜いた時に発泡原液組成物が糸を引き始めるまでの時間。
 タックフリータイム(秒):発泡が終了し、フォームにベトツキが無くなるまでの時間。
<Evaluation method of free foaming foam>
[Box-free density]
The density (unit: kg / m 3 ) is measured by a method in accordance with JIS A 9511 for a test piece obtained by cutting the vicinity of the center of the foam obtained by free foaming into a 100 mm square.
[Reactivity]
The mixing start time of the polyol system liquid and the polyisocyanate compound is set to 0 second, and the cream time, gel time, and tack-free time are measured.
Cream time (seconds): Time until the mixed liquid of the polyol system liquid and the polyisocyanate compound starts to foam.
Gel time (seconds): As the gelation progresses, after a thin glass or metal rod is lightly inserted on top of the foaming stock solution composition during foaming, the time it takes for the foaming stock composition to start drawing the yarn when it is quickly pulled out .
Tack-free time (seconds): Time until foaming ends and there is no stickiness in the foam.
<パネルフォームの評価方法>
[パネル全密度]
 得られたパネルフォームの全体につき、JIS A 9511に準拠した方法でパネル全密度(単位:kg/m)を測定する。
[成形性]
(1)脱型後の収縮の有無:得られたパネルフォームを、20℃で30時間放置した後、外観状態を観察する。下記の基準で評価する。
○(良):変形がない。良好。
△(可):収縮により部分的に変形が生じる。
×(不可):収縮により全体が潰れる。不良。
(2)セル外観:得られたパネルフォームの表面のうち、発泡方向(金型の厚さ方向)に対して下側(金型の底面側)の表面をスキン部の表面とする。パネルフォームのコア部から、横(x)100mm、縦(y)100mm、高さ(z)25mmの寸法で切り出した試験片の表面をコア部の表面とする。
 スキン部およびコア部のそれぞれの表面について、セルが不均一な部分(セルが粗くなっている部分)の有無を目視で観察し、下記の基準で評価する。
◎(優良):セルが粗くなっている部分がない。セルが微細でかつ均一。
○(良):セルが粗くなっている部分がない。セルが均一。
△(可):部分的にセルが粗くなっている。
×(不可):全体的にセルが粗くなっている。不良。
<Panel form evaluation method>
[Total panel density]
The total panel density (unit: kg / m 3 ) is measured for the whole obtained panel foam by a method according to JIS A 9511.
[Formability]
(1) Presence or absence of shrinkage after demolding: The obtained panel foam is allowed to stand at 20 ° C. for 30 hours, and then the appearance is observed. Evaluation is based on the following criteria.
○ (good): No deformation. Good.
Δ (possible): Partial deformation occurs due to shrinkage.
X (impossible): The whole is crushed by shrinkage. Bad.
(2) Cell appearance: Of the surface of the obtained panel foam, the surface on the lower side (the bottom surface side of the mold) with respect to the foaming direction (the thickness direction of the mold) is the surface of the skin part. The surface of the test piece cut out from the core part of the panel foam with dimensions of horizontal (x) 100 mm, vertical (y) 100 mm, and height (z) 25 mm is taken as the surface of the core part.
With respect to the respective surfaces of the skin part and the core part, the presence / absence of a non-uniform cell portion (portion where the cell is rough) is visually observed and evaluated according to the following criteria.
A (Excellent): There is no portion where the cell is rough. The cells are fine and uniform.
○ (good): There is no portion where the cell is rough. The cells are uniform.
Δ (possible): The cell is partially rough.
X (impossible): The cell is rough as a whole. Bad.
[寸法安定性]
 寸法安定性は、ASTM D 2126-75に準じた方法で測定する。金型からパネルフォームを取り出した後、雰囲気温度25℃、相対湿度50%の雰囲気下で30時間養生した後、パネルフォームのコア部から、横(x)100mm、縦(y)100mm、高さ(z)25mmの寸法で切り出したものを試験片として、高温寸法安定性、低温寸法安定性および湿熱寸法安定性の各試験を行う。
 養生条件は以下の条件で行う。
 高温寸法安定性:試験片を70℃の恒温槽中で24時間保存。
 低温寸法安定性:試験片を-30℃の恒温槽中で24時間保存。
 湿熱寸法安定性:試験片を70℃で相対湿度95%の雰囲気下の恒温槽中で24時間保存。
 上記各条件での保存終了後、試験片のx、y、zの3方向について、保存前の寸法に対する変化した寸法の割合を寸法変化率(単位:%)で表す。
 寸法変化率において、負の数値は収縮を意味し、絶対値が大きいことは、寸法変化が大きいことを意味する。
[Dimensional stability]
Dimensional stability is measured by a method according to ASTM D 2126-75. After removing the panel foam from the mold, it was cured for 30 hours in an atmosphere at an ambient temperature of 25 ° C. and a relative humidity of 50%, and then, from the core of the panel foam, horizontal (x) 100 mm, vertical (y) 100 mm, height (Z) Each test of high temperature dimensional stability, low temperature dimensional stability, and wet heat dimensional stability is performed using a sample cut out with a size of 25 mm as a test piece.
The curing conditions are as follows.
High temperature dimensional stability: The specimen is stored in a thermostat at 70 ° C. for 24 hours.
Low temperature dimensional stability: Specimens are stored in a constant temperature bath at -30 ° C for 24 hours.
Humid heat dimensional stability: Specimens are stored for 24 hours in a thermostatic chamber at 70 ° C. in an atmosphere with a relative humidity of 95%.
After the storage under the above-mentioned conditions, the ratio of the changed dimension to the dimension before storage in the three directions x, y, and z of the test piece is expressed as a dimensional change rate (unit:%).
In the dimensional change rate, a negative value means shrinkage, and a large absolute value means that a dimensional change is large.
[圧縮強度]
 パネルフォームの圧縮強さは、JIS A 9511に準拠して測定した。試料片の大きさは、縦(x)、横(y)を各50mmに切出し、高さ方向(z)は表面スキン層を切り出さずパネルフォームの厚さである40mmのままとし、z方向の圧縮強度を測定する。
[熱伝導率]
 パネルフォームの熱伝導率(単位:W/m・K)は、JIS A 9511に準拠し、熱伝導率測定装置(製品名:オートラムダHC-074型、英弘精機社製)を用いて、平均温度24℃で測定した。
[Compressive strength]
The compressive strength of the panel foam was measured according to JIS A 9511. As for the size of the sample piece, the length (x) and the width (y) are cut out to 50 mm each, and the height direction (z) is kept at 40 mm which is the thickness of the panel foam without cutting out the surface skin layer. Measure the compressive strength.
[Thermal conductivity]
The thermal conductivity (unit: W / m · K) of the panel foam is based on JIS A 9511, and is averaged using a thermal conductivity measuring device (product name: Auto-Lambda HC-074, manufactured by Eiko Seiki Co., Ltd.). Measurement was performed at a temperature of 24 ° C.
[常温貯蔵安定性]
 ポリオールシステム液を20℃で1ヶ月間保存した後、液の状態を目視で観察する。下記の基準で評価する。
○(良):濁り、分離、沈殿、固化のいずれも発生せず、透明である。良好。
×(不可):濁り、分離、沈殿、固化のうちの1つ以上が発生する。不良。
[高温貯蔵安定性]
 ポリオールシステム液を40℃で1ヶ月間保存した後、液の状態を目視で観察する。下記の基準で評価する。
○(良):濁り、分離、沈殿、固化のいずれも発生せず、透明である。良好。
×(不可):濁り、分離、沈殿、固化のうちの1つ以上が発生する。不良。
××(より不可):濁り、分離、沈殿、固化のうち2つ以上が発生する。より不良。
[Room temperature storage stability]
After the polyol system liquid is stored at 20 ° C. for 1 month, the state of the liquid is visually observed. Evaluation is based on the following criteria.
○ (good): No turbidity, separation, precipitation or solidification occurs, and it is transparent. Good.
X (impossible): One or more of turbidity, separation, precipitation, and solidification occurs. Bad.
[High temperature storage stability]
After storing the polyol system liquid at 40 ° C. for one month, the state of the liquid is visually observed. Evaluation is based on the following criteria.
○ (good): No turbidity, separation, precipitation or solidification occurs, and it is transparent. Good.
X (impossible): One or more of turbidity, separation, precipitation, and solidification occurs. Bad.
XX (more impossible): Two or more of turbidity, separation, precipitation and solidification occur. More bad.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
  表6の結果より、ポリオール組成物にポリマー粒子を含まない例1~18は、ポリオールシステムの高温の貯蔵安定性が不良である。
  表7の結果より、本願発明の例19、21の硬質フォームは例20、22と比べてボックスフリー密度を低くして軽量化しても、寸法安定性、成形性が良好であり、ポリオールシステムの安定性が良好であり、高温の貯蔵安定も良好である。またポリエーテルポリオールよりも収縮する傾向が強いポリエステルポリオール(ポリオール(Da))を用いた例23、25においても、例24、26と比べてフォームの収縮が抑制され、成形性、寸法安定性、圧縮強度、熱伝導率およびポリオールシステムの貯蔵安定性がいずれも向上する。
From the results of Table 6, Examples 1 to 18 in which the polyol composition does not contain polymer particles have poor storage stability at high temperatures of the polyol system.
From the results of Table 7, the rigid foams of Examples 19 and 21 of the present invention have good dimensional stability and moldability even when the box-free density is reduced and reduced in weight compared to Examples 20 and 22, and the polyol system Stability is good and storage stability at high temperature is also good. In Examples 23 and 25 using polyester polyol (polyol (Da)), which has a stronger tendency to shrink than polyether polyols, foam shrinkage is suppressed as compared with Examples 24 and 26, and moldability, dimensional stability, Compressive strength, thermal conductivity and the storage stability of the polyol system are all improved.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表8、9の結果より、本願発明のポリオール組成物を用いた例27、29、31、33、35、37、39、41、43、45、47、49は、ポリオール(Aa)を用いない比較例である例28、30、32、34、36、38、40、42、44、46、48、50と比べて、成形性、寸法安定性、圧縮強さ、熱伝導率およびポリオールシステムの常温貯蔵安定性がいずれも良好であり、高温の貯蔵安定性も良好である。 From the results of Tables 8 and 9, Examples 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, and 49 using the polyol composition of the present invention do not use polyol (Aa). Compared with Comparative Examples 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, the moldability, dimensional stability, compressive strength, thermal conductivity and polyol system The room temperature storage stability is good, and the high temperature storage stability is also good.
<本発明Bの実施例について>
 ポリオールの水酸基価は、JIS K 1557(1970年版)に準拠して測定した値である。以下の例で用いる各原料は以下の通りである。
[ポリオール(Ab)]
 ポリオールAb1:ノニルフェノールの1モルに対し、ホルムアルデヒドの1.5モルおよびジエタノールアミンの2.2モルを反応させて得られた反応生成物を開始剤として、POを開環付加重合させた後、水酸化カリウム触媒存在下で、EOを開環付加重合させて得られた水酸基価が300mgKOH/gのポリエーテルポリオール。アルキレンオキシドの付加量はノニルフェノールの1モルに対し15.4モルである。付加させたPOとEOとの合計量に対するEOの割合(全EO含有量)は58質量%である。
 ポリオールAb2:ノニルフェノールの1モルに対し、ホルムアルデヒドの2.2モルおよびジエタノールアミンの2.2モルを反応させて得られた反応生成物を開始剤として、POを開環付加重合させた後、水酸化カリウム触媒存在下で、EOを開環付加重合させて得られた水酸基価が430mgKOH/gのポリエーテルポリオール。アルキレンオキシドの付加量はノニルフェノールの1モルに対し6.3モルである。付加させたPOとEOとの合計量に対するEOの割合(全EO含有量)は23質量%である。 
<Examples of Invention B>
The hydroxyl value of the polyol is a value measured according to JIS K 1557 (1970 edition). Each raw material used in the following examples is as follows.
[Polyol (Ab)]
Polyol Ab1: PO is subjected to ring-opening addition polymerization using a reaction product obtained by reacting 1.5 mol of formaldehyde and 2.2 mol of diethanolamine with 1 mol of nonylphenol, followed by hydroxylation. A polyether polyol having a hydroxyl value of 300 mgKOH / g, obtained by ring-opening addition polymerization of EO in the presence of a potassium catalyst. The amount of alkylene oxide added is 15.4 moles per mole of nonylphenol. The ratio of EO to the total amount of PO and EO added (total EO content) is 58% by mass.
Polyol Ab2: PO is ring-opening addition polymerized with the reaction product obtained by reacting 2.2 mol of formaldehyde and 2.2 mol of diethanolamine with 1 mol of nonylphenol, and then hydroxylated. A polyether polyol having a hydroxyl value of 430 mgKOH / g, obtained by ring-opening addition polymerization of EO in the presence of a potassium catalyst. The addition amount of alkylene oxide is 6.3 mol per 1 mol of nonylphenol. The ratio of EO to the total amount of added PO and EO (total EO content) is 23% by mass.
 ポリオールAb3:ノニルフェノールの1モルに対し、ホルムアルデヒドの1.5モルおよびジエタノールアミンの2.2モルを反応させて得られた反応生成物を開始剤として、POのみを開環付加重合させて得られた水酸基価が470mgKOH/gのポリエーテルポリオール。アルキレンオキシドの付加量はノニルフェノールの1モルに対し5.5モルである。
 ポリオールAb4:アニリン1モルに対して、フェノール1モル、ホルムアルデヒド0.6モルおよびジエタノールアミン2.2モルを反応させて得られた反応生成物を開始剤として、POのみを開環付加重合させて得られた水酸基価が540mgKOH/gのポリエーテルポリオール。アルキレンオキシドの付加量はアニリンの1モルに対し6.9モルである。
 ポリオールAb5:ノニルフェノールの1モルに対し、ホルムアルデヒドの1.5モルおよびジエタノールアミンの2.2モルを反応させて得られた反応生成物を開始剤として、EOのみを開環付加重合させて得られた水酸基価が580mgKOH/gのポリエーテルポリオール。アルキレンオキシドの付加量はノニルフェノールの1モルに対し2.6モルである。
Polyol Ab3: Obtained by ring-opening addition polymerization of PO alone using a reaction product obtained by reacting 1.5 mol of formaldehyde and 2.2 mol of diethanolamine with 1 mol of nonylphenol. A polyether polyol having a hydroxyl value of 470 mg KOH / g. The amount of alkylene oxide added is 5.5 moles per mole of nonylphenol.
Polyol Ab4: obtained by subjecting 1 mol of aniline to 1 mol of phenol, 0.6 mol of formaldehyde and 2.2 mol of diethanolamine, and using PO as the initiator for ring-opening addition polymerization. A polyether polyol having a hydroxyl value of 540 mgKOH / g. The amount of alkylene oxide added is 6.9 moles per mole of aniline.
Polyol Ab5: obtained by subjecting 1 mol of nonylphenol to 1.5 mol of formaldehyde and 2.2 mol of diethanolamine as an initiator and subjecting only EO to ring-opening addition polymerization A polyether polyol having a hydroxyl value of 580 mg KOH / g. The addition amount of alkylene oxide is 2.6 mol per 1 mol of nonylphenol.
[ポリオール(Bb)]
 ポリオールBb1:エチレンジアミンにPOを開環付加重合させた後、水酸化カリウム触媒存在下で、EOを開環付加重合させて得られた、水酸基価が450mgKOH/gのポリエーテルポリオール。EOとPOの合計のうち、EOの含有量(全EO含有量)は41質量%である。
 ポリオールBb2:エチレンジアミンにアルキレンオキシドとしてPOのみを開環付加重合させて得られた、水酸基価が760mgKOH/gのポリエーテルポリオール。
 ポリオールBb3:モノエタノールアミンにアルキレンオキシドとしてPOのみを開環付加重合させて得られた、水酸基価が500mgKOH/gのポリエーテルポリオール。
[Polyol (Bb)]
Polyol Bb1: A polyether polyol having a hydroxyl value of 450 mgKOH / g, obtained by subjecting PO to ring-opening addition polymerization to ethylenediamine and then subjecting EO to ring-opening addition polymerization in the presence of a potassium hydroxide catalyst. Of the total of EO and PO, the EO content (total EO content) is 41% by mass.
Polyol Bb2: A polyether polyol having a hydroxyl value of 760 mgKOH / g, obtained by ring-opening addition polymerization of only PO as an alkylene oxide to ethylenediamine.
Polyol Bb3: A polyether polyol having a hydroxyl value of 500 mgKOH / g, obtained by ring-opening addition polymerization of only PO as an alkylene oxide to monoethanolamine.
[ポリオール(Cb)]
 ポリオールCb1:m-トリレンジアミンにEOを開環付加重合した後、水酸化カリウム触媒存在下でPO、EOの順にアルキレンオキシドを開環付加重合させて得られた、水酸基価が450mgKOH/gのポリエーテルポリオール。EOとPOの合計のうち、EOの含有量(全EO含有量)は25質量%である。また、末端のEO含有量は3質量%である。
 ポリオールCb2:m-トリレンジアミンにEOを開環付加重合した後、水酸化カリウム触媒存在下でPO、EOの順にアルキレンオキシドを開環付加重合させて得られた、水酸基価が350mgKOH/gのポリエーテルポリオール。EOとPOの合計のうち、EOの含有量(全EO含有量)は25質量%である。また、末端のEO含有量は11質量%である。
 ポリオールCb3:m-トリレンジアミンにアルキレンオキシドとしてPOのみを開環付加重合させて得られた、水酸基価が350mgKOH/のポリエーテルポリオールである。
[Polyol (Cb)]
Polyol Cb1: obtained by ring-opening addition polymerization of EO to m-tolylenediamine, followed by ring-opening addition polymerization of alkylene oxide in the order of PO and EO in the presence of a potassium hydroxide catalyst, having a hydroxyl value of 450 mgKOH / g Polyether polyol. Of the total of EO and PO, the EO content (total EO content) is 25% by mass. The EO content at the end is 3% by mass.
Polyol Cb2: obtained by ring-opening addition polymerization of EO to m-tolylenediamine, followed by ring-opening addition polymerization of alkylene oxide in the order of PO and EO in the presence of a potassium hydroxide catalyst, having a hydroxyl value of 350 mgKOH / g Polyether polyol. Of the total of EO and PO, the EO content (total EO content) is 25% by mass. The EO content at the end is 11% by mass.
Polyol Cb3: A polyether polyol having a hydroxyl value of 350 mgKOH / obtained by ring-opening addition polymerization of only PO as an alkylene oxide to m-tolylenediamine.
[その他のポリオール(Eb)]
 ポリオールEb1:ジエチレングリコールとテレフタル酸とを重縮合して得られた、水酸基価が250mgKOH/gのポリエステルポリオール(オキシド社製、製品名:Terol 563)。
[Other polyols (Eb)]
Polyol Eb1: Polyester polyol having a hydroxyl value of 250 mgKOH / g, obtained by polycondensation of diethylene glycol and terephthalic acid (product name: Terol 563, manufactured by Oxide).
[ポリマー分散ポリオール(Wb)]
 ポリオールWb1:下記の製造例1で得られた、平均水酸基価320mgKOH/gのポリマー分散ポリオール。
 ポリマー分散ポリオール(Wb)として、下記表1に示す配合で、下記製造例の方法により製造したポリマー分散ポリオールWb1~W6を用いた。表1における配合比の単位は「質量部」である。[重合性不飽和結合を有するモノマー]
 ポリマー粒子を形成するための重合性不飽和結合を有するモノマーとしては、アクリロニトリル(AN)、酢酸ビニル(Vac)、メタクリル酸メチル(MMA)、前記式(1-1)で表わされるポリフルオロアルキルメタクリレート(FMA)を用いた。
[Polymer-dispersed polyol (Wb)]
Polyol Wb1: A polymer-dispersed polyol having an average hydroxyl value of 320 mgKOH / g obtained in Production Example 1 below.
As the polymer-dispersed polyol (Wb), polymer-dispersed polyols Wb1 to W6 produced by the method of the following production example with the composition shown in Table 1 below were used. The unit of the blending ratio in Table 1 is “part by mass”. [Monomer having a polymerizable unsaturated bond]
Examples of the monomer having a polymerizable unsaturated bond for forming polymer particles include acrylonitrile (AN), vinyl acetate (Vac), methyl methacrylate (MMA), and polyfluoroalkyl methacrylate represented by the formula (1-1). (FMA) was used.
[マクロモノマー]
 マクロモノマーとして以下の2種を用いた。
・マクロモノマーM1:下記のポリオールE、トリレンジイソシアネート(商品名:T-80、日本ポリウレタン工業社製)および2-ヒドロキシエチルメタクリレート(純正化学社製)を、ポリオールE/トリレンジイソシアネート/2-ヒドロキシエチルメタクリレート=1/1/1のモル比率となるように仕込み、60℃で1時間反応させた後さらに80℃で6時間反応させることで得られた、水酸基価40mgKOH/gの重合性不飽和基を有するマクロモノマー。
・マクロモノマーM2:下記のポリオールF、トリレンジイソシアネート(商品名:T-80、日本ポリウレタン工業社製)および2-ヒドロキシエチルメタクリレート(純正化学社製)を、ポリオールF/トリレンジイソシアネート/2-ヒドロキシエチルメタクリレート=1/1/1のモル比率となるように仕込み、60℃で1時間反応させた後さらに80℃で6時間反応させることで得られた、水酸基価21mgKOH/gの重合性不飽和基を有するマクロモノマー。
・上記ポリオールE:開始剤としてグリセリンを用い、該グリセリンに、EOを開環付加重合した後、POとEOとの混合物[PO/EO=46.2/53.8(質量比)]を開環付加重合させた、ポリオールD中のオキシエチレン基含有量65質量%、水酸基価が48mgKOH/gのポリオキシアルキレンポリオール。
・上記ポリオールF:開始剤としてグリセリンを用い、該グリセリンに、EOを開環付加重合した後、POとEOとの混合物[PO/EO=48.0/52.0(質量比)]を開環付加重合させた、ポリオール中のオキシエチレン基含有量60質量%、水酸基価が28mgKOH/gのポリオキシアルキレンポリオール。
[Macromonomer]
The following two types were used as macromonomers.
Macromonomer M1: Polyol E / tolylene diisocyanate / 2-polyol E, tolylene diisocyanate (trade name: T-80, manufactured by Nippon Polyurethane Industry Co., Ltd.) and 2-hydroxyethyl methacrylate (made by Junsei Kagaku Co.) Hydroxyethyl methacrylate = 1/1/1 molar ratio was prepared, reacted at 60 ° C for 1 hour, and further reacted at 80 ° C for 6 hours, resulting in a polymerizable non-polymerizable group having a hydroxyl value of 40 mgKOH / g. Macromonomer having a saturated group.
Macromonomer M2: Polyol F, Tolylene Diisocyanate (trade name: T-80, manufactured by Nippon Polyurethane Industry Co., Ltd.) and 2-hydroxyethyl methacrylate (Pure Chemical Co., Ltd.) Hydroxyethyl methacrylate = 1/1/1 molar ratio was prepared, reacted at 60 ° C for 1 hour, and further reacted at 80 ° C for 6 hours, resulting in a polymerization resistance of 21 mgKOH / g. Macromonomer having a saturated group.
Polyol E: Glycerol is used as an initiator. After ring-opening addition polymerization of EO to the glycerin, a mixture of PO and EO [PO / EO = 46.2 / 53.8 (mass ratio)] is opened. A polyoxyalkylene polyol having a oxyethylene group content of 65% by mass and a hydroxyl value of 48 mgKOH / g in polyol D, which has been subjected to cycloaddition polymerization.
Polyol F: Glycerol is used as an initiator, and after ring-opening addition polymerization of EO, the mixture of PO and EO [PO / EO = 48.0 / 52.0 (mass ratio)] is opened. A polyoxyalkylene polyol having an oxyethylene group content of 60% by mass and a hydroxyl value of 28 mgKOH / g in a polyol subjected to cycloaddition polymerization.
[ベースポリオール(Wb’)]
 ベースポリオール(Wb’)としては、下記のポリオールX1、Z1、Z2を用いた。
(ポリオールX1)
 グリセリンを開始剤として、EOとPOとをランダムに開環付加重合させて得られた、水酸基価50mgKOH/gのポリエーテルポリオール。付加させたPOとEOの合計量に対するEOの割合は70質量%である。ポリオールX1の全体におけるEO基の含有量は68質量%である。(ポリオールY1)
 グリセリンを開始剤として、POを開環付加重合して得られた、水酸基価650mgKOH/gのポリエーテルポリオール。(ポリオールY2)
 エチレンジアミンを開始剤として、POを開環付加重合させて得られた、水酸基価が760mgKOH/gのポリエーテルポリオール。
[Base polyol (Wb ′)]
As the base polyol (Wb ′), the following polyols X1, Z1, and Z2 were used.
(Polyol X1)
A polyether polyol having a hydroxyl value of 50 mgKOH / g, obtained by random ring-opening addition polymerization of EO and PO using glycerin as an initiator. The ratio of EO to the total amount of PO and EO added is 70% by mass. The content of EO groups in the entire polyol X1 is 68% by mass. (Polyol Y1)
A polyether polyol having a hydroxyl value of 650 mgKOH / g, obtained by ring-opening addition polymerization of PO using glycerol as an initiator. (Polyol Y2)
A polyether polyol obtained by ring-opening addition polymerization of PO using ethylenediamine as an initiator and having a hydroxyl value of 760 mgKOH / g.
[製造例1:ポリマー分散ポリオール(Wb1)の製造]
 5L加圧反応槽に、表1に示した配合でベースポリオール(Wb’)、モノマー、および重合開始剤としてのAMBNを全て仕込んだ後、撹拌しながら昇温を開始し、反応液を80℃に保ちながら10時間反応させた。モノマーの反応率は80%以上を示した。反応終了後、110℃、20Paで2時間加熱減圧脱気して未反応モノマーを除去し、ポリマー分散ポリオールWb1を得た。
 得られたポリマー分散ポリオールWb1の水酸基価、25℃における粘度、およびWb1中のポリマー粒子の含有量を表1に示す(以下、同様。)。
[Production Example 1: Production of polymer-dispersed polyol (Wb1)]
After charging all the base polyol (Wb ′), monomer, and AMBN as a polymerization initiator in the 5 L pressure reaction tank with the formulation shown in Table 1, the temperature was increased while stirring, and the reaction solution was heated to 80 ° C. The reaction was continued for 10 hours. The monomer reaction rate was 80% or more. After completion of the reaction, the unreacted monomer was removed by heating under reduced pressure at 110 ° C. and 20 Pa for 2 hours to obtain a polymer-dispersed polyol Wb1.
The hydroxyl value of the obtained polymer-dispersed polyol Wb1, the viscosity at 25 ° C., and the content of the polymer particles in Wb1 are shown in Table 1 (the same applies hereinafter).
[製造例2、3:ポリマー分散ポリオール(Wb2)、(Wb3)の製造]
 5L加圧反応槽に、表1に示したベースポリオール(Wb’)の混合物のうちの70質量%を仕込み、120℃に保ちながら、残りのベースポリオール(Wb’)の混合物とモノマーと重合開始剤(AMBN)との混合物を撹拌しながら2時間かけてフィードし、全フィード終了後同温度下で約0.5時間撹拌を続けた。製造例2、3のいずれにおいても、モノマーの反応率は80%以上を示した。反応終了後、未反応モノマーを120℃、20Paで2時間加熱減圧脱気にて除去し、ポリマー分散ポリオールWb2およびWb3を得た。
[Production Examples 2, 3: Production of polymer-dispersed polyol (Wb2), (Wb3)]
Into a 5 L pressurized reaction vessel, 70% by mass of the mixture of base polyol (Wb ′) shown in Table 1 was charged and maintained at 120 ° C., while the remaining mixture of base polyol (Wb ′), monomer and polymerization were started. The mixture with the agent (AMBN) was fed over 2 hours with stirring, and stirring was continued for about 0.5 hours at the same temperature after completion of all the feeds. In any of Production Examples 2 and 3, the monomer reaction rate was 80% or more. After completion of the reaction, unreacted monomers were removed by heating under reduced pressure at 120 ° C. and 20 Pa for 2 hours to obtain polymer-dispersed polyols Wb2 and Wb3.
[製造例4~6:ポリマー分散ポリオール(Wb4)、(Wb5)、(Wb6)の製造]
 5L加圧反応槽に、表1に示した配合で、ポリオールX、ポリオールY1、およびマクロモノマーを仕込み、120℃に保ちつつ、モノマーおよび重合開始剤(AMBN)の混合物を、撹拌しながら2時間かけてフィードし、全フィード終了後、同温度下で約0.5時間撹拌を続けた。その後、未反応モノマーを減圧下、120℃で3時間除去することによりポリマー分散ポリオールWb4、Wb5およびWb6を得た。ポリマー分散ポリオールの平均水酸基価は、JIS K 1557-1:2007に従って測定した。
[Production Examples 4 to 6: Production of polymer-dispersed polyol (Wb4), (Wb5), (Wb6)]
In a 5 L pressurized reaction vessel, polyol X, polyol Y1, and macromonomer were charged with the formulation shown in Table 1, and the mixture of monomer and polymerization initiator (AMBN) was stirred for 2 hours while maintaining at 120 ° C. After completion of the entire feed, stirring was continued for about 0.5 hours at the same temperature. Thereafter, unreacted monomers were removed under reduced pressure at 120 ° C. for 3 hours to obtain polymer-dispersed polyols Wb4, Wb5 and Wb6. The average hydroxyl value of the polymer-dispersed polyol was measured according to JIS K1557-1: 2007.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
[ポリイソシアネート化合物]
 ポリイソシアネート化合物1:ポリメチレンポリフェニレンポリイソシアネート(クルードMDI)(日本ポリウレタン工業社製、製品名:ミリオネートMR-200)。[発泡剤]
 発泡剤1:E-1-クロロ-3,3,3-トリフルオロ-プロペン。
 発泡剤2:Z-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン。
 発泡剤3:水。
[難燃剤]
 難燃剤1:トリス(β-クロロプロピル)ホスフェート(スプレスタジャパン社製、製品名:ファイロールPCF)。
[触媒]
 触媒1:ペンタメチルジエチレントリアミン(東ソー社製、製品名:TOYOCAT DT)。
 触媒2:N,N,N’,N’-テトラメチルヘキサメチレンジアミン(東ソー社製、製品名:TOYOCAT MR)。
 触媒3:オクチル酸カリウム塩(日本化学産業社製、製品名:プキャット15G)。
 ウレタン化触媒1:触媒1/触媒2の1/3(質量比)の混合物。
[整泡剤]
 整泡剤1:シリコーン系整泡剤(東レ・ダウコーニング社製、製品名:SH-193)。
[Polyisocyanate compound]
Polyisocyanate compound 1: Polymethylene polyphenylene polyisocyanate (crude MDI) (manufactured by Nippon Polyurethane Industry Co., Ltd., product name: Millionate MR-200). [Foaming agent]
Foaming agent 1: E-1-chloro-3,3,3-trifluoro-propene.
Foaming agent 2: Z-1,1,1,4,4,4-hexafluoro-2-butene.
Foaming agent 3: water.
[Flame retardants]
Flame retardant 1: Tris (β-chloropropyl) phosphate (manufactured by Spresta Japan, product name: Pyrol PCF).
[catalyst]
Catalyst 1: Pentamethyldiethylenetriamine (manufactured by Tosoh Corporation, product name: TOYOCAT DT).
Catalyst 2: N, N, N ′, N′-tetramethylhexamethylenediamine (manufactured by Tosoh Corporation, product name: TOYOCAT MR).
Catalyst 3: Potassium octylate (manufactured by Nippon Chemical Industry Co., Ltd., product name: PACCAT 15G).
Urethane catalyst 1: Mixture of catalyst 1 / catalyst 1/3 (mass ratio).
[Foam stabilizer]
Foam stabilizer 1: Silicone foam stabilizer (manufactured by Dow Corning Toray, product name: SH-193).
<例1~16、21~34>
 表2、3、6および7に示す配合で自由発泡フォームおよびパネルフォームのサンプルを製造した。表2および3はポリウレタンフォームの配合(ウレタン処方)、表6および7はポリイソシアヌレートフォームの配合(イソシアヌレート処方)である。例3~4、11~24、33~34、37~38、41~57は実施例、例1~2、5~10、25~32、35~36、39~40、58~59は比較例である。
 表に示した配合の数値の単位は質量部である。ただしポリイソシアネート化合物の配合量はイソシアネート指数(INDEX)で表す。表にポリオール組成物(Pb)の全体における平均水酸基数および平均水酸基価を示す。以下において、発泡方向を厚さ方向とする。
<Examples 1 to 16, 21 to 34>
Free-foam foam and panel foam samples were prepared with the formulations shown in Tables 2, 3, 6 and 7. Tables 2 and 3 are blends of polyurethane foam (urethane formulation), and Tables 6 and 7 are blends of polyisocyanurate foam (isocyanurate formulation). Examples 3 to 4, 11 to 24, 33 to 34, 37 to 38, and 41 to 57 are Examples, and Examples 1 to 2, 5 to 10, 25 to 32, 35 to 36, 39 to 40, and 58 to 59 are compared. It is an example.
The unit of the numerical values of the formulations shown in the table is parts by mass. However, the compounding amount of the polyisocyanate compound is represented by an isocyanate index (INDEX). The table shows the average number of hydroxyl groups and the average hydroxyl value in the whole polyol composition (Pb). In the following, the foaming direction is the thickness direction.
[発泡原液組成物の調製]
 各例の配合のうち、ポリイソシアネート化合物を除く各成分の所定量をプラスチック製容器に量り取り、撹拌羽根付のミキサーを用い、毎分3,000回転で30秒間撹拌・混合し、ポリオールシステム液を調製した。該ポリオールシステム液の液温を25℃に保温する。
 これとは別に、ポリイソシアネート化合物の所定量をプラスチック容器に量り取り、液温を20℃に保温する。
 該ポリイソシアネート化合物を上記ポリオールシステム液に投入し、ミキサーを用いて、毎分3,000回転で5秒間撹拌・混合して発泡原液組成物を調製する。
[Preparation of foaming stock composition]
Of the blends in each example, a predetermined amount of each component excluding the polyisocyanate compound is weighed into a plastic container, and stirred and mixed at 3,000 rpm for 30 seconds using a mixer with a stirring blade, to obtain a polyol system solution. Was prepared. The liquid temperature of the polyol system liquid is kept at 25 ° C.
Separately, a predetermined amount of the polyisocyanate compound is weighed into a plastic container, and the liquid temperature is kept at 20 ° C.
The polyisocyanate compound is charged into the polyol system solution, and stirred and mixed at 3,000 rpm for 5 seconds using a mixer to prepare a foaming stock solution composition.
[自由発泡フォームの製造]
 上記手順で調製した、発泡原液組成物を調製後、直ちに、縦、横、高さ各20cmの木箱に素早く投入して、自由発泡フォームを得た。得られた自由発泡フォームのボックスフリー密度を下記の方法で測定する。また、発泡途中には、反応性(クリームタイム、ゲルタイム、タックフリータイム)を下記の方法で測定する。
[Manufacture of free foaming foam]
Immediately after preparing the foaming stock solution composition prepared by the above procedure, it was immediately put into a wooden box of 20 cm in length, width and height to obtain a free foaming foam. The box-free density of the obtained free foaming foam is measured by the following method. In the middle of foaming, the reactivity (cream time, gel time, tack free time) is measured by the following method.
[パネルフォームの製造]
 図1はパネルフォームの製造に用いた金型1の斜視図である。該金型1はアルミニウム製の下型2と上蓋3とからなる。
 下型2は、縦方向(X)の長さが800mm、横方向(Y)の長さが400mm、厚さ方向(t)の長さが40mmである直方体の、厚さ方向(t)に垂直な上面が取り除かれて上部開口部4が形成され、かつ縦方向(X)に垂直な一側面が取り除かれて側部開口部5が形成された形状である。すなわち下型2は、底面2aと、横方向(Y)に垂直な2つの側面2cと、縦方向(X)に垂直な1つの側面2bとからなる。
 上蓋3は、下型2の上部開口部4を閉じる板状であり、下型2の横方向(Y)に垂直な一側面2cの上端に蝶着されている。
[Manufacture of panel forms]
FIG. 1 is a perspective view of a mold 1 used for manufacturing a panel foam. The mold 1 includes an aluminum lower mold 2 and an upper lid 3.
The lower mold 2 is a rectangular parallelepiped having a length in the longitudinal direction (X) of 800 mm, a length in the lateral direction (Y) of 400 mm, and a length in the thickness direction (t) of 40 mm in the thickness direction (t). The upper opening 4 is formed by removing the vertical upper surface, and the side opening 5 is formed by removing one side surface perpendicular to the longitudinal direction (X). That is, the lower mold 2 includes a bottom surface 2a, two side surfaces 2c perpendicular to the horizontal direction (Y), and one side surface 2b perpendicular to the vertical direction (X).
The upper lid 3 has a plate shape that closes the upper opening 4 of the lower mold 2, and is hinged to the upper end of one side surface 2 c perpendicular to the lateral direction (Y) of the lower mold 2.
 パネルフォームの製造においては、予め金型1を60℃に温度調整しておき、上記手順で発泡原液組成物を調製した後、直ちに、下型2内の投入位置6に投入する。投入量は、発泡後に金型容積(800mm×400mm×40mm)が丁度満たされた状態となる量(ジャストパック)とする。投入位置6は、縦方向(X)に垂直な側面2bの近傍における、底面2aの横方向(Y)の中央部である。投入位置6に投入された発泡原液組成物は、底面2a上を側部開口部5に向かって、縦方向(X)に沿って流れる。全量を投入した直後に、上蓋3を閉じて発泡させ、パネルフォームを製造する。なお、ポリオールシステム液とポリイソシアネート化合物との混合開始時刻を0秒とし、10分後に、上蓋3を開放して製品(パネルフォーム)を取り出す。 In the manufacture of the panel foam, the temperature of the mold 1 is adjusted to 60 ° C. in advance, and after the foaming stock solution composition is prepared by the above procedure, it is immediately charged into the charging position 6 in the lower mold 2. The amount to be charged is an amount (just pack) in which the mold volume (800 mm × 400 mm × 40 mm) is just filled after foaming. The charging position 6 is a central portion in the horizontal direction (Y) of the bottom surface 2a in the vicinity of the side surface 2b perpendicular to the vertical direction (X). The foaming stock solution composition charged to the charging position 6 flows along the vertical direction (X) toward the side opening 5 on the bottom surface 2a. Immediately after the entire amount is charged, the upper lid 3 is closed and foamed to produce a panel foam. The mixing start time of the polyol system liquid and the polyisocyanate compound is set to 0 second, and after 10 minutes, the upper lid 3 is opened and the product (panel foam) is taken out.
<自由発泡フォームの評価方法>
[反応性]
 ポリオールシステム液とポリイソシアネート化合物との混合開始時刻を0秒とし、クリームタイム、ゲルタイムおよびタックフリータイムを測定する。
 クリームタイム(秒):ポリオールシステム液とポリイソシアネート化合物との混合液が泡立ちを始めるまでの時間。
 ゲルタイム(秒):ゲル化の進行に伴い、細いガラスまたは金属製の棒を発泡中の発泡原液組成物上部に軽く差した後、素早く引き抜いた時に発泡原液組成物が糸を引き始めるまでの時間。
 タックフリータイム(秒):発泡が終了し、フォームにベトツキが無くなるまでの時間。
[ボックスフリー密度]
 自由発泡で得られたフォームの中央付近を10cm角に切り出した試験片について、JIS A 9526に準拠した方法で密度(単位:kg/m)を測定する。
<Evaluation method of free foaming foam>
[Reactivity]
The mixing start time of the polyol system liquid and the polyisocyanate compound is set to 0 second, and the cream time, gel time, and tack-free time are measured.
Cream time (seconds): Time until the mixed liquid of the polyol system liquid and the polyisocyanate compound starts to foam.
Gel time (seconds): As the gelation progresses, after a thin glass or metal rod is lightly inserted on top of the foaming stock solution composition during foaming, the time it takes for the foaming stock composition to start drawing the yarn when it is quickly pulled out .
Tack-free time (seconds): Time until foaming ends and there is no stickiness in the foam.
[Box-free density]
The density (unit: kg / m 3 ) is measured by a method in accordance with JIS A 9526 for a test piece obtained by cutting the vicinity of the center of the foam obtained by free foaming into a 10 cm square.
<パネルフォームの評価方法>
[パネルコア密度]
 上述のように製造したパネルフォームの中央部から表皮部を除いて縦横10cm、厚さ2.5cmに切り出した試験片について密度(単位:kg/m)を測定する。
[成形性]
 パネルフォームで下記の項目につき観察を行い、成形性評価とする。
(1)端部収縮の有無:パネルフォームの縦方向(X)の両端部のうち、側部開口部5側の端部(以下、流れ端部という)におけるフォーム外観を観察し、下記の基準で評価する。
○(良好):流れ端部付近に変形(収縮)がない。良好。
△(可):流れ端部が収縮により部分的に変形が生じる。
×(不可):流れ端部が収縮により大きく収縮した。不良。
(2)セル外観:得られたパネルフォームの中央部の表面のうち、発泡方向(厚さ方向(t))に対して下側(下型2の底面2a側)の表面のセル状態を評価する。セルが不均一な部分(セルが粗くなっている部分)の有無を目視で観察し、下記の基準で評価する。
◎(優良):セルが粗くなっている部分がない。セルが微細でかつ均一。
○(良好):セルが粗くなっている部分がない。セルが均一。
△(可):部分的にセルが粗くなっている。
×(不可):全体的にセルが粗くなっている。不良。
<Panel form evaluation method>
[Panel core density]
The density (unit: kg / m 3 ) is measured for a test piece cut out to a length of 10 cm and a thickness of 2.5 cm excluding the skin portion from the center portion of the panel foam produced as described above.
[Formability]
The following items are observed on the panel form to evaluate the moldability.
(1) Presence / absence of edge shrinkage: Observe the appearance of the foam at the edge of the side opening 5 (hereinafter referred to as the flow edge) out of both ends in the longitudinal direction (X) of the panel foam. Evaluate with.
○ (good): There is no deformation (shrinkage) near the flow end. Good.
Δ (possible): The flow end part is partially deformed by contraction.
X (impossible): The flow end portion contracted greatly due to contraction. Bad.
(2) Cell appearance: Evaluate the cell state of the surface on the lower side (the bottom surface 2a side of the lower mold 2) with respect to the foaming direction (thickness direction (t)) of the surface of the center part of the obtained panel foam To do. The presence or absence of non-uniform cell portions (portion where the cells are rough) is visually observed and evaluated according to the following criteria.
A (Excellent): There is no portion where the cell is rough. The cells are fine and uniform.
○ (good): There is no portion where the cell is rough. The cells are uniform.
Δ (possible): The cell is partially rough.
X (impossible): The cell is rough as a whole. Bad.
[寸法安定性]
 ASTM D 2126-75に準じた方法で、70℃高温寸法安定性および-30℃低温寸法安定性の2条件の評価を行う。
 すなわち、上述のように製造したパネルフォームの中央部から縦10cm、横15cm、厚さ2.5cmにカットして得られた試験片を、高温寸法安定性は70℃、低温寸法安定性は-30℃の雰囲気下に、それぞれ24時間保存し、縦(X)方向、横(Y)方向および厚さ(t)方向について、増加した長さ(厚さ)を、保存前の長さ(厚さ)に対する寸法変化率(単位:%)で表す。寸法変化率において、負の数値は収縮を意味し;絶対値が大きいことは、寸法変化が大きいことを意味する。
[Dimensional stability]
Two conditions of 70 ° C. high temperature dimensional stability and −30 ° C. low temperature dimensional stability are evaluated by a method according to ASTM D 2126-75.
That is, a test piece obtained by cutting a panel foam produced as described above into a length of 10 cm, a width of 15 cm, and a thickness of 2.5 cm from a center portion has a high temperature dimensional stability of 70 ° C. and a low temperature dimensional stability of − Store in an atmosphere of 30 ° C. for 24 hours, and increase the length (thickness) in the longitudinal (X) direction, lateral (Y) direction, and thickness (t) direction to the length (thickness) before storage. Dimensional change rate (unit:%). In the dimensional change rate, a negative value means shrinkage; a large absolute value means a large dimensional change.
[圧縮強度]
 上述のように製造したパネルフォームの中央部から縦(X)40mm、横(Y)40mm、厚さ(t)40mmに切り出した試験片について、JIS A 9511に準拠して、縦(X)方向、横(Y)方向および厚さ(t)方向の圧縮強度を測定する。
[熱伝導率]
 JIS A 1412に準拠し、熱伝導率測定装置(英弘精機社製、製品名:オートラムダHC-074型)を用いて、平均温度20℃で測定する。
[難燃性]
 JIS A 9511B法に準拠した方法で、フォームの燃焼性を評価した。すなわち、パネルフォームコア部を長さ150mm、幅50mm、厚さ13mmに切り出し、ブンゼンバーナでフォームの片方の端部に炎をあて、燃焼時間(秒)と燃焼距離(mm)を測定する。
[Compressive strength]
About the test piece cut out from the center part of the panel form manufactured as mentioned above to length (X) 40mm, width (Y) 40mm, thickness (t) 40mm, longitudinal (X) direction according to JIS A9511 The compressive strength in the transverse (Y) direction and the thickness (t) direction is measured.
[Thermal conductivity]
In accordance with JIS A 1412, measurement is performed at an average temperature of 20 ° C. using a thermal conductivity measuring device (manufactured by Eiko Seiki Co., Ltd., product name: Auto Lambda HC-074 type).
[Flame retardance]
The foam combustibility was evaluated by a method based on the JIS A 9511B method. That is, a panel foam core part is cut into a length of 150 mm, a width of 50 mm, and a thickness of 13 mm, a flame is applied to one end of the foam with a Bunsen burner, and a combustion time (second) and a combustion distance (mm) are measured.
[常温貯蔵安定性]
 ポリオールシステム液を20℃で1ヶ月間保存した後、液の状態を目視で観察する。下記の基準で評価する。
○(良好):濁り、分離、沈殿、固化のいずれも発生せず、透明である。
×(不可):濁り、分離、沈殿、固化のうちの1つ以上が発生する。
××(より不可):濁り、分離、沈殿、固化のうち2つ以上が発生する。より不良。
[高温貯蔵安定性]
 ポリオールシステム液を40℃で1ヶ月間保存した後、液の状態を目視で観察する。下記の基準で評価する。
○(良):濁り、分離、沈殿、固化のいずれも発生せず、透明である。良好。
×(不可):濁り、分離、沈殿、固化のうちの1つ以上が発生する。不良。
××(より不可):濁り、分離、沈殿、固化のうち2つ以上が発生する。より不良。
[Room temperature storage stability]
After the polyol system liquid is stored at 20 ° C. for 1 month, the state of the liquid is visually observed. Evaluation is based on the following criteria.
○ (Good): No turbidity, separation, precipitation, or solidification occurs, and it is transparent.
X (impossible): One or more of turbidity, separation, precipitation, and solidification occurs.
XX (more impossible): Two or more of turbidity, separation, precipitation and solidification occur. More bad.
[High temperature storage stability]
After storing the polyol system liquid at 40 ° C. for one month, the state of the liquid is visually observed. Evaluation is based on the following criteria.
○ (good): No turbidity, separation, precipitation or solidification occurs, and it is transparent. Good.
X (impossible): One or more of turbidity, separation, precipitation, and solidification occurs. Bad.
XX (more impossible): Two or more of turbidity, separation, precipitation and solidification occur. More bad.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表4-1、表4-2および表5の結果より、ウレタン処方による評価において、ポリオール(Ab)およびポリマー粒子を含む例3~4および11~24は、良好な成形性および物性を有するパネルフォームを得ることができる。ポリオールシステム液の常温貯蔵安定性、高温の貯蔵安定性も良好である。一方、ポリオール(Ab)および/またはポリマー粒子を含まない例1~2、5~10、25~30で得られたフォームは、ポリオールシステム液の高温の貯蔵安定性が不充分である。 From the results of Table 4-1, Table 4-2 and Table 5, in the evaluation by urethane formulation, Examples 3 to 4 and 11 to 24 containing polyol (Ab) and polymer particles are panels having good moldability and physical properties. A form can be obtained. The polyol system solution has good room temperature storage stability and high temperature storage stability. On the other hand, the foams obtained in Examples 1-2, 5-10, and 25-30, which do not contain polyol (Ab) and / or polymer particles, are insufficient in the high-temperature storage stability of the polyol system liquid.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 表8および表9の結果より、イソシアヌレート処方の評価において、ポリオール(Ab)およびポリマー粒子を含む例33~34、37~38、41~57は、良好な成形性および物性を有するパネルフォームを得ることができる。一方、ポリオール(Ab)および/またはポリマー粒子を含まない例31~32、35~36、39~40、58~59で得られたフォームは、ポリオールシステム液の高温の貯蔵安定性が不充分である。 From the results of Tables 8 and 9, in the evaluation of the isocyanurate formulation, Examples 33 to 34, 37 to 38 and 41 to 57 containing polyol (Ab) and polymer particles are panel foams having good moldability and physical properties. Obtainable. On the other hand, the foams obtained in Examples 31 to 32, 35 to 36, 39 to 40, and 58 to 59 containing no polyol (Ab) and / or polymer particles are insufficient in the high temperature storage stability of the polyol system liquid. is there.
<本発明Cの実施例について>
(実施例3)
 以下に、実施例を用いて本発明Cをさらに詳しく説明するが、本発明Cはこれら実施例に限定されるものではない。ポリオールの水酸基価は、JIS K 1557(1970年版)に準拠して測定した値である。
 以下の例で用いた各原料は以下の通りである。
[ポリオール(Ac)]
 ポリオールAc1:ノニルフェノールの1モルに対し、ホルムアルデヒドの1.5モルおよびジエタノールアミンの2.2モルを反応させて得られた反応生成物を開始剤として、POを開環付加重合した後、水酸化カリウム触媒存在下でEOを開環付加重合させて得られた水酸基価が300mgKOH/gのポリエーテルポリオール。アルキレンオキシドの付加量はノニルフェノールの1モルに対し15.4モルである。付加させたPOとEOとの合計量に対するEOの割合は58質量%である。
<Examples of Invention C>
(Example 3)
Hereinafter, the present invention C will be described in more detail using examples, but the present invention C is not limited to these examples. The hydroxyl value of the polyol is a value measured according to JIS K 1557 (1970 edition).
The raw materials used in the following examples are as follows.
[Polyol (Ac)]
Polyol Ac1: PO is subjected to ring-opening addition polymerization using a reaction product obtained by reacting 1.5 mol of formaldehyde and 2.2 mol of diethanolamine with 1 mol of nonylphenol, and then potassium hydroxide. A polyether polyol having a hydroxyl value of 300 mgKOH / g, obtained by ring-opening addition polymerization of EO in the presence of a catalyst. The amount of alkylene oxide added is 15.4 moles per mole of nonylphenol. The ratio of EO to the total amount of added PO and EO is 58% by mass.
 ポリオールAc2:ノニルフェノールの1モルに対し、ホルムアルデヒドの0.75モルおよびジエタノールアミンの2.2モルを反応させて得られた反応生成物を開始剤として、EOを開環付加重合した後、水酸化カリウム触媒存在下でPO、EOをこの順で開環付加重合させて得られた水酸基価300mgKOH/gのポリエーテルポリオール。アルキレンオキシドの付加量はノニルフェノールの1モルに対し18.0モルである。付加させたPOとEOとの合計量に対するEOの割合は75質量%である。
 ポリオールAc3:ノニルフェノールの1モルに対し、ホルムアルデヒドの2.2モルおよびジエタノールアミンの2.2モルを反応させて得られた反応生成物を開始剤として、POを開環付加重合した後、水酸化カリウム触媒存在下で、EOを開環付加重合させて得られた水酸基価が430mgKOH/gのポリエーテルポリオール。アルキレンオキシドの付加量はノニルフェノールの1モルに対し6.3モルである。付加させたPOとEOとの合計量に対するEOの割合は23質量%である。
 ポリオールAc4:ノニルフェノールの1モルに対し、ホルムアルデヒドの1.5モルおよびジエタノールアミンの2.2モルを反応させて得られた反応生成物を開始剤として、POのみを開環付加重合させて得られた水酸基価が470mgKOH/gのポリエーテルポリオール。アルキレンオキシドの付加量はノニルフェノールの1モルに対し5.5モルである。
Polyol Ac2: EO was subjected to ring-opening addition polymerization using a reaction product obtained by reacting 0.75 mol of formaldehyde and 2.2 mol of diethanolamine with 1 mol of nonylphenol, and then potassium hydroxide. A polyether polyol having a hydroxyl value of 300 mgKOH / g, obtained by ring-opening addition polymerization of PO and EO in this order in the presence of a catalyst. The amount of alkylene oxide added is 18.0 moles per mole of nonylphenol. The ratio of EO to the total amount of added PO and EO is 75% by mass.
Polyol Ac3: PO is subjected to ring-opening addition polymerization using a reaction product obtained by reacting 2.2 mol of formaldehyde and 2.2 mol of diethanolamine with 1 mol of nonylphenol, and then potassium hydroxide. A polyether polyol having a hydroxyl value of 430 mgKOH / g, obtained by ring-opening addition polymerization of EO in the presence of a catalyst. The addition amount of alkylene oxide is 6.3 mol per 1 mol of nonylphenol. The ratio of EO to the total amount of added PO and EO is 23% by mass.
Polyol Ac4: Obtained by ring-opening addition polymerization of PO alone using a reaction product obtained by reacting 1.5 mol of formaldehyde and 2.2 mol of diethanolamine with 1 mol of nonylphenol. A polyether polyol having a hydroxyl value of 470 mg KOH / g. The amount of alkylene oxide added is 5.5 moles per mole of nonylphenol.
[ポリオール(Bc)]
 ポリオールBc1:エチレンジアミンにPOのみを開環付加重合させて得られた、水酸基価が760mgKOH/gのポリエーテルポリオール。
 ポリオールBc2:モノエタノールアミンにPOのみを単独で開環付加重合させて得られた、水酸基価500mgKOH/gのポリエーテルポリオール。
[ポリオール(Cc)]
 ポリオールCc1:グリセリンにPOを開環付加重合した後、水酸化カリウム触媒存在下でEOを開環付加重合させて得られた水酸基価が56mgKOH/gのポリエーテルポリオール。EOとPOの合計のうち、EOの含有量は13質量%である。
 ポリオールCc2:グリセリンにPOを開環付加重合した後、水酸化カリウム触媒存在下でEOを開環付加重合させて得られた水酸基価が56mgKOH/gのポリエーテルポリオール。EOとPOの合計のうち、EOの含有量は20質量%である。
 ポリオールCc3:グリセリンにPOのみを開環付加重合させて得られた、水酸基価400mgKOH/gのポリエーテルポリオール。
[Polyol (Bc)]
Polyol Bc1: A polyether polyol having a hydroxyl value of 760 mgKOH / g, obtained by ring-opening addition polymerization of only PO with ethylenediamine.
Polyol Bc2: A polyether polyol having a hydroxyl value of 500 mgKOH / g, obtained by ring-opening addition polymerization of PO alone with monoethanolamine.
[Polyol (Cc)]
Polyol Cc1: A polyether polyol having a hydroxyl value of 56 mgKOH / g obtained by ring-opening addition polymerization of PO to glycerin and then ring-opening addition polymerization of EO in the presence of a potassium hydroxide catalyst. Of the total of EO and PO, the EO content is 13% by mass.
Polyol Cc2: A polyether polyol having a hydroxyl value of 56 mgKOH / g obtained by ring-opening addition polymerization of PO to glycerin and then ring-opening addition polymerization of EO in the presence of a potassium hydroxide catalyst. Of the total of EO and PO, the EO content is 20% by mass.
Polyol Cc3: A polyether polyol having a hydroxyl value of 400 mgKOH / g, obtained by ring-opening addition polymerization of only PO with glycerin.
[ポリオール(Dc)]
 ポリオールDc1:ジエチレングリコールとテレフタル酸とを重縮合して得られた、平均水酸基数が2、水酸基価が250mgKOH/gのポリエステルポリオール(製品名:Terol 563、オキシド社製)。
[その他のポリオール(Ec)]
 ポリオールEc1:開始剤としてビスフェノールAを用い、水酸化カリウム触媒存在下で開始剤にEOのみを開環付加重合させた、水酸基価が150mgKOH/gのポリエーテルポリオール。
[Polyol (Dc)]
Polyol Dc1: Polyester polyol obtained by polycondensation of diethylene glycol and terephthalic acid and having an average hydroxyl number of 2 and a hydroxyl value of 250 mgKOH / g (product name: Terol 563, manufactured by Oxide).
[Other polyols (Ec)]
Polyol Ec1: A polyether polyol having a hydroxyl value of 150 mgKOH / g, in which bisphenol A is used as an initiator and only EO is subjected to ring-opening addition polymerization in the presence of a potassium hydroxide catalyst.
[ポリマー分散ポリオール(Wc)]
 ポリマー分散ポリオール(Wc)として、下記表1に示す配合で、下記製造例の方法により製造したポリマー分散ポリオールWc1~Wc6を用いた。表1における配合比の単位は「質量部」である。
(重合性不飽和結合を有するモノマー)
 ポリマー粒子を形成するための重合性不飽和結合を有するモノマーとしては、アクリロニトリル(AN)、酢酸ビニル(Vac)、メタクリル酸メチル(MMA)、前記式(1-1)で表わされるポリフルオロアルキルメタクリレート(FMA)を用いた。
[Polymer-dispersed polyol (Wc)]
As the polymer-dispersed polyol (Wc), polymer-dispersed polyols Wc1 to Wc6 having the composition shown in the following Table 1 and produced by the method of the following production examples were used. The unit of the blending ratio in Table 1 is “part by mass”.
(Monomer having a polymerizable unsaturated bond)
Examples of the monomer having a polymerizable unsaturated bond for forming polymer particles include acrylonitrile (AN), vinyl acetate (Vac), methyl methacrylate (MMA), and polyfluoroalkyl methacrylate represented by the formula (1-1). (FMA) was used.
(マクロモノマー)
 マクロモノマーとして以下の2種を用いた。
・マクロモノマーM1:下記のポリオールG、トリレンジイソシアネート(商品名:T-80、日本ポリウレタン工業社製)および2-ヒドロキシエチルメタクリレート(純正化学社製)を、ポリオールG/トリレンジイソシアネート/2-ヒドロキシエチルメタクリレート=1/1/1のモル比率となるように仕込み、60℃で1時間反応させた後さらに80℃で6時間反応させることで得られた、水酸基価40mgKOH/gの重合性不飽和基を有するマクロモノマー。
(Macromonomer)
The following two types were used as macromonomers.
Macromonomer M1: Polyol G / tolylene diisocyanate / 2-polyol G, tolylene diisocyanate (trade name: T-80, manufactured by Nippon Polyurethane Industry Co., Ltd.) and 2-hydroxyethyl methacrylate (made by Junsei Kagaku Co.) Hydroxyethyl methacrylate = 1/1/1 molar ratio was prepared, reacted at 60 ° C for 1 hour, and further reacted at 80 ° C for 6 hours, resulting in a polymerizable non-polymerizable polymer having a hydroxyl value of 40 mgKOH / g. Macromonomer having a saturated group.
・マクロモノマーM2:下記のポリオールF、トリレンジイソシアネート(商品名:T-80、日本ポリウレタン工業社製)および2-ヒドロキシエチルメタクリレート(純正化学社製)を、ポリオールF/トリレンジイソシアネート/2-ヒドロキシエチルメタクリレート=1/1/1のモル比率となるように仕込み、60℃で1時間反応させた後さらに80℃で6時間反応させることで得られた、水酸基価21mgKOH/gの重合性不飽和基を有するマクロモノマー。
・上記ポリオールG:開始剤としてグリセリンを用い、該グリセリンに、EOを開環付加重合した後、POとEOとの混合物[PO/EO=46.2/53.8(質量比)]を開環付加重合させた、ポリオールG中のオキシエチレン基含有量65質量%、水酸基価が48mgKOH/gのポリオキシアルキレンポリオール。
・上記ポリオールF:開始剤としてグリセリンを用い、該グリセリンに、EOを開環付加重合した後、POとEOとの混合物[PO/EO=48.0/52.0(質量比)]を開環付加重合させた、ポリオールF中のオキシエチレン基含有量60質量%、水酸基価が28mgKOH/gのポリオキシアルキレンポリオール。
Macromonomer M2: Polyol F, Tolylene Diisocyanate (trade name: T-80, manufactured by Nippon Polyurethane Industry Co., Ltd.) and 2-hydroxyethyl methacrylate (Pure Chemical Co., Ltd.) Hydroxyethyl methacrylate = 1/1/1 molar ratio was prepared, reacted at 60 ° C for 1 hour, and further reacted at 80 ° C for 6 hours, resulting in a polymerization resistance of 21 mgKOH / g. Macromonomer having a saturated group.
Polyol G: Glycerol is used as an initiator, and EO is subjected to ring-opening addition polymerization to the glycerol, and then a mixture of PO and EO [PO / EO = 46.2 / 53.8 (mass ratio)] is opened. A polyoxyalkylene polyol having an oxyethylene group content of 65% by mass and a hydroxyl value of 48 mgKOH / g in the polyol G, subjected to cycloaddition polymerization.
Polyol F: Glycerol is used as an initiator, and after ring-opening addition polymerization of EO, the mixture of PO and EO [PO / EO = 48.0 / 52.0 (mass ratio)] is opened. A polyoxyalkylene polyol having a content of oxyethylene group in polyol F of 60% by mass and a hydroxyl value of 28 mgKOH / g, which is subjected to cycloaddition polymerization.
[ポリイソシアネート化合物]
 ポリイソシアネート化合物1:ポリメチレンポリフェニレンポリイソシアネート(クルードMDI)、(製品名:コロネート1130、日本ポリウレタン工業社製、イソシアネート基含有率:31質量%)。
 ポリイソシアネート化合物2:ポリメチレンポリフェニレンポリイソシアネート(クルードMDI)、(製品名:ミリオネート MR-200、日本ポリウレタン工業社製、イソシアネート基含有率:31質量%)[発泡剤]
 発泡剤1:E-1-クロロ-3,3,3-トリフルオロ-プロペン。
 発泡剤2:Z-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン。
 発泡剤3:水。
[Polyisocyanate compound]
Polyisocyanate compound 1: polymethylene polyphenylene polyisocyanate (crude MDI) (product name: Coronate 1130, manufactured by Nippon Polyurethane Industry Co., Ltd., isocyanate group content: 31% by mass).
Polyisocyanate compound 2: polymethylene polyphenylene polyisocyanate (crude MDI), (product name: Millionate MR-200, manufactured by Nippon Polyurethane Industry Co., Ltd., isocyanate group content: 31% by mass) [foaming agent]
Foaming agent 1: E-1-chloro-3,3,3-trifluoro-propene.
Foaming agent 2: Z-1,1,1,4,4,4-hexafluoro-2-butene.
Foaming agent 3: water.
[触媒]
 触媒1:ウレタン化触媒(1,3,5-トリス(N,N-ジメチルアミノプロピル)ヘキサヒドロ-S-トリアジン、製品名:ポリキャット41、エアプロダクツ社製)。
 触媒2:第4級アンモニウム塩とエチレングリコールの混合物(製品名:TOYOCAT TRX、東ソー社製)。
 触媒3:ウレタン化触媒(N,N,N’,N’,-テトラメチルヘキサメチレンジアミン、製品名:TOYOCAT MR、東ソー社製)。
 触媒4:ウレタン化触媒(トリエチレンジアミン、製品名:TEDA-L33、東ソー社製)。
 触媒5:三量化反応促進触媒(オクチル酸カリウム塩、製品名:プキャット15G、日本化学産業社製)。
[整泡剤]
 整泡剤1:シリコーン系整泡剤(製品名:SH-193、東レ・ダウコーニング社製)。
[難燃剤]
 難燃剤1:トリス(β-クロロプロピル)ホスフェート(製品名:ファイロールPCF、スプレスタジャパン社製)。
[catalyst]
Catalyst 1: Urethane catalyst (1,3,5-tris (N, N-dimethylaminopropyl) hexahydro-S-triazine, product name: Polycat 41, manufactured by Air Products).
Catalyst 2: A mixture of a quaternary ammonium salt and ethylene glycol (product name: TOYOCAT TRX, manufactured by Tosoh Corporation).
Catalyst 3: Urethane catalyst (N, N, N ′, N ′,-tetramethylhexamethylenediamine, product name: TOYOCAT MR, manufactured by Tosoh Corporation).
Catalyst 4: Urethane catalyst (triethylenediamine, product name: TEDA-L33, manufactured by Tosoh Corporation).
Catalyst 5: Trimerization reaction promoting catalyst (potassium octylate, product name: PACCAT 15G, manufactured by Nippon Chemical Industry Co., Ltd.).
[Foam stabilizer]
Foam stabilizer 1: Silicone foam stabilizer (product name: SH-193, manufactured by Toray Dow Corning).
[Flame retardants]
Flame retardant 1: Tris (β-chloropropyl) phosphate (Product name: Pyrol PCF, manufactured by Spresta Japan).
<製造例1:ポリマー分散ポリオール(Wc1)の製造>
 5L加圧反応容器に、下記ポリエーテルポリオール(X1)の300質量部、下記ポリエーテルポリオール(Y1)の150質量部、下記ポリエーテルポリオール(Y2)の300質量部、アクリロニトリルの50質量部、酢酸ビニルの200質量部、および重合開始剤として2,2-アゾビス-2-メチルブチロニトリル(AMBN)の10質量部を仕込んだ後、撹拌しながら昇温を開始し、反応液を80℃に保ちながら10時間反応させた。モノマーの反応率は80%以上を示した。反応終了後、110℃、マイナス0.10MPa(ゲージ圧力)で2時間加熱減圧脱気して未反応モノマーを除去し、ポリマー分散ポリオール(ポリオールWc1)を得た。
 得られたポリマー分散ポリオールWc1の水酸基価、25℃における粘度、およびWc1中のポリマー粒子の含有量を表1に示す(以下、同様。)。
<Production Example 1: Production of polymer-dispersed polyol (Wc1)>
In a 5 L pressurized reaction vessel, 300 parts by mass of the following polyether polyol (X1), 150 parts by mass of the following polyether polyol (Y1), 300 parts by mass of the following polyether polyol (Y2), 50 parts by mass of acrylonitrile, acetic acid After charging 200 parts by mass of vinyl and 10 parts by mass of 2,2-azobis-2-methylbutyronitrile (AMBN) as a polymerization initiator, heating was started while stirring, and the reaction solution was brought to 80 ° C. The reaction was allowed to proceed for 10 hours. The monomer reaction rate was 80% or more. After completion of the reaction, unreacted monomer was removed by heating under reduced pressure at 110 ° C. and minus 0.10 MPa (gauge pressure) for 2 hours to obtain a polymer-dispersed polyol (polyol Wc1).
The hydroxyl value of the obtained polymer-dispersed polyol Wc1, the viscosity at 25 ° C., and the content of polymer particles in Wc1 are shown in Table 1 (the same applies hereinafter).
<製造例2、3:ポリマー分散ポリオール(Wc2)、(Wc3)の製造>
 5L加圧反応槽に、表1に示したベースポリオール(Wc’)の混合物のうちの70質量%を仕込み、120℃に保ちながら、残りのベースポリオール(Wc’)の混合物とモノマーと重合開始剤(AMBN)との混合物を撹拌しながら2時間かけてフィードし、全フィード終了後同温度下で約0.5時間撹拌を続けた。製造例2、3のいずれにおいても、モノマーの反応率は80%以上を示した。反応終了後、未反応モノマーを120℃、20Paで2時間加熱減圧脱気にて除去し、ポリマー分散ポリオールWc2およびWc3を得た。
<Production Examples 2, 3: Production of polymer-dispersed polyol (Wc2), (Wc3)>
Into a 5 L pressure reaction tank, 70% by mass of the mixture of the base polyol (Wc ′) shown in Table 1 was charged, and while maintaining at 120 ° C., the remaining mixture of the base polyol (Wc ′), the monomer and the polymerization were started. The mixture with the agent (AMBN) was fed over 2 hours with stirring, and stirring was continued for about 0.5 hours at the same temperature after completion of all the feeds. In any of Production Examples 2 and 3, the monomer reaction rate was 80% or more. After completion of the reaction, unreacted monomers were removed by heating under reduced pressure at 120 ° C. and 20 Pa for 2 hours to obtain polymer-dispersed polyols Wc2 and Wc3.
<製造例4~6:ポリマー分散ポリオール(Wc4)、(Wc5)、(Wc6)の製造>
 5L加圧反応槽に、表1に示した配合で、ポリオールX1、ポリオールY1、およびマクロモノマーを仕込み、120℃に保ちつつ、モノマーおよび重合開始剤(AMBN)の混合物を、撹拌しながら2時間かけてフィードし、全フィード終了後、同温度下で約0.5時間撹拌を続けた。その後、未反応モノマーを減圧下、120℃で3時間除去することによりポリマー分散ポリオールWc4、Wc5およびWc6を得た。
<Production Examples 4 to 6: Production of polymer-dispersed polyol (Wc4), (Wc5), (Wc6)>
In a 5 L pressurized reaction vessel, polyol X1, polyol Y1, and macromonomer were charged with the formulation shown in Table 1, and the mixture of monomer and polymerization initiator (AMBN) was stirred for 2 hours while maintaining at 120 ° C. After completion of the entire feed, stirring was continued for about 0.5 hours at the same temperature. Thereafter, unreacted monomers were removed under reduced pressure at 120 ° C. for 3 hours to obtain polymer-dispersed polyols Wc4, Wc5 and Wc6.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 ポリエーテルポリオール(X1):グリセリンを開始剤として、水酸化カリウム触媒存在下、POとEOとをランダムに付加して得られる、水酸基価が50mgKOH/g、オキシエチレン基含有量70質量%のポリエーテルポリオール。
 ポリエーテルポリオール(Y1):エチレンジアミンを開始剤として、POのみを付加して得られる、水酸基価が760mgKOH/gのポリエーテルポリオール。
 ポリエーテルポリオール(Y2):グリセリンを開始剤として、水酸化カリウム触媒存在下、POのみを付加して得られる、水酸基価が650mgKOH/gのポリエーテルポリオール。
 ポリマー分散ポリオールの平均水酸基価は、JIS K 1557-1:2007に従って測定した。
Polyether polyol (X1): Polyol having a hydroxyl value of 50 mgKOH / g and an oxyethylene group content of 70% by mass obtained by randomly adding PO and EO in the presence of a potassium hydroxide catalyst using glycerol as an initiator. Ether polyol.
Polyether polyol (Y1): A polyether polyol having a hydroxyl value of 760 mgKOH / g, obtained by adding only PO with ethylenediamine as an initiator.
Polyether polyol (Y2): A polyether polyol having a hydroxyl value of 650 mgKOH / g, obtained by adding only PO in the presence of a potassium hydroxide catalyst using glycerol as an initiator.
The average hydroxyl value of the polymer-dispersed polyol was measured according to JIS K1557-1: 2007.
<例1~52:硬質フォームの製造および評価>
 例1~2、例5~6、9~24、27~28、31~46、49~50は実施例、例3~4、7~8、21~22、25~26、47~48、51~52は比較例である。例1~24はポリイソシアヌレートフォームの配合(イソシアヌレート処方)、例25~52はポリウレタンフォームの配合(ウレタン処方)である。
 表2~6に示す配合で硬質フォームを製造した。表に示した配合の数値の単位は質量部である。ポリイソシアネート化合物の配合量はポリオールシステム液と同じ体積を用いる。ポリイソシアネート化合物は、例1~24においてはポリイソシアネート化合物1を用い、例25~52においてはポリイソシアネート化合物2を用いる。表にポリオール組成物(Pc)の全体における平均水酸基数および平均水酸基価を示す。
 まず、各ポリオール、触媒、整泡剤、混合発泡剤および発泡剤4(水)の所定量を混合してポリオールシステム液を調製した。ポリオールシステム液およびポリイソシアネート化合物の液温を、それぞれ10℃に調整する。
<Examples 1 to 52: Production and evaluation of rigid foam>
Examples 1-2, Examples 5-6, 9-24, 27-28, 31-46, 49-50 are Examples, Examples 3-4, 7-8, 21-22, 25-26, 47-48, Reference numerals 51 to 52 are comparative examples. Examples 1 to 24 are blends of polyisocyanurate foams (isocyanurate formulations), and Examples 25 to 52 are blends of polyurethane foams (urethane formulations).
Rigid foams were produced with the formulations shown in Tables 2-6. The unit of the numerical values of the formulations shown in the table is parts by mass. The compounding quantity of a polyisocyanate compound uses the same volume as a polyol system liquid. As the polyisocyanate compound, polyisocyanate compound 1 is used in Examples 1 to 24, and polyisocyanate compound 2 is used in Examples 25 to 52. The table shows the average number of hydroxyl groups and the average hydroxyl value in the whole polyol composition (Pc).
First, a polyol system liquid was prepared by mixing predetermined amounts of each polyol, catalyst, foam stabilizer, mixed foaming agent and foaming agent 4 (water). The liquid temperatures of the polyol system liquid and the polyisocyanate compound are adjusted to 10 ° C., respectively.
[簡易発泡試験]
 上記の手順で調整した、ポリオールシステム液とポリイソシアネート化合物とを、それぞれ同じ体積をポリエチレン製カップ中に手早く投入し、毎分3,000回転で3秒間撹拌し、2Lカップ中で発泡させ、簡易発泡フォームを得る。得られる簡易発泡フォームのコア密度を下記の方法で測定する。また、発泡途中には、反応性(クリームタイム、ライズタイム)を下記の方法で測定する。結果を表4~6に示す。
[Simple foaming test]
The polyol system solution and the polyisocyanate compound prepared in the above procedure were quickly put into a polyethylene cup each with the same volume, stirred at 3,000 rpm for 3 seconds, and foamed in a 2 L cup. Get foamed foam. The core density of the obtained simple foamed foam is measured by the following method. Further, during the foaming, the reactivity (cream time, rise time) is measured by the following method. The results are shown in Tables 4-6.
[スプレー施工試験]
 上記の手順で調整した、ポリオールシステム液とポリイソシアネート化合物とを、ガスマー社製スプレー発泡機(製品名:FF-1600)を用いて、吐出圧力70~85kg/m、液温40℃、室温20℃の条件下で基材に吹き付け、発泡、反応させて硬質フォーム(スプレー施工フォーム)を製造する。ポリオールシステム液とポリイソシアネート化合物は同じ体積となるように調整する。
 該基材としては、縦が600mm、横が600mm、厚さが5mmのフレキシブル板を用る。吹き付けは、厚さ1mmの下吹き層を施工した後に、一層の厚さが25~30mmとなるように2層吹き付け施工し、合計で3層積層する。
 下記の方法で各特性の評価を行う。結果を表4~6に示す。
[Spray construction test]
Using a spray foaming machine (product name: FF-1600) manufactured by Gasmer, the polyol system liquid and the polyisocyanate compound prepared by the above procedure were discharged at a pressure of 70 to 85 kg / m 2 , a liquid temperature of 40 ° C., and a room temperature. A rigid foam (spray construction foam) is produced by spraying, foaming, and reacting on a base material at 20 ° C. The polyol system liquid and the polyisocyanate compound are adjusted to have the same volume.
As the substrate, a flexible plate having a length of 600 mm, a width of 600 mm, and a thickness of 5 mm is used. In the spraying, after a lower spray layer having a thickness of 1 mm is applied, two layers are applied so that the thickness of one layer is 25 to 30 mm, and a total of three layers are laminated.
Each characteristic is evaluated by the following method. The results are shown in Tables 4-6.
<簡易発泡フォームの評価方法>
[コア密度]
 得られた簡易発泡フォームの中央部を10cm角に切出し、JIS A 9511に準拠した方法で、簡易発泡フォームのコア密度(kg/m)を測定する。
[反応性]
 ポリオールシステム液とポリイソシアネート化合物との混合開始時刻を0秒とし、混合液が泡立ちを始めるまでの時間をクリームタイム(秒)、混合液が発泡し始め、フォームの上昇が停止する時間をライズタイム(秒)とする。
<Evaluation method of simple foaming foam>
[Core density]
The center part of the obtained simple foamed foam is cut into a 10 cm square, and the core density (kg / m 3 ) of the simple foamed foam is measured by a method based on JIS A 9511.
[Reactivity]
The mixing start time of the polyol system liquid and the polyisocyanate compound is 0 second, the time until the liquid mixture starts to foam is the cream time (seconds), the time when the liquid mixture begins to foam and the rise of the foam stops is the rise time (Seconds).
<スプレー施工フォームの評価方法>
[密度]
 スプレー施工フォームの密度を、JIS K 9511に準拠する方法で測定する。
[成形性(フォーム内部の状態)]
 スプレー施工フォームの端部をカットし、断面の状態を確認し以下の基準で評価する。
 ×(不良):フォーム内部にスコーチ等による着色や割れがあったり、セル不均一などの不良部分がある。
 ○(良好):フォーム内部にスコーチ等による着色や割れや、セル不均一などがない。
<Evaluation method of spray construction form>
[density]
The density of the sprayed foam is measured by a method according to JIS K 9511.
[Moldability (state inside the foam)]
Cut the end of the spray construction form, check the cross-section and evaluate it according to the following criteria.
X (defect): The foam has coloring or cracking due to a scorch or the like, or there are defective portions such as non-uniform cells.
○ (good): There is no coloring or cracking due to scorch or the like, or cell nonuniformity inside the foam.
[寸法変化率]
 スプレー施工フォームのコア部から100mm×100mm×40mmの直方体に切り出したものを試験片とし、高温寸法変化率、低温寸法変化率の測定を行う。下記各条件での保存後、試験片の発泡方向に対して垂直方向について増加した長さを、保存前の長さに対する寸法変化率(%)とする。寸法変化率において、負の数値は収縮を意味し、絶対値が大きいことは、寸法変化が大きいことを意味する。
 測定は以下の条件で行う。
高温寸法変化率:試験片を70℃の恒温槽中で24時間保存後に測定。
低温寸法変化率:試験片を-30℃の恒温槽中で24時間保存後に測定。
[圧縮強度]
 スプレー施工フォームの圧縮強度を、JIS K 7220に準拠する方法で測定する。吹き付け方向に対して平行方向について測定する。
[Dimensional change rate]
A sample cut into a 100 mm × 100 mm × 40 mm rectangular parallelepiped from the core part of the spray construction foam is used as a test piece, and the high temperature dimensional change rate and the low temperature dimensional change rate are measured. After storage under the following conditions, the length increased in the direction perpendicular to the foaming direction of the test piece is defined as a dimensional change rate (%) with respect to the length before storage. In the dimensional change rate, a negative value means shrinkage, and a large absolute value means that a dimensional change is large.
The measurement is performed under the following conditions.
High temperature dimensional change rate: Measured after storing the test piece in a thermostat at 70 ° C. for 24 hours.
Low temperature dimensional change rate: Measured after storing the test piece in a thermostatic bath at −30 ° C. for 24 hours.
[Compressive strength]
The compressive strength of the spray construction foam is measured by a method according to JIS K 7220. Measure in the direction parallel to the spraying direction.
[熱伝導率]
 スプレー施工フォームの熱伝導率(単位:W/m・K)は、JIS A 1412-2に準拠し、熱伝導率測定装置(製品名:オートラムダHC-074型、英弘精機社製)を用いて、平均温度20℃で測定した。熱伝導率が低い方が断熱性能に優れる。
[燃焼試験]
 前記スプレー施工フォームをフレキシブル板も含め、厚み20mmとなるようカットし、ISO 5660に準拠したコーンカロリーメータによる試験を実施する。
 ISO5660では、難燃材料の基準である5分間の試験において、最大発熱速度(HRR)が200kW/m以上を10秒以上継続する場合、総発熱量(THR)が8MJ/m以上の場合、あるいは防火上有害な裏面まで貫通する亀裂および穴がある場合は不合格である。亀裂および貫通については目視による外観で評価し、亀裂および/または貫通なきものは外観評価は○(良好)、判定は合格とする。亀裂および/または貫通のあるものは外観評価は×(不良)、判定は不合格とする。
[Thermal conductivity]
The thermal conductivity (unit: W / m · K) of the sprayed foam conforms to JIS A 1412-2, and uses a thermal conductivity measuring device (Product name: Auto-Lambda HC-074, manufactured by Eihiro Seiki Co., Ltd.) The average temperature was 20 ° C. The lower the thermal conductivity, the better the heat insulation performance.
[Combustion test]
The spray construction foam including the flexible plate is cut to a thickness of 20 mm, and a test using a cone calorimeter based on ISO 5660 is performed.
In ISO 5660, when the maximum heat release rate (HRR) is 200 kW / m 2 or more for 10 seconds or longer in the 5-minute test that is the standard for flame retardant materials, and the total heat generation amount (THR) is 8 MJ / m 2 or more. Or if there are cracks and holes penetrating to the back side, which is harmful to fire prevention. Cracks and penetrations are evaluated by visual appearance, and those having no cracks and / or penetrations are evaluated as “good” (good), and the determination is acceptable. For those with cracks and / or penetrations, the appearance evaluation is x (defect), and the judgment is rejected.
[常温貯蔵安定性]
 ポリオールシステム液を20℃で1ヶ月間保存した後、液の状態を目視で観察する。下記の基準で評価する。
○(良好):濁り、分離、沈殿、固化のいずれも発生せず、透明である。
×(不可):濁り、分離、沈殿、固化のうちの1つ以上が発生する。
××(より不可):濁り、分離、沈殿、固化のうち2つ以上が発生する。より不良。
[高温貯蔵安定性]
 ポリオールシステム液を40℃で1ヶ月間保存した後、液の状態を目視で観察する。下記の基準で評価する。
○(良):濁り、分離、沈殿、固化のいずれも発生せず、透明である。良好。
×(不可):濁り、分離、沈殿、固化のうちの1つ以上が発生する。不良。
××(より不可):濁り、分離、沈殿、固化のうち2つ以上が発生する。より不良。
[Room temperature storage stability]
After the polyol system liquid is stored at 20 ° C. for 1 month, the state of the liquid is visually observed. Evaluation is based on the following criteria.
○ (Good): No turbidity, separation, precipitation, or solidification occurs, and it is transparent.
X (impossible): One or more of turbidity, separation, precipitation, and solidification occurs.
XX (more impossible): Two or more of turbidity, separation, precipitation and solidification occur. More bad.
[High temperature storage stability]
After storing the polyol system liquid at 40 ° C. for one month, the state of the liquid is visually observed. Evaluation is based on the following criteria.
○ (good): No turbidity, separation, precipitation or solidification occurs, and it is transparent. Good.
X (impossible): One or more of turbidity, separation, precipitation, and solidification occurs. Bad.
XX (more impossible): Two or more of turbidity, separation, precipitation and solidification occur. More bad.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 表7、8の結果より、ポリオール(Ac)およびポリマー粒子を含む例1~2および例5~6、9~24は、コア密度を低くして軽量化してもスプレー施工試験において良好な成形性および物性を有するポリイソシアヌレートスプレーフォームを得ることができる。またポリオールシステム液の常温の貯蔵安定性および、高温の貯蔵安定性も良好である。一方、ポリオール(Ac)およびポリマー粒子を含まない例3~4で得られた硬質フォームは成形性、寸法安定性、圧縮強度および難燃性が不充分である。また、ポリオールシステム液の常温の貯蔵安定性も不充分である。ポリマー粒子を含まない例7~8はポリオールシステム液の高温の貯蔵安定性が不十分である。
 表9、10、11の結果より、ポリオール(Ac)およびポリマー粒子を含む例23~24、27~46、49~50では、熱伝導率、物性が良好なポリウレタンスプレーフォームを得ることができる。ポリオールシステム液の常温の貯蔵安定性および高温の貯蔵安定性も良好である。一方、ポリオール(Ac)およびポリマー粒子を含まない例51、52は成形性、寸法安定性、圧縮強度および熱伝導率が不充分である。また、ポリオールシステム液の常温の貯蔵安定性および高温の貯蔵安定性も不充分である。ポリマー粒子を含まない例25、26、29、30、47、48は高温の貯蔵安定性が不十分である
 なお、2011年2月2日に出願された日本特許出願2011-021030号、2011年2月2日に出願された日本特許出願2011-021031号および2011年2月2日に出願された日本特許出願2011-021032号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
From the results of Tables 7 and 8, Examples 1-2 and Examples 5-6, 9-24, which contain polyol (Ac) and polymer particles, have good moldability in the spray application test even if the core density is lowered and the weight is reduced. And a polyisocyanurate spray foam having physical properties can be obtained. Moreover, the storage stability at normal temperature and the storage stability at high temperature of the polyol system liquid are also good. On the other hand, the rigid foams obtained in Examples 3 to 4 containing no polyol (Ac) and polymer particles are insufficient in moldability, dimensional stability, compressive strength and flame retardancy. Also, the storage stability of the polyol system liquid at normal temperature is insufficient. Examples 7 to 8 containing no polymer particles are insufficient in the high-temperature storage stability of the polyol system liquid.
From the results of Tables 9, 10 and 11, in Examples 23 to 24, 27 to 46 and 49 to 50 containing polyol (Ac) and polymer particles, it is possible to obtain a polyurethane spray foam having good thermal conductivity and physical properties. The polyol system solution also has good storage stability at normal temperature and storage stability at high temperature. On the other hand, Examples 51 and 52 containing no polyol (Ac) and polymer particles are insufficient in moldability, dimensional stability, compressive strength and thermal conductivity. Further, the storage stability at normal temperature and the storage stability at high temperature of the polyol system liquid are insufficient. Examples 25, 26, 29, 30, 47, and 48 that do not contain polymer particles have insufficient high-temperature storage stability. Japanese Patent Application No. 2011-021030 filed on Feb. 2, 2011, 2011 Japanese Patent Application No. 2011-021031 filed on Feb. 2 and Japanese Patent Application No. 2011-021032 filed on Feb. 2, 2011, the contents of claims, drawings and abstracts It is incorporated herein as a disclosure of the specification of the present invention.
 1 金型
 2 下型
 3 上蓋
 4 上部開口部
 5 側部開口部
 6 発泡原液組成物の投入位置
1 Mold 2 Lower mold 3 Upper lid 4 Upper opening 5 Side opening 6 Input position of foaming stock solution composition

Claims (25)

  1.  ポリオール組成物(Pa)とポリイソシアネート化合物とを、発泡剤、整泡剤および触媒の存在下で反応させて硬質発泡合成樹脂を製造する方法であって、
     前記ポリオール組成物(Pa)が下記ポリオール(Aa)を30~70質量%、ポリマー粒子を0.002~30質量%含み、該ポリオール組成物(Pa)の平均水酸基数が2~8、平均水酸基価が100~800mgKOH/gであり、前記発泡剤が下式(I)で表されるハイドロフルオロオレフィン類(I)
     RCH=CHR …(I)
    (式中、Rは炭素数1~6のペルフルオロアルキル基であり、Rは炭素数1~6のペルフルオロアルキル基またはハロゲン原子である。)を含むことを特徴とする硬質発泡合成樹脂の製造方法。
     ポリオール(Aa):活性水素原子数が4~12の芳香族アミンを開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオールであって、該アルキレンオキシドの全量中におけるエチレンオキシドの含有量が0~60質量%であり、水酸基価が100~800mgKOH/gである、ポリエーテルポリオール。
    A method for producing a rigid foamed synthetic resin by reacting a polyol composition (Pa) with a polyisocyanate compound in the presence of a foaming agent, a foam stabilizer and a catalyst,
    The polyol composition (Pa) contains 30 to 70% by mass of the following polyol (Aa) and 0.002 to 30% by mass of polymer particles, and the polyol composition (Pa) has an average number of hydroxyl groups of 2 to 8, Hydrofluoroolefins (I) having a value of 100 to 800 mg KOH / g and the blowing agent represented by the following formula (I)
    R 1 CH═CHR 2 (I)
    (Wherein R 1 is a perfluoroalkyl group having 1 to 6 carbon atoms and R 2 is a perfluoroalkyl group having 1 to 6 carbon atoms or a halogen atom). Production method.
    Polyol (Aa): A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an aromatic amine having 4 to 12 active hydrogen atoms as an initiator, and containing ethylene oxide in the total amount of the alkylene oxide A polyether polyol having an amount of 0 to 60% by mass and a hydroxyl value of 100 to 800 mgKOH / g.
  2.  前記ポリマー粒子が重合性不飽和基を有するモノマーを重合させて得られるポリマー粒子である、請求項1に記載の硬質発泡合成樹脂の製造方法。 The method for producing a rigid foam synthetic resin according to claim 1, wherein the polymer particles are polymer particles obtained by polymerizing a monomer having a polymerizable unsaturated group.
  3.  前記ポリオール組成物(Pa)が、下記ポリオール(Ba)を1~50質量%含む、請求項1または2に記載の硬質発泡合成樹脂の製造方法。
     ポリオール(Ba):活性水素原子数が5~12の多価アルコールを開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオールであって、該アルキレンオキシドの全量中におけるエチレンオキシドの含有量が0~20質量%であり、水酸基価が100~800mgKOH/gである、ポリエーテルポリオール。
    The method for producing a rigid foam synthetic resin according to claim 1 or 2, wherein the polyol composition (Pa) contains 1 to 50 mass% of the following polyol (Ba).
    Polyol (Ba): A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using a polyhydric alcohol having 5 to 12 active hydrogen atoms as an initiator, and containing ethylene oxide in the total amount of the alkylene oxide A polyether polyol having an amount of 0 to 20% by mass and a hydroxyl value of 100 to 800 mgKOH / g.
  4.  前記ポリオール組成物(Pa)が、下記ポリオール(Ca)を10~40質量%含む、請求項1~3のいずれか一項に記載の硬質発泡合成樹脂の製造方法。
     ポリオール(Ca):活性水素原子数が2~4の脂肪族アミンを開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオールであって、該アルキレンオキシドの全量中におけるエチレンオキシドの含有量が0~50質量%であり、水酸基価が100~800mgKOH/gである、ポリエーテルポリオール。
    The method for producing a rigid foam synthetic resin according to any one of claims 1 to 3, wherein the polyol composition (Pa) contains 10 to 40% by mass of the following polyol (Ca).
    Polyol (Ca): A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an aliphatic amine having 2 to 4 active hydrogen atoms as an initiator, and containing ethylene oxide in the total amount of the alkylene oxide A polyether polyol having an amount of 0 to 50% by mass and a hydroxyl value of 100 to 800 mgKOH / g.
  5.  前記ポリオール組成物(Pa)が、下記ポリオール(Da)を10~60質量%含む、請求項1~4のいずれか一項に記載の硬質発泡合成樹脂の製造方法。
     ポリオール(Da):芳香族化合物を含むモノマー混合物を重縮合して製造された、平均水酸基数が2~3、水酸基価が100~500mgKOH/gである、ポリエステルポリオール。
    The method for producing a rigid foam synthetic resin according to any one of claims 1 to 4, wherein the polyol composition (Pa) contains 10 to 60 mass% of the following polyol (Da).
    Polyol (Da): Polyester polyol produced by polycondensation of a monomer mixture containing an aromatic compound and having an average hydroxyl number of 2 to 3 and a hydroxyl value of 100 to 500 mgKOH / g.
  6.  前記ポリマー粒子が、ポリマー分散ポリオール(Wa)由来のポリマー粒子であり、
     前記ポリオール組成物(Pa)がポリマー分散ポリオール(Wa)を0.01~50質量%含む、請求項1~5のいずれか一項に記載の硬質発泡合成樹脂の製造方法。
    The polymer particles are polymer particles derived from a polymer-dispersed polyol (Wa),
    The method for producing a rigid foam synthetic resin according to any one of claims 1 to 5, wherein the polyol composition (Pa) contains 0.01 to 50% by mass of the polymer-dispersed polyol (Wa).
  7.  前記ハイドロフルオロオレフィン類(I)が、Z-CFCH=CHCFを含む、請求項1~5のいずれか一項に記載の硬質発泡合成樹脂の製造方法。 The method for producing a rigid foam synthetic resin according to any one of claims 1 to 5, wherein the hydrofluoroolefin (I) contains Z-CF 3 CH = CHCF 3 .
  8.  前記ハイドロフルオロオレフィン類(I)が、E-CFCH=CHClを含む、請求項1~5のいずれか一項に記載の硬質発泡合成樹脂の製造方法。 The method for producing a rigid foam synthetic resin according to any one of claims 1 to 5, wherein the hydrofluoroolefins (I) include E-CF 3 CH = CHCl.
  9.  前記製造方法が注入法である、請求項1~8のいずれか1項に記載の硬質発泡合成樹脂の製造方法。 The method for producing a rigid foam synthetic resin according to any one of claims 1 to 8, wherein the production method is an injection method.
  10.  連続ボード成形法により、ポリオール組成物(Pb)とポリイソシアネート化合物とを、発泡剤、整泡剤および触媒の存在下で反応、発泡させて硬質発泡合成樹脂を製造する方法であって、
     前記ポリオール組成物(Pb)が下記ポリオール(Ab)を5~99.998質量%、ポリマー粒子を0.002~30質量%含み、該ポリオール組成物(Pb)の平均水酸基数が2~8、平均水酸基価が100~800mgKOH/gであり、前記発泡剤が下式(I)で表されるハイドロフルオロオレフィン類(I)
     RCH=CHR …(I)
    (式中、Rは炭素数1~6のペルフルオロアルキル基であり、Rは炭素数1~6のペルフルオロアルキル基またはハロゲン原子である。)を含むことを特徴とする硬質発泡合成樹脂の製造方法。
     ポリオール(Ab):フェノール類および/または芳香族アミン類と、アルデヒド類と、アルカノールアミン類とを反応させて得られるマンニッヒ縮合物を開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオール。
    A method for producing a rigid foam synthetic resin by reacting and foaming a polyol composition (Pb) and a polyisocyanate compound in the presence of a foaming agent, a foam stabilizer and a catalyst by a continuous board molding method,
    The polyol composition (Pb) contains 5 to 99.998 mass% of the following polyol (Ab) and 0.002 to 30 mass% of polymer particles, and the polyol composition (Pb) has an average number of hydroxyl groups of 2 to 8, Hydrofluoroolefins (I) having an average hydroxyl value of 100 to 800 mgKOH / g and the blowing agent represented by the following formula (I)
    R 1 CH═CHR 2 (I)
    (Wherein R 1 is a perfluoroalkyl group having 1 to 6 carbon atoms and R 2 is a perfluoroalkyl group having 1 to 6 carbon atoms or a halogen atom). Production method.
    Polyol (Ab): Polyol obtained by ring-opening addition polymerization of alkylene oxide using a Mannich condensation product obtained by reacting phenols and / or aromatic amines, aldehydes and alkanolamines as an initiator. Ether polyol.
  11. 前記ポリマー粒子が重合性不飽和基を有するモノマーを重合させて得られるポリマー粒子である、請求項10に記載の硬質発泡合成樹脂の製造方法。 The method for producing a rigid foam synthetic resin according to claim 10, wherein the polymer particles are polymer particles obtained by polymerizing a monomer having a polymerizable unsaturated group.
  12.  前記ポリオール組成物(Pb)が、下記ポリオール(Bb)を20~70質量%含む、請求項10または11に記載の硬質発泡合成樹脂の製造方法。
     ポリオール(Bb):脂肪族アミンを開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオール。
    The method for producing a rigid foam synthetic resin according to claim 10 or 11, wherein the polyol composition (Pb) contains 20 to 70 mass% of the following polyol (Bb).
    Polyol (Bb): A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an aliphatic amine as an initiator.
  13.  前記ポリオール組成物(Pb)が、下記ポリオール(Cb)を20~60質量%含む、請求項10~12のいずれか一項に記載の硬質発泡合成樹脂の製造方法。
     ポリオール(Cb):芳香族アミン(マンニッヒ縮合物を除く)を開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオール。
    The method for producing a rigid foam synthetic resin according to any one of claims 10 to 12, wherein the polyol composition (Pb) contains 20 to 60 mass% of the following polyol (Cb).
    Polyol (Cb): A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an aromatic amine (excluding the Mannich condensation product) as an initiator.
  14.  前記ポリマー粒子が、ポリマー分散ポリオール(Wb)由来のポリマー粒子であり、
    前記ポリオール組成物(Pb)がポリマー分散ポリオール(Wb)を0.01~50質量%含む、請求項10~13のいずれか一項に記載の硬質発泡合成樹脂の製造方法。
    The polymer particles are polymer particles derived from a polymer-dispersed polyol (Wb),
    The method for producing a rigid foam synthetic resin according to any one of claims 10 to 13, wherein the polyol composition (Pb) contains 0.01 to 50% by mass of the polymer-dispersed polyol (Wb).
  15.  前記ハイドロフルオロオレフィン類(I)が、Z-CFCH=CHCFを含む、請求項10~14のいずれか一項に記載の硬質発泡合成樹脂の製造方法。 The method for producing a rigid foam synthetic resin according to any one of claims 10 to 14, wherein the hydrofluoroolefin (I) contains Z-CF 3 CH = CHCF 3 .
  16.  前記ハイドロフルオロオレフィン類(I)が、E-CFCH=CHClを含む、請求項10~14のいずれか一項に記載の硬質発泡合成樹脂の製造方法。 The method for producing a rigid foam synthetic resin according to any one of claims 10 to 14, wherein the hydrofluoroolefin (I) contains E-CF 3 CH = CHCl.
  17.  ポリオール組成物(Pc)とポリイソシアネート化合物とを、発泡剤、整泡剤および触媒の存在下で反応させて硬質発泡合成樹脂を製造する方法であって、
     前記ポリオール組成物(Pc)が下記ポリオール(Ac)を20~99.998質量%、ポリマー粒子を0.002~30質量%含み、該ポリオール組成物(Pc)の平均水酸基数が2~8、平均水酸基価が100~800mgKOH/gであり、前記発泡剤が下式(I)で表されるハイドロフルオロオレフィン類(I)
     RCH=CHR …(I)
    (式中、Rは炭素数1~6のペルフルオロアルキル基であり、Rは炭素数1~6のペルフルオロアルキル基またはハロゲン原子である。)を含むことを特徴とする硬質発泡合成樹脂の製造方法。
     ポリオール(Ac):フェノール類、アルデヒド類、およびアルカノールアミン類を反応させて得られるマンニッヒ縮合物を開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオール。
    A method for producing a rigid foam synthetic resin by reacting a polyol composition (Pc) and a polyisocyanate compound in the presence of a foaming agent, a foam stabilizer and a catalyst,
    The polyol composition (Pc) contains 20 to 99.998 mass% of the following polyol (Ac) and 0.002 to 30 mass% of polymer particles, and the polyol composition (Pc) has an average number of hydroxyl groups of 2 to 8, Hydrofluoroolefins (I) having an average hydroxyl value of 100 to 800 mgKOH / g and the blowing agent represented by the following formula (I)
    R 1 CH═CHR 2 (I)
    (Wherein R 1 is a perfluoroalkyl group having 1 to 6 carbon atoms and R 2 is a perfluoroalkyl group having 1 to 6 carbon atoms or a halogen atom). Production method.
    Polyol (Ac): A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using a Mannich condensation product obtained by reacting phenols, aldehydes and alkanolamines as an initiator.
  18.  前記ポリマー粒子が重合性不飽和基を有するモノマーを重合させて得られるポリマー粒子である、請求項17に記載の硬質発泡合成樹脂の製造方法。 The method for producing a rigid foam synthetic resin according to claim 17, wherein the polymer particles are polymer particles obtained by polymerizing a monomer having a polymerizable unsaturated group.
  19.  前記ポリオール組成物(Pc)が、下記ポリオール(Bc)を0質量%超、70質量%以下含む、請求項17または18に記載の硬質発泡合成樹脂の製造方法。
     ポリオール(Bc):アミン化合物(マンニッヒ縮合物を除く)を開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオール。
    The manufacturing method of the hard foam synthetic resin of Claim 17 or 18 in which the said polyol composition (Pc) contains the following polyol (Bc) more than 0 mass% and 70 mass% or less.
    Polyol (Bc): A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using an amine compound (excluding the Mannich condensation product) as an initiator.
  20.  前記ポリオール組成物(Pc)が、下記ポリオール(Cc)を0質量%超、40質量%以下含む、請求項17~19のいずれか一項に記載の硬質発泡合成樹脂の製造方法。
     ポリオール(Cc):活性水素原子数が2~6の多価アルコールを開始剤として、アルキレンオキシドを開環付加重合させて得られるポリエーテルポリオール。
    The method for producing a rigid foam synthetic resin according to any one of claims 17 to 19, wherein the polyol composition (Pc) contains the following polyol (Cc) in an amount of more than 0% by mass and 40% by mass or less.
    Polyol (Cc): A polyether polyol obtained by ring-opening addition polymerization of alkylene oxide using a polyhydric alcohol having 2 to 6 active hydrogen atoms as an initiator.
  21.  前記ポリオール組成物(Pc)が、下記ポリオール(Dc)を0質量%超、70質量%以下含む、請求項17~20のいずれか一項に記載の硬質発泡合成樹脂の製造方法。
     ポリオール(Dc):芳香族化合物を含むモノマー混合物を重縮合して製造されたポリエステルポリオール。
    The method for producing a rigid foam synthetic resin according to any one of claims 17 to 20, wherein the polyol composition (Pc) contains the following polyol (Dc) in an amount of more than 0% by mass and 70% by mass or less.
    Polyol (Dc): Polyester polyol produced by polycondensation of a monomer mixture containing an aromatic compound.
  22.  前記ポリマー粒子が、ポリマー分散ポリオール(Wc)由来のポリマー粒子であり、前記ポリオール組成物(Pc)がポリマー分散ポリオール(Wc)を含む、請求項17~21のいずれか一項に記載の硬質発泡合成樹脂の製造方法。 The rigid foam according to any one of claims 17 to 21, wherein the polymer particles are polymer particles derived from a polymer-dispersed polyol (Wc), and the polyol composition (Pc) contains the polymer-dispersed polyol (Wc). A method for producing a synthetic resin.
  23.  前記ハイドロフルオロオレフィン類(I)が、Z-CFCH=CHCFを含む、請求項17~22のいずれか一項に記載の硬質発泡合成樹脂の製造方法。 The method for producing a rigid foam synthetic resin according to any one of claims 17 to 22, wherein the hydrofluoroolefin (I) contains Z-CF 3 CH = CHCF 3 .
  24.  前記ハイドロフルオロオレフィン類(I)が、E-CFCH=CHClを含む、請求項17~23のいずれか一項に記載の硬質発泡合成樹脂の製造方法。 The method for producing a rigid foam synthetic resin according to any one of claims 17 to 23, wherein the hydrofluoroolefin (I) contains E-CF 3 CH = CHCl.
  25.  スプレー法を用いる、請求項17~24のいずれか一項に記載の硬質発泡合成樹脂の製造方法。 The method for producing a rigid foam synthetic resin according to any one of claims 17 to 24, wherein a spray method is used.
PCT/JP2012/052420 2011-02-02 2012-02-02 Process for production of hard foam synthetic resin WO2012105657A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012555960A JP5664669B2 (en) 2011-02-02 2012-02-02 Manufacturing method of rigid foam synthetic resin

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011021032 2011-02-02
JP2011021030 2011-02-02
JP2011-021030 2011-02-02
JP2011021031 2011-02-02
JP2011-021032 2011-02-02
JP2011-021031 2011-02-02

Publications (1)

Publication Number Publication Date
WO2012105657A1 true WO2012105657A1 (en) 2012-08-09

Family

ID=46602862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052420 WO2012105657A1 (en) 2011-02-02 2012-02-02 Process for production of hard foam synthetic resin

Country Status (2)

Country Link
JP (1) JP5664669B2 (en)
WO (1) WO2012105657A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050139A1 (en) * 2013-10-02 2015-04-09 旭硝子株式会社 Polyol system liquid, and method for producing rigid foam synthetic resin
JP2015105340A (en) * 2013-11-29 2015-06-08 旭硝子株式会社 Rigid foamed synthetic resin and method of producing the same
JP2016074885A (en) * 2014-10-08 2016-05-12 東洋ゴム工業株式会社 Polyol composition for rigid polyurethane foam, and rigid polyurethane foam production method
JP2016516106A (en) * 2013-03-06 2016-06-02 ハネウェル・インターナショナル・インコーポレーテッド Storage stable foamable composition comprising 1,1,1,4,4,4-hexafluoro-2-butene
JP2017101836A (en) * 2015-11-30 2017-06-08 シャープ株式会社 Insulation structure body and refrigerator
WO2018022405A1 (en) * 2016-07-25 2018-02-01 Covestro Llc Polyurethane foam-forming compositions, methods of making low density foams using such compositions, and foams formed therefrom
CN108473711A (en) * 2016-01-22 2018-08-31 科慕埃弗西有限公司 Z-HFO-1,1, Isosorbide-5-Nitrae, purposes of 4, the 4- hexafluoro -2- butylene in high temperature foam application
CN110483732A (en) * 2018-05-15 2019-11-22 科思创德国股份有限公司 Flexible foam
JP2020505496A (en) * 2017-01-31 2020-02-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Hydrohaloolefin (HFO) -containing polyurethane (PU) preparation
WO2020223060A1 (en) * 2019-04-29 2020-11-05 Covestro Llc Rigid polyurethane foams suitable for use as panel insulation
WO2020223059A1 (en) * 2019-04-29 2020-11-05 Covestro Llc Rigid polyurethane foams suitable for use as panel insulation
EP3119824B1 (en) 2014-03-20 2021-04-28 Dow Global Technologies LLC Formulated isocyanate-reactive blends including olefin based blowing agent
WO2022078899A1 (en) * 2020-10-13 2022-04-21 Covestro Deutschland Ag Composition for forming polyisocyanurate foam, polyisocyanurate foam, and thermal insulating material
EP4011945A1 (en) * 2020-12-14 2022-06-15 Covestro Deutschland AG Composition for forming polyisocyanurate foam, polyisocyanurate foam, and thermal insulating material
US11732081B2 (en) 2021-06-08 2023-08-22 Covestro Llc HCFO-containing isocyanate-reactive compositions, related foam-forming compositions and flame retardant PUR-PIR foams
US11753516B2 (en) 2021-10-08 2023-09-12 Covestro Llc HFO-containing compositions and methods of producing foams
US11767394B2 (en) 2021-12-09 2023-09-26 Covestro Llc HCFO-containing polyurethane foam-forming compositions, related foams and methods for their production
US11767407B1 (en) 2022-04-21 2023-09-26 Covestro Llc HCFO-containing polyurethane foam-forming compositions, related foams and methods for their production
US11827735B1 (en) 2022-09-01 2023-11-28 Covestro Llc HFO-containing isocyanate-reactive compositions, related foam-forming compositions and flame retardant PUR-PIR foams
US11905707B2 (en) 2021-06-29 2024-02-20 Covestro Llc Foam wall structures and methods for their manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513814A (en) * 2005-11-01 2009-04-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for producing foam using foaming agent containing unsaturated fluorocarbon
WO2009048807A2 (en) * 2007-10-12 2009-04-16 Honeywell International Inc. Amine catalysts for polyurethane foams
WO2009048802A2 (en) * 2007-10-12 2009-04-16 Honeywell International Inc. Non-silicone surfactants for polyurethane or polyisocyanurate foam containing halogenated olefins as blowing agents
WO2009048826A2 (en) * 2007-10-12 2009-04-16 Honeywell International Inc. Stabilization of polyurethane foam polyol premixes containing halogenated olefin blowing agents

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513814A (en) * 2005-11-01 2009-04-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for producing foam using foaming agent containing unsaturated fluorocarbon
JP2009513812A (en) * 2005-11-01 2009-04-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Foaming agent for forming foams containing unsaturated fluorocarbons
WO2009048807A2 (en) * 2007-10-12 2009-04-16 Honeywell International Inc. Amine catalysts for polyurethane foams
WO2009048802A2 (en) * 2007-10-12 2009-04-16 Honeywell International Inc. Non-silicone surfactants for polyurethane or polyisocyanurate foam containing halogenated olefins as blowing agents
WO2009048826A2 (en) * 2007-10-12 2009-04-16 Honeywell International Inc. Stabilization of polyurethane foam polyol premixes containing halogenated olefin blowing agents

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516106A (en) * 2013-03-06 2016-06-02 ハネウェル・インターナショナル・インコーポレーテッド Storage stable foamable composition comprising 1,1,1,4,4,4-hexafluoro-2-butene
JP2018168377A (en) * 2013-03-06 2018-11-01 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Storage stable foamable compositions containing 1,1,1,4,4,4-hexafluoro-2-butene
WO2015050139A1 (en) * 2013-10-02 2015-04-09 旭硝子株式会社 Polyol system liquid, and method for producing rigid foam synthetic resin
JP2015105340A (en) * 2013-11-29 2015-06-08 旭硝子株式会社 Rigid foamed synthetic resin and method of producing the same
EP3119824B1 (en) 2014-03-20 2021-04-28 Dow Global Technologies LLC Formulated isocyanate-reactive blends including olefin based blowing agent
JP2020029572A (en) * 2014-10-08 2020-02-27 積水ソフランウイズ株式会社 Polyol composition for rigid polyurethane foam, and rigid polyurethane foam production method
JP2016074885A (en) * 2014-10-08 2016-05-12 東洋ゴム工業株式会社 Polyol composition for rigid polyurethane foam, and rigid polyurethane foam production method
CN106715506A (en) * 2014-10-08 2017-05-24 东洋橡胶工业株式会社 Polyol composition for rigid polyurethane foam and method for preparing rigid polyurethane foam
JP7053051B2 (en) 2014-10-08 2022-04-12 積水ソフランウイズ株式会社 Polyol composition for rigid polyurethane foam and method for manufacturing rigid polyurethane foam
JP2017101836A (en) * 2015-11-30 2017-06-08 シャープ株式会社 Insulation structure body and refrigerator
JP2019504912A (en) * 2016-01-22 2019-02-21 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Use of Z-HFO-1,1,1,4,4,4-hexafluoro-2-butene in high temperature foaming applications
CN108473711A (en) * 2016-01-22 2018-08-31 科慕埃弗西有限公司 Z-HFO-1,1, Isosorbide-5-Nitrae, purposes of 4, the 4- hexafluoro -2- butylene in high temperature foam application
WO2018022405A1 (en) * 2016-07-25 2018-02-01 Covestro Llc Polyurethane foam-forming compositions, methods of making low density foams using such compositions, and foams formed therefrom
JP2020505496A (en) * 2017-01-31 2020-02-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Hydrohaloolefin (HFO) -containing polyurethane (PU) preparation
CN110483732A (en) * 2018-05-15 2019-11-22 科思创德国股份有限公司 Flexible foam
WO2020223059A1 (en) * 2019-04-29 2020-11-05 Covestro Llc Rigid polyurethane foams suitable for use as panel insulation
US10851196B2 (en) 2019-04-29 2020-12-01 Covestro Llc Rigid polyurethane foams suitable for use as panel insulation
CN113748150A (en) * 2019-04-29 2021-12-03 科思创有限公司 Rigid polyurethane foams suitable for use as board insulation
CN113784997A (en) * 2019-04-29 2021-12-10 科思创有限公司 Rigid polyurethane foam suitable for use as a panel insulation material
WO2020223060A1 (en) * 2019-04-29 2020-11-05 Covestro Llc Rigid polyurethane foams suitable for use as panel insulation
WO2022078899A1 (en) * 2020-10-13 2022-04-21 Covestro Deutschland Ag Composition for forming polyisocyanurate foam, polyisocyanurate foam, and thermal insulating material
EP4011945A1 (en) * 2020-12-14 2022-06-15 Covestro Deutschland AG Composition for forming polyisocyanurate foam, polyisocyanurate foam, and thermal insulating material
US11732081B2 (en) 2021-06-08 2023-08-22 Covestro Llc HCFO-containing isocyanate-reactive compositions, related foam-forming compositions and flame retardant PUR-PIR foams
US11905707B2 (en) 2021-06-29 2024-02-20 Covestro Llc Foam wall structures and methods for their manufacture
US11753516B2 (en) 2021-10-08 2023-09-12 Covestro Llc HFO-containing compositions and methods of producing foams
US11767394B2 (en) 2021-12-09 2023-09-26 Covestro Llc HCFO-containing polyurethane foam-forming compositions, related foams and methods for their production
US11767407B1 (en) 2022-04-21 2023-09-26 Covestro Llc HCFO-containing polyurethane foam-forming compositions, related foams and methods for their production
US11827735B1 (en) 2022-09-01 2023-11-28 Covestro Llc HFO-containing isocyanate-reactive compositions, related foam-forming compositions and flame retardant PUR-PIR foams

Also Published As

Publication number Publication date
JPWO2012105657A1 (en) 2014-07-03
JP5664669B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5664669B2 (en) Manufacturing method of rigid foam synthetic resin
JP5796572B2 (en) Manufacturing method of rigid foam synthetic resin
JP5720567B2 (en) Method for producing polyether polyol mixture, and method for producing rigid foam synthetic resin using the same
WO2009145236A1 (en) Hard foam synthetic resin and process for producing the same
JPWO2010147091A6 (en) Method for producing polyether polyol, and method for producing rigid foam synthetic resin using the same
JPWO2015050139A1 (en) Polyol system liquid and method for producing rigid foamed synthetic resin
JP2012177109A (en) Method for producing rigid foam synthetic resin
JP2015105342A (en) Rigid foamed synthetic resin and method of producing the same
JP5849966B2 (en) Method for producing polyether polyol and method for producing rigid foam synthetic resin
JP2014237757A (en) Polyol system solution and method for producing rigid foamed synthetic resin
JP2015105341A (en) Rigid foamed synthetic resin and method of producing the same
JP4654678B2 (en) Manufacturing method of rigid foam synthetic resin
JP2011241255A (en) Method for producing polyether polyol and method for producing rigid foamed synthetic resin
JP5109160B2 (en) Method for producing rigid foam synthetic resin and board foam
JP2012177108A (en) Method for producing rigid foam synthetic resin
JP4273815B2 (en) Manufacturing method of rigid foam synthetic resin
JP5977479B2 (en) Rigid foam synthetic resin composition and method for producing rigid foam synthetic resin using the same
JP5263259B2 (en) Manufacturing method of rigid foam synthetic resin
JP2015105340A (en) Rigid foamed synthetic resin and method of producing the same
KR20140052022A (en) Method for producing rigid polyurethane foams
JP2009067995A (en) Method for producing hard foamed synthetic resin
JP2006241196A (en) Method for producing rigid polyurethane foam
JP2012177107A (en) Method for producing rigid foam synthetic resin
JP4918779B2 (en) Method for producing rigid polyurethane foam
US20130046037A1 (en) Process for producing rigid polyurethane foams

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555960

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12741821

Country of ref document: EP

Kind code of ref document: A1