WO2012105074A1 - Receiving device, receiving method, receiving program and communication system - Google Patents

Receiving device, receiving method, receiving program and communication system Download PDF

Info

Publication number
WO2012105074A1
WO2012105074A1 PCT/JP2011/068186 JP2011068186W WO2012105074A1 WO 2012105074 A1 WO2012105074 A1 WO 2012105074A1 JP 2011068186 W JP2011068186 W JP 2011068186W WO 2012105074 A1 WO2012105074 A1 WO 2012105074A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
timing
receiving
section
Prior art date
Application number
PCT/JP2011/068186
Other languages
French (fr)
Japanese (ja)
Inventor
貴司 吉本
良太 山田
加藤 勝也
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012105074A1 publication Critical patent/WO2012105074A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • H04L27/2665Fine synchronisation, e.g. by positioning the FFT window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0063Interference mitigation or co-ordination of multipath interference, e.g. Rake receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2681Details of algorithms characterised by constraints
    • H04L27/2688Resistance to perturbation, e.g. noise, interference or fading

Definitions

  • the present invention relates to a receiving device, a receiving method, a receiving program, and a communication system.
  • a plurality of paths are generated by reflecting or diffracting a transmitted radio wave by an obstacle such as a building or terrain. Interfering with each other causes inter-symbol interference (Inter Symbol Interference: ISI) or inter-carrier interference (Inter Carrier Interference; ICI). Therefore, in order to extract a signal without being affected by ISI or ICI, in a multicarrier transmission scheme, for example, orthogonal frequency division multiplexing (OFDM), a guard having a certain length (GI length). A signal in which an interval (GI; Guard Interval, for example, CP; Cyclic Prefix) is inserted before the data signal is transmitted.
  • GI Guard Interval
  • CP Cyclic Prefix
  • Non-Patent Document 1 a correlation value between a pilot signal included in a received signal and a signal obtained by delaying an original pilot signal held by the receiving device is calculated, and the receiving device calculates the calculated correlation value. Describes the FFT synchronization that determines the end of the GI section included in the received signal, that is, the start position (FFT start position) of the data signal section (FFT section), based on the delay amount that gives the peak. Further, in Non-Patent Document 2, in FFT synchronization, a delay amount in a predetermined section centered on a correlation value peak and a radio wave of a path (path) whose received power exceeds a predetermined threshold is received. It is described that the start position of the data signal interval is determined based on the amount, and thereby the data signal interval can be easily determined even when the reception power of the delay path is larger than the reception power of the preceding path.
  • Non-Patent Documents 1 and 2 have a problem that, when the delay time for the delay path exceeds the GI length, the data signal section cannot be determined without missing a part of the data signal in the data signal section. There is a point.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a receiving apparatus, a receiving method, a receiving program, and a communication system that can determine an appropriate data signal section.
  • the present invention has been made in view of the above points, and an object thereof is to provide a receiving device, a receiving method, a receiving program, and a communication system.
  • the present invention has been made to solve the above-described problems, and one aspect of the present invention includes a receiving unit that receives a signal, and a signal having a predetermined length from the received signal.
  • a plurality of signal detection units to extract a decoding unit to decode the signal of the extracted section, and a synchronization unit to detect a plurality of timings based on different criteria from the received signal, each of the signal detection units
  • a receiving apparatus is characterized in that a section for extracting a signal is determined using one of the detected timings.
  • the plurality of signal detection units include a first signal detection unit and a second detection unit, and the first signal detection unit converts the received signal into a time.
  • a time-frequency conversion unit for converting from a domain to a frequency domain, wherein the second signal detection unit generates a residual signal obtained by removing an interference replica generated based on a signal decoded by the decoding unit from the received signal.
  • An interference cancellation unit to generate, and a time-frequency conversion unit that converts the residual signal from the time domain to the frequency domain, wherein the first signal detection unit and the second signal detection unit use different timings, respectively. Determining a section in which a signal is extracted.
  • the first signal detector performs processing on the received signal, and then the second signal detector satisfies a predetermined condition.
  • the receiving apparatus is characterized in that it is repeatedly performed until it is received.
  • the synchronization unit detects the timing based on a signal-to-interference noise ratio of the reception signal as one of the references. .
  • the synchronization unit detects a timing at which the signal-to-interference / noise ratio becomes maximum.
  • the synchronization unit detects the timing based on a signal-to-interference noise ratio of the received signal as one of the references, and the first signal detection unit A receiving apparatus is characterized in that a section for extracting a signal is determined based on the detected timing.
  • the synchronization unit detects the timing based on a signal-to-noise ratio of the reception signal as one of the references.
  • the synchronization unit detects a timing at which the signal-to-noise ratio is maximized.
  • the synchronization unit detects the timing based on a signal-to-noise ratio of the received signal as one of the references, and the second signal detection unit includes:
  • the receiving apparatus is characterized in that a section for extracting a signal is determined based on the detected timing.
  • the synchronization unit detects the timing based on power of the reception signal as one of the references.
  • the synchronization unit detects a timing at which the power of the reception signal becomes maximum.
  • the synchronization unit detects the timing based on power of the reception signal as one of the references, and the second signal detection unit detects the detection.
  • the receiving apparatus is characterized in that a section for extracting a signal is determined based on the determined timing.
  • the synchronization unit detects the timing based on an arrival path of the reception signal as one of the references.
  • the synchronization unit detects a timing at which the arrival path first arrives.
  • the synchronization unit detects the timing based on an arrival path of the received signal as one of the references, and the second signal detection unit detects the detection.
  • the receiving apparatus is characterized in that a section for extracting a signal is determined based on the determined timing.
  • the synchronization unit detects the timing based on an error frequency of the decoded signal as one of the references. .
  • the synchronization unit detects a timing at which the error frequency is minimized.
  • the synchronization unit detects the timing based on an error frequency of the decoded signal as one of the references, and the second signal detection unit A receiving apparatus is characterized in that a section for extracting a signal is determined based on the detected timing.
  • the synchronization unit detects the timing based on a signal-to-noise ratio of the received signal as one of the references, and the first signal detection unit includes:
  • the receiving apparatus is characterized in that a section for extracting a signal is determined based on the detected timing.
  • a receiving method in a receiving device wherein the receiving device receives a signal first, and the receiving device is predetermined from the received signal.
  • a fourth process of detecting a plurality of timings wherein each of the plurality of second processes defines a section for extracting a signal using one of the detected plurality of timings, Is a receiving method characterized by the above.
  • a first procedure for receiving a signal to a computer included in a receiving apparatus and a plurality of second procedures for extracting a signal having a predetermined length from the received signal.
  • Each of the second procedures is a receiving program characterized in that a section for extracting a signal is determined using one of the detected timings.
  • a communication system including a transmission device that transmits a signal and a reception device that receives the signal, and the reception device has a predetermined length from the reception signal.
  • a plurality of signal detectors for extracting signals in the interval, a decoder for decoding the signals in the extracted interval, and a synchronization unit for detecting a plurality of timings based on different criteria from the received signal,
  • Each of the signal detection units is a communication system characterized by determining a section for extracting a signal using one of the detected timings.
  • a received data signal can be demodulated without error under the influence of multipath.
  • 1 is a conceptual diagram showing a communication system 1 according to a first embodiment of the present invention.
  • 1 is a schematic diagram of a transmission device 100 according to the present embodiment. It is a conceptual diagram which shows an example of the frame format of the OFDM signal which concerns on this embodiment. It is a conceptual diagram which shows an example of the sub-frame format of the OFDM signal which concerns on this embodiment. It is a schematic block diagram which shows the structure of the receiver 200 which concerns on this embodiment. It is the schematic which shows the structure of the synchronizer 203 which concerns on this embodiment. It is a conceptual diagram showing an example of the signal energy and interference energy which concern on this embodiment. It is a conceptual diagram showing the other example of the signal energy and interference energy which concern on this embodiment.
  • FIG. 1 is a conceptual diagram showing a communication system 1 according to the present embodiment.
  • the communication system 1 includes a transmission device 100 and a reception device 200.
  • the transmission device 100 is, for example, a base station device, particularly a transmission part thereof, and transmits data to the reception device 200 by using, for example, an OFDM method via a downlink of a mobile phone system.
  • the receiving device 200 is, for example, a mobile station device, particularly a receiving part thereof, and receives data from the transmitting device 100.
  • the present invention is not limited to a mobile phone system, and can be applied to other transmission systems that transmit data signals by adding a GI to other wireless communication systems such as a wireless LAN, or a mobile phone system. It can also be applied to the uplink.
  • FIG. 2 is a schematic diagram of the transmission device 100 according to the present embodiment.
  • the transmission apparatus 100 includes an encoding unit 101, a modulation unit 102, a control signal generation unit 103, a reference signal generation unit 104, a resource mapping unit 105, an IDFT unit 106, a GI insertion unit 107, a transmission unit 108, and a transmission antenna 109. Is done.
  • the encoding unit 101 performs error correction encoding processing on a data signal input from an upper layer (not shown) and outputs encoded bits.
  • the upper layer is a layer of functions higher than the physical layer (physical layer) among the layers of communication functions defined in the OSI reference model, for example, a data link layer, a network layer, and the like.
  • the input data signal may include an error detection code, for example, an error detection code such as a CRC (Cyclic Redundancy Check) code.
  • the error correction coding process is, for example, turbo coding, LDPC (Low Density Parity Check) or convolutional coding processing.
  • the encoding unit 101 may include a rate matching processing unit for adjusting the coding rate (coding rate) to the data transmission rate. In the rate matching processing unit, for example, puncture processing for deleting some data, repetition for repeating some data, or padding for inserting temporary data (for example, zero value) to some data Processing such as (Padding) is performed.
  • the modulation unit 102 modulates the coded bits input from the coding unit 101 and generates data modulation symbols.
  • the modulation process performed by the modulation unit 102 includes, for example, BPSK (Binary Phase Shift Keying; two-phase phase modulation), QPSK (Quadrature Phase Shift Keying; four-phase phase modulation), 16QAM (16 Quadrature Amplitude Modulation value). Or 64QAM (64 Quadrade Amplitude Modulation; 64-value quadrature amplitude modulation).
  • Modulation section 102 outputs the generated data modulation symbol to resource mapping section 105.
  • Modulation section 102 may interleave the generated data modulation symbols and output the interleaved data modulation symbols to resource mapping section 105.
  • the control signal generation unit 103 encodes control data input from an upper layer (not shown), modulates the encoded control data to generate a control signal, and sends the generated control signal to the resource mapping unit 105 Output.
  • the control signal is a control signal for notifying the receiving apparatus of, for example, a synchronization signal or a modulation and coding scheme (MCS) such as a coding rate and a modulation multi-level number for a data signal.
  • MCS modulation and coding scheme
  • the synchronization signal is, for example, a primary synchronization signal (PSS; Primary Synchronization Signal) and a secondary synchronization signal (SSS; Secondary Synchronization Signal).
  • the PSS is a data sequence that can detect the symbol timing and the cell ID, for example, an orthogonal sequence such as a Zadoff-Chu sequence.
  • the cell ID is an ID assigned to each cell corresponding to the base station apparatus (transmitting apparatus 100), and the mobile station apparatus (receiving apparatus 200) identifies the cell, that is, the base station apparatus (transmitting apparatus 100). It becomes a clue.
  • the SSS is a data series that can detect frame timing, for example, an M series. In LTE (Long Term Evolution), which is one of the standards of mobile communication systems, 168 cell groups corresponding to SSS and three intra-group cells corresponding to PSS, a total of 504 (168 ⁇ 3) cell recognitions A number is defined.
  • the control signal for notifying the receiving apparatus of MCS is, for example, PDCCH (Physical Downlink Control Channel).
  • the reference signal generation unit 104 generates a reference signal (RS; Reference Signal) for estimating a transfer function in the receiving apparatus, and outputs the generated reference signal to the resource mapping unit 105.
  • the code sequence constituting the reference signal is an orthogonal sequence, for example, a Hadamard code or a CAZAC (Constant Amplitude Zero Auto-Correlation) sequence.
  • the resource mapping unit 105 assigns the data modulation symbol input from the modulation unit 102, the control signal input from the control signal generation unit 103, and the reference signal input from the reference signal generation unit 104 to resource elements.
  • a resource element is a minimum unit for assigning a data modulation symbol, a control signal, and a reference signal, and is specified by one subcarrier corresponding to a predetermined frequency band and one OFDM symbol corresponding to a predetermined time interval. That is, the resource element is a frequency region defined for each predetermined time interval.
  • Resource mapping section 105 outputs the frequency domain signal assigned to the resource element to IDFT section 106.
  • the IDFT unit 106 performs an inverse discrete Fourier transform (IDFT) on the frequency domain signal output from the resource mapping unit 105, converts the frequency domain signal into a time domain signal, and inserts the converted time domain signal into the GI. Output to the unit 107.
  • the IDFT unit 106 performs a function of converting a frequency domain signal into a time domain signal, but is not limited thereto, and may execute, for example, an inverse fast Fourier transform (IFFT). .
  • GI insertion section 107 adds an GI to the time domain signal input from IDFT section 106 and generates an OFDM symbol.
  • the GI insertion unit 107 uses the time domain signal as an effective symbol and prepends a part of the latter half thereof as an effective symbol as GI.
  • An effective symbol to which this GI is added is an OFDM symbol.
  • the GI insertion unit 107 outputs the generated OFDM symbol to the transmission unit 108.
  • receiving apparatus 200 can remove distortion due to a delay path having a delay time shorter than the GI length.
  • the GI length that is, the number of sample points is 144 (6.7 ⁇ s).
  • the signal s l (t) of the l-th OFDM symbol output from the GI insertion unit 107 is expressed by the following equation.
  • T f is the FFT interval length
  • TG is the GI length
  • N f is the number of IDFT points
  • C k l is the l-th OFDM first k allocated data modulation symbols to the subcarriers of the symbol
  • the control signal or reference signal the delta f is the sub-carrier interval.
  • N f is 2048 and ⁇ f is 15 kHz.
  • the transmission unit 108 performs D / A (Digital-to-Analog) conversion of the OFDM symbol input from the GI insertion unit 107 to generate an analog signal, and band-limits the generated analog signal by filtering processing. To generate a band-limited signal. Transmitter 108 upconverts the generated band-limited signal to a radio frequency band to generate a carrier band OFDM signal, and transmits the carrier band OFDM signal generated from antenna 109 to reception apparatus 200 as a radio wave.
  • the transmission apparatus 100 may include a plurality of antennas 109 and perform diversity (Diversity) transmission or MIMO (Multiple Input Multiple Output) transmission.
  • FIG. 3 is a conceptual diagram showing an example of the frame format of the OFDM signal according to the present embodiment.
  • the horizontal direction indicates time.
  • each frame of the OFDM signal includes 10 subframes.
  • Each subframe includes two slots.
  • Each slot is configured to include 7 OFDM symbols.
  • the PSS is indicated in the sixth OFDM symbol of each of the 0th subframe and the 5th subframe (filled portion in FIG. 3).
  • the SSS is indicated in the fifth OFDM symbol of each of the 0th subframe and the 5th subframe (shaded portion in FIG. 3).
  • the PSS and SSS channels are defined in advance in the communication system 1 and stored in a storage device (not shown) in the transmission device 100 and the reception device 200.
  • FIG. 4 is a conceptual diagram showing an example of the subframe format of the OFDM signal according to the present embodiment.
  • the example illustrated in FIG. 4 is an example in which the transmission apparatus 100 transmits an OFDM signal using one antenna.
  • the horizontal direction indicates time and the vertical direction indicates frequency.
  • FIG. 4 shows formats of the 0th subframe and the 5th subframe in FIG.
  • the PSS is the sixth OFDM symbol and is arranged in a resource element composed of 63 subcarriers (frequency bands) in the middle of the system band (filled portion).
  • SSS is the fifth OFDM symbol and is arranged in a resource element composed of 63 subcarriers (frequency bands) in the middle of the system band (shaded portion).
  • Data modulation symbols and reference signals are allocated in units of resource blocks (thick lines).
  • Each resource block is composed of 168 resource elements that occupy a frequency indicated by 12 subcarriers and a time indicated by 14 OFDM symbols.
  • control signals such as PDCCH (Physical Downlink Control Channel) are mainly arranged in the first three regions.
  • the remaining 11 OFDM symbol regions are regions in which data modulation symbols are mainly arranged.
  • the reference signal is arranged in a predetermined resource element that configures each resource block (upward diagonally shaded portion).
  • FIG. 5 is a schematic block diagram illustrating a configuration of the receiving device 200 according to the present embodiment.
  • the reception apparatus 200 includes an antenna unit 201, a reception unit 202, a synchronization unit 203, a propagation path estimation unit 204, a demapping unit 209, a demodulation unit 210, a decoding unit 211, a switching unit 212, and a signal detection unit 221- ⁇ ( ⁇ is 1 or 2).
  • the signal detection unit 221-1 includes a GI removal unit 206-1, a DFT unit 207-1, and a propagation path compensation unit 208-1.
  • the signal detection unit 221-2 includes an interference removal unit 205, a GI removal unit 206-2, a DFT unit 207-2, and a propagation path compensation unit 208-2.
  • the reception unit 202 outputs an output signal to the signal detection unit 221-1 or 221-2. As will be described later, when an error is detected in the signal that has passed through the signal detection unit 221-1, the output signal from the reception unit 202 is not output to the signal detection unit 221-1, and the signal detection unit 221- Output to 2.
  • the antenna unit 201 receives the carrier band OFDM signal propagated as a radio wave from the transmission apparatus 100, and outputs the received carrier band OFDM signal to the reception unit 202.
  • the receiving unit 202 down-converts the OFDM signal input from the antenna unit 100 to a frequency band where digital signal processing is possible, and further performs filtering processing on the down-converted signal to remove unnecessary components (Spurious).
  • the receiving unit 202 converts the filtered signal from an analog signal to a digital signal (A / D; Analog-to-Digital), and the converted digital signal is synchronized with a synchronization unit 203, a propagation path estimation unit 204, and a switching unit.
  • the signal is output to the signal detection unit 221-1 or 221-2 via 212.
  • the reception unit 202 initially outputs the converted digital signal to the signal detection unit 221-1 without outputting it to the signal detection unit 221-2.
  • the switching unit 212 outputs the digital signal input from the receiving unit 202 to the signal detecting unit 221-1 when the digital signal output from the receiving unit 202 is not decoded by the decoding unit 211 ( b).
  • the reception unit 202 outputs the converted digital signal to the signal detection unit 221-2.
  • the switching unit 212 when there is an error in the decoding unit 211 based on the digital signal output from the receiving unit 202, the switching unit 212 outputs the digital signal input from the receiving unit 202 to the signal detecting unit 221-2 (connected to a). ). In addition, when the decoding unit 211 performs decoding processing on the digital signal output from the receiving unit 202 one or more times, the switching unit 212 transmits the digital signal input from the receiving unit 202 to the signal detecting unit 221-2. May be output (connected to a).
  • the switching unit 212 receives the digital signal input from the receiving unit 202 as the signal detecting unit 221. -1 (connected to b), and when the soft decision value for the digital signal output from the receiving unit 202 is input from the decoding unit 211 to the interference removing unit 205, the digital signal input from the receiving unit 202 is The signal may be output to the signal detector 221-2 (connected to a).
  • the synchronization unit 203 performs a synchronization process with the transmission apparatus 100 using a control signal (for example, PSS, SSS).
  • FIG. 6 is a schematic diagram illustrating a configuration of the synchronization unit 203 according to the present embodiment.
  • the synchronization unit 203 includes a filter unit 231, a correlation unit 232, and a timing detection unit 233- ⁇ ( ⁇ is 1 or 2).
  • the filter unit 231 extracts the band component signal of the subcarrier in which PSS or SSS is arranged from the digital signal input from the reception unit 202, and outputs the extracted band component signal of the subcarrier to the correlation unit 232.
  • a control signal for example, PSS, SSS
  • FIG. 6 is a schematic diagram illustrating a configuration of the synchronization unit 203 according to the present embodiment.
  • the synchronization unit 203 includes a filter unit 231, a correlation unit 232, and a timing detection unit 233- ⁇ ( ⁇ is 1 or 2).
  • the filter unit 231
  • the filter unit 231 extracts 63 subcarrier band components included in the system band.
  • the filter unit 231 uses a time domain filter whose pass band is a band of 63 subcarriers, for example, FIR (Finite Impulse Response Filter), IIR (Infinite Impulse Response Filter), or a matched filter (Matched Filter). Filter) can be used.
  • FIR Finite Impulse Response Filter
  • IIR Infinite Impulse Response Filter
  • Filter a matched filter
  • the signal r s is a column vector (r 0 ... R m ... R Ns + D ⁇ 2 ) T having (N s + D ⁇ 1) elements.
  • the element of this column vector is the output value r m (0 ⁇ m ⁇ N s + D) at the discrete time m.
  • N s is the total value of the number of DFT points N f and the number of sample points N G of GI.
  • D is the number of multipaths.
  • the matrix h is a matrix of (N s + D ⁇ 1) rows N s columns composed of complex amplitudes h d (0 ⁇ d ⁇ D) in the d-th path, and is expressed by the following equation.
  • n is the amplitude n consists noise m (N s + D-1 ) noise vector having a number of elements (n 0 ... n m ... n Ns + D-2) T.
  • the s PSS is a column vector (s PSS, 0 ... s PSS, m) having N s elements composed of the mth OFDM symbol s PSS, m in which the synchronization signal (PSS) extracted by the filter unit 231 is arranged. ... s PSS, Ns-1 ) T.
  • the OFDM symbol s PSS, m is a sequence C k, m (a signal arranged in a resource element filled and shaded in FIG. 4) arranged in the k-th subcarrier of the m-th OFDM symbol, for example, It is expressed as:
  • Correlation section 232 calculates the correlation between the PSS indicated by the subcarrier band component signal input from filter section 231 and the PSS previously stored in the storage area, and calculates the complex amplitude based on the calculated correlation.
  • N f number of value zero to the signal r s in order to provide a delay of N f samples the signal r s.
  • OFDM symbol s PSS with m and signal sequence r c, complex amplitude h u at the sample points of the u can be expressed, for example, as follows.
  • the correlation unit 232 outputs the calculated complex amplitude to the timing detection units 233-1 and 233-2.
  • the timing detection unit 233-1 includes a SINR (Signal to Interference Noise Ratio) estimation unit 234 and a first timing determination unit 235.
  • the SINR estimation unit 234 estimates SINR based on the complex amplitude input from the correlation unit 232 and outputs the estimated SINR to the first timing determination unit 235.
  • SINR estimation unit 234 around the sample complex amplitude h u input from the correlation unit 232 is maximized, to extract a predetermined number of samples of the interval as the arrival path.
  • 2 is equal to or greater than a predetermined threshold value ⁇ may be extracted as an arrival path.
  • the SINR estimation unit 234 uses the extracted sample point x d (d is the sample point of the extracted complex amplitude h; 0 ⁇ d ⁇ D) as the energy P S when the DFT interval is the start point of the DFT process. and energy P I of the interference, for example, is calculated using the following equation.
  • t u takes to for example the following values depending on the sample point x u of the extracted complex amplitude h d.
  • FIG. 7 is a conceptual diagram illustrating an example of signal energy and interference energy according to the present embodiment.
  • the horizontal axis indicates the discrete time n
  • the vertical axis indicates the square of the absolute value of the complex amplitude
  • the horizontal axis indicates the discrete time n
  • the vertical axis indicates the square of the absolute value of the complex amplitude
  • sample points that give a complex amplitude exceeding the threshold ⁇ are x 0 , x 1 , x 2, and x 3 , and the square of the absolute value of the complex amplitude corresponding to x 0 is
  • the square of the absolute value of the complex amplitude corresponding to 1 is
  • the square of the absolute value of the complex amplitude corresponding to x 2 is
  • the square of the absolute value of the complex amplitude corresponding to x 3 is
  • the SINR estimation unit 234 extracts sample points x 0 , x 1 , x 2 and x 3 that give a complex amplitude exceeding the threshold ⁇ .
  • the horizontal axis represents discrete time n. Indicates.
  • the lower part of FIG. 7 shows the signal model when the DFT timing, that is, the first sample of the DFT section (PSS) is set to the sample points x 0 , x 1 , x 2 and x 3 in order from the upper row to the lower row. Indicates.
  • each column is the square of the absolute value of the complex amplitude, that is,
  • 2 respectively.
  • TG is the length of two sample intervals
  • Tf is the length of five sample intervals.
  • the SINR estimation unit 234 uses the equation (6) to calculate the signal energy P S (x n ) and the equation (7) to extract the interference energy P I (x n ) within the range of the extracted sample points. To calculate for each sample point xn .
  • the signal energy P S (x 0 ) in the path exceeding the threshold corresponds to the area of the shaded portion in the lower part of FIG.
  • the interference energy P I (x 0 ) corresponds to the area of the painted portion in the lower part of FIG.
  • FIG. 8 is a conceptual diagram illustrating another example of signal energy and interference energy according to the present embodiment.
  • 2 shown in the upper part of FIG. 8 is the same as the example shown in the upper part of FIG.
  • the signal model shown in the lower part of FIG. 8 is the same as the example shown in the lower part of FIG.
  • the signal power P S (x 1) in the path exceeding the threshold value corresponds to the area of the shaded portion of FIG lower.
  • the interference energy P I (x 1 ) corresponds to the area of the painted portion in the lower part of FIG. H u
  • 7, the complex amplitude as shown in the example of FIG. 8 the upper as long obtained square of the absolute value of 2, similarly, SINR estimation unit 234, even in the DFT timing x n x 2, x 3 , P S (x n ) and P I (x n ) can be calculated.
  • the SINR estimation unit 234 calculates SINR using the calculated P S (x n ) and P I (x n ).
  • the SINR at the DFT timing xn is expressed by the following equation.
  • N (x n ) is noise energy in the DFT interval.
  • the noise energy may be a value measured in advance for each temperature in the receiving apparatus 200, or may be calculated based on an OFDM symbol in a resource element to which no data signal is allocated among received signals.
  • the first timing detection unit 235 detects the DFT timing from the SINR for each DFT timing input from the SINR estimation unit 234, and detects the detected timing as the interference removal unit 205, the GI removal unit 206-1, and the DFT unit 207-. Output to 1. If the SINR set element output from the SINR estimation unit 234 is SINR (x n ), the first timing determination unit 235 has a sample timing at which the SINR (x n ) output from the SINR estimation unit 234 becomes maximum. x n (1) is determined as the DFT timing. That is, the determined timing x n (1) is expressed by the following equation.
  • arg max xn Indicates x n that maximizes.
  • the square of the absolute value of the complex amplitude is
  • 2 5
  • 2 10
  • 2 7
  • 2 7
  • the timing detection unit 233-2 includes an SNR (Signal to Noise Ratio) estimation unit 236 and a second timing determination unit 237.
  • the SNR estimation unit 236 extracts sample points for estimating the SNR. Extraction of sample points, especially in sample points square becomes the maximum absolute value of the complex amplitude h u, may be a predetermined number of points in the section, the square of the absolute value of the complex amplitude h u is given It is good also as a sample point exceeding a threshold.
  • the threshold value may be the same as the threshold value of the SINR estimation unit, or a different threshold value may be set.
  • SNR estimator 236 may extract sample points exceeding the threshold value ⁇ squared is preset absolute value of the complex amplitude h u. Then, SNR estimator 236, the signal energy P S at sample points x n of the complex amplitude h d for each extracted sample points, for example, is calculated based on the following equation.
  • FIG. 9 is a conceptual diagram illustrating an example of signal energy according to the present embodiment.
  • 2 in the upper part of FIG. 9 is the same as the example shown in the upper part of FIG.
  • the signal model in the lower part of FIG. 9 is the same as the example shown in the lower part of FIG.
  • the upper part of FIG. 9 also shows that the sample points that give the complex amplitude exceeding the threshold ⁇ are x 0 , x 1 , x 2, and x 3 .
  • the SNR estimation unit 236 extracts sample points x 0 , x 1 , x 2 and x 3 that give a complex amplitude exceeding the threshold ⁇ .
  • FIG. 9 shows a signal model when the DFT timing, that is, the first sample in the DFT section (PSS) is set to the sample points x 0 , x 1 , x 2 and x 3 in order from the upper row to the lower row. Show. In the example of FIG. 9, TG is 2 and Tf is 5 in each column.
  • FIG. 10 is a conceptual diagram illustrating another example of signal energy according to the present embodiment.
  • 2 in the upper part of FIG. 10 is the same as the example shown in the upper part of FIG.
  • the signal model in the lower part of FIG. 10 is the same as the example shown in the lower part of FIG.
  • the SNR estimation unit 236 calculates the SNR using the calculated P S (x n ).
  • the SNR at the DFT timing xn is expressed by the following equation.
  • the SNR estimator 236 can provide the noise energy N (x n ) in the same manner as the SINR estimator 234.
  • the second timing detection unit 237 detects the DFT timing from the SNR for each DFT timing input from the SNR estimation unit 236, and determines the detected DFT timing as the interference removal unit 205, the GI removal unit 206-2, and the DFT unit. Output to 207-2. Assuming that the SNR n for each DFT timing input from the SNR estimation unit 236, the second timing detection unit 237 selects the DFT timing x n (2) that satisfies the following expression, that is, the timing at which the SNR is maximized. .
  • the sample point x 0 (2) is the DFT timing.
  • the example in which the signal energy P S (x n ) is calculated as the DFT interval as shown in the equation (12) is shown, but not limited to this, the SNR estimation unit 236 performs the DFT described later. You may calculate based on an area.
  • the SNR estimator 236 may calculate the signal energy P S (x n ) using the following equation based on, for example, DFT intervals including GI for all the reaching paths.
  • the synchronization unit 203 includes a plurality of timing detection units 233- ⁇ that perform timing detection based on different standards, that is, different physical quantities, threshold values, and other variables.
  • the synchronization unit 203 exemplifies the case where the lengths of the DFT sections are different between the first timing detection unit 233-1 and the second timing detection unit 233-2. May be the same length.
  • PSS was used was demonstrated above, in this embodiment, it is also possible to use SSS.
  • SINR estimation processing for the received signal input from the reception unit 202 may be performed instead of the SINR estimation process performed by the SINR estimation unit 234 described above.
  • the SINR for the signal after propagation channel compensation input from the propagation channel compensation unit 208-1 or the propagation channel compensation unit 208-2 may be performed instead of the SNR estimation process performed by the SNR estimation unit 236 described above.
  • a process equivalent to the estimation process may be performed.
  • the propagation path estimation unit 204 estimates propagation path characteristics from the transmission device 100 to the reception device 200 based on the digital signal input from the reception unit 202.
  • the propagation path estimation unit 204 calculates propagation path characteristics from, for example, a reference signal included in the input digital signal and a reference signal stored in a storage unit included in the propagation path estimation unit 204 itself.
  • the reference signal used for the propagation path characteristic is, for example, a signal that is assigned to the upward-sloping diagonal line portion of the OFDM signal in the resource mapping shown in FIG.
  • the propagation path estimation unit 204 outputs the calculated propagation path characteristics to the signal detection units 221-1 and 22-1.
  • the signal detection unit 221-1 includes a GI removal unit 206-1, a DFT unit 207-1, and a propagation path compensation unit 208-1.
  • the signal detection unit 221-2 includes a GI removal unit 206-2, a DFT unit 207-2, a propagation path compensation unit 208-2, and an interference removal unit 205. The signal detection unit 221-2 performs signal processing again on the reception signal that has been subjected to signal detection processing in the signal detection unit 221-1.
  • the interference removal unit 205 uses the propagation path characteristics input from the propagation path estimation unit 204 and the soft decision value input from the decoding unit 211 to remove interference components from the digital signal input from the reception unit 202. I do. Specifically, the interference removal unit 205 is a signal transmission source based on the soft decision value input by the decoding unit 211, that is, the LLR (Log Likelihood Ratio) of the coded bits after decoding. A signal replica estimated to be transmitted by the transmission apparatus 100 is generated. The interference removal unit 205 generates an interference replica based on the generated signal replica and the propagation path characteristics from the propagation path estimation unit 204, and subtracts the generated interference replica from the data signal input from the reception unit 202. The interference removal unit 205 outputs the residual signal obtained by this subtraction to the GI removal unit 206-2. The configuration and function of the interference removal unit 205 will be described later.
  • GI removal section 206-1 removes GI from the digital signal output from reception section 202, and outputs the removed signal to DFT section 207-1.
  • GI removing section 206-2 removes GI from the residual signal output from interference removing section 205, and outputs the removed signal to DFT section 207-2.
  • the GI removal units 206-1 and 206-2 determine the GI length section as a section having a predetermined length from the DFT timing input from the synchronization unit 203.
  • the GI removal unit 206-1 removes the GI from the digital signal input from the reception unit 202 based on the DFT timing input from the first timing detection unit 235.
  • the GI removal unit 206-1 starts from the DFT timing input from the first timing detection unit 235 from the digital signal input from the reception unit 202, and has a preset DFT interval length T f (data signal interval). ) Signal is extracted. For example, when DFT timing input from the first timing detecting section 235 is x 1, GI removing section 206-1, a digital signal input from the reception unit 202, DFT section length starting at an x 1 T A signal for f minutes is extracted. That, GI removing section 206-1, as the end point of x 1, to remove a section of the GI interval length T G from the beginning.
  • the GI removal unit 206-2 removes the GI from the residual signal input from the interference removal unit 205 based on the DFT timing input from the second timing detection unit 237. That is, the GI removal unit 206-2 uses the DFT timing input from the second timing detection unit 237 as the starting point from the residual signal input from the interference removal unit 205, and the DFT interval length T f (data signal interval). Signal is extracted. For example, when the detection timing input from the second timing detection unit 237 is x 0 , the GI removal unit 206-2 uses the D 0 interval starting from x 0 as the starting point from the residual signal input from the interference removal unit 205. A signal for the length Tf is extracted.
  • GI removing section 206-2 as the end point of the sample points of the previous x 0, removing the GI interval length T G component signal.
  • the DFT units 207-1 and 202-1 and 2 perform Discrete Fourier Transform (DFT) for converting the signal from which the GI is input from the GI removal units 206-1 and 206-1 and 2 from a time domain signal to a frequency domain signal.
  • the converted frequency domain signals are output to the propagation path compensators 208-1 and 208-2, respectively. That is, the DFT unit 207-1 performs DFT on the signal from which the GI input from the GI removal unit 206-1 is removed, based on the DFT timing input from the first timing detection unit 235. Based on the DFT timing input from the second timing detection unit 237, the DFT unit 207-2 performs DFT on the signal from which the GI input from the GI removal unit 206-2 is removed.
  • DFT Discrete Fourier Transform
  • DFT timing input from the first timing detecting section 235 is x 1
  • DFT unit 207-1 GI inputted from GI removing section 206-1 of x 1 as the starting point has been removed signal DFT is performed on
  • DFT timing input from the second timing detecting section 237 is x 0, DFT section 207-2, to signal GI inputted from GI removing section 206-2 and x 0 as a starting point has been removed DFT is performed.
  • the DFT unit 207-1 and the DFT unit 207-2 perform other methods, for example, fast Fourier transform (FFT), as long as the signal can be converted from the time domain to the frequency domain. May be.
  • FFT fast Fourier transform
  • the propagation path compensators 208-1 and 208-2 multiply the frequency domain signals input from the DFT sections 207-1 and 20-2 by the weighting coefficients to generate propagation path compensation signals, and demap the generated propagation path compensation signals.
  • Demapping section 209 extracts data modulation symbols from the propagation path compensation signals input from propagation path compensation sections 208-1 and 208-2, and outputs the extracted data modulation symbols to demodulation section 210.
  • Demodulation section 210 performs demodulation processing on the data modulation symbol input from demapping section 209, and outputs a soft decision value (encoded bit LLR) to decoding section 211.
  • the processing of the demodulation unit 210 will be described by taking the case where the data modulation method is QPSK as an example.
  • the QPSK symbol transmitted by the transmission apparatus 100 is represented by X
  • the demodulator 210 calculates a soft decision value based on Xc, that is, ⁇ (b 0 ) and ⁇ (b 1 ), which are LLRs of the bits b 0 and b 1 , using, for example, the following equations.
  • Re (Xc) represents the real part of the complex number Xc
  • Im (Xc) represents the imaginary part of the complex number Xc
  • is an equivalent amplitude after propagation path compensation. For example, if the propagation path characteristic in the k-th subcarrier is H (k) and the propagation path distortion compensation weight coefficient calculated by the MMSE method is W (k), ⁇ is W (k) ⁇ H (k).
  • the demodulator 210 may demodulate data modulated by another modulation scheme, for example, 16QAM, using a demodulation scheme corresponding to the modulation scheme. Demodulator 210 may output bits b 0 and b 1 (hard decision value) to decoding unit 211 instead of the soft decision value.
  • the decoding unit 211 performs error correction decoding processing on the soft decision value or hard decision value input from the demodulation unit 210, and calculates an error corrected soft decision value or hard decision value.
  • This error correction decoding processing method is a method corresponding to error correction coding such as turbo coding and convolution coding performed by the transmission apparatus 100 as a transmission source.
  • decoding section 211 performs deinterleaving corresponding to interleaving the input soft decision value or hard decision value before performing error correction decoding processing. Process. Then, the decoding unit 211 performs error correction decoding processing on the signal that has been subjected to deinterleaving processing.
  • the decoding unit 211 outputs the calculated soft decision value to the interference removal unit 205.
  • the decoding unit 211 performs error correction.
  • the information bits constituting the judgment value or the hard judgment value are output.
  • the decoding unit 211 is a signal indicating whether or not a decoding process has been performed on the digital signal output from the receiving unit 202, a signal indicating whether or not an error has been detected in the decoding process, or an output from the receiving unit 202
  • a signal indicating the number of times the digital signal has been decoded is output to switching section 212. These signals are used for the above-described processing in the switching unit 212.
  • FIG. 11 is a schematic diagram illustrating a configuration of the interference removal unit 205 according to the present embodiment.
  • the interference removal unit 205 includes a replica generation unit 251 and a subtraction unit 252.
  • the replica generation unit 251 generates an interference component replica (interference replica) based on the propagation path characteristics input from the propagation path estimation unit 204 and the soft decision value input from the decoding unit 211.
  • the replica generation unit 251 generates a signal replica that is estimated to be transmitted by the transmission apparatus 100 that is a transmission source based on the LLR of the encoded bit after decoding as a soft decision value.
  • the replica generation unit 251 generates an interference replica using the generated signal replica and the propagation path characteristics input from the propagation path estimation unit 204, and outputs the generated interference replica to the subtraction unit 252.
  • the subtracting unit 252 subtracts the interference replica input from the subtracting unit 252 from the digital signal input from the receiving unit 202 to generate a residual signal.
  • the subtraction unit 252 outputs the generated residual signal to the GI removal unit 206-2. Residual signal r ⁇ i the subtraction unit 252 outputs (t) is expressed by the following equation.
  • r (t) is a digital signal input from the receiving unit 202.
  • a t ⁇ x 2 That is, generation of the residual signal in the generation and the subtraction unit 252 of the signal replicas in the replica generation unit 251, a predetermined starting from the symbol points x 2 represented by DFT timing inputted from the second timing detecting section 237 It is executed for the DFT interval.
  • r ⁇ i (t) is an interference replica generated by the replica generation unit 251 in the i-th (i> 0) iteration.
  • repetition refers to repetition of processing performed by the interference removal unit 205 on the soft decision value input from the demodulation unit 211 for the digital signal input from the reception unit 202.
  • FIG. 12 is a schematic diagram illustrating a configuration of the replica generation unit 251 according to the present embodiment.
  • the replica generation unit 251 includes a symbol replica generation unit 241, a mapping unit 242, an IDFT unit 243, a GI insertion unit 244, and an interference replica generation unit 245.
  • the symbol replica generation unit 241 generates a replica of the data modulation symbol (modulation symbol replica) based on the soft decision value (LLR of the coded bit) input from the decoding unit 211, and maps the generated modulation symbol replica to the mapping unit 242. Output to.
  • the symbol replica generation unit 241 uses, for example, a modulation symbol replica expressed by the following equation based on LLR ⁇ (b 0 ) and ⁇ (b 1 ) Is generated.
  • b 0 and b 1 are bits constituting the QPSK modulation symbol.
  • the symbol replica generation unit 241 may generate a modulation symbol replica not only for symbols modulated by QPSK but also for symbols modulated by other modulation schemes such as 16QAM.
  • Mapping section 242 arranges the modulation symbol replica input from symbol replica generation section 241 in resource elements in subcarriers arranged by resource mapping section 105 provided in transmitting apparatus 100.
  • the mapping unit 242 outputs the signal arranged in the resource element to the IDFT unit 243.
  • the mapping unit 242 may also arrange the control signal in a predetermined resource element. For example, when the subframe format of the OFDM signal received by the receiving apparatus 200 is as shown in FIG. 3, the resource element (outlined portion) in which the data modulation symbol is arranged is calculated by Expression (20). A modulation symbol replica is arranged for each data modulation symbol.
  • the IDFT unit 243 performs an IDFT (Inverse Discrete Fourier Transform) on the signal input from the mapping 242 to convert the frequency domain signal into a time domain signal.
  • the IDFT unit 243 outputs the converted time domain signal to the GI insertion unit 244.
  • the GI insertion unit 244 adds a GI in front of the time domain signal input from the IDFT unit 243, and outputs the signal with the GI added to the interference replica generation unit 245.
  • the signal to which the GI added by the GI insertion unit 244 is added, that is, the transmission signal replica s i, l (t) of the l-th OFDM symbol in the i-th iteration is expressed by the following equation.
  • Interference replica generation section 245 generates an interference replica using the transmission signal replica input from GI insertion section 244 and the propagation path characteristics input from propagation path estimation section 204, and outputs the generated interference replica to subtraction section 252 To do.
  • the interference replica is an estimated value of an interference component received until the OFDM signal transmitted from the transmission device 100 is received by the reception device 200.
  • the symbol replica generation unit 245 generates an interference replica for each type of interference component.
  • There are types of interference components such as inter-symbol interference and inter-carrier interference.
  • the interference replica generation unit 245 calculates an inter-symbol interference replica r i (t) (t ⁇ T s , where T s is an OFDM symbol length) in the i-th iteration using the following equation.
  • s i ⁇ 1 (t) represents a transmission signal replica input from the GI insertion unit in the ( i ⁇ 1 ) th repetitive processing.
  • ⁇ d (t) is an impulse response of propagation path characteristics, and the complex amplitude of the d-th path (d-th delayed wave), t is time, ⁇ d is the reception time (DFT timing) of the first path (preceding wave) )
  • TG is the inserted GI length.
  • d is ⁇ d > T G.
  • s 0 (t) becomes a soft decision value (LLR) that is an output from the decoding unit 221 based on the signal (propagation compensation signal) input from the signal detection unit 221-1. It is a data modulation replica calculated based on this. That is, the inter-symbol interference replica r i (t) is generated from ⁇ i ⁇ 1 which is the soft decision value (LLR) of the coded bit input from the decoding unit 211 in the i ⁇ 1th iteration. Generated based on the signal replica s i -1 (t).
  • the interference replica generation unit 245 performs processing for subtracting the calculated interference replica for each OFDM symbol constituting the frame or packet to remove intersymbol interference. Note that intersymbol interference with control signals and pilot symbols can also be eliminated by executing similar processing.
  • FIG. 13 is a flowchart showing a reception process according to the present embodiment.
  • the synchronization unit 203 receives a digital signal based on the OFDM signal received by the antenna unit 201 from the reception unit 202, and detects a DFT timing (synchronization timing) using a control signal (for example, PSS).
  • the DFT timing detected by the synchronization unit 203 includes a first synchronization timing using SINR as a detection reference and a second synchronization timing using SNR as a detection reference.
  • the timing detection unit 233-1 included in the synchronization unit 203 detects a sample point that maximizes the SINR calculated based on the input digital signal and the control signal as the first synchronization timing (DFT timing).
  • the timing detection unit 233-2 detects a sample point that maximizes the SNR calculated based on the input digital signal and the control signal as the second synchronization timing (DFT timing).
  • the propagation path estimation unit 204 calculates propagation path characteristics based on the digital signal input from the reception unit 202 and the reference signal stored in the propagation path estimation unit 204.
  • Step S104 The GI removal unit 206-1 and the DFT unit 207-1 included in the signal detection unit 221-1 receive the first synchronization timing (DFT timing) from the synchronization unit 203. Thereafter, the process proceeds to step S107.
  • Step S105 The interference removal unit 205, GI removal unit 206-2, and DFT unit 207-2 included in the signal detection unit 221-2 receive the second synchronization timing (DFT timing) from the synchronization unit 203. Thereafter, the process proceeds to step S106.
  • Step S106 Based on the DFT timing input from the synchronization unit 203, the interference removal unit 205 subtracts the interference replica (generated in step S112) from the digital signal input from the reception unit 202 to generate a residual signal. .
  • the interference removal unit 205 outputs the generated residual signal to the GI removal unit 206-2. Thereafter, the process proceeds to step S107.
  • Step S107 GI removal sections 206-1 and 2 remove GI based on the DFT timing input from synchronization section 203 from the digital signal input from reception section 202 or the residual signal input from interference removal section 205. Then, the signal from which the GI has been removed is output to the DFT sections 207-1 and 2.
  • the DFT sections 207-1 and 2 perform DFT on the signal (in the time domain) from which the GI input from the GI removal sections 206-1 and 2 is removed based on the DFT timing input from the synchronization section 203 (frequency domain). Convert to signal.
  • DFT sections 207-1 and 2 perform conversion and output frequency domain signals to propagation path compensation sections 208-1 and 208-2. Thereafter, the process proceeds to step S108.
  • Step S108 The propagation path compensators 208-1, 2 calculate a weighting coefficient for correcting propagation path distortion based on the propagation path characteristics input from the propagation path estimation unit 204.
  • the propagation path compensators 208-1 and 2 multiply the calculated weighting factor by the frequency domain signal input from the DFT sections 207-1 and 2 to generate a propagation path compensation signal, and degenerate the generated propagation path compensation signal.
  • the data is output to the mapping unit 209. Thereafter, the process proceeds to step S109.
  • the demapping unit 209 extracts a data modulation symbol from the channel compensation signals input from the channel compensation units 208-1 and 208-2, and outputs the extracted data modulation symbol to the demodulation unit 210.
  • Demodulation section 210 performs demodulation processing on the data modulation symbol input from demapping section 209, and outputs a soft decision value (encoded bit LLR) to decoding section 211. Then, it progresses to step S110.
  • Step S110 The decoding unit 211 performs error correction decoding processing on the soft decision value input from the demodulation unit 210, calculates an error corrected soft decision value, and determines whether there is a data error. If it is determined that there is a data error (Y in step S110), the process proceeds to step S111. When it is determined that there is no data error (N in step S110), the decoding unit 211 outputs the soft decision value in which the error is corrected, and ends the process. Then, receiving apparatus 200 waits for reception of the next received signal.
  • Step S111 The receiving apparatus 200 determines whether or not the number of repetitions i of the processing performed by the interference removal unit 205 for the soft decision value input from the demodulation unit 211 has reached a preset number of repetitions M. To do.
  • the receiving apparatus 200 determines that the number of repetitions i of the process performed by the interference removal unit 205 with respect to the soft decision value input from the demodulation unit 211 has reached a preset number of repetitions M (step S111 Y)
  • the demodulator 211 outputs the soft decision value that has been error-corrected, and ends the process. Then, receiving apparatus 200 waits for reception of the next received signal.
  • Step S111 When it is determined that the number of repetitions i of the processing performed by the interference removal unit 205 is less than the preset number of repetitions M (N in step S111), the process proceeds to step S112. (Step S112) The interference removal unit 205 generates an interference replica based on the propagation path characteristics input from the propagation path estimation unit 204 and the soft decision value input from the decoding unit 211. Thereafter, the process proceeds to step S105.
  • the signal detection unit 221-1 that does not include the interference removal unit 205 is based on the timing estimated based on the SINR that is the ratio of the signal power to the interference and noise power. Perform each process. Thereby, the data signal section based on the timing setting in consideration of the interference caused by the delay path exceeding the GI length can be determined.
  • the signal detection unit 221-2 provided with the interference removal unit 205 removes the interference and performs GI removal, DFT, propagation path based on the timing estimated based on the SNR that is the ratio of the signal power and the noise power. Perform each compensation process.
  • the receiving apparatus since the receiving apparatus performs the decoding process on the signal in the data signal section determined by different criteria (for example, reception power or interference amount), the receiving apparatus can obtain good reception characteristics.
  • this embodiment has been described as having the function of removing the intersymbol interference by the interference removal unit 205.
  • other interference components such as inter-carrier interference are used instead. You may provide the function to remove.
  • the interference removal method is different from the method of calculating the inter-symbol interference replica (for example, Equation (21), Equation (22)) as described above and subtracting this, the interference removal unit 205 performs decoding. Feedback such as a soft decision value may be input from a part or the like.
  • SISO Single Input Single Output
  • the transmission apparatus may be a MIMO (Multi Input Multi Output).
  • FIG. 14 is a schematic diagram illustrating a configuration of the synchronization unit 303 according to the present embodiment.
  • the receiving apparatus according to the present embodiment includes a synchronizing unit 303 instead of the synchronizing unit 203 in the receiving apparatus 200 according to the first embodiment.
  • the synchronization unit 303 includes a filter unit 231, a correlation unit 232, and timing detection units 233-1 and 333-2. That is, the synchronization unit 303 includes a timing detection unit 333-2 instead of the timing detection unit 233-2 of the synchronization unit 203 according to the first embodiment.
  • the timing detection unit 333-2 includes a power estimation unit 336 and a second timing determination unit 337.
  • the power estimation unit 336 estimates the power of the received signal based on the complex amplitude input from the correlation unit 232, and outputs the estimated power to the second timing determination unit 337.
  • the power estimation unit 336 uses, for example, Expression (11) or Expression (15) in order to estimate the power of the received signal.
  • the power estimation unit 336 may include an RSSI (Received Signal Strength Indicator). In that case, the power estimation unit 336 estimates the power of the reception signal based on the digital signal directly input from the reception unit 202.
  • Second timing determination section 337 detects DFT timing based on the power of the received signal input from power estimation section 336. That is, the second timing determination unit 337 determines the sample point x2 , n at which the power Power n of the received signal of sample n input from the power estimation unit 336 is the maximum as the DFT timing. For example, when the complex amplitude shown in the upper part of FIG. 7 or the upper part of FIG. 8 is given, the second timing determination unit 337 has the area of the shaded part in the lower part of FIG. 7 or the lower part of FIG. . 7 and 8, the second timing determination unit 337 determines the area of the hatched portion, that is, the sample point x2,0 at which the power of the received signal is maximum, as the DFT timing.
  • sample points x2 , n at which the power Power n of the received signal is maximum may be determined as the DFT timing, corresponding to the area of the shaded portion in the lower part of FIG. 9 or the lower part of FIG.
  • Second timing determination section 337 outputs the determined DFT timing to interference cancellation section 205, GI cancellation section 206-2, and DFT section 207-2.
  • the interference removal unit 205 performs interference removal based on the DFT timing input from the second timing determination unit 337.
  • the GI removal unit 206-2 performs GI removal based on the DFT timing input from the second timing determination unit 337.
  • the DFT unit 207 performs DFT based on the DFT timing input from the second timing determination unit 337.
  • the signal detection unit 221-2 including the interference removal unit 205 determines the data signal interval based on the DFT timing estimated with the received power as a reference. Thereby, the timing can be determined in consideration of the interference processing performed in the interference removal unit 205. As described above, in the present embodiment, the data signal interval is determined based on the timing estimated using different criteria for SINR and received power in the processing in the plurality of signal detection units. In the present embodiment, since the data signal in this section is decoded, it is possible for the receiving apparatus 200 to obtain good reception characteristics.
  • FIG. 15 is a schematic diagram illustrating a configuration of the synchronization unit 403 according to the present embodiment.
  • the receiving apparatus according to the present embodiment includes a synchronization unit 403 instead of the synchronization unit 203 in the receiving apparatus 200 according to the first embodiment.
  • the synchronization unit 403 includes a filter unit 231, a correlation unit 232, and timing detection units 233-1 and 433-2. That is, the synchronization unit 403 includes a timing detection unit 433-2 instead of the timing detection unit 233-2 of the synchronization unit 203 according to the first embodiment.
  • the timing detection unit 433-2 includes a path search unit 436 and a second timing determination unit 437.
  • the path search unit 436 estimates the arrival path based on the complex amplitude input from the correlation unit 232, and outputs the estimated arrival path and its sample point to the second timing determination unit 437. For example, the path search unit 436 estimates a complex amplitude whose square of the absolute value of the complex amplitude input from the correlation unit 232 is equal to or greater than a predetermined threshold ⁇ as an arrival path, and determines a sample point related to the arrival path.
  • the second timing determination unit 437 determines the earliest sample point of the complex amplitude sample points estimated as the incoming path input from the path search unit 436 as the DFT timing.
  • the second timing determination unit 437 first appears
  • the second timing determining unit 437 outputs the determined DFT timing to the interference removing unit 205, the GI removing unit 206-2, and the DFT unit 207-2.
  • the interference removal unit 205 performs interference removal based on the DFT timing input from the second timing determination unit 437.
  • the GI removal unit 206-2 performs GI removal based on the DFT timing input from the second timing determination unit 437.
  • the DFT unit 207 performs DFT based on the DFT timing input from the second timing determination unit 437.
  • the signal detection unit 221-2 including the interference removal unit 205 performs each process based on the DFT timing estimated based on the arrival path sample point (arrival time). Thereby, signal detection processing using all effective arrival paths becomes possible.
  • the data signal section is determined based on the timing detected by the plurality of signal detection units using the SINR and the reference different from the arrival path. In the present embodiment, since the data signal in this section is decoded, it is possible for the receiving apparatus 200 to obtain good reception characteristics.
  • FIG. 16 is a schematic diagram illustrating a configuration of the synchronization unit 503 according to the present embodiment.
  • the receiving apparatus according to the present embodiment includes a synchronization unit 503 instead of the synchronization unit 203 in the receiving apparatus 200 according to the first embodiment.
  • the synchronization unit 503 includes a filter unit 231, a correlation unit 232, and timing detection units 533-1 and 233-2. That is, the synchronization unit 433 includes a timing detection unit 533-1 instead of the timing detection unit 233-1 of the synchronization unit 203 according to the first embodiment.
  • the filter unit 231 outputs the band component signal to the DFT unit 542 (described later) included in the timing detection unit 533-1.
  • FIG. 17 is a schematic diagram illustrating a configuration of the timing detection unit 533-1 according to the present embodiment.
  • the timing detection unit 533-1 includes a path search unit 541, a DFT unit 542, a demodulation unit 543, and a determination unit 544.
  • the path search unit 541 estimates the arrival path based on the complex amplitude input from the correlation unit 232 and outputs the estimated arrival path sample points to the DFT unit 542.
  • the path search unit 541 estimates a complex amplitude in which the square of the absolute value of the complex amplitude input from the correlation unit 232 is greater than a preset threshold value ⁇ as an incoming path, and sets a sample point related to the complex amplitude as a sample point.
  • the arrival time of the arrival path is determined. For example, as shown in FIG. 7 upper
  • the DFT unit 542 receives sample points from the path search unit 541 and receives band component signals from the filter unit 231.
  • the DFT unit 542 sets the input sample points to the OFDM symbol in which the synchronization signal included in the input band component signal is arranged in the DFT section set in advance as the head of the DFT section, that is, as the DFT point. Then, DFT is performed to convert the signal into a frequency band component signal.
  • the DFT unit 542 outputs the converted frequency band component signal to the demodulation unit 543.
  • Demodulation section 543 extracts a subcarrier component to which a synchronization signal is assigned from the frequency band component signal input from DFT section 542, and demodulates the extracted component to generate a demodulated signal.
  • the demodulation process performed by the demodulation unit 543 is a demodulation process corresponding to the modulation process performed by the control signal generation unit 103 included in the transmission device 100.
  • Demodulation section 543 outputs the generated demodulated signal to determination section 544.
  • the determination unit 544 compares the control signal sequence included in the demodulated signal input from the demodulation unit 543 with the control signal (for example, PSS) used for the synchronization process stored in the storage area of the determination unit 544, and determines an error. And the error rate is calculated based on the detected error frequency. For example, when an OFDM symbol is input in the format shown in FIG. 4, since PSS is assigned as a control signal to 63 subcarriers, the determination unit 544 detects an error every 63 bits, and determines the number of detected errors. The error rate is calculated based on the number of bits 63 included in each frame.
  • the DFT in the DFT unit 542, the demodulation processing in the demodulation unit 543, and the error rate calculation in the determination unit 544 are performed for each sample point included in the DFT interval.
  • the first timing detector 533-1 determines the sample point at which the calculated error rate is the smallest as the DFT timing.
  • the timing detection unit 533-1 may determine the sample point with the smallest number of errors as the DFT timing.
  • the timing detection unit 533-1 outputs the determined DFT timing to the GI removal unit 206-1 and the DFT unit 207-1.
  • the GI removal unit 206-1 performs GI removal based on the DFT timing input from the timing detection unit 533-1.
  • the DFT unit 207-1 performs DFT based on the DFT timing input from the timing determination unit 533-1.
  • the receiving apparatus 200 according to the present embodiment includes the timing detection unit 333-2 of the second embodiment or the timing detection unit 433-2 of the third embodiment instead of the timing detection unit 233-2. Also good.
  • the signal detection unit 221-1 that does not include the interference removal unit 205 performs each process based on the DFT timing estimated based on the error rate of the synchronization signal.
  • the DFT timing can be estimated in consideration of interference caused by a delay path exceeding the GI length.
  • the data signal section is determined based on the timing estimated by using a reference different from the error rate and the SNR in the plurality of signal detection units. According to the present embodiment, since the signal in this section is decoded, the reception device 200 can obtain good reception characteristics.
  • FIG. 18 is a schematic diagram illustrating a configuration of a transmission device 700 according to the fifth embodiment of the present invention.
  • Transmitting apparatus 700 includes coding sections 101-1 to 101-N T (N T is the spatial multiplexing number), modulation sections 102-1 to 102-N T , control signal generation sections 103-1 to 103-N T , reference signals Generation units 104-1 to 104-N T , resource mapping units 105-1 to 105-N T , IDFT units 106-1 to 106-N T , GI insertion units 107-1 to 107-N T , and transmission unit 108- 1 ⁇ 108-N T and configured to include the antenna section 109-1 ⁇ 109-N T.
  • the transmission apparatus 700 includes encoders 101-1 to 101-N T , modulators 102-1 to 102-N T , control signal generators 103-1 to 103-N T , and reference signal generator 104-1. 104-N T , resource mapping units 105-1 to 105-N T , IDFT units 106-1 to 106-N T , GI insertion units 107-1 to 107-N T , and transmission units 108-1 to 108-N
  • the T and antenna units 109-1 to 109-N T are provided in the transmission apparatus 100.
  • the GI insertion unit 107, the transmission unit 108, and the antenna unit 109 have the same configuration and function.
  • different pieces of information data are input to the encoding units 101-1 to 101- NT included in the transmission apparatus.
  • different control data is input to each of the control signal generators 103-1 to 103- NT .
  • the present embodiment will be described focusing on the differences from the first embodiment.
  • Transmitting sections 108-1 to 108- NT simultaneously transmit the generated OFDM signals from antennas 109-1 to 109- NT by radio waves to receiving apparatus 600.
  • MIMO transmission a signal output from each antenna is called a stream.
  • the signals s l, n (t) of the l-th OFDM symbol output from the GI insertion units 107-1 to 107- NT are expressed by the following equations.
  • the signals output from the antennas 109-1 to 109- NT are described as following the formats of FIGS. 3 and 4, but the present invention is not limited to this.
  • the control signals (for example, PSS and SSS) may be arranged in any of the OFDM signals output from the antennas 109-1 to 109- NT .
  • the resource mapping units 105-1 to 105-N T assign control signals input from the control signal generation units 103-1 to 103-N T for each stream.
  • a control signal based on control data for other streams may be assigned to only a predetermined part of the streams.
  • FIG. 19 is a schematic diagram illustrating a configuration of a receiving device 600 according to the present embodiment.
  • Receiving device 600 includes antenna units 201-1 to 201-N R (N R is the number of receiving antennas), receiving unit 202, synchronization unit 603, propagation path estimation unit 204, signal detection units 621-1 to 621-3), Demapping units 209-1 to 209-N T , demodulation units 210-1 to 210-N T, decoding units 211-1 to 211-N T , and a switching unit 612 are included.
  • Antenna units 201-1 to 201-N R provided in receiving apparatus 600, receiving unit 202, synchronizing unit 203, propagation path estimating unit 204, signal detecting units 621-1 and 621-2, and demapping units 209-1 to 209- N T , demodulation units 210-1 to 210 -N T and decoding units 211-1 to 211 -N T are provided in the reception apparatus 200, including an antenna unit 201, a reception unit 202, a synchronization unit 203, a propagation path estimation unit 204, Each of the signal detection units 221-1 and 221-2, the demapping unit 209, the demodulation unit 210, and the decoding unit 211 has the same configuration and function. Note that the difference between the receiving apparatus 600 according to the present embodiment and the receiving apparatus 100 according to the first embodiment will be mainly described.
  • Receiving unit 202 is input an OFDM signal transmitted from the transmitter 700 to the antenna unit 201-1 ⁇ 201-N R received, digital signal processing the input OFDM signal is down-converted to a frequency band available.
  • the receiving unit 202 performs filtering processing on the down-converted signal to remove unnecessary components, and converts the filtered signal from an analog signal to a digital signal (A / D conversion).
  • the reception unit 202 outputs the converted digital signal to the propagation path estimation unit 204, the synchronization unit 603, and the signal detection units 621-1 to 621-3.
  • the synchronization unit 603 calculates a correlation value from the control signal included in the digital signal input from the reception unit and the control signal stored in the storage area included in the synchronization unit 603, and detects the DFT timing based on the calculated correlation value.
  • the synchronization unit 603 uses the detected DFT timings as signal detection units 621-1 to 621-3, that is, the interference removal unit 205, the GI removal units 206-1 to 206-3, the DFT units 207-1 to 207-3, the propagation path
  • the data is output to the compensation units 608-1 and 608-2 and the maximum likelihood detection unit 610.
  • the synchronization unit 603 outputs the calculated correlation value to the switching unit 612.
  • the propagation path estimation unit 204 estimates propagation path characteristics from the antenna units 109-1 to 109- NT of the transmission apparatus 700 to the antenna units 201-1 to 201-N R of the reception apparatus 600, and the estimated propagation path The characteristics are output to the signal detectors 621-1 to 621-3.
  • the propagation path characteristic represents variation in amplitude and phase due to fading between the antenna unit 109-1 ⁇ 109-N T and the antenna unit 201-1 ⁇ 201-N R.
  • the propagation path estimation unit 204 sets the propagation path characteristic to, for example, the reference signal included in the digital signal input from the reception unit 202 (for example, the rightward of the OFDM signals indicated by the resource mapping shown in FIG. 4). And a reference signal stored in a storage area provided by itself.
  • the switching unit 612 receives the digital signal input from the receiving unit as a signal detection unit 621-1 (connected to b), a signal detection unit 621-2 (connected to c), or a signal detection unit 621-3 (connected to a) Output to.
  • the signal is input to these destinations from decoding section 211-1 ⁇ 211-N T, or for example, is input from the synchronization unit 603, switching unit 612, the correlation value synchronization unit 603 is calculated ( When a delay path exceeding the GI length is detected in the delay profile), the receiving apparatus 600 outputs the digital signal input from the receiving unit 202 to the signal detecting units 621-1 and 621-2 (connected to b and c). ).
  • the switching unit 612 outputs the digital signal input from the receiving unit 202 to the signal detecting unit 621-2 when the digital signal output from the receiving unit 202 is decoded one or more times by the decoding unit 211. (Connect to c). On the other hand, the switching unit 612, if the digital signal output from the receiving unit 202 also decoding is not performed once by the decoding unit 211-1 ⁇ 211-N T, a digital signal input from the reception unit 202 The signal is output to the signal detector 621-1 (connected to b).
  • the switching unit 612 does not detect a delay path exceeding the GI length in the correlation value (delay profile) input from the synchronization unit 603 and the input from the reception unit 202 when the spatial multiplexing number n is less than 2.
  • the digital signal thus output is output to the signal detector 621-1 (connected to b).
  • the switching unit 612 does not detect a delay path exceeding the GI length in the correlation value input from the synchronization unit 603, and if the spatial multiplexing number n is 2 or more, the switching unit 612 converts the input digital signal into a signal detection unit Output to 621-3 (connected to a).
  • the spatial multiplexing number n is a part of the control information of the control signal included in the OFDM signal transmitted by the transmitting apparatus 700, and the switching unit 612 extracts the spatial multiplexing number n from the digital signal input from the receiving unit 202. To do.
  • Each of the signal detection units 621-1 to 621-3 includes GI removal units 206-1 to 206-3 and DFT units 207-1 to 207-3. Also, the GI removal units 206-1 to 206-3 and the DFT units 207-1 to 207-3 have the same configurations and functions as the GI removal unit 206 and the DFT unit 207 of the receiving apparatus, respectively.
  • the signal detection unit 621-1 includes a propagation path estimation unit 608-1 in addition to the GI removal unit 206-1 and the DFT unit 207-1.
  • the removal of the GI length section performed by the GI removal unit 206-1 and the DFT performed by the DFT unit 207-1 are set in advance starting from the DFT timing input from the first timing detection unit provided in the synchronization unit 603. This is performed for the section of the FFT section length Tf .
  • Output signals R 1 to k, l in the k-th subcarrier of the l-th OFDM symbol output from DFT section 207-1 are expressed by the following equations.
  • vector of the R column [R ⁇ k, l, 1 ... R ⁇ k, l, NR] is T.
  • H k, l is a matrix of N R ⁇ N T expressed by the following equation having propagation path characteristics (frequency response) H k, l, mn from the antenna 109-n to the antenna 201-m.
  • S k, l is the modulation symbol c k output from the modulating unit 102-n of the transmission device 700, l, N and the n elements T columns of the vector [c k, l, 1 ... c k, l, NT] T It is.
  • N k, l is an N R ⁇ 1 vector [N k, l, 1 ... N k, l, NR ] T having noise components N k, l, m for each antenna 201-m as elements.
  • the propagation path compensation unit 608-1 calculates a weighting factor for correcting the propagation path distortion based on the propagation path characteristic input from the propagation path estimation unit 204, and the calculated weighting factor is a frequency domain signal input from the DFT unit 207. To generate a propagation path compensation signal.
  • ZF Zero Forcing
  • MMSE Minimum Mean Square Error
  • MIMO separation processing is performed to detect modulation symbols Sk, l To do.
  • the propagation path compensation unit 608-1 for example, multiplies the ZF weight coefficient matrix M ZF, k calculated using the following equation as the MIMO separation processing by ZF from the left of the vectors R 1 to K, l , and modulates the modulation symbol S k , L are detected.
  • the propagation path compensation unit 608-1 multiplies the MMSE weight coefficient M MMSE, k calculated using the following equation as the MIMO separation processing based on the MMSE standard from the left of the vectors R 1 to k, l , and modulates the modulation symbol S k. , L may be detected.
  • the signal detection unit 621-2 includes an interference removal unit 605, a GI removal unit 206-2, a DFT unit 207-2, and a propagation path estimation unit 608-2.
  • the GI length section removal performed by the GI removal section 206-2 and the DFT performed by the DFT section 207-2 are FFT section lengths T starting from the DFT timing input from the second timing detection section provided in the synchronization section 603. This is performed for the interval f .
  • the interference removal unit 605 outputs the residual signal obtained by removing the interference component to the GI removal unit 206-2. Note that the interference removal unit 205 may remove a signal of another stream that is an interference component from a signal of a certain stream that constitutes the MIMO signal. For example, the interference removal unit 205 may remove the stream 2 to NT signals received from the antennas 109-2 to 109- NT from the stream 1 signal received from the antenna 109-1.
  • the subtraction unit 252 included in the interference removal unit 205 subtracts the interference replica of a certain stream and the replica of the other stream from the signal of the certain stream.
  • the replica generation unit 251 included in the interference removal unit 205 uses the propagation path characteristics input from the propagation path estimation unit 204 and the soft decision values for other streams to perform replicas of other streams by processing similar to the interference replica. Generate.
  • the signal detection unit 621-3 includes a GI removal unit 206-3, a DFT unit 207-3, and a maximum likelihood detection unit 610.
  • the removal of the GI length section performed by the GI removal unit 206-3 and the DFT performed by the DFT unit 207-3 are performed based on the DFT timing input from the first timing detection unit included in the synchronization unit 603.
  • the maximum likelihood detection unit 610 performs maximum likelihood detection on a portion based on information data in the frequency domain signal input from the DFT unit 207-3, and calculates a bit log likelihood ratio for each stream.
  • the maximum likelihood detection unit 610 outputs the calculated bit log likelihood ratio for each stream to the decoding unit 211-n.
  • the bit sequence ⁇ k, l of the information data included in the modulation symbol S k, l is represented by [b k, l, 1,0 ... b k, l, 1, M-1 ... b k, l, NT , M ⁇ 1 ].
  • b k, l, t, and q represent the q-th bit of the t-th stream constituting the information data.
  • the subscript l indicating the symbol and the subscript k indicating the subcarrier are omitted.
  • the maximum likelihood detection unit 610 calculates the bit log likelihood ratio ⁇ (b t, q ) of the bits b t, q using, for example, the following equation.
  • Demapping section 209-1 ⁇ 209-N T extracts data modulation symbols from the channel compensation signal input from the channel compensation unit 608-1,608-2, demodulates the extracted data modulation symbol unit 210- Output to 1-210- NT .
  • Demodulation sections 210-1 to 210- NT perform demodulation processing on the data modulation symbols input from demapping sections 209-1 to 209- NT , calculate soft decision values, and calculate soft decision values. It is output to the decoding unit 211-1 ⁇ 211-N T.
  • demapping processing in demapping sections 209-1 to 209- NT and demodulation processing in demodulation sections 210-1 to 210- NT are performed for each stream.
  • Decoding sections 211-1 to 211 -N T perform error correction decoding processing on soft decision values input from demodulation sections 210-1 to 210 -N T , and eliminate interference of soft correction values corrected for errors
  • the data is output to the unit 205. Further, the decoding unit 211-1 ⁇ 211-N T, if no error is the information bits after error correction decoding, or when the iteration process reaches a preset number of iterations, the information a soft decision value obtained by the error correction Output as data.
  • the decoding unit 211-1 ⁇ 211-N T a signal indicating whether or not subjected to decoding processing to the digital signal output from the receiving unit 202, a signal indicating whether an error is detected in the decoding process, or Signals indicating the number of times the decoding process is performed on the digital signal output from the receiving unit 202 are output to the switching unit 612, respectively. These signals are used by the switching unit 612 for the above-described processing.
  • the signal detection units 621-1 and 621-3 perform signal detection processing based on the first DFT timing input from the synchronization unit 203, and the signal detection unit 621-2. Performs signal detection processing based on the second DFT timing input from the synchronization unit 203. That is, in the receiving apparatus 600 in the present embodiment, each signal detection unit determines each data signal section based on one of a plurality of different references, for example, timings detected by SINR and SNR. By decoding the data section of this section, the receiving apparatus 600 according to the present embodiment can obtain good reception characteristics. In addition, even if precoding, spreading, and the like are performed on the signals transmitted by the transmission apparatuses 100 and 700 in the above-described embodiment, the same applies.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed.
  • the “computer system” is a computer system built in the receiving devices 200 and 600 or the transmitting devices 100 and 700 and includes hardware such as an OS and peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
  • a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • a part or all of the receiving devices 200 and 600 and the transmitting devices 100 and 700 in the above-described embodiment may be realized as an integrated circuit such as an LSI (Large Scale Integration).
  • LSI Large Scale Integration
  • Each functional block of the receiving devices 200 and 600 and the transmitting devices 100 and 700 may be individually made into a processor, or a part or all of them may be integrated into a processor.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, in the case where an integrated circuit technology that replaces LSI appears due to progress in semiconductor technology, an integrated circuit based on the technology may be used.
  • the receiving apparatus, receiving method, receiving program, and communication system according to the present invention are useful for wireless communication, and are particularly suitable for mobile communication such as a mobile phone.
  • 100, 700 ... transmitting device 101, 101-1 to 101-N T ... code part, 102, 102-1 to 102-N T ... modulation unit, 103, 103-1 to 103-N T ... control signal generation unit, 104, 104-1 to 104-N T ... Reference signal generator, 105, 105-1 to 105-N T ... Resource mapping unit, 106, 106-1 to 206-N T IDFT section, 107, 107-1 to 107-N T , 244... GI insertion part, 108, 108-1 to 108-N T ... transmission unit, 109, 109-1 to 109-N T ... antenna part, 200, 600 ... receiving device, 201, 201-1 to 201-N R ...
  • antenna unit 202 ... receiving unit, 203, 303, 403, 503,603 ... synchronizing unit, 204 ... propagation path estimation unit, 205 ... interference removal unit, 206-1 to 206-3 ... GI removal unit, 207-1 to 207-3, 542 ... DFT section, 208-1, 208-2, 608-1, 608-2 ... propagation path compensation unit, 209, 209-1 to 209-N T ... demapping unit, 210, 210-1 to 210-N T , 543 ... demodulator, 211, 211-1 to 211-N T ... decoding unit, 212, 612 ... switching unit, 221-1, 221-2, 621-1 to 621-3 ... signal detection unit, 231 ...
  • Filter unit 232 ... Correlation unit, 233-1, 233-2, 333-2, 433-2, 533-1... Timing detection unit, 234 ... SINR estimation unit, 235 ... first timing determination unit, 236 ... SNR estimation unit, 237, 337, 437 ... second timing determination unit, 241 ... Symbol replica generation unit, 242 ... Mapping unit, 243 ... IDFT unit, 244 ... GI insertion unit, 245 ... interference replica generation unit, 251 ... Replica generation unit, 252 ... Subtraction unit, 336 ... power estimation unit, 436, 541 ... path search unit, 544 ... determination unit, 610 ... Maximum likelihood detection unit

Abstract

The present invention provides a receiving device, a receiving method, a receiving program or a communication system capable of determining a proper data signal segment even under an environment where a delay path with a delay time longer than a GI length is generated. A receiving unit (202) receives a signal, signal detecting units (221-1, 221-2) extract a signal having a segment with a predetermined length from the received signal, a decoding unit (211) decodes the signal of the extracted segment, a synchronizing unit (203) detects a plurality of timings from the received signal on the basis of mutually different criterion, and each of the signal detecting units (221-1, 221-2) defines a segment to extract a signal by using one of the detected plurality of timings.

Description

受信装置、受信方法、受信プログラム、及び通信システムReception device, reception method, reception program, and communication system
 本発明は、受信装置、受信方法、受信プログラム、及び通信システムに関する。
 本願は、2011年2月3日に、日本に出願された特願2011-021939号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a receiving device, a receiving method, a receiving program, and a communication system.
This application claims priority on February 3, 2011 based on Japanese Patent Application No. 2011-021939 filed in Japan, the contents of which are incorporated herein by reference.
携帯電話、無線LANなどの無線通信システムでは、送信された電波が建物や地形などの障害物によって反射又は回折することによって複数の経路(マルチパス)が生じ、各経路によって遅延時間が異なる電波が互いに干渉することでシンボル間干渉(Inter Symbol Interference:ISI)やキャリア間干渉(Inter Carrier Interference;ICI)が発生する。そこで、ISIやICIの影響を受けずに信号を抽出するために、マルチキャリア伝送方式、例えば、直交周波数分割多重(OFDM;Orthogonal Frequency Division Multiplexing)では、一定の長さ(GI長)をもつガードインターバル(GI;Guard Interval、例えばCP;Cyclic Prefix)をデータ信号の前に挿入した信号を伝送している。 In a wireless communication system such as a cellular phone and a wireless LAN, a plurality of paths (multipaths) are generated by reflecting or diffracting a transmitted radio wave by an obstacle such as a building or terrain. Interfering with each other causes inter-symbol interference (Inter Symbol Interference: ISI) or inter-carrier interference (Inter Carrier Interference; ICI). Therefore, in order to extract a signal without being affected by ISI or ICI, in a multicarrier transmission scheme, for example, orthogonal frequency division multiplexing (OFDM), a guard having a certain length (GI length). A signal in which an interval (GI; Guard Interval, for example, CP; Cyclic Prefix) is inserted before the data signal is transmitted.
例えば、非特許文献1では、受信信号に含まれるパイロット信号と受信装置が保持している元のパイロット信号を遅延させた信号との相関値をそれぞれ算出し、受信装置は、算出された相関値のピークを与える遅延量に基づき、受信信号に含まれるGI区間の最後、即ちデータ信号区間(FFT区間)の開始位置(FFT開始位置)と決定するFFT同期について記載されている。
 また、非特許文献2では、FFT同期において、相関値のピークを中心とする所定の区間にある遅延量であって、受信電力が所定の閾値を超える経路(パス)の電波が受信された遅延量に基づきデータ信号区間の開始位置を定め、これにより、遅延パスの受信電力が先行パスの受信電力よりも大きい場合でも、データ信号区間を容易に決定できることが記載されている。
For example, in Non-Patent Document 1, a correlation value between a pilot signal included in a received signal and a signal obtained by delaying an original pilot signal held by the receiving device is calculated, and the receiving device calculates the calculated correlation value. Describes the FFT synchronization that determines the end of the GI section included in the received signal, that is, the start position (FFT start position) of the data signal section (FFT section), based on the delay amount that gives the peak.
Further, in Non-Patent Document 2, in FFT synchronization, a delay amount in a predetermined section centered on a correlation value peak and a radio wave of a path (path) whose received power exceeds a predetermined threshold is received. It is described that the start position of the data signal interval is determined based on the amount, and thereby the data signal interval can be easily determined even when the reception power of the delay path is larger than the reception power of the preceding path.
しかしながら、非特許文献1及び2に記載された発明は、遅延パスに対する遅延時間がGI長を超える場合に、データ信号区間のデータ信号の一部を欠落させずにデータ信号区間を決定できないという問題点がある。
 本発明は上記の点に鑑みてなされたものであり、適切なデータ信号区間を決定することができる受信装置、受信方法、受信プログラム及び通信システムを提供することを課題とする。
However, the inventions described in Non-Patent Documents 1 and 2 have a problem that, when the delay time for the delay path exceeds the GI length, the data signal section cannot be determined without missing a part of the data signal in the data signal section. There is a point.
The present invention has been made in view of the above points, and an object of the present invention is to provide a receiving apparatus, a receiving method, a receiving program, and a communication system that can determine an appropriate data signal section.
 本発明は上記の点に鑑みてなされたものであり、その目的は、受信装置、受信方法、受信プログラム、及び通信システムを提供することにある。 The present invention has been made in view of the above points, and an object thereof is to provide a receiving device, a receiving method, a receiving program, and a communication system.
(1)本発明は上記の課題を解決するためになされたものであり、本発明の一態様は、信号を受信する受信部と、前記受信信号から予め定められた長さの区間の信号を抽出する複数の信号検出部と、前記抽出された区間の信号を復号する復号部と、前記受信信号から各々異なる基準で複数のタイミングを検出する同期部とを備え、前記信号検出部の各々は、前記検出された複数のタイミングのうち1つを用いて信号を抽出する区間を定めること、を特徴とする受信装置である。 (1) The present invention has been made to solve the above-described problems, and one aspect of the present invention includes a receiving unit that receives a signal, and a signal having a predetermined length from the received signal. A plurality of signal detection units to extract, a decoding unit to decode the signal of the extracted section, and a synchronization unit to detect a plurality of timings based on different criteria from the received signal, each of the signal detection units A receiving apparatus is characterized in that a section for extracting a signal is determined using one of the detected timings.
(2)また、本発明の他の態様は、前記複数の信号検出部は、第1の信号検出部と第2の検出部を含み、前記第1の信号検出部は、前記受信信号を時間領域から周波数領域に変換する時間周波数変換部を備え、前記第2の信号検出部は、前記復号部において復号された信号に基づいて生成した干渉レプリカを前記受信した信号から除去した残差信号を生成する干渉除去部と、前記残差信号を時間領域から周波数領域に変換する時間周波数変換部と、を備え、前記第1の信号検出部と前記第2の信号検出部は各々異なるタイミングを用いて信号を抽出する区間を定めること、を特徴とする受信装置である。 (2) According to another aspect of the present invention, the plurality of signal detection units include a first signal detection unit and a second detection unit, and the first signal detection unit converts the received signal into a time. A time-frequency conversion unit for converting from a domain to a frequency domain, wherein the second signal detection unit generates a residual signal obtained by removing an interference replica generated based on a signal decoded by the decoding unit from the received signal. An interference cancellation unit to generate, and a time-frequency conversion unit that converts the residual signal from the time domain to the frequency domain, wherein the first signal detection unit and the second signal detection unit use different timings, respectively. Determining a section in which a signal is extracted.
(3)また、本発明の他の態様は、前記受信信号に対して、前記第1の信号検出部が処理を行い、その後、前記第2の信号検出部が、予め定められた条件が満たされるまで繰り返し行うこと、を特徴とする受信装置である。 (3) According to another aspect of the present invention, the first signal detector performs processing on the received signal, and then the second signal detector satisfies a predetermined condition. The receiving apparatus is characterized in that it is repeatedly performed until it is received.
(4)また、本発明の他の態様は、前記同期部は、前記基準の1つとして前記受信信号の信号対干渉雑音比に基づいて前記タイミングを検出することを特徴とする受信装置である。 (4) According to another aspect of the present invention, the synchronization unit detects the timing based on a signal-to-interference noise ratio of the reception signal as one of the references. .
(5)また、本発明の他の態様は、前記同期部は、前記信号対干渉雑音比が最大となるタイミングを検出することを特徴とする受信装置である。 (5) According to another aspect of the present invention, the synchronization unit detects a timing at which the signal-to-interference / noise ratio becomes maximum.
(6)また、本発明の他の態様は、前記同期部は、前記基準の1つとして前記受信信号の信号対干渉雑音比に基づいて前記タイミングを検出し、前記第1の信号検出部が、前記検出されたタイミングに基づいて信号を抽出する区間を定めることを特徴とする受信装置である。 (6) According to another aspect of the present invention, the synchronization unit detects the timing based on a signal-to-interference noise ratio of the received signal as one of the references, and the first signal detection unit A receiving apparatus is characterized in that a section for extracting a signal is determined based on the detected timing.
(7)また、本発明の他の態様は、前記同期部は、前記基準の1つとして前記受信信号の信号対雑音比に基づいて前記タイミングを検出することを特徴とする受信装置である。 (7) According to another aspect of the present invention, the synchronization unit detects the timing based on a signal-to-noise ratio of the reception signal as one of the references.
(8)また、本発明の他の態様は、前記同期部は、前記信号対雑音比が最大となるタイミングを検出することを特徴とする受信装置である。 (8) According to another aspect of the present invention, the synchronization unit detects a timing at which the signal-to-noise ratio is maximized.
(9)また、本発明の他の態様は、前記同期部が、前記基準の1つとして前記受信信号の信号対雑音比に基づいて前記タイミングを検出し、前記第2の信号検出部が、前記検出されたタイミングに基づいて信号を抽出する区間を定めることを特徴とする受信装置である。  (9) According to another aspect of the present invention, the synchronization unit detects the timing based on a signal-to-noise ratio of the received signal as one of the references, and the second signal detection unit includes: The receiving apparatus is characterized in that a section for extracting a signal is determined based on the detected timing. *
(10)また、本発明の他の態様は、前記同期部は、前記基準の1つとして前記受信信号の電力に基づいて前記タイミングを検出することを特徴とする受信装置である。 (10) According to another aspect of the present invention, the synchronization unit detects the timing based on power of the reception signal as one of the references.
(11)また、本発明の他の態様は、前記同期部は、前記受信信号の電力が最大となるタイミングを検出することを特徴とする受信装置である。 (11) According to another aspect of the present invention, the synchronization unit detects a timing at which the power of the reception signal becomes maximum.
(12)また、本発明の他の態様は、前記同期部は、前記基準の1つとして前記受信信号の電力に基づいて前記タイミングを検出し、前記第2の信号検出部が、前記検出されたタイミングに基づいて信号を抽出する区間を定めることを特徴とする受信装置である。 (12) According to another aspect of the present invention, the synchronization unit detects the timing based on power of the reception signal as one of the references, and the second signal detection unit detects the detection. The receiving apparatus is characterized in that a section for extracting a signal is determined based on the determined timing.
(13)また、本発明の他の態様は、前記同期部は、前記基準の1つとして前記受信信号の到来パスに基づいて前記タイミングを検出することを特徴とする受信装置である。 (13) According to another aspect of the present invention, the synchronization unit detects the timing based on an arrival path of the reception signal as one of the references.
(14)また、本発明の他の態様は、前記同期部は、前記到来パスが最初に到達するタイミングを検出することを特徴とする受信装置である。 (14) According to another aspect of the present invention, the synchronization unit detects a timing at which the arrival path first arrives.
(15)また、本発明の他の態様は、前記同期部は、前記基準の1つとして前記受信信号の到来パスに基づいて前記タイミングを検出し、前記第2の信号検出部が、前記検出されたタイミングに基づいて信号を抽出する区間を定めることを特徴とする受信装置である。 (15) According to another aspect of the present invention, the synchronization unit detects the timing based on an arrival path of the received signal as one of the references, and the second signal detection unit detects the detection. The receiving apparatus is characterized in that a section for extracting a signal is determined based on the determined timing.
(16)また、本発明の他の態様は、前記同期部は、前記基準の1つとして前記復号された信号の誤りの頻度に基づいて前記タイミングを検出することを特徴とする受信装置である。 (16) According to another aspect of the present invention, the synchronization unit detects the timing based on an error frequency of the decoded signal as one of the references. .
(17)また、本発明の他の態様は、前記同期部は、前記誤りの頻度が最小となるタイミングを検出することを特徴とする受信装置である。 (17) In another aspect of the present invention, the synchronization unit detects a timing at which the error frequency is minimized.
(18)また、本発明の他の態様は、前記同期部は、前記基準の1つとして前記復号された信号の誤りの頻度に基づいて前記タイミングを検出し、前記第2の信号検出部が、前記検出されたタイミングに基づいて信号を抽出する区間を定めることを特徴とする受信装置である。 (18) According to another aspect of the present invention, the synchronization unit detects the timing based on an error frequency of the decoded signal as one of the references, and the second signal detection unit A receiving apparatus is characterized in that a section for extracting a signal is determined based on the detected timing.
(19)また、本発明の他の態様は、前記同期部は、前記基準の1つとして前記受信信号の信号対雑音比に基づいて前記タイミングを検出し、前記第1の信号検出部が、前記検出されたタイミングに基づいて信号を抽出する区間を定めることを特徴とする受信装置である。 (19) According to another aspect of the present invention, the synchronization unit detects the timing based on a signal-to-noise ratio of the received signal as one of the references, and the first signal detection unit includes: The receiving apparatus is characterized in that a section for extracting a signal is determined based on the detected timing.
(20)また、本発明の他の態様は、受信装置における受信方法であって、前記受信装置が、信号を受信する第1の過程と、前記受信装置が、前記受信信号から予め定められた長さの区間の信号を抽出する複数の第2の過程と、前記受信装置が、前記抽出された区間の信号を復号する第3の過程と、前記受信装置が、前記受信信号から各々異なる基準で複数のタイミングを検出する第4の過程とを有し、前記複数の第2の過程の各々は、前記検出された複数のタイミングのうち1つを用いて信号を抽出する区間を定めること、を特徴とする受信方法である。 (20) According to another aspect of the present invention, there is provided a receiving method in a receiving device, wherein the receiving device receives a signal first, and the receiving device is predetermined from the received signal. A plurality of second processes for extracting a signal of a length section, a third process in which the receiving apparatus decodes the signal of the extracted section, and a reference in which the receiving apparatus is different from the received signal. And a fourth process of detecting a plurality of timings, wherein each of the plurality of second processes defines a section for extracting a signal using one of the detected plurality of timings, Is a receiving method characterized by the above.
(21)また、本発明の他の態様は、受信装置が備えるコンピュータに、信号を受信する第1の手順、前記受信信号から予め定められた長さの区間の信号を抽出する複数の第2の手順、前記抽出された区間の信号を復号する第3の手順、前記受信信号から各々異なる基準で複数のタイミングを検出する第4の手順を実行させるための受信プログラムであって、前記複数の第2の手順の各々は、前記検出された複数のタイミングのうち1つを用いて信号を抽出する区間を定めること、を特徴とする受信プログラムである。 (21) According to another aspect of the present invention, there is provided a first procedure for receiving a signal to a computer included in a receiving apparatus, and a plurality of second procedures for extracting a signal having a predetermined length from the received signal. A receiving program for executing a fourth procedure for detecting a plurality of timings based on different criteria from the received signal, a third procedure for decoding the signal of the extracted section, Each of the second procedures is a receiving program characterized in that a section for extracting a signal is determined using one of the detected timings.
(22)また、本発明の他の態様は、信号を送信する送信装置と前記信号を受信する受信装置かを備える通信システムであって、前記受信装置は、前記受信信号から予め定められた長さの区間の信号を抽出する複数の信号検出部と、前記抽出された区間の信号を復号する復号部と、前記受信信号から各々異なる基準で複数のタイミングを検出する同期部と、を備え、前記信号検出部の各々は、前記検出された複数のタイミングのうち1つを用いて信号を抽出する区間を定めること、を特徴とする通信システムである。 (22) According to another aspect of the present invention, there is provided a communication system including a transmission device that transmits a signal and a reception device that receives the signal, and the reception device has a predetermined length from the reception signal. A plurality of signal detectors for extracting signals in the interval, a decoder for decoding the signals in the extracted interval, and a synchronization unit for detecting a plurality of timings based on different criteria from the received signal, Each of the signal detection units is a communication system characterized by determining a section for extracting a signal using one of the detected timings.
 本発明によれば、マルチパスの影響下において受信したデータ信号を誤りなく復調することができる。 According to the present invention, a received data signal can be demodulated without error under the influence of multipath.
本発明の第1の実施形態に係る通信システム1を示す概念図である。1 is a conceptual diagram showing a communication system 1 according to a first embodiment of the present invention. 本実施形態に係る送信装置100の概略図を示す。1 is a schematic diagram of a transmission device 100 according to the present embodiment. 本実施形態に係るOFDM信号のフレームフォーマットの一例を示す概念図である。It is a conceptual diagram which shows an example of the frame format of the OFDM signal which concerns on this embodiment. 本実施形態に係るOFDM信号のサブフレームフォーマットの一例を示す概念図である。It is a conceptual diagram which shows an example of the sub-frame format of the OFDM signal which concerns on this embodiment. 本実施形態に係る受信装置200の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the receiver 200 which concerns on this embodiment. 本実施形態に係る同期部203の構成を示す概略図である。It is the schematic which shows the structure of the synchronizer 203 which concerns on this embodiment. 本実施形態に係る信号エネルギーと干渉エネルギーの一例を表す概念図である。It is a conceptual diagram showing an example of the signal energy and interference energy which concern on this embodiment. 本実施形態に係る信号エネルギーと干渉エネルギーの他の例を表す概念図である。It is a conceptual diagram showing the other example of the signal energy and interference energy which concern on this embodiment. 本実施形態に係る信号エネルギーの一例を表す概念図である。It is a conceptual diagram showing an example of the signal energy which concerns on this embodiment. 本実施形態に係る信号エネルギーの他の例を表す概念図である。It is a conceptual diagram showing the other example of the signal energy which concerns on this embodiment. 本実施形態に係る干渉除去部205の構成を示す概略図である。It is the schematic which shows the structure of the interference removal part 205 which concerns on this embodiment. 本実施形態に係るレプリカ生成部251の構成を示す概略図である。It is the schematic which shows the structure of the replica production | generation part 251 which concerns on this embodiment. 本実施形態に係る受信処理を示す流れ図である。It is a flowchart which shows the reception process which concerns on this embodiment. 本発明の第2の実施形態に係る同期部303の構成を示す概略図である。It is the schematic which shows the structure of the synchronizer 303 which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る同期部403の構成を示す概略図である。It is the schematic which shows the structure of the synchronizer 403 which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る同期部503の構成を示す概略図である。It is the schematic which shows the structure of the synchronizer 503 which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係るタイミング検出部533-1の構成を示す概略図である。It is the schematic which shows the structure of the timing detection part 533-1 which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る送信装置700の構成を示す概略図である。It is the schematic which shows the structure of the transmitter 700 which concerns on the 5th Embodiment of this invention. 本実施形態に係る受信装置600の構成を示す概略図である。It is the schematic which shows the structure of the receiver 600 which concerns on this embodiment.
(第1の実施形態)
 以下、図面を参照しながら本発明の実施形態について詳しく説明する。
 図1は、本実施形態に係る通信システム1を示す概念図である。通信システム1は、送信装置100と受信装置200とを含んで構成される。
送信装置100は、例えば基地局装置、特にその送信部分であり、携帯電話システムの下りリンクを介して例えばOFDM方式を用いてデータを電波に乗せて受信装置200に送信する。
受信装置200は、例えば移動局装置、特にその受信部分であり、送信装置100からのデータを受信する。
(First embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a conceptual diagram showing a communication system 1 according to the present embodiment. The communication system 1 includes a transmission device 100 and a reception device 200.
The transmission device 100 is, for example, a base station device, particularly a transmission part thereof, and transmits data to the reception device 200 by using, for example, an OFDM method via a downlink of a mobile phone system.
The receiving device 200 is, for example, a mobile station device, particularly a receiving part thereof, and receives data from the transmitting device 100.
このように、本実施形態では、送信装置100である基地局装置から受信装置200である移動局装置にデータをOFDM方式を用いて伝送する下りリンクに適用する場合を例に説明する。しかし、本発明は、携帯電話システムに限られず、無線LAN等の他の無線通信システムであっても、データ信号にGIを付加して伝送する他の伝送方式に適用できるし、又は携帯電話システムの上りリンクに適用することもできる。 As described above, in this embodiment, a case will be described as an example in which data is applied to a downlink in which data is transmitted from the base station apparatus as the transmission apparatus 100 to the mobile station apparatus as the reception apparatus 200 using the OFDM scheme. However, the present invention is not limited to a mobile phone system, and can be applied to other transmission systems that transmit data signals by adding a GI to other wireless communication systems such as a wireless LAN, or a mobile phone system. It can also be applied to the uplink.
次に、本実施形態に係る送信装置100について説明する。
 図2は、本実施形態に係る送信装置100の概略図を示す。送信装置100は、符号部101、変調部102、制御信号生成部103、参照信号生成部104、リソースマッピング部105、IDFT部106、GI挿入部107、送信部108及び送信アンテナ109を含んで構成される。
 符号部101は、上位層(図示せず)から入力されたデータ信号に対して誤り訂正符号化処理を行い、符号化ビットを出力する。ここで、上位層とは、OSI参照モデルで定義された通信機能の階層のうち、物理層(Physical Layer)よりも上位の機能の階層、例えば、データリンク層、ネットワーク層、等である。
 入力されたデータ信号には誤り検出符号、例えば、CRC(Cyclic Redundancy Check;巡回冗長検査)符号などの誤り検出符号を含んでもよい。誤り訂正符号化処理は、例えば、ターボ符号化、LDPC(Low Density Parity Check;低密度パリティ検査)又は畳み込み符号化処理である。
 また、符号部101は、符号化率(コーディングレート)をデータ伝送レートに合わせるためのレートマッチング処理部を備えていてもよい。レートマッチング処理部では、例えば、一部のデータを削除するパンクチャ(Puncture)処理、一部のデータを反復するリペティション(Repetition)、又は一部に仮のデータ(例えばゼロ値)を挿入するパディング(Padding)等の処理を行う。
Next, the transmission device 100 according to the present embodiment will be described.
FIG. 2 is a schematic diagram of the transmission device 100 according to the present embodiment. The transmission apparatus 100 includes an encoding unit 101, a modulation unit 102, a control signal generation unit 103, a reference signal generation unit 104, a resource mapping unit 105, an IDFT unit 106, a GI insertion unit 107, a transmission unit 108, and a transmission antenna 109. Is done.
The encoding unit 101 performs error correction encoding processing on a data signal input from an upper layer (not shown) and outputs encoded bits. Here, the upper layer is a layer of functions higher than the physical layer (physical layer) among the layers of communication functions defined in the OSI reference model, for example, a data link layer, a network layer, and the like.
The input data signal may include an error detection code, for example, an error detection code such as a CRC (Cyclic Redundancy Check) code. The error correction coding process is, for example, turbo coding, LDPC (Low Density Parity Check) or convolutional coding processing.
Also, the encoding unit 101 may include a rate matching processing unit for adjusting the coding rate (coding rate) to the data transmission rate. In the rate matching processing unit, for example, puncture processing for deleting some data, repetition for repeating some data, or padding for inserting temporary data (for example, zero value) to some data Processing such as (Padding) is performed.
 変調部102は、符号部101から入力された符号化ビットを変調し、データ変調シンボルを生成する。変調部102が行う変調処理は、例えば、BPSK(Binary Phase Shift Keying;2相位相変調)、QPSK(Quadrature Phase Shift Keying;4相位相変調)、16QAM(16 Quadrature Amplitude Modulation;16値直交振幅変調)又は64QAM(64 Quadradure Amplitude Modulation;64値直交振幅変調)である。変調部102は、生成したデータ変調シンボルをリソースマッピング部105に出力する。変調部102は生成したデータ変調シンボルを、インターリーブし、インターリーブしたデータ変調シンボルをリソースマッピング部105に出力してもよい。 The modulation unit 102 modulates the coded bits input from the coding unit 101 and generates data modulation symbols. The modulation process performed by the modulation unit 102 includes, for example, BPSK (Binary Phase Shift Keying; two-phase phase modulation), QPSK (Quadrature Phase Shift Keying; four-phase phase modulation), 16QAM (16 Quadrature Amplitude Modulation value). Or 64QAM (64 Quadrade Amplitude Modulation; 64-value quadrature amplitude modulation). Modulation section 102 outputs the generated data modulation symbol to resource mapping section 105. Modulation section 102 may interleave the generated data modulation symbols and output the interleaved data modulation symbols to resource mapping section 105.
 制御信号生成部103は、上位層(図示せず)から入力された制御データを符号化し、符号化された制御データを変調して制御信号を生成し、生成した制御信号をリソースマッピング部105に出力する。
 制御信号は、例えば同期信号とか、データ信号に対する符号化率及び変調多値数といった変調符号化方式(MCS;Modulation and Coded Scheme)とかを受信装置に通知する制御信号である。
 同期信号は、例えば、プライマリ同期信号(PSS;Primary Synchronization Signal)及びセカンダリ同期信号(SSS;Secondary Synchronization Signal)である。PSSは、シンボルタイミングを検出でき、かつセルIDを検出できるデータ系列、例えば、Zadoff-Chu系列などの直交系列である。セルIDとは、基地局装置(送信装置100)に対応する個々のセルに割り当てられたIDであり、移動局装置(受信装置200)がセル、即ち基地局装置(送信装置100)を識別する手掛りとなる。SSSは、フレームタイミングを検出できるデータ系列であり、例えば、M系列である。
 移動通信システムの規格の1つであるLTE(Long Term Evolution)では、SSSに対応する168個のセルグループ、PSSに対応する3個のグループ内セル、合計504個(168×3)のセル認識番号を定義している。
 MCSを受信装置に通知する制御信号は、例えばPDCCH(Physical Downlink Control Channel)である。
The control signal generation unit 103 encodes control data input from an upper layer (not shown), modulates the encoded control data to generate a control signal, and sends the generated control signal to the resource mapping unit 105 Output.
The control signal is a control signal for notifying the receiving apparatus of, for example, a synchronization signal or a modulation and coding scheme (MCS) such as a coding rate and a modulation multi-level number for a data signal.
The synchronization signal is, for example, a primary synchronization signal (PSS; Primary Synchronization Signal) and a secondary synchronization signal (SSS; Secondary Synchronization Signal). The PSS is a data sequence that can detect the symbol timing and the cell ID, for example, an orthogonal sequence such as a Zadoff-Chu sequence. The cell ID is an ID assigned to each cell corresponding to the base station apparatus (transmitting apparatus 100), and the mobile station apparatus (receiving apparatus 200) identifies the cell, that is, the base station apparatus (transmitting apparatus 100). It becomes a clue. The SSS is a data series that can detect frame timing, for example, an M series.
In LTE (Long Term Evolution), which is one of the standards of mobile communication systems, 168 cell groups corresponding to SSS and three intra-group cells corresponding to PSS, a total of 504 (168 × 3) cell recognitions A number is defined.
The control signal for notifying the receiving apparatus of MCS is, for example, PDCCH (Physical Downlink Control Channel).
 参照信号生成部104は、受信装置において伝達関数を推定するための参照信号(RS;Reference Signal)を生成し、生成した参照信号をリソースマッピング部105に出力する。参照信号を構成する符号系列は、直交系列、例えば、アダマール符号又はCAZAC(Constant Amplitude Zero Auto-Correlation)系列である。
 リソースマッピング部105は、変調部102から入力されたデータ変調シンボル、制御信号生成部103から入力された制御信号及び参照信号生成部104から入力された参照信号をリソースエレメントに割り当てる。リソースエレメントとは、データ変調シンボル、制御信号及び参照信号を割り当てる最小単位であり、所定の周波数帯域に対応する1つのサブキャリアと所定の時間区間に対応する1つのOFDMシンボルで指定される。即ち、リソースエレメントとは、所定の時間区間ごとに規定される周波数領域である。リソースマッピング部105は、リソースエレメントに割り当てられた周波数領域信号をIDFT部106に出力する。
The reference signal generation unit 104 generates a reference signal (RS; Reference Signal) for estimating a transfer function in the receiving apparatus, and outputs the generated reference signal to the resource mapping unit 105. The code sequence constituting the reference signal is an orthogonal sequence, for example, a Hadamard code or a CAZAC (Constant Amplitude Zero Auto-Correlation) sequence.
The resource mapping unit 105 assigns the data modulation symbol input from the modulation unit 102, the control signal input from the control signal generation unit 103, and the reference signal input from the reference signal generation unit 104 to resource elements. A resource element is a minimum unit for assigning a data modulation symbol, a control signal, and a reference signal, and is specified by one subcarrier corresponding to a predetermined frequency band and one OFDM symbol corresponding to a predetermined time interval. That is, the resource element is a frequency region defined for each predetermined time interval. Resource mapping section 105 outputs the frequency domain signal assigned to the resource element to IDFT section 106.
 IDFT部106は、前記リソースマッピング部105が出力する周波数領域信号に対して、逆離散フーリエ変換(IDFT;Inverse Fast Fourier Transform)を行い、時間領域信号に変換し、変換した時間領域信号をGI挿入部107に出力する。IDFT部106は、周波数領域信号を時間領域信号に変換する機能を実行するが、これに限定されず、例えば、逆高速フーリエ変換(IFFT;Inverse Fast Fourier Transform)を実行するものであってもよい。
 GI挿入部107は、IDFT部106から入力された時間領域信号にGIを付加してOFDMシンボルを生成する。即ち、GI挿入部107は、その時間領域信号を有効シンボルとし、その後半の一部を有効シンボルにGIとして前置する。このGIを付加した有効シンボルが、OFDMシンボルである。
 GI挿入部107は、生成したOFDMシンボルを送信部108に出力する。このOFDMシンボルを用いることにより、受信装置200は、GI長よりも短い遅延時間の遅延パスによる歪を除去することができる。例えば、LTEでは、GI長、即ちサンプルポイント数は144(6.7μs)である。
 GI挿入部107が出力する第l番目のOFDMシンボルの信号s(t)は、次式で表される。
The IDFT unit 106 performs an inverse discrete Fourier transform (IDFT) on the frequency domain signal output from the resource mapping unit 105, converts the frequency domain signal into a time domain signal, and inserts the converted time domain signal into the GI. Output to the unit 107. The IDFT unit 106 performs a function of converting a frequency domain signal into a time domain signal, but is not limited thereto, and may execute, for example, an inverse fast Fourier transform (IFFT). .
GI insertion section 107 adds an GI to the time domain signal input from IDFT section 106 and generates an OFDM symbol. That is, the GI insertion unit 107 uses the time domain signal as an effective symbol and prepends a part of the latter half thereof as an effective symbol as GI. An effective symbol to which this GI is added is an OFDM symbol.
The GI insertion unit 107 outputs the generated OFDM symbol to the transmission unit 108. By using this OFDM symbol, receiving apparatus 200 can remove distortion due to a delay path having a delay time shorter than the GI length. For example, in LTE, the GI length, that is, the number of sample points is 144 (6.7 μs).
The signal s l (t) of the l-th OFDM symbol output from the GI insertion unit 107 is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 但し、lT≦t<(l+1)T、TはOFDMシンボル長(T=T+T)、TはFFT区間長、TはGI長、NはIDFTポイント数、Ck,lは第l番目のOFDMシンボルの第kサブキャリアに割り当てられたデータ変調シンボル、制御信号又は参照信号、Δはサブキャリア間隔である。例えば、LTEでは、Nは2048、Δは15kHzである。
 送信部108は、GI挿入部107から入力されたOFDMシンボルをD/A(Digital-to-Analog;ディジタル/アナログ)変換してアナログ信号を生成し、生成したアナログ信号をフィルタリング処理により帯域制限して帯域制限信号を生成する。送信部108は、生成した帯域制限信号を無線周波数帯域にアップコンバートして搬送帯域OFDM信号を生成し、アンテナ109から生成した搬送帯域OFDM信号を電波として受信装置200に送信する。なお、送信装置100は、複数のアンテナ109を備え、ダイバーシチ(Diversity)送信又はMIMO(Multiple Input Multiple Output)伝送を行ってもよい。
However, lT s ≦ t <(l + 1) T s , T s is the OFDM symbol length (T s = T f + T G ), T f is the FFT interval length, TG is the GI length, N f is the number of IDFT points, C k, l is the l-th OFDM first k allocated data modulation symbols to the subcarriers of the symbol, the control signal or reference signal, the delta f is the sub-carrier interval. For example, in LTE, N f is 2048 and Δ f is 15 kHz.
The transmission unit 108 performs D / A (Digital-to-Analog) conversion of the OFDM symbol input from the GI insertion unit 107 to generate an analog signal, and band-limits the generated analog signal by filtering processing. To generate a band-limited signal. Transmitter 108 upconverts the generated band-limited signal to a radio frequency band to generate a carrier band OFDM signal, and transmits the carrier band OFDM signal generated from antenna 109 to reception apparatus 200 as a radio wave. Note that the transmission apparatus 100 may include a plurality of antennas 109 and perform diversity (Diversity) transmission or MIMO (Multiple Input Multiple Output) transmission.
 次に送信装置100が送信するOFDM信号のフレームフォーマットについて説明する。
 図3は、本実施形態に係るOFDM信号のフレームフォーマットの一例を示す概念図である。図3において、横方向は時刻を示す。図3に示されるように、OFDM信号の各フレームは、10個のサブフレームを含んで構成される。各サブフレームは、2個のスロットを含んで構成される。各スロットは、7個のOFDMシンボルを含んで構成される。
 PSSは、第0サブフレーム及び第5サブフレーム各々の第6番目のOFDMシンボルに示されている(図3の塗りつぶし部分)。SSSは、第0サブフレーム及び第5サブフレーム各々の第5番目のOFDMシンボルに示される(図3の網掛け部分)。なお、PSS及びSSSのチャネルは、予め通信システム1において規定されており、送信装置100及び受信装置200において記憶装置(図示せず)に記憶されている。
Next, the frame format of the OFDM signal transmitted by the transmission apparatus 100 will be described.
FIG. 3 is a conceptual diagram showing an example of the frame format of the OFDM signal according to the present embodiment. In FIG. 3, the horizontal direction indicates time. As shown in FIG. 3, each frame of the OFDM signal includes 10 subframes. Each subframe includes two slots. Each slot is configured to include 7 OFDM symbols.
The PSS is indicated in the sixth OFDM symbol of each of the 0th subframe and the 5th subframe (filled portion in FIG. 3). The SSS is indicated in the fifth OFDM symbol of each of the 0th subframe and the 5th subframe (shaded portion in FIG. 3). Note that the PSS and SSS channels are defined in advance in the communication system 1 and stored in a storage device (not shown) in the transmission device 100 and the reception device 200.
 次に、送信装置100が送信する送信信号のサブフレームフォーマットについて説明する。
 図4は、本実施形態に係るOFDM信号のサブフレームフォーマットの一例を示す概念図である。但し、図4に示す例は、送信装置100が1個のアンテナによりOFDM信号を送信する場合の一例である。
 図4において、横方向は時刻を、縦方向は周波数を示す。図4は、図3における第0サブフレーム及び第5サブフレームのフォーマットを示す。PSSは、第6番目のOFDMシンボルであって、システム帯域の中間の63個のサブキャリア(周波数帯域)から構成されるリソースエレメントに配置されている(塗りつぶし部分)。SSSは、第5番目のOFDMシンボルであって、システム帯域の中間の63個のサブキャリア(周波数帯域)から構成されるリソースエレメントに配置されている(網掛け部分)。データ変調シンボル及び参照信号は、リソースブロック(太線)を単位として割り当てられる。
 各リソースブロックは、12個のサブキャリアで示される周波数及び14個のOFDMシンボルで示される時刻を占める168個のリソースエレメントから構成される。各リソースブロックを構成する14個のOFDMシンボルのうち、最初の3個の領域に主に制御信号、例えばPDCCH(Physical Downlink Control Channel)が配置される。残りの11個のOFDMシンボルの領域は、主にデータ変調シンボルが配置される領域である。参照信号は、各リソースブロックを構成する所定のリソースエレメントに配置される(右上がり斜線部分)。
Next, a subframe format of a transmission signal transmitted by transmission apparatus 100 will be described.
FIG. 4 is a conceptual diagram showing an example of the subframe format of the OFDM signal according to the present embodiment. However, the example illustrated in FIG. 4 is an example in which the transmission apparatus 100 transmits an OFDM signal using one antenna.
In FIG. 4, the horizontal direction indicates time and the vertical direction indicates frequency. FIG. 4 shows formats of the 0th subframe and the 5th subframe in FIG. The PSS is the sixth OFDM symbol and is arranged in a resource element composed of 63 subcarriers (frequency bands) in the middle of the system band (filled portion). SSS is the fifth OFDM symbol and is arranged in a resource element composed of 63 subcarriers (frequency bands) in the middle of the system band (shaded portion). Data modulation symbols and reference signals are allocated in units of resource blocks (thick lines).
Each resource block is composed of 168 resource elements that occupy a frequency indicated by 12 subcarriers and a time indicated by 14 OFDM symbols. Of the 14 OFDM symbols constituting each resource block, control signals such as PDCCH (Physical Downlink Control Channel) are mainly arranged in the first three regions. The remaining 11 OFDM symbol regions are regions in which data modulation symbols are mainly arranged. The reference signal is arranged in a predetermined resource element that configures each resource block (upward diagonally shaded portion).
 次に、本実施形態に係る受信装置200の構成について説明する。
 図5は、本実施形態に係る受信装置200の構成を示す概略ブロック図である。
 受信装置200は、アンテナ部201、受信部202、同期部203、伝搬路推定部204、デマッピング部209、復調部210、復号部211、切替部212、及び信号検出部221-α(αは1又は2)を含んで構成される。信号検出部221-1は、GI除去部206-1、DFT部207-1及び伝搬路補償部208-1を含んで構成される。
信号検出部221-2は、干渉除去部205、GI除去部206-2、DFT部207-2及び伝搬路補償部208-2を含んで構成される。受信部202は出力信号を信号検出部221-1又は221-2に出力する。後述するように、信号検出部221-1を通過した信号に誤りが検出された場合には、受信部202からの出力信号を信号検出部221-1に出力せずに、信号検出部221-2に出力する。
Next, the configuration of the receiving device 200 according to this embodiment will be described.
FIG. 5 is a schematic block diagram illustrating a configuration of the receiving device 200 according to the present embodiment.
The reception apparatus 200 includes an antenna unit 201, a reception unit 202, a synchronization unit 203, a propagation path estimation unit 204, a demapping unit 209, a demodulation unit 210, a decoding unit 211, a switching unit 212, and a signal detection unit 221-α (α is 1 or 2). The signal detection unit 221-1 includes a GI removal unit 206-1, a DFT unit 207-1, and a propagation path compensation unit 208-1.
The signal detection unit 221-2 includes an interference removal unit 205, a GI removal unit 206-2, a DFT unit 207-2, and a propagation path compensation unit 208-2. The reception unit 202 outputs an output signal to the signal detection unit 221-1 or 221-2. As will be described later, when an error is detected in the signal that has passed through the signal detection unit 221-1, the output signal from the reception unit 202 is not output to the signal detection unit 221-1, and the signal detection unit 221- Output to 2.
 アンテナ部201は、送信装置100から電波として伝搬された搬送帯域OFDM信号を受信し、受信した搬送帯域OFDM信号を受信部202に出力する。
 受信部202は、アンテナ部100から入力されたOFDM信号をディジタル信号処理が可能な周波数帯域にダウンコンバートし、ダウンコンバートした信号を更にフィルタリング処理を行って不要成分(スプリアス;Spurious)を除去する。受信部202は、フィルタリング処理を行った信号をアナログ信号からディジタル信号に(A/D;Analog-to-Digital)変換し、変換したディジタル信号を、同期部203、伝搬路推定部204及び切替部212を経て信号検出部221-1もしくは221-2に出力する。ここで、受信部202は、当初、変換したディジタル信号を信号検出部221-2には出力せず、信号検出部221-1に出力する。すなわち、切替部212は、受信部202から出力されたディジタル信号が復号部211で復号処理を行われていない場合、受信部202から入力されたディジタル信号を信号検出部221-1に出力する(bに接続)。信号検出部221-1に出力された信号に基づき復号部211で誤りが検出された場合、受信部202は、変換したディジタル信号を信号検出部221-2に出力する。すなわち、切替部212は、受信部202から出力されたディジタル信号に基づき復号部211において誤りが有る場合、受信部202から入力されたディジタル信号を信号検出部221-2に出力する(aに接続)。
 また、切替部212は、受信部202から出力されたディジタル信号について復号部211で1回以上復号処理を行われている場合、受信部202から入力されたディジタル信号を信号検出部221-2に出力してもよい(aに接続)。
 また、切替部212は、復号部211から干渉除去部205に受信部202から出力されたディジタル信号に対する軟判定値の入力が無い場合に、受信部202から入力されたディジタル信号を信号検出部221-1に出力し(bに接続)、復号部211から干渉除去部205に受信部202から出力されたディジタル信号に対する軟判定値の入力が有る場合に、受信部202から入力されたディジタル信号を信号検出部221-2に出力してもよい(aに接続)。
The antenna unit 201 receives the carrier band OFDM signal propagated as a radio wave from the transmission apparatus 100, and outputs the received carrier band OFDM signal to the reception unit 202.
The receiving unit 202 down-converts the OFDM signal input from the antenna unit 100 to a frequency band where digital signal processing is possible, and further performs filtering processing on the down-converted signal to remove unnecessary components (Spurious). The receiving unit 202 converts the filtered signal from an analog signal to a digital signal (A / D; Analog-to-Digital), and the converted digital signal is synchronized with a synchronization unit 203, a propagation path estimation unit 204, and a switching unit. The signal is output to the signal detection unit 221-1 or 221-2 via 212. Here, the reception unit 202 initially outputs the converted digital signal to the signal detection unit 221-1 without outputting it to the signal detection unit 221-2. In other words, the switching unit 212 outputs the digital signal input from the receiving unit 202 to the signal detecting unit 221-1 when the digital signal output from the receiving unit 202 is not decoded by the decoding unit 211 ( b). When the decoding unit 211 detects an error based on the signal output to the signal detection unit 221-1, the reception unit 202 outputs the converted digital signal to the signal detection unit 221-2. That is, when there is an error in the decoding unit 211 based on the digital signal output from the receiving unit 202, the switching unit 212 outputs the digital signal input from the receiving unit 202 to the signal detecting unit 221-2 (connected to a). ).
In addition, when the decoding unit 211 performs decoding processing on the digital signal output from the receiving unit 202 one or more times, the switching unit 212 transmits the digital signal input from the receiving unit 202 to the signal detecting unit 221-2. May be output (connected to a).
In addition, when the soft decision value for the digital signal output from the receiving unit 202 is not input from the decoding unit 211 to the interference removing unit 205 from the decoding unit 211, the switching unit 212 receives the digital signal input from the receiving unit 202 as the signal detecting unit 221. -1 (connected to b), and when the soft decision value for the digital signal output from the receiving unit 202 is input from the decoding unit 211 to the interference removing unit 205, the digital signal input from the receiving unit 202 is The signal may be output to the signal detector 221-2 (connected to a).
 同期部203は、制御信号(例えば、PSS、SSS)を用いて、送信装置100との同期処理を行う。
 図6は、本実施形態に係る同期部203の構成を示す概略図である。同期部203は、フィルタ部231、相関部232及びタイミング検出部233-β(βは1又は2)を含んで構成される。
 フィルタ部231は、受信部202から入力されたディジタル信号から、PSS又はSSSが配置されたサブキャリアの帯域成分信号を抽出し、抽出したサブキャリアの帯域成分信号を相関部232に出力する。例えば、図4に示すOFDM信号のフレームフォーマットの例では、フィルタ部231は、システム帯域に含まれる63個のサブキャリアの帯域の成分を抽出する。この成分を抽出するために、フィルタ部231は、63個のサブキャリアの帯域を通過帯域とする時間領域フィルタ、例えばFIR(Finite Impulse Response Filter)、IIR(Infinite Impulse Response Filter)又はマッチドフィルタ(Matched Filter)を用いることができる。
The synchronization unit 203 performs a synchronization process with the transmission apparatus 100 using a control signal (for example, PSS, SSS).
FIG. 6 is a schematic diagram illustrating a configuration of the synchronization unit 203 according to the present embodiment. The synchronization unit 203 includes a filter unit 231, a correlation unit 232, and a timing detection unit 233-β (β is 1 or 2).
The filter unit 231 extracts the band component signal of the subcarrier in which PSS or SSS is arranged from the digital signal input from the reception unit 202, and outputs the extracted band component signal of the subcarrier to the correlation unit 232. For example, in the example of the frame format of the OFDM signal shown in FIG. 4, the filter unit 231 extracts 63 subcarrier band components included in the system band. In order to extract this component, the filter unit 231 uses a time domain filter whose pass band is a band of 63 subcarriers, for example, FIR (Finite Impulse Response Filter), IIR (Infinite Impulse Response Filter), or a matched filter (Matched Filter). Filter) can be used.
 フィルタ部231が出力する信号rは次式で表される。 Signal r s of the filter unit 231 outputs is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
  ここで、信号rは、(N+D-1)個の要素を有する列ベクトル(r … rm … rNs+D-2Tである。この列ベクトルの要素は、離散時刻mにおける出力値r(0≦m<N+D)である。Nは、DFTポイント数NとGIのサンプルポイント数Nとの合計値である。Dは、マルチパスの個数である。
 行列hは、第dパスにおける複素振幅h(0≦d<D)からなる(N+D-1)行N列の行列であり、次式で表される。
Here, the signal r s is a column vector (r 0 ... R m ... R Ns + D− 2 ) T having (N s + D−1) elements. The element of this column vector is the output value r m (0 ≦ m <N s + D) at the discrete time m. N s is the total value of the number of DFT points N f and the number of sample points N G of GI. D is the number of multipaths.
The matrix h is a matrix of (N s + D−1) rows N s columns composed of complex amplitudes h d (0 ≦ d <D) in the d-th path, and is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 複素振幅hは、送信装置100のアンテナ部109から受信装置200のアンテナ部201までの第dパスの伝搬路特性を示す。nは、振幅nの雑音からなる(N+D-1)個の要素を有する雑音ベクトル(n … n … nNs+D-2である。
 sPSSは、フィルタ部231が抽出した同期信号(PSS)が配置された第m番目のOFDMシンボルsPSS,mから成るN個の要素を有する列ベクトル(sPSS,0 … sPSS,m … sPSS,Ns-1である。OFDMシンボルsPSS,mは、第m番目のOFDMシンボルの第kサブキャリアに配置された系列Ck,m(図4において塗りつぶし及び網掛けされたリソースエレメントに配置した信号)を用いて、例えば次式のように表される。
Complex amplitude h d shows a propagation path characteristic of the d path from the antenna unit 109 of the transmitting apparatus 100 to the antenna unit 201 of the receiving device 200. n is the amplitude n consists noise m (N s + D-1 ) noise vector having a number of elements (n 0 ... n m ... n Ns + D-2) T.
The s PSS is a column vector (s PSS, 0 ... s PSS, m) having N s elements composed of the mth OFDM symbol s PSS, m in which the synchronization signal (PSS) extracted by the filter unit 231 is arranged. ... s PSS, Ns-1 ) T. The OFDM symbol s PSS, m is a sequence C k, m (a signal arranged in a resource element filled and shaded in FIG. 4) arranged in the k-th subcarrier of the m-th OFDM symbol, for example, It is expressed as:
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 相関部232は、フィルタ部231から入力されたサブキャリアの帯域成分信号が示すPSSと予め記憶領域に保持されたPSSとの相関を算出し、算出した相関に基づき複素振幅を算出する。ここで、相関部232は、フィルタ部231から入力された信号rにN個の値ゼロを前置して、信号系列r(=0 0 … [N個] … 0 r0 … r … rNs+D-1)を生成する。信号rにN個の値ゼロを前置するのは、信号rにNサンプル分の遅延を与えるためである。OFDMシンボルsPSS,mと信号系列rを用いて、第uのサンプルポイントにおける複素振幅hは、例えば次式のように表される。 Correlation section 232 calculates the correlation between the PSS indicated by the subcarrier band component signal input from filter section 231 and the PSS previously stored in the storage area, and calculates the complex amplitude based on the calculated correlation. Here, the correlation unit 232 prepends the signal r s input from the filter unit 231 with N f value zeros, and the signal sequence r c (= 0 0... [N f pieces]... 0 r 0 . r m ... r Ns + D−1 ) is generated. To prepend N f number of value zero to the signal r s, in order to provide a delay of N f samples the signal r s. OFDM symbol s PSS, with m and signal sequence r c, complex amplitude h u at the sample points of the u can be expressed, for example, as follows.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 相関部232は、算出した複素振幅をタイミング検出部233-1、233-2に出力する。
 タイミング検出部233-1は、SINR(Signal to Interference Noise Ratio;信号対干渉雑音比)推定部234及び第1のタイミング決定部235を含んで構成される。SINR推定部234は、相関部232から入力された複素振幅に基づきSINRを推定し、推定したSINRを第1のタイミング決定部235に出力する。
 ここで、SINR推定部234は、相関部232から入力された複素振幅hが最大となるサンプルを中心に、予め定められたサンプル数の区間を到来パスとして抽出する。本実施形態では、複素振幅hの絶対値の二乗|hが予め定められた閾値αと等しいかまたはこれよりも大きいサンプルを、到来パスとして抽出してもよい。
 SINR推定部234は、抽出されたサンプルポイントx(dは、抽出した複素振幅hのサンプルポイント;0≦d<D)をDFT処理の対象となるDFT区間の始点とした場合におけるエネルギーP及び干渉のエネルギーPを、例えば次式を用いて算出する。
The correlation unit 232 outputs the calculated complex amplitude to the timing detection units 233-1 and 233-2.
The timing detection unit 233-1 includes a SINR (Signal to Interference Noise Ratio) estimation unit 234 and a first timing determination unit 235. The SINR estimation unit 234 estimates SINR based on the complex amplitude input from the correlation unit 232 and outputs the estimated SINR to the first timing determination unit 235.
Here, SINR estimation unit 234, around the sample complex amplitude h u input from the correlation unit 232 is maximized, to extract a predetermined number of samples of the interval as the arrival path. In the present embodiment, a sample in which the square of the absolute value of the complex amplitude h u | h u | 2 is equal to or greater than a predetermined threshold value α may be extracted as an arrival path.
The SINR estimation unit 234 uses the extracted sample point x d (d is the sample point of the extracted complex amplitude h; 0 ≦ d <D) as the energy P S when the DFT interval is the start point of the DFT process. and energy P I of the interference, for example, is calculated using the following equation.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 但し、tは、抽出された複素振幅hのサンプルポイントxに応じて例えば次の値をとる。 However, t u takes to for example the following values depending on the sample point x u of the extracted complex amplitude h d.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、Tは、DFT区間長、TはGI長、tはサンプル間隔、である。
 図7は、本実施形態に係る信号エネルギーと干渉エネルギーの一例を表す概念図である。図7上段において、横軸は離散時刻n、縦軸が複素振幅|hの絶対値の二乗を示す。図7上段は、閾値αを超える複素振幅を与えるサンプルポイントがx、x、x及びxであり、xに対応する複素振幅の絶対値の二乗が|h、xに対応する複素振幅の絶対値の二乗が|h、xに対応する複素振幅の絶対値の二乗が|h、xに対応する複素振幅の絶対値の二乗が|h、であることを示す。ここで、SINR推定部234は、閾値αを超える複素振幅を与えるサンプルポイントx、x、x及びxを抽出する。
 図7下段において、横軸は離散時刻n。を示す。図7下段は、上列から下列へ向かって順に、DFTタイミング、即ち、DFT区間(PSS)の先頭のサンプルを各々サンプルポイントx、x、x及びxとした場合の、信号モデルを示す。但し、各列の幅は、複素振幅の絶対値の二乗、即ち各々|h、|h、|h及び|h、である。図7の例では、各列ともに、Tは2個のサンプル間隔の長さであり、Tは5個のサンプル間隔の長さである。
 ここで、SINR推定部234は、式(6)を用いて信号エネルギーP(x)を、式(7)を用いて干渉エネルギーP(x)を、抽出したサンプルポイントの範囲内においてサンプルポイントxごとに算出する。
 例えば、DFTタイミングをn=xとした場合、閾値を超えるパスにおける信号エネルギーP(x)は、図7下段の網掛け部の面積に相当する。干渉のエネルギーP(x)は図7下段の塗潰し部の面積に相当する。
Here, T f is, DFT section length, T G is GI length, t s is the sample interval.
FIG. 7 is a conceptual diagram illustrating an example of signal energy and interference energy according to the present embodiment. In the upper part of FIG. 7, the horizontal axis indicates the discrete time n, and the vertical axis indicates the square of the absolute value of the complex amplitude | h u | 2 . In the upper part of FIG. 7, sample points that give a complex amplitude exceeding the threshold α are x 0 , x 1 , x 2, and x 3 , and the square of the absolute value of the complex amplitude corresponding to x 0 is | h 0 | 2 , x The square of the absolute value of the complex amplitude corresponding to 1 is | h 1 | 2 , the square of the absolute value of the complex amplitude corresponding to x 2 is | h 2 | 2 , and the square of the absolute value of the complex amplitude corresponding to x 3 is | H 3 | 2 . Here, the SINR estimation unit 234 extracts sample points x 0 , x 1 , x 2 and x 3 that give a complex amplitude exceeding the threshold α.
In the lower part of FIG. 7, the horizontal axis represents discrete time n. Indicates. The lower part of FIG. 7 shows the signal model when the DFT timing, that is, the first sample of the DFT section (PSS) is set to the sample points x 0 , x 1 , x 2 and x 3 in order from the upper row to the lower row. Indicates. However, the width of each column is the square of the absolute value of the complex amplitude, that is, | h 0 | 2 , | h 1 | 2 , | h 2 | 2 and | h 3 | 2 , respectively. In the example of FIG. 7, in each column, TG is the length of two sample intervals, and Tf is the length of five sample intervals.
Here, the SINR estimation unit 234 uses the equation (6) to calculate the signal energy P S (x n ) and the equation (7) to extract the interference energy P I (x n ) within the range of the extracted sample points. To calculate for each sample point xn .
For example, when the DFT timing is n = x 0 , the signal energy P S (x 0 ) in the path exceeding the threshold corresponds to the area of the shaded portion in the lower part of FIG. The interference energy P I (x 0 ) corresponds to the area of the painted portion in the lower part of FIG.
 図8は、本実施形態に係る信号エネルギーと干渉エネルギーの他の例を表す概念図である。
 但し、図8上段に示す複素振幅|hの時系列は、図7上段の例に示す例と同様である。図8下段に示す信号モデルは、図7下段に示す例と同様である。
 ここで、DFTタイミングをn=xとした場合、閾値を超えるパスにおける信号電力P(x)は図8下段の網掛け部の面積に相当する。干渉のエネルギーP(x)は図7下段の塗潰し部の面積に相当する。
 図7、図8上段の例に示すように複素振幅|hの絶対値の二乗が得られれば、同様に、SINR推定部234は、DFTタイミングx=x、xにおいても、P(x)及びP(x)を算出できる。
FIG. 8 is a conceptual diagram illustrating another example of signal energy and interference energy according to the present embodiment.
However, the time series of the complex amplitude | h u | 2 shown in the upper part of FIG. 8 is the same as the example shown in the upper part of FIG. The signal model shown in the lower part of FIG. 8 is the same as the example shown in the lower part of FIG.
Here, when the DFT timing and n = x 1, the signal power P S (x 1) in the path exceeding the threshold value corresponds to the area of the shaded portion of FIG lower. The interference energy P I (x 1 ) corresponds to the area of the painted portion in the lower part of FIG.
H u | | 7, the complex amplitude as shown in the example of FIG. 8 the upper as long obtained square of the absolute value of 2, similarly, SINR estimation unit 234, even in the DFT timing x n = x 2, x 3 , P S (x n ) and P I (x n ) can be calculated.
 次に、SINR推定部234は、算出したP(x)及びP(x)を用いて、SINRを算出する。DFTタイミングxにおけるSINRは、次式で表される。 Next, the SINR estimation unit 234 calculates SINR using the calculated P S (x n ) and P I (x n ). The SINR at the DFT timing xn is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、N(x)は、DFT区間における雑音エネルギーである。雑音エネルギーは、受信装置200において、温度ごとに予め測定した値を用いてもよいし、受信信号のうちデータ信号が割り当てられなかったリソースエレメントにおけるOFDMシンボルに基づき算出することもできる。 Here, N (x n ) is noise energy in the DFT interval. The noise energy may be a value measured in advance for each temperature in the receiving apparatus 200, or may be calculated based on an OFDM symbol in a resource element to which no data signal is allocated among received signals.
 第1のタイミング検出部235は、SINR推定部234から入力されたDFTタイミングごとのSINRからDFTのタイミングを検出し、検出したタイミングを干渉除去部205、GI除去部206-1及びDFT部207-1に出力する。SINR推定部234から出力されるSINRの集合の要素をSINR(x)とすると、第1のタイミング決定部235は、SINR推定部234から出力されるSINR(x)が最大となるサンプルタイミングx (1)をDFTタイミングと決定する。即ち、決定されるタイミングx (1)は、以下の式で表される。 The first timing detection unit 235 detects the DFT timing from the SINR for each DFT timing input from the SINR estimation unit 234, and detects the detected timing as the interference removal unit 205, the GI removal unit 206-1, and the DFT unit 207-. Output to 1. If the SINR set element output from the SINR estimation unit 234 is SINR (x n ), the first timing determination unit 235 has a sample timing at which the SINR (x n ) output from the SINR estimation unit 234 becomes maximum. x n (1) is determined as the DFT timing. That is, the determined timing x n (1) is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ここで、arg maxxn(…) とは、…を最大とするxを示す。
 例えば、図7の上段において、複素振幅の絶対値の二乗が|h=5|h|、|h=10|h|、|h=7|h|、|h=7|h|であった場合、x、x、x、xをDFTタイミングと仮定した場合、式(9)で算出されるSINRはx (1)の時、最大となる。よって、サンプルポイントxがDFTタイミングとなる。
Here, arg max xn (...) Indicates x n that maximizes.
For example, in the upper stage of FIG. 7, the square of the absolute value of the complex amplitude is | h 0 | 2 = 5 | h | 2 , | h 1 | 2 = 10 | h | 2 , | h 2 | 2 = 7 | h | 2 , | h 3 | 2 = 7 | h | 2 , assuming that x 0 , x 1 , x 2 , and x 3 are DFT timings, the SINR calculated by Equation (9) is x 1 ( In case of 1) , it becomes the maximum. Therefore, the sample point x 1 becomes the DFT timing.
 図6に戻り、タイミング検出部233-2は、SNR(Signal to Noise Ratio;信号対雑音比)推定部236及び第2のタイミング決定部237を含んで構成される。SNR推定部236は、相関部232から入力された複素振幅hを用いて、SNRを推定し、推定したSNRを第2のタイミング決定部237に出力する。
 まず、SNR推定部236は、SNRを推定するサンプルポイントの抽出を行う。サンプルポイントの抽出は、複素振幅hの絶対値の二乗が最大となるサンプルポイントを中心に、予め定められたポイント数の区間としてもよいし、複素振幅hの絶対値の二乗が所定の閾値を超えるサンプルポイントとしてもよい。また、閾値は、SINR推定部の閾値と同様であってもよいし、異なる閾値を設定してもよい。
 ここで、SINR推定部234と同様に、SNR推定部236は、複素振幅hの絶対値の二乗が予め設定された閾値αを越えるサンプルポイントを抽出する。
 次に、SNR推定部236は、抽出されたサンプルポイントごとの複素振幅hのサンプルポイントxにおける信号エネルギーPを、例えば次式に基づき算出する。
Returning to FIG. 6, the timing detection unit 233-2 includes an SNR (Signal to Noise Ratio) estimation unit 236 and a second timing determination unit 237. SNR estimator 236, using the complex amplitude h u input from the correlation unit 232 estimates the SNR, and outputs the estimated SNR to the second timing determination unit 237.
First, the SNR estimation unit 236 extracts sample points for estimating the SNR. Extraction of sample points, especially in sample points square becomes the maximum absolute value of the complex amplitude h u, may be a predetermined number of points in the section, the square of the absolute value of the complex amplitude h u is given It is good also as a sample point exceeding a threshold. Further, the threshold value may be the same as the threshold value of the SINR estimation unit, or a different threshold value may be set.
Here, similarly to the SINR estimator 234, SNR estimator 236 may extract sample points exceeding the threshold value α squared is preset absolute value of the complex amplitude h u.
Then, SNR estimator 236, the signal energy P S at sample points x n of the complex amplitude h d for each extracted sample points, for example, is calculated based on the following equation.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 但し、tは次式で与えられる。 However, t n is given by the following equation.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 図9は、本実施形態に係る信号エネルギーの一例を表す概念図である。但し、図9上段における複素振幅|hの時系列は、図7上段の例に示す例と同様である。図9下段における信号モデルは、図7下段に示す例と同様である。
 図9上段も、閾値αを超える複素振幅を与えるサンプルポイントがx、x、x及びxであることを示す。また、SNR推定部236は、閾値αを超える複素振幅を与えるサンプルポイントx、x、x及びxを抽出する。
 図9下段は、上列から下列へ向かって順に、DFTタイミング、即ち、DFT区間(PSS)の先頭のサンプルを各々サンプルポイントx、x、x及びxとした場合の信号モデルを示す。図9の例では、各列ともにTは2、Tは5である。
 ここで、SNR推定部236は、式(11)を用いて信号エネルギーP(x)を、抽出したサンプルポイントの範囲内においてサンプルポイントxごとに算出する。
 例えば、DFTタイミングをn=xとした場合、閾値を超えるパスにおける信号エネルギーP(x)は、図9下段の網掛け部の面積に相当する。
FIG. 9 is a conceptual diagram illustrating an example of signal energy according to the present embodiment. However, the time series of the complex amplitude | h u | 2 in the upper part of FIG. 9 is the same as the example shown in the upper part of FIG. The signal model in the lower part of FIG. 9 is the same as the example shown in the lower part of FIG.
The upper part of FIG. 9 also shows that the sample points that give the complex amplitude exceeding the threshold α are x 0 , x 1 , x 2, and x 3 . Further, the SNR estimation unit 236 extracts sample points x 0 , x 1 , x 2 and x 3 that give a complex amplitude exceeding the threshold α.
The lower part of FIG. 9 shows a signal model when the DFT timing, that is, the first sample in the DFT section (PSS) is set to the sample points x 0 , x 1 , x 2 and x 3 in order from the upper row to the lower row. Show. In the example of FIG. 9, TG is 2 and Tf is 5 in each column.
Here, the SNR estimation unit 236 calculates the signal energy P S (x n ) for each sample point x n within the range of the extracted sample points using Expression (11).
For example, when the DFT timing is n = x 0 , the signal energy P S (x 0 ) in the path exceeding the threshold corresponds to the area of the shaded portion in the lower part of FIG.
 図10は、本実施形態に係る信号エネルギーの他の例を表す概念図である。但し、図10上段における複素振幅|hの時系列は、図9上段の例に示す例と同様である。図10下段における信号モデルは、図9下段に示す例と同様である。
 ここで、DFTタイミングをn=xとした場合、閾値を超えるパスにおける信号エネルギーP(x)は図10下段の網掛け部の面積に相当する。
 図8上段及び図9上段の例に示すように、複素振幅|hの絶対値の二乗が得られれば、同様に、SNR推定部236は、DFTタイミングx=x、xにおいても、P(x)を算出できる。
FIG. 10 is a conceptual diagram illustrating another example of signal energy according to the present embodiment. However, the time series of the complex amplitude | h u | 2 in the upper part of FIG. 10 is the same as the example shown in the upper part of FIG. The signal model in the lower part of FIG. 10 is the same as the example shown in the lower part of FIG.
Here, when the DFT timing and n = x 1, the signal energy P S (x 1) in the path exceeding the threshold value corresponds to the area of FIG. 10 lower shaded portion.
8 top and as shown in the example of FIG. 9 the upper, complex amplitude | h u | as long to obtain the square of the absolute value of 2, likewise, SNR estimator 236, DFT timing x n = x 2, x 3 Can also calculate P S (x n ).
 次に、SNR推定部236は、算出したP(x)を用いてSNRを算出する。DFTタイミングxにおけるSNRは、次式で表される。 Next, the SNR estimation unit 236 calculates the SNR using the calculated P S (x n ). The SNR at the DFT timing xn is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ここで、SNR推定部236は、雑音エネルギーN(x)を、SINR推定部234と同様に与えることができる。 Here, the SNR estimator 236 can provide the noise energy N (x n ) in the same manner as the SINR estimator 234.
 第2のタイミング検出部237は、SNR推定部236から入力されたDFTタイミングごとのSNRからDFTのタイミングを検出し、検出したDFTのタイミングを干渉除去部205、GI除去部206-2及びDFT部207-2に出力する。SNR推定部236から入力されるDFTタイミングごとのSNRとすると、第2のタイミング検出部237は、以下の式を満たすDFTタイミングx (2)、即ち、SNRが最大となるタイミングを選択する。 The second timing detection unit 237 detects the DFT timing from the SNR for each DFT timing input from the SNR estimation unit 236, and determines the detected DFT timing as the interference removal unit 205, the GI removal unit 206-2, and the DFT unit. Output to 207-2. Assuming that the SNR n for each DFT timing input from the SNR estimation unit 236, the second timing detection unit 237 selects the DFT timing x n (2) that satisfies the following expression, that is, the timing at which the SNR is maximized. .
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 図9上段や図10上段で示す複素振幅が与えられている場合、SNRが最大となる。
よって、サンプルポイントx (2)がDFTタイミングとなる。
 上記の説明では、信号エネルギーP(x)を式(12)で示したようにPSSをDFT区間として算出する例について示したが、これに限らず、SNR推定部236は、後述するDFT区間に基づいて算出してもよい。SNR推定部236は、例えば全ての到達パスについてGIも含めたDFT区間に基づいて、信号エネルギーP(x)を、下式を用いて算出してもよい。
When the complex amplitude shown in the upper part of FIG. 9 or the upper part of FIG. 10 is given, SNR 0 is the maximum.
Therefore, the sample point x 0 (2) is the DFT timing.
In the above description, the example in which the signal energy P S (x n ) is calculated as the DFT interval as shown in the equation (12) is shown, but not limited to this, the SNR estimation unit 236 performs the DFT described later. You may calculate based on an area. The SNR estimator 236 may calculate the signal energy P S (x n ) using the following equation based on, for example, DFT intervals including GI for all the reaching paths.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 このように、同期部203は、各々異なる基準、即ち各々異なる物理量、閾値その他の変数に基づいてタイミング検出を行うタイミング検出部233-βを複数個備える。
 なお、上述では、同期部203では、第1のタイミング検出部233-1と第2のタイミング検出部233-2で、DFT区間の長さが異なる場合を例示したが、本実施形態ではDFT区間の長さは同じであってもよい。
 また、上述では、PSSを用いた場合について説明したが、本実施形態ではさらにSSSを用いることも可能である。
 なお、本実施形態では、上述のSINR推定部234が行うSINRの推定処理の代わりに受信部202から入力された受信信号に対するSINRの推定処理を行ってもよい。
 また、本実施形態では、上述のSNR推定部236が行うSNRの推定処理の代わりに伝搬路補償部208-1又は伝搬路補償部208-2から入力された伝搬路補償後の信号に対するSINRの推定処理と等価の処理を行ってもよい。
As described above, the synchronization unit 203 includes a plurality of timing detection units 233-β that perform timing detection based on different standards, that is, different physical quantities, threshold values, and other variables.
In the above description, the synchronization unit 203 exemplifies the case where the lengths of the DFT sections are different between the first timing detection unit 233-1 and the second timing detection unit 233-2. May be the same length.
Moreover, although the case where PSS was used was demonstrated above, in this embodiment, it is also possible to use SSS.
In the present embodiment, instead of the SINR estimation process performed by the SINR estimation unit 234 described above, SINR estimation processing for the received signal input from the reception unit 202 may be performed.
Further, in the present embodiment, instead of the SNR estimation process performed by the SNR estimation unit 236 described above, the SINR for the signal after propagation channel compensation input from the propagation channel compensation unit 208-1 or the propagation channel compensation unit 208-2. A process equivalent to the estimation process may be performed.
 図5に戻り、伝搬路推定部204は、受信部202から入力されたディジタル信号に基づき送信装置100から受信装置200までの伝搬路特性を推定する。伝搬路推定部204は、例えば、入力されたディジタル信号に含まれる参照信号と、伝搬路推定部204自身が備える記憶部に記憶された参照信号とから伝搬路特性を算出する。伝搬路特性に用いる参照信号は、例えば、図4に示すリソースマッピングにおけるOFDM信号のうち、右上がり斜線部分に割り当てられる信号である。伝搬路推定部204は、算出した伝搬路特性を信号検出部221-1、2に出力する。
 信号検出部221-1は、GI除去部206-1、DFT部207-1、及び伝搬路補償部208-1を具備する。信号検出部221-2は、GI除去部206-2、DFT部207-2、伝搬路補償部208-2、及び、干渉除去部205を具備する。信号検出部221-2は、信号検出部221-1において、信号検出処理を行った受信信号に対して、再度信号処理を行う。
Returning to FIG. 5, the propagation path estimation unit 204 estimates propagation path characteristics from the transmission device 100 to the reception device 200 based on the digital signal input from the reception unit 202. The propagation path estimation unit 204 calculates propagation path characteristics from, for example, a reference signal included in the input digital signal and a reference signal stored in a storage unit included in the propagation path estimation unit 204 itself. The reference signal used for the propagation path characteristic is, for example, a signal that is assigned to the upward-sloping diagonal line portion of the OFDM signal in the resource mapping shown in FIG. The propagation path estimation unit 204 outputs the calculated propagation path characteristics to the signal detection units 221-1 and 22-1.
The signal detection unit 221-1 includes a GI removal unit 206-1, a DFT unit 207-1, and a propagation path compensation unit 208-1. The signal detection unit 221-2 includes a GI removal unit 206-2, a DFT unit 207-2, a propagation path compensation unit 208-2, and an interference removal unit 205. The signal detection unit 221-2 performs signal processing again on the reception signal that has been subjected to signal detection processing in the signal detection unit 221-1.
 干渉除去部205は、伝搬路推定部204から入力された伝搬路特性、復号部211から入力された軟判定値を用いて、受信部202から入力されたディジタル信号から、干渉成分を除去する処理を行う。具体的には、干渉除去部205は、復号部211が入力された軟判定値、即ち復号後の符号化ビットのLLR(対数尤度比;Log Likelihood Ratio)に基づき、信号の送信元である送信装置100が送信したと推定される信号レプリカを生成する。干渉除去部205は、生成した信号レプリカと伝搬路推定部204からの伝搬路特性に基づき干渉レプリカを生成し、生成された干渉レプリカを受信部202から入力されたデータ信号から減算する。干渉除去部205は、この減算により得られた残差信号をGI除去部206-2に出力する。なお、干渉除去部205の構成及び機能については後述する。 The interference removal unit 205 uses the propagation path characteristics input from the propagation path estimation unit 204 and the soft decision value input from the decoding unit 211 to remove interference components from the digital signal input from the reception unit 202. I do. Specifically, the interference removal unit 205 is a signal transmission source based on the soft decision value input by the decoding unit 211, that is, the LLR (Log Likelihood Ratio) of the coded bits after decoding. A signal replica estimated to be transmitted by the transmission apparatus 100 is generated. The interference removal unit 205 generates an interference replica based on the generated signal replica and the propagation path characteristics from the propagation path estimation unit 204, and subtracts the generated interference replica from the data signal input from the reception unit 202. The interference removal unit 205 outputs the residual signal obtained by this subtraction to the GI removal unit 206-2. The configuration and function of the interference removal unit 205 will be described later.
 GI除去部206-1は、受信部202から出力されるディジタル信号からGIを除去し、除去された信号をDFT部207-1に出力する。GI除去部206-2は、干渉除去部205から出力される残差信号からGIを除去し、除去された信号をDFT部207-2に出力する。ここで、GI除去部206-1、206-2は、GI長の区間を、同期部203から入力されたDFTタイミングから予め定められた長さの区間と定める。
 GI除去部206-1は、受信部202から入力されるディジタル信号に対しては、第1のタイミング検出部235から入力されたDFTタイミングに基づいて、GIを除去する。即ち、GI除去部206-1は、受信部202から入力されるディジタル信号から第1のタイミング検出部235から入力されたDFTタイミングを始点として、予め設定されたDFT区間長T(データ信号区間)の信号を抽出する。例えば、第1のタイミング検出部235から入力されたDFTタイミングがxであるとき、GI除去部206-1は、受信部202から入力されるディジタル信号を、xを始点としてDFT区間長T分の信号を抽出する。即ち、GI除去部206-1は、xを終点として、冒頭からGI区間長Tの区間を除去する。
 GI除去部206-2は、干渉除去部205から入力された残差信号に対しては、第2のタイミング検出部237から入力されたDFTタイミングに基づいて、GIを除去する。即ち、GI除去部206-2は、干渉除去部205から入力された残差信号から、第2のタイミング検出部237から入力されるDFTタイミングを始点として、DFT区間長T(データ信号区間)の信号を抽出する。例えば、GI除去部206-2は、第2のタイミング検出部237から入力された検出タイミングがxである場合、干渉除去部205から入力された残差信号から、xを始点としてDFT区間長T分の信号を抽出する。ここで、GI除去部206-2は、xの直前のサンプルポイントを終点として、GI区間長T分の信号を除去する。
GI removal section 206-1 removes GI from the digital signal output from reception section 202, and outputs the removed signal to DFT section 207-1. GI removing section 206-2 removes GI from the residual signal output from interference removing section 205, and outputs the removed signal to DFT section 207-2. Here, the GI removal units 206-1 and 206-2 determine the GI length section as a section having a predetermined length from the DFT timing input from the synchronization unit 203.
The GI removal unit 206-1 removes the GI from the digital signal input from the reception unit 202 based on the DFT timing input from the first timing detection unit 235. That is, the GI removal unit 206-1 starts from the DFT timing input from the first timing detection unit 235 from the digital signal input from the reception unit 202, and has a preset DFT interval length T f (data signal interval). ) Signal is extracted. For example, when DFT timing input from the first timing detecting section 235 is x 1, GI removing section 206-1, a digital signal input from the reception unit 202, DFT section length starting at an x 1 T A signal for f minutes is extracted. That, GI removing section 206-1, as the end point of x 1, to remove a section of the GI interval length T G from the beginning.
The GI removal unit 206-2 removes the GI from the residual signal input from the interference removal unit 205 based on the DFT timing input from the second timing detection unit 237. That is, the GI removal unit 206-2 uses the DFT timing input from the second timing detection unit 237 as the starting point from the residual signal input from the interference removal unit 205, and the DFT interval length T f (data signal interval). Signal is extracted. For example, when the detection timing input from the second timing detection unit 237 is x 0 , the GI removal unit 206-2 uses the D 0 interval starting from x 0 as the starting point from the residual signal input from the interference removal unit 205. A signal for the length Tf is extracted. Here, GI removing section 206-2, as the end point of the sample points of the previous x 0, removing the GI interval length T G component signal.
 DFT部207-1,2は、GI除去部206-1,2から入力されたGIが除去された信号を時間領域信号から周波数領域信号に変換する離散フーリエ変換(DFT:Discrete Fourier Transform)を行い、変換した周波数領域信号を伝搬路補償部208-1,2にそれぞれ出力する。即ち、DFT部207-1は、第1のタイミング検出部235から入力されたDFTタイミングに基づいて、GI除去部206-1から入力されたGIが除去された信号に対してDFTを行う。DFT部207-2は、第2のタイミング検出部237から入力されたDFTタイミングに基づいて、GI除去部206-2から入力されたGIが除去された信号に対してDFTを行う。
 例えば、第1のタイミング検出部235から入力されたDFTタイミングがxである場合、DFT部207-1は、xを始点としてGI除去部206-1から入力されたGIが除去された信号に対してDFTを行う。第2のタイミング検出部237から入力されたDFTタイミングがxである場合、DFT部207-2は、xを始点としてGI除去部206-2から入力されたGIが除去された信号に対してDFTを行う。
 なお、DFT部207-1、DFT部207-2は、信号を時間領域から周波数領域に変換できれば、DFTに限らず、他の方法、例えば、高速フーリエ変換(FFT:Fast Fourier Transform)等を行ってもよい。
The DFT units 207-1 and 202-1 and 2 perform Discrete Fourier Transform (DFT) for converting the signal from which the GI is input from the GI removal units 206-1 and 206-1 and 2 from a time domain signal to a frequency domain signal. The converted frequency domain signals are output to the propagation path compensators 208-1 and 208-2, respectively. That is, the DFT unit 207-1 performs DFT on the signal from which the GI input from the GI removal unit 206-1 is removed, based on the DFT timing input from the first timing detection unit 235. Based on the DFT timing input from the second timing detection unit 237, the DFT unit 207-2 performs DFT on the signal from which the GI input from the GI removal unit 206-2 is removed.
For example, if DFT timing input from the first timing detecting section 235 is x 1, DFT unit 207-1, GI inputted from GI removing section 206-1 of x 1 as the starting point has been removed signal DFT is performed on If DFT timing input from the second timing detecting section 237 is x 0, DFT section 207-2, to signal GI inputted from GI removing section 206-2 and x 0 as a starting point has been removed DFT is performed.
Note that the DFT unit 207-1 and the DFT unit 207-2 perform other methods, for example, fast Fourier transform (FFT), as long as the signal can be converted from the time domain to the frequency domain. May be.
 伝搬路補償部208-1,2は、伝搬路推定部204から入力された伝搬路特性に基づきZF(Zero Forcing;ゼロフォーシング)等化、MMSE(Minimum Mean Square Error;最小平均二乗誤差)等化、等の方式を用いて、例えばフェージングによる伝搬路歪を補正する重み係数を算出する。伝搬路補償部208-1,2は、この重み係数をDFT部207-1,2から入力された周波数領域信号に乗算して伝搬路補償信号を生成し、生成した伝搬路補償信号をデマッピング部209に出力する。
 デマッピング部209は、伝搬路補償部208-1,2から入力された伝搬路補償信号からデータ変調シンボルを抽出し、抽出したデータ変調シンボルを復調部210に出力する。
The propagation path compensators 208-1 and 208-2, ZF (Zero Forcing) equalization, MMSE (Minimum Mean Square Error) equalization based on the propagation path characteristics input from the propagation path estimation unit 204. For example, a weighting coefficient for correcting propagation path distortion due to fading is calculated. The propagation path compensators 208-1 and 208-2 multiply the frequency domain signals input from the DFT sections 207-1 and 20-2 by the weighting coefficients to generate propagation path compensation signals, and demap the generated propagation path compensation signals. Output to the unit 209.
Demapping section 209 extracts data modulation symbols from the propagation path compensation signals input from propagation path compensation sections 208-1 and 208-2, and outputs the extracted data modulation symbols to demodulation section 210.
 復調部210は、デマッピング部209から入力されたデータ変調シンボルに対して復調処理を行い、軟判定値(符号化ビットLLR)を復号部211に出力する。データ変調方式がQPSKの場合を例に、復調部210の処理を説明する。ここで、送信装置100が送信するQPSKシンボルをXで表し、復調部210に入力されるデータ変調シンボルをXcで表す。Xを構成するビットをb、b(b、b=±1)とすると、Xは次の式で表される。 Demodulation section 210 performs demodulation processing on the data modulation symbol input from demapping section 209, and outputs a soft decision value (encoded bit LLR) to decoding section 211. The processing of the demodulation unit 210 will be described by taking the case where the data modulation method is QPSK as an example. Here, the QPSK symbol transmitted by the transmission apparatus 100 is represented by X, and the data modulation symbol input to the demodulation unit 210 is represented by Xc. Assuming that bits constituting X are b 0 and b 1 (b 0 , b 1 = ± 1), X is represented by the following expression.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 ただし、jは虚数単位を表す。復調部210は、Xcに基づいて軟判定値、即ちビットb、bのLLRであるλ(b)、λ(b)を、例えば以下の式を用いて算出する。 However, j represents an imaginary unit. The demodulator 210 calculates a soft decision value based on Xc, that is, λ (b 0 ) and λ (b 1 ), which are LLRs of the bits b 0 and b 1 , using, for example, the following equations.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 但し、Re(Xc)は複素数Xcの実部を表し、Im(Xc)は複素数Xcの虚部を表す。μは、伝搬路補償を行った後の等価振幅である。例えば、第kサブキャリアにおける伝搬路特性をH(k)、MMSE法で算出した伝搬路歪補償重み係数をW(k)とすると、μはW(k)・H(k)である。なお、復調部210は、他の変調方式、例えば16QAMで変調されたデータについても、その変調方式に対応する復調方式で復調してもよい。また、復調部210は、軟判定値の代わりにビットb及びb(硬判定値)を復号部211に出力してもよい。 However, Re (Xc) represents the real part of the complex number Xc, and Im (Xc) represents the imaginary part of the complex number Xc. μ is an equivalent amplitude after propagation path compensation. For example, if the propagation path characteristic in the k-th subcarrier is H (k) and the propagation path distortion compensation weight coefficient calculated by the MMSE method is W (k), μ is W (k) · H (k). Note that the demodulator 210 may demodulate data modulated by another modulation scheme, for example, 16QAM, using a demodulation scheme corresponding to the modulation scheme. Demodulator 210 may output bits b 0 and b 1 (hard decision value) to decoding unit 211 instead of the soft decision value.
 復号部211は、復調部210から入力された軟判定値又は硬判定値に対して誤り訂正復号処理を行い、誤り訂正された軟判定値又は硬判定値を算出する。この誤り訂正復号処理の方式は、送信元である送信装置100が行ったターボ符号化、畳み込み符号化などの誤り訂正符号化に対応する方式である。なお、送信装置100が、インターリーブしたデータ変調シンボルを送信する場合には、復号部211は、誤り訂正復号処理を行う前に、入力された軟判定値又は硬判定値をインターリーブに対応するデインターリーブ処理を行う。そして、復号部211は、デインターリーブ処理が行われた信号に対して誤り訂正復号処理を行う。
 復号部211は、算出した軟判定値を干渉除去部205に出力する。復号部211は、誤り訂正された軟判定値又は硬判定値を構成する情報ビットに誤りがない場合、又は後述する繰り返し処理において、予め設定された繰り返し回数に達した後、誤り訂正された軟判定値又は硬判定値を構成する情報ビットを出力する。
 また、復号部211は、受信部202から出力されたディジタル信号に復号処理を行ったか否かを示す信号、復号処理において誤りが検出されたか否かを示す信号、又は受信部202から出力されたディジタル信号に対し復号処理を行った回数を示す信号を切替部212に出力する。これらの信号は、切替部212において上述の処理に用いられる。
The decoding unit 211 performs error correction decoding processing on the soft decision value or hard decision value input from the demodulation unit 210, and calculates an error corrected soft decision value or hard decision value. This error correction decoding processing method is a method corresponding to error correction coding such as turbo coding and convolution coding performed by the transmission apparatus 100 as a transmission source. When transmitting apparatus 100 transmits interleaved data modulation symbols, decoding section 211 performs deinterleaving corresponding to interleaving the input soft decision value or hard decision value before performing error correction decoding processing. Process. Then, the decoding unit 211 performs error correction decoding processing on the signal that has been subjected to deinterleaving processing.
The decoding unit 211 outputs the calculated soft decision value to the interference removal unit 205. When there is no error in the information bits constituting the error-corrected soft decision value or hard decision value, or when the decoding unit 211 reaches a preset number of repetitions in an iterative process described later, the decoding unit 211 performs error correction. The information bits constituting the judgment value or the hard judgment value are output.
Further, the decoding unit 211 is a signal indicating whether or not a decoding process has been performed on the digital signal output from the receiving unit 202, a signal indicating whether or not an error has been detected in the decoding process, or an output from the receiving unit 202 A signal indicating the number of times the digital signal has been decoded is output to switching section 212. These signals are used for the above-described processing in the switching unit 212.
 次に、本実施形態に係る干渉除去部205(図5)の構成及び機能について説明する。
 図11は、本実施形態に係る干渉除去部205の構成を示す概略図である。干渉除去部205は、レプリカ生成部251及び減算部252を含んで構成される。
レプリカ生成部251は、伝搬路推定部204から入力された伝搬路特性及び復号部211から入力された軟判定値に基づき干渉成分のレプリカ(干渉レプリカ)を生成する。
具体的には、レプリカ生成部251は、軟判定値として復号後の符号化ビットのLLRに基づき送信元である送信装置100が送信したと推定される信号レプリカを生成する。レプリカ生成部251は、生成した信号レプリカと伝搬路推定部204から入力された伝搬路特性を用いて干渉レプリカを生成し、生成した干渉レプリカを減算部252に出力する。
 減算部252は、受信部202から入力されたディジタル信号から減算部252から入力された干渉レプリカを減算し、残差信号を生成する。減算部252は生成した残差信号をGI除去部206-2に出力する。減算部252が出力する残差信号r (t)は次式で表される。
Next, the configuration and function of the interference removal unit 205 (FIG. 5) according to the present embodiment will be described.
FIG. 11 is a schematic diagram illustrating a configuration of the interference removal unit 205 according to the present embodiment. The interference removal unit 205 includes a replica generation unit 251 and a subtraction unit 252.
The replica generation unit 251 generates an interference component replica (interference replica) based on the propagation path characteristics input from the propagation path estimation unit 204 and the soft decision value input from the decoding unit 211.
Specifically, the replica generation unit 251 generates a signal replica that is estimated to be transmitted by the transmission apparatus 100 that is a transmission source based on the LLR of the encoded bit after decoding as a soft decision value. The replica generation unit 251 generates an interference replica using the generated signal replica and the propagation path characteristics input from the propagation path estimation unit 204, and outputs the generated interference replica to the subtraction unit 252.
The subtracting unit 252 subtracts the interference replica input from the subtracting unit 252 from the digital signal input from the receiving unit 202 to generate a residual signal. The subtraction unit 252 outputs the generated residual signal to the GI removal unit 206-2. Residual signal r ~ i the subtraction unit 252 outputs (t) is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 ここで、r(t)は、受信部202から入力されるディジタル信号である。t≧xである。即ち、レプリカ生成部251における信号レプリカの生成及び減算部252における残差信号の生成は、第2のタイミング検出部237から入力されたDFTタイミングで示されるシンボルポイントxを起点とする予め定められたDFT区間について実行される。
 r^(t)は、第i回目(i>0)の繰り返しでレプリカ生成部251が生成した干渉レプリカである。ここで、繰り返しとは、受信部202から入力されたディジタル信号に対し、復調部211から入力された軟判定値に対して干渉除去部205が行う処理の繰り返しを指す。また、「r^」、「r」という表記は、式(19)に表わされているように文字「r」の上に各々「^」、「」が記載されたものを意味する。これらの表記は、後述する「s^」、「c^」、「h^」でも同様である。
Here, r (t) is a digital signal input from the receiving unit 202. a t ≧ x 2. That is, generation of the residual signal in the generation and the subtraction unit 252 of the signal replicas in the replica generation unit 251, a predetermined starting from the symbol points x 2 represented by DFT timing inputted from the second timing detecting section 237 It is executed for the DFT interval.
r ^ i (t) is an interference replica generated by the replica generation unit 251 in the i-th (i> 0) iteration. Here, repetition refers to repetition of processing performed by the interference removal unit 205 on the soft decision value input from the demodulation unit 211 for the digital signal input from the reception unit 202. Further, "r ^" notation "r ~" each "^" over the letter "r" as represented in equation (19) is one which "~" is described . These notations also apply to “s ^”, “c ^”, and “h ^” described later.
 次に、本実施形態に係るレプリカ生成部251(図11)の構成及び機能について説明する。
 図12は、本実施形態に係るレプリカ生成部251の構成を示す概略図である。レプリカ生成部251は、シンボルレプリカ生成部241、マッピング部242、IDFT部243、GI挿入部244及び干渉レプリカ生成部245を含んで構成される。
 シンボルレプリカ生成部241は、復号部211から入力された軟判定値(符号化ビットのLLR)に基づき、データ変調シンボルのレプリカ(変調シンボルレプリカ)を生成し、生成した変調シンボルレプリカをマッピング部242に出力する。例えば、シンボルレプリカ生成部241は、送信装置100が備える変調部102が行う変調方式がQPSKの場合、LLR λ(b),λ(b)に基づき、例えば次式で示される変調シンボルレプリカを生成する。ここで、b、bはQPSK変調シンボルを構成するビットである。
Next, the configuration and function of the replica generation unit 251 (FIG. 11) according to the present embodiment will be described.
FIG. 12 is a schematic diagram illustrating a configuration of the replica generation unit 251 according to the present embodiment. The replica generation unit 251 includes a symbol replica generation unit 241, a mapping unit 242, an IDFT unit 243, a GI insertion unit 244, and an interference replica generation unit 245.
The symbol replica generation unit 241 generates a replica of the data modulation symbol (modulation symbol replica) based on the soft decision value (LLR of the coded bit) input from the decoding unit 211, and maps the generated modulation symbol replica to the mapping unit 242. Output to. For example, when the modulation scheme performed by the modulation unit 102 included in the transmission apparatus 100 is QPSK, the symbol replica generation unit 241 uses, for example, a modulation symbol replica expressed by the following equation based on LLR λ (b 0 ) and λ (b 1 ) Is generated. Here, b 0 and b 1 are bits constituting the QPSK modulation symbol.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 なお、シンボルレプリカ生成部241は、QPSKにより変調されたシンボルに限らず、他の変調方式、例えば16QAM等により変調されたシンボルについて、変調シンボルレプリカを生成してもよい。 Note that the symbol replica generation unit 241 may generate a modulation symbol replica not only for symbols modulated by QPSK but also for symbols modulated by other modulation schemes such as 16QAM.
マッピング部242は、シンボルレプリカ生成部241から入力された変調シンボルレプリカを、送信装置100が備えるリソースマッピング部105が配置するサブキャリアにおけるリソースエレメントに配置する。マッピング部242は、リソースエレメントに配置した信号をIDFT部243に出力する。変調シンボルレプリカに制御信号が含まれている場合には、マッピング部242は、制御信号も予め定められたリソースエレメントに配置してもよい。例えば、受信装置200が受信するOFDM信号のサブフレームフォーマットが図3に示されるものである場合、データ変調シンボルが配置されているリソースエレメント(白抜きの部分)には、式(20)で算出した各データ変調シンボルに対する変調シンボルレプリカを配置する。 Mapping section 242 arranges the modulation symbol replica input from symbol replica generation section 241 in resource elements in subcarriers arranged by resource mapping section 105 provided in transmitting apparatus 100. The mapping unit 242 outputs the signal arranged in the resource element to the IDFT unit 243. When the control signal is included in the modulation symbol replica, the mapping unit 242 may also arrange the control signal in a predetermined resource element. For example, when the subframe format of the OFDM signal received by the receiving apparatus 200 is as shown in FIG. 3, the resource element (outlined portion) in which the data modulation symbol is arranged is calculated by Expression (20). A modulation symbol replica is arranged for each data modulation symbol.
 IDFT部243は、マッピング242から入力された信号にIDFT(Inverse Discrete Fourier Transform;逆離散フーリエ変換)を行って、周波数領域信号から時間領域信号に変換する。IDFT部243は、変換した時間領域信号をGI挿入部244に出力する。
 GI挿入部244は、IDFT部243から入力された時間領域信号にGIを前置して付加し、GIを付加した信号を干渉レプリカ生成部245に出力する。GI挿入部244が出力するGIを付加した信号、即ち第i回目の繰り返しにおける第l番目のOFDMシンボルの送信信号レプリカs^i、l(t)は次式で表される。
The IDFT unit 243 performs an IDFT (Inverse Discrete Fourier Transform) on the signal input from the mapping 242 to convert the frequency domain signal into a time domain signal. The IDFT unit 243 outputs the converted time domain signal to the GI insertion unit 244.
The GI insertion unit 244 adds a GI in front of the time domain signal input from the IDFT unit 243, and outputs the signal with the GI added to the interference replica generation unit 245. The signal to which the GI added by the GI insertion unit 244 is added, that is, the transmission signal replica s i, l (t) of the l-th OFDM symbol in the i-th iteration is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 但し、c^i,k,lは、第i回目の繰り返しにおける第l番目のOFDMシンボルの第kサブキャリアに配置するデータ変調シンボルレプリカ又は参照シンボルである。
 干渉レプリカ生成部245は、GI挿入部244から入力された送信信号レプリカと伝搬路推定部204から入力された伝搬路特性を用いて干渉レプリカを生成し、生成した干渉レプリカを減算部252に出力する。干渉レプリカとは、送信装置100から送信されたOFDM信号が受信装置200において受信されるまでに受けた干渉成分の推定値である。シンボルレプリカ生成部245は、干渉成分の種別ごとに干渉レプリカを生成する。
干渉成分には、シンボル間干渉、キャリア間干渉などの種別がある。
 例えば、干渉レプリカ生成部245は、第i回目の繰り返しにおけるシンボル間干渉レプリカr^(t)(t≦T、TはOFDMシンボル長)を、次式を用いて算出する。
Here, c ^ i, k, l are data modulation symbol replicas or reference symbols arranged in the kth subcarrier of the lth OFDM symbol in the i th iteration.
Interference replica generation section 245 generates an interference replica using the transmission signal replica input from GI insertion section 244 and the propagation path characteristics input from propagation path estimation section 204, and outputs the generated interference replica to subtraction section 252 To do. The interference replica is an estimated value of an interference component received until the OFDM signal transmitted from the transmission device 100 is received by the reception device 200. The symbol replica generation unit 245 generates an interference replica for each type of interference component.
There are types of interference components such as inter-symbol interference and inter-carrier interference.
For example, the interference replica generation unit 245 calculates an inter-symbol interference replica r i (t) (t ≦ T s , where T s is an OFDM symbol length) in the i-th iteration using the following equation.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 但し、s^i-1(t)は、第i-1回目の繰り返し処理においてGI挿入部から入力された送信信号レプリカを示す。h^(t)は、伝搬路特性のインパルス応答であって第dパス(第d遅延波)の複素振幅、tは時刻、τは第1パス(先行波)の受信時刻(DFTタイミング)から第dパスの受信時刻までの遅延時間、Tは挿入されているGI長である。dは、τ>Tである。繰り返し回数i=1のとき、s^(t)は、信号検出部221-1から入力された信号(伝搬路補償信号)に基づき復号部221からの出力である軟判定値(LLR)に基づき算出されたデータ変調レプリカである。即ち、シンボル間干渉レプリカr^(t)は、第i-1回目の繰り返し処理において復号部211から入力された符号化ビットの軟判定値(LLR)であるλi-1から生成した送信信号レプリカs^i-1(t)に基づいて生成される。ここで、受信装置200が受信したGI長を超えて遅延した各遅延波において、DFTの処理対象となるOFDMシンボルの区間に含まれる部分のレプリカを合算したものが、シンボル間干渉レプリカr^(t)となる。
 干渉レプリカ生成部245は、算出した干渉レプリカを減算する処理をフレーム又はパケットを構成する各OFDMシンボルについて行いシンボル間干渉を除去する。なお、制御信号、パイロットシンボルへのシンボル間干渉も同様な処理を実行することにより除去することができる。
Here, s i −1 (t) represents a transmission signal replica input from the GI insertion unit in the ( i−1 ) th repetitive processing. ^ d (t) is an impulse response of propagation path characteristics, and the complex amplitude of the d-th path (d-th delayed wave), t is time, τ d is the reception time (DFT timing) of the first path (preceding wave) ) To the reception time of the d-th path, TG is the inserted GI length. d is τ d > T G. When the number of iterations i = 1, s 0 (t) becomes a soft decision value (LLR) that is an output from the decoding unit 221 based on the signal (propagation compensation signal) input from the signal detection unit 221-1. It is a data modulation replica calculated based on this. That is, the inter-symbol interference replica r i (t) is generated from λ i−1 which is the soft decision value (LLR) of the coded bit input from the decoding unit 211 in the i− 1th iteration. Generated based on the signal replica s i -1 (t). Here, in each delayed wave that has been delayed beyond the GI length received by the receiving apparatus 200, the sum of the replicas of the portion included in the section of the OFDM symbol to be processed by DFT is the intersymbol interference replica r ^ i. (T).
The interference replica generation unit 245 performs processing for subtracting the calculated interference replica for each OFDM symbol constituting the frame or packet to remove intersymbol interference. Note that intersymbol interference with control signals and pilot symbols can also be eliminated by executing similar processing.
 次に、本実施形態に係る受信装置200が行う受信処理について説明する。
 図13は、本実施形態に係る受信処理を示す流れ図である。
(ステップS101)同期部203は、アンテナ部201で受信したOFDM信号に基づくディジタル信号を受信部202から入力され、制御信号(例えばPSS)を用いて、DFTタイミング(同期タイミング)を検出する。同期部203が検出するDFTタイミングには、SINRを検出基準とする第1の同期タイミングと、SNRを検出基準とする第2の同期タイミングとがある。例えば、同期部203が備えるタイミング検出部233-1は、入力されたディジタル信号と制御信号に基づき算出されたSINRを最大とするサンプルポイントを第1の同期タイミング(DFTタイミング)と検出する。タイミング検出部233-2は、入力されたディジタル信号と制御信号に基づき算出されたSNRを最大とするサンプルポイントを第2の同期タイミング(DFTタイミング)と検出する。
(ステップS102)伝搬路推定部204は、受信部202から入力されたディジタル信号と、伝搬路推定部204が記憶している参照信号に基づき伝搬路特性を算出する。
Next, a reception process performed by the reception device 200 according to the present embodiment will be described.
FIG. 13 is a flowchart showing a reception process according to the present embodiment.
(Step S101) The synchronization unit 203 receives a digital signal based on the OFDM signal received by the antenna unit 201 from the reception unit 202, and detects a DFT timing (synchronization timing) using a control signal (for example, PSS). The DFT timing detected by the synchronization unit 203 includes a first synchronization timing using SINR as a detection reference and a second synchronization timing using SNR as a detection reference. For example, the timing detection unit 233-1 included in the synchronization unit 203 detects a sample point that maximizes the SINR calculated based on the input digital signal and the control signal as the first synchronization timing (DFT timing). The timing detection unit 233-2 detects a sample point that maximizes the SNR calculated based on the input digital signal and the control signal as the second synchronization timing (DFT timing).
(Step S102) The propagation path estimation unit 204 calculates propagation path characteristics based on the digital signal input from the reception unit 202 and the reference signal stored in the propagation path estimation unit 204.
(ステップS103)受信装置200は、復調部211から入力された軟判定値に対して干渉除去部205が行った処理の繰り返し回数iがゼロであるか、ゼロよりも大きいかを判断する。即ち、受信装置200は、受信したOFDM信号に含まれる情報データ信号に対する処理が初めてか否かを判断する。i>0の場合(ステップS103 Y)、切替部212は受信部202から入力されたディジタル信号を信号検出部221-2に出力し(aに接続)、ステップS105に進む。i=0の場合(ステップS103 N)、切替部212は受信部202から入力されたディジタル信号を信号検出部221-1に出力し(bに接続)、ステップS104に進む。
(ステップS104)信号検出部221-1が備えるGI除去部206-1及びDFT部207-1は同期部203から第1の同期タイミング(DFTタイミング)を入力される。その後、ステップS107に進む。
(ステップS105)信号検出部221-2が備える干渉除去部205、GI除去部206-2及びDFT部207-2は同期部203から第2の同期タイミング(DFTタイミング)を入力される。その後、ステップS106に進む。
(ステップS106)干渉除去部205は、同期部203から入力されたDFTタイミングに基づき、受信部202から入力されたディジタル信号から干渉レプリカ(ステップS112で生成)を減算して残差信号を生成する。干渉除去部205は生成した残差信号をGI除去部206-2に出力する。その後、ステップS107に進む。
(Step S <b> 103) The receiving apparatus 200 determines whether the number of repetitions i of the process performed by the interference removal unit 205 for the soft decision value input from the demodulation unit 211 is zero or greater than zero. That is, receiving apparatus 200 determines whether or not the processing for the information data signal included in the received OFDM signal is the first time. If i> 0 (Y in step S103), the switching unit 212 outputs the digital signal input from the receiving unit 202 to the signal detecting unit 221-2 (connected to a), and proceeds to step S105. If i = 0 (N in step S103), the switching unit 212 outputs the digital signal input from the receiving unit 202 to the signal detecting unit 221-1 (connected to b), and proceeds to step S104.
(Step S104) The GI removal unit 206-1 and the DFT unit 207-1 included in the signal detection unit 221-1 receive the first synchronization timing (DFT timing) from the synchronization unit 203. Thereafter, the process proceeds to step S107.
(Step S105) The interference removal unit 205, GI removal unit 206-2, and DFT unit 207-2 included in the signal detection unit 221-2 receive the second synchronization timing (DFT timing) from the synchronization unit 203. Thereafter, the process proceeds to step S106.
(Step S106) Based on the DFT timing input from the synchronization unit 203, the interference removal unit 205 subtracts the interference replica (generated in step S112) from the digital signal input from the reception unit 202 to generate a residual signal. . The interference removal unit 205 outputs the generated residual signal to the GI removal unit 206-2. Thereafter, the process proceeds to step S107.
(ステップS107)GI除去部206-1、2は、受信部202から入力されたディジタル信号又は干渉除去部205から入力された残差信号から同期部203から入力されたDFTタイミングに基づきGIを除去し、GIを除去した信号をDFT部207-1、2に出力する。DFT部207-1、2は、同期部203から入力されたDFTタイミングに基づきGI除去部206-1、2から入力されたGIを除去した(時間領域の)信号に対してDFTを行い周波数領域信号に変換する。DFT部207-1、2は、変換して周波数領域信号を伝搬路補償部208-1、2に出力する。その後、ステップS108に進む。 (Step S107) GI removal sections 206-1 and 2 remove GI based on the DFT timing input from synchronization section 203 from the digital signal input from reception section 202 or the residual signal input from interference removal section 205. Then, the signal from which the GI has been removed is output to the DFT sections 207-1 and 2. The DFT sections 207-1 and 2 perform DFT on the signal (in the time domain) from which the GI input from the GI removal sections 206-1 and 2 is removed based on the DFT timing input from the synchronization section 203 (frequency domain). Convert to signal. DFT sections 207-1 and 2 perform conversion and output frequency domain signals to propagation path compensation sections 208-1 and 208-2. Thereafter, the process proceeds to step S108.
(ステップS108)伝搬路補償部208-1、2は、伝搬路推定部204から入力された伝搬路特性に基づき伝搬路歪を補正する重み係数を算出する。伝搬路補償部208-1、2は、算出した重み係数をDFT部207-1、2から入力された周波数領域信号に乗算して伝搬路補償信号を生成し、生成した伝搬路補償信号をデマッピング部209に出力する。その後、ステップS109に進む。
(ステップS109)デマッピング部209は、伝搬路補償部208-1、2から入力された伝搬路補償信号からデータ変調シンボルを抽出し、抽出したデータ変調シンボルを復調部210に出力する。復調部210は、デマッピング部209から入力されたデータ変調シンボルに対して復調処理を行い、軟判定値(符号化ビットLLR)を復号部211に出力する。その後、ステップS110に進む。
(Step S108) The propagation path compensators 208-1, 2 calculate a weighting coefficient for correcting propagation path distortion based on the propagation path characteristics input from the propagation path estimation unit 204. The propagation path compensators 208-1 and 2 multiply the calculated weighting factor by the frequency domain signal input from the DFT sections 207-1 and 2 to generate a propagation path compensation signal, and degenerate the generated propagation path compensation signal. The data is output to the mapping unit 209. Thereafter, the process proceeds to step S109.
(Step S109) The demapping unit 209 extracts a data modulation symbol from the channel compensation signals input from the channel compensation units 208-1 and 208-2, and outputs the extracted data modulation symbol to the demodulation unit 210. Demodulation section 210 performs demodulation processing on the data modulation symbol input from demapping section 209, and outputs a soft decision value (encoded bit LLR) to decoding section 211. Then, it progresses to step S110.
(ステップS110)復号部211は、復調部210から入力された軟判定値に対して誤り訂正復号処理を行い、誤り訂正された軟判定値を算出し、データ誤りがあるかないか判断する。データ誤りがあると判断した場合(ステップS110 Y)、ステップS111に進む。データ誤りがないと判断した場合(ステップS110 N)、復号部211は誤り訂正された軟判定値を出力し、処理を終了する。そして、受信装置200は、次の受信信号の受信を待機する。
(ステップS111)受信装置200は、復調部211から入力された軟判定値に対して干渉除去部205が行った処理の繰り返し回数iが予め設定された繰り返し回数Mに達したか否かを判断する。受信装置200が、復調部211から入力された軟判定値に対して干渉除去部205が行った処理の繰り返し回数iが予め設定された繰り返し回数Mに達したと判断した場合(ステップS111 Y)、復調部211は誤り訂正された軟判定値を出力し処理を終了する。そして、受信装置200は、次の受信信号の受信を待機する。干渉除去部205が行った処理の繰り返し回数iが予め設定された繰り返し回数Mに満たないと判断した場合(ステップS111 N)、ステップS112に進む。
(ステップS112)干渉除去部205は、伝搬路推定部204から入力された伝搬路特性と復号部211から入力された軟判定値に基づいて干渉レプリカを生成する。その後、ステップS105に進む。
(Step S110) The decoding unit 211 performs error correction decoding processing on the soft decision value input from the demodulation unit 210, calculates an error corrected soft decision value, and determines whether there is a data error. If it is determined that there is a data error (Y in step S110), the process proceeds to step S111. When it is determined that there is no data error (N in step S110), the decoding unit 211 outputs the soft decision value in which the error is corrected, and ends the process. Then, receiving apparatus 200 waits for reception of the next received signal.
(Step S111) The receiving apparatus 200 determines whether or not the number of repetitions i of the processing performed by the interference removal unit 205 for the soft decision value input from the demodulation unit 211 has reached a preset number of repetitions M. To do. When the receiving apparatus 200 determines that the number of repetitions i of the process performed by the interference removal unit 205 with respect to the soft decision value input from the demodulation unit 211 has reached a preset number of repetitions M (step S111 Y) Then, the demodulator 211 outputs the soft decision value that has been error-corrected, and ends the process. Then, receiving apparatus 200 waits for reception of the next received signal. When it is determined that the number of repetitions i of the processing performed by the interference removal unit 205 is less than the preset number of repetitions M (N in step S111), the process proceeds to step S112.
(Step S112) The interference removal unit 205 generates an interference replica based on the propagation path characteristics input from the propagation path estimation unit 204 and the soft decision value input from the decoding unit 211. Thereafter, the process proceeds to step S105.
 以上説明したように、第1の実施形態では、干渉除去部205を備えていない信号検出部221-1は、信号の電力と干渉並びに雑音の電力の比であるSINRを基準として推定したタイミングにより各処理を行う。これにより、GI長を超える遅延パスに起因する干渉を考慮したタイミング設定に基づくデータ信号区間を決定できる。他方、干渉除去部205を備えた信号検出部221-2は、干渉を除去したうえで信号の電力と雑音の電力の比であるSNRを基準として推定したタイミングに基づきGI除去、DFT、伝搬路補償の各処理を行う。このように、受信装置が各々異なる基準(例えば受信電力又は干渉量)により定めたデータ信号区間の信号に対して復号処理を行うため、受信装置は良好な受信特性を得ることが可能となる。
 なお、上述の例では、本実施形態が、干渉除去部205がシンボル間干渉を除去する機能を備えるものとして説明したが、本実施形態では、その代わりにキャリア間干渉等、他の干渉成分を除去する機能を備えてもよい。
 また、干渉除去方法が、上述のようにシンボル間干渉レプリカ(例えば、式(21)、式(22))を算出し、これを差し引くものと異なる方法であっても、干渉除去部205が復号部等から軟判定値等のフィードバックを入力してもよい。
 また、上述の例では、送信装置がSISO(Single Input Single Output)の場合を前提として説明したが、本実施形態ではMIMO(Multi Input Multi Output)の場合でもよい。
As described above, in the first embodiment, the signal detection unit 221-1 that does not include the interference removal unit 205 is based on the timing estimated based on the SINR that is the ratio of the signal power to the interference and noise power. Perform each process. Thereby, the data signal section based on the timing setting in consideration of the interference caused by the delay path exceeding the GI length can be determined. On the other hand, the signal detection unit 221-2 provided with the interference removal unit 205 removes the interference and performs GI removal, DFT, propagation path based on the timing estimated based on the SNR that is the ratio of the signal power and the noise power. Perform each compensation process. As described above, since the receiving apparatus performs the decoding process on the signal in the data signal section determined by different criteria (for example, reception power or interference amount), the receiving apparatus can obtain good reception characteristics.
In the above-described example, this embodiment has been described as having the function of removing the intersymbol interference by the interference removal unit 205. However, in this embodiment, other interference components such as inter-carrier interference are used instead. You may provide the function to remove.
Even if the interference removal method is different from the method of calculating the inter-symbol interference replica (for example, Equation (21), Equation (22)) as described above and subtracting this, the interference removal unit 205 performs decoding. Feedback such as a soft decision value may be input from a part or the like.
In the above example, the case where the transmission apparatus is SISO (Single Input Single Output) has been described. However, in the present embodiment, the transmission apparatus may be a MIMO (Multi Input Multi Output).
(第2の実施形態)
 以下、図面を参照しながら第2の実施形態について説明する。
 図14は、本実施形態に係る同期部303の構成を示す概略図である。本実施形態に係る受信装置は、第1の実施形態に係る受信装置200において同期部203に代えて、同期部303を備える。以下、第1の実施形態との差異点を主に説明する。
 同期部303は、フィルタ部231、相関部232、タイミング検出部233-1及び333-2を含んで構成される。即ち、同期部303は第1の実施形態に係る同期部203のタイミング検出部233-2に代えてタイミング検出部333-2を備える。
 タイミング検出部333-2は、電力推定部336と第2のタイミング決定部337を含んで構成される。電力推定部336は、相関部232から入力された複素振幅に基づき受信信号の電力を推定し、推定した電力を第2のタイミング決定部337に出力する。電力推定部336は、受信信号の電力を推定するために、例えば式(11)又は式(15)を用いる。その他、電力推定部336がRSSI(Received Signal Strength Indicator;受信信号強度指示器)を備えてもよい。その場合、電力推定部336は、受信部202から直接入力されたディジタル信号に基づき受信信号の電力を推定する。
(Second Embodiment)
The second embodiment will be described below with reference to the drawings.
FIG. 14 is a schematic diagram illustrating a configuration of the synchronization unit 303 according to the present embodiment. The receiving apparatus according to the present embodiment includes a synchronizing unit 303 instead of the synchronizing unit 203 in the receiving apparatus 200 according to the first embodiment. Hereinafter, differences from the first embodiment will be mainly described.
The synchronization unit 303 includes a filter unit 231, a correlation unit 232, and timing detection units 233-1 and 333-2. That is, the synchronization unit 303 includes a timing detection unit 333-2 instead of the timing detection unit 233-2 of the synchronization unit 203 according to the first embodiment.
The timing detection unit 333-2 includes a power estimation unit 336 and a second timing determination unit 337. The power estimation unit 336 estimates the power of the received signal based on the complex amplitude input from the correlation unit 232, and outputs the estimated power to the second timing determination unit 337. The power estimation unit 336 uses, for example, Expression (11) or Expression (15) in order to estimate the power of the received signal. In addition, the power estimation unit 336 may include an RSSI (Received Signal Strength Indicator). In that case, the power estimation unit 336 estimates the power of the reception signal based on the digital signal directly input from the reception unit 202.
 第2のタイミング決定部337は、電力推定部336から入力された受信信号の電力に基づきDFTタイミングを検出する。即ち、第2のタイミング決定部337は、電力推定部336から入力されたサンプルnの受信信号の電力Powerが最大となるサンプルポイントx2,nをDFTタイミングと決定する。
 例えば、図7上段又は図8上段に示す複素振幅が与えられている場合、第2のタイミング決定部337は、図7下段又は図8下段における網掛け部の面積が受信信号の電力に相当する。図7及び図8の例のうち、第2のタイミング決定部337は、網掛け部の面積、即ち、受信信号の電力が最大となるサンプルポイントx2,0をDFTタイミングと決定する。
 なお、図9下段又は図10下段における網掛け部の面積に相当するとして、受信信号の電力Powerが最大となるサンプルポイントx2,nをDFTタイミングと決定してもよい。 第2のタイミング決定部337は、決定したDFTタイミングを干渉除去部205、GI除去部206-2及びDFT部207-2に出力する。干渉除去部205は、第2のタイミング決定部337から入力されたDFTタイミングに基づいて、干渉除去を行う。GI除去部206-2は、第2のタイミング決定部337から入力されたDFTタイミングに基づいて、GI除去を行う。DFT部207は、第2のタイミング決定部337から入力されたDFTタイミングに基づいて、DFTを行う。
Second timing determination section 337 detects DFT timing based on the power of the received signal input from power estimation section 336. That is, the second timing determination unit 337 determines the sample point x2 , n at which the power Power n of the received signal of sample n input from the power estimation unit 336 is the maximum as the DFT timing.
For example, when the complex amplitude shown in the upper part of FIG. 7 or the upper part of FIG. 8 is given, the second timing determination unit 337 has the area of the shaded part in the lower part of FIG. 7 or the lower part of FIG. . 7 and 8, the second timing determination unit 337 determines the area of the hatched portion, that is, the sample point x2,0 at which the power of the received signal is maximum, as the DFT timing.
Note that sample points x2 , n at which the power Power n of the received signal is maximum may be determined as the DFT timing, corresponding to the area of the shaded portion in the lower part of FIG. 9 or the lower part of FIG. Second timing determination section 337 outputs the determined DFT timing to interference cancellation section 205, GI cancellation section 206-2, and DFT section 207-2. The interference removal unit 205 performs interference removal based on the DFT timing input from the second timing determination unit 337. The GI removal unit 206-2 performs GI removal based on the DFT timing input from the second timing determination unit 337. The DFT unit 207 performs DFT based on the DFT timing input from the second timing determination unit 337.
以上のように、本実施形態では、干渉除去部205を備えた信号検出部221-2において、受信電力を基準として推定したDFTタイミングに基づきデータ信号区間を決定する。これにより、干渉除去部205で行われる干渉処理を考慮してタイミングを決定できる。このように、本実施形態では複数の信号検出部における処理においてSINRと受信電力と異なる基準を用いて推定したタイミングに基づきデータ信号区間を決定する。本実施形態では、この区間のデータ信号を復号するため、受信装置200が良好な受信特性を得ることが可能となる。 As described above, in the present embodiment, the signal detection unit 221-2 including the interference removal unit 205 determines the data signal interval based on the DFT timing estimated with the received power as a reference. Thereby, the timing can be determined in consideration of the interference processing performed in the interference removal unit 205. As described above, in the present embodiment, the data signal interval is determined based on the timing estimated using different criteria for SINR and received power in the processing in the plurality of signal detection units. In the present embodiment, since the data signal in this section is decoded, it is possible for the receiving apparatus 200 to obtain good reception characteristics.
(第3の実施形態)
 以下、図面を参照しながら第3の実施形態について説明する。
 図15は、本実施形態に係る同期部403の構成を示す概略図である。本実施形態に係る受信装置は、第1の実施形態に係る受信装置200において同期部203に代えて、同期部403を備える。以下、第1の実施形態との差異点を主に説明する。
 同期部403は、フィルタ部231、相関部232、タイミング検出部233-1及び433-2を含んで構成される。即ち、同期部403は第1の実施形態に係る同期部203のタイミング検出部233-2に代えてタイミング検出部433-2を備える。
 タイミング検出部433-2は、パス検索部436と第2のタイミング決定部437を含んで構成される。パス検索部436は、相関部232から入力された複素振幅に基づき到来パスを推定し、推定した到来パスとそのサンプルポイントを第2のタイミング決定部437に出力する。パス検索部436は、例えば、相関部232から入力された複素振幅の絶対値の二乗が所定の閾値α以上の複素振幅を到来パスと推定し、その到来パスに係るサンプルポイントを決定する。
 第2のタイミング決定部437は、パス検索部436から入力された到来パスと推定された複素振幅のサンプルポイントのうち、最先のサンプルポイントをDFTタイミングと決定する。例えば、図6上段のように、|h|、|h|、|h|、|h|が到来パスと推定された場合、第2のタイミング決定部437は、最初に現れる|h|のサンプルポイントxがDFTタイミングとなる。
(Third embodiment)
The third embodiment will be described below with reference to the drawings.
FIG. 15 is a schematic diagram illustrating a configuration of the synchronization unit 403 according to the present embodiment. The receiving apparatus according to the present embodiment includes a synchronization unit 403 instead of the synchronization unit 203 in the receiving apparatus 200 according to the first embodiment. Hereinafter, differences from the first embodiment will be mainly described.
The synchronization unit 403 includes a filter unit 231, a correlation unit 232, and timing detection units 233-1 and 433-2. That is, the synchronization unit 403 includes a timing detection unit 433-2 instead of the timing detection unit 233-2 of the synchronization unit 203 according to the first embodiment.
The timing detection unit 433-2 includes a path search unit 436 and a second timing determination unit 437. The path search unit 436 estimates the arrival path based on the complex amplitude input from the correlation unit 232, and outputs the estimated arrival path and its sample point to the second timing determination unit 437. For example, the path search unit 436 estimates a complex amplitude whose square of the absolute value of the complex amplitude input from the correlation unit 232 is equal to or greater than a predetermined threshold α as an arrival path, and determines a sample point related to the arrival path.
The second timing determination unit 437 determines the earliest sample point of the complex amplitude sample points estimated as the incoming path input from the path search unit 436 as the DFT timing. For example, when | h 0 |, | h 1 |, | h 2 |, and | h 3 | are estimated as arrival paths as shown in the upper part of FIG. 6, the second timing determination unit 437 first appears | The sample point x 0 of h 0 | becomes the DFT timing.
 第2のタイミング決定部437は、決定したDFTタイミングを干渉除去部205、GI除去部206-2及びDFT部207-2に出力する。干渉除去部205は、第2のタイミング決定部437から入力されたDFTタイミングに基づいて、干渉除去を行う。GI除去部206-2は、第2のタイミング決定部437から入力されたDFTタイミングに基づいて、GI除去を行う。DFT部207は、第2のタイミング決定部437から入力されたDFTタイミングに基づいて、DFTを行う。 The second timing determining unit 437 outputs the determined DFT timing to the interference removing unit 205, the GI removing unit 206-2, and the DFT unit 207-2. The interference removal unit 205 performs interference removal based on the DFT timing input from the second timing determination unit 437. The GI removal unit 206-2 performs GI removal based on the DFT timing input from the second timing determination unit 437. The DFT unit 207 performs DFT based on the DFT timing input from the second timing determination unit 437.
 以上のように、本実施形態では、干渉除去部205を備えた信号検出部221-2において、到来パスのサンプルポイント(到来時刻)を基準として推定したDFTタイミングに基づき各処理を行う。これにより、有効な到来パス全てを用いた信号検出処理が可能となる。このように、本実施形態では複数の信号検出部においてSINR及び到来パスと異なる基準を用いて検出したタイミングによりデータ信号区間を決定する。本実施形態では、この区間のデータ信号を復号するため、受信装置200が良好な受信特性を得ることが可能となる。 As described above, in the present embodiment, the signal detection unit 221-2 including the interference removal unit 205 performs each process based on the DFT timing estimated based on the arrival path sample point (arrival time). Thereby, signal detection processing using all effective arrival paths becomes possible. As described above, in the present embodiment, the data signal section is determined based on the timing detected by the plurality of signal detection units using the SINR and the reference different from the arrival path. In the present embodiment, since the data signal in this section is decoded, it is possible for the receiving apparatus 200 to obtain good reception characteristics.
(第4の実施形態)
 以下、図面を参照しながら第4の実施形態について説明する。
 図16は、本実施形態に係る同期部503の構成を示す概略図である。本実施形態に係る受信装置は、第1の実施形態に係る受信装置200において同期部203に代えて、同期部503を備える。以下、第1の実施形態との差異点を主に説明する。
 同期部503は、フィルタ部231、相関部232、タイミング検出部533-1及び233-2を含んで構成される。即ち、同期部433は第1の実施形態に係る同期部203のタイミング検出部233-1に代えてタイミング検出部533-1を備える。
 なお、フィルタ部231は、タイミング検出部533-1が備えるDFT部542(後述)に帯域成分信号を出力する。
(Fourth embodiment)
Hereinafter, a fourth embodiment will be described with reference to the drawings.
FIG. 16 is a schematic diagram illustrating a configuration of the synchronization unit 503 according to the present embodiment. The receiving apparatus according to the present embodiment includes a synchronization unit 503 instead of the synchronization unit 203 in the receiving apparatus 200 according to the first embodiment. Hereinafter, differences from the first embodiment will be mainly described.
The synchronization unit 503 includes a filter unit 231, a correlation unit 232, and timing detection units 533-1 and 233-2. That is, the synchronization unit 433 includes a timing detection unit 533-1 instead of the timing detection unit 233-1 of the synchronization unit 203 according to the first embodiment.
The filter unit 231 outputs the band component signal to the DFT unit 542 (described later) included in the timing detection unit 533-1.
 図17は、本実施形態に係るタイミング検出部533-1の構成を示す概略図である。
タイミング検出部533-1は、パス検索部541、DFT部542、復調部543及び判定部544を含んで構成される。
 パス検索部541は、相関部232から入力された複素振幅に基づき到来パスを推定し、推定された到来パスのサンプルポイントをDFT部542に出力する。ここで、パス検索部541は、相関部232から入力された複素振幅の絶対値の二乗が予め設定された閾値αよりも大きい複素振幅を到来パスと推定し、その複素振幅に係るサンプルポイントを到来パスの到来時刻と決定する。例えば、図7上段に示すように|h|、|h|、|h|、|h|が到来パスと推定された場合、到来時刻となるサンプルポイントはx、x、x、xとなる。
FIG. 17 is a schematic diagram illustrating a configuration of the timing detection unit 533-1 according to the present embodiment.
The timing detection unit 533-1 includes a path search unit 541, a DFT unit 542, a demodulation unit 543, and a determination unit 544.
The path search unit 541 estimates the arrival path based on the complex amplitude input from the correlation unit 232 and outputs the estimated arrival path sample points to the DFT unit 542. Here, the path search unit 541 estimates a complex amplitude in which the square of the absolute value of the complex amplitude input from the correlation unit 232 is greater than a preset threshold value α as an incoming path, and sets a sample point related to the complex amplitude as a sample point. The arrival time of the arrival path is determined. For example, as shown in FIG. 7 upper | h 0 |, | h 1 |, | h 2 |, | h 3 | If is presumed arrival path, the sample point at which the arrival time is x 0, x 1, the x 2, x 3.
 DFT部542は、パス検索部541からサンプルポイントを入力され、フィルタ部231から帯域成分信号を入力される。DFT部542は、入力されたサンプルポイントを各々DFT区間の先頭、即ちDFTポイントとして予め設定されたDFT区間内であって、入力された帯域成分信号に含まれる同期信号が配置されたOFDMシンボルに対してDFTを行い周波数帯域成分信号に変換する。DFT部542は、変換した周波数帯域成分信号を復調部543に出力する。
 復調部543は、DFT部542から入力された周波数帯域成分信号のうち、同期信号が割り当てられたサブキャリアの成分を抽出し、抽出した成分について復調して復調信号を生成する。復調部543が行う復調処理は、送信装置100が備える制御信号生成部103が行った変調処理に対応する復調処理である。復調部543は、生成した復調信号を判定部544に出力する。
 判定部544は、復調部543から入力された復調信号に含まれる制御信号の系列と判定部544の記憶領域に記憶された同期処理に用いる制御信号(例えば、PSS)とを比較して、誤りを検出し、検出した誤りの頻度に基づき誤り率を算出する。
 例えば、図4に示すフォーマットでOFDMシンボルが入力された場合、サブキャリア63個に制御信号としてPSSが割り当てられるので、判定部544は、63ビットごとに誤りを検出し、検出された誤り数と各フレームに含まれるビット数63に基づき誤り率を算出する。
The DFT unit 542 receives sample points from the path search unit 541 and receives band component signals from the filter unit 231. The DFT unit 542 sets the input sample points to the OFDM symbol in which the synchronization signal included in the input band component signal is arranged in the DFT section set in advance as the head of the DFT section, that is, as the DFT point. Then, DFT is performed to convert the signal into a frequency band component signal. The DFT unit 542 outputs the converted frequency band component signal to the demodulation unit 543.
Demodulation section 543 extracts a subcarrier component to which a synchronization signal is assigned from the frequency band component signal input from DFT section 542, and demodulates the extracted component to generate a demodulated signal. The demodulation process performed by the demodulation unit 543 is a demodulation process corresponding to the modulation process performed by the control signal generation unit 103 included in the transmission device 100. Demodulation section 543 outputs the generated demodulated signal to determination section 544.
The determination unit 544 compares the control signal sequence included in the demodulated signal input from the demodulation unit 543 with the control signal (for example, PSS) used for the synchronization process stored in the storage area of the determination unit 544, and determines an error. And the error rate is calculated based on the detected error frequency.
For example, when an OFDM symbol is input in the format shown in FIG. 4, since PSS is assigned as a control signal to 63 subcarriers, the determination unit 544 detects an error every 63 bits, and determines the number of detected errors. The error rate is calculated based on the number of bits 63 included in each frame.
 DFT部542におけるDFT、復調部543における復調処理及び判定部544における誤り率の算出は、DFT区間に含まれるサンプルポイントごとに行う。図16に戻り、第1のタイミング検出部533-1は、算出された誤り率が最も小さくなるサンプルポイントをDFTタイミングと決定する。また、タイミング検出部533-1は、誤りの数が最も小さくなるサンプルポイントをDFTタイミングと決定してもよい。タイミング検出部533-1は、決定したDFTタイミングをGI除去部206-1及びDFT部207-1に出力する。GI除去部206-1は、タイミング検出部533-1から入力されたDFTタイミングに基づいて、GI除去を行う。DFT部207-1は、タイミング決定部533-1から入力されたDFTタイミングに基づいて、DFTを行う。なお、本実施形態に係る受信装置200は、タイミング検出部233-2の代わりに、第2の実施形態のタイミング検出部333-2又は第3の実施形態のタイミング検出部433-2を備えてもよい。 The DFT in the DFT unit 542, the demodulation processing in the demodulation unit 543, and the error rate calculation in the determination unit 544 are performed for each sample point included in the DFT interval. Returning to FIG. 16, the first timing detector 533-1 determines the sample point at which the calculated error rate is the smallest as the DFT timing. In addition, the timing detection unit 533-1 may determine the sample point with the smallest number of errors as the DFT timing. The timing detection unit 533-1 outputs the determined DFT timing to the GI removal unit 206-1 and the DFT unit 207-1. The GI removal unit 206-1 performs GI removal based on the DFT timing input from the timing detection unit 533-1. The DFT unit 207-1 performs DFT based on the DFT timing input from the timing determination unit 533-1. Note that the receiving apparatus 200 according to the present embodiment includes the timing detection unit 333-2 of the second embodiment or the timing detection unit 433-2 of the third embodiment instead of the timing detection unit 233-2. Also good.
 以上のように、本実施形態では、干渉除去部205を備えない信号検出部221-1において、同期信号の誤り率に基づいて推定したDFTタイミングに基づいて各処理を行う。これにより、GI長を超える遅延パスに起因した干渉を考慮してDFTタイミングを推定できる。このように、本実施形態では、複数の信号検出部において誤り率とSNRと異なる基準を用いて推定したタイミングに基づきデータ信号区間を決定する。本実施形態によれば、この区間の信号を復号するため、受信装置200は良好な受信特性を得ることが可能となる。 As described above, in this embodiment, the signal detection unit 221-1 that does not include the interference removal unit 205 performs each process based on the DFT timing estimated based on the error rate of the synchronization signal. Thereby, the DFT timing can be estimated in consideration of interference caused by a delay path exceeding the GI length. As described above, in the present embodiment, the data signal section is determined based on the timing estimated by using a reference different from the error rate and the SNR in the plurality of signal detection units. According to the present embodiment, since the signal in this section is decoded, the reception device 200 can obtain good reception characteristics.
(第5の実施形態)
 以下、図面を参照しながら第5の実施形態について説明する。
 図18は、本発明の第5の実施形態に係る送信装置700の構成を示す概略図である。
送信装置700は、符号部101-1~101-N(Nは空間多重数)、変調部102-1~102-N、制御信号生成部103-1~103-N、参照信号生成部104-1~104-N、リソースマッピング部105-1~105-N、IDFT部106-1~106-N、GI挿入部107-1~107-N、送信部108-1~108-N及び、アンテナ部109-1~109-Nを含んで構成される。
 送信装置700が備えるところの、符号部101-1~101-N、変調部102-1~102-N、制御信号生成部103-1~103-N、参照信号生成部104-1~104-N、リソースマッピング部105-1~105-N、IDFT部106-1~106-N、GI挿入部107-1~107-N、送信部108-1~108-N及びアンテナ部109-1~109-Nは、送信装置100が備えるところの、符号部101、変調部102、制御信号生成部103、参照信号生成部104、リソースマッピング部105、IDFT部106、GI挿入部107、送信部108及びアンテナ部109と各々同様の構成及び機能を有する。但し、送信装置が備える符号部101-1~101-Nには、各々異なる情報データが入力される。また、制御信号生成部103-1~103-Nには、各々異なる制御データが入力される。以下、本実施形態についても第1の実施形態との差異点を中心に説明する。
(Fifth embodiment)
Hereinafter, a fifth embodiment will be described with reference to the drawings.
FIG. 18 is a schematic diagram illustrating a configuration of a transmission device 700 according to the fifth embodiment of the present invention.
Transmitting apparatus 700 includes coding sections 101-1 to 101-N T (N T is the spatial multiplexing number), modulation sections 102-1 to 102-N T , control signal generation sections 103-1 to 103-N T , reference signals Generation units 104-1 to 104-N T , resource mapping units 105-1 to 105-N T , IDFT units 106-1 to 106-N T , GI insertion units 107-1 to 107-N T , and transmission unit 108- 1 ~ 108-N T and configured to include the antenna section 109-1 ~ 109-N T.
The transmission apparatus 700 includes encoders 101-1 to 101-N T , modulators 102-1 to 102-N T , control signal generators 103-1 to 103-N T , and reference signal generator 104-1. 104-N T , resource mapping units 105-1 to 105-N T , IDFT units 106-1 to 106-N T , GI insertion units 107-1 to 107-N T , and transmission units 108-1 to 108-N The T and antenna units 109-1 to 109-N T are provided in the transmission apparatus 100. The encoding unit 101, the modulation unit 102, the control signal generation unit 103, the reference signal generation unit 104, the resource mapping unit 105, and the IDFT unit 106 , The GI insertion unit 107, the transmission unit 108, and the antenna unit 109 have the same configuration and function. However, different pieces of information data are input to the encoding units 101-1 to 101- NT included in the transmission apparatus. Also, different control data is input to each of the control signal generators 103-1 to 103- NT . Hereinafter, the present embodiment will be described focusing on the differences from the first embodiment.
 送信部108-1~108-Nは、生成したOFDM信号をアンテナ109-1~109-Nから電波で受信装置600へ同時に送信する。送信装置700は、アンテナ109の本数、即ち空間多重数n=1の場合、SIS0(Single Input, Single Output)伝送となり、n=2以上の場合、MIMO(Multiple Input, Multiple Output)伝送となる。MIMO伝送において、各アンテナから出力される信号をストリームと呼ぶ。
 ここで、GI挿入部107―1~107-Nが出力する第l番目のOFDMシンボルの信号sl、n(t)は、次式で表される。
Transmitting sections 108-1 to 108- NT simultaneously transmit the generated OFDM signals from antennas 109-1 to 109- NT by radio waves to receiving apparatus 600. The transmission apparatus 700 performs SIS0 (Single Input, Single Output) transmission when the number of antennas 109, that is, the number of spatial multiplexing n = 1, and MIMO (Multiple Input, Multiple Output) transmission when n = 2 or more. In MIMO transmission, a signal output from each antenna is called a stream.
Here, the signals s l, n (t) of the l-th OFDM symbol output from the GI insertion units 107-1 to 107- NT are expressed by the following equations.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 ここで、Ck,l、nは、アンテナ109-n(n=1、...、N)から出力される第l番目のOFDMシンボルの第kサブキャリアに割り当てられたデータ変調シンボル、制御信号、又は参照信号である。
 以下では、アンテナ109-1~109-Nから出力される信号は各々、図3及び図4のフォーマットに従うものとして説明するが、これには限られない。なお、制御信号(例えば、PSS、SSS)については、アンテナ109-1~109-Nから出力されるOFDM信号のうち何れかに配置されていればよい。
 なお、図18に示す例では、リソースマッピング部105-1~105-Nは、制御信号生成部103-1~103-Nから入力された制御信号を各ストリームごとに制御信号を割り当てることを前提としているが、本実施形態では所定の一部のストリームにのみ他のストリームに対する制御データに基づく制御信号を割り当ててもよい。
Here, C k, l, n are data modulation symbols assigned to the kth subcarrier of the lth OFDM symbol output from antenna 109-n (n = 1,..., N T ), Control signal or reference signal.
In the following description, the signals output from the antennas 109-1 to 109- NT are described as following the formats of FIGS. 3 and 4, but the present invention is not limited to this. Note that the control signals (for example, PSS and SSS) may be arranged in any of the OFDM signals output from the antennas 109-1 to 109- NT .
In the example shown in FIG. 18, the resource mapping units 105-1 to 105-N T assign control signals input from the control signal generation units 103-1 to 103-N T for each stream. However, in this embodiment, a control signal based on control data for other streams may be assigned to only a predetermined part of the streams.
 次に、本実施形態に係る受信装置600について説明する。
 図19は、本実施形態に係る受信装置600の構成を示す概略図である。受信装置600は、アンテナ部201-1~201-N(Nは受信アンテナ数)、受信部202、同期部603、伝搬路推定部204、信号検出部621-1~621-3)、デマッピング部209-1~209-N、復調部210-1~210-N及び復号部211-1~211-N、切替部612を含んで構成される。
 受信装置600が備えるアンテナ部201-1~201-N、受信部202、同期部203、伝搬路推定部204、信号検出部621-1,621-2、デマッピング部209-1~209-N、復調部210-1~210-N及び復号部211-1~211-Nは、受信装置200が備える、アンテナ部201、受信部202、同期部203、伝搬路推定部204、信号検出部221-1,221-2、デマッピング部209、復調部210及び復号部211と各々同様な構成及び機能を有する。なお、本実施形態に係る受信装置600についても第1の実施形態に係る受信装置100との差異点を主に説明する。
Next, the receiving apparatus 600 according to the present embodiment will be described.
FIG. 19 is a schematic diagram illustrating a configuration of a receiving device 600 according to the present embodiment. Receiving device 600 includes antenna units 201-1 to 201-N R (N R is the number of receiving antennas), receiving unit 202, synchronization unit 603, propagation path estimation unit 204, signal detection units 621-1 to 621-3), Demapping units 209-1 to 209-N T , demodulation units 210-1 to 210-N T, decoding units 211-1 to 211-N T , and a switching unit 612 are included.
Antenna units 201-1 to 201-N R provided in receiving apparatus 600, receiving unit 202, synchronizing unit 203, propagation path estimating unit 204, signal detecting units 621-1 and 621-2, and demapping units 209-1 to 209- N T , demodulation units 210-1 to 210 -N T and decoding units 211-1 to 211 -N T are provided in the reception apparatus 200, including an antenna unit 201, a reception unit 202, a synchronization unit 203, a propagation path estimation unit 204, Each of the signal detection units 221-1 and 221-2, the demapping unit 209, the demodulation unit 210, and the decoding unit 211 has the same configuration and function. Note that the difference between the receiving apparatus 600 according to the present embodiment and the receiving apparatus 100 according to the first embodiment will be mainly described.
 受信部202は、アンテナ部201-1~201-Nが受信した送信装置700から送信されたOFDM信号を入力され、入力されたOFDM信号をディジタル信号処理が可能な周波数帯域へダウンコンバートする。受信部202は、ダウンコンバートした信号にフィルタリング処理を行って不要成分を除去し、フィルタリング処理した信号をアナログ信号からディジタル信号に変換(A/D変換)する。受信部202は、変換されたディジタル信号を、伝搬路推定部204、同期部603及び信号検出部621-1~621-3に出力する。
 同期部603は、受信部から入力されたディジタル信号に含まれる制御信号と自己が備える記憶領域に記憶された制御信号から相関値を算出し、算出した相関値に基づいてDFTタイミングを検出する。同期部603は、検出したDFTタイミングを信号検出部621-1~621-3、即ち干渉除去部205、GI除去部206-1~206-3、DFT部207-1~207-3、伝搬路補償部608-1、608-2、及び最尤検出部610に出力する。また、同期部603は切替部612に算出した相関値を出力する。
 伝搬路推定部204は、送信装置700のアンテナ部109-1~109-Nから受信装置600のアンテナ部201-1~201-Nまでの伝搬路特性を推定し、推定された伝搬路特性を信号検出部621-1~621-3に出力する。この伝搬路特性は、アンテナ部109-1~109-Nとアンテナ部201-1~201-Nとの間におけるフェージングなどによる振幅と位相の変動を表す。ここで、伝搬路推定部204は、伝搬路特性を、例えば、受信部202から入力されるディジタル信号に含まれる参照信号(例えば、図4に示すリソースマッピングで示されたOFDM信号のうち右上がり斜線部分のリソースエレメントに割り当てられる信号)と自己が備える記憶領域に記憶された参照信号に基づいて推定する。
Receiving unit 202 is input an OFDM signal transmitted from the transmitter 700 to the antenna unit 201-1 ~ 201-N R received, digital signal processing the input OFDM signal is down-converted to a frequency band available. The receiving unit 202 performs filtering processing on the down-converted signal to remove unnecessary components, and converts the filtered signal from an analog signal to a digital signal (A / D conversion). The reception unit 202 outputs the converted digital signal to the propagation path estimation unit 204, the synchronization unit 603, and the signal detection units 621-1 to 621-3.
The synchronization unit 603 calculates a correlation value from the control signal included in the digital signal input from the reception unit and the control signal stored in the storage area included in the synchronization unit 603, and detects the DFT timing based on the calculated correlation value. The synchronization unit 603 uses the detected DFT timings as signal detection units 621-1 to 621-3, that is, the interference removal unit 205, the GI removal units 206-1 to 206-3, the DFT units 207-1 to 207-3, the propagation path The data is output to the compensation units 608-1 and 608-2 and the maximum likelihood detection unit 610. The synchronization unit 603 outputs the calculated correlation value to the switching unit 612.
The propagation path estimation unit 204 estimates propagation path characteristics from the antenna units 109-1 to 109- NT of the transmission apparatus 700 to the antenna units 201-1 to 201-N R of the reception apparatus 600, and the estimated propagation path The characteristics are output to the signal detectors 621-1 to 621-3. The propagation path characteristic represents variation in amplitude and phase due to fading between the antenna unit 109-1 ~ 109-N T and the antenna unit 201-1 ~ 201-N R. Here, the propagation path estimation unit 204 sets the propagation path characteristic to, for example, the reference signal included in the digital signal input from the reception unit 202 (for example, the rightward of the OFDM signals indicated by the resource mapping shown in FIG. 4). And a reference signal stored in a storage area provided by itself.
 切替部612は、受信部から入力されたディジタル信号を信号検出部621-1(bに接続)、信号検出部621-2(cに接続)、又は信号検出部621-3(aに接続)に出力する。切替部612は、これらの出力先を復号部211-1~211-Nから入力される信号、又は同期部603から入力される
 例えば、切替部612は、同期部603が算出した相関値(遅延プロファイル)において、GI長を超える遅延パスを検出した場合、受信装置600は、受信部202から入力されたディジタル信号を信号検出部621-1及び621-2に出力する(b、cに接続)。
 さらに、切替部612は、受信部202から出力されるディジタル信号が復号部211で1回以上復号処理を行われた場合、受信部202から入力されたディジタル信号を信号検出部621-2に出力する(cに接続)。
 一方、切替部612は、受信部202から出力されるディジタル信号が復号部211-1~211-Nで1回も復号処理が行われていない場合、受信部202から入力されたディジタル信号を信号検出部621-1に出力する(bに接続)。
 また、切替部612は、同期部603から入力された相関値(遅延プロファイル)において、GI長を超える遅延パスを検出せず、かつ空間多重数nが2未満である場合、受信部202から入力されたディジタル信号を信号検出部621-1に出力する(bに接続)。
 また、切替部612は、同期部603から入力された相関値において、GI長を超える遅延パスを検出せず、かつ空間多重数nが2以上である場合、入力されたディジタル信号を信号検出部621-3に出力する(aに接続)。
 空間多重数nは、送信装置700が送信するOFDM信号に含まれる制御信号の制御情報の一部であり、切替部612は受信部202から入力されたディジタル信号から、この空間多重数nを抽出する。
The switching unit 612 receives the digital signal input from the receiving unit as a signal detection unit 621-1 (connected to b), a signal detection unit 621-2 (connected to c), or a signal detection unit 621-3 (connected to a) Output to. Switching unit 612, the signal is input to these destinations from decoding section 211-1 ~ 211-N T, or for example, is input from the synchronization unit 603, switching unit 612, the correlation value synchronization unit 603 is calculated ( When a delay path exceeding the GI length is detected in the delay profile), the receiving apparatus 600 outputs the digital signal input from the receiving unit 202 to the signal detecting units 621-1 and 621-2 (connected to b and c). ).
Further, the switching unit 612 outputs the digital signal input from the receiving unit 202 to the signal detecting unit 621-2 when the digital signal output from the receiving unit 202 is decoded one or more times by the decoding unit 211. (Connect to c).
On the other hand, the switching unit 612, if the digital signal output from the receiving unit 202 also decoding is not performed once by the decoding unit 211-1 ~ 211-N T, a digital signal input from the reception unit 202 The signal is output to the signal detector 621-1 (connected to b).
In addition, the switching unit 612 does not detect a delay path exceeding the GI length in the correlation value (delay profile) input from the synchronization unit 603 and the input from the reception unit 202 when the spatial multiplexing number n is less than 2. The digital signal thus output is output to the signal detector 621-1 (connected to b).
In addition, the switching unit 612 does not detect a delay path exceeding the GI length in the correlation value input from the synchronization unit 603, and if the spatial multiplexing number n is 2 or more, the switching unit 612 converts the input digital signal into a signal detection unit Output to 621-3 (connected to a).
The spatial multiplexing number n is a part of the control information of the control signal included in the OFDM signal transmitted by the transmitting apparatus 700, and the switching unit 612 extracts the spatial multiplexing number n from the digital signal input from the receiving unit 202. To do.
 信号検出部621-1~621-3は、いずれもGI除去部206-1~206-3及びDFT部207-1~207-3を含んで構成される。また、GI除去部206-1~206-3及びDFT部207-1~207-3は、受信装置のGI除去部206及びDFT部207と各々同様の構成及び機能を有する。
 信号検出部621-1は、GI除去部206-1及びDFT部207-1の他、伝搬路推定部608-1を含んで構成される。
 GI除去部206-1が行うGI長の区間の除去及びDFT部207-1が行うDFTは、同期部603が備える第1のタイミング検出部から入力されたDFTタイミングを始点として、予め設定されたFFT区間長Tの区間に対して行われる。
 DFT部207-1が出力する第lOFDMシンボルの第kサブキャリアにおける出力信号R k,lは、次式で表わされる。
Each of the signal detection units 621-1 to 621-3 includes GI removal units 206-1 to 206-3 and DFT units 207-1 to 207-3. Also, the GI removal units 206-1 to 206-3 and the DFT units 207-1 to 207-3 have the same configurations and functions as the GI removal unit 206 and the DFT unit 207 of the receiving apparatus, respectively.
The signal detection unit 621-1 includes a propagation path estimation unit 608-1 in addition to the GI removal unit 206-1 and the DFT unit 207-1.
The removal of the GI length section performed by the GI removal unit 206-1 and the DFT performed by the DFT unit 207-1 are set in advance starting from the DFT timing input from the first timing detection unit provided in the synchronization unit 603. This is performed for the section of the FFT section length Tf .
Output signals R 1 to k, l in the k-th subcarrier of the l-th OFDM symbol output from DFT section 207-1 are expressed by the following equations.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 ここで、R k,lは、アンテナ201-m(m=1、…、N)毎のDFT部207-1~207-3からの出力R k,l,mを要素にもつN列のベクトル[R k,l,1 …  R k,l,NRである。Hk,lはアンテナ109-nからアンテナ201-mまでの伝搬路特性(周波数応答)Hk,l,mnを要素とする次式で示されるN×Nの行列である。 Here, R 1 to k, l are N elements having outputs R 1 to k, l and m from the DFT units 207-1 to 207-3 for each antenna 201-m (m = 1,..., N R ) as elements. vector of the R column [R ~ k, l, 1 ... R ~ k, l, NR] is T. H k, l is a matrix of N R × N T expressed by the following equation having propagation path characteristics (frequency response) H k, l, mn from the antenna 109-n to the antenna 201-m.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 Sk、lは送信装置700の変調部102-nが出力する変調シンボルck,l,nを要素とするN列のベクトル[ck,l,1 …  ck,l,NTである。また、Nk、lはアンテナ201-m毎の雑音成分Nk,l,mを要素とするN×1のベクトル[Nk,l,1 … Nk,l,NRである。 S k, l is the modulation symbol c k output from the modulating unit 102-n of the transmission device 700, l, N and the n elements T columns of the vector [c k, l, 1 ... c k, l, NT] T It is. N k, l is an N R × 1 vector [N k, l, 1 ... N k, l, NR ] T having noise components N k, l, m for each antenna 201-m as elements.
 伝搬路補償部608-1は、伝搬路推定部204から入力された伝搬路特性に基づき伝搬路歪を補正する重み係数を算出し、算出した重み係数をDFT部207から入力された周波数領域信号に乗算して伝搬路補償信号を生成する。
 伝搬路補償部608-1が重み係数を算出する方式は、伝搬路補償部208-αと同様に、例えばZF(Zero Forcing)、MMSE(Minimum Mean Square Error)を用いることができる。
 ここで、DFT部207-1から入力された周波数領域信号が空間多重された信号(MIMO信号)である(n=2以上)場合は、MIMO分離処理を行い、変調シンボルSk、lを検出する。伝搬路補償部608-1は、例えば、ZFによるMIMO分離処理として次式を用いて算出したZF重み係数行列MZF,kをベクトルR k,lの左から乗算して、変調シンボルSk,lを検出する。
The propagation path compensation unit 608-1 calculates a weighting factor for correcting the propagation path distortion based on the propagation path characteristic input from the propagation path estimation unit 204, and the calculated weighting factor is a frequency domain signal input from the DFT unit 207. To generate a propagation path compensation signal.
As a method of calculating the weighting factor by the propagation path compensation unit 608-1, for example, ZF (Zero Forcing) and MMSE (Minimum Mean Square Error) can be used as in the propagation path compensation unit 208-α.
Here, when the frequency domain signal input from DFT section 207-1 is a spatially multiplexed signal (MIMO signal) (n = 2 or more), MIMO separation processing is performed to detect modulation symbols Sk, l To do. The propagation path compensation unit 608-1, for example, multiplies the ZF weight coefficient matrix M ZF, k calculated using the following equation as the MIMO separation processing by ZF from the left of the vectors R 1 to K, l , and modulates the modulation symbol S k , L are detected.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 伝搬路補償部608-1は、例えば、MMSE基準によるMIMO分離処理として次式を用いて算出したMMSE重み係数MMMSE,kをベクトルR k,lの左から乗算して、変調シンボルSk,lを検出してもよい。 The propagation path compensation unit 608-1, for example, multiplies the MMSE weight coefficient M MMSE, k calculated using the following equation as the MIMO separation processing based on the MMSE standard from the left of the vectors R 1 to k, l , and modulates the modulation symbol S k. , L may be detected.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 ただし、は行列の複素共役転置、-1は逆行列、σは雑音電力、Iは単位行列である。
 信号検出部621-2は、干渉除去部605、GI除去部206-2、DFT部207-2及び伝搬路推定部608-2を含んで構成される。
 GI除去部206-2が行うGI長の区間の除去及びDFT部207-2が行うDFTは、同期部603が備える第2のタイミング検出部から入力されたDFTタイミングを始点とするFFT区間長Tの区間について行われる。
 干渉除去部205は、受信部202から入力されたMIMO信号(空間多重数n=2以上)に基づくディジタル信号から、伝搬路補償部204から入力された伝搬路特性、復号部211-nから入力された軟判定値を用いて、干渉成分を除去する。干渉除去部605は、干渉成分を除去して得られた残差信号をGI除去部206-2に出力する。なお、干渉除去部205は、そのMIMO信号を構成する、あるストリームの信号に対して干渉成分である他のストリームの信号を除去してもよい。例えば、干渉除去部205は、アンテナ109-1から受信したストリーム1の信号に対して、アンテナ109-2~109-Nから各々受信したストリーム2~Nの信号を除去してもよい。
 他のストリームの信号を除去するために、干渉除去部205が備える減算部252は、あるストリームの干渉レプリカと他のストリームのレプリカをあるストリームの信号から減算する。干渉除去部205が備えるレプリカ生成部251は、伝搬路推定部204から入力された伝搬路特性及び他のストリームに対する軟判定値を用いて、干渉レプリカと同様な処理によって、他のストリームのレプリカを生成する。
Where H is the complex conjugate transpose of the matrix, −1 is the inverse matrix, σ N is the noise power, and I is the unit matrix.
The signal detection unit 621-2 includes an interference removal unit 605, a GI removal unit 206-2, a DFT unit 207-2, and a propagation path estimation unit 608-2.
The GI length section removal performed by the GI removal section 206-2 and the DFT performed by the DFT section 207-2 are FFT section lengths T starting from the DFT timing input from the second timing detection section provided in the synchronization section 603. This is performed for the interval f .
The interference canceller 205 receives the propagation path characteristic input from the propagation path compensator 204 and the input from the decoder 211-n from the digital signal based on the MIMO signal (spatial multiplexing number n = 2 or more) input from the receiver 202. An interference component is removed using the determined soft decision value. The interference removal unit 605 outputs the residual signal obtained by removing the interference component to the GI removal unit 206-2. Note that the interference removal unit 205 may remove a signal of another stream that is an interference component from a signal of a certain stream that constitutes the MIMO signal. For example, the interference removal unit 205 may remove the stream 2 to NT signals received from the antennas 109-2 to 109- NT from the stream 1 signal received from the antenna 109-1.
In order to remove the signals of other streams, the subtraction unit 252 included in the interference removal unit 205 subtracts the interference replica of a certain stream and the replica of the other stream from the signal of the certain stream. The replica generation unit 251 included in the interference removal unit 205 uses the propagation path characteristics input from the propagation path estimation unit 204 and the soft decision values for other streams to perform replicas of other streams by processing similar to the interference replica. Generate.
 信号検出部621-3は、GI除去部206-3、DFT部207-3及び最尤検出部610を含んで構成される。  
 GI除去部206-3が行うGI長の区間の除去及びDFT部207-3が行うDFTは、同期部603が備える第1のタイミング検出部から入力されたDFTタイミングに基づいて行われる。
 最尤検出部610は、DFT部207-3から入力された周波数領域信号のうち、情報データに基づく部分に対して最尤検出を行い、ストリーム毎にビット対数尤度比を算出する。最尤検出部610は、算出したストリーム毎のビット対数尤度比を復号部211-nに出力する。ここで、変調シンボルSk,lに含まれる情報データのビット系列βk,lは、[bk,l,1,0 … bk,l,1,M-1 … bk,l,NT,M-1]である。Mは変調多値数であり、例えば変調方式QPSKについてはM=2、16QAMについてはM=4である。また、bk,l,t,qは情報データを構成する第tストリームのq番目のビットを表わす。以下の説明では、シンボルのを示す添え字l、サブキャリアを示す添え字kを省略する。すなわち、βk,lをβ、bk,l,t,qをbt,qと表記する。
 最尤検出部610は、ビットbt,qのビット対数尤度比λ(bt,q)を、例えば次式を用いて算出する。
The signal detection unit 621-3 includes a GI removal unit 206-3, a DFT unit 207-3, and a maximum likelihood detection unit 610.
The removal of the GI length section performed by the GI removal unit 206-3 and the DFT performed by the DFT unit 207-3 are performed based on the DFT timing input from the first timing detection unit included in the synchronization unit 603.
The maximum likelihood detection unit 610 performs maximum likelihood detection on a portion based on information data in the frequency domain signal input from the DFT unit 207-3, and calculates a bit log likelihood ratio for each stream. The maximum likelihood detection unit 610 outputs the calculated bit log likelihood ratio for each stream to the decoding unit 211-n. Here, the bit sequence β k, l of the information data included in the modulation symbol S k, l is represented by [b k, l, 1,0 ... b k, l, 1, M-1 ... b k, l, NT , M−1 ]. M is a modulation multi-level number. For example, M = 2 for the modulation scheme QPSK and M = 4 for 16QAM. Further, b k, l, t, and q represent the q-th bit of the t-th stream constituting the information data. In the following description, the subscript l indicating the symbol and the subscript k indicating the subcarrier are omitted. That is, β k, l is expressed as β, b k, l, t, q is expressed as b t, q .
The maximum likelihood detection unit 610 calculates the bit log likelihood ratio λ (b t, q ) of the bits b t, q using, for example, the following equation.
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 デマッピング部209―1~209-Nは、伝搬路補償部608―1、608-2から入力された伝搬路補償信号からデータ変調シンボルを抽出し、抽出したデータ変調シンボルを復調部210-1~210-Nに出力する。
 復調部210-1~210-Nは、デマッピング部209-1~209-Nから入力されたデータ変調シンボルに対して復調処理を行い、軟判定値を算出し、算出した軟判定値を復号部211―1~211-Nに出力する。なお、空間多重数が2以上の場合、ストリーム毎にデマッピング部209-1~209-Nにおけるデマッピング処理、復調部210-1~210-Nにおける復調処理が行われる。
 復号部211-1~211-Nは、復調部210-1~210-Nから入力された軟判定値に対して、誤り訂正復号処理を行い、誤り訂正された軟判定値を干渉除去部205に出力する。また、復号部211-1~211-Nは、誤り訂正復号後の情報ビットに誤りが無い場合、又は繰り返し処理が予め設定された繰り返し回数に達した場合、誤り訂正した軟判定値を情報データとして出力する。
 また、復号部211-1~211-Nは、受信部202から出力されたディジタル信号に復号処理を行ったか否かを示す信号、復号処理において誤りが検出されたか否かを示す信号、又は受信部202から出力されたディジタル信号に対し復号処理を行った回数を示す信号を切替部612にそれぞれ出力する。これらの信号は、切替部612において上述の処理に用いられる。
Demapping section 209-1 ~ 209-N T extracts data modulation symbols from the channel compensation signal input from the channel compensation unit 608-1,608-2, demodulates the extracted data modulation symbol unit 210- Output to 1-210- NT .
Demodulation sections 210-1 to 210- NT perform demodulation processing on the data modulation symbols input from demapping sections 209-1 to 209- NT , calculate soft decision values, and calculate soft decision values. It is output to the decoding unit 211-1 ~ 211-N T. When the number of spatial multiplexing is 2 or more, demapping processing in demapping sections 209-1 to 209- NT and demodulation processing in demodulation sections 210-1 to 210- NT are performed for each stream.
Decoding sections 211-1 to 211 -N T perform error correction decoding processing on soft decision values input from demodulation sections 210-1 to 210 -N T , and eliminate interference of soft correction values corrected for errors The data is output to the unit 205. Further, the decoding unit 211-1 ~ 211-N T, if no error is the information bits after error correction decoding, or when the iteration process reaches a preset number of iterations, the information a soft decision value obtained by the error correction Output as data.
Further, the decoding unit 211-1 ~ 211-N T, a signal indicating whether or not subjected to decoding processing to the digital signal output from the receiving unit 202, a signal indicating whether an error is detected in the decoding process, or Signals indicating the number of times the decoding process is performed on the digital signal output from the receiving unit 202 are output to the switching unit 612, respectively. These signals are used by the switching unit 612 for the above-described processing.
 以上説明したように、本実施形態では、信号検出部621-1及び621-3は、同期部203から入力された第1のDFTタイミングに基づいて信号検出処理を行い、信号検出部621-2は、同期部203から入力された第2のDFTタイミングに基づいて信号検出処理を行う。すなわち、本実施形態における受信装置600は、各信号検出部は、複数の異なる基準、例えばSINR及びSNRで検出されたタイミングのうちの1つに基づいて、各々データ信号区間を決定する。この区間のデータ区間を復号することにより、本実施形態に係る受信装置600は、良好な受信特性を得ることが可能となる。
 なお、上述した実施形態における送信装置100、700が送信する信号に、プレコーディング、拡散等が施されていても、同様に適用することが可能である。
As described above, in the present embodiment, the signal detection units 621-1 and 621-3 perform signal detection processing based on the first DFT timing input from the synchronization unit 203, and the signal detection unit 621-2. Performs signal detection processing based on the second DFT timing input from the synchronization unit 203. That is, in the receiving apparatus 600 in the present embodiment, each signal detection unit determines each data signal section based on one of a plurality of different references, for example, timings detected by SINR and SNR. By decoding the data section of this section, the receiving apparatus 600 according to the present embodiment can obtain good reception characteristics.
In addition, even if precoding, spreading, and the like are performed on the signals transmitted by the transmission apparatuses 100 and 700 in the above-described embodiment, the same applies.
 なお、上述した実施形態における受信装置200、600又は送信装置100、700の一部、例えば、符号部101、101-1~101-N、変調部102、102-1~102-N、制御信号生成部103、103-1~103-N、参照信号生成部104、104-1~104-N、リソースマッピング部105、105-1~105-N、IDFT部106、106-1~106-N、GI挿入部107、107-1~107-N、同期部203、伝搬路推定部204、信号検出部211-1,211-2、621-1~621~3、デマッピング部209、209-1~209-N、復調部210、210-1~210-N、及び復号部211、211-1~211-Nをコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。
 なお、ここでいう「コンピュータシステム」とは、受信装置200、600又は送信装置100、700に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態における受信装置200、600及び送信装置100、700装置の一部、または全部を、LSI(Large Scale Integration)等の集積回路として実現しても良い。受信装置200、600及び送信装置100、700の各機能ブロックは個別にプロセッサ化してもよいし、一部、または全部を集積してプロセッサ化しても良い。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いても良い。
Note that a part of the receiving devices 200 and 600 or the transmitting devices 100 and 700 in the above-described embodiment, for example, the encoding units 101, 101-1 to 101-N T , the modulation units 102, 102-1 to 102-N T , Control signal generators 103, 103-1 to 103-N T , reference signal generators 104, 104-1 to 104-N T , resource mapping units 105, 105-1 to 105-N T , IDFT units 106 and 106- 1 to 106-N T , GI insertion unit 107, 107-1 to 107-N T , synchronization unit 203, propagation path estimation unit 204, signal detection units 211-1, 211-2, 621-1 to 621-3, Demapping units 209, 209-1 to 209-N T , demodulating units 210, 210-1 to 210-N T , and decoding units 211, 211-1 to 211-N T are realized by a computer You may make it do. In that case, the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed.
Here, the “computer system” is a computer system built in the receiving devices 200 and 600 or the transmitting devices 100 and 700 and includes hardware such as an OS and peripheral devices. The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, In such a case, a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
In addition, a part or all of the receiving devices 200 and 600 and the transmitting devices 100 and 700 in the above-described embodiment may be realized as an integrated circuit such as an LSI (Large Scale Integration). Each functional block of the receiving devices 200 and 600 and the transmitting devices 100 and 700 may be individually made into a processor, or a part or all of them may be integrated into a processor. Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, in the case where an integrated circuit technology that replaces LSI appears due to progress in semiconductor technology, an integrated circuit based on the technology may be used.
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to that described above, and various design changes and the like can be made without departing from the scope of the present invention. It is possible to
 以上のように、本発明における受信装置、受信方法、受信プログラム、及び通信システムは、無線通信に有用であり、特に携帯電話等の移動体通信に適している。 As described above, the receiving apparatus, receiving method, receiving program, and communication system according to the present invention are useful for wireless communication, and are particularly suitable for mobile communication such as a mobile phone.
100、700…送信装置、
101、101-1~101-N…符号部、
102、102-1~102-N…変調部、
103、103-1~103-N…制御信号生成部、
104、104-1~104-N…参照信号生成部、
105、105-1~105-N…リソースマッピング部、
106、106-1~206-N…IDFT部、
107、107-1~107-N、244…GI挿入部、
108、108-1~108-N…送信部、
109、109-1~109-N…アンテナ部、
200、600…受信装置、
201、201-1~201-N…アンテナ部、202…受信部、203、303、403、503,603…同期部、
204…伝搬路推定部、205…干渉除去部、
206-1~206-3…GI除去部、
207-1~207-3、542…DFT部、
208-1,208-2、608-1,608-2…伝搬路補償部、
209、209-1~209-N…デマッピング部、
210、210-1~210-N、543…復調部、
211、211-1~211-N…復号部、212、612…切替部、221-1,221-2、621-1~621-3…信号検出部、
231…フィルタ部、232…相関部、
233-1、233-2、333-2、433-2、533-1…タイミング検出部、
234…SINR推定部、235…第1のタイミング決定部、
236…SNR推定部、237、337、437…第2のタイミング決定部、
241…シンボルレプリカ生成部、242…マッピング部、243…IDFT部、
244…GI挿入部、245…干渉レプリカ生成部、
251…レプリカ生成部、252…減算部、
336…電力推定部、436、541…パス検索部、544…判定部、
610…最尤検出部
100, 700 ... transmitting device,
101, 101-1 to 101-N T ... code part,
102, 102-1 to 102-N T ... modulation unit,
103, 103-1 to 103-N T ... control signal generation unit,
104, 104-1 to 104-N T ... Reference signal generator,
105, 105-1 to 105-N T ... Resource mapping unit,
106, 106-1 to 206-N T IDFT section,
107, 107-1 to 107-N T , 244... GI insertion part,
108, 108-1 to 108-N T ... transmission unit,
109, 109-1 to 109-N T ... antenna part,
200, 600 ... receiving device,
201, 201-1 to 201-N R ... antenna unit, 202 ... receiving unit, 203, 303, 403, 503,603 ... synchronizing unit,
204 ... propagation path estimation unit, 205 ... interference removal unit,
206-1 to 206-3 ... GI removal unit,
207-1 to 207-3, 542 ... DFT section,
208-1, 208-2, 608-1, 608-2 ... propagation path compensation unit,
209, 209-1 to 209-N T ... demapping unit,
210, 210-1 to 210-N T , 543 ... demodulator,
211, 211-1 to 211-N T ... decoding unit, 212, 612 ... switching unit, 221-1, 221-2, 621-1 to 621-3 ... signal detection unit,
231 ... Filter unit, 232 ... Correlation unit,
233-1, 233-2, 333-2, 433-2, 533-1... Timing detection unit,
234 ... SINR estimation unit, 235 ... first timing determination unit,
236 ... SNR estimation unit, 237, 337, 437 ... second timing determination unit,
241 ... Symbol replica generation unit, 242 ... Mapping unit, 243 ... IDFT unit,
244 ... GI insertion unit, 245 ... interference replica generation unit,
251 ... Replica generation unit, 252 ... Subtraction unit,
336 ... power estimation unit, 436, 541 ... path search unit, 544 ... determination unit,
610 ... Maximum likelihood detection unit

Claims (22)

  1.  信号を受信する受信部と、
     前記受信信号から予め定められた長さの区間の信号を抽出する複数の信号検出部と、
     前記抽出された区間の信号を復号する復号部と、
     前記受信信号から各々異なる基準で複数のタイミングを検出する同期部と、
     を備え、
     前記信号検出部の各々は、前記検出された複数のタイミングのうち1つを用いて信号を抽出する区間を定めること、
     を特徴とする受信装置。
    A receiver for receiving the signal;
    A plurality of signal detectors that extract a signal of a predetermined length from the received signal;
    A decoding unit for decoding the signal of the extracted section;
    A synchronization unit for detecting a plurality of timings based on different references from the received signal;
    With
    Each of the signal detection units determines a section for extracting a signal using one of the detected timings;
    A receiver characterized by.
  2.  前記複数の信号検出部は、第1の信号検出部と第2の信号検出部を含み、
     前記第1の信号検出部は、
      前記受信信号を時間領域から周波数領域に変換する時間周波数変換部を備え、
     前記第2の信号検出部は、
      前記復号部において復号された信号に基づいて生成した干渉レプリカを前記受信した信号から除去した残差信号を生成する干渉除去部と、
     前記残差信号を時間領域から周波数領域に変換する時間周波数変換部と、を備え、
     前記第1の信号検出部と前記第2の信号検出部は各々異なるタイミングを用いて信号を抽出する区間を定めること、
     を特徴とする請求項1に記載の受信装置。
    The plurality of signal detection units include a first signal detection unit and a second signal detection unit,
    The first signal detection unit includes:
    A time frequency conversion unit for converting the received signal from the time domain to the frequency domain;
    The second signal detector is
    An interference cancellation unit that generates a residual signal by removing an interference replica generated based on the signal decoded by the decoding unit from the received signal;
    A time frequency conversion unit for converting the residual signal from the time domain to the frequency domain,
    The first signal detection unit and the second signal detection unit each define a section for extracting a signal using different timings;
    The receiving apparatus according to claim 1.
  3. 前記受信信号に対して、前記第1の信号検出部が処理を行い、
     その後、前記第2の信号検出部が、予め定められた条件が満たされるまで繰り返し行うこと、
     を特徴とする請求項2に記載の受信装置。
    The first signal detector performs processing on the received signal,
    Thereafter, the second signal detector repeats until a predetermined condition is satisfied,
    The receiving device according to claim 2.
  4. 前記同期部は、前記基準の1つとして前記受信信号の信号対干渉雑音比に基づいて前記タイミングを検出することを特徴とする請求項1に記載の受信装置。 The receiving apparatus according to claim 1, wherein the synchronization unit detects the timing based on a signal-to-interference noise ratio of the received signal as one of the references.
  5. 前記同期部は、前記信号対干渉雑音比が最大となるタイミングを検出することを特徴とする請求項4に記載の受信装置。 The receiving apparatus according to claim 4, wherein the synchronization unit detects a timing at which the signal-to-interference noise ratio is maximized.
  6. 前記同期部は、前記基準の1つとして前記受信信号の信号対干渉雑音比に基づいて前記タイミングを検出し、
     前記第1の信号検出部が、前記検出されたタイミングに基づいて信号を抽出する区間を定めることを特徴とする請求項2に記載の受信装置。
    The synchronization unit detects the timing based on a signal-to-interference noise ratio of the received signal as one of the criteria,
    The receiving apparatus according to claim 2, wherein the first signal detection unit determines a section in which a signal is extracted based on the detected timing.
  7. 前記同期部は、前記基準の1つとして前記受信信号の信号対雑音比に基づいて前記タイミングを検出することを特徴とする請求項1に記載の受信装置。 The receiving apparatus according to claim 1, wherein the synchronization unit detects the timing based on a signal-to-noise ratio of the received signal as one of the references.
  8. 前記同期部は、前記信号対雑音比が最大となるタイミングを検出することを特徴とする請求項7に記載の受信装置。 The receiving apparatus according to claim 7, wherein the synchronization unit detects a timing at which the signal-to-noise ratio is maximized.
  9. 前記同期部が、前記基準の1つとして前記受信信号の信号対雑音比に基づいて前記タイミングを検出し、
     前記第2の信号検出部が、前記検出されたタイミングに基づいて信号を抽出する区間を定めることを特徴とする請求項2に記載の受信装置。
    The synchronization unit detects the timing based on a signal-to-noise ratio of the received signal as one of the criteria,
    The receiving apparatus according to claim 2, wherein the second signal detection unit determines a section in which a signal is extracted based on the detected timing.
  10. 前記同期部は、前記基準の1つとして前記受信信号の電力に基づいて前記タイミングを検出することを特徴とする請求項1に記載の受信装置。 The receiving apparatus according to claim 1, wherein the synchronization unit detects the timing based on power of the received signal as one of the references.
  11. 前記同期部は、前記受信信号の電力が最大となるタイミングを検出することを特徴とする請求項10に記載の受信装置。 The receiving apparatus according to claim 10, wherein the synchronization unit detects a timing at which the power of the received signal becomes maximum.
  12. 前記同期部は、前記基準の1つとして前記受信信号の電力に基づいて前記タイミングを検出し、
     前記第2の信号検出部が、前記検出されたタイミングに基づいて信号を抽出する区間を定めることを特徴とする請求項2に記載の受信装置。
    The synchronization unit detects the timing based on the power of the received signal as one of the references,
    The receiving apparatus according to claim 2, wherein the second signal detection unit determines a section in which a signal is extracted based on the detected timing.
  13. 前記同期部は、前記基準の1つとして前記受信信号の到来パスに基づいて前記タイミングを検出することを特徴とする請求項1に記載の受信装置。 The receiving apparatus according to claim 1, wherein the synchronization unit detects the timing based on an arrival path of the received signal as one of the references.
  14. 前記同期部は、前記到来パスが最初に到達するタイミングを検出することを特徴とする請求項13に記載の受信装置。 The receiving apparatus according to claim 13, wherein the synchronization unit detects a timing at which the arrival path first arrives.
  15. 前記同期部は、前記基準の1つとして前記受信信号の到来パスに基づいて前記タイミングを検出し、
     前記第2の信号検出部が、前記検出されたタイミングに基づいて信号を抽出する区間を定めることを特徴とする請求項2に記載の受信装置。
    The synchronization unit detects the timing based on an incoming path of the received signal as one of the references,
    The receiving apparatus according to claim 2, wherein the second signal detection unit determines a section in which a signal is extracted based on the detected timing.
  16. 前記同期部は、前記基準の1つとして前記復号された信号の誤りの頻度に基づいて前記タイミングを検出することを特徴とする請求項1に記載の受信装置。 The receiving apparatus according to claim 1, wherein the synchronization unit detects the timing based on an error frequency of the decoded signal as one of the references.
  17. 前記同期部は、前記誤りの頻度が最小となるタイミングを検出することを特徴とする請求項16に記載の受信装置。 The receiving apparatus according to claim 16, wherein the synchronization unit detects a timing at which the error frequency is minimized.
  18. 前記同期部は、前記基準の1つとして前記復号された信号の誤りの頻度に基づいて前記タイミングを検出し、
     前記第2の信号検出部が、前記検出されたタイミングに基づいて信号を抽出する区間を定めることを特徴とする請求項2に記載の受信装置。
    The synchronization unit detects the timing based on an error frequency of the decoded signal as one of the criteria,
    The receiving apparatus according to claim 2, wherein the second signal detection unit determines a section in which a signal is extracted based on the detected timing.
  19. 前記同期部は、前記基準の1つとして前記受信信号の信号対雑音比に基づいて前記タイミングを検出し、
     前記第1の信号検出部が、前記検出されたタイミングに基づいて信号を抽出する区間を定めることを特徴とする請求項2に記載の受信装置。
    The synchronization unit detects the timing based on a signal-to-noise ratio of the received signal as one of the criteria,
    The receiving apparatus according to claim 2, wherein the first signal detection unit determines a section in which a signal is extracted based on the detected timing.
  20. 受信装置における受信方法であって、
     前記受信装置が、信号を受信する第1の過程と、
     前記受信装置が、前記受信信号から予め定められた長さの区間の信号を抽出する複数の第2の過程と、
     前記受信装置が、前記抽出された区間の信号を復号する第3の過程と、
     前記受信装置が、前記受信信号から各々異なる基準で複数のタイミングを検出する第4の過程と
     を有し、
     前記複数の第2の過程の各々は、前記検出された複数のタイミングのうち1つを用いて信号を抽出する区間を定めること、
     を特徴とする受信方法。
    A receiving method in a receiving device,
    A first process in which the receiving device receives a signal;
    A plurality of second processes in which the receiving device extracts a signal having a predetermined length from the received signal;
    A third process in which the receiving device decodes the signal of the extracted section;
    A fourth process in which the receiving device detects a plurality of timings based on different criteria from the received signal, respectively.
    Each of the plurality of second processes defines a section in which a signal is extracted using one of the detected plurality of timings;
    A receiving method characterized by the above.
  21. 受信装置が備えるコンピュータに、
     信号を受信する第1の手順、
     前記受信信号から予め定められた長さの区間の信号を抽出する複数の第2の手順、
     前記抽出された区間の信号を復号する第3の手順、
     前記受信信号から各々異なる基準で複数のタイミングを検出する第4の手順
    を実行させるための受信プログラムであって、
     前記複数の第2の手順の各々は、前記検出された複数のタイミングのうち1つを用いて信号を抽出する区間を定めること、
     を特徴とする受信プログラム。
    In the computer provided in the receiving device,
    A first procedure for receiving a signal;
    A plurality of second procedures for extracting a signal having a predetermined length from the received signal;
    A third procedure for decoding the signal of the extracted section;
    A reception program for executing a fourth procedure for detecting a plurality of timings based on different references from the received signal,
    Each of the plurality of second procedures defines an interval for extracting a signal using one of the detected plurality of timings;
    A receiving program characterized by the above.
  22.  信号を送信する送信装置と前記信号を受信する受信装置かを備える通信システムであって、
     前記受信装置は、
     前記受信信号から予め定められた長さの区間の信号を抽出する複数の信号検出部と、
     前記抽出された区間の信号を復号する復号部と、
     前記受信信号から各々異なる基準で複数のタイミングを検出する同期部と、
     を備え、
     前記信号検出部の各々は、前記検出された複数のタイミングのうち1つを用いて信号を抽出する区間を定めること、
     を特徴とする通信システム。
     を特徴とする受信プログラム。
    A communication system comprising a transmitting device for transmitting a signal and a receiving device for receiving the signal,
    The receiving device is:
    A plurality of signal detectors that extract a signal of a predetermined length from the received signal;
    A decoding unit for decoding the signal of the extracted section;
    A synchronization unit for detecting a plurality of timings based on different references from the received signal;
    With
    Each of the signal detection units determines a section for extracting a signal using one of the detected timings;
    A communication system characterized by the above.
    A receiving program characterized by the above.
PCT/JP2011/068186 2011-02-03 2011-08-09 Receiving device, receiving method, receiving program and communication system WO2012105074A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011021939A JP2012165064A (en) 2011-02-03 2011-02-03 Receiver, reception method, reception program, and communication system
JP2011-021939 2011-02-03

Publications (1)

Publication Number Publication Date
WO2012105074A1 true WO2012105074A1 (en) 2012-08-09

Family

ID=46602311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068186 WO2012105074A1 (en) 2011-02-03 2011-08-09 Receiving device, receiving method, receiving program and communication system

Country Status (2)

Country Link
JP (1) JP2012165064A (en)
WO (1) WO2012105074A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054340A (en) * 2014-09-02 2016-04-14 日本放送協会 Receiver and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133044A1 (en) * 2015-02-20 2016-08-25 日本電気株式会社 Receiving device and receiving method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292076A (en) * 2000-04-07 2001-10-19 Nec Corp Multi-path detection circuit
JP2003143105A (en) * 2001-11-02 2003-05-16 Matsushita Electric Ind Co Ltd Ofdm receiver, and method for acquiring synchronization
JP2005168000A (en) * 2003-11-11 2005-06-23 Ntt Docomo Inc Receiving apparatus and reception timing detecting method
WO2006011424A1 (en) * 2004-07-28 2006-02-02 Matsushita Electric Industrial Co., Ltd. Diversity type receiver apparatus and receiving method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292076A (en) * 2000-04-07 2001-10-19 Nec Corp Multi-path detection circuit
JP2003143105A (en) * 2001-11-02 2003-05-16 Matsushita Electric Ind Co Ltd Ofdm receiver, and method for acquiring synchronization
JP2005168000A (en) * 2003-11-11 2005-06-23 Ntt Docomo Inc Receiving apparatus and reception timing detecting method
WO2006011424A1 (en) * 2004-07-28 2006-02-02 Matsushita Electric Industrial Co., Ltd. Diversity type receiver apparatus and receiving method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054340A (en) * 2014-09-02 2016-04-14 日本放送協会 Receiver and program

Also Published As

Publication number Publication date
JP2012165064A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5030279B2 (en) Wireless communication apparatus and wireless communication method
US8243834B2 (en) Wireless communication device
JP4854094B2 (en) Radio receiver, radio communication system, and radio reception method
RU2428796C2 (en) Methods and devices to increase efficiency and to make it possible to quickly decode transfers with multiple code units
JP4780348B2 (en) MIMO receiving apparatus and receiving method
JP4939888B2 (en) Wireless communication device
JP4189477B2 (en) OFDM (Orthogonal Frequency Division Multiplexing) Adaptive Equalization Reception System and Receiver
JP5320174B2 (en) Receiving apparatus and receiving method
JP5624988B2 (en) MIMO receiving apparatus and receiving method
JP4382107B2 (en) Receiving device, wireless transmission / reception system, and wireless receiving method
JP3910956B2 (en) Propagation path estimator and receiving apparatus using the same for OFDM wireless communication system
EP2124371B1 (en) Reception device, transmission device, radio transmission/reception system, and radio reception method
KR20120085850A (en) Receiving device, receiving method, communication system, and communication method
JP2008205697A (en) Mimo receiver and reception method
AU2004253048B2 (en) Apparatus and method for receiving data in a mobile communication system using an adaptive antenna array technique
WO2012105074A1 (en) Receiving device, receiving method, receiving program and communication system
JP2008258899A (en) Receiver and receiving method
JP2009272725A (en) Communication system, reception device, and communication method
EP1629649A1 (en) Apparatus and method for precoding a multicarrier signal
JP2012060407A (en) Reception device, communication system, control program of reception device, and integrated circuit
WO2012122778A1 (en) System and method for signaling and detecting in wireless communications systems
JP4382102B2 (en) Reception device, transmission device, wireless transmission / reception system, and wireless reception method
JP2010199729A (en) Communication system, communication method, receiver, and receiving method
US8718162B2 (en) Reception device, reception method, and reception program
Kumar et al. Intersymbol interference resilient interleaving architecture for multi‐stream interleaved frequency division multiple access system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857871

Country of ref document: EP

Kind code of ref document: A1