WO2012104987A1 - Enzyme and method of production therefor - Google Patents

Enzyme and method of production therefor Download PDF

Info

Publication number
WO2012104987A1
WO2012104987A1 PCT/JP2011/052003 JP2011052003W WO2012104987A1 WO 2012104987 A1 WO2012104987 A1 WO 2012104987A1 JP 2011052003 W JP2011052003 W JP 2011052003W WO 2012104987 A1 WO2012104987 A1 WO 2012104987A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
seq
pla1
activity
amino acid
Prior art date
Application number
PCT/JP2011/052003
Other languages
French (fr)
Japanese (ja)
Inventor
大助 杉森
功大 加納
Original Assignee
国立大学法人福島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人福島大学 filed Critical 国立大学法人福島大学
Priority to PCT/JP2011/052003 priority Critical patent/WO2012104987A1/en
Priority to PCT/JP2012/052159 priority patent/WO2012105565A1/en
Publication of WO2012104987A1 publication Critical patent/WO2012104987A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase

Definitions

  • the present invention relates to a novel phospholipase A1 and a method for producing the same.
  • Phospholipase A1 is an enzyme that acts on glycerol phospholipid to produce lysophospholipid.
  • C Known as 3.1.1.32.
  • Phospholipase is a general term for enzymes that hydrolyze phospholipids.
  • Phospholipid glycerol phospholipid
  • PDA1 The enzyme that hydrolyzes the fatty acid ester bond at the ⁇ -position of the glycerol group in glycerol phospholipid is called phospholipase A1 (PLA1), and the enzyme that hydrolyzes the fatty acid ester group at the ⁇ -position of the glycerol group is called phospholipase A2 (PLA2).
  • PLB phospholipase B
  • lysophospholipid a phospholipid from which only one of ⁇ -position or ⁇ -position fatty acyl group in phospholipid is removed is called lysophospholipid, and acts on lysophospholipid to hydrolyze the remaining fatty acid ester bond. Is also included in the PLB because the decomposition product is the same as in the case of the PLB. The action on lysophospholipid is called lysophospholipase activity.
  • PLC phospholipase C
  • PLD phospholipase D
  • Non-patent Document High density lipoprotein cholesterol, generally referred to as good cholesterol
  • lysophosphatidylethanolamine has been reported to have a neuronal differentiation inducing action and an action to protect neuronal cells from apoptosis (apoptosis inhibitory action) as a neuronal nutrient (Non-patent Document 3, 4).
  • lysophosphatidylethanolamine was found to have a translocational activity suppression effect, a nerve activation effect, a cytoprotective effect, and a central nerve calming effect (Non-patent Document 4). From these reports, lysophosphatidylethanolamine is expected to be used for the prevention and treatment of Alzheimer's disease that occurs after ischemic brain injury and neurological disorders such as neuronal cell death.
  • lysophosphatidylinositol has an antifungal action (Patent Document 1).
  • lysophosphatidic acid is known to have a vasoconstrictive action (Non-patent Document 5), a strong cell proliferation action and a DNA synthesis promoting action (Non-Patent Document 6).
  • 1-lysophosphatidic acid has been reported to be effective in hair formation (hair growth, hair growth) (Non-patent Document 7).
  • lysophosphatidylserine has been reported to be involved in mast cell activation (allergy and atopic dermatitis) (Non-patent Document 5).
  • lysophosphatidylglycerol has been reported to have an excellent noodle modification action as a noodle modifier (Patent Documents 2 and 7).
  • lysophosphatidylglycerol has a strong surface activity and is known to have a strong foaming action. For example, strengthening O / W emulsification with strong emulsifying power, improving thermal stability of O / W emulsions, forming emulsions with excellent storage stability, excellent binding properties with proteins and starches, antibacterial effects, excellent Moisturizing properties and antioxidative effects are known.
  • Soy lysolecithin has (1) strong O / W emulsifying properties, (2) high emulsion stability in the presence of acids and in the presence of salts, and (3) excellent ability to bind to proteins and starch. It has been described that the demand has been increasing in recent years because it has such features as (4) excellent mold release action and the like (Patent Document 3).
  • Phosphatidylethanolamine is a component of phospholipids contained in soybean lecithin and egg yolk lecithin, and is known to have an emulsion stabilizing effect.
  • a lot of unsaturated fatty acids are bound to phosphatidylethanolamine, particularly in the ⁇ (sn-2) position of egg yolk lecithin, and when this unsaturated fatty acid is liberated, it becomes a source of bitterness. Therefore, in food processing, it can be said that it is desirable that hydrolysis of phosphatidylethanolamine does not occur.
  • no enzyme suitable for this purpose has been found so far.
  • no enzyme capable of controlling substrate specificity by pH has been found so far.
  • PLA1 is widely distributed in the living world, and in particular, the properties of microorganisms and snake venom-derived substances have been studied in detail, and there are sales as biochemical reagents and sales as industrial enzymes.
  • industrial PLA1 there is PLA1 (manufactured by Mitsubishi Chemical Foods) derived from Aspergillus oryzae.
  • Aspergillus aspergillus oryzae-derived PLA1 has a problem of being restricted in use because its working pH is in the acidic range.
  • metal ions such as Ca 2+ ions are required for the catalytic action, there is a problem depending on the application.
  • the kind of phospholipid which can act is not specified (patent document 5).
  • glycerol-3-phosphocholine is expected to prevent dementia (Patent Document 4).
  • Patent Document 4 no enzyme or technology for efficiently producing a glycerol-3-phosphate compound such as glycerol-3-phosphocholine has been developed.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a novel PLA 1 and a manufacturing method thereof.
  • PLA1 having novel properties from microorganisms belonging to the genus Streptomyces. .
  • the enzyme according to the present invention preferentially hydrolyzes the acyl group at the sn-1 position of phospholipid, and is selected from lysophospholipid, glycerol-3-phosphate, and glycerol-3-phosphate ester compound.
  • polypeptides which is an enzyme that produces one or more of the following polypeptides (a) to (c): (A) a polypeptide having the amino acid sequence set forth in SEQ ID NO: 2; (B) a polypeptide having an amino acid sequence in which one or more amino acids are substituted, inserted, deleted and / or added in the amino acid sequence of SEQ ID NO: 2 and exhibiting the hydrolysis activity; or ( c) A polypeptide having at least 75% homology with the amino acid sequence shown in SEQ ID NO: 2 and exhibiting the hydrolysis activity.
  • a preferred form of the above enzyme is that when egg yolk phosphatidylcholine (manufactured by Nacalai) is used as a substrate and pH is 5.6 and the hydrolysis activity under the condition of 5 minutes at 37 ° C. is 100%, pH 4.1 It exhibits a hydrolysis activity of 50% or more within a pH of 10.0.
  • a preferred form of the above enzyme is that when egg yolk phosphatidylcholine (manufactured by Nacalai, purity of about 70%) is used as a substrate and the hydrolysis activity is 100% at pH 9.0 and 50 ° C. for 5 minutes.
  • egg yolk phosphatidylcholine manufactured by Nacalai, purity of about 70%
  • 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (lower limit is 30%), 350 for 1,2-Dimyristoyl-sn-glycerol-3-phosphate (PA) % Or more (upper limit is 400%), 1,2-Diacyl-sn-glycero-3-phospho- (1-rac-glycerol) (PG) is more than 400% (upper limit is 450%), L- ⁇ - 450% or more for Phosphatidylserine (PS) (upper limit is 480%), 100% or more for 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (PE) (upper limit is 140%), L- ⁇ - Phosphatidylinositol (PI) 350% or more (upper limit is 380%), soybean phosphatidylcholine (SIGMA, L- ⁇ -Phosphatidylc Holine) has a substrate specificity of 300% or more (SIGMA
  • a preferable form of the above enzyme is that when yolk phosphatidylcholine (manufactured by Nacalai) is used as a substrate, and the hydrolysis activity under the condition of 5 minutes at 50 ° C. at pH 5.6 is 100%, it is 100% or more (upper limit is 140%), 100% or less for PA (lower limit is 60%), 150% or more for PG (upper limit is 190%), 150% or more for PS (upper limit is 190%) ), 100% or more for PE (upper limit is 120%), 250% or more for PI (upper limit is 290%), 250% or more for soybean phosphatidylcholine (manufactured by SIGMA) (upper limit is 290%), soybean Has an activity of 250% or more (upper limit is 280%) for lecithin (Wako Pure Chemical Industries), and has substrate specificity that is almost zero for triglycerides (Wako Pure Chemical, Olive) Oil). .
  • the isoelectric point calculated from the amino acid sequence is in the range of 6.0 to 6.1.
  • a preferred form of the above enzyme has a molecular weight in the range of 25,000 to 30,000 as measured by SDS-PAGE, and a molecular weight in the range of 25,000 to 30,000 as analyzed from the amino acid composition. It is.
  • the preferred form of the enzyme is derived from a microorganism belonging to the genus Streptomyces.
  • the polynucleotide according to the present invention is a polynucleotide encoding the above enzyme.
  • the preferable form of said polynucleotide contains the polynucleotide in any one of the following (a) to (c).
  • A a polynucleotide comprising the base sequence set forth in SEQ ID NO: 1;
  • B a polynucleotide that hybridizes with a base sequence complementary to the base sequence described in SEQ ID NO: 1 under stringent conditions; or
  • the preferred form of the above polynucleotide is derived from a microorganism belonging to the genus Streptomyces.
  • the vector according to the present invention is a vector containing the above-described polynucleotide.
  • the transformant according to the present invention is one or more selected from phospholipids, lysophospholipids, glycerol-3-phosphate, and glycerol-3-phosphate compounds into which the above-described polynucleotide or the above-described vector is introduced. It is a transformant possessing the ability to produce an enzyme that produces.
  • a preferred form of the transformant is a microorganism in which the host of the transformant belongs to the genus Streptomyces.
  • the method for producing an enzyme according to the present invention acts on a phospholipid and hydrolyzes the phospholipid to select one or more selected from lysophospholipid, glycerol-3-phosphate, and glycerol-3-phosphate ester compound
  • a method for producing an enzyme that produces the enzyme wherein the polynucleotide or the vector described above is introduced into a host to obtain a transformant that produces the enzyme; And a step of producing an enzyme.
  • the host is a microorganism belonging to the genus Streptomyces.
  • a novel phospholipase A1 having a high enzyme activity Furthermore, a method for efficiently producing the enzyme by a microorganism can be provided. Thereby, a novel phospholipid processing agent having high PLA1 activity and having substrate specificity for phospholipid can be obtained without the addition of a metal salt.
  • glycerol-3-phosphate compounds such as lysophospholipid, glycerol-3-phosphate, and glycerol-3-phosphocholine can be efficiently produced.
  • highly purified phosphatidylethanolamine, glycerol-3-phosphate, or glycerol-3-phosphocholine can be efficiently produced.
  • FIG. 2 is an electrophoresis photograph showing the results of SDS-PAGE analysis of a purified fraction obtained from a Streptomyces albidoflavus culture solution. It is a graph which shows the relative activity of phospholipase A1 about the purified enzyme derived from Streptomyces albidoflavus in various pH on the basis of the enzyme activity when pH is 5.6 (100%) . It is a graph which shows the relative activity of phospholipase A1 about the purified enzyme derived from Streptomyces albidoflavus in various temperature on the basis of the enzyme activity in case reaction temperature is 50 degreeC (100%). .
  • the enzyme is not limited to a purified enzyme, but includes a crude product, an immobilized product, and the like.
  • the enzyme is purified by a method well known to those skilled in the art, such as ammonium sulfate precipitation, ion exchange chromatography, hydrophobic chromatography, etc., using a microorganism culture solution. Thereby, enzymes with various degrees of purification (including enzymes purified to approximately one) can be obtained.
  • microorganisms are wild strains, mutant strains (for example, those induced by ultraviolet irradiation, etc.), recombinants induced by genetic engineering techniques such as cell fusion or genetic recombination methods, etc. Any strain may be used.
  • Genetically engineered microorganisms such as recombinants are known to those skilled in the art, for example, as described in Molecular Cloning A Laboratory Manual, 2nd edition (Sambrook, J. et al., Cold Spring Harbor Press, 1989). Can be easily created using various techniques.
  • the culture solution of microorganisms means both a culture solution containing microbial cells and a culture solution from which microbial cells have been removed by centrifugation or the like.
  • PLB phospholipase A1
  • PLB1 The enzyme that hydrolyzes the fatty acid ester bond at the ⁇ -position (sn-1 position) of the glycerol group in glycerol phospholipid is called phospholipase A1 (PLA1), and the fatty acid ester group at the ⁇ -position (sn-2 position) of the glycerol group
  • A2 The enzyme that hydrolyzes.
  • A2 PLB2
  • An enzyme having both phospholipase A1 activity and phospholipase A2 activity is referred to as phospholipase B (PLB). That is, PLB has enzyme activity at both the ⁇ -position and the ⁇ -position.
  • PLA1 generates at least one, preferably all three of glycerol-3-phosphate compounds such as 2-lysophospholipid, glycerol-3-phosphate, and glycerol-3-phosphocholine from phospholipids. Is an enzyme.
  • the PLA1 activity can be confirmed, for example, as follows, but the confirmation method is not limited to this. Specifically, for example, PLA1 activity can be confirmed by measuring the amount of free fatty acid produced as a result of the enzyme reaction.
  • the amount of free fatty acid contained in 5 ⁇ L of the reaction solution can be determined using, for example, “NEFA C Test Wako” (manufactured by Wako Pure Chemical Industries, Ltd.), which is a free fatty acid measurement kit, in the instructions attached to the kit. Measure as described.
  • the amount of enzyme that produces 1 ⁇ mol of free fatty acid per minute is defined as 1 unit.
  • the enzyme in the present invention is one kind selected from lysophospholipid, glycerol-3-phosphate, and glycerol-3-phosphate ester compound by preferentially hydrolyzing the acyl group at the sn-1 position of the phospholipid.
  • A a polypeptide having the amino acid sequence set forth in SEQ ID NO: 2;
  • B a polypeptide having an amino acid sequence in which one or more amino acids are substituted, inserted, deleted and / or added in the amino acid sequence of SEQ ID NO: 2 and exhibiting the hydrolysis activity; or
  • c A polypeptide having at least 75% homology with the amino acid sequence shown in SEQ ID NO: 2 and exhibiting the hydrolysis activity.
  • the above-mentioned enzymes include, as buffer solutions, acetic acid-sodium acetate buffer (pH 4.1-5.6), bistris-hydrochloric acid buffer (pH 5.6-7.2), Tris-hydrochloric acid buffer (pH 7. 2 to 8.8) and glycine-sodium hydroxide buffer (pH 8.8 to 10.5), the egg yolk phosphatidylcholine and the enzyme are put under reaction conditions within the pH range ( It can exhibit PLA1 activity at pH 4.1-10.5). The optimum pH is around pH 5.6, but shows substantially 100% activity at pH 5-8.
  • the above enzyme is, for example, in the range of pH 4.1 to pH 10 when the hydrolysis activity at pH 5.6 is 100% under the condition that egg yolk phosphatidylcholine and the enzyme are reacted at 37 ° C. for 5 minutes as described above. It is preferable that the activity of 50% or more is shown.
  • the above enzyme can act at about 20 to 65 ° C. under the reaction conditions of the above egg yolk phosphatidylcholine and the enzyme, for example.
  • the optimum temperature can be within this range. Preferably it is in the range of about 30-55 ° C, more preferably in the range of 40-55 ° C, and even more preferably about 50 ° C.
  • the enzyme when the enzyme is treated with 120 mM acetic acid-sodium acetate buffer (pH 5.6) for 30 minutes, it can be stable with almost no decrease in activity from 4 ° C. to 40 ° C. and 45 ° C. However, an activity of about 80% (for example, 75%) or more remains.
  • the above phospholipid and enzyme solution are placed under reaction conditions using an acetic acid-sodium acetate buffer (pH 5.6) as a buffer, the above enzyme is inhibited even in the presence of 100 mM EDTA. It is preferable that the activity is almost the same as that in the case where EDTA is not added. In the presence of 10 mM Ca 2+ and Zn 2+ , it is preferable to exhibit about 80% activity (for example, about 80 to 95% activity). On the other hand, 10 mM Fe 3+ and Fe 2+ can inhibit the activity.
  • the hydrolysis activity with respect to the case where egg yolk phosphatidylcholine is a substrate is 100%. 50% or less for DPPC (lower limit is 30%), 350% or more for PA (upper limit is 400%), 400% or more for PG (upper limit is 450%), 450% or more for PS ( The upper limit is 480%), 100% or more for PE (upper limit is 140%), 350% or more for PI (upper limit is 380%), 300% or more for soybean phosphatidylcholine (manufactured by SIGMA) (upper limit is 360) %) And 75.0% or more (upper limit is 90%) relative to soybean lecithin (manufactured by Wako Pure Chemical Industries, Ltd.).
  • the above enzyme is 100% or more (upper limit is 140%) with respect to DPPC, assuming that egg yolk phosphatidylcholine is used as a substrate and the hydrolysis activity is 100% at 50 ° C. and pH 5.6 for 5 minutes. %), 100% or less for PA (lower limit is 60%), 150% or more for PG (upper limit is 190%), 150% or more for PS (upper limit is 190%), 100 for PE % Or more (upper limit is 120%), 250% or more (upper limit is 290%) for PI, 250% or more (upper limit is 290%) for soybean phosphatidylcholine (manufactured by SIGMA), soy lecithin (manufactured by Wako Pure Chemical Industries)
  • the activity against triglyceride (olive oil) is almost 0 (for example, 5% or less, 3% or less, or 1% or less, or less than the detection limit). ) It is preferred that. It is preferable to have such substrate specificity.
  • the above enzyme may vary slightly depending on electrophoresis conditions, etc., but the molecular weight in SDS-PAGE is within the range of 25,000 to 30,000 (for example, about 28,000 or about 27,000). Is preferred.
  • the enzyme preferably has a molecular weight calculated from the amino acid composition in the range of 25,000 to 30,000.
  • a natural enzyme derived from Streptomyces albidoflavus strain NA297 has a molecular weight of about 28,000, specifically 28,000 in SDS-PAGE.
  • the natural enzyme derived from this Streptomyces albidoflavus NA297 strain has a molecular weight of 27,199 calculated from its amino acid composition.
  • the above enzyme preferably exhibits an isoelectric point in the range of 6.0 to 6.1 (for example, 6.06).
  • the isoelectric point of the enzyme can be calculated from the amino acid sequence by GENETYX.
  • phospholipase A1 consists of the amino acid sequence shown in SEQ ID NO: 2.
  • the phospholipase A1 preferably has an amino acid sequence from the 34th position to the 269th position of SEQ ID NO: 2 (also referred to herein as “the amino acid sequence described in SEQ ID NO: 2”).
  • one or more amino acids in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence shown in SEQ ID NO: 2 are substituted, deleted, inserted, and It may also be an enzyme having an added amino acid sequence.
  • a person skilled in the art for example, site-directed mutagenesis (Nucleic Acid Res., 1982, 10, pp. 6487; Methods in Enzymol., 1983, 100, pp. 448; Molecular Cloning: A Laboratory. Manual, 2nd edition, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 1989; PCR: A Spring Practical Approach, IRL Press, 1991, pp. 200), etc.
  • the structure of the protein can be altered by introducing additional mutations.
  • the number of amino acid residues that can be substituted, deleted, inserted and / or added is usually 50 or less, such as 30 or less, or 20 or less, preferably 16 or less, more preferably 5 or less, Preferably it is 0-3.
  • amino acid mutations include not only artificially mutated enzymes but also naturally mutated enzymes as long as they have PLA1 activity, and are included in the enzyme (PLA1).
  • a protein having an amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having homology to the amino acid sequence shown in SEQ ID NO: 2 is also included in the enzyme (PLA1) as long as it has PLA1 activity.
  • PLA1 is preferably at least 75%, preferably at least 80%, more preferably at least 85%, even more preferably at least 75% of the amino acid sequence set forth in SEQ ID NO: 2 or the amino acid sequence set forth in SEQ ID NO: 2. It may be a protein having an amino acid sequence with 90%, even more preferably at least 95%, even more preferably at least 99% homology.
  • Protein homology (homology) search for example, databases related to amino acid sequences of proteins such as SWISS-PROT, PIR, DAD, or DNA databases such as DDBJ, EMBL, Gene-Bank, etc. BLAST, FASTA, etc. This program can be used, for example, via the Internet. Confirmation of the activity of the protein can be performed using the procedure described above.
  • the supply source of PLA1 is not particularly limited, but PLA1 can be obtained from living cells such as microorganisms.
  • microorganisms include microorganisms belonging to the genus Streptomyces. Streptomyces albidoflavus (Streptomyces albidoflavus) and Streptomyces albidoflavus (Streptomyces albidoflavus) NA297 (Accession number: NITE BP-1014, hereinafter referred to as “NAITE BP-1014 strain” Stock ").
  • Streptomyces albidoflavus NA297 (accession number: NITE BP-1014) is liquid-cultured in an appropriate nutrient medium to secrete the enzyme outside the cells, so that the culture supernatant is frozen.
  • a product treated with drying, salting out, an organic solvent or the like can be produced as a PLA1 enzyme preparation.
  • Microorganisms that can be used for the production of PLA1 enzyme preparations are not limited to Streptomyces albidoflavus NA297, and may be microorganisms that belong to the genus Streptomyces and that can produce PLA1.
  • natural or artificial mutants of these species or gene fragments necessary for the expression of PLA1 activity can be artificially extracted and used for the production of PLA1 even in other species incorporating them. .
  • even if it does not belong to Streptomyces genus if it is a microorganism which can produce said PLA1, it can also be used.
  • PLA1 enzyme preparation using Streptomyces albidoflavus NA297 will be described as an example.
  • this bacterium is secreted out of the bacterium by liquid culture in a nutrient medium, the culture supernatant is treated with lyophilization, salting out, an organic solvent, or the treated product is immobilized.
  • a suitable medium for example, a medium containing a suitable carbon source, nitrogen source, and inorganic salts to secrete the enzyme.
  • the carbon source include starch and starch hydrolysate, sugars such as glucose and sucrose, alcohols such as glycerol, and organic acids (for example, acetic acid and citric acid) or salts thereof (for example, sodium salt).
  • the nitrogen source examples include organic nitrogen sources such as yeast extract, peptone, meat extract, corn steep liquor, soybean flour, and inorganic nitrogen compounds such as ammonium sulfate, ammonium nitrate, and urea.
  • inorganic salts include sodium chloride, monopotassium phosphate, magnesium sulfate, manganese chloride, calcium chloride, and ferrous sulfate.
  • the concentration of the carbon source is, for example, in the range of 1 to 20% (w / v), preferably 1 to 10% (w / v).
  • the concentration of the nitrogen source is, for example, in the range of 1 to 20% (w / v), preferably 1 to 10% (w / v).
  • the culture temperature is preferably a temperature at which the above enzyme is stable and the cultured microorganism can sufficiently grow, and is preferably 20 to 37 ° C., for example.
  • the culture time is preferably a time during which the enzyme is sufficiently produced, for example, about 1 to 7 days. Culturing can be preferably performed under aerobic conditions, for example, with aeration stirring or shaking.
  • PLA1 is fractionated by protein solubility (precipitation with organic solvents, salting out with ammonium sulfate, etc.); cation exchange, anion exchange, gel filtration, hydrophobic chromatography; affinity chromatography using chelates, dyes, antibodies, etc. It can be purified by appropriately combining known methods such as graphy. For example, after recovering the culture supernatant of the microorganism, it can be purified by ammonium sulfate precipitation, further anion exchange chromatography, hydrophobic chromatography, and / or cation exchange chromatography. Thereby, it can be purified to almost a single band in polyacrylamide gel electrophoresis (SDS-PAGE). That is, the enzyme (PLA1) can be estimated as a monomer by HPLC analysis and gel filtration chromatography analysis.
  • SDS-PAGE polyacrylamide gel electrophoresis
  • the polynucleotide in the present invention encodes the above PLA1.
  • This polynucleotide preferably includes the polynucleotide described in any of (a) to (c) below.
  • the above polynucleotide may be an artificial molecule including an artificial nucleotide derivative in addition to a natural polynucleotide such as DNA or RNA.
  • the polynucleotide may be a DNA-RNA chimeric molecule.
  • the above-mentioned polynucleotide encoding PLA1 has, for example, the base sequence from position 1 to position 816 of SEQ ID NO: 1 (also referred to herein as “base sequence described in SEQ ID NO: 1”).
  • the base sequence described in SEQ ID NO: 1 encodes a protein including the amino acid sequence described in SEQ ID NO: 2, and the protein including this amino acid sequence constitutes a preferred form of PLA1.
  • the polynucleotide encoding PLA1 includes an amino acid in which one or more amino acids are substituted, deleted, inserted, and / or added to the amino acid sequence shown in SEQ ID NO: 2 as described above, and has PLA1 activity. Also included are polynucleotides that encode the proteins they have. A person skilled in the art may introduce substitution, deletion, insertion, and / or addition mutation as appropriate into the polynucleotide having the base sequence described in SEQ ID NO: 1 using the site-specific mutagenesis method (described above). Thus, it is possible to obtain a homologue of a polynucleotide.
  • polynucleotide encoding PLA1 is also a protein capable of hybridizing under stringent conditions with a polynucleotide having a base sequence complementary to the polynucleotide having the base sequence shown in SEQ ID NO: 1 and having PLA1 activity Also included are polynucleotides encoding.
  • the polynucleotide is used to convert the target gene into the above microorganism, preferably a microorganism belonging to the genus Streptomyces, more preferably Streptomyces. It can be obtained from Streptomyces albidoflavus NA297. PCR or hybridization screening can be used for obtaining the gene.
  • Polynucleotides can also be obtained by chemically synthesizing the full length of a gene by DNA synthesis. Moreover, based on said base sequence information, the polynucleotide which codes said PLA1 derived from organisms other than the above can also be acquired. For example, by designing a probe using the above base sequence or a part of the base sequence and performing hybridization under conditions stringent to DNA prepared from other organisms, PLA1 derived from various organisms can be obtained. The encoding polynucleotide can be isolated.
  • PCR primers are designed from regions with high homology using sequence information registered in DNA databases such as DNA Databank of Japan (DDBJ), EMBL, and Gene-Bank. You can also By using such a primer and performing PCR using chromosomal DNA or cDNA as a template, the polynucleotide encoding PLA1 can also be isolated from various organisms. Similarly, the polynucleotide encoding PLA1 can also be isolated from various organisms by performing PCR using DNA or RNA extracted from the environment as a template.
  • the polynucleotide capable of hybridizing under stringent conditions is a sequence of at least 20, preferably at least 30, for example, 40, 60, or 100 consecutive sequences in the nucleotide sequence set forth in SEQ ID NO: 1.
  • Select one or more probes and design the probe for example, using the conditions described in the manual (for example, cleaning conditions: 42 ° C., 0.5 ⁇ SSC) using ECL directic acid labeling and detection system (manufactured by GE Healthcare). It includes a polynucleotide that hybridizes in a primary wash buffer.
  • the “stringent conditions” are usually conditions of 42 ° C., 2 ⁇ SSC, 0.1% SDS, preferably 50 ° C., 2 ⁇ SSC, 0.1% SDS. More preferably, the conditions are 65 ° C., 0.1 ⁇ SSC, and 0.1% SDS, but are not particularly limited to these conditions.
  • the above-mentioned polynucleotide encoding PLA1 is at least 75%, preferably at least 80%, more preferably at least 85%, even more preferably at least 90%, even more preferably the amino acid sequence set forth in SEQ ID NO: 2.
  • the protein homology search is as described above.
  • the polynucleotide encoding PLA1 is at least 75%, preferably at least 80%, more preferably at least 85%, even more preferably at least 90%, even more preferably the nucleotide sequence set forth in SEQ ID NO: 1. Also included are polynucleotides that have a base sequence with at least 95%, even more preferably at least 99% sequence identity, and encode a protein having PLA1 activity. The determination and search of the sequence identity of the base sequence is also as described above.
  • the above-mentioned polynucleotide encoding PLA1 can be expressed in the same or different host using genetic recombination technology.
  • the vector in the present invention contains the above-mentioned polynucleotide.
  • any of glycerol-3-phosphate ester compounds such as lysophospholipid, glycerol-3-phosphate, and glycerol-3-phosphocholine acts on phospholipids by introducing a polynucleotide or a vector into a host.
  • a transformant possessing the ability to produce an enzyme that produces one or more can be made.
  • the procedure for producing a transformant and the construction of a recombinant vector suitable for the host can be performed according to techniques commonly used in the fields of molecular biology, biotechnology, and genetic engineering (for example, Sambrook et al. , Molecular Cloning: A Laboratory Manual 2nd edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989). In particular, for actinomycetes, it can be performed with reference to “PRACTICAL STREPTOMYCES GENETICS (Kieser et al., John Inns Foundation, 2000)”.
  • this DNA is first introduced into a plasmid vector or a phage vector that is stably present in the microorganism, and the genetic information is transcribed and translated. Therefore, it is preferable to incorporate a promoter corresponding to a unit for controlling transcription / translation 5 'upstream of the DNA strand. Further, it is preferable to incorporate a terminator, which is a unit for controlling transcription / translation, downstream of the 3 ′ side of the DNA strand. More preferably, both the promoter and terminator are incorporated at each site. As the promoter and terminator, a promoter and terminator known to function in microorganisms used as hosts are used.
  • promoters and terminators that can be used in these various microorganisms, “Microbiology Basic Course 8 Genetic Engineering, Kyoritsu Shuppan”, especially for actinomycetes, “PRACTICAL STREPTOMYCES GENETICS (Kieser et al., John s Foundation, 2000) ) "And the like, and the method can be used. Moreover, it can be efficiently secreted and produced extracellularly by using a signal sequence as necessary.
  • the signal sequence used at this time may be the above PLA1 or the other.
  • the host to be transformed is not particularly limited as long as it is a living organism that can be transformed with a vector containing a polynucleotide encoding PLA1 and express PLA1 activity.
  • Escherichia coli, Bacillus subtilis, bacteria, actinomycetes, yeast, mold and the like can be mentioned.
  • insects such as moths (Nature 315, 592-594 (1985)), rapeseed, corn, potatoes and other plants.
  • Systems for expressing large amounts of heterologous proteins have been developed and may be used.
  • the obtained transformant can be used for production of an enzyme preparation (PLA1) as described above. Specifically, the transformant is subjected to liquid culture in an appropriate nutrient medium, the expressed PLA1 is secreted outside the cell, and the culture supernatant is treated with lyophilization, salting out, an organic solvent, etc. Can be manufactured.
  • PHA1 enzyme preparation
  • the culture conditions may vary, but the culture can be performed under conditions commonly used by those skilled in the art.
  • an actinomycete such as Streptomyces
  • a tryptic soy medium containing thiostrepton for example, manufactured by Becton Dickinson
  • the enzyme produced by the transformant can be further purified as described above.
  • PLA1 has a low catalytic activity in the absence of metal ions such as calcium ions. Therefore, in food processing, it is necessary to add a metal salt to a food material and perform enzyme treatment. In contrast, PLA1 of the present invention does not require the addition of a metal salt for the enzyme reaction. Therefore, the food material can be processed as it is, and the range of use can be expanded, and it can be expected to prevent the deterioration of food quality due to the metal salt and improve the safety. Furthermore, when the enzyme treatment is performed using a reactor, it is not necessary to add a metal salt, so that scales do not adhere to the reactor, maintenance is easy, and running costs are kept low.
  • PLA1 of the present invention has various phospholipids including PE.
  • PE phosphatidylethanolamine
  • PLA1 of the present invention has various phospholipids including PE.
  • PI phosphatidylinositol
  • PG phosphatidylglycerol
  • PS phosphatidylserine
  • PI, PG, PS, PE and PC pH 5.6
  • PI, PG, PS and PA pH 9.0.
  • the acting substrate can be controlled.
  • phosphatidylcholine for example, 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine
  • high purity phosphatidylcholine for example, 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine
  • phosphatidylethanolamine for example, 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine
  • phosphatidic acid for example, It is possible to keep the enzyme action against 1,2-Dimyristoyl-sn-glycerol-3-phosphate
  • PLA1 of the present invention exhibits substantially 100% activity in the pH range of 5-8. Furthermore, since it exhibits an activity of 50% or more with respect to the maximum activity in the range of pH 4.1 to pH 10, the usable pH range is extremely wide compared to the conventional PLA1, and it can be used under weakly acidic to alkaline conditions. Therefore, reaction control is easy and a wide range of applications can be expected.
  • PLA1 of the present invention exhibits an activity of 50% or more in a range exceeding the range of 40 to 55 ° C. Furthermore, the conventional enzyme (PLA1 manufactured by Mitsubishi Chemical Foods) has an activity of 50% or less at 30 ° C. or lower, whereas PLA1 of the present invention exhibits an activity of 50% or higher at 20 ° C. Low temperature processing is possible. Therefore, the usable temperature range is wide as compared with the conventional PLA1.
  • the conventional PLA1 (PLA1 manufactured by Mitsubishi Chemical Foods) has a stable temperature of 55 ° C., whereas the stable temperature of the PLA1 of the present invention is 40 to 45 ° C. Therefore, it is possible to deactivate the enzyme at a lower temperature.
  • PLA1 can decompose the cell membrane. PLA1 then lyses the cells. Therefore, it can be used for cell degrading agents or cell lysing agents including detergents such as egg yolk stains and blood stains.
  • lysophospholipids are extremely excellent in emulsifying properties, they become emulsifiers or surfactants that can be used in various fields.
  • lysophospholipids have been discovered as various physiological functions in recent years, and thus can be used as pharmaceuticals and supplements. Therefore, various highly functional lysophospholipids can be produced using PLA1 of the present invention.
  • PLA1 of the present invention By adding PLA1 of the present invention to flour such as bread dough or noodle dough, the phospholipid originally contained in the flour is converted to lysolecithin. By forming lysolecithin in the dough, it binds to proteins and starch to help form a gluten network, improve the physical properties of bread and noodles, and prevent aging.
  • Cyclic phosphatidic acid having excellent properties and effects as a cosmetic material can be produced from lysophospholipid. Therefore, cyclic phosphatidic acid can be efficiently produced by using PLA1 of the present invention.
  • Glycerol-3-phosphocholine is expected to prevent dementia.
  • Other glycerol-3-phosphate compounds can be expected to have high functions. Therefore, the PLA1 of the present invention can produce a highly functional glycerol-3-phosphate ester.
  • Glycerol-3-phosphate is a glycolytic metabolic intermediate. Therefore, PLA1 of the present invention can produce glycerol-3-phosphate having the possibility of enhancing metabolism.
  • PLA1 activity standard measurement method This method illustrates the case where egg yolk phosphatidylcholine is used as a substrate.
  • Example 1 Purification of Streptomyces albidoflavus enzyme
  • A Cultivation 500 mL of tryptic soy medium (Becton Dinkinson) is prepared, and 50 ml each is dispensed into a 500 mL baffle Erlenmeyer flask, and further 1% soybean lecithin and 0.1% Tween (Tween) After adding 80, steam sterilization was performed at 121 ° C. for 15 minutes.
  • FIG. 1 is an electrophoresis photograph showing the results of analysis by SDS-PAGE of the eluted fraction.
  • Lane 1 (left side of the figure) is a molecular weight marker, and lane 2 (right side of the figure) shows a band of the eluted fraction. As shown in FIG. 1, a single band was observed in the elution fraction.
  • This enzyme was estimated to be a monomer by HPLC analysis and gel filtration chromatography analysis.
  • Example 2 Measurement of properties of enzyme derived from Streptomyces albidoflavus] (PLA1 activity)
  • the purified enzyme obtained in Example 1 and 1-palmitoyl-2-oleoylphosphatidinecholine as a substrate were subjected to an enzymatic reaction under the reaction conditions of “PLA1 activity standard measurement method”.
  • reaction solution was extracted with chloroform / methanol (2/1, v / v).
  • the extract was analyzed by gas chromatography and the fatty acid produced by hydrolysis was quantitatively analyzed to confirm that it had PLA1 activity.
  • FIG. 2 is a graph showing enzyme activities at various reaction pHs as relative activities based on the enzyme activity when the reaction pH is 5.6 (100%). As can be seen from the graph of FIG. 2, this enzyme showed an activity with a relative activity of 50% or more with respect to the maximum activity (100%) in a wide range from pH 4.1 to pH 10.0.
  • FIG. 3 is a graph showing enzyme activities at various reaction temperatures as relative activities based on the activity (100%) when the reaction temperature is 50 ° C. As shown in the graph of FIG. 3, this enzyme exhibited activity at 20 to 60 ° C., and the optimum temperature for the reaction was around 50 ° C. (eg, 45 to 55 ° C.).
  • FIG. 4 is a graph showing the residual activity of the enzyme after treatment at various temperatures. As shown in the graph of FIG. 4, after the treatment at a temperature of 4 ° C. to 40 ° C., 90% or more of the enzyme remained before the treatment. After the treatment at 45 ° C., about 80% (about 75 to 80%) of the activity before the treatment remained.
  • FIG. 5 is a graph showing the residual activity of the enzyme after treatment at various pHs. As shown in the graph of FIG. 5, this enzyme remained active from pH 3.99 to 10.5.
  • Table 1 shows the results of relative activities with various additives added, assuming that the condition in which no chemical substance is added is 100%.
  • the enzyme obtained in Example 1 is not inhibited by 50 mM EDTA and exhibits the same activity as when not added, and is hardly affected by 100 mM EDTA. Moreover, it was not inhibited by 2 mM dithiothreitol. Further, 10 mM Ca 2+, in the Zn 2+ presence, showed about 80% active. On the other hand, it was confirmed that the activity could be inhibited by 10 mM Fe 3+ , Fe 2+ , 2 mM 2-mercaptoethanol, iodoacetamide, PMSF (phenylmethylsulfonyl fluoride), and SDS.
  • Table 2 shows the results of relative activity when egg yolk phosphatidylcholine is used as a substrate and the hydrolysis activity at 100 ° C. for 5 minutes at 50 ° C. with pH 9.0 and final concentration of 1.0% Triton X-100. It is.
  • Table 3 shows the relative activity when egg yolk phosphatidylcholine is used as a substrate and the hydrolysis activity at pH 5.6, final concentration 1.0% Triton X-100 at 50 ° C. for 5 minutes is defined as 100%. It is a result.
  • PLA1 activity was measured in a reaction solution containing a final concentration of 0.005% Triton X-100 according to the above "PLA1 activity standard measurement method" except that various phospholipids were used as a substrate instead of egg yolk phosphatidylcholine. did.
  • Table 4 shows the results of relative activity when egg yolk phosphatidylcholine is used as a substrate, and the hydrolysis activity at pH 8.0, final concentration 0.23% Triton X-100 at 37 ° C. for 5 minutes is defined as 100%. is there.
  • Example 1 the enzyme obtained in Example 1 exhibited substrate specificity as shown in Tables 2 to 4.
  • Example 3 Analysis of N-terminal amino acid sequence of enzyme derived from Streptomyces albidoflavus
  • the N-terminal amino acid sequence was analyzed with a protein sequencer.
  • the internal amino acid sequence was analyzed by nanoLC-MS / MS. From the analysis, it was confirmed that the N-terminal amino acid sequence of this purified enzyme was as shown in SEQ ID NO: 3.
  • the internal amino acid sequences were confirmed to be those shown in SEQ ID NOs: 4 and 5.
  • SEQ ID NO: 3 is a sequence shown from position 34 of SEQ ID NO: 2 (positions 1 to 33 are secretory signal sequences that have been removed by the mature (purified) enzyme).
  • SEQ ID NO: 4 is the sequence shown from position 145 of SEQ ID NO: 2.
  • SEQ ID NO: 5 is the sequence shown from position 165 of SEQ ID NO: 2.
  • Streptomyces albidoflavus NA297 was added to YEME medium (0.3% yeast extract, 0.5% peptone, 0.3% malt extract, 1% glucose, 34% sucrose, 5 mM MgCl 2 , 0. 5 ml of 5% glycine) was cultured at 28 ° C. for 4 days and collected.
  • the cells were suspended in 5 ml of a solution consisting of 75 mM NaCl, 25 mM EDTA, 20 mM Tris-hydrochloric acid (pH 7.5) and 1 mg / ml lysozyme, and treated at 37 ° C. overnight.
  • 750 ⁇ l of 10% (w / v) SDS and 5 mg of proteinase K were added and treated at 55 ° C. for 2 hours.
  • 7.5 ml of chloroform was added and stirred, and 5 ml of the aqueous phase was collected by centrifugation.
  • the DNA fraction was collected by adding 3 ml of isopropanol to this aqueous phase, and dissolved in 500 ⁇ l of a solution consisting of 10 mM Tris-HCl buffer (pH 8.0) and 1 mM EDTA.
  • RNase A was added to 20 ⁇ g / ml, treated at 37 ° C. for 1 hour, 500 ⁇ l of 13% PEG solution containing 0.8 M NaCl was added and stirred, and 500 ⁇ l of the aqueous phase was collected by centrifugation. did. 500 ⁇ l of a phenol / chloroform mixed solution was added thereto and stirred, and 500 ⁇ l of an aqueous phase was collected by centrifugation.
  • This DNA was immersed in 70% (v / v) ethanol for 10 minutes, and then dissolved in 200 ⁇ l of a solution composed of 10 mM Tris-HCl buffer (pH 8.0) and 1 mM EDTA.
  • Example 5 Cloning of the core region of the PLA1 gene derived from Streptomyces albidoflavus NA297] Based on the N-terminal and internal amino acid sequences of PLA1 and the codons used in the genus Streptomyces, degenerate oligonucleotide primer for PCR S1 sense primer “primer S1” (SEQ ID NO: 6), and three types of A1 antisense primers “Primer A1-1” (SEQ ID NO: 7) and “primer A1-2” (SEQ ID NO: 8) were designed.
  • s in the sequence represents c or g
  • w represents a or t
  • k represents g or t.
  • the PCR reaction solution composition is as follows.
  • Distilled water was added to 50 ⁇ l of template chromosomal DNA 50 ng, 2 ⁇ MightyAmp Buffer 25 ⁇ L obtained in Example 4, 300 nM of each primer, and MightyAmp DNA Polymerase 1.25 unit.
  • PCR reaction conditions are as follows.
  • Step 1 98 ° C., 2 minutes; Step 2: 98 ° C., 10 seconds; Step 3: 65 ° C., 15 seconds; Step 4: 68 ° C., 1 minute; Repeat steps 2 to 4 for 30 cycles; Step 4: 68 ° C., 1 minute.
  • a specific amplification product of about 300 bp was obtained by PCR using SEQ ID NOs: 6-8.
  • the PCR reaction solution was subjected to agarose gel electrophoresis, the target 300 bp band portion was cut out, and bound to pMD20-T Vector using pMD20-T Vector (manufactured by TAKARA) to transform Escherichia coli.
  • the transformed strain is cultured in LB medium (tryptone 1%, yeast extract 0.5%, sodium chloride 0.4%, pH 7.2) containing ampicillin 50 ⁇ g / ml, and using Miniprep DNA Purification Kit (TaKaRa). Plasmid for DNA sequencing was extracted and purified.
  • the base sequence of the inserted fragment was determined by an automatic sequencer using M13 primerM4 derived from a vector (pMD20-T Vector). This base sequence is shown in SEQ ID NO: 9.
  • Example 6 Cloning around the core region of the PLA1 gene derived from Streptomyces albidoflavus NA297
  • a DNA fragment including the upstream side and the downstream side was amplified by inverse PCR.
  • the chromosomal DNA obtained in Example 4 was completely digested with SacII, and Ligation high Ver. 2 (manufactured by Toyobo Co., Ltd.). Using this as a template, Inverse PCR using sense primer SE1 “primer SE1” (SEQ ID NO: 10) and antisense primer AN1 “primer AN1” (SEQ ID NO: 11) prepared based on the partial gene sequence of phospholipase A1 Went.
  • the PCR reaction solution composition is as follows.
  • Distilled water was added to 200 ng of template DNA, 25 ⁇ l of 2 ⁇ MightyAmp Buffer, 300 nM of each primer, and 1.25 units of MightyAmp DNA Polymerase so that the total amount was 50 ⁇ l.
  • PCR reaction conditions are as follows.
  • Step 1 98 ° C., 2 minutes
  • Step 2 98 ° C., 10 seconds
  • Step 3 68 ° C, 4 minutes
  • Step 4 68 ° C., 7 minutes.
  • the base sequence on the 5 'region side of the region containing the PLA1 gene derived from Streptomyces albidoflavus was determined. Further, the amino acid sequence of the structural gene portion was deduced from the base sequence (SEQ ID NO: 12).
  • Example 7 Cloning around the core region of PLA1 gene derived from Streptomyces albidoflavus NA297] Since the digestion site of SacII used for inverse PCR was contained in the PLA1 gene, the 3 ′ region side (C-terminal side) was determined only halfway.
  • the amino acid sequence that showed 100% homology by BLAST (Lipase # GDSL (DDBJ estimated by genome analysis of Streptomyces albus J1074)
  • the nucleotide sequence is specified from the accession number D6BAL1)
  • the primer A2 (SEQ ID NO: 13) on the 3 ′ region side (C-terminal side) is designed, and the DNA fragment is amplified by PCR with the S1 primer (SEQ ID NO: 6). did.
  • the PCR reaction solution composition is as follows.
  • Distilled water was added to 50 ⁇ l of template chromosomal DNA 50 ng, 2 ⁇ MightyAmp Buffer 25 ⁇ L obtained in Example 4, 300 nM of each primer, and MightyAmp DNA Polymerase 1.25 unit.
  • PCR reaction conditions are as follows.
  • Step 1 98 ° C., 2 minutes
  • Step 2 98 ° C., 10 seconds
  • Step 3 68 ° C, 1 minute
  • Step 4 68 ° C., 5 minutes.
  • This PCR yielded a specific amplification product of about 700 bp, which was cloned with the pMD20-T vector (TaKaRa) and the base sequence was determined.
  • the base sequence of the region containing the PLA1 gene derived from Streptomyces albidoflavus NA297 was determined (FIG. 6A and FIG. 6). 6B (hereinafter collectively referred to as FIG. 6)). Further, the amino acid sequence of the structural gene portion was deduced from the base sequence (FIG. 6, SEQ ID NOs: 14 and 15).
  • FIG. 6 shows the base sequence of the region containing the determined PLA1 gene and the deduced amino acid sequence of the structural gene deduced from this base sequence.
  • the base sequence is shown in the upper row, and the deduced amino acid sequence (SEQ ID NO: 15 in the lower row). ).
  • the sequence in FIG. 6 is DDBJ ACCESSION No. It is registered privately as AB605634.
  • PLA1 is composed of 807 bp nucleotides and encodes 269 amino acids.
  • 236 residues are positions 34 to 269 of the amino acid sequence of SEQ ID NO: 14 (FIG. 6).
  • Positions 1-33 of the amino acid sequence of SEQ ID NO: 14 (FIG. 6) are a secretory signal sequence.
  • N-terminal and internal amino acid sequences of the purified enzyme derived from Streptomyces albidoflavus NA297 determined in Example 3 were present in the above deduced amino acid sequence and were completely in agreement (in FIG. 6). Is underlined).
  • amino acid sequence of SEQ ID NO: 3 is a sequence shown from position 34 of the amino acid sequence of SEQ ID NO: 14 (FIG. 6).
  • the amino acid sequence of SEQ ID NO: 4 is the sequence shown from position 145 of the amino acid sequence of SEQ ID NO: 14 (FIG. 6).
  • the amino acid sequence of SEQ ID NO: 5 is the sequence shown from position 165 of the amino acid sequence of SEQ ID NO: 14 (FIG. 6).
  • sequence similarity search programs BLAST and FASTA By using the sequence similarity search programs BLAST and FASTA, the above-mentioned deduced amino acid sequences were compared with sequences in four kinds of protein sequence databases (PTR, PRF, UNI-PROT and SWISS-PROT). As a result, the deduced amino acid sequence was 100% identical with Lipase # GDSL (DDBJ accession number D6BAL1) estimated by Streptomyces albus J1074 genome analysis. However, the second and third residues at the N-terminal of the signal sequence were different.
  • the purified enzyme derived from Streptomyces albidoflavus (ie, PLA1) was calculated based on the amino acid composition of this deduced amino acid sequence, and was estimated to have a molecular weight of 27,199.
  • Example 8 Preparation of recombinant plasmid containing PLA1 gene derived from Streptomyces albidoflavus
  • PLA1 derived from Streptomyces albidoflavus
  • the restriction enzyme sites that can be used for recombination were NheI and BglII.
  • the BglII site was included in the structural gene of PLA1 derived from Streptomyces albidoflavus, this BglII recognition sequence was replaced by the following method. did.
  • it includes a sense primer C1 “primer C1” (SEQ ID NO: 16) in which an NheI site is added to the upstream region of the structural gene of PLA1 derived from Streptomyces albidoflavus, and a BglII site in this structural gene.
  • Antisense primer C2 “primer C2” was designed from the site.
  • the antisense primer C2 “primer C2” was designed so that the BglII recognition sequence was eliminated and the designated amino acid was not changed. Subsequently, PCR was performed using these primers with the chromosomal DNA obtained in Example 4 as a template.
  • the PCR reaction solution composition is as follows.
  • PCR reaction conditions are as follows.
  • Step 1 98 ° C., 2 minutes; Step 2: 98 ° C., 15 seconds; Step 3: 72 ° C., 2 seconds; Step 4: 74 ° C., 25 seconds; Repeat steps 2 to 4 for 30 cycles; Step 5: 74 ° C., 10 seconds.
  • the PCR reaction solution composition is as follows.
  • PCR reaction conditions are as follows.
  • Step 1 98 ° C., 2 minutes; Step 2: 98 ° C., 15 seconds; Step 3: 72 ° C., 2 seconds; Step 4: 74 ° C., 25 seconds; Repeat steps 2 to 4 for 30 cycles; Step 5: 74 ° C., 10 seconds.
  • PCR a specific amplification product of about 100 bp was obtained.
  • a sense primer C1 “primer C1” (SEQ ID NO: 16) in which an NheI site is added to the upstream sequence of the PLA1 structural gene, and an antisense primer C4 in which a BglII site is added to the downstream sequence of the PLA1 structural gene
  • PCR was performed using the amplification products of about 600 bp and about 100 bp obtained by the above PCR as templates.
  • the PCR reaction solution composition is as follows.
  • Template 600 bp DNA 300 ng, Template 100 bp DNA 340 ng, 10 ⁇ PCR Buffer 2.5 ⁇ l, Primer 1200 nM, dNTP mixture 0.3 mM, MgCl 2 1.2 mM, DMSO 4%, and KOD DNA Polymerase 1.25 units, total amount of distilled water It added so that it might become 25 microliters.
  • PCR reaction conditions are as follows.
  • Step 1 98 ° C., 2 minutes
  • Step 2 98 ° C., 15 seconds
  • Step 3 72 ° C., 2 seconds
  • Step 4 74 ° C., 25 seconds
  • Step 5 74 ° C., 10 seconds.
  • a specific amplification product of about 700 bp was obtained by this PCR.
  • the amplified fragment was digested with NheI and BglII and inserted into the NheI-BglII site of the actinomycete plasmid as an expression vector to obtain a recombinant plasmid.
  • the signal sequence and terminator are those of the phospholipase enzyme gene, but those derived from other genes may be used in appropriate combination.
  • Example 9 Production of recombinant actinomycetes expressing PLA1 gene derived from Streptomyces albidoflavus NA297
  • Example 10 Measurement of enzyme activity of recombinant actinomycetes expressing PLA1 gene derived from Streptomyces albidoflavus NA297
  • the recombinant actinomycetes obtained in Example 9 were cultured in four 100 mL tryptic soy media (Becton Dickinson) containing 12 ⁇ g / mL thiostrepton. The supernatant was recovered from the obtained culture solution (340 mL) by centrifugation (15000 rpm, 5 minutes, 4 ° C.), and the precipitate was recovered by ammonium sulfate fractionation. The collected precipitate was dissolved in 20 mM Tris-HCl buffer (pH 8.0), and dialyzed using 20 mM Tris-HCl buffer (pH 8.0) as an external solution to obtain an enzyme solution.
  • the enzyme activity of this enzyme solution was measured at pH 5.6 and 50 ° C. using egg yolk phosphatidylcholine as a substrate according to the enzyme activity measurement method described in the above “PLA1 activity standard measurement method”. As a result, a culture supernatant showing strong activity exceeding 100 U / ml (lower limit is 60 U / ml) was obtained. Moreover, the enzyme activity (80 mL) after ammonium sulfate fractionation showed a stronger activity (244 U / ml or more, the lower limit was 200 U / ml). In addition, PLA1 activity was not detected in actinomycetes transformed using the plasmid as a vector as it was.
  • a novel PLA 1 and a manufacturing method thereof are provided.
  • Glycerol-3-phosphate compounds such as lysophospholipids, glycerol-3-phosphate, and glycerol-3-phosphocholine produced by causing PLA1 to act on phospholipids are useful as base materials for foods and cosmetics. is there.
  • the enzyme according to the present invention works particularly well on PI, PG, PS, PE, PC at pH 5.6 and on PI, PG, PS, PA at pH 9.0.
  • Lysophosphatidylinositol is an anti-fungal agent
  • lysophosphoglycerol LPG
  • LPG lysophosphoglycerol
  • LPE lysophosphatidylethanolamine
  • LPA lysophosphatidic acid
  • LPS lysophosphatidylserine
  • glycerol-3-phosphocholine which can be produced using the enzyme according to the present invention, is expected to prevent dementia and the like.
  • Glycerol-3-phosphoinositol can be expected to be useful because it has an effect of increasing good cholesterol.
  • NITE BP-1014 National Institute for Product Evaluation Technology Patent Microorganism Depositary
  • Sequence number 1 PLA1 (polypeptide) SEQ ID NO: 2: PLA1 expression gene SEQ ID NO: 3: N-terminal sequence of PLA1 SEQ ID NO: 4: Internal sequence of PLA1 SEQ ID NO: 5: Internal sequence of PLA1 SEQ ID NO: 6: Primer S1 SEQ ID NO: 7: Primer A1-1 SEQ ID NO: 8: Primer A1-2 SEQ ID NO: 9: Internal sequence of PLA1 expression gene SEQ ID NO: 10: Primer SE1 Sequence number 11: Primer AN1 Sequence number 12: PLA1 expression gene Sequence number 13: Primer A2 SEQ ID NO: 14: PLA1 expression gene SEQ ID NO: 15: PLA1 (polypeptide) Sequence number 16: Primer C1 Sequence number 17: Primer C2 SEQ ID NO: 18: Primer C3 SEQ ID NO: 19: Primer C4

Abstract

Provided is a novel PLA1 and a method of production therefor. This enzyme hydrolyzes with priority the acyl group at the sn-1 position of a phospholipid to generate one or more of the following: a lysophospholipid, glycerol-3-phosphate, and glycerol-3-phosphoric ester compound. The enzyme contains any one of the polypeptides described in (a) to (c) below. (a) a polypeptide having the amino acid sequence described by SEQ ID NO:2; (b) a polypeptide having an amino acid sequence obtained by substituting, inserting, deleting and/or adding one or more amino acids in the amino acid sequence represented by SEQ ID NO:2, and that exhibits said hydrolytic activity; (c) a polypeptide having at least 75% homology with the amino acid sequence represented by SEQ ID NO:2, and that exhibits said hydrolytic activity. Thus, it is possible to provide a novel phospholipase A having high enzymatic activity. The PLA has substrate specificity with respect to phospholipids.

Description

酵素及びその製造方法Enzyme and production method thereof
 本発明は、新規なホスホリパーゼA1およびその製造方法に関する。 The present invention relates to a novel phospholipase A1 and a method for producing the same.
 ホスホリパーゼA1は、グリセロールリン脂質に作用し、リゾリン脂質を生成する酵素であり、酵素番号E.C.3.1.1.32として知られている。ホスホリパーゼはリン脂質を加水分解する酵素の総称である。リン脂質(グリセロールリン脂質)は、グリセロールの一方のα(sn-1)位及びβ(sn-2)位のヒドロキシル基に脂肪酸がエステル結合しており、他方のα位のヒドロキシル基にリン酸基を介してコリン、エタノールアミン、イノシトール等が結合している化合物である。 Phospholipase A1 is an enzyme that acts on glycerol phospholipid to produce lysophospholipid. C. Known as 3.1.1.32. Phospholipase is a general term for enzymes that hydrolyze phospholipids. Phospholipid (glycerol phospholipid) has a fatty acid ester-bonded to one α (sn-1) position and β (sn-2) position hydroxyl group of glycerol and phosphoric acid to the other α position hydroxyl group. It is a compound in which choline, ethanolamine, inositol and the like are bonded via a group.
 グリセロールリン脂質におけるグリセロール基のα位の脂肪酸エステル結合を加水分解する酵素をホスホリパーゼA1(PLA1)と称し、グリセロール基のβ位の脂肪酸エステル基を加水分解する酵素をホスホリパーゼA2(PLA2)と称する。また、ホスホリパーゼA1活性及びホスホリパーゼA2活性を併有する酵素をホスホリパーゼB(PLB)と称する。 The enzyme that hydrolyzes the fatty acid ester bond at the α-position of the glycerol group in glycerol phospholipid is called phospholipase A1 (PLA1), and the enzyme that hydrolyzes the fatty acid ester group at the β-position of the glycerol group is called phospholipase A2 (PLA2). An enzyme having both phospholipase A1 activity and phospholipase A2 activity is referred to as phospholipase B (PLB).
 また、リン脂質中のα位又はβ位の脂肪酸アシル基のうち、一方のみが除去されたリン脂質をリゾリン脂質と称し、リゾリン脂質に作用して、残っている脂肪酸エステル結合を加水分解する酵素も、分解生成物が前記PLBの場合と同じであるため、PLBに含められる。なお、リゾリン脂質への作用は、リゾホスホリパーゼ活性と称せられる。 In addition, a phospholipid from which only one of α-position or β-position fatty acyl group in phospholipid is removed is called lysophospholipid, and acts on lysophospholipid to hydrolyze the remaining fatty acid ester bond. Is also included in the PLB because the decomposition product is the same as in the case of the PLB. The action on lysophospholipid is called lysophospholipase activity.
 他方、リン脂質のグリセロール基とリン酸基との間のエステル結合を加水分解する酵素をホスホリパーゼC(PLC)と称する。また、リン酸基とコリンやエタノールアミン等との間の結合を加水分解する酵素をホスホリパーゼD(PLD)と称する。 On the other hand, an enzyme that hydrolyzes an ester bond between a glycerol group and a phosphate group of a phospholipid is called phospholipase C (PLC). An enzyme that hydrolyzes the bond between a phosphate group and choline, ethanolamine, or the like is referred to as phospholipase D (PLD).
 ホスファチジルイノシトールは、大豆レシチンに含まれるものであり、細胞の情報伝達と深く関与していることが数多く報告されてきた。近年、ホスファチジルイノシトールの摂取が血中のトリアシルグリセロール(TG)濃度を減少させ、HDL-C(高比重リポタンパク質コレステロール、一般に言う善玉コレステロール)濃度を上昇させることが報告されている(非特許文献1、2)。そのため、その代謝誘導体であるリゾホスファチジルイノシトールおよびグリセリルホスフォリルイノシトールと共にその生理作用が注目されている。 It has been reported that phosphatidylinositol is contained in soybean lecithin and is deeply involved in cell information transmission. In recent years, it has been reported that the intake of phosphatidylinositol decreases the blood triacylglycerol (TG) concentration and increases the HDL-C (high density lipoprotein cholesterol, generally referred to as good cholesterol) concentration (Non-patent Document). 1, 2). Therefore, its physiological action is attracting attention together with its metabolic derivatives lysophosphatidylinositol and glyceryl phosphorylinositol.
 また、リゾホスファチジルエタノールアミンは、神経細胞栄養物質として、神経細胞の分化誘導作用、および、神経細胞をアポトーシスから保護する作用(アポトーシス抑制作用)を持つことが報告されている(非特許文献3、4)。この他にも、リゾホスファチジルエタノールアミンには、移所運動活性抑制作用、神経活性化作用、細胞保護作用、中枢神経沈静化作用が認められたことが報告されている(非特許文献4)。これらの報告より、リゾホスファチジルエタノールアミンは、虚血性脳障害後に起こるアルツハイマー病や、神経細胞死のような脳神経系の障害に対する予防や治療に期待されている。 In addition, lysophosphatidylethanolamine has been reported to have a neuronal differentiation inducing action and an action to protect neuronal cells from apoptosis (apoptosis inhibitory action) as a neuronal nutrient (Non-patent Document 3, 4). In addition to this, it has been reported that lysophosphatidylethanolamine was found to have a translocational activity suppression effect, a nerve activation effect, a cytoprotective effect, and a central nerve calming effect (Non-patent Document 4). From these reports, lysophosphatidylethanolamine is expected to be used for the prevention and treatment of Alzheimer's disease that occurs after ischemic brain injury and neurological disorders such as neuronal cell death.
 さらに、リゾホスファチジルイノシトールは抗カビ作用を持つことも報告されている(特許文献1)。また、リゾホスファチジン酸は、血管収縮作用(非特許文献5)や、強い細胞増殖作用とDNA合成促進作用があることが知られている(非特許文献6)。1-リゾホスファチジン酸は、毛の形成(発毛、育毛)に効果があると報告されている(非特許文献7)。また、リゾホスファチジルセリンは、肥満細胞の活性化(アレルギーやアトピー性皮膚炎)に関与していることが報告されている(非特許文献5)。また、リゾホスファチジルグリセロールは、麺類改質剤として優れた麺の改質作用を有することが報告されている(特許文献2、7)。この他にも、リゾホスファチジルグリセロールには強い界面活性作用があり、強い起泡作用を有することが知られている。例えば、強力な乳化力によるO/W乳化の強化、O/W系エマルションの熱安定性の向上、保存性に優れたエマルションの形成、蛋白質や澱粉との優れた結合性、抗菌効果、優れた保湿性、抗酸化作用が知られている。 Furthermore, it has been reported that lysophosphatidylinositol has an antifungal action (Patent Document 1). In addition, lysophosphatidic acid is known to have a vasoconstrictive action (Non-patent Document 5), a strong cell proliferation action and a DNA synthesis promoting action (Non-Patent Document 6). 1-lysophosphatidic acid has been reported to be effective in hair formation (hair growth, hair growth) (Non-patent Document 7). In addition, lysophosphatidylserine has been reported to be involved in mast cell activation (allergy and atopic dermatitis) (Non-patent Document 5). In addition, lysophosphatidylglycerol has been reported to have an excellent noodle modification action as a noodle modifier (Patent Documents 2 and 7). In addition to this, lysophosphatidylglycerol has a strong surface activity and is known to have a strong foaming action. For example, strengthening O / W emulsification with strong emulsifying power, improving thermal stability of O / W emulsions, forming emulsions with excellent storage stability, excellent binding properties with proteins and starches, antibacterial effects, excellent Moisturizing properties and antioxidative effects are known.
 大豆リゾレシチンは、(1)O/W乳化性が強い、(2)酸性下及び塩類存在下でのエマルション安定性が高い、(3)蛋白質との結合や澱粉との結合能で優れた効果を発揮する、(4)離型作用が優れている、等の特徴を有しているところから、近年、その需要が高まっていることが記載されている(特許文献3)。 Soy lysolecithin has (1) strong O / W emulsifying properties, (2) high emulsion stability in the presence of acids and in the presence of salts, and (3) excellent ability to bind to proteins and starch. It has been described that the demand has been increasing in recent years because it has such features as (4) excellent mold release action and the like (Patent Document 3).
 ホスファチジルエタノールアミンは、大豆レシチンや卵黄レシチンなどに含まれるリン脂質の一成分であり、乳化物の安定化作用があることが知られている。また、卵黄レシチンに存在するホスファチジルエタノールアミンの、特にβ(sn-2)位には、不飽和脂肪酸が多く結合しており、この不飽和脂肪酸が遊離すると苦みの素となる。したがって、食品加工においては、特にホスファチジルエタノールアミンの加水分解は生じないことが望ましいと言える。しかしながら、これまでにこの目的に適した酵素は見出されていない。また、pHにより基質特異性を制御できる酵素もこれまでに見出されていない。 Phosphatidylethanolamine is a component of phospholipids contained in soybean lecithin and egg yolk lecithin, and is known to have an emulsion stabilizing effect. In addition, a lot of unsaturated fatty acids are bound to phosphatidylethanolamine, particularly in the β (sn-2) position of egg yolk lecithin, and when this unsaturated fatty acid is liberated, it becomes a source of bitterness. Therefore, in food processing, it can be said that it is desirable that hydrolysis of phosphatidylethanolamine does not occur. However, no enzyme suitable for this purpose has been found so far. In addition, no enzyme capable of controlling substrate specificity by pH has been found so far.
 PLA1は、広く生物界に分布し、特に微生物や蛇毒由来のものについてはその性状などが詳しく検討され、生化学試薬としての販売および産業用酵素としての販売がある。産業用PLA1としては、麹菌アスペルギルス・オリゼ由来PLA1(三菱化学フーズ社製)が存在する。麹菌アスペルギルス・オリゼ由来PLA1は、その作用pHが酸性域であるため、使用上の制限を受けるという課題がある。また、触媒作用にCa2+イオンなどの金属イオンを必要とするため、用途によっては問題となる。さらに、作用可能なリン脂質の種類が明示されていない(特許文献5)。この課題を解決すべく、中性域で活性を示す糸状菌セイリディリウム・ユニコーン サットン由来PLA1が開発され、開示されている(特許文献6)。しかしながら、それでもなおCa塩の添加が必要な点やホスファチジルエタノールアミンの加水分解の問題は解決に至っていない。以上のような経緯から、これらの問題を解決するようなさらに有用な酵素の開発が望まれている。 PLA1 is widely distributed in the living world, and in particular, the properties of microorganisms and snake venom-derived substances have been studied in detail, and there are sales as biochemical reagents and sales as industrial enzymes. As industrial PLA1, there is PLA1 (manufactured by Mitsubishi Chemical Foods) derived from Aspergillus oryzae. Aspergillus aspergillus oryzae-derived PLA1 has a problem of being restricted in use because its working pH is in the acidic range. Further, since metal ions such as Ca 2+ ions are required for the catalytic action, there is a problem depending on the application. Furthermore, the kind of phospholipid which can act is not specified (patent document 5). In order to solve this problem, a filamentous fungus Celiridium unicorn Sutton-derived PLA1 showing activity in the neutral range has been developed and disclosed (Patent Document 6). However, the point that addition of Ca salt is still necessary and the problem of hydrolysis of phosphatidylethanolamine have not yet been solved. From the above circumstances, development of more useful enzymes that solve these problems is desired.
 また、グリセロール-3-ホスホコリンは、認知症予防などが期待されている(特許文献4)。ところが、グリセロール-3-ホスホコリンなどのようなグリセロール-3-リン酸化合物を効率的に製造する酵素や技術は開発されていない。 In addition, glycerol-3-phosphocholine is expected to prevent dementia (Patent Document 4). However, no enzyme or technology for efficiently producing a glycerol-3-phosphate compound such as glycerol-3-phosphocholine has been developed.
特開平6-256366号公報JP-A-6-256366 特開2008-11745号公報JP 2008-11745 A 特開平10-287686号公報JP-A-10-287686 国際公開第2007/010892号International Publication No. 2007/010892 特開平6-62850号公報JP-A-6-62850 特開2004-261022号公報Japanese Patent Laid-Open No. 2004-261022 特開2008-11745号公報JP 2008-11745 A
 本発明は、上記の事情に鑑みてなされたものであり、新規なPLA1およびその製造方法を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a novel PLA 1 and a manufacturing method thereof.
 本発明者らは、新規なPLA1(酵素)を得ることを目的として、該酵素を生産する微生物を検索した結果、ストレプトマイセス(Streptomyces)属に属する微生物から新規な性質を有するPLA1を見出した。 As a result of searching for microorganisms that produce the enzyme for the purpose of obtaining a novel PLA1 (enzyme), the present inventors have found PLA1 having novel properties from microorganisms belonging to the genus Streptomyces. .
 [酵素]
 本発明に係る酵素は、リン脂質のsn-1位のアシル基を優先的に加水分解して、リゾリン脂質、さらにはグリセロール-3-リン酸、及び、グリセロール-3-リン酸エステル化合物から選ばれる1種以上を生成する酵素であって、以下の(a)から(c)のいずれかに記載のポリペプチドを含む酵素である。
(a)配列番号2に記載のアミノ酸配列を有するポリペプチド;
(b)配列番号2に記載のアミノ酸配列において、1もしくは複数個のアミノ酸が置換、挿入、欠失および/または付加されたアミノ酸配列を有し、かつ該加水分解活性を示すポリペプチド;または
(c)配列番号2に記載のアミノ酸配列と少なくとも75%の相同性を有し、かつ該加水分解活性を示すポリペプチド。
[enzyme]
The enzyme according to the present invention preferentially hydrolyzes the acyl group at the sn-1 position of phospholipid, and is selected from lysophospholipid, glycerol-3-phosphate, and glycerol-3-phosphate ester compound. Which is an enzyme that produces one or more of the following polypeptides (a) to (c):
(A) a polypeptide having the amino acid sequence set forth in SEQ ID NO: 2;
(B) a polypeptide having an amino acid sequence in which one or more amino acids are substituted, inserted, deleted and / or added in the amino acid sequence of SEQ ID NO: 2 and exhibiting the hydrolysis activity; or ( c) A polypeptide having at least 75% homology with the amino acid sequence shown in SEQ ID NO: 2 and exhibiting the hydrolysis activity.
 上記の酵素の好ましい形態は、卵黄ホスファチジルコリン(ナカライ製)を基質としたときに、pH5.6で37℃にて5分間の条件での加水分解活性を100%とした場合に、pH4.1からpH10.0の範囲内で50%以上の加水分解活性を示す。 A preferred form of the above enzyme is that when egg yolk phosphatidylcholine (manufactured by Nacalai) is used as a substrate and pH is 5.6 and the hydrolysis activity under the condition of 5 minutes at 37 ° C. is 100%, pH 4.1 It exhibits a hydrolysis activity of 50% or more within a pH of 10.0.
 上記の酵素の好ましい形態は、卵黄ホスファチジルコリン(ナカライ製、純度約70%)を基質としたときに、pH9.0で50℃にて5分間の条件での加水分解活性を100%とした場合に、1,2-Dipalmitoyl-sn-glycero-3-phosphocholine(DPPC)に対して50%以下(下限は30%)、1,2-Dimyristoyl-sn-glycerol-3-phosphate(PA)に対して350%以上(上限は400%)、1,2-Diacyl-sn-glycero-3-phospho-(1-rac-glycerol)(PG)に対して400%以上(上限は450%)、L-α-Phosphatidylserine(PS)に対して450%以上(上限は480%)、1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine(PE)に対して100%以上(上限は140%)、L-α-Phosphatidylinositol)(PI)に対して350%以上(上限は380%)、大豆ホスファチジルコリン(SIGMA製、L-α-Phosphatidylcholine)に対して300%以上(上限は360%)、大豆レシチン(和光純薬製)に対して75.0%以上(上限は90%)である基質特異性を有する。 A preferred form of the above enzyme is that when egg yolk phosphatidylcholine (manufactured by Nacalai, purity of about 70%) is used as a substrate and the hydrolysis activity is 100% at pH 9.0 and 50 ° C. for 5 minutes. 50% or less for 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (lower limit is 30%), 350 for 1,2-Dimyristoyl-sn-glycerol-3-phosphate (PA) % Or more (upper limit is 400%), 1,2-Diacyl-sn-glycero-3-phospho- (1-rac-glycerol) (PG) is more than 400% (upper limit is 450%), L-α- 450% or more for Phosphatidylserine (PS) (upper limit is 480%), 100% or more for 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (PE) (upper limit is 140%), L-α- Phosphatidylinositol (PI) 350% or more (upper limit is 380%), soybean phosphatidylcholine (SIGMA, L-α-Phosphatidylc Holine) has a substrate specificity of 300% or more (upper limit is 360%) and soybean lecithin (manufactured by Wako Pure Chemical Industries) is 75.0% or more (upper limit is 90%).
 上記の酵素の好ましい形態は、卵黄ホスファチジルコリン(ナカライ製)を基質としたときに、pH5.6で50℃にて5分間の条件での加水分解活性を100%とした場合に、DPPCに対して100%以上(上限は140%)、PAに対して100%以下(下限は60%)、PGに対して150%以上(上限は190%)、PSに対して150%以上(上限は190%)、PEに対して100%以上(上限は120%)、PIに対して250%以上(上限は290%)、大豆ホスファチジルコリン(SIGMA製)に対して250%以上(上限は290%)、大豆レシチン(和光純薬製)に対して250%以上(上限は280%)の活性を有し、トリグリセリド(和光純薬製、Olive Oil)に対する活性がほぼ0である基質特異性を有する。 A preferable form of the above enzyme is that when yolk phosphatidylcholine (manufactured by Nacalai) is used as a substrate, and the hydrolysis activity under the condition of 5 minutes at 50 ° C. at pH 5.6 is 100%, it is 100% or more (upper limit is 140%), 100% or less for PA (lower limit is 60%), 150% or more for PG (upper limit is 190%), 150% or more for PS (upper limit is 190%) ), 100% or more for PE (upper limit is 120%), 250% or more for PI (upper limit is 290%), 250% or more for soybean phosphatidylcholine (manufactured by SIGMA) (upper limit is 290%), soybean Has an activity of 250% or more (upper limit is 280%) for lecithin (Wako Pure Chemical Industries), and has substrate specificity that is almost zero for triglycerides (Wako Pure Chemical, Olive) Oil). .
 上記の酵素の好ましい形態は、アミノ酸配列から算出した等電点が6.0~6.1の範囲内である。 In a preferred form of the above enzyme, the isoelectric point calculated from the amino acid sequence is in the range of 6.0 to 6.1.
 上記の酵素の好ましい形態は、SDS-PAGEで測定した場合の分子量が25,000~30,000の範囲内であり、アミノ酸組成より分析した場合の分子量が25,000~30,000の範囲内である。 A preferred form of the above enzyme has a molecular weight in the range of 25,000 to 30,000 as measured by SDS-PAGE, and a molecular weight in the range of 25,000 to 30,000 as analyzed from the amino acid composition. It is.
 上記の酵素の好ましい形態は、ストレプトマイセス(Streptomyces)属に属する微生物に由来する。 The preferred form of the enzyme is derived from a microorganism belonging to the genus Streptomyces.
 [ポリヌクレオチド]
 本発明に係るポリヌクレオチドは、上記の酵素をコードするポリヌクレオチドである。
[Polynucleotide]
The polynucleotide according to the present invention is a polynucleotide encoding the above enzyme.
 上記のポリヌクレオチドの好ましい形態は、以下の(a)から(c)のいずれかに記載のポリヌクレオチドを含む。
(a)配列番号1に記載の塩基配列からなるポリヌクレオチド;
(b)配列番号1に記載の塩基配列に相補的な塩基配列とストリンジェントな条件でハイブリダイズするポリヌクレオチド;または
(c)配列番号1に記載の塩基配列と少なくとも75%の配列同一性を有するポリヌクレオチド。
The preferable form of said polynucleotide contains the polynucleotide in any one of the following (a) to (c).
(A) a polynucleotide comprising the base sequence set forth in SEQ ID NO: 1;
(B) a polynucleotide that hybridizes with a base sequence complementary to the base sequence described in SEQ ID NO: 1 under stringent conditions; or (c) at least 75% sequence identity with the base sequence described in SEQ ID NO: 1. A polynucleotide comprising:
 上記のポリヌクレオチドの好ましい形態は、ストレプトマイセス(Streptomyces)属に属する微生物に由来する。 The preferred form of the above polynucleotide is derived from a microorganism belonging to the genus Streptomyces.
 [ベクター]
 本発明に係るベクターは、上記のポリヌクレオチドを含むベクターである。
[vector]
The vector according to the present invention is a vector containing the above-described polynucleotide.
 [形質転換体]
 本発明に係る形質転換体は、上記のポリヌクレオチドまたは上記のベクターが導入され、リン脂質からリゾリン脂質、グリセロール-3-リン酸、及び、グリセロール-3-リン酸エステル化合物から選ばれる1種以上を生成する酵素を産生する能力を保有する形質転換体である。
[Transformant]
The transformant according to the present invention is one or more selected from phospholipids, lysophospholipids, glycerol-3-phosphate, and glycerol-3-phosphate compounds into which the above-described polynucleotide or the above-described vector is introduced. It is a transformant possessing the ability to produce an enzyme that produces.
 上記の形質転換体の好ましい形態は、前記形質転換体の宿主が、ストレプトマイセス(Streptomyces)属に属する微生物である。 A preferred form of the transformant is a microorganism in which the host of the transformant belongs to the genus Streptomyces.
 [酵素の製造方法]
 本発明に係る酵素の製造方法は、リン脂質に作用し、該リン脂質を加水分解してリゾリン脂質、グリセロール-3-リン酸、及び、グリセロール-3-リン酸エステル化合物から選ばれる1種以上を生成する酵素を製造する方法であって、上記のポリヌクレオチドまたは上記のベクターを宿主に導入して、該酵素を産生する形質転換体を得る工程;および、該形質転換体を培養して該酵素を産生させる工程;を含む製造方法である。
[Enzyme production method]
The method for producing an enzyme according to the present invention acts on a phospholipid and hydrolyzes the phospholipid to select one or more selected from lysophospholipid, glycerol-3-phosphate, and glycerol-3-phosphate ester compound A method for producing an enzyme that produces the enzyme, wherein the polynucleotide or the vector described above is introduced into a host to obtain a transformant that produces the enzyme; And a step of producing an enzyme.
 上記の酵素の製造方法の好ましい形態は、前記宿主が、ストレプトマイセス(Streptomyces)属に属する微生物である。 In a preferred embodiment of the enzyme production method, the host is a microorganism belonging to the genus Streptomyces.
 本発明によれば、酵素活性の高い新規なホスホリパーゼA1を提供することが可能になる。さらに、該酵素を微生物によって効率よく生産する方法を提供することができる。それにより、金属塩の添加なしでも高いPLA1活性を有し、リン脂質に対して基質特異性を有する新規なリン脂質加工剤を得ることができる。また、リゾリン脂質、グリセロール-3-リン酸、及び、グリセロール-3-ホスホコリンなどのグリセロール-3-リン酸エステル化合物を、効率良く製造することができる。また、純度の高い、ホスファチジルエタノールアミン、グリセロール-3-リン酸、又は、グリセロール-3-ホスホコリンを効率良く製造することができる。 According to the present invention, it is possible to provide a novel phospholipase A1 having a high enzyme activity. Furthermore, a method for efficiently producing the enzyme by a microorganism can be provided. Thereby, a novel phospholipid processing agent having high PLA1 activity and having substrate specificity for phospholipid can be obtained without the addition of a metal salt. In addition, glycerol-3-phosphate compounds such as lysophospholipid, glycerol-3-phosphate, and glycerol-3-phosphocholine can be efficiently produced. In addition, highly purified phosphatidylethanolamine, glycerol-3-phosphate, or glycerol-3-phosphocholine can be efficiently produced.
ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)培養液から得られた精製画分についてのSDS-PAGE解析の結果を示す電気泳動写真である。FIG. 2 is an electrophoresis photograph showing the results of SDS-PAGE analysis of a purified fraction obtained from a Streptomyces albidoflavus culture solution. pHが5.6である場合の酵素活性を基準(100%)とした、種々のpHでのストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)由来の精製酵素についてのホスホリパーゼA1の相対活性を示すグラフである。It is a graph which shows the relative activity of phospholipase A1 about the purified enzyme derived from Streptomyces albidoflavus in various pH on the basis of the enzyme activity when pH is 5.6 (100%) . 反応温度が50℃である場合の酵素活性を基準(100%)とした、種々の温度でのストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)由来の精製酵素についてのホスホリパーゼA1の相対活性を示すグラフである。It is a graph which shows the relative activity of phospholipase A1 about the purified enzyme derived from Streptomyces albidoflavus in various temperature on the basis of the enzyme activity in case reaction temperature is 50 degreeC (100%). . pHが5.6、30分間の条件で、種々の温度での処理後のストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)由来の精製酵素についての残存活性を示すグラフである。It is a graph which shows the residual activity about the refinement | purification enzyme derived from Streptomyces albidoflavus after the process by various temperature on condition of pH 5.6 and 30 minutes. 4℃で3時間の条件で、種々のpHでの処理後のストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)由来の精製酵素についての残存活性を示すグラフである。It is a graph which shows the residual activity about the refinement | purification enzymes derived from Streptomyces albidoflavus after the process by various pH on conditions of 4 degreeC for 3 hours. ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)由来のホスホリパーゼA1遺伝子を含む領域の塩基配列および構造遺伝子についての推定アミノ酸配列の一部を示す図である。It is a figure which shows a part of deduced amino acid sequence about the base sequence and structural gene of the area | region containing the phospholipase A1 gene derived from Streptomyces albidoflavus (Streptomyces albidoflavus). ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)由来のホスホリパーゼA1遺伝子を含む領域の塩基配列および構造遺伝子についての推定アミノ酸配列の一部(図6Aの続き)を示す図である。It is a figure which shows a part of deduced amino acid sequence (continuation of FIG. 6A) about the base sequence and structural gene of the area | region containing the phospholipase A1 gene derived from Streptomyces albidoflavus (Streptomyces albidoflavus).
 [酵素]
 本明細書において、酵素とは、精製酵素に限定されず、粗精製物、固定化物なども含む。酵素の精製は、例えば、微生物の培養液を用いて、硫安沈澱、イオン交換クロマトグラフィー、疎水クロマトグラフィーなどの、当業者に周知の方法を用いて行われる。それにより、種々の精製度の酵素(ほぼ単一までに精製された酵素を含む)が得られ得る。
[enzyme]
In the present specification, the enzyme is not limited to a purified enzyme, but includes a crude product, an immobilized product, and the like. The enzyme is purified by a method well known to those skilled in the art, such as ammonium sulfate precipitation, ion exchange chromatography, hydrophobic chromatography, etc., using a microorganism culture solution. Thereby, enzymes with various degrees of purification (including enzymes purified to approximately one) can be obtained.
 本明細書において、微生物とは、野性株、変異株(例えば、紫外線照射などにより誘導されたもの)、あるいは、細胞融合もしくは遺伝子組換え法などの遺伝子工学的手法により誘導される組換え体などのいずれの株であってもよい。組換え体などの遺伝子操作された微生物は、例えば、Molecular Cloning A Laboratory Manual,第2版(Sambrook,J.ら編、Cold Spring Harbor Laboratory Press,1989)に記載されるような、当業者に公知な技術を用いて容易に作成され得る。微生物の培養液とは、微生物菌体を含む培養液、および遠心分離などにより微生物菌体を除いた培養液の両方を意味する。 In the present specification, microorganisms are wild strains, mutant strains (for example, those induced by ultraviolet irradiation, etc.), recombinants induced by genetic engineering techniques such as cell fusion or genetic recombination methods, etc. Any strain may be used. Genetically engineered microorganisms such as recombinants are known to those skilled in the art, for example, as described in Molecular Cloning A Laboratory Manual, 2nd edition (Sambrook, J. et al., Cold Spring Harbor Press, 1989). Can be easily created using various techniques. The culture solution of microorganisms means both a culture solution containing microbial cells and a culture solution from which microbial cells have been removed by centrifugation or the like.
 [ホスホリパーゼA1]
 グリセロールリン脂質中のグリセロール基のα位(sn-1位)の脂肪酸エステル結合を加水分解する酵素をホスホリパーゼA1(PLA1)と称し、グリセロール基のβ位(sn-2位)の脂肪酸エステル基を加水分解する酵素をA2(PLA2)と称する。また、ホスホリパーゼA1活性及びホスホリパーゼA2活性を併有する酵素をホスホリパーゼB(PLB)と称する。すなわち、PLBは、α位とβ位の両方に酵素活性を有する。
[Phospholipase A1]
The enzyme that hydrolyzes the fatty acid ester bond at the α-position (sn-1 position) of the glycerol group in glycerol phospholipid is called phospholipase A1 (PLA1), and the fatty acid ester group at the β-position (sn-2 position) of the glycerol group The enzyme that hydrolyzes is called A2 (PLA2). An enzyme having both phospholipase A1 activity and phospholipase A2 activity is referred to as phospholipase B (PLB). That is, PLB has enzyme activity at both the α-position and the β-position.
 したがって、PLA1は、リン脂質から2-リゾリン脂質、グリセロール-3-リン酸、及び、グリセロール-3-ホスホコリンなどのグリセロール-3-リン酸エステル化合物の少なくとも1種以上、好ましくは3種全てを生成する酵素である。 Accordingly, PLA1 generates at least one, preferably all three of glycerol-3-phosphate compounds such as 2-lysophospholipid, glycerol-3-phosphate, and glycerol-3-phosphocholine from phospholipids. Is an enzyme.
 PLA1活性は、例えば、以下のようにして確認され得るが、確認方法はこれに限定されるものではない。具体的には、例えば、酵素反応の結果、生成する遊離脂肪酸量を測定することにより、PLA1活性を確認することができる。 The PLA1 activity can be confirmed, for example, as follows, but the confirmation method is not limited to this. Specifically, for example, PLA1 activity can be confirmed by measuring the amount of free fatty acid produced as a result of the enzyme reaction.
 具体的な手法としては、まず、0.02%(w/v)トライトン(Triton)X-100(ナカライテスク(株)製)10mLに卵黄ホスファチジルコリン1g(ナカライ製)を溶解し、10%(w/v)卵黄ホスファチジルコリンを調製する。この10%(w/v)卵黄ホスファチジルコリン0.025mLに、0.2M トリス-塩酸緩衝液(pH8.0)0.060mLと、0.5M EDTA二ナトリウム(和光純薬工業(株)製)0.005mLとを加える。そして、37℃で5分間予備加温した後、酵素活性を確認する試料0.010mLを添加し、37℃で5分間反応させる。酵素反応後、100℃で5分間加熱し、反応を停止させる。反応停止後、反応液5μL中に含まれる遊離脂肪酸量を、例えば遊離脂肪酸測定キットである「NEFA Cテストワコー」(和光純薬工業(株)製)を用いて、キットに添付の指示書に記載のとおりに測定する。1分間に1μmolの遊離脂肪酸を生成する酵素量を、1単位とする。 Specifically, first, 1 g of egg yolk phosphatidylcholine (manufactured by Nacalai) was dissolved in 10 mL of 0.02% (w / v) Triton X-100 (manufactured by Nacalai Tesque), and 10% (w / V) Prepare egg yolk phosphatidylcholine. 0.025 mL of 10% (w / v) egg yolk phosphatidylcholine, 0.060 mL of 0.2 M Tris-HCl buffer (pH 8.0), 0.5 M disodium EDTA (manufactured by Wako Pure Chemical Industries, Ltd.) 0 Add 0.005 mL. And after preheating at 37 degreeC for 5 minute (s), 0.010 mL of samples which confirm enzyme activity are added, and it is made to react at 37 degreeC for 5 minutes. After the enzyme reaction, the reaction is stopped by heating at 100 ° C. for 5 minutes. After stopping the reaction, the amount of free fatty acid contained in 5 μL of the reaction solution can be determined using, for example, “NEFA C Test Wako” (manufactured by Wako Pure Chemical Industries, Ltd.), which is a free fatty acid measurement kit, in the instructions attached to the kit. Measure as described. The amount of enzyme that produces 1 μmol of free fatty acid per minute is defined as 1 unit.
 本発明における酵素は、リン脂質のsn-1位のアシル基を優先的に加水分解して、リゾリン脂質、グリセロール-3-リン酸、及び、グリセロール-3-リン酸エステル化合物から選ばれる1種以上を生成する酵素であって、以下の(a)から(c)のいずれかに記載のポリペプチドを含むものである。
(a)配列番号2に記載のアミノ酸配列を有するポリペプチド;
(b)配列番号2に記載のアミノ酸配列において、1もしくは複数個のアミノ酸が置換、挿入、欠失および/または付加されたアミノ酸配列を有し、かつ該加水分解活性を示すポリペプチド;または
(c)配列番号2に記載のアミノ酸配列と少なくとも75%の相同性を有し、かつ該加水分解活性を示すポリペプチド。
The enzyme in the present invention is one kind selected from lysophospholipid, glycerol-3-phosphate, and glycerol-3-phosphate ester compound by preferentially hydrolyzing the acyl group at the sn-1 position of the phospholipid. An enzyme that produces the above, comprising the polypeptide according to any one of (a) to (c) below.
(A) a polypeptide having the amino acid sequence set forth in SEQ ID NO: 2;
(B) a polypeptide having an amino acid sequence in which one or more amino acids are substituted, inserted, deleted and / or added in the amino acid sequence of SEQ ID NO: 2 and exhibiting the hydrolysis activity; or ( c) A polypeptide having at least 75% homology with the amino acid sequence shown in SEQ ID NO: 2 and exhibiting the hydrolysis activity.
 上記の酵素は、例えば、緩衝液として、酢酸-酢酸ナトリウム緩衝液(pH4.1~5.6)、ビストリス-塩酸緩衝液(pH5.6~7.2)、トリス-塩酸緩衝液(pH7.2~8.8)、および、グリシン-水酸化ナトリウム緩衝液(pH8.8~10.5)、を用いて、上記の卵黄ホスファチジルコリンと酵素とを反応条件下におくと、そのpH範囲内(pH4.1~10.5)でPLA1活性を示し得る。至適pHはpH5.6付近であるが、pH5~8で実質的に100%の活性を示す。 For example, the above-mentioned enzymes include, as buffer solutions, acetic acid-sodium acetate buffer (pH 4.1-5.6), bistris-hydrochloric acid buffer (pH 5.6-7.2), Tris-hydrochloric acid buffer (pH 7. 2 to 8.8) and glycine-sodium hydroxide buffer (pH 8.8 to 10.5), the egg yolk phosphatidylcholine and the enzyme are put under reaction conditions within the pH range ( It can exhibit PLA1 activity at pH 4.1-10.5). The optimum pH is around pH 5.6, but shows substantially 100% activity at pH 5-8.
 上記の酵素は、例えば、上記のように卵黄ホスファチジルコリンと酵素とを37℃にて5分間反応させた条件下でpH5.6における加水分解活性を100%とした場合、pH4.1からpH10の範囲内で50%以上の活性を示すことが好ましい。 The above enzyme is, for example, in the range of pH 4.1 to pH 10 when the hydrolysis activity at pH 5.6 is 100% under the condition that egg yolk phosphatidylcholine and the enzyme are reacted at 37 ° C. for 5 minutes as described above. It is preferable that the activity of 50% or more is shown.
 上記の酵素は、例えば、上記の卵黄ホスファチジルコリンと酵素との反応条件下においては、約20~65℃で作用し得る。至適温度は、この範囲内にあり得る。好ましくは約30~55℃の範囲内にあり、より好ましくは40~55℃の範囲内にあり、さらにより好ましくは約50℃である。 The above enzyme can act at about 20 to 65 ° C. under the reaction conditions of the above egg yolk phosphatidylcholine and the enzyme, for example. The optimum temperature can be within this range. Preferably it is in the range of about 30-55 ° C, more preferably in the range of 40-55 ° C, and even more preferably about 50 ° C.
 上記の酵素は、例えば、120mM 酢酸-酢酸ナトリウム緩衝液(pH5.6)で30分間処理した場合、4℃から40℃まででは、ほぼ活性の低下が見られず安定であり得、そして45℃でも80%程度(例えば75%)以上の活性が残存している。 For example, when the enzyme is treated with 120 mM acetic acid-sodium acetate buffer (pH 5.6) for 30 minutes, it can be stable with almost no decrease in activity from 4 ° C. to 40 ° C. and 45 ° C. However, an activity of about 80% (for example, 75%) or more remains.
 上記の酵素は、例えば、緩衝液として酢酸-酢酸ナトリウム緩衝液(pH5.6)を用いて、上記のリン脂質と酵素溶液とを反応条件下におくと、100mMのEDTAが存在しても阻害を受けず、EDTAを添加しない場合とほぼ同一の活性を示すことが好ましい。また、10mM Ca2+、Zn2+の存在下では、約80%の活性(例えば80~95%程度の活性)を示すことが好ましい。一方、10mMのFe3+、Fe2+では活性が阻害され得るものである。 For example, when the above phospholipid and enzyme solution are placed under reaction conditions using an acetic acid-sodium acetate buffer (pH 5.6) as a buffer, the above enzyme is inhibited even in the presence of 100 mM EDTA. It is preferable that the activity is almost the same as that in the case where EDTA is not added. In the presence of 10 mM Ca 2+ and Zn 2+ , it is preferable to exhibit about 80% activity (for example, about 80 to 95% activity). On the other hand, 10 mM Fe 3+ and Fe 2+ can inhibit the activity.
 上記の酵素は、pH9.0の条件下で上記のように該酵素と基質とを50℃にて5分間反応させた場合、卵黄ホスファチジルコリンが基質である場合に対する加水分解活性を100%とすると、DPPCに対して50%以下(下限は30%)、PAに対して350%以上(上限は400%)、PGに対して400%以上(上限は450%)、PSに対して450%以上(上限は480%)、PEに対して100%以上(上限は140%)、PIに対して350%以上(上限は380%)、大豆ホスファチジルコリン(SIGMA製)に対して300%以上(上限は360%)、大豆レシチン(和光純薬製)に対して75.0%以上(上限は90%)であることが好ましい。 When the enzyme and the substrate are reacted at 50 ° C. for 5 minutes as described above under the condition of pH 9.0, the hydrolysis activity with respect to the case where egg yolk phosphatidylcholine is a substrate is 100%. 50% or less for DPPC (lower limit is 30%), 350% or more for PA (upper limit is 400%), 400% or more for PG (upper limit is 450%), 450% or more for PS ( The upper limit is 480%), 100% or more for PE (upper limit is 140%), 350% or more for PI (upper limit is 380%), 300% or more for soybean phosphatidylcholine (manufactured by SIGMA) (upper limit is 360) %) And 75.0% or more (upper limit is 90%) relative to soybean lecithin (manufactured by Wako Pure Chemical Industries, Ltd.).
 上記の酵素は、卵黄ホスファチジルコリンを基質としたときに、pH5.6で50℃にて5分間の条件での加水分解活性を100%とした場合に、DPPCに対して100%以上(上限は140%)、PAに対して100%以下(下限は60%)、PGに対して150%以上(上限は190%)、PSに対して150%以上(上限は190%)、PEに対して100%以上(上限は120%)、PIに対して250%以上(上限は290%)、大豆ホスファチジルコリン(SIGMA製)に対して250%以上(上限は290%)、大豆レシチン(和光純薬製)に対して250%以上(上限は280%)の活性を有し、トリグリセリド(オリーブ油)に対する活性がほぼ0(例えば5%以下、3%以下、又は1%以下、あるいは検出限界以下)であることが好ましい。このような基質特異性を有することが好ましいものである。 The above enzyme is 100% or more (upper limit is 140%) with respect to DPPC, assuming that egg yolk phosphatidylcholine is used as a substrate and the hydrolysis activity is 100% at 50 ° C. and pH 5.6 for 5 minutes. %), 100% or less for PA (lower limit is 60%), 150% or more for PG (upper limit is 190%), 150% or more for PS (upper limit is 190%), 100 for PE % Or more (upper limit is 120%), 250% or more (upper limit is 290%) for PI, 250% or more (upper limit is 290%) for soybean phosphatidylcholine (manufactured by SIGMA), soy lecithin (manufactured by Wako Pure Chemical Industries) The activity against triglyceride (olive oil) is almost 0 (for example, 5% or less, 3% or less, or 1% or less, or less than the detection limit). ) It is preferred that. It is preferable to have such substrate specificity.
 上記の酵素は、電気泳動条件などにより若干変化し得るが、SDS-PAGEにおける分子量が25,000~30,000の範囲内(例えば、約28,000、又は、約27,000)を示すことが好ましい。また、上記の酵素は、アミノ酸組成から計算した分子量が、25,000~30,000の範囲内であることが好ましい。例えば、ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297株由来の天然の酵素では、SDS-PAGEにおける分子量が約28,000、具体的には28,000を示す。このストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297株由来の天然の酵素では、そのアミノ酸組成から計算した分子量は27,199である。 The above enzyme may vary slightly depending on electrophoresis conditions, etc., but the molecular weight in SDS-PAGE is within the range of 25,000 to 30,000 (for example, about 28,000 or about 27,000). Is preferred. The enzyme preferably has a molecular weight calculated from the amino acid composition in the range of 25,000 to 30,000. For example, a natural enzyme derived from Streptomyces albidoflavus strain NA297 has a molecular weight of about 28,000, specifically 28,000 in SDS-PAGE. The natural enzyme derived from this Streptomyces albidoflavus NA297 strain has a molecular weight of 27,199 calculated from its amino acid composition.
 上記の酵素は、6.0~6.1の範囲内(例えば6.06)の等電点を示すことが好ましい。酵素の等電点は、そのアミノ酸配列から、GENETYXにより算出され得る。 The above enzyme preferably exhibits an isoelectric point in the range of 6.0 to 6.1 (for example, 6.06). The isoelectric point of the enzyme can be calculated from the amino acid sequence by GENETYX.
 上記の酵素、すなわちホスホリパーゼA1の一態様は、配列番号2に記載のアミノ酸配列からなるものである。ホスホリパーゼA1は、好ましくは配列番号2の34位から269位までのアミノ酸配列(本明細書では、「配列番号2に記載内のアミノ酸配列」ともいう)を有する。 One embodiment of the above enzyme, that is, phospholipase A1, consists of the amino acid sequence shown in SEQ ID NO: 2. The phospholipase A1 preferably has an amino acid sequence from the 34th position to the 269th position of SEQ ID NO: 2 (also referred to herein as “the amino acid sequence described in SEQ ID NO: 2”).
 上記の酵素は、PLA1活性を有する限り、配列番号2に記載のアミノ酸配列、又は、配列番号2に記載内のアミノ酸配列に対して、1または複数のアミノ酸が、置換、欠失、挿入、および/または付加したアミノ酸配列を有する酵素であっても良い。当業者であれば、例えば、部位特異的変異導入法(Nucleic Acid Res.,1982年,10巻,pp.6487;Methods in Enzymol.,1983年,100巻,pp.448;Molecular Cloning:A Laboratory Manual,第2版,Cold Spring Harbor Laboratory,Cold Spring Harbor,NY.1989年;PCR:A Practical Approach,IRL Press,1991年,pp.200)などを用いて、適宜置換、欠失、挿入、および/または付加変異を導入することにより、タンパク質の構造を改変することができる。本明細書において、置換、欠失、挿入、および/または付加することができるアミノ酸残基数は、通常50以下、例えば30以下、あるいは20以下、好ましくは16以下、より好ましくは5以下、さらに好ましくは0~3である。また、アミノ酸の変異は、人工的に変異させた酵素のみならず、自然界において変異した酵素も、PLA1活性を有する限り、上記の酵素(PLA1)に含まれる。 As long as the enzyme has PLA1 activity, one or more amino acids in the amino acid sequence shown in SEQ ID NO: 2 or the amino acid sequence shown in SEQ ID NO: 2 are substituted, deleted, inserted, and It may also be an enzyme having an added amino acid sequence. A person skilled in the art, for example, site-directed mutagenesis (Nucleic Acid Res., 1982, 10, pp. 6487; Methods in Enzymol., 1983, 100, pp. 448; Molecular Cloning: A Laboratory. Manual, 2nd edition, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 1989; PCR: A Spring Practical Approach, IRL Press, 1991, pp. 200), etc. The structure of the protein can be altered by introducing additional mutations. In the present specification, the number of amino acid residues that can be substituted, deleted, inserted and / or added is usually 50 or less, such as 30 or less, or 20 or less, preferably 16 or less, more preferably 5 or less, Preferably it is 0-3. In addition, amino acid mutations include not only artificially mutated enzymes but also naturally mutated enzymes as long as they have PLA1 activity, and are included in the enzyme (PLA1).
 配列番号2に記載のアミノ酸配列、又は、配列番号2に記載内のアミノ酸配列に対して、相同性を有するアミノ酸配列を有するタンパク質も、PLA1活性を有する限り、上記の酵素(PLA1)に含まれる。PLA1は、好ましくは、配列番号2に記載のアミノ酸配列、又は、配列番号2に記載内のアミノ酸配列と、少なくとも75%、好ましくは少なくとも80%、より好ましくは少なくとも85%、なおより好ましくは少なくとも90%、さらにより好ましくは少なくとも95%、さらにより好ましくは少なくとも99%の相同性を有するアミノ酸配列を有するタンパク質であり得る。 A protein having an amino acid sequence shown in SEQ ID NO: 2 or an amino acid sequence having homology to the amino acid sequence shown in SEQ ID NO: 2 is also included in the enzyme (PLA1) as long as it has PLA1 activity. . PLA1 is preferably at least 75%, preferably at least 80%, more preferably at least 85%, even more preferably at least 75% of the amino acid sequence set forth in SEQ ID NO: 2 or the amino acid sequence set forth in SEQ ID NO: 2. It may be a protein having an amino acid sequence with 90%, even more preferably at least 95%, even more preferably at least 99% homology.
 タンパク質の相同性の(ホモロジー)検索は、例えばSWISS-PROT、PIR、DADなどのタンパク質のアミノ酸配列に関するデータベース、またはDDBJ、EMBL、あるいはGene-BankなどのDNAデータベースなどを対象に、BLAST、FASTAなどのプログラムを利用して、例えば、インターネットを通じて行うことができる。タンパク質の活性の確認は、上記に記載の手順を利用して行い得る。 Protein homology (homology) search, for example, databases related to amino acid sequences of proteins such as SWISS-PROT, PIR, DAD, or DNA databases such as DDBJ, EMBL, Gene-Bank, etc. BLAST, FASTA, etc. This program can be used, for example, via the Internet. Confirmation of the activity of the protein can be performed using the procedure described above.
 PLA1の供給源は特に限定されるものではないが、PLA1は、微生物などの生体細胞から得ることができる。そのような微生物としては、例えば、ストレプトマイセス(Streptomyces)属に属する微生物が挙げられる。好ましくはストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)およびストレプトマイセス・アルブス(Streptomyces albus)であり、最も好ましくはストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297(受託番号:NITE BP-1014菌株、以下「NA297株」という)である。 The supply source of PLA1 is not particularly limited, but PLA1 can be obtained from living cells such as microorganisms. Examples of such microorganisms include microorganisms belonging to the genus Streptomyces. Streptomyces albidoflavus (Streptomyces albidoflavus) and Streptomyces albidoflavus (Streptomyces albidoflavus) NA297 (Accession number: NITE BP-1014, hereinafter referred to as “NAITE BP-1014 strain” Stock ").
 例えば、上記ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297(受託番号:NITE BP-1014)は適当な栄養培地で液体培養することにより該酵素を菌体外に分泌するので、その培養上清を凍結乾燥、塩析、有機溶媒などにより処理したものをPLA1酵素製剤として製造することができる。 For example, the above Streptomyces albidoflavus NA297 (accession number: NITE BP-1014) is liquid-cultured in an appropriate nutrient medium to secrete the enzyme outside the cells, so that the culture supernatant is frozen. A product treated with drying, salting out, an organic solvent or the like can be produced as a PLA1 enzyme preparation.
 PLA1酵素製剤の製造に用い得る微生物はストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297に限られるものではなく、ストレプトマイセス属に属し、かつ、PLA1を生産し得る微生物であってもよい。また、それらの生物種の天然または人為的変異株や、PLA1活性の発現に必要な遺伝子断片を人為的に取り出し、それを組み入れた他の生物種であってもPLA1の製造に用いることができる。また、ストレプトマイセス属に属さなくても、上記のPLA1を生産し得る微生物であれば、それを用いることもできる。 Microorganisms that can be used for the production of PLA1 enzyme preparations are not limited to Streptomyces albidoflavus NA297, and may be microorganisms that belong to the genus Streptomyces and that can produce PLA1. In addition, natural or artificial mutants of these species or gene fragments necessary for the expression of PLA1 activity can be artificially extracted and used for the production of PLA1 even in other species incorporating them. . Moreover, even if it does not belong to Streptomyces genus, if it is a microorganism which can produce said PLA1, it can also be used.
 ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297を用いたPLA1酵素製剤を例に挙げて、その製造について説明する。 The production of PLA1 enzyme preparation using Streptomyces albidoflavus NA297 will be described as an example.
 この菌は栄養培地で液体培養することにより該酵素を菌体外に分泌するので、その培養上清を凍結乾燥、塩析、有機溶媒などにより処理する、あるいはこの処理物を固定化するなどして酵素製剤を製造することができる。さらに具体的に説明すると、まず、この菌を適当な培地、例えば適当な炭素源、窒素源、無機塩類を含む培地中で培養し、該酵素を分泌させる。ここで炭素源としては、澱粉および澱粉加水分解物、グルコース、シュークロースなどの糖類、グリセロールなどのアルコール類、および有機酸(例えば、酢酸およびクエン酸)またはその塩(例えば、ナトリウム塩)などが挙げられる。窒素源としては、酵母エキス、ペプトン、肉エキス、コーンスチープリカー、大豆粉などの有機窒素源および硫酸アンモニウム、硝酸アンモニウム、尿素などの無機窒素化合物挙げられる。無機塩類としては、塩化ナトリウム、リン酸1カリウム、硫酸マグネシウム、塩化マンガン、塩化カルシウム、硫酸第1鉄などが挙げられる。炭素源の濃度は、例えば1~20%(w/v)、好ましくは1~10%(w/v)の範囲である。窒素源の濃度は、例えば1~20%(w/v)、好ましくは1~10%(w/v)の範囲である。培養温度は、上記の酵素が安定であり、そして培養される微生物が十分に生育できる温度であることが好ましく、例えば、20~37℃であることが好ましい。培養時間は、上記酵素が十分に生産される時間であることが好ましく、例えば、1~7日間程度であることが好ましい。培養は、好ましくは、好気的な条件下で、例えば、通気攪拌または振とうしながら行うことができる。 Since this bacterium is secreted out of the bacterium by liquid culture in a nutrient medium, the culture supernatant is treated with lyophilization, salting out, an organic solvent, or the treated product is immobilized. Thus, an enzyme preparation can be produced. More specifically, first, this bacterium is cultured in a suitable medium, for example, a medium containing a suitable carbon source, nitrogen source, and inorganic salts to secrete the enzyme. Here, examples of the carbon source include starch and starch hydrolysate, sugars such as glucose and sucrose, alcohols such as glycerol, and organic acids (for example, acetic acid and citric acid) or salts thereof (for example, sodium salt). Can be mentioned. Examples of the nitrogen source include organic nitrogen sources such as yeast extract, peptone, meat extract, corn steep liquor, soybean flour, and inorganic nitrogen compounds such as ammonium sulfate, ammonium nitrate, and urea. Examples of inorganic salts include sodium chloride, monopotassium phosphate, magnesium sulfate, manganese chloride, calcium chloride, and ferrous sulfate. The concentration of the carbon source is, for example, in the range of 1 to 20% (w / v), preferably 1 to 10% (w / v). The concentration of the nitrogen source is, for example, in the range of 1 to 20% (w / v), preferably 1 to 10% (w / v). The culture temperature is preferably a temperature at which the above enzyme is stable and the cultured microorganism can sufficiently grow, and is preferably 20 to 37 ° C., for example. The culture time is preferably a time during which the enzyme is sufficiently produced, for example, about 1 to 7 days. Culturing can be preferably performed under aerobic conditions, for example, with aeration stirring or shaking.
 PLA1は、タンパク質の溶解度による分画(有機溶媒による沈殿や硫安などによる塩析など);陽イオン交換、陰イオン交換、ゲルろ過、疎水性クロマトグラフィー;キレート、色素、抗体などを用いたアフィニティークロマトグラフィーなどの公知の方法を適当に組み合わせることにより精製することができる。例えば、上記微生物の培養上清を回収した後、硫安沈殿、さらに陰イオン交換クロマトグラフィー、疎水性クロマトグラフィー、及び/又は、陽イオン交換クロマトグラフィーを行うことにより精製することができる。これにより、ポリアクリルアミドゲル電気泳動(SDS-PAGE)において、ほぼ単一バンドにまで精製することができる。すなわち、上記酵素(PLA1)は、HPLC分析およびゲル濾過クロマトグラフィー分析により、単量体と推定できる。 PLA1 is fractionated by protein solubility (precipitation with organic solvents, salting out with ammonium sulfate, etc.); cation exchange, anion exchange, gel filtration, hydrophobic chromatography; affinity chromatography using chelates, dyes, antibodies, etc. It can be purified by appropriately combining known methods such as graphy. For example, after recovering the culture supernatant of the microorganism, it can be purified by ammonium sulfate precipitation, further anion exchange chromatography, hydrophobic chromatography, and / or cation exchange chromatography. Thereby, it can be purified to almost a single band in polyacrylamide gel electrophoresis (SDS-PAGE). That is, the enzyme (PLA1) can be estimated as a monomer by HPLC analysis and gel filtration chromatography analysis.
 [PLA1をコードするポリヌクレオチド]
 本発明におけるポリヌクレオチドは、上記のPLA1をコードするものである。このポリヌクレオチドは、好ましくは、以下の(a)から(c)のいずれかに記載のポリヌクレオチドを含む。
(a)配列番号1に記載の塩基配列からなるポリヌクレオチド;
(b)配列番号1に記載の塩基配列に相補的な塩基配列とストリンジェントな条件でハイブリダイズするポリヌクレオチド;または
(c)配列番号1に記載の塩基配列と少なくとも80%の配列同一性を有するポリヌクレオチド。
[Polynucleotide encoding PLA1]
The polynucleotide in the present invention encodes the above PLA1. This polynucleotide preferably includes the polynucleotide described in any of (a) to (c) below.
(A) a polynucleotide comprising the base sequence set forth in SEQ ID NO: 1;
(B) a polynucleotide that hybridizes with a base sequence complementary to the base sequence described in SEQ ID NO: 1 under stringent conditions; or (c) at least 80% sequence identity with the base sequence described in SEQ ID NO: 1. A polynucleotide comprising:
 上記のポリヌクレオチドは、DNA、RNAなどの天然のポリヌクレオチドに加え、人工的なヌクレオチド誘導体を含む人工的な分子であり得る。また、ポリヌクレオチドは、DNA-RNAのキメラ分子であり得る。上記のPLA1をコードするポリヌクレオチドは、例えば、配列番号1の1位から816位までの塩基配列(本明細書では、「配列番号1に記載の塩基配列」ともいう)を有する。配列番号1に記載の塩基配列は、配列番号2に記載のアミノ酸配列を含むタンパク質をコードしており、このアミノ酸配列を含むタンパク質は、PLA1の好ましい形態を構成する。 The above polynucleotide may be an artificial molecule including an artificial nucleotide derivative in addition to a natural polynucleotide such as DNA or RNA. The polynucleotide may be a DNA-RNA chimeric molecule. The above-mentioned polynucleotide encoding PLA1 has, for example, the base sequence from position 1 to position 816 of SEQ ID NO: 1 (also referred to herein as “base sequence described in SEQ ID NO: 1”). The base sequence described in SEQ ID NO: 1 encodes a protein including the amino acid sequence described in SEQ ID NO: 2, and the protein including this amino acid sequence constitutes a preferred form of PLA1.
 上記のPLA1をコードするポリヌクレオチドとしては、上記のような配列番号2に記載のアミノ酸配列に1または複数のアミノ酸が置換、欠失、挿入、および/または付加したアミノ酸を含み、かつPLA1活性を有するタンパク質をコードするポリヌクレオチドもまた挙げられる。当業者であれば、配列番号1に記載の塩基配列を有するポリヌクレオチドに部位特異的変異導入法(上述)などを用いて、適宜置換、欠失、挿入、および/または付加変異を導入することによりポリヌクレオチドのホモログを得ることが可能である。 The polynucleotide encoding PLA1 includes an amino acid in which one or more amino acids are substituted, deleted, inserted, and / or added to the amino acid sequence shown in SEQ ID NO: 2 as described above, and has PLA1 activity. Also included are polynucleotides that encode the proteins they have. A person skilled in the art may introduce substitution, deletion, insertion, and / or addition mutation as appropriate into the polynucleotide having the base sequence described in SEQ ID NO: 1 using the site-specific mutagenesis method (described above). Thus, it is possible to obtain a homologue of a polynucleotide.
 上記のPLA1をコードするポリヌクレオチドとしてはまた、配列番号1に記載の塩基配列を有するポリヌクレオチドに相補的な塩基配列を有するポリヌクレオチドとストリンジェントな条件でハイブリダイズでき、かつPLA1活性を有するタンパク質をコードするポリヌクレオチドもまた挙げられる。 The above-mentioned polynucleotide encoding PLA1 is also a protein capable of hybridizing under stringent conditions with a polynucleotide having a base sequence complementary to the polynucleotide having the base sequence shown in SEQ ID NO: 1 and having PLA1 activity Also included are polynucleotides encoding.
 ポリヌクレオチドは、本明細書中に記載した塩基配列情報に基づいて、目的とする遺伝子を、上記の微生物、好ましくは、ストレプトマイセス(Streptomyces)属に属する微生物、さらに好ましくは、ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297から取得することができる。遺伝子の取得には、PCRやハイブリダイズスクリーニングを用いることができる。 Based on the nucleotide sequence information described in the present specification, the polynucleotide is used to convert the target gene into the above microorganism, preferably a microorganism belonging to the genus Streptomyces, more preferably Streptomyces. It can be obtained from Streptomyces albidoflavus NA297. PCR or hybridization screening can be used for obtaining the gene.
 また、ポリヌクレオチドは、DNA合成によって遺伝子の全長を化学的に合成して得ることもできる。また、上記の塩基配列情報に基づいて、上記以外の生物に由来する上記PLA1をコードするポリヌクレオチドを取得することもできる。例えば、上記塩基配列もしくはその一部の塩基配列を用いてプローブを設計し、他の生物から調製したDNAに対してストリンジェントな条件下でハイブリダイゼーションを行うことにより、種々の生物由来のPLA1をコードするポリヌクレオチドを単離することができる。 Polynucleotides can also be obtained by chemically synthesizing the full length of a gene by DNA synthesis. Moreover, based on said base sequence information, the polynucleotide which codes said PLA1 derived from organisms other than the above can also be acquired. For example, by designing a probe using the above base sequence or a part of the base sequence and performing hybridization under conditions stringent to DNA prepared from other organisms, PLA1 derived from various organisms can be obtained. The encoding polynucleotide can be isolated.
 さらに、上記の塩基配列情報に基づいて、DNA Databank of Japan(DDBJ)、EMBL、Gene-BankなどのDNAに関するデータベースに登録されている配列情報を用いてホモロジーの高い領域からPCR用のプライマーを設計することもできる。このようなプライマーを用い、染色体DNAもしくはcDNAを鋳型としてPCRを行うことにより、上記PLA1をコードするポリヌクレオチドを種々の生物から単離することもできる。同様に、環境中から抽出したDNAあるいはRNAを鋳型としてPCRを行うことにより、上記PLA1をコードするポリヌクレオチドを種々の生物から単離することもできる。 Furthermore, based on the above base sequence information, PCR primers are designed from regions with high homology using sequence information registered in DNA databases such as DNA Databank of Japan (DDBJ), EMBL, and Gene-Bank. You can also By using such a primer and performing PCR using chromosomal DNA or cDNA as a template, the polynucleotide encoding PLA1 can also be isolated from various organisms. Similarly, the polynucleotide encoding PLA1 can also be isolated from various organisms by performing PCR using DNA or RNA extracted from the environment as a template.
 ストリンジェントな条件でハイブリダイズできるポリヌクレオチドとは、配列番号1に記載の塩基配列中の少なくとも20個、好ましくは少なくとも30個、例えば、40個、60個、または100個の連続した配列を1つまたは複数選択してプローブを設計し、例えばECL direct nucleic acid labeling and detection system(GE Healthcare社製)を用いて、マニュアルに記載の条件(例えば、洗浄条件:42℃、0.5×SSCを含むprimary wash buffer)において、ハイブリダイズするポリヌクレオチドを指す。 The polynucleotide capable of hybridizing under stringent conditions is a sequence of at least 20, preferably at least 30, for example, 40, 60, or 100 consecutive sequences in the nucleotide sequence set forth in SEQ ID NO: 1. Select one or more probes and design the probe, for example, using the conditions described in the manual (for example, cleaning conditions: 42 ° C., 0.5 × SSC) using ECL directic acid labeling and detection system (manufactured by GE Healthcare). It includes a polynucleotide that hybridizes in a primary wash buffer.
 より具体的には、「ストリンジェントな条件」とは、例えば、通常、42℃、2×SSC、0.1%SDSの条件であり、好ましくは50℃、2×SSC、0.1%SDSの条件であり、さらに好ましくは65℃、0.1×SSC、0.1%SDSの条件であるが、これらの条件に特に制限されるものではない。 More specifically, the “stringent conditions” are usually conditions of 42 ° C., 2 × SSC, 0.1% SDS, preferably 50 ° C., 2 × SSC, 0.1% SDS. More preferably, the conditions are 65 ° C., 0.1 × SSC, and 0.1% SDS, but are not particularly limited to these conditions.
 ハイブリダイゼーションのストリンジェンシーに影響する要素としては、温度や塩濃度など複数の要素があり、当業者であればこれら要素を適宜選択することで最適なストリンジェンシーを実現することが可能である。 There are a plurality of factors such as temperature and salt concentration as factors affecting the stringency of hybridization, and those skilled in the art can realize optimum stringency by appropriately selecting these factors.
 さらに、上記のPLA1をコードするポリヌクレオチドとしては、配列番号2に記載のアミノ酸配列と少なくとも75%、好ましくは少なくとも80%、より好ましくは少なくとも85%、なおより好ましくは少なくとも90%、さらにより好ましくは少なくとも95%、さらにより好ましくは少なくとも99%の相同性を有するアミノ酸配列を有し、かつPLA1活性を有するタンパク質をコードするポリヌクレオチドを含む。タンパク質の相同性(ホモロジー)検索は、上記で説明したとおりである。 Furthermore, the above-mentioned polynucleotide encoding PLA1 is at least 75%, preferably at least 80%, more preferably at least 85%, even more preferably at least 90%, even more preferably the amino acid sequence set forth in SEQ ID NO: 2. Comprises a polynucleotide encoding a protein having an amino acid sequence with at least 95%, even more preferably at least 99% homology, and having PLA1 activity. The protein homology search is as described above.
 また、上記のPLA1をコードするポリヌクレオチドとしては、配列番号1に記載の塩基配列と少なくとも75%、好ましくは少なくとも80%、より好ましくは少なくとも85%、なおより好ましくは少なくとも90%、さらにより好ましくは少なくとも95%、さらにより好ましくは少なくとも99%の配列同一性を有する塩基配列を有し、かつPLA1活性を有するタンパク質をコードする、ポリヌクレオチドもまた挙げられる。塩基配列の配列同一性の決定および検索についても、上記で説明したとおりである。 The polynucleotide encoding PLA1 is at least 75%, preferably at least 80%, more preferably at least 85%, even more preferably at least 90%, even more preferably the nucleotide sequence set forth in SEQ ID NO: 1. Also included are polynucleotides that have a base sequence with at least 95%, even more preferably at least 99% sequence identity, and encode a protein having PLA1 activity. The determination and search of the sequence identity of the base sequence is also as described above.
 上記のPLA1をコードするポリヌクレオチドは、遺伝子組換え技術を用いて、同種もしくは異種の宿主中で発現され得る。 The above-mentioned polynucleotide encoding PLA1 can be expressed in the same or different host using genetic recombination technology.
 [ベクターおよび形質転換体]
 本発明におけるベクターは、上記のポリヌクレオチドを含むものである。また、ポリヌクレオチド又はベクターを宿主に導入することにより、リン脂質に作用し、リゾリン脂質、グリセロール-3-リン酸、及び、グリセロール-3-ホスホコリンなどのグリセロール-3-リン酸エステル化合物のいずれか1種以上を生成する酵素を産生する能力を保有する形質転換体を作製することができる。
[Vector and transformant]
The vector in the present invention contains the above-mentioned polynucleotide. In addition, any of glycerol-3-phosphate ester compounds such as lysophospholipid, glycerol-3-phosphate, and glycerol-3-phosphocholine acts on phospholipids by introducing a polynucleotide or a vector into a host. A transformant possessing the ability to produce an enzyme that produces one or more can be made.
 形質転換体の作製のための手順および宿主に適合した組換えベクターの構築は、分子生物学、生物工学、遺伝子工学の分野において慣用されている技術に準じて行うことができる(例えば、Sambrookら、Molecular Cloning:A Laboratory Manual第2版、Cold Spring Harbor Laboratory,Cold Spring Harbor,NY,1989年参照)。特に放線菌に関しては、「PRACTICAL STREPTOMYCES GENETICS(Kieserら、John Innes Foundation、2000年)」を参照して行うことができる。 The procedure for producing a transformant and the construction of a recombinant vector suitable for the host can be performed according to techniques commonly used in the fields of molecular biology, biotechnology, and genetic engineering (for example, Sambrook et al. , Molecular Cloning: A Laboratory Manual 2nd edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989). In particular, for actinomycetes, it can be performed with reference to “PRACTICAL STREPTOMYCES GENETICS (Kieser et al., John Inns Foundation, 2000)”.
 微生物中で、PLA1をコードするポリヌクレオチドを発現させるためには、まず微生物中で安定に存在するプラスミドベクターやファージベクターにこのDNAを導入し、その遺伝情報を転写・翻訳させる。そのために、転写・翻訳を制御するユニットにあたるプロモーターをDNA鎖の5’側上流に組み込むことが好ましい。また、転写・翻訳を制御するユニットにあたるターミネーターをDNA鎖の3’側下流に組み込むことが好ましい。より好ましくは、上記プロモーターとターミネーターの両方をそれぞれの部位に組み込む。このプロモーターおよびターミネーターとしては、宿主として利用される微生物中において機能することが知られているプロモーターおよびターミネーターが用いられる。これらの各種微生物において利用可能なベクター、プロモーター、ターミネーターなどに関しては、「微生物学基礎講座8 遺伝子工学、共立出版」、特に放線菌に関しては、「PRACTICAL STREPTOMYCES GENETICS(Kieserら、John Innes Foundation、2000年)」などに詳細に記述されており、その方法を利用することが可能である。また、必要に応じてシグナル配列を用いることで細胞外に効率的に分泌生産させることができる。このとき使用するシグナル配列は上記のPLA1のものでもその他のものでもよい。 In order to express a polynucleotide encoding PLA1 in a microorganism, this DNA is first introduced into a plasmid vector or a phage vector that is stably present in the microorganism, and the genetic information is transcribed and translated. Therefore, it is preferable to incorporate a promoter corresponding to a unit for controlling transcription / translation 5 'upstream of the DNA strand. Further, it is preferable to incorporate a terminator, which is a unit for controlling transcription / translation, downstream of the 3 ′ side of the DNA strand. More preferably, both the promoter and terminator are incorporated at each site. As the promoter and terminator, a promoter and terminator known to function in microorganisms used as hosts are used. Regarding the vectors, promoters and terminators that can be used in these various microorganisms, “Microbiology Basic Course 8 Genetic Engineering, Kyoritsu Shuppan”, especially for actinomycetes, “PRACTICAL STREPTOMYCES GENETICS (Kieser et al., John s Foundation, 2000) ) "And the like, and the method can be used. Moreover, it can be efficiently secreted and produced extracellularly by using a signal sequence as necessary. The signal sequence used at this time may be the above PLA1 or the other.
 形質転換の対象となる宿主は、上記のPLA1をコードするポリヌクレオチドを含むベクターにより形質転換されて、PLA1活性を発現することができる生物であれば特に制限はない。例えば、大腸菌、枯草菌、細菌、放線菌、酵母、カビなどが挙げられる。より具体的には、例えば、エシェリヒア(Escherichia)属、バチルス(Bacillus)属、シュードモナス(Pseudomonas)属、セラチア(Serratia)属、ブレビバクテリウム(Brevibacterium)属、コリネバクテリウム(Corynebacterium)属、ストレプトコッカス(Streptococcus)属、ラクトバチルス(Lactobacillus)属など宿主ベクター系の開発がされている細菌;ロドコッカス(Rhodococcus)属、ストレプトマイセス(Streptomyces)属など宿主ベクター系の開発がされている放線菌;サッカロマイセス(Saccharomyces)属、クライベロマイセス(Kluyveromyces)属、シゾサッカロマイセス(Schizosaccharomyces)属、チゴサッカロマイセス(Zygosaccharomyces)属、ヤロウイア(Yarrowia)属、トリコスポロン(Trichosporon)属、ロドスポリジウム(Rhodosporidium)属、ピキア(Pichia)属、キャンディダ(Candida)属などの宿主ベクター系の開発がされている酵母;ノイロスポラ(Neurospora)属、アスペルギルス(Aspergillus)属、セファロスポリウム(Cephalosporium)属、トリコデルマ(Trichoderma)属などの宿主ベクター系の開発がされているカビなどが挙げられる。遺伝子組換えの操作の容易性からは大腸菌が好ましく、遺伝子の発現の容易性からは放線菌が好ましい。 The host to be transformed is not particularly limited as long as it is a living organism that can be transformed with a vector containing a polynucleotide encoding PLA1 and express PLA1 activity. For example, Escherichia coli, Bacillus subtilis, bacteria, actinomycetes, yeast, mold and the like can be mentioned. More specifically, for example, the genus Escherichia, the genus Bacillus, the genus Pseudomonas, the genus Serratia, the genus Brevibacterium, the genus Corynebacterium, Bacteria for which host vector systems such as Streptococcus and Lactobacillus are developed; Actinomycetes for which host vector systems such as Rhodococcus and Streptomyces are developed; Saccharomyces (Saccharomyces) Saccharomyces), Kluyveromyces, Shizosa A genus of the genus Schizosaccharomyces, the genus Zygosaccharomyces, the genus Yarrowia, the genus Trichosporon, the genus Rhodosporidium, the genus Rhodaspodium, and the genus C And yeasts that have been developed for host vector systems such as the genus Neurospora, the genus Aspergillus, the genus Cephalosporum, the genus Trichoderma, and the like. Escherichia coli is preferred for ease of gene recombination, and actinomycetes are preferred for ease of gene expression.
 また、微生物以外でも、植物、動物において様々な宿主・ベクター系が開発されており、例えば、蚕などの昆虫(Nature 315,592-594(1985))や菜種、トウモロコシ、ジャガイモなどの植物中に大量に異種蛋白質を発現させる系が開発されており、これらを利用してもよい。 In addition to microorganisms, various host / vector systems have been developed in plants and animals. For example, insects such as moths (Nature 315, 592-594 (1985)), rapeseed, corn, potatoes and other plants. Systems for expressing large amounts of heterologous proteins have been developed and may be used.
 得られた形質転換体は、上記のように酵素製剤(PLA1)の製造に用いることができる。具体的には、形質転換体を適当な栄養培地で液体培養して、発現したPLA1を細胞外に分泌させ、その培養上清を凍結乾燥、塩析、有機溶媒などにより処理してPLA1酵素製剤を製造することができる。 The obtained transformant can be used for production of an enzyme preparation (PLA1) as described above. Specifically, the transformant is subjected to liquid culture in an appropriate nutrient medium, the expressed PLA1 is secreted outside the cell, and the culture supernatant is treated with lyophilization, salting out, an organic solvent, etc. Can be manufactured.
 宿主細胞に依存して培養条件は変動し得るが、培養は、同業者が通常用いる条件下で行われ得る。例えば、ストレプトマイセス(Streptomyces)属のような放線菌を宿主として用いる場合、チオストレプトンを含むトリプチックソイ培地(例えば、ベクトン・ディッキンソン社製)が用いられ得る。形質転換体により産生された酵素は、上述のようにしてさらに精製され得る。 Depending on the host cell, the culture conditions may vary, but the culture can be performed under conditions commonly used by those skilled in the art. For example, when an actinomycete such as Streptomyces is used as a host, a tryptic soy medium containing thiostrepton (for example, manufactured by Becton Dickinson) can be used. The enzyme produced by the transformant can be further purified as described above.
 [PLA1の利点]
 以上のようにして生産され得るPLA1の好ましい形態の利点について、以下、説明する。
[Advantages of PLA1]
The advantages of the preferred form of PLA 1 that can be produced as described above will be described below.
 (1)従来のPLA1はカルシウムイオンなどの金属イオンが無いと触媒活性が低いために、食品加工においては食品素材に金属塩を添加して酵素処理する必要があった。これに対して、本発明のPLA1では、酵素反応に金属塩の添加が不要である。そのため、そのまま食品素材を加工することができ、使用範囲が広がるとともに金属塩による食品品質の劣化の防止、安全性の向上が期待できる。さらに、反応器を用いて酵素処理を行う場合、金属塩の添加が不要なため反応器に缶石が付着することがなく、メンテナンスが容易でランニングコストが低く抑えられる。 (1) Conventional PLA1 has a low catalytic activity in the absence of metal ions such as calcium ions. Therefore, in food processing, it is necessary to add a metal salt to a food material and perform enzyme treatment. In contrast, PLA1 of the present invention does not require the addition of a metal salt for the enzyme reaction. Therefore, the food material can be processed as it is, and the range of use can be expanded, and it can be expected to prevent the deterioration of food quality due to the metal salt and improve the safety. Furthermore, when the enzyme treatment is performed using a reactor, it is not necessary to add a metal salt, so that scales do not adhere to the reactor, maintenance is easy, and running costs are kept low.
 (2)従来の糸状菌セイリディリウム・ユニコーン サットン由来PLA1(特許文献6)はPE(ホスファチジルエタノールアミン)に対する活性が低く作用しにくいのに対し、本発明のPLA1はPEを含め様々なリン脂質に作用可能で、特に、PI(ホスファチジルイノシトール)とPG(ホスファチジルグリセロール)、PS(ホスファチジルセリン)によく作用する。pH5.6でPI、PG、PS、PE、PCに、pH9.0でPI、PG、PS、PAによく作用する。pHを制御することで作用する基質を制御可能である。つまり、pH9.0、50℃の反応条件で純度の高いホスファチジルコリン(例えば1,2-Dipalmitoyl-sn-glycero-3-phosphocholine)に対する酵素作用を低く抑えることが可能である。さらに、37℃では純度の高いホスファチジルコリン(例えば1,2-Dipalmitoyl-sn-glycero-3-phosphocholine)、ホスファチジルエタノールアミン(例えば1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine)、ホスファチジン酸(例えば1,2-Dimyristoyl-sn-glycerol-3-phosphate)に対する酵素作用を低く抑えることが可能である。大豆ホスファチジルコリン(SIGMA製)に対して250%以上(上限は290%)、大豆レシチン(和光純薬製)に対して250%以上(上限は280%)のように純度の低いレシチンに対しても、良好に作用可能であるため利用しやすい。さらに、リパーゼ活性を有しないために、リン脂質と共存するグリセリドを加水分解する副反応が生じないという利点がある。例えば、本発明のPLA1を油脂精製工程に用いた場合、グリセリドには作用せずリン脂質にのみ作用するので、油脂の収量が向上することが期待できる。 (2) Whereas the conventional filamentous fungus Celidium unicorn Sutton-derived PLA1 (Patent Document 6) has low activity against PE (phosphatidylethanolamine), PLA1 of the present invention has various phospholipids including PE. In particular, it works well on PI (phosphatidylinositol), PG (phosphatidylglycerol), and PS (phosphatidylserine). It works well on PI, PG, PS, PE and PC at pH 5.6, and on PI, PG, PS and PA at pH 9.0. By controlling the pH, the acting substrate can be controlled. That is, it is possible to suppress the enzyme action to a high purity phosphatidylcholine (for example, 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine) at a low pH of 9.0 and 50 ° C. Furthermore, at 37 ° C., high purity phosphatidylcholine (for example, 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine), phosphatidylethanolamine (for example, 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine), phosphatidic acid (for example, It is possible to keep the enzyme action against 1,2-Dimyristoyl-sn-glycerol-3-phosphate) low. 250% or more (upper limit is 290%) for soybean phosphatidylcholine (manufactured by SIGMA), 250% or more (upper limit is 280%) for soybean lecithin (manufactured by Wako Pure Chemical Industries) It is easy to use because it can work well. Furthermore, since it does not have lipase activity, there is an advantage that a side reaction that hydrolyzes glycerides coexisting with phospholipids does not occur. For example, when PLA1 of the present invention is used in a fat refining process, it does not act on glycerides but acts only on phospholipids, so that it can be expected that the yield of fats and oils is improved.
 (3)本発明のPLA1は、pH5~8の範囲において実質的に100%の活性を示す。さらに、pH4.1からpH10の範囲において最大活性に対して50%以上の活性を示すことから、従来のPLA1に比べて使用できるpH範囲が極めて広く、弱酸性からアルカリ性の条件下で使用できる。そのため、反応制御がしやすく、広範な応用範囲が期待できる。 (3) PLA1 of the present invention exhibits substantially 100% activity in the pH range of 5-8. Furthermore, since it exhibits an activity of 50% or more with respect to the maximum activity in the range of pH 4.1 to pH 10, the usable pH range is extremely wide compared to the conventional PLA1, and it can be used under weakly acidic to alkaline conditions. Therefore, reaction control is easy and a wide range of applications can be expected.
 (4)本発明のPLA1は、40~55℃の範囲を超える範囲で50%以上の活性を示す。さらに、従来酵素(三菱化学フーズ社製PLA1)は30℃以下では50%以下の活性となってしまうのに対して、本発明のPLA1は20℃で50%以上の活性を示すので、素材の低温処理が可能である。したがって、従来のPLA1に比べて使用できる温度範囲が広い。 (4) PLA1 of the present invention exhibits an activity of 50% or more in a range exceeding the range of 40 to 55 ° C. Furthermore, the conventional enzyme (PLA1 manufactured by Mitsubishi Chemical Foods) has an activity of 50% or less at 30 ° C. or lower, whereas PLA1 of the present invention exhibits an activity of 50% or higher at 20 ° C. Low temperature processing is possible. Therefore, the usable temperature range is wide as compared with the conventional PLA1.
 (5)Mn2+、Co2+、Mg2+、Ca2+、Zn2+、DTT(ジチオスレイトール)、EDTAによって阻害を受けないことから、反応制御がしやすい。 (5) Since it is not inhibited by Mn 2+ , Co 2+ , Mg 2+ , Ca 2+ , Zn 2+ , DTT (dithiothreitol) or EDTA, the reaction can be easily controlled.
 (6)従来のPLA1(三菱化学フーズ社製PLA1)の安定温度は55℃であるのに対し、本発明のPLA1の安定温度は40~45℃である。したがって、より低温で酵素を失活させることが可能である。 (6) The conventional PLA1 (PLA1 manufactured by Mitsubishi Chemical Foods) has a stable temperature of 55 ° C., whereas the stable temperature of the PLA1 of the present invention is 40 to 45 ° C. Therefore, it is possible to deactivate the enzyme at a lower temperature.
 (7)NBRC標準株(ストレプトマイセス・アルビドフラブスNBRC13010)においても同程度の酵素活性が認められた。そのため、種レベルでの請求が可能である。 (7) The same enzyme activity was observed in the NBRC standard strain (Streptomyces albidoflavus NBRC13010). Therefore, billing at the species level is possible.
 [PLA1の利用]
 以下に、PLA1の好ましい形態についての利用方法を説明する。
[Use of PLA1]
Below, the utilization method about the preferable form of PLA1 is demonstrated.
 (1)PLA1は、細胞膜を分解できる。そして、PLA1は、細胞を溶解させる。したがって、卵黄汚れや血液汚れなどの洗浄剤をはじめとする細胞分解剤あるいは細胞溶解剤に利用できる。 (1) PLA1 can decompose the cell membrane. PLA1 then lyses the cells. Therefore, it can be used for cell degrading agents or cell lysing agents including detergents such as egg yolk stains and blood stains.
 (2)リゾリン脂質は極めて乳化特性に優れているため、様々な分野に利用できる乳化剤あるいは界面活性剤となる。また、リゾリン脂質は、近年様々な生理作用が発見されているため医薬品やサプリメントとして利用可能性がある。したがって、本発明のPLA1を利用して、様々な高機能リゾリン脂質が製造可能である。 (2) Since lysophospholipids are extremely excellent in emulsifying properties, they become emulsifiers or surfactants that can be used in various fields. In addition, lysophospholipids have been discovered as various physiological functions in recent years, and thus can be used as pharmaceuticals and supplements. Therefore, various highly functional lysophospholipids can be produced using PLA1 of the present invention.
 (3)油脂の精製において、不純物となるリン脂質を本発明のPLA1を利用して効率よく分解し、油脂からの物理的な分離を可能にする。 (3) In the purification of fats and oils, phospholipids that become impurities are efficiently decomposed using PLA1 of the present invention, and physical separation from the fats and oils becomes possible.
 (4)本発明のPLA1をパン生地や麺生地などの小麦粉に加えることで、小麦粉中に元々含まれているリン脂質をリゾレシチンに変換する。生地中でリゾレシチンが生成することで、蛋白質や澱粉と結合してグルテンの網目構造の形成を助け、パンや麺の物性を改善したり、老化を防止したりする。 (4) By adding PLA1 of the present invention to flour such as bread dough or noodle dough, the phospholipid originally contained in the flour is converted to lysolecithin. By forming lysolecithin in the dough, it binds to proteins and starch to help form a gluten network, improve the physical properties of bread and noodles, and prevent aging.
 (5)化粧品材料として優れた特性、効果を示す環状ホスファチジン酸はリゾリン脂質から製造することが可能である。したがって、本発明のPLA1を利用すれば、効率的に環状ホスファチジン酸が製造可能になる。 (5) Cyclic phosphatidic acid having excellent properties and effects as a cosmetic material can be produced from lysophospholipid. Therefore, cyclic phosphatidic acid can be efficiently produced by using PLA1 of the present invention.
 (6)グリセロール-3-ホスホコリンは、認知症予防などが期待される。その他のグリセロール-3-リン酸エステル化合物にも高機能が期待できる。よって、本発明のPLA1では高機能のグリセロール-3-リン酸エステルを製造できる。 (6) Glycerol-3-phosphocholine is expected to prevent dementia. Other glycerol-3-phosphate compounds can be expected to have high functions. Therefore, the PLA1 of the present invention can produce a highly functional glycerol-3-phosphate ester.
 (7)グリセロール-3-リン酸は、解糖系の代謝中間体である。そのため、本発明のPLA1では、代謝を亢進する可能性を有するグリセロール-3-リン酸を製造することができる。 (7) Glycerol-3-phosphate is a glycolytic metabolic intermediate. Therefore, PLA1 of the present invention can produce glycerol-3-phosphate having the possibility of enhancing metabolism.
 以下、実施例により、本発明をさらに詳細に説明する。本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples.
 [PLA1の酵素活性の測定方法]
 本実施例において、酵素活性の測定は、基本的には、以下のように行った。この方法を、以下、「PLA1活性標準測定方法」という。この方法では、卵黄ホスファチジルコリンを基質として用いた場合を例示する。
[Method for measuring enzyme activity of PLA1]
In this example, the enzyme activity was basically measured as follows. Hereinafter, this method is referred to as “PLA1 activity standard measurement method”. This method illustrates the case where egg yolk phosphatidylcholine is used as a substrate.
 0.02%(w/v)トライトン(Triton)X-100(ナカライテスク(株)製)10mLに卵黄ホスファチジルコリン1g(ナカライ製、L-α-phosphatidylcholine(egg yolk))を溶解し、10%(w/v)卵黄ホスファチジルコリンを調製した。この10%(w/v)卵黄ホスファチジルコリン0.025mLに、0.2M トリス-塩酸緩衝液(pH8.0)0.060mLと、0.5M EDTA二ナトリウム(和光純薬工業(株)製)0.005mLとを加えた。そして、37℃で5分間予備加温した後、酵素を含む試料0.010mLを添加し、37℃で5分反応させた。酵素反応後、100℃で5分間加熱し、酵素反応を停止させた。反応停止後、反応液5μL中に含まれる遊離脂肪酸量を、遊離脂肪酸測定キットである「NEFA Cテストワコー」(和光純薬工業(株)製)を用いて、キットに添付の指示書に記載のとおりに測定した。1分間に1μmolの遊離脂肪酸を生成する酵素量を、1単位とした。 0.02% (w / v) Triton X-100 (manufactured by Nacalai Tesque) 10 g yolk phosphatidylcholine (Nacalai, L-α-phosphatidylcholine (eggegyolk)) dissolved in 10 mL (10%) w / v) Egg yolk phosphatidylcholine was prepared. 0.025 mL of 10% (w / v) egg yolk phosphatidylcholine, 0.060 mL of 0.2 M Tris-HCl buffer (pH 8.0), 0.5 M disodium EDTA (manufactured by Wako Pure Chemical Industries, Ltd.) 0 0.005 mL was added. And after preheating at 37 degreeC for 5 minute (s), 0.010 mL of samples containing an enzyme were added and it was made to react at 37 degreeC for 5 minutes. After the enzyme reaction, the enzyme reaction was stopped by heating at 100 ° C. for 5 minutes. After stopping the reaction, the amount of free fatty acid contained in 5 μL of the reaction solution is described in the instructions attached to the kit using “NEFA C Test Wako” (manufactured by Wako Pure Chemical Industries, Ltd.) which is a free fatty acid measurement kit. It measured as follows. The amount of enzyme that produces 1 μmol of free fatty acid per minute was defined as 1 unit.
 [実施例1:ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus由来酵素の精製]
 (a)培養
 トリプチックソイ培地(べクトン・ディンキンソン社製)500mLを調製し、500mL容バッフル付き三角フラスコに50mlずつ分注して、さらに1%大豆レシチンと0.1%ツィーン(Tween)80を添加した後、121℃で15分間蒸気殺菌を行った。予め平板培地に生育したストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297のコロニーを適当量とり、トリプチックソイ培地(べクトン・ディンキンソン社製)5mLを入れたφ18試験管(18×180mm)に接種し、28℃で良好な生育が得られるまで振とう培養した。この培養液を先の滅菌した培地50mLに0.5mlずつ接種し、28℃で55時間振とう培養した。遠心分離機を用いて、この培養液から上清を回収した。
[Example 1: Purification of Streptomyces albidoflavus enzyme]
(A) Cultivation 500 mL of tryptic soy medium (Becton Dinkinson) is prepared, and 50 ml each is dispensed into a 500 mL baffle Erlenmeyer flask, and further 1% soybean lecithin and 0.1% Tween (Tween) After adding 80, steam sterilization was performed at 121 ° C. for 15 minutes. An appropriate amount of a colony of Streptomyces albidoflavus NA297 previously grown on a plate medium was taken and inoculated into a φ18 test tube (18 × 180 mm) containing 5 mL of tryptic soy medium (Becton Dinkinson). The mixture was then cultured with shaking at 28 ° C. until good growth was obtained. 0.5 ml of this culture solution was inoculated into 50 mL of the previously sterilized medium and cultured with shaking at 28 ° C. for 55 hours. The supernatant was recovered from this culture using a centrifuge.
 (b)硫安分画
 上記(a)で回収した培養上清に、80%(w/v)飽和となるように硫酸アンモニウムを添加し、生じた沈殿を遠心分離(15,000rpm、30分、4℃)により回収した。この沈殿を20mM トリス-塩酸緩衝液(pH9.0)30mlで可溶化し、20mM トリス-塩酸緩衝液(pH9.0)で透析し、粗酵素液を得た。
(B) Ammonium sulfate fraction To the culture supernatant collected in (a) above, ammonium sulfate was added so as to be 80% (w / v) saturated, and the resulting precipitate was centrifuged (15,000 rpm, 30 minutes, 4 minutes). C). This precipitate was solubilized with 30 ml of 20 mM Tris-HCl buffer (pH 9.0) and dialyzed with 20 mM Tris-HCl buffer (pH 9.0) to obtain a crude enzyme solution.
 (c)Toyopearl Phenyl-650Mカラムクロマトグラフィー
 上記(b)で得られた粗酵素液に終濃度で1.5Mの硫酸アンモニウムを添加し、1.5M硫酸アンモニウムを含む20mM トリス-塩酸緩衝液(pH8.0)で予め平衡化したToyopearl Phenyl-650Mカラム(内径26mm、高さ38mm、東ソー社製)にアプライした。同緩衝液でカラムを洗浄した後、硫酸アンモニウム(1.5Mから0Mまで)のリニアグラジェントにより、活性画分を溶出させた。
(C) Toyopearl Phenyl-650M column chromatography To the crude enzyme solution obtained in (b) above, 1.5 M ammonium sulfate was added at a final concentration, and 20 mM Tris-HCl buffer (pH 8.0) containing 1.5 M ammonium sulfate was added. The column was applied to a Toyopearl Phenyl-650M column (inner diameter 26 mm, height 38 mm, manufactured by Tosoh Corporation). After washing the column with the same buffer, the active fraction was eluted with a linear gradient of ammonium sulfate (from 1.5 M to 0 M).
 (d)HiTrap SP HPカラムクロマトグラフィー
 上記(c)で得られた活性画分を集め、Viva spin(ザルトリウス社製)を用い濃縮脱塩した。これに、20mM MES-水酸化ナトリウム緩衝液(pH6.0)を加えた。これを、20mM MES-水酸化ナトリウム緩衝液(pH6.0)で予め平衡化したHiTrap SP(5ml)カラム(GEヘルスケアバイオサイエンス社製)にアプライし、同緩衝液でカラムを洗浄した後、塩化ナトリウム(0Mから1Mまで)のリニアグラジェントにより、活性画分を溶出させた。
(D) HiTrap SP HP column chromatography The active fractions obtained in (c) above were collected and concentrated and desalted using Viva spin (manufactured by Sartorius). To this, 20 mM MES-sodium hydroxide buffer (pH 6.0) was added. This was applied to a HiTrap SP (5 ml) column (manufactured by GE Healthcare Bioscience) previously equilibrated with 20 mM MES-sodium hydroxide buffer (pH 6.0), and the column was washed with the same buffer. The active fraction was eluted with a linear gradient of sodium chloride (0M to 1M).
 (e)HiTrap Q HPカラムクロマトグラフィー
 上記(d)で得られた活性画分を集め、Viva spinを用い濃縮脱塩した。これに、20mMトリス-塩酸緩衝液(pH9.0)を加えた。20mM トリス-塩酸緩衝液(pH9.0)で予め平衡化したHiTrap Q HP(5ml)カラム(GEヘルスケアバイオサイエンス社製)にアプライし、同緩衝液でカラムを洗浄した後、塩化ナトリウム(0Mから1Mまで)のリニアグラジェントにより、活性画分を溶出させた。
(E) HiTrap Q HP column chromatography The active fractions obtained in (d) above were collected and concentrated and desalted using Viva spin. To this, 20 mM Tris-HCl buffer (pH 9.0) was added. The column was applied to a HiTrap Q HP (5 ml) column (manufactured by GE Healthcare Bioscience) pre-equilibrated with 20 mM Tris-HCl buffer (pH 9.0), washed with the same buffer, and then sodium chloride (0 M The active fraction was eluted with a linear gradient from 1 to 1M.
 (f)SDS-PAGE
 上記(e)で溶出した活性画分を集めてSDS-PAGE(15%(w/v)ポリアクリルアミドゲル)により解析した。
(F) SDS-PAGE
The active fractions eluted in (e) above were collected and analyzed by SDS-PAGE (15% (w / v) polyacrylamide gel).
 図1は、この溶出画分のSDS-PAGEによる解析の結果を示す電気泳動写真である。レーン1(図の左側)は、分子量マーカーであり、レーン2(図の右側)は、溶出画分のバンドを示す。図1に示すように、溶出画分において、単一のバンドが観察された。 FIG. 1 is an electrophoresis photograph showing the results of analysis by SDS-PAGE of the eluted fraction. Lane 1 (left side of the figure) is a molecular weight marker, and lane 2 (right side of the figure) shows a band of the eluted fraction. As shown in FIG. 1, a single band was observed in the elution fraction.
 以上のようにして、ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297株より、電気泳動的に単一に精製された酵素を得た。 As described above, a single electrophoretically purified enzyme was obtained from Streptomyces albidoflavus NA297 strain.
 この酵素は、HPLC分析およびゲル濾過クロマトグラフィー分析により、単量体と推定された。 This enzyme was estimated to be a monomer by HPLC analysis and gel filtration chromatography analysis.
 [実施例2:ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)由来酵素の性質の測定]
 (PLA1活性)
 実施例1で得た精製酵素と、基質として1-パルミトイル-2-オレオイルホスファチジンコリンとを「PLA1活性標準測定方法」の反応条件で酵素反応を行った。
[Example 2: Measurement of properties of enzyme derived from Streptomyces albidoflavus]
(PLA1 activity)
The purified enzyme obtained in Example 1 and 1-palmitoyl-2-oleoylphosphatidinecholine as a substrate were subjected to an enzymatic reaction under the reaction conditions of “PLA1 activity standard measurement method”.
 その後、反応液をクロロホルム/メタノール(2/1,v/v)で抽出した。抽出液をガスクロマトグラフィー分析して、加水分解により生じた脂肪酸を定量分析することで、PLA1活性を有することを確認した。 Thereafter, the reaction solution was extracted with chloroform / methanol (2/1, v / v). The extract was analyzed by gas chromatography and the fatty acid produced by hydrolysis was quantitatively analyzed to confirm that it had PLA1 activity.
 (酵素学的性質)
 実施例1で得た精製酵素の酵素学的性質について検討した。
(Enzymological properties)
The enzymatic properties of the purified enzyme obtained in Example 1 were examined.
 (1)作用pH
 緩衝液として酢酸-酢酸ナトリウム緩衝液(pH4.1~5.6)、ビストリス-塩酸緩衝液(pH5.6~7.2)、トリス-塩酸緩衝液(pH7.2~8.8)、又は、グリシン-水酸化ナトリウム緩衝液(pH8.8~10.5)、を用いてpHを変化させたこと以外は、上記「PLA1活性標準測定方法」の方法に従って、卵黄ホスファチジルコリンを基質として用い、PLA1活性を測定した。その結果、実施例1で得た酵素は、反応の至適pHが5.0~8.0であることが分かった。
(1) Working pH
As a buffer solution, acetic acid-sodium acetate buffer (pH 4.1-5.6), bistris-hydrochloric acid buffer (pH 5.6-7.2), Tris-hydrochloric acid buffer (pH 7.2-8.8), or Except that the pH was changed using glycine-sodium hydroxide buffer (pH 8.8 to 10.5), using egg yolk phosphatidylcholine as a substrate according to the method of “PLA1 activity standard measurement method” above, PLA1 Activity was measured. As a result, the enzyme obtained in Example 1 was found to have an optimum pH of the reaction of 5.0 to 8.0.
 図2は、種々の反応pHでの酵素活性を、反応pHが5.6である場合の酵素活性を基準(100%)とする相対活性として示したグラフである。図2のグラフから分かるように、この酵素は、pH4.1からからpH10.0という広い範囲で最大活性(100%)に対して相対的な活性が50%以上の活性を示した。 FIG. 2 is a graph showing enzyme activities at various reaction pHs as relative activities based on the enzyme activity when the reaction pH is 5.6 (100%). As can be seen from the graph of FIG. 2, this enzyme showed an activity with a relative activity of 50% or more with respect to the maximum activity (100%) in a wide range from pH 4.1 to pH 10.0.
 (2)作用温度
 酵素反応の際の反応温度を変化させたこと以外は、上記「PLA1活性標準測定方法」の方法に従って、pH5.6において5分間で卵黄ホスファチジルコリンを基質として用い、PLA1活性を測定した。
(2) Action temperature PLA1 activity was measured using egg yolk phosphatidylcholine as a substrate at pH 5.6 for 5 minutes according to the method of “PLA1 activity standard measurement method” except that the reaction temperature during the enzyme reaction was changed. did.
 図3は、種々の反応温度での酵素活性を、反応温度が50℃である場合の活性を基準(100%)とする相対活性として示したグラフである。図3のグラフに示されるように、この酵素は、20~60℃で活性を発揮し、そして反応の至適温度は50℃付近(例えば45~55℃)であった。 FIG. 3 is a graph showing enzyme activities at various reaction temperatures as relative activities based on the activity (100%) when the reaction temperature is 50 ° C. As shown in the graph of FIG. 3, this enzyme exhibited activity at 20 to 60 ° C., and the optimum temperature for the reaction was around 50 ° C. (eg, 45 to 55 ° C.).
 (3)温度安定性
 実施例1で得た精製酵素を120mM 酢酸-酢酸ナトリウム緩衝液(pH5.6)中で、種々の温度で30分間処理した後の残存活性を、上記「PLA1活性標準測定方法」の方法に従って、卵黄ホスファチジルコリンを基質として用い、pH5.6で50℃にて5分間で測定した。温度処理前の酵素活性を基準(100%)として、各温度処理後の酵素活性の残存割合として残存活性を示した。
(3) Temperature stability After treating the purified enzyme obtained in Example 1 in 120 mM acetic acid-sodium acetate buffer (pH 5.6) at various temperatures for 30 minutes, the residual activity was measured as described in “PLA1 activity standard measurement”. According to the method of “Method”, measurement was performed at 50 ° C. for 5 minutes at pH 5.6 using egg yolk phosphatidylcholine as a substrate. Based on the enzyme activity before the temperature treatment as a reference (100%), the remaining activity was shown as the remaining ratio of the enzyme activity after each temperature treatment.
 図4は、種々の温度での処理後の酵素の残存活性を示すグラフである。図4のグラフに示されるように、この酵素は、4℃から40℃までの温度での処理後では、処理前の90%以上の活性が残存していた。45℃の処理後では、処理前の80%程度(約75~80%)の活性が残存していた。 FIG. 4 is a graph showing the residual activity of the enzyme after treatment at various temperatures. As shown in the graph of FIG. 4, after the treatment at a temperature of 4 ° C. to 40 ° C., 90% or more of the enzyme remained before the treatment. After the treatment at 45 ° C., about 80% (about 75 to 80%) of the activity before the treatment remained.
 (4)pH安定性
 実施例1で得た精製酵素を120mMの各緩衝液(「作用pH」の欄参照)中で、種々のpHで4℃、3時間処理した後の残存活性を、上記「PLA1活性標準測定方法」の方法に従って、卵黄ホスファチジルコリンを基質として用い、pH5.6で50℃にて5分間で測定した。処理前の酵素活性を基準(100%)として、各処理後の酵素活性の残存割合として残存活性を示した。
(4) pH stability The residual activity after treating the purified enzyme obtained in Example 1 in various buffer solutions at 120 ° C. at 4 ° C. for 3 hours in each buffer solution (see “Action pH” column) According to the “PLA1 activity standard measurement method”, egg yolk phosphatidylcholine was used as a substrate, and measurement was performed at 50 ° C. for 5 minutes at pH 5.6. Based on the enzyme activity before treatment as a reference (100%), the remaining activity was shown as the remaining ratio of enzyme activity after each treatment.
 図5は、種々のpHでの処理後の酵素の残存活性を示すグラフである。図5のグラフに示されるように、この酵素は、pH3.99から10.5まで活性が残存していた。 FIG. 5 is a graph showing the residual activity of the enzyme after treatment at various pHs. As shown in the graph of FIG. 5, this enzyme remained active from pH 3.99 to 10.5.
 (5)各種金属塩およびEDTA等の化学物質の影響
 酵素反応の際に、各種金属イオン又はEDTAを添加して、上記「PLA1活性標準測定方法」の方法に従って、卵黄ホスファチジルコリンを基質として用い、pH5.6で50℃にて5分間でPLA1活性を測定した。
(5) Effects of various metal salts and chemical substances such as EDTA In the enzyme reaction, various metal ions or EDTA are added, and egg yolk phosphatidylcholine is used as a substrate in accordance with the above-mentioned “PLA1 activity standard measurement method”, pH 5 6. PLA1 activity was measured at 50 ° C. for 5 minutes.
 表1は、化学物質を添加していない条件を100%としたときの、各種添加物を添加した相対活性の結果である。実施例1で得た酵素は、50mMのEDTAによって阻害を受けず添加しない場合と同一の活性を示し、100mMのEDTAによってもほとんど影響を受けない。また、2mMのジチオスレイトールによって阻害を受けなかった。また、10mM Ca2+、Zn2+存在下では、約80%の活性を示した。一方、10mMのFe3+、Fe2+、2mMの2-メルカプトエタノール、ヨードアセトアミド、PMSF(フッ化フェニルメチルスルホニル)、SDSで活性が阻害され得ることが確認された。 Table 1 shows the results of relative activities with various additives added, assuming that the condition in which no chemical substance is added is 100%. The enzyme obtained in Example 1 is not inhibited by 50 mM EDTA and exhibits the same activity as when not added, and is hardly affected by 100 mM EDTA. Moreover, it was not inhibited by 2 mM dithiothreitol. Further, 10 mM Ca 2+, in the Zn 2+ presence, showed about 80% active. On the other hand, it was confirmed that the activity could be inhibited by 10 mM Fe 3+ , Fe 2+ , 2 mM 2-mercaptoethanol, iodoacetamide, PMSF (phenylmethylsulfonyl fluoride), and SDS.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (6)基質特異性
 卵黄ホスファチジルコリン(ナカライ製、L-α-phosphatidylcholine(egg yolk))の代わりに各種リン脂質を基質として用いたこと以外は、上記「PLA1活性標準測定方法」に従って、PLA1活性を測定した。
(6) Substrate specificity According to the above “PLA1 activity standard measurement method”, except that various phospholipids were used as a substrate instead of egg yolk phosphatidylcholine (manufactured by Nacalai, L-α-phosphatidylcholine (egg yolk)) It was measured.
 表2は、卵黄ホスファチジルコリンを基質とし、pH9.0、終濃度1.0%トライトン(Triton)X-100で50℃にて5分間での加水分解活性を100%とした場合の相対活性の結果である。 Table 2 shows the results of relative activity when egg yolk phosphatidylcholine is used as a substrate and the hydrolysis activity at 100 ° C. for 5 minutes at 50 ° C. with pH 9.0 and final concentration of 1.0% Triton X-100. It is.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また表3は、卵黄ホスファチジルコリンを基質とし、pH5.6、終濃度1.0%トライトン(Triton)X-100で50℃にて5分間での加水分解活性を100%とした場合の相対活性の結果である。 Table 3 shows the relative activity when egg yolk phosphatidylcholine is used as a substrate and the hydrolysis activity at pH 5.6, final concentration 1.0% Triton X-100 at 50 ° C. for 5 minutes is defined as 100%. It is a result.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 卵黄ホスファチジルコリンの代わりに各種リン脂質を基質として用いたこと以外は、上記「PLA1活性標準測定方法」に従って、終濃度0.005%トライトン(Triton)X-100を含む反応液にてPLA1活性を測定した。 PLA1 activity was measured in a reaction solution containing a final concentration of 0.005% Triton X-100 according to the above "PLA1 activity standard measurement method" except that various phospholipids were used as a substrate instead of egg yolk phosphatidylcholine. did.
 表4は、卵黄ホスファチジルコリンを基質とし、pH8.0、終濃度0.23%トライトン(Triton)X-100で37℃にて5分間の加水分解活性を100%とした場合の相対活性の結果である。 Table 4 shows the results of relative activity when egg yolk phosphatidylcholine is used as a substrate, and the hydrolysis activity at pH 8.0, final concentration 0.23% Triton X-100 at 37 ° C. for 5 minutes is defined as 100%. is there.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 このように、実施例1で得た酵素は、表2~表4に示すような基質特異性を示した。 Thus, the enzyme obtained in Example 1 exhibited substrate specificity as shown in Tables 2 to 4.
 (7)分子量
 SDS-PAGE法(15%(w/v)ポリアクリルアミドゲル)に従って、実施例1で得た精製酵素の分子量を測定した結果、精製酵素の分子量は約28,000であった(図1)。なお、単位はDa(ダルトン)である。
(7) Molecular Weight According to the SDS-PAGE method (15% (w / v) polyacrylamide gel), the molecular weight of the purified enzyme obtained in Example 1 was measured. As a result, the molecular weight of the purified enzyme was about 28,000 ( FIG. 1). The unit is Da (Dalton).
 (8)等電点
 Genetyxを用いて酵素のアミノ酸配列に基づいて酵素の等電点を予測した結果、酵素の等電点は6.06であった。
(8) Isoelectric point As a result of predicting the isoelectric point of the enzyme based on the amino acid sequence of the enzyme using Genetyx, the isoelectric point of the enzyme was 6.06.
 [実施例3:ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)由来酵素のN末端アミノ酸配列の解析]
 実施例1で得た精製酵素を用いて、プロテインシーケンサーによりN末端アミノ酸配列の解析を行った。また、nanoLC-MS/MSにより内部アミノ酸配列の解析を行った。解析から、この精製酵素のN末端アミノ酸配列は、配列番号3に示すものであることが確認された。また、内部アミノ酸配列は、配列番号4、5に示すものであることが確認された。なお、配列番号3は、配列番号2の34位から示される配列となっている(1~33位が分泌シグナル配列で成熟(精製)酵素では除去されている)。また、配列番号4は、配列番号2の145位から示される配列となっている。また、配列番号5は、配列番号2の165位から示される配列となっている。
[Example 3: Analysis of N-terminal amino acid sequence of enzyme derived from Streptomyces albidoflavus]
Using the purified enzyme obtained in Example 1, the N-terminal amino acid sequence was analyzed with a protein sequencer. The internal amino acid sequence was analyzed by nanoLC-MS / MS. From the analysis, it was confirmed that the N-terminal amino acid sequence of this purified enzyme was as shown in SEQ ID NO: 3. The internal amino acid sequences were confirmed to be those shown in SEQ ID NOs: 4 and 5. SEQ ID NO: 3 is a sequence shown from position 34 of SEQ ID NO: 2 (positions 1 to 33 are secretory signal sequences that have been removed by the mature (purified) enzyme). SEQ ID NO: 4 is the sequence shown from position 145 of SEQ ID NO: 2. SEQ ID NO: 5 is the sequence shown from position 165 of SEQ ID NO: 2.
 [実施例4:ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297の染色体DNAの分離]
 ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297を、YEME培地(0.3%酵母エキス、0.5%ペプトン、0.3%麦芽エキス、1%グルコース、34%シュークロース、5mM MgCl2、0.5%グリシン)50mlを用いて28℃で4日間培養し、集菌した。
[Example 4: Isolation of chromosomal DNA of Streptomyces albidoflavus NA297]
Streptomyces albidoflavus NA297 was added to YEME medium (0.3% yeast extract, 0.5% peptone, 0.3% malt extract, 1% glucose, 34% sucrose, 5 mM MgCl 2 , 0. 5 ml of 5% glycine) was cultured at 28 ° C. for 4 days and collected.
 次いで、この菌体を、75mM NaCl、25mM EDTA、20mM トリス-塩酸(pH7.5)および1mg/mlリゾチームからなる溶液5mlに懸濁し、37℃で一晩処理した。これに、10%(w/v)SDSを750μl、proteinase Kを5mg添加し、55℃で2時間処理した。この溶液にクロロホルム7.5mlを加えて攪拌し、遠心分離により水相を5ml分取した。 Then, the cells were suspended in 5 ml of a solution consisting of 75 mM NaCl, 25 mM EDTA, 20 mM Tris-hydrochloric acid (pH 7.5) and 1 mg / ml lysozyme, and treated at 37 ° C. overnight. To this, 750 μl of 10% (w / v) SDS and 5 mg of proteinase K were added and treated at 55 ° C. for 2 hours. To this solution, 7.5 ml of chloroform was added and stirred, and 5 ml of the aqueous phase was collected by centrifugation.
 この水相に3mlのイソプロパノールを添加混合してDNA画分を回収し、10mM トリス-塩酸緩衝液(pH8.0)および1mM EDTAからなる溶液500μlに溶解した。これに、RNaseAを20μg/mlとなるように加え、37℃で1時間処理した後、0.8MのNaClを含む13%PEG溶液を500μl加え攪拌し、遠心分離により、水相を500μl分取した。これにフェノール/クロロホルム混合液500μlを加えて攪拌し、遠心分離により、水相を500μl分取した。 The DNA fraction was collected by adding 3 ml of isopropanol to this aqueous phase, and dissolved in 500 μl of a solution consisting of 10 mM Tris-HCl buffer (pH 8.0) and 1 mM EDTA. To this, RNase A was added to 20 μg / ml, treated at 37 ° C. for 1 hour, 500 μl of 13% PEG solution containing 0.8 M NaCl was added and stirred, and 500 μl of the aqueous phase was collected by centrifugation. did. 500 μl of a phenol / chloroform mixed solution was added thereto and stirred, and 500 μl of an aqueous phase was collected by centrifugation.
 この水相に3M 酢酸ナトリウム(pH5.2)50μLおよびエタノール1mlを添加混合し、DNAを回収した。 To this aqueous phase, 50 μL of 3M sodium acetate (pH 5.2) and 1 ml of ethanol were added and mixed to recover DNA.
 このDNAを70%(v/v)エタノールに10分間浸漬した後、10mM トリス-塩酸緩衝液(pH8.0)および1mM EDTAからなる溶液200μlに溶解した。 This DNA was immersed in 70% (v / v) ethanol for 10 minutes, and then dissolved in 200 μl of a solution composed of 10 mM Tris-HCl buffer (pH 8.0) and 1 mM EDTA.
 [実施例5:ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297由来PLA1遺伝子のコア領域のクローニング]
 PLA1のN末端および内部アミノ酸配列とストレプトマイセス属の使用コドンに基づいて、PCR用の縮重オリゴヌクレオチドプライマーS1センスプライマー「primer S1」(配列番号6)、及び、3種のA1アンチセンスプライマーとして「primer A1-1」(配列番号7)、「primer A1-2」(配列番号8)を設計した。ここで、配列中のsはcまたはgを表し、wはaまたはtを表し、kはgまたはtを表している。
[Example 5: Cloning of the core region of the PLA1 gene derived from Streptomyces albidoflavus NA297]
Based on the N-terminal and internal amino acid sequences of PLA1 and the codons used in the genus Streptomyces, degenerate oligonucleotide primer for PCR S1 sense primer “primer S1” (SEQ ID NO: 6), and three types of A1 antisense primers “Primer A1-1” (SEQ ID NO: 7) and “primer A1-2” (SEQ ID NO: 8) were designed. Here, s in the sequence represents c or g, w represents a or t, and k represents g or t.
 PCRの反応液組成は次のとおりである。 The PCR reaction solution composition is as follows.
 実施例4で得た鋳型染色体DNA50ng、2×MightyAmp Buffer 25μL、プライマー各300nM、およびMightyAmp DNA Polymerase 1.25ユニットに、蒸留水を全量50μlとなるように添加した。 Distilled water was added to 50 μl of template chromosomal DNA 50 ng, 2 × MightyAmp Buffer 25 μL obtained in Example 4, 300 nM of each primer, and MightyAmp DNA Polymerase 1.25 unit.
 PCR反応条件は次のとおりである。 PCR reaction conditions are as follows.
  ステップ1:98℃、2分;
  ステップ2:98℃、10秒;
  ステップ3:65℃、15秒;
  ステップ4:68℃、1分;
  ステップ2からステップ4を30サイクル繰り返す;
  ステップ4:68℃、1分。
Step 1: 98 ° C., 2 minutes;
Step 2: 98 ° C., 10 seconds;
Step 3: 65 ° C., 15 seconds;
Step 4: 68 ° C., 1 minute;
Repeat steps 2 to 4 for 30 cycles;
Step 4: 68 ° C., 1 minute.
 配列番号6~8を用いたPCRによって、約300bpの特異的な増幅産物を得た。 A specific amplification product of about 300 bp was obtained by PCR using SEQ ID NOs: 6-8.
 このPCR反応液についてアガロースゲル電気泳動を行い、目的の300bpのバンド部分を切り出し、pMD20-T Vector(TAKARA製)を用いて、pMD20-T Vectorに結合させ、大腸菌を形質転換した。形質転換株をアンピシリン50μg/mlを含むLB培地(トリプトン1%、酵母エキス0.5%、塩化ナトリウム0.4%、pH7.2)で培養し、Miniprep DNA Purification Kit(TaKaRa製)を用いてDNAシーケンス用のプラスミドを抽出・精製した。 The PCR reaction solution was subjected to agarose gel electrophoresis, the target 300 bp band portion was cut out, and bound to pMD20-T Vector using pMD20-T Vector (manufactured by TAKARA) to transform Escherichia coli. The transformed strain is cultured in LB medium (tryptone 1%, yeast extract 0.5%, sodium chloride 0.4%, pH 7.2) containing ampicillin 50 μg / ml, and using Miniprep DNA Purification Kit (TaKaRa). Plasmid for DNA sequencing was extracted and purified.
 続いて、ベクター(pMD20-T Vector)に由来するM13 primerM4を用いて自動シークエンサーによって、挿入断片の塩基配列を決定した。この塩基配列を、配列番号9に示す。 Subsequently, the base sequence of the inserted fragment was determined by an automatic sequencer using M13 primerM4 derived from a vector (pMD20-T Vector). This base sequence is shown in SEQ ID NO: 9.
 [実施例6:ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297由来PLA1遺伝子のコア領域周辺のクローニング]
 実施例5で決定した遺伝子配列の周辺領域の配列を明らかにするために、インバースPCRによりその上流側と下流側を含むDNA断片を増幅した。
[Example 6: Cloning around the core region of the PLA1 gene derived from Streptomyces albidoflavus NA297]
In order to clarify the sequence of the peripheral region of the gene sequence determined in Example 5, a DNA fragment including the upstream side and the downstream side was amplified by inverse PCR.
 実施例4で得た染色体DNAをSacIIで完全消化し、Ligation high Ver.2(Toyobo社製)により自己閉環化させた。これを鋳型にして、ホスホリパーゼA1の部分遺伝子配列に基づいて作製したセンスプライマーSE1「primer SE1」(配列番号10)とアンチセンスプライマーAN1「primer AN1」(配列番号11)とを用いて、Inverse PCRを行った。 The chromosomal DNA obtained in Example 4 was completely digested with SacII, and Ligation high Ver. 2 (manufactured by Toyobo Co., Ltd.). Using this as a template, Inverse PCR using sense primer SE1 “primer SE1” (SEQ ID NO: 10) and antisense primer AN1 “primer AN1” (SEQ ID NO: 11) prepared based on the partial gene sequence of phospholipase A1 Went.
 PCRの反応液組成は次のとおりである。 The PCR reaction solution composition is as follows.
 鋳型DNA200ng、2×MightyAmp Buffer 25μl、プライマー各300nM、およびMightyAmp DNA Polymerase 1.25ユニットに、蒸留水を全量50μlとなるように添加した。 Distilled water was added to 200 ng of template DNA, 25 μl of 2 × MightyAmp Buffer, 300 nM of each primer, and 1.25 units of MightyAmp DNA Polymerase so that the total amount was 50 μl.
 PCR反応条件は次のとおりである。 PCR reaction conditions are as follows.
  ステップ1:98℃、2分;
  ステップ2:98℃、10秒;
  ステップ3:68℃、 4分;
  ステップ2からステップ3を30サイクル繰り返す;
  ステップ4:68℃、7分。
Step 1: 98 ° C., 2 minutes;
Step 2: 98 ° C., 10 seconds;
Step 3: 68 ° C, 4 minutes;
Repeat steps 2 to 3 for 30 cycles;
Step 4: 68 ° C., 7 minutes.
 このPCRによって、約3,000bpの特異的な増幅産物が得られ、これをpMD20-Tベクター(TaKaRa製)にてクローニングし、塩基配列を決定した。 By this PCR, a specific amplification product of about 3,000 bp was obtained, which was cloned with the pMD20-T vector (manufactured by TaKaRa) and the base sequence was determined.
 実施例5で決定した塩基配列と併せて上記で決定した塩基配列に基づいて、ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)由来PLA1遺伝子を含む領域の5’領域側の塩基配列を決定した。さらに、構造遺伝子部分についてその塩基配列からアミノ酸配列を推定した(配列番号12)。 Based on the base sequence determined above together with the base sequence determined in Example 5, the base sequence on the 5 'region side of the region containing the PLA1 gene derived from Streptomyces albidoflavus was determined. Further, the amino acid sequence of the structural gene portion was deduced from the base sequence (SEQ ID NO: 12).
 [実施例7:ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297由来PLA1遺伝子のコア領域周辺のクローニング]
 インバースPCRに用いたSacIIの消化サイトがPLA1遺伝子中に含まれていたため、3’領域側(C末端側)は途中までしか決定されなかった。そのため、実施例5、6で決定したPLA1遺伝子配列の全長の配列を明らかにするためBLASTで100%の相同性を示したアミノ酸配列(Streptomyces albus J1074のゲノム解析により推定されたLipase#GDSL(DDBJアクセション番号D6BAL1))から塩基配列を特定し、3’領域側(C末端側)のプライマーA2(配列番号13)を設計し、S1プライマー(配列番号6)とのPCRによりそのDNA断片を増幅した。
[Example 7: Cloning around the core region of PLA1 gene derived from Streptomyces albidoflavus NA297]
Since the digestion site of SacII used for inverse PCR was contained in the PLA1 gene, the 3 ′ region side (C-terminal side) was determined only halfway. Therefore, in order to clarify the full-length sequence of the PLA1 gene sequence determined in Examples 5 and 6, the amino acid sequence that showed 100% homology by BLAST (Lipase # GDSL (DDBJ estimated by genome analysis of Streptomyces albus J1074) The nucleotide sequence is specified from the accession number D6BAL1)), the primer A2 (SEQ ID NO: 13) on the 3 ′ region side (C-terminal side) is designed, and the DNA fragment is amplified by PCR with the S1 primer (SEQ ID NO: 6). did.
 PCRの反応液組成は次のとおりである。 The PCR reaction solution composition is as follows.
 実施例4で得た鋳型染色体DNA50ng、2×MightyAmp Buffer 25μL、プライマー各300nM、およびMightyAmp DNA Polymerase 1.25ユニットに、蒸留水を全量50μlとなるように添加した。 Distilled water was added to 50 μl of template chromosomal DNA 50 ng, 2 × MightyAmp Buffer 25 μL obtained in Example 4, 300 nM of each primer, and MightyAmp DNA Polymerase 1.25 unit.
 PCR反応条件は次のとおりである。 PCR reaction conditions are as follows.
  ステップ1:98℃、2分;
  ステップ2:98℃、10秒;
  ステップ3:68℃、1分;
  ステップ2からステップ3を 30サイクル繰り返す;
  ステップ4:68℃、 5分。
Step 1: 98 ° C., 2 minutes;
Step 2: 98 ° C., 10 seconds;
Step 3: 68 ° C, 1 minute;
Repeat steps 2 to 3 for 30 cycles;
Step 4: 68 ° C., 5 minutes.
 このPCRによって、約700bpの特異的な増幅産物が得られ、これをpMD20-Tベクター(TaKaRa製)にてクローニングし、塩基配列を決定した。 This PCR yielded a specific amplification product of about 700 bp, which was cloned with the pMD20-T vector (TaKaRa) and the base sequence was determined.
 実施例5、6で決定した塩基配列と併せて上記で決定した塩基配列に基づいて、ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297由来PLA1遺伝子を含む領域の塩基配列を決定した(図6A及び図6B(以下、まとめて図6という))。さらに、構造遺伝子部分についてその塩基配列からアミノ酸配列を推定した(図6、配列番号14、15)。 Based on the base sequence determined above in combination with the base sequence determined in Examples 5 and 6, the base sequence of the region containing the PLA1 gene derived from Streptomyces albidoflavus NA297 was determined (FIG. 6A and FIG. 6). 6B (hereinafter collectively referred to as FIG. 6)). Further, the amino acid sequence of the structural gene portion was deduced from the base sequence (FIG. 6, SEQ ID NOs: 14 and 15).
 図6は、この決定したPLA1遺伝子を含む領域の塩基配列、および、この塩基配列から推定される構造遺伝子の推定アミノ酸配列を示しており、上段に塩基配列、下段に推定アミノ酸配列(配列番号15)を示している。なお、図6の配列は、DDBJ ACCESSION  No.AB605634として非公開登録済みである。 FIG. 6 shows the base sequence of the region containing the determined PLA1 gene and the deduced amino acid sequence of the structural gene deduced from this base sequence. The base sequence is shown in the upper row, and the deduced amino acid sequence (SEQ ID NO: 15 in the lower row). ). The sequence in FIG. 6 is DDBJ ACCESSION No. It is registered privately as AB605634.
 図6に示す配列解析の結果から、PLA1をコードする構造遺伝子は807bpのヌクレオチドからなり、269残基のアミノ酸をコードしていることが明らかとなった。236残基は、配列番号14(図6)のアミノ酸配列の34位~269位である。配列番号14(図6)のアミノ酸配列の1~33位が分泌シグナル配列である。 From the results of sequence analysis shown in FIG. 6, it was revealed that the structural gene encoding PLA1 is composed of 807 bp nucleotides and encodes 269 amino acids. 236 residues are positions 34 to 269 of the amino acid sequence of SEQ ID NO: 14 (FIG. 6). Positions 1-33 of the amino acid sequence of SEQ ID NO: 14 (FIG. 6) are a secretory signal sequence.
 実施例3にて決定したストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297由来の精製酵素のN末端および内部アミノ酸配列が、上記の推定アミノ酸配列中に存在し、完全に一致していた(図6中に下線で示す)。 The N-terminal and internal amino acid sequences of the purified enzyme derived from Streptomyces albidoflavus NA297 determined in Example 3 were present in the above deduced amino acid sequence and were completely in agreement (in FIG. 6). Is underlined).
 すなわち、配列番号3のアミノ酸配列は、配列番号14(図6)のアミノ酸配列の34位から示される配列となっている。また、配列番号4のアミノ酸配列は、配列番号14(図6)のアミノ酸配列の145位から示される配列となっている。また、配列番号5のアミノ酸配列は、配列番号14(図6)のアミノ酸配列の165位から示される配列となっている。 That is, the amino acid sequence of SEQ ID NO: 3 is a sequence shown from position 34 of the amino acid sequence of SEQ ID NO: 14 (FIG. 6). The amino acid sequence of SEQ ID NO: 4 is the sequence shown from position 145 of the amino acid sequence of SEQ ID NO: 14 (FIG. 6). The amino acid sequence of SEQ ID NO: 5 is the sequence shown from position 165 of the amino acid sequence of SEQ ID NO: 14 (FIG. 6).
 配列類似性検索プログラムBLASTおよびFASTAを用いることにより、上記の推定アミノ酸配列を4種類のタンパク質配列データベース(PTR、PRF、UNI-PROTおよびSWISS-PROT)内の配列と比較した。その結果、上記推定アミノ酸配列は、Streptomyces albus J1074のゲノム解析により推定されたLipase#GDSL(DDBJアクセション番号D6BAL1)と100%一致した。ただし、シグナル配列のN末端2残基目と3残基目が異なっていた。 By using the sequence similarity search programs BLAST and FASTA, the above-mentioned deduced amino acid sequences were compared with sequences in four kinds of protein sequence databases (PTR, PRF, UNI-PROT and SWISS-PROT). As a result, the deduced amino acid sequence was 100% identical with Lipase # GDSL (DDBJ accession number D6BAL1) estimated by Streptomyces albus J1074 genome analysis. However, the second and third residues at the N-terminal of the signal sequence were different.
 また、ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)由来の精製酵素(すなわちPLA1)は、この推定アミノ酸配列のアミノ酸組成に基づいて計算したところ、27,199の分子量を有することが推定された。 Further, the purified enzyme derived from Streptomyces albidoflavus (ie, PLA1) was calculated based on the amino acid composition of this deduced amino acid sequence, and was estimated to have a molecular weight of 27,199.
 [実施例8:ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)由来PLA1遺伝子を含む組換えプラスミドの作製]
 放線菌においてストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)由来PLA1を発現させるために、形質転換に用いる組換えプラスミドを作製した。
[Example 8: Preparation of recombinant plasmid containing PLA1 gene derived from Streptomyces albidoflavus]
In order to express PLA1 derived from Streptomyces albidoflavus in actinomycetes, a recombinant plasmid used for transformation was prepared.
 組み換えに使用できる制限酵素サイトはNheIとBglIIであったが、ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)由来PLA1の構造遺伝子内にBglIIサイトが含まれていたため、このBglII認識配列を以下の方法で置換した。まず、ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)由来PLA1の構造遺伝子の上流域配列にNheI部位を付加したセンスプライマーC1「primer C1」(配列番号16)、および、この構造遺伝子中のBglIIサイトを含む部位からアンチセンスプライマーC2「primer C2」(配列番号17)を設計した。アンチセンスプライマーC2「primer C2」は、BglII認識配列が無くなるように、かつ、指定されるアミノ酸が変更されないように設計した。次いで、これらのプライマーを用いて、実施例4で得た染色体DNAを鋳型としてPCRを行った。 The restriction enzyme sites that can be used for recombination were NheI and BglII. However, because the BglII site was included in the structural gene of PLA1 derived from Streptomyces albidoflavus, this BglII recognition sequence was replaced by the following method. did. First, it includes a sense primer C1 “primer C1” (SEQ ID NO: 16) in which an NheI site is added to the upstream region of the structural gene of PLA1 derived from Streptomyces albidoflavus, and a BglII site in this structural gene. Antisense primer C2 “primer C2” (SEQ ID NO: 17) was designed from the site. The antisense primer C2 “primer C2” was designed so that the BglII recognition sequence was eliminated and the designated amino acid was not changed. Subsequently, PCR was performed using these primers with the chromosomal DNA obtained in Example 4 as a template.
 PCRの反応液組成は次のとおりである。 The PCR reaction solution composition is as follows.
 鋳型染色体DNA 200ng、10×PCR Buffer 2.5μl、プライマー各1200nM、dNTP混合物 各0.3mM、MgCl2 1.2mM、DMSO 4%、およびKOD DNA Polymerase 1.25ユニットに、蒸留水を全量25μlとなるように添加した。 Template chromosomal DNA 200 ng, 10 × PCR Buffer 2.5 μl, primers 1200 nM each, dNTP mixture 0.3 mM, MgCl 2 1.2 mM, DMSO 4%, and KOD DNA Polymerase 1.25 units, total volume of distilled water 25 μl Was added as follows.
 PCR反応条件は次のとおりである。 PCR reaction conditions are as follows.
  ステップ1:98℃、2分;
  ステップ2:98℃、15秒;
  ステップ3:72℃、2秒;
  ステップ4:74℃、25秒;
  ステップ2からステップ4を30サイクル繰り返す;
  ステップ5:74℃、10秒。
Step 1: 98 ° C., 2 minutes;
Step 2: 98 ° C., 15 seconds;
Step 3: 72 ° C., 2 seconds;
Step 4: 74 ° C., 25 seconds;
Repeat steps 2 to 4 for 30 cycles;
Step 5: 74 ° C., 10 seconds.
 このPCRにより約600bpの特異的な増幅産物が得られた。
同様に、この構造遺伝子中のBglII認識配列が置換されるように設計したセンスプライマーC3「primer C3」(配列番号18)、および、PLA1の構造遺伝子の下流域配列にBglII部位を付加したアンチセンスプライマーC4「primer C4」(配列番号19)を設計した。次いで、これらのプライマーを用いて、実施例4で得た染色体DNAを鋳型としてPCRを行った。
By this PCR, a specific amplification product of about 600 bp was obtained.
Similarly, sense primer C3 “primer C3” (SEQ ID NO: 18) designed to replace the BglII recognition sequence in this structural gene, and an antisense in which a BglII site is added to the downstream sequence of the structural gene of PLA1. Primer C4 “primer C4” (SEQ ID NO: 19) was designed. Subsequently, PCR was performed using these primers with the chromosomal DNA obtained in Example 4 as a template.
 PCRの反応液組成は次のとおりである。 The PCR reaction solution composition is as follows.
 鋳型染色体DNA 200ng、10×PCR Buffer 2.5μl、プライマー各1200nM、dNTP混合物 各0.3mM、MgCl2 1.2mM、DMSO 4%、およびKOD DNA Polymerase 1.25ユニットに、蒸留水を全量25μlとなるように添加した。 Template chromosomal DNA 200 ng, 10 × PCR Buffer 2.5 μl, primers 1200 nM each, dNTP mixture 0.3 mM, MgCl 2 1.2 mM, DMSO 4%, and KOD DNA Polymerase 1.25 units, total volume of distilled water 25 μl Was added as follows.
 PCR反応条件は次のとおりである。 PCR reaction conditions are as follows.
  ステップ1:98℃、2分;
  ステップ2:98℃、15秒;
  ステップ3:72℃、2秒;
  ステップ4:74℃、25秒;
  ステップ2からステップ4を30サイクル繰り返す;
  ステップ5:74℃、10秒。
Step 1: 98 ° C., 2 minutes;
Step 2: 98 ° C., 15 seconds;
Step 3: 72 ° C., 2 seconds;
Step 4: 74 ° C., 25 seconds;
Repeat steps 2 to 4 for 30 cycles;
Step 5: 74 ° C., 10 seconds.
 このPCRにより約100bpの特異的な増幅産物が得られた。
次に、PLA1の構造遺伝子の上流域配列にNheI部位を付加したセンスプライマーC1「primer C1」(配列番号16)、および、PLA1の構造遺伝子の下流域配列にBglII部位を付加したアンチセンスプライマーC4「primer C4」(配列番号19)を用いて、上記のPCRで得られた約600bpと約100bpの増幅産物を鋳型としてPCRを行った。
By this PCR, a specific amplification product of about 100 bp was obtained.
Next, a sense primer C1 “primer C1” (SEQ ID NO: 16) in which an NheI site is added to the upstream sequence of the PLA1 structural gene, and an antisense primer C4 in which a BglII site is added to the downstream sequence of the PLA1 structural gene Using “primer C4” (SEQ ID NO: 19), PCR was performed using the amplification products of about 600 bp and about 100 bp obtained by the above PCR as templates.
 PCRの反応液組成は次のとおりである。 The PCR reaction solution composition is as follows.
 鋳型600bpDNA 300ng、鋳型100bpDNA 340ng、10×PCR Buffer 2.5μl、プライマー各1200nM、dNTP混合物 各0.3mM、MgCl2 1.2mM、DMSO 4%、およびKOD DNA Polymerase 1.25ユニットに、蒸留水を全量25μlとなるように添加した。 Template 600 bp DNA 300 ng, Template 100 bp DNA 340 ng, 10 × PCR Buffer 2.5 μl, Primer 1200 nM, dNTP mixture 0.3 mM, MgCl 2 1.2 mM, DMSO 4%, and KOD DNA Polymerase 1.25 units, total amount of distilled water It added so that it might become 25 microliters.
 PCR反応条件は次のとおりである。 PCR reaction conditions are as follows.
  ステップ1:98℃、2分;
  ステップ2:98℃、15秒;
  ステップ3:72℃、2秒;
  ステップ4:74℃、25秒;
  ステップ2からステップ4を35サイクル繰り返す;
  ステップ5:74℃、10秒。
Step 1: 98 ° C., 2 minutes;
Step 2: 98 ° C., 15 seconds;
Step 3: 72 ° C., 2 seconds;
Step 4: 74 ° C., 25 seconds;
Repeat steps 2 to 4 for 35 cycles;
Step 5: 74 ° C., 10 seconds.
 このPCRにより約700bpの特異的な増幅産物が得られた。 A specific amplification product of about 700 bp was obtained by this PCR.
 この増幅された断片をNheIとBglIIで消化し、発現ベクターである放線菌プラスミドのNheI-BglII部位に挿入して、組換えプラスミドを得た。ここで、シグナル配列とターミネーターは、ホスホリパーゼ酵素遺伝子のものを用いたが、別の遺伝子由来のものを適宜組み合わせて用いても良い。 The amplified fragment was digested with NheI and BglII and inserted into the NheI-BglII site of the actinomycete plasmid as an expression vector to obtain a recombinant plasmid. Here, the signal sequence and terminator are those of the phospholipase enzyme gene, but those derived from other genes may be used in appropriate combination.
 [実施例9:ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297由来PLA1遺伝子を発現する組換え放線菌の作製]
 実施例8で得た組換えプラスミドを用いて、「PRACTICAL STREPTOMYCES GENETICS(Kieserら、John Innes Foundation、2000年)」に記載の方法に従い、プロトプラスト化された放線菌ストレプトマイセス・リビダンス(Streptomyces lividans)1326を形質転換し、組換え放線菌を得た。
[Example 9: Production of recombinant actinomycetes expressing PLA1 gene derived from Streptomyces albidoflavus NA297]
Using the recombinant plasmid obtained in Example 8, protoplastized Streptomyces lividans (Streptomyces lividans) according to the method described in “PRACTICAL STREPTOMYCES GENETICS (Kieser et al., John Inns Foundation, 2000)”. 1326 was transformed to obtain recombinant actinomycetes.
 [実施例10:ストレプトマイセス・アルビドフラブス(Streptomyces albidoflavus)NA297由来PLA1遺伝子を発現する組換え放線菌の酵素活性測定]
 実施例9で得た組換え放線菌を、12μg/mLのチオストレプトンを含む100mLのトリプチックソイ培地(ベクトン・ディッキンソン社製)、4本で培養した。得られた培養液340mLから遠心分離(15000rpm、5分、4℃)にて上清を回収し、硫酸アンモニウム分画にて、沈殿を回収した。回収した沈殿を20mM トリス-塩酸緩衝液(pH8.0)に溶解し、20mM トリス-塩酸緩衝液(pH8.0)を外液として透析を行い、酵素溶液を得た。
[Example 10: Measurement of enzyme activity of recombinant actinomycetes expressing PLA1 gene derived from Streptomyces albidoflavus NA297]
The recombinant actinomycetes obtained in Example 9 were cultured in four 100 mL tryptic soy media (Becton Dickinson) containing 12 μg / mL thiostrepton. The supernatant was recovered from the obtained culture solution (340 mL) by centrifugation (15000 rpm, 5 minutes, 4 ° C.), and the precipitate was recovered by ammonium sulfate fractionation. The collected precipitate was dissolved in 20 mM Tris-HCl buffer (pH 8.0), and dialyzed using 20 mM Tris-HCl buffer (pH 8.0) as an external solution to obtain an enzyme solution.
 この酵素溶液の酵素活性を、上記「PLA1活性標準測定方法」に記載した酵素活性の測定方法に従って、卵黄ホスファチジルコリンを基質として用い、pH5.6、50℃で酵素活性を測定した。その結果、100U/ml(下限は60U/ml)を超える強い活性を示す培養上清が得られた。また、硫酸アンモニウム分画後の酵素溶液(80mL)の酵素活性はさらに強い活性(244U/ml以上、下限は200U/ml)を示した。なお、ベクターであるプラスミドをそのまま用いて形質転換した放線菌では、PLA1活性は検出されなかった。 The enzyme activity of this enzyme solution was measured at pH 5.6 and 50 ° C. using egg yolk phosphatidylcholine as a substrate according to the enzyme activity measurement method described in the above “PLA1 activity standard measurement method”. As a result, a culture supernatant showing strong activity exceeding 100 U / ml (lower limit is 60 U / ml) was obtained. Moreover, the enzyme activity (80 mL) after ammonium sulfate fractionation showed a stronger activity (244 U / ml or more, the lower limit was 200 U / ml). In addition, PLA1 activity was not detected in actinomycetes transformed using the plasmid as a vector as it was.
 本発明によれば、新規なPLA1およびその製造方法が提供される。PLA1をリン脂質に作用させて生成されるリゾリン脂質、グリセロール-3-リン酸、及び、グリセロール-3-ホスホコリンなどのグリセロール-3-リン酸エステル化合物は、食品および化粧品の基材などとして有用である。本発明による酵素は、特に、pH5.6でPI、PG、PS、PE、PCに、pH9.0でPI、PG、PS、PAによく作用する。また、リゾホスファチジルイノシトール(LPI)は抗カビ剤、リゾホスホグリセロール(LPG)は起泡力安定剤、澱粉の老化防止剤、麺類の改質剤、リゾホスファチジルエタノールアミン(LPE):神経栄養作用(ストレス、うつ、認知症など)、リゾホスファチジン酸(LPA):受精卵着床の促進(着床改善薬)、毛の形成(育毛)、強い細胞増殖作用、リゾホスファチジルセリン(LPS):肥満細胞の活性化を促進(アレルギーやアトピーに関与)など多くの生理活性を示すリゾレシチンを製造するのに有効である。また、食品素材に本発明による酵素を混合し、素材中に存在するリン脂質を加水分解することでその素材の機能性を高めたり、物性を改良することが可能となる。さらに、本発明による酵素を用いて製造可能な、グリセロール-3-ホスホコリン(GPC)は認知症予防などが期待されている。また、グリセロール-3-ホスホイノシトール(GPI)は善玉コレステロール増加効果が認められるなど有用性が期待できる。 According to the present invention, a novel PLA 1 and a manufacturing method thereof are provided. Glycerol-3-phosphate compounds such as lysophospholipids, glycerol-3-phosphate, and glycerol-3-phosphocholine produced by causing PLA1 to act on phospholipids are useful as base materials for foods and cosmetics. is there. The enzyme according to the present invention works particularly well on PI, PG, PS, PE, PC at pH 5.6 and on PI, PG, PS, PA at pH 9.0. Lysophosphatidylinositol (LPI) is an anti-fungal agent, lysophosphoglycerol (LPG) is a foaming stabilizer, starch anti-aging agent, noodle modifier, lysophosphatidylethanolamine (LPE): neurotrophic action ( Stress, depression, dementia, etc.), lysophosphatidic acid (LPA): promotion of fertilized egg implantation (implantation improving agent), hair formation (hair growth), strong cell proliferation action, lysophosphatidylserine (LPS): mast cell It is effective in producing lysolecithin that exhibits many physiological activities such as promoting the activation of (involved in allergy and atopy). Further, by mixing the enzyme according to the present invention with a food material and hydrolyzing phospholipids present in the material, it becomes possible to enhance the functionality or improve the physical properties of the material. Furthermore, glycerol-3-phosphocholine (GPC), which can be produced using the enzyme according to the present invention, is expected to prevent dementia and the like. Glycerol-3-phosphoinositol (GPI) can be expected to be useful because it has an effect of increasing good cholesterol.
寄託機関の名称:独立行政法人製品評価技術基盤機構特許微生物寄託センター(NPMD)
寄託機関のあて名:日本国 〒292-0818 千葉県木更津市かずさ鎌足2-5-8
寄託の日付:2011年1月26日
受託番号:NITE BP-1014
Name of depositary institution: National Institute for Product Evaluation Technology Patent Microorganism Depositary (NPMD)
Name of depositary institution: Japan 2-5-8 Kazusa Kamashitsu, Kisarazu City, Chiba Prefecture 292-0818, Japan
Date of deposit: January 26, 2011 Deposit number: NITE BP-1014
配列番号1:PLA1(ポリペプチド)
配列番号2:PLA1発現遺伝子
配列番号3:PLA1のN末端配列
配列番号4:PLA1の内部配列
配列番号5:PLA1の内部配列
配列番号6:プライマーS1
配列番号7:プライマーA1-1
配列番号8:プライマーA1-2
配列番号9:PLA1発現遺伝子の内部配列
配列番号10:プライマーSE1
配列番号11:プライマーAN1
配列番号12:PLA1発現遺伝子
配列番号13:プライマーA2
配列番号14:PLA1発現遺伝子
配列番号15:PLA1(ポリペプチド)
配列番号16:プライマーC1
配列番号17:プライマーC2
配列番号18:プライマーC3
配列番号19:プライマーC4
Sequence number 1: PLA1 (polypeptide)
SEQ ID NO: 2: PLA1 expression gene SEQ ID NO: 3: N-terminal sequence of PLA1 SEQ ID NO: 4: Internal sequence of PLA1 SEQ ID NO: 5: Internal sequence of PLA1 SEQ ID NO: 6: Primer S1
SEQ ID NO: 7: Primer A1-1
SEQ ID NO: 8: Primer A1-2
SEQ ID NO: 9: Internal sequence of PLA1 expression gene SEQ ID NO: 10: Primer SE1
Sequence number 11: Primer AN1
Sequence number 12: PLA1 expression gene Sequence number 13: Primer A2
SEQ ID NO: 14: PLA1 expression gene SEQ ID NO: 15: PLA1 (polypeptide)
Sequence number 16: Primer C1
Sequence number 17: Primer C2
SEQ ID NO: 18: Primer C3
SEQ ID NO: 19: Primer C4

Claims (15)

  1.  リン脂質のsn-1位のアシル基を優先的に加水分解して、リゾリン脂質、グリセロール-3-リン酸、及び、グリセロール-3-リン酸エステル化合物から選ばれる1種以上を生成する酵素であって、以下の(a)から(c)のいずれかに記載のポリペプチドを含む、酵素:
    (a)配列番号2に記載のアミノ酸配列を有するポリペプチド;
    (b)配列番号2に記載のアミノ酸配列において、1もしくは複数個のアミノ酸が置換、挿入、欠失および/または付加されたアミノ酸配列を有し、かつ該加水分解活性を示すポリペプチド;または
    (c)配列番号2に記載のアミノ酸配列と少なくとも75%の相同性を有し、かつ該加水分解活性を示すポリペプチド。
    An enzyme that preferentially hydrolyzes the acyl group at the sn-1 position of phospholipid to produce one or more selected from lysophospholipid, glycerol-3-phosphate, and glycerol-3-phosphate ester compound An enzyme comprising the polypeptide according to any one of (a) to (c) below:
    (A) a polypeptide having the amino acid sequence set forth in SEQ ID NO: 2;
    (B) a polypeptide having an amino acid sequence in which one or more amino acids are substituted, inserted, deleted and / or added in the amino acid sequence of SEQ ID NO: 2 and exhibiting the hydrolysis activity; or ( c) A polypeptide having at least 75% homology with the amino acid sequence shown in SEQ ID NO: 2 and exhibiting the hydrolysis activity.
  2.  卵黄ホスファチジルコリンを基質としたときに、pH5.6で37℃にて5分間の条件での加水分解活性を100%とした場合に、pH4.1からpH10.0の範囲内で50%以上の加水分解活性を示す、請求項1に記載の酵素。 When egg yolk phosphatidylcholine is used as a substrate and the hydrolysis activity under the conditions of pH 5.6 and 37 ° C. for 5 minutes is 100%, 50% or more of water is added within the range of pH 4.1 to pH 10.0. The enzyme according to claim 1, which exhibits a degrading activity.
  3.  卵黄ホスファチジルコリンを基質としたときに、pH9.0で50℃にて5分間の条件での加水分解活性を100%とした場合に、DPPCに対して50%以下、PAに対して350%以上、PGに対して400%以上、PSに対して450%以上、PEに対して100%以上、PIに対して350%以上、大豆ホスファチジルコリンに対して300%以上、大豆レシチンに対して75.0%以上である基質特異性を有する、請求項1または2に記載の酵素。 When egg yolk phosphatidylcholine is used as a substrate, the hydrolysis activity under the condition of pH 9.0 at 50 ° C. for 5 minutes is defined as 100%, 50% or less for DPPC, 350% or more for PA, 400% or more for PG, 450% or more for PS, 100% or more for PE, 350% or more for PI, 300% or more for soybean phosphatidylcholine, 75.0% for soybean lecithin The enzyme according to claim 1 or 2, which has the substrate specificity as described above.
  4.  卵黄ホスファチジルコリンを基質としたときに、pH5.6で50℃にて5分間の条件での加水分解活性を100%とした場合に、DPPCに対して100%以上、PAに対して100%以下、PGに対して150%以上、PSに対して150%以上、PEに対して100%以上、PIに対して250%以上、大豆ホスファチジルコリンに対して250%以上、大豆レシチンに対して250%以上の活性を有し、トリグリセリドに対する活性がほぼ0である基質特異性を有する、請求項1または2に記載の酵素。 When egg yolk phosphatidylcholine is used as a substrate, the hydrolysis activity under the condition of pH 5.6 and 50 ° C. for 5 minutes is defined as 100%, 100% or more for DPPC, 100% or less for PA, 150% or more for PG, 150% or more for PS, 100% or more for PE, 250% or more for PI, 250% or more for soybean phosphatidylcholine, 250% or more for soybean lecithin The enzyme according to claim 1 or 2, which has a substrate specificity which has an activity and an activity against triglycerides is almost zero.
  5.  アミノ酸配列から算出した等電点が6.0~6.1の範囲内である、請求項1から4のいずれかに記載の酵素。 The enzyme according to any one of claims 1 to 4, wherein the isoelectric point calculated from the amino acid sequence is in the range of 6.0 to 6.1.
  6.  SDS-PAGEで測定した場合の分子量が25,000~30,000の範囲内であり、アミノ酸組成より分析した場合の分子量が25,000~30,000の範囲内である、請求項1から5のいずれかに記載の酵素。 The molecular weight as measured by SDS-PAGE is in the range of 25,000 to 30,000, and the molecular weight as analyzed from the amino acid composition is in the range of 25,000 to 30,000. The enzyme in any one of.
  7.  ストレプトマイセス(Streptomyces)属に属する微生物に由来する、請求項1から6のいずれかに記載の酵素。 The enzyme according to any one of claims 1 to 6, which is derived from a microorganism belonging to the genus Streptomyces.
  8.  請求項1から7のいずれかに記載の酵素をコードする、ポリヌクレオチド。 A polynucleotide encoding the enzyme according to any one of claims 1 to 7.
  9.  以下の(a)から(c)のいずれかに記載のポリヌクレオチドを含む、請求項8に記載のポリヌクレオチド:
    (a)配列番号1に記載の塩基配列からなるポリヌクレオチド;
    (b)配列番号1に記載の塩基配列に相補的な塩基配列とストリンジェントな条件でハイブリダイズするポリヌクレオチド;または
    (c)配列番号1に記載の塩基配列と少なくとも80%の配列同一性を有するポリヌクレオチド。
    The polynucleotide of claim 8 comprising the polynucleotide of any of the following (a) to (c):
    (A) a polynucleotide comprising the base sequence set forth in SEQ ID NO: 1;
    (B) a polynucleotide that hybridizes with a base sequence complementary to the base sequence described in SEQ ID NO: 1 under stringent conditions; or (c) at least 80% sequence identity with the base sequence described in SEQ ID NO: 1. A polynucleotide comprising:
  10.  ストレプトマイセス(Streptomyces)属に属する微生物に由来する、請求項8から9のいずれかに記載のポリヌクレオチド。 The polynucleotide according to any one of claims 8 to 9, which is derived from a microorganism belonging to the genus Streptomyces.
  11.  請求項8から10のいずれかに記載のポリヌクレオチドを含む、ベクター。 A vector comprising the polynucleotide according to any one of claims 8 to 10.
  12.  請求項8から10のいずれかに記載のポリヌクレオチドまたは請求項11に記載のベクターが導入され、リン脂質からリゾリン脂質、グリセロール-3-リン酸、及び、グリセロール-3-リン酸エステル化合物から選ばれる1種以上を生成する酵素を産生する能力を保有する、形質転換体。 A polynucleotide according to any one of claims 8 to 10 or a vector according to claim 11 is introduced and selected from phospholipids to lysophospholipids, glycerol-3-phosphate, and glycerol-3-phosphate ester compounds. A transformant possessing the ability to produce an enzyme that produces one or more of the above.
  13.  前記形質転換体の宿主が、ストレプトマイセス(Streptomyces)属に属する微生物である、請求項12に記載の形質転換体。 The transformant according to claim 12, wherein the host of the transformant is a microorganism belonging to the genus Streptomyces.
  14.  リン脂質に作用し、該リン脂質を加水分解してリゾリン脂質、グリセロール-3-リン酸、及び、グリセロール-3-リン酸エステル化合物から選ばれる1種以上を生成する酵素を製造する方法であって、
     請求項8から10のいずれかに記載のポリヌクレオチドまたは請求項11に記載のベクターを宿主に導入して、該酵素を産生する形質転換体を得る工程;および
     該形質転換体を培養して該酵素を産生させる工程;
     を含む、製造方法。
    A method for producing an enzyme that acts on a phospholipid and hydrolyzes the phospholipid to produce one or more selected from lysophospholipid, glycerol-3-phosphate, and glycerol-3-phosphate ester compound. And
    A step of introducing the polynucleotide according to any one of claims 8 to 10 or the vector according to claim 11 into a host to obtain a transformant that produces the enzyme; and culturing the transformant, Producing an enzyme;
    Manufacturing method.
  15.  前記宿主が、ストレプトマイセス(Streptomyces)属に属する微生物である、請求項14に記載の製造方法。 The production method according to claim 14, wherein the host is a microorganism belonging to the genus Streptomyces.
PCT/JP2011/052003 2011-02-01 2011-02-01 Enzyme and method of production therefor WO2012104987A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/052003 WO2012104987A1 (en) 2011-02-01 2011-02-01 Enzyme and method of production therefor
PCT/JP2012/052159 WO2012105565A1 (en) 2011-02-01 2012-01-31 Enzyme and method of production therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/052003 WO2012104987A1 (en) 2011-02-01 2011-02-01 Enzyme and method of production therefor

Publications (1)

Publication Number Publication Date
WO2012104987A1 true WO2012104987A1 (en) 2012-08-09

Family

ID=46602232

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/052003 WO2012104987A1 (en) 2011-02-01 2011-02-01 Enzyme and method of production therefor
PCT/JP2012/052159 WO2012105565A1 (en) 2011-02-01 2012-01-31 Enzyme and method of production therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052159 WO2012105565A1 (en) 2011-02-01 2012-01-31 Enzyme and method of production therefor

Country Status (1)

Country Link
WO (2) WO2012104987A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111518814A (en) * 2020-05-19 2020-08-11 西南大学 Application and method of brassica napus Bna.A05DAD1 gene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212783A (en) * 1982-06-07 1983-12-10 Kyowa Hakko Kogyo Co Ltd Preparation of phospholipase a by fermentation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019580A2 (en) * 1994-12-19 1996-06-27 Cold Spring Harbor Laboratory Telomerase protein component
DE69937086T2 (en) * 1998-03-13 2008-06-12 Dsm Ip Assets B.V. Genetically modified, L-sorbose reductase deficient mutants
JP4568833B2 (en) * 2000-12-15 2010-10-27 国立大学法人京都大学 Coclaurine-N-methyltransferase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212783A (en) * 1982-06-07 1983-12-10 Kyowa Hakko Kogyo Co Ltd Preparation of phospholipase a by fermentation method

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
AKOH CC ET AL.: "GDSL family of serine esterases/lipases", PROGRESS IN LIPID RESEARCH, vol. 43, 2004, pages 534 - 552 *
ASLER IL ET AL.: "Probing Enzyme Promiscuity of SGNH Hydrolases", CHEMBIOCHEM, vol. 11, 2010, pages 2158 - 2167 *
DATABASE DDBJ/EMBL/GENBANK [online] 9 June 2010 (2010-06-09), retrieved from http://www.ncbi.nlm.nih.gov/ nuccore/223958643 Database accession no. NZ_DS999645 *
DATABASE UNIPROTKB [online] 30 November 2010 (2010-11-30), retrieved from http://www.uniprot.org/uniprot/D6BAL1 Database accession no. D6BAL1 *
KOTA KANO ET AL.: "Screening and Purification of metal ion independent Phospholipase A from Streptomyces sp.", DAI 62 KAI ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, 25 September 2010 (2010-09-25), JAPAN, pages 30 *
LOSSI NS ET AL.: "The Salmonella SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid: cholesterol acyltransferase activity", MICROBIOLOGY, vol. 154, 2008, pages 2680 - 2688 *
VUJAKLIJA D ET AL.: "A novel streptomycete lipase: cloning, sequencing and high-level expression of the Streptomyces rimosus GDS(L)- lipase gene", ARCH MICROBIOL., vol. 178, 2002, pages 124 - 130 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111518814A (en) * 2020-05-19 2020-08-11 西南大学 Application and method of brassica napus Bna.A05DAD1 gene
CN111518814B (en) * 2020-05-19 2022-07-01 西南大学 Application and method of brassica napus Bna.A05DAD1 gene

Also Published As

Publication number Publication date
WO2012105565A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
Choi et al. Characterization and heterologous gene expression of a novel esterase from Lactobacillus casei CL96
JP2021508446A (en) Improved enzymatic modification of phospholipids in foods
EP1995313B1 (en) Novel phospholipase c
US8653241B2 (en) Phospholipase polypeptide and a DNA encoding same
CN1891820B (en) Cholesterol oxidase stable in the presence of surfactant
JP5060666B2 (en) Enzyme and production method thereof
WO2012104987A1 (en) Enzyme and method of production therefor
CA2667064A1 (en) Clonation, expression and use of acid lysophospholipases
EP3325630B1 (en) Compositions and methods for oil degumming
JP2014027908A (en) Method for producing biodiesel fuel
JP6013872B2 (en) Phospholipase D, polynucleotide, phospholipase D production method, choline-type plasmalogen measurement method, lysophosphatidylcholine measurement method, lysophosphatidic acid production method
JP5302189B2 (en) Sphingomyelinase
JP2017060424A (en) Lipases, polynucleotides, recombinant vectors, transformants, methods of producing lipase, methods of hydrolyzing glycerolipid and methods of producing glycerolipid hydrolysate
JP6063207B2 (en) Enzyme having hydrolysis action on glycerol-3-phosphodiester such as glycerol-3-phosphocholine (GPC) and method for producing the same
JP4679923B2 (en) New phospholipase C
JP6080254B2 (en) Enzyme having hydrolysis action on glycerol-3-phosphoethanolamine (GPE) and method for producing the same
WO2013145289A1 (en) Lysophospholipid-containing cleaning agent
RU2728240C1 (en) Method for producing secreted fully functional phospholipase a2 in saccharomyces cerevisiae yeast, a precursor protein for implementing said method (versions)
EP2784160B1 (en) Novel gene derived from mud flat metagenome and novel protein obtained therefrom showing coactivity of phospholipase and lipase
JP6857927B1 (en) Phosphatidylglycerol-specific novel enzyme
JP5330334B2 (en) Enzyme for food
JPWO2013145289A1 (en) Cleaning agent containing lysophospholipid for washing blood stain and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP