WO2012104968A1 - Image display device, image display method, image display program - Google Patents

Image display device, image display method, image display program Download PDF

Info

Publication number
WO2012104968A1
WO2012104968A1 PCT/JP2011/051937 JP2011051937W WO2012104968A1 WO 2012104968 A1 WO2012104968 A1 WO 2012104968A1 JP 2011051937 W JP2011051937 W JP 2011051937W WO 2012104968 A1 WO2012104968 A1 WO 2012104968A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
laser light
image
light source
laser
Prior art date
Application number
PCT/JP2011/051937
Other languages
French (fr)
Japanese (ja)
Inventor
修己 靭矢
良輔 下澤
祐樹 中井
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2011/051937 priority Critical patent/WO2012104968A1/en
Publication of WO2012104968A1 publication Critical patent/WO2012104968A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/08Fault-tolerant or redundant circuits, or circuits in which repair of defects is prepared
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof

Definitions

  • the present invention relates to an image display device that displays an image.
  • Devices such as projectors that generate projection light by synthesizing light emitted from multiple color laser light sources are known.
  • a typical example is a display device that uses three RGB laser light sources and performs color display.
  • the operating current of a laser increases as the temperature rises, and when the temperature exceeds a certain temperature level (hereinafter referred to as “allowable maximum temperature”), no optical power is generated even if the current is increased. It is known that when the current is further increased in this state, the laser is damaged and deteriorates. For this reason, it is preferable to use a laser light source at an allowable maximum temperature or less.
  • Patent Document 1 describes a device that stops light emission of a laser light source when a predetermined temperature is exceeded.
  • Patent Document 2 describes an apparatus in which a plurality of laser light sources are mounted for one color (red) and these are switched according to temperature.
  • laser light sources of different colors have different allowable maximum temperatures. Therefore, if all the laser light sources are stopped when one laser light source exceeds the allowable maximum temperature, the other laser light sources are not displayed at all even if they are below the allowable maximum temperature. On the other hand, if a plurality of laser light sources are mounted for the same color, an increase in cost is inevitable.
  • An object of the present invention is to provide an image display device that performs display as much as possible while maintaining each laser light source at or below an allowable maximum temperature.
  • the invention according to claim 1 is an image display device, wherein at least two laser light sources each having a different wavelength of output light, temperature detecting means for detecting the temperature of the laser light source, and input means for inputting image data. And display control means for driving the laser light source to display an image corresponding to the image data, wherein the display control means changes the color tone of the image based on the temperature detected by the temperature detection means. It is characterized by that.
  • the invention according to claim 9 is an image display method executed by an image display device including at least two laser light sources each having a different wavelength of output light, and a temperature detection step of detecting a temperature of the laser light source; An input step for inputting image data; and a display control step for driving the laser light source to display an image corresponding to the image data.
  • the display control step is based on a temperature detected by the temperature detecting means. The color tone of the image is changed.
  • the invention according to claim 10 is an image display program executed by an image display device including at least two laser light sources each having a different wavelength of output light, the temperature detecting means for detecting the temperature of the laser light source, and the image
  • the image display device functions as input means for inputting data, display control means for driving the laser light source to display an image corresponding to the image data, and the display control means detects the temperature detected by the temperature detection means.
  • the color tone of the image is changed based on the above.
  • the image display device includes at least two laser light sources having different output light wavelengths, temperature detecting means for detecting the temperature of the laser light source, input means for inputting image data, Display control means for driving the laser light source to display an image corresponding to the image data, the display control means changing the color tone of the image based on the temperature detected by the temperature detection means.
  • the image display device has a plurality of laser light sources having different wavelengths.
  • the temperature detecting means detects the temperature of the laser light source.
  • the display control means drives the laser light source to display an image corresponding to the image data.
  • the display control means displays the image by changing the color tone of the displayed image based on the detected temperature.
  • the detected laser temperature is high, the laser can be stopped or the output can be reduced to change the color tone and continue the display, thereby suppressing the rise in the laser temperature.
  • the image display can be maintained as much as possible.
  • the display control unit stops at least one of the laser light sources and displays an image using another laser light source. Thereby, the display of an image can be maintained as much as possible while suppressing the temperature rise of the laser.
  • each laser light source has an allowable maximum temperature indicating an upper limit temperature that can be used
  • the display control unit includes the allowable maximum temperature of each laser light source, the detected temperature, The laser light source whose detection temperature is higher than the allowable maximum temperature is stopped, and an image is displayed using the laser light source whose detection temperature is lower than the allowable maximum temperature.
  • the detection temperature exceeds the allowable maximum temperature for some laser light sources among the plurality of laser light sources, if the detection temperature is less than the maximum allowable temperature for other laser light sources, those laser light sources The display can be continued using.
  • the display control unit reduces the output of at least one of the laser light sources below the output when the detected temperature is lower than the predetermined temperature when the detected temperature is higher than the predetermined temperature. Thereby, a display can be continued, suppressing a temperature rise.
  • each laser light source has an operation limit temperature lower than an allowable maximum temperature
  • the display control unit compares the operation limit temperature of each laser light source with the detection temperature. Then, the output of the laser light source whose detected temperature is higher than the operation limit temperature is decreased from the output when the detected temperature is lower than the operation limit temperature. In this aspect, even if the detected temperature does not exceed the allowable maximum temperature, the output of the laser light source is reduced when the detected temperature approaches the allowable maximum temperature, so that the temperature rise of the laser light source can be suppressed. As a result, the life of the laser light source can be extended.
  • the display control means sets a ratio of decreasing the output of the laser light source as the difference between the detected temperature and the operation limit temperature increases for a laser light source whose detection temperature is higher than the operation limit temperature. Enlarge. Thereby, the temperature rise of a laser light source can be suppressed more effectively.
  • the display control means increases the output of the other laser light source. Thereby, it can prevent that the level of the whole display image falls.
  • the display control unit stops the output of the at least one laser light source in an image corresponding to the image data when the output of the laser light source is stopped or decreased. Or display a message indicating the decrease.
  • the user can know the reason why the color tone of the image has changed, and can know that the laser is at a high temperature.
  • an image display method executed by an image display device including at least two laser light sources each having a different output light wavelength includes a temperature detection step of detecting a temperature of the laser light source, and image data. And a display control step of displaying an image corresponding to the image data by driving the laser light source, the display control step based on the temperature detected by the temperature detection means Change the color of the image. Also by this method, it is possible to maintain image display as much as possible while suppressing the temperature rise of the laser.
  • an image display program executed by an image display device including at least two laser light sources each having a different wavelength of output light includes temperature detection means for detecting the temperature of the laser light source, and image data.
  • the image display device is caused to function as input means for inputting, display control means for driving the laser light source to display an image corresponding to the image data, and the display control means is based on a temperature detected by the temperature detecting means.
  • This program can also maintain image display as much as possible while suppressing the temperature rise of the laser.
  • FIG. 1 shows a configuration of an image display apparatus according to an embodiment.
  • the image display device 1 includes an image signal input unit 2, a video ASIC 3, a frame memory 4, a ROM 5, a RAM 6, a laser driver ASIC 7, a MEMS control unit 8, and a laser light source unit 9. And a MEMS mirror 10.
  • the image signal input unit 2 receives an image signal input from the outside and outputs it to the video ASIC 3.
  • the video ASIC 3 is a block that controls the laser driver ASIC 7 and the MEMS control unit 8 based on the image signal input from the image signal input unit 2 and the scanning position information Sc input from the MEMS mirror 10, and is ASIC (Application Specific Integrated). Circuit).
  • the video ASIC 3 includes a synchronization / image separation unit 31, a bit data conversion unit 32, a light emission pattern conversion unit 33, and a timing controller 34.
  • the synchronization / image separation unit 31 separates the image data displayed on the screen as the image display unit and the synchronization signal from the image signal input from the image signal input unit 2 and writes the image data to the frame memory 4.
  • the bit data conversion unit 32 reads the image data written in the frame memory 4 and converts it into bit data.
  • the light emission pattern conversion unit 33 converts the bit data converted by the bit data conversion unit 32 into a signal representing the light emission pattern of each laser.
  • the timing controller 34 controls the operation timing of the synchronization / image separation unit 31 and the bit data conversion unit 32.
  • the timing controller 34 also controls the operation timing of the MEMS control unit 8 described later.
  • the image data separated by the synchronization / image separation unit 31 is written.
  • the ROM 5 stores a control program and data for operating the video ASIC 3. Various data are sequentially read from and written into the RAM 6 as a work memory when the video ASIC 3 operates.
  • the laser driver ASIC 7 is a block that generates a signal for driving a laser diode provided in a laser light source unit 9 described later, and is configured as an ASIC.
  • the laser driver ASIC 7 includes a red laser driving circuit 71, a blue laser driving circuit 72, and a green laser driving circuit 73.
  • the red laser driving circuit 71 drives the red laser LD1 based on the signal output from the light emission pattern conversion unit 33.
  • the blue laser drive circuit 72 drives the blue laser LD2 based on the signal output from the light emission pattern conversion unit 33.
  • the green laser drive circuit 73 drives the green laser LD3 based on the signal output from the light emission pattern conversion unit 33.
  • the MEMS control unit 8 controls the MEMS mirror 10 based on a signal output from the timing controller 34.
  • the MEMS control unit 8 includes a servo circuit 81 and a driver circuit 82.
  • the servo circuit 81 controls the operation of the MEMS mirror 10 based on a signal from the timing controller.
  • the driver circuit 82 amplifies the control signal of the MEMS mirror 10 output from the servo circuit 81 to a predetermined level and outputs the amplified signal.
  • the laser light source unit 9 emits laser light to the MEMS mirror 10 based on the drive signal output from the laser driver ASIC 7.
  • the MEMS mirror 10 as a scanning unit reflects the laser light emitted from the laser light source unit 9 toward the screen 11. Further, the MEMS mirror 10 moves so as to scan on the screen 11 under the control of the MEMS control unit 8 in order to display the image input to the image signal input unit 2, and the scanning position information (for example, the mirror) (Information such as angle) is output to the video ASIC 3.
  • the scanning position information for example, the mirror
  • the laser light source unit 9 includes a case 91, a wavelength selective element 92, a collimator lens 93, a red laser LD1, a blue laser LD2, a green laser LD3, a monitor light receiving element (hereinafter simply referred to as “light receiving element”). 50) and the thermistor 98.
  • the case 91 is formed in a substantially box shape with resin or the like.
  • the case 91 is provided with a hole penetrating into the case 91 and a CAN attachment portion 91a having a concave cross section, and a surface perpendicular to the CAN attachment portion 91a. A hole penetrating inward is formed, and a collimator mounting portion 91b having a concave cross section is formed.
  • the wavelength-selective element 92 as a combining element is configured by, for example, a trichroic prism, and is provided with a reflective surface 92a and a reflective surface 92b.
  • the reflection surface 92a transmits the laser light emitted from the red laser LD1 toward the collimator lens 93, and reflects the laser light emitted from the blue laser LD2 toward the collimator lens 93.
  • the reflecting surface 92b transmits most of the laser light emitted from the red laser LD1 and the blue laser LD2 toward the collimator lens 93 and reflects a part thereof toward the light receiving element 50.
  • the reflection surface 92 b reflects most of the laser light emitted from the green laser LD 3 toward the collimator lens 93 and transmits part of the laser light toward the light receiving element 50. In this way, the emitted light from each laser is superimposed and incident on the collimator lens 93 and the light receiving element 50.
  • the wavelength selective element 92 is provided in the vicinity of the collimator mounting portion 91b in the case 91.
  • the collimator lens 93 emits the laser beam incident from the wavelength selective element 92 to the MEMS mirror 10 as parallel light.
  • the collimator lens 93 is fixed to the collimator mounting portion 91b of the case 91 with a UV adhesive or the like. That is, the collimator lens 93 is provided after the synthesis element.
  • the red laser LD1 as a laser light source emits red laser light.
  • the red laser LD1 is fixed at a position that is coaxial with the wavelength selective element 92 and the collimator lens 93 in the case 91 while the semiconductor laser light source is in the chip state or the chip is mounted on a submount or the like. ing.
  • Blue laser LD2 as a laser light source emits blue laser light.
  • the blue laser LD2 is fixed at a position where the emitted laser light can be reflected toward the collimator lens 93 by the reflecting surface 92a while the semiconductor laser light source is in the chip state or the chip is mounted on the submount or the like. ing.
  • the positions of the red laser LD1 and the blue laser LD2 may be switched.
  • the green laser LD3 as a laser light source is attached to the CAN package or attached to the frame package, and emits green laser light.
  • the green laser LD 3 has a semiconductor laser light source chip B that generates green laser light in a CAN package, and is fixed to a CAN mounting portion 91 a of the case 91.
  • the light receiving element 50 receives a part of the laser light emitted from each laser light source.
  • the light receiving element 50 is a photoelectric conversion element such as a photodetector, and supplies a detection signal Sd, which is an electrical signal corresponding to the amount of incident laser light, to the laser driver ASIC 7.
  • a detection signal Sd which is an electrical signal corresponding to the amount of incident laser light
  • the laser driver ASIC 7 adjusts the power of the red laser LD1, the blue laser LD2, and the green laser LD3 according to the detection signal Sd.
  • the laser driver ASIC 7 operates only the red laser driving circuit 71, supplies a driving current to the red laser LD1, and emits red laser light from the red laser LD1. A part of the red laser light is received by the light receiving element 50, and a detection signal Sd corresponding to the amount of light is fed back to the laser driver ASIC7.
  • the laser driver ASIC 7 adjusts the drive current supplied from the red laser drive circuit 71 to the red laser LD1 so that the light amount indicated by the detection signal Sd is an appropriate light amount. In this way, power adjustment is performed.
  • the power adjustment of the blue laser LD2 and the power adjustment of the green laser LD3 are similarly performed.
  • the thermistor 98 detects the temperature of the laser light source unit 9.
  • the thermistor 98 has a role of detecting temperatures representative of the temperatures of the red laser LD1, the blue laser LD2, and the green laser LD3 provided in the laser light source unit 9, so that the temperatures of these three lasers themselves are as high as possible. It is desirable to arrange at a position where a close temperature can be detected.
  • the temperature detected by the thermistor 98 (hereinafter referred to as “detected temperature”) is supplied to the video ASIC 3 as a detection signal St.
  • the video ASIC 3 performs display control described below based on the detected temperature, and changes the color tone of the displayed image.
  • the thermistor 98 is an example of the temperature detection means of the present invention
  • the image signal input unit 2 is an example of the input means
  • the video ASIC 3 is an example of the display control means.
  • the image data in the image signal input from the image signal input unit 2 is converted into bit data.
  • the bit data conversion unit 32 supplies bit data having gradation values of 0 to 255 to the light emission pattern conversion unit 33 for each color of RGB.
  • the light emission pattern conversion unit 33 supplies a drive waveform corresponding to the input gradation value to each of the RGB colors to the laser drive circuits 71 to 73 of the laser driver ASIC 7 to drive the lasers LD1 to LD3 of each color to emit light.
  • FIG. 2 (a) shows the relationship between the laser operating current at 50 ° C., 60 ° C. and 70 ° C. and the output power.
  • the operating current of the laser increases as the temperature rises, and when the allowable maximum temperature (60 ° C. in the example of FIG. 2A) is exceeded, the optical power is not emitted even if the current is increased. . If a current is further input in this state, the laser chip is damaged and deteriorates. For this reason, it is necessary to use the lasers LD1 to LD3 of each color at an allowable maximum temperature or less.
  • the lasers LD1 to LD3 of the respective colors have different temperature characteristics and different allowable maximum temperatures.
  • the allowable maximum temperature Tr ° C of the red laser LD1 the allowable maximum temperature Tb ° C of the blue laser LD2, and the allowable maximum temperature Tg ° C of the green laser LD3, Tr ⁇ Tg ⁇ Tb
  • Tr ⁇ Tg ⁇ Tb the allowable maximum temperature
  • the first embodiment will be described below. Specifically, when the temperature Td detected by the thermistor 98 is not more than the minimum value Tr of the maximum allowable temperatures of the three lasers LD1 to LD3 (ie, Td ⁇ Tr), all the three lasers LD1 to LD3 can be used. Therefore, the image display device can display colors in the triangle RGB formed by the three vertices R, G, and B in the chromaticity diagram shown in FIG.
  • the red laser LD1 When the detected temperature Td is higher than the allowable maximum temperature Tr of the red laser LD1 and lower than the allowable maximum temperature Tg of the green laser LD3 (that is, Tr ⁇ Td ⁇ tg), the red laser LD1 is not used. In this case, the image display apparatus performs display using only the color on the line segment GB in the chromaticity diagram shown in FIG.
  • the red laser LD1 and the green laser LD3 are not used.
  • the image display apparatus performs display using only blue.
  • the display is stopped because all the laser LDs exceed the allowable maximum temperature.
  • FIGS. 3A to 3C show examples of display images when the display control of this embodiment is performed.
  • FIGS. 3A to 3C are display image examples of the navigation device, and the display contents are the same. Since the display color differs depending on the temperature, the display color is shown in parentheses.
  • FIG. 4 is a flowchart of the display control process according to the first embodiment. This processing is executed mainly by the video ASIC 3 controlling the laser driver ASIC 7 and the like. Further, this process is repeatedly executed at predetermined time intervals.
  • the video ASIC 3 acquires the detection temperature Td based on the detection signal St from the thermistor 98 (step S11). Then, the video ASIC 3 determines whether or not the detected temperature Td is higher than the lowest allowable maximum temperature Tr among the allowable maximum temperatures of the three lasers LD (step S12). Display is performed using the lasers LD1 to LD3 (step S13).
  • step S12 when the detected temperature Td is higher than the allowable maximum temperature Tr (step S12; Yes), the video ASIC 3 determines whether the detected temperature Td is higher than the allowable maximum temperature Tg (step S14). If not high (step S14; No), the video ASIC 3 performs display using the green laser LD3 and the blue laser LD2 (step S15).
  • step S14 when the detected temperature Td is higher than the allowable maximum temperature Tg (step S14; Yes), the video ASIC 3 determines whether the detected temperature Td is higher than the allowable maximum temperature Tb (step S16). If not high (step S16; No), the video ASIC 3 performs display using only blue (step S17). On the other hand, when the detected temperature is higher than the allowable maximum temperature Tg (step S16; Yes), the video ASIC 3 stops all the lasers LD1 to LD3 and stops the display (step S18).
  • the laser exceeding the allowable maximum temperature is stopped, and only the laser that does not exceed the allowable maximum temperature is used to change the color tone for display. . Therefore, even when the detected temperature exceeds the allowable maximum temperature of some lasers, the color of the display image changes, but the display can be continued. Therefore, even when the laser becomes high temperature, it is possible to continue displaying information as much as possible while protecting the laser.
  • the device is hot, such as during the summer, in a normal device equipped with cooling means, if all lasers are not cooled until the temperature falls below the lowest allowable maximum temperature among a plurality of lasers, the device is started. I can't.
  • the apparatus is not started unless the laser is cooled below the lowest allowable maximum temperature Tr of the three lasers.
  • display can be started using only blue. Therefore, it is possible to shorten the time until the apparatus is activated and display information to the user quickly.
  • the time required to reach the same cumulative failure rate is shortened. That is, the lifetime is shortened as the temperature increases.
  • Use of the laser with the shortest lifetime among the RGB three-color lasers at a lower temperature leads to extending the lifetime of the entire apparatus. Therefore, in the second embodiment, in order to use the laser with the shortest lifetime for a long time, when the temperature rises, the output of the laser is lowered to lower the temperature of the light emitting unit, and the display function is maintained. Extend life.
  • the allowable maximum temperature Tr of the red laser LD1 is set to 60 ° C.
  • the operation limit temperature Trx is set to 40 ° C.
  • the “operation limit temperature” is a temperature that does not reach the maximum allowable temperature but approaches it, so that the output level is lowered. Therefore, when the detected temperature Td reaches the operation limit temperature Trx, the output of the red laser LD1 is decreased, and when the detected temperature Td reaches the allowable maximum temperature Tr, the red laser LD1 is stopped.
  • the allowable maximum temperature Tg of the green laser LD3 is 80 ° C.
  • the operation limit temperature Tgx is 60 ° C.
  • the allowable maximum temperature Tb of the blue laser LD2 is set to 85 ° C.
  • FIG. 1 An example of a specific control method is shown in FIG.
  • the image display device performs display using the lasers LD1 to LD3 of three colors without limitation. Therefore, the image to be displayed in red is displayed in red corresponding to the point R in the chromaticity diagram of FIG. In this case, the display can be performed using the colors in the triangle RGB in FIG.
  • the output of the red laser LD1 is lowered, and an image to be displayed in red corresponding to the point R is displayed using the color of the point R1.
  • the displayable colors are limited within the triangle formed by the points R1, G, and B in FIG.
  • the output of the green laser LD3 is reduced, and an image to be displayed in green corresponding to the point G is displayed using the color of the point G1.
  • the displayable color is limited to the color on the line segment G1B formed by the point G1 and the point B.
  • the ratio of decreasing the laser output may be constant, and the difference between the detection temperature and the operation limit temperature is large, that is, the amount exceeding the operation limit temperature.
  • the reduction rate of the laser output may be increased.
  • Fig. 6 (a) shows another example of the control method.
  • the output of the red laser LD1 is decreased and the display color is shifted in the blue direction on the chromaticity diagram.
  • the detected temperature Td is 40 to 45 ° C.
  • the image originally displayed in the color of the point R is displayed in the color of the point R11
  • the detected temperature Td is 45 to 50 ° C.
  • the color of the original point R is displayed.
  • the image to be displayed is displayed in the color of the point R12.
  • the detected temperature Td is 50 to 55 ° C.
  • the image originally displayed in the color of the point R is displayed in the color of the point R13.
  • the red laser LD1 is stopped and display is performed in the color on the line segment GB.
  • FIG. 6B shows still another example of the control method.
  • the output of the red laser LD1 is decreased, and the display color is shown in FIG. 8B on the chromaticity diagram.
  • This is an example of shifting in the direction indicated by the arrow. Specifically, when the detected temperature Td is 40 to 45 ° C., the image originally displayed in the color of the point R is displayed in the color of the point P1, and when the detected temperature Td is 45 to 50 ° C., the color of the original point R is displayed.
  • the image to be displayed is displayed in the color of the point P2, and when the detected temperature Td is 50 to 55 ° C., the image originally displayed in the color of the point R is displayed in the color of the point P3.
  • the red laser LD1 is stopped and display is performed in the color on the line segment GB.
  • the display color shift as described above can actually be realized by using a conversion table in which colors in an image signal are associated with gradation values of RGB colors.
  • a plurality of conversion tables having different temperature ranges are prepared in advance, such as a table when the detected temperature Td is 40 ° C. or less, a conversion table when the temperature is 40 to 45 ° C., and a conversion table when the temperature is 45 to 50 ° C. Keep it.
  • the red color corresponding to the point R has a gradation value of R set to 255 in the conversion table when the detection temperature Td is 40 ° C. or lower, and R of the conversion table when the detection temperature Td is 40 to 45 ° C.
  • the gradation value is set to 240.
  • the image processing apparatus may determine the gradation value of each RGB color by referring to the conversion table of the corresponding temperature range according to the detected temperature Td, and drive the laser of each color based on that.
  • the output of the laser LD is decreased to further increase the temperature.
  • the laser is used at a temperature lower than the allowable operating temperature as much as possible.
  • the output of the laser when the detected temperature Td reaches the operation limit temperature, the output of the laser is decreased.
  • the outputs of lasers of other colors may be increased.
  • the detection temperature Td exceeds the operation limit temperature of the red laser LD1
  • the output of the red laser LD1 is decreased, and the green laser LD3 and / or the blue laser LD2 whose allowable maximum temperature is higher than that of the red laser LD1.
  • the output may be increased to prevent the display image level from being lowered.
  • the laser LD when a part of the laser LD is stopped or its output is reduced, it is desirable to display a message indicating that in the display image.
  • the laser is at a high temperature and that the display color is limited by the temperature and the color tone of the display image has changed.
  • FIG. 7 is a flowchart of the display control process according to the second embodiment. This process is also executed mainly by the video ASIC 3 controlling the laser driver ASIC 7 and the like. Further, this process is repeatedly executed at predetermined time intervals.
  • the video ASIC 3 acquires the detection temperature Td based on the detection signal St from the thermistor 98 (step S21). Then, the video ASIC 3 determines whether or not the detected temperature Td is higher than the operation limit temperature Trx of the red laser LD1 that is the lowest of the three laser LD operation limit temperatures (step S22). The display is performed using the three color lasers LD1 to LD3 (step S23).
  • step S22 when the detected temperature Td is higher than the operation limit temperature Trx (step S22; Yes), the video ASIC 3 determines whether or not the detected temperature Td is higher than the allowable maximum temperature Tr (step S24). If not high (step S24; No), the video ASIC 3 performs display using the three-color lasers LD1 to LD3 while reducing the output of the red laser LD1 as described above (step S25).
  • the video ASIC 3 determines whether the detected temperature is higher than the operation limit temperature Tgx of the green laser LD3 (step S26). If not high (step S26; No), the video ASIC 3 performs display using the green laser LD3 and the blue laser LD2 (step S27). On the other hand, when the detected temperature Td is higher than the operation limit temperature Tgx (step S26; Yes), the video ASIC 3 determines whether the detected temperature Td is higher than the allowable maximum temperature Tg of the green laser LD1 (step S28). If not high (step S28; No), the video ASIC 3 performs display using the green laser LD3 and the blue laser LD2 while reducing the output of the green laser LD3 (step S29).
  • the video ASIC 3 determines whether the detected temperature Td is higher than the allowable maximum temperature Tb of the blue laser LD2 (step S30). If not high (step S30; No), the video ASIC 3 displays using only the blue laser LD2 (step S31). On the other hand, when the detected temperature Td is higher than the allowable maximum temperature Tb (step S30; Yes), the video ASIC 3 stops all the lasers LD1 to LD3 and stops displaying (step S32).
  • the laser output is reduced to suppress the temperature rise, so that each laser is more It can be used in a low temperature state, and the life can be extended.
  • the present invention can be used for video equipment using an RGB laser, such as a laser projector, a head-up display, and a head-mounted display.
  • RGB laser such as a laser projector, a head-up display, and a head-mounted display.

Abstract

An image display device has a plurality of laser light sources of varying wavelengths. A temperature detection means detects the temperature of the laser light sources. A display control means drives the laser light sources and displays an image corresponding to image data. Herein, the display control means changes the tone of the image to be displayed on the basis of the detected temperature, and displays the image. As a result, if the detected laser temperature is high, it is possible to continue displaying through changing the tone by stopping the lasers with a high temperature and reducing output, and it is possible to maintain display of the image to the extent possible, while suppressing the rise in temperature of the lasers.

Description

[規則37.2に基づきISAが決定した発明の名称] 画像表示装置、画像表示方法、画像表示プログラム[Name of invention determined by ISA based on Rule 37.2] Image display device, image display method, image display program
 本発明は、画像を表示する画像表示装置に関する。 The present invention relates to an image display device that displays an image.
 複数色のレーザ光源から出射される光を合成して投射光を生成するプロジェクタなどの装置が知られている。RGB3色のレーザ光源を使用し、カラー表示を行う表示装置が典型的な例である。 Devices such as projectors that generate projection light by synthesizing light emitted from multiple color laser light sources are known. A typical example is a display device that uses three RGB laser light sources and performs color display.
 一般的に、レーザは温度が上昇すると動作電流が増加していき、温度がある温度レベル(以下、「許容最大温度」と呼ぶ。)を超えると電流を増やしても光パワーが出ない状態となり、その状態でさらに電流を増加するとレーザがダメージを受けて劣化することが知られている。このため、レーザ光源を許容最大温度以下で使用することが好ましい。 In general, the operating current of a laser increases as the temperature rises, and when the temperature exceeds a certain temperature level (hereinafter referred to as “allowable maximum temperature”), no optical power is generated even if the current is increased. It is known that when the current is further increased in this state, the laser is damaged and deteriorates. For this reason, it is preferable to use a laser light source at an allowable maximum temperature or less.
 この点、特許文献1は、所定温度を超えたときにレーザ光源の発光を停止する装置を記載している。また、特許文献2は、1つの色(赤色)について複数のレーザ光源を搭載し、温度によってこれらを切り換えて使用する装置を記載している。 In this regard, Patent Document 1 describes a device that stops light emission of a laser light source when a predetermined temperature is exceeded. Further, Patent Document 2 describes an apparatus in which a plurality of laser light sources are mounted for one color (red) and these are switched according to temperature.
 一般的に、異なる色のレーザ光源は、その許容最大温度も異なっている。よって、1つのレーザ光源が許容最大温度を超えたときに全てのレーザ光源を停止してしまうと、他のレーザ光源は許容最大温度以下であっても全く表示がなされないこととなる。一方、同一色について複数のレーザ光源を搭載すると、コストの増加が避けられない。 Generally, laser light sources of different colors have different allowable maximum temperatures. Therefore, if all the laser light sources are stopped when one laser light source exceeds the allowable maximum temperature, the other laser light sources are not displayed at all even if they are below the allowable maximum temperature. On the other hand, if a plurality of laser light sources are mounted for the same color, an increase in cost is inevitable.
特開2007-156438号公報JP 2007-156438 A 特開2009-258207号公報JP 2009-258207 A
 本発明が解決しようとする課題としては、上記のものが例として挙げられる。本発明は、各レーザ光源を許容最大温度以下に維持しつつ、可能な限り表示を行う画像表示装置を提供することを目的とする。 The above are examples of problems to be solved by the present invention. An object of the present invention is to provide an image display device that performs display as much as possible while maintaining each laser light source at or below an allowable maximum temperature.
 請求項1に記載の発明は、画像表示装置であって、それぞれ出力光の波長が異なる少なくとも2つのレーザ光源と、前記レーザ光源の温度を検出する温度検出手段と、画像データを入力する入力手段と、前記レーザ光源を駆動して前記画像データに対応する画像を表示する表示制御手段と、を備え、前記表示制御手段は、前記温度検出手段による検出温度に基づいて前記画像の色調を変化させることを特徴とする。 The invention according to claim 1 is an image display device, wherein at least two laser light sources each having a different wavelength of output light, temperature detecting means for detecting the temperature of the laser light source, and input means for inputting image data. And display control means for driving the laser light source to display an image corresponding to the image data, wherein the display control means changes the color tone of the image based on the temperature detected by the temperature detection means. It is characterized by that.
 請求項9に記載の発明は、それぞれ出力光の波長が異なる少なくとも2つのレーザ光源を備える画像表示装置により実行される画像表示方法であって、前記レーザ光源の温度を検出する温度検出工程と、画像データを入力する入力工程と、前記レーザ光源を駆動して前記画像データに対応する画像を表示する表示制御工程と、を有し、前記表示制御工程は、前記温度検出手段による検出温度に基づいて前記画像の色調を変化させることを特徴とする。 The invention according to claim 9 is an image display method executed by an image display device including at least two laser light sources each having a different wavelength of output light, and a temperature detection step of detecting a temperature of the laser light source; An input step for inputting image data; and a display control step for driving the laser light source to display an image corresponding to the image data. The display control step is based on a temperature detected by the temperature detecting means. The color tone of the image is changed.
 請求項10に記載の発明は、それぞれ出力光の波長が異なる少なくとも2つのレーザ光源を備える画像表示装置により実行される画像表示プログラムであって、前記レーザ光源の温度を検出する温度検出手段、画像データを入力する入力手段、前記レーザ光源を駆動して前記画像データに対応する画像を表示する表示制御手段、として前記画像表示装置を機能させ、前記表示制御手段は、前記温度検出手段による検出温度に基づいて前記画像の色調を変化させることを特徴とする。 The invention according to claim 10 is an image display program executed by an image display device including at least two laser light sources each having a different wavelength of output light, the temperature detecting means for detecting the temperature of the laser light source, and the image The image display device functions as input means for inputting data, display control means for driving the laser light source to display an image corresponding to the image data, and the display control means detects the temperature detected by the temperature detection means. The color tone of the image is changed based on the above.
本発明の実施例に係る画像表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the image display apparatus which concerns on the Example of this invention. (a)レーザ光源の動作電流と出力パワーの関係を示す。(b)RGB3色のレーザ光源によって表示可能な色の範囲を示す色度図である。(A) The relationship between the operating current of the laser light source and the output power is shown. (B) It is a chromaticity diagram which shows the range of the color which can be displayed with the laser light source of RGB 3 colors. 第1実施例による表示例である。It is an example of a display by 1st Example. 第1実施例による表示制御処理のフローチャートである。It is a flowchart of the display control process by 1st Example. (a)レーザ光源の使用時間と累積故障率との関係を示す。(b)第2実施例による表示色の変化例を示す。(A) The relationship between the usage time of the laser light source and the cumulative failure rate is shown. (B) The example of a change of the display color by 2nd Example is shown. 第2実施例による表示色の他の変化例を示す。The other example of a display color change by 2nd Example is shown. 第2実施例による表示制御処理のフローチャートである。It is a flowchart of the display control process by 2nd Example.
 本発明の好適な実施形態では、画像表示装置は、それぞれ出力光の波長が異なる少なくとも2つのレーザ光源と、前記レーザ光源の温度を検出する温度検出手段と、画像データを入力する入力手段と、前記レーザ光源を駆動して前記画像データに対応する画像を表示する表示制御手段と、を備え、前記表示制御手段は、前記温度検出手段による検出温度に基づいて前記画像の色調を変化させることを特徴とする。 In a preferred embodiment of the present invention, the image display device includes at least two laser light sources having different output light wavelengths, temperature detecting means for detecting the temperature of the laser light source, input means for inputting image data, Display control means for driving the laser light source to display an image corresponding to the image data, the display control means changing the color tone of the image based on the temperature detected by the temperature detection means. Features.
 上記の画像表示装置は、波長の異なる複数のレーザ光源を有する。温度検出手段は、レーザ光源の温度を検出する。表示制御手段は、レーザ光源を駆動して画像データに対応する画像を表示する。ここで、表示制御手段は、検出温度に基づいて表示される画像の色調を変化させて画像を表示する。これにより、検出されたレーザの温度が高い場合には、そのレーザを停止させたり、出力を減少させたりして、色調を変化させて表示を継続することができ、レーザの温度上昇を抑制しつつ、可能な限り画像の表示を維持することができる。 The image display device has a plurality of laser light sources having different wavelengths. The temperature detecting means detects the temperature of the laser light source. The display control means drives the laser light source to display an image corresponding to the image data. Here, the display control means displays the image by changing the color tone of the displayed image based on the detected temperature. As a result, when the detected laser temperature is high, the laser can be stopped or the output can be reduced to change the color tone and continue the display, thereby suppressing the rise in the laser temperature. However, the image display can be maintained as much as possible.
 上記の画像表示装置の一態様では、前記表示制御手段は、前記検出温度が所定温度より高い場合、少なくとも1つの前記レーザ光源を停止し、他のレーザ光源を使用して画像を表示する。これにより、レーザの温度上昇を抑制しつつ、可能な限り画像の表示を維持することができる。 In one aspect of the image display device, when the detected temperature is higher than a predetermined temperature, the display control unit stops at least one of the laser light sources and displays an image using another laser light source. Thereby, the display of an image can be maintained as much as possible while suppressing the temperature rise of the laser.
 上記の画像表示装置の他の一態様では、各レーザ光源は、使用可能な上限温度を示す許容最大温度をそれぞれ有し、前記表示制御手段は、各レーザ光源の許容最大温度と前記検出温度とを比較し、前記検出温度が許容最大温度より高いレーザ光源を停止し、前記検出温度が許容最大温度より低いレーザ光源を使用して画像を表示する。この態様では、複数のレーザ光源のうち、一部のレーザ光源について検出温度が許容最大温度を超えてしまっても、他のレーザ光源について検出温度が許容最大温度以下であれば、それらのレーザ光源を使用して表示を継続することができる。 In another aspect of the image display device, each laser light source has an allowable maximum temperature indicating an upper limit temperature that can be used, and the display control unit includes the allowable maximum temperature of each laser light source, the detected temperature, The laser light source whose detection temperature is higher than the allowable maximum temperature is stopped, and an image is displayed using the laser light source whose detection temperature is lower than the allowable maximum temperature. In this aspect, even if the detection temperature exceeds the allowable maximum temperature for some laser light sources among the plurality of laser light sources, if the detection temperature is less than the maximum allowable temperature for other laser light sources, those laser light sources The display can be continued using.
 上記の画像表示装置の他の一態様では、前記表示制御手段は、前記検出温度が所定温度より高い場合、少なくとも1つの前記レーザ光源の出力を、所定温度より低い場合の出力よりも減少させる。これにより、温度上昇を抑制しつつ表示を継続することができる。 In another aspect of the image display device, the display control unit reduces the output of at least one of the laser light sources below the output when the detected temperature is lower than the predetermined temperature when the detected temperature is higher than the predetermined temperature. Thereby, a display can be continued, suppressing a temperature rise.
 上記の画像表示装置の他の一態様では、各レーザ光源は、許容最大温度より低い動作制限温度をそれぞれ有し、前記表示制御手段は、各レーザ光源の動作制限温度と前記検出温度とを比較し、前記検出温度が動作制限温度より高いレーザ光源の出力を、動作制限温度より低い場合の出力よりも減少させる。この態様では、検出温度が許容最大温度を超えていなくても、許容最大温度に近づいた場合にはそのレーザ光源の出力を減少させるので、そのレーザ光源の温度上昇を抑制することができる。その結果、レーザ光源の寿命を延ばすことができる。 In another aspect of the image display device, each laser light source has an operation limit temperature lower than an allowable maximum temperature, and the display control unit compares the operation limit temperature of each laser light source with the detection temperature. Then, the output of the laser light source whose detected temperature is higher than the operation limit temperature is decreased from the output when the detected temperature is lower than the operation limit temperature. In this aspect, even if the detected temperature does not exceed the allowable maximum temperature, the output of the laser light source is reduced when the detected temperature approaches the allowable maximum temperature, so that the temperature rise of the laser light source can be suppressed. As a result, the life of the laser light source can be extended.
 この場合の好適な例では、前記表示制御手段は、前記検出温度が動作制限温度より高いレーザ光源について、検出温度と動作制限温度との差が大きいほど、当該レーザ光源の出力を減少させる割合を大きくする。これにより、レーザ光源の温度上昇をより効果的に抑制することができる。 In a preferred example in this case, the display control means sets a ratio of decreasing the output of the laser light source as the difference between the detected temperature and the operation limit temperature increases for a laser light source whose detection temperature is higher than the operation limit temperature. Enlarge. Thereby, the temperature rise of a laser light source can be suppressed more effectively.
 また、他の好適な例では、前記表示制御手段は、前記少なくとも1つのレーザ光源の出力を減少させた場合には、他方のレーザ光源の出力を増加させる。これにより、表示画像全体のレベルが低下することを防止することができる。 In another preferred example, when the output of the at least one laser light source is decreased, the display control means increases the output of the other laser light source. Thereby, it can prevent that the level of the whole display image falls.
 上記の画像表示装置の他の一態様では、前記表示制御手段は、前記少なくとも1つの前記レーザ光源の出力を停止し又はその出力を減少させた場合、前記画像データに対応する画像中に当該停止または減少を示すメッセージを表示する。これにより、ユーザは、画像の色調が変化した理由を知ることができるとともに、レーザが高温となっていることを知ることができる。 In another aspect of the above image display device, the display control unit stops the output of the at least one laser light source in an image corresponding to the image data when the output of the laser light source is stopped or decreased. Or display a message indicating the decrease. Thus, the user can know the reason why the color tone of the image has changed, and can know that the laser is at a high temperature.
 本発明の他の実施形態では、それぞれ出力光の波長が異なる少なくとも2つのレーザ光源を備える画像表示装置により実行される画像表示方法は、前記レーザ光源の温度を検出する温度検出工程と、画像データを入力する入力工程と、前記レーザ光源を駆動して前記画像データに対応する画像を表示する表示制御工程と、を有し、前記表示制御工程は、前記温度検出手段による検出温度に基づいて前記画像の色調を変化させる。この方法によっても、レーザの温度上昇を抑制しつつ、可能な限り画像の表示を維持することができる。 In another embodiment of the present invention, an image display method executed by an image display device including at least two laser light sources each having a different output light wavelength includes a temperature detection step of detecting a temperature of the laser light source, and image data. And a display control step of displaying an image corresponding to the image data by driving the laser light source, the display control step based on the temperature detected by the temperature detection means Change the color of the image. Also by this method, it is possible to maintain image display as much as possible while suppressing the temperature rise of the laser.
 本発明の他の実施形態では、それぞれ出力光の波長が異なる少なくとも2つのレーザ光源を備える画像表示装置により実行される画像表示プログラムは、前記レーザ光源の温度を検出する温度検出手段、画像データを入力する入力手段、前記レーザ光源を駆動して前記画像データに対応する画像を表示する表示制御手段、として前記画像表示装置を機能させ、前記表示制御手段は、前記温度検出手段による検出温度に基づいて前記画像の色調を変化させる。このプログラムによっても、レーザの温度上昇を抑制しつつ、可能な限り画像の表示を維持することができる。 In another embodiment of the present invention, an image display program executed by an image display device including at least two laser light sources each having a different wavelength of output light includes temperature detection means for detecting the temperature of the laser light source, and image data. The image display device is caused to function as input means for inputting, display control means for driving the laser light source to display an image corresponding to the image data, and the display control means is based on a temperature detected by the temperature detecting means. To change the color tone of the image. This program can also maintain image display as much as possible while suppressing the temperature rise of the laser.
 以下、図面を参照して本発明の好適な実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 [画像表示装置]
 図1は、実施例に係る画像表示装置の構成を示す。図1に示すように、画像表示装置1は、画像信号入力部2と、ビデオASIC3と、フレームメモリ4と、ROM5と、RAM6と、レーザドライバASIC7と、MEMS制御部8と、レーザ光源ユニット9と、MEMSミラー10と、を備える。
[Image display device]
FIG. 1 shows a configuration of an image display apparatus according to an embodiment. As shown in FIG. 1, the image display device 1 includes an image signal input unit 2, a video ASIC 3, a frame memory 4, a ROM 5, a RAM 6, a laser driver ASIC 7, a MEMS control unit 8, and a laser light source unit 9. And a MEMS mirror 10.
 画像信号入力部2は、外部から入力される画像信号を受信してビデオASIC3に出力する。 The image signal input unit 2 receives an image signal input from the outside and outputs it to the video ASIC 3.
 ビデオASIC3は、画像信号入力部2から入力される画像信号及びMEMSミラー10から入力される走査位置情報Scに基づいてレーザドライバASIC7やMEMS制御部8を制御するブロックであり、ASIC(Application Specific Integrated Circuit)として構成されている。ビデオASIC3は、同期/画像分離部31と、ビットデータ変換部32と、発光パターン変換部33と、タイミングコントローラ34と、を備える。 The video ASIC 3 is a block that controls the laser driver ASIC 7 and the MEMS control unit 8 based on the image signal input from the image signal input unit 2 and the scanning position information Sc input from the MEMS mirror 10, and is ASIC (Application Specific Integrated). Circuit). The video ASIC 3 includes a synchronization / image separation unit 31, a bit data conversion unit 32, a light emission pattern conversion unit 33, and a timing controller 34.
 同期/画像分離部31は、画像信号入力部2から入力された画像信号から、画像表示部であるスクリーンに表示される画像データと同期信号とを分離し、画像データをフレームメモリ4へ書き込む。 The synchronization / image separation unit 31 separates the image data displayed on the screen as the image display unit and the synchronization signal from the image signal input from the image signal input unit 2 and writes the image data to the frame memory 4.
 ビットデータ変換部32は、フレームメモリ4に書き込まれた画像データを読み出してビットデータに変換する。 The bit data conversion unit 32 reads the image data written in the frame memory 4 and converts it into bit data.
 発光パターン変換部33は、ビットデータ変換部32で変換されたビットデータを、各レーザの発光パターンを表す信号に変換する。 The light emission pattern conversion unit 33 converts the bit data converted by the bit data conversion unit 32 into a signal representing the light emission pattern of each laser.
 タイミングコントローラ34は、同期/画像分離部31、ビットデータ変換部32の動作タイミングを制御する。また、タイミングコントローラ34は、後述するMEMS制御部8の動作タイミングも制御する。 The timing controller 34 controls the operation timing of the synchronization / image separation unit 31 and the bit data conversion unit 32. The timing controller 34 also controls the operation timing of the MEMS control unit 8 described later.
 フレームメモリ4には、同期/画像分離部31により分離された画像データが書き込まれる。ROM5は、ビデオASIC3が動作するための制御プログラムやデータなどを記憶している。RAM6には、ビデオASIC3が動作する際のワークメモリとして、各種データが逐次読み書きされる。 In the frame memory 4, the image data separated by the synchronization / image separation unit 31 is written. The ROM 5 stores a control program and data for operating the video ASIC 3. Various data are sequentially read from and written into the RAM 6 as a work memory when the video ASIC 3 operates.
 レーザドライバASIC7は、後述するレーザ光源ユニット9に設けられるレーザダイオードを駆動する信号を生成するブロックであり、ASICとして構成されている。レーザドライバASIC7は、赤色レーザ駆動回路71と、青色レーザ駆動回路72と、緑色レーザ駆動回路73と、を備える。 The laser driver ASIC 7 is a block that generates a signal for driving a laser diode provided in a laser light source unit 9 described later, and is configured as an ASIC. The laser driver ASIC 7 includes a red laser driving circuit 71, a blue laser driving circuit 72, and a green laser driving circuit 73.
 赤色レーザ駆動回路71は、発光パターン変換部33が出力する信号に基づき、赤色レーザLD1を駆動する。青色レーザ駆動回路72は、発光パターン変換部33が出力する信号に基づき、青色レーザLD2を駆動する。緑色レーザ駆動回路73は、発光パターン変換部33が出力する信号に基づき、緑色レーザLD3を駆動する。 The red laser driving circuit 71 drives the red laser LD1 based on the signal output from the light emission pattern conversion unit 33. The blue laser drive circuit 72 drives the blue laser LD2 based on the signal output from the light emission pattern conversion unit 33. The green laser drive circuit 73 drives the green laser LD3 based on the signal output from the light emission pattern conversion unit 33.
 MEMS制御部8は、タイミングコントローラ34が出力する信号に基づきMEMSミラー10を制御する。MEMS制御部8は、サーボ回路81と、ドライバ回路82と、を備える。 The MEMS control unit 8 controls the MEMS mirror 10 based on a signal output from the timing controller 34. The MEMS control unit 8 includes a servo circuit 81 and a driver circuit 82.
 サーボ回路81は、タイミングコントローラからの信号に基づき、MEMSミラー10の動作を制御する。 The servo circuit 81 controls the operation of the MEMS mirror 10 based on a signal from the timing controller.
 ドライバ回路82は、サーボ回路81が出力するMEMSミラー10の制御信号を所定レベルに増幅して出力する。 The driver circuit 82 amplifies the control signal of the MEMS mirror 10 output from the servo circuit 81 to a predetermined level and outputs the amplified signal.
 レーザ光源ユニット9は、レーザドライバASIC7から出力される駆動信号に基づいて、レーザ光をMEMSミラー10へ出射する。 The laser light source unit 9 emits laser light to the MEMS mirror 10 based on the drive signal output from the laser driver ASIC 7.
 走査手段としてのMEMSミラー10は、レーザ光源ユニット9から出射されたレーザ光をスクリーン11に向けて反射する。また、MEMSミラー10は、画像信号入力部2に入力された画像を表示するためにMEMS制御部8の制御によりスクリーン11上を走査するように移動し、その際の走査位置情報(例えばミラーの角度などの情報)をビデオASIC3へ出力する。 The MEMS mirror 10 as a scanning unit reflects the laser light emitted from the laser light source unit 9 toward the screen 11. Further, the MEMS mirror 10 moves so as to scan on the screen 11 under the control of the MEMS control unit 8 in order to display the image input to the image signal input unit 2, and the scanning position information (for example, the mirror) (Information such as angle) is output to the video ASIC 3.
 次に、レーザ光源ユニット9の詳細な構成を説明する。レーザ光源ユニット9は、ケース91と、波長選択性素子92と、コリメータレンズ93と、赤色レーザLD1と、青色レーザLD2と、緑色レーザLD3と、モニタ用受光素子(以下、単に「受光素子」と呼ぶ。)50と、サーミスタ98と、を備える。 Next, the detailed configuration of the laser light source unit 9 will be described. The laser light source unit 9 includes a case 91, a wavelength selective element 92, a collimator lens 93, a red laser LD1, a blue laser LD2, a green laser LD3, a monitor light receiving element (hereinafter simply referred to as “light receiving element”). 50) and the thermistor 98.
 ケース91は、樹脂などにより略箱状に形成される。ケース91には、緑色レーザLD3を取り付けるために、ケース91内へ貫通する孔が設けられているとともに断面が凹状のCAN取付部91aと、CAN取付部91aと直交する面に設けられ、ケース91内へ貫通する孔が設けられているとともに断面が凹状のコリメータ取付部91bと、が形成されている。 The case 91 is formed in a substantially box shape with resin or the like. In order to attach the green laser LD3, the case 91 is provided with a hole penetrating into the case 91 and a CAN attachment portion 91a having a concave cross section, and a surface perpendicular to the CAN attachment portion 91a. A hole penetrating inward is formed, and a collimator mounting portion 91b having a concave cross section is formed.
 合成素子としての波長選択性素子92は、例えばトリクロイックプリズムにより構成され、反射面92aと反射面92bが設けられている。反射面92aは、赤色レーザLD1から出射されたレーザ光をコリメータレンズ93へ向かって透過させ、青色レーザLD2から出射されたレーザ光をコリメータレンズ93へ向かって反射させる。反射面92bは、赤色レーザLD1および青色レーザLD2から出射されたレーザ光の大部分をコリメータレンズ93へ向かって透過させ、その一部を受光素子50へ向かって反射させる。また、反射面92bは、緑色レーザLD3から出射されたレーザ光の大部分をコリメータレンズ93へ向かって反射させ、その一部を受光素子50へ向かって透過させる。こうして、各レーザからの出射光が重ね合わされて、コリメータレンズ93および受光素子50に入射される。なお、波長選択性素子92は、ケース91内のコリメータ取付部91bの近傍に設けられている。 The wavelength-selective element 92 as a combining element is configured by, for example, a trichroic prism, and is provided with a reflective surface 92a and a reflective surface 92b. The reflection surface 92a transmits the laser light emitted from the red laser LD1 toward the collimator lens 93, and reflects the laser light emitted from the blue laser LD2 toward the collimator lens 93. The reflecting surface 92b transmits most of the laser light emitted from the red laser LD1 and the blue laser LD2 toward the collimator lens 93 and reflects a part thereof toward the light receiving element 50. The reflection surface 92 b reflects most of the laser light emitted from the green laser LD 3 toward the collimator lens 93 and transmits part of the laser light toward the light receiving element 50. In this way, the emitted light from each laser is superimposed and incident on the collimator lens 93 and the light receiving element 50. The wavelength selective element 92 is provided in the vicinity of the collimator mounting portion 91b in the case 91.
 コリメータレンズ93は、波長選択性素子92から入射したレーザ光を平行光にしてMEMSミラー10へ出射する。コリメータレンズ93は、ケース91のコリメータ取付部91bに、UV系接着剤などで固定される。即ち、合成素子の後段にコリメータレンズ93が設けられている。 The collimator lens 93 emits the laser beam incident from the wavelength selective element 92 to the MEMS mirror 10 as parallel light. The collimator lens 93 is fixed to the collimator mounting portion 91b of the case 91 with a UV adhesive or the like. That is, the collimator lens 93 is provided after the synthesis element.
 レーザ光源としての赤色レーザLD1は、赤色のレーザ光を出射する。赤色レーザLD1は、半導体レーザ光源がチップ状態のまま、又は、チップがサブマウントなどに載置された状態で、ケース91内の波長選択性素子92及びコリメータレンズ93と同軸となる位置に固定されている。 The red laser LD1 as a laser light source emits red laser light. The red laser LD1 is fixed at a position that is coaxial with the wavelength selective element 92 and the collimator lens 93 in the case 91 while the semiconductor laser light source is in the chip state or the chip is mounted on a submount or the like. ing.
 レーザ光源としての青色レーザLD2は、青色のレーザ光を出射する。青色レーザLD2は、半導体レーザ光源がチップ状態のまま、又は、チップがサブマウントなどに載置された状態で、出射したレーザ光が反射面92aによってコリメータレンズ93へ向かって反射できる位置に固定されている。この赤色レーザLD1と青色レーザLD2の位置は入れ替わってもよい。 Blue laser LD2 as a laser light source emits blue laser light. The blue laser LD2 is fixed at a position where the emitted laser light can be reflected toward the collimator lens 93 by the reflecting surface 92a while the semiconductor laser light source is in the chip state or the chip is mounted on the submount or the like. ing. The positions of the red laser LD1 and the blue laser LD2 may be switched.
 レーザ光源としての緑色レーザLD3は、CANパッケージに取り付けられた状態又はフレームパッケージに取り付けられた状態であり、緑色のレーザ光を出射する。緑色レーザLD3は、CANパッケージ内に緑色のレーザ光を発生する半導体レーザ光源チップBが取り付けられており、ケース91のCAN取付部91aに固定されている。 The green laser LD3 as a laser light source is attached to the CAN package or attached to the frame package, and emits green laser light. The green laser LD 3 has a semiconductor laser light source chip B that generates green laser light in a CAN package, and is fixed to a CAN mounting portion 91 a of the case 91.
 受光素子50は、各レーザ光源から出射されたレーザ光の一部を受光する。受光素子50は、フォトディテクタなどの光電変換素子であり、入射したレーザ光の光量に応じた電気信号である検出信号SdをレーザドライバASIC7へ供給する。実際には、パワー調整時には、赤色レーザ光、青色レーザ光及び緑色レーザ光のうちの1つが順に受光素子50へ入射され、受光素子50は、そのレーザ光の光量に対応する検出信号Sdを出力する。レーザドライバASIC7は、検出信号Sdに応じて、赤色レーザLD1、青色レーザLD2及び緑色レーザLD3のパワー調整を行う。 The light receiving element 50 receives a part of the laser light emitted from each laser light source. The light receiving element 50 is a photoelectric conversion element such as a photodetector, and supplies a detection signal Sd, which is an electrical signal corresponding to the amount of incident laser light, to the laser driver ASIC 7. Actually, at the time of power adjustment, one of red laser light, blue laser light, and green laser light is sequentially incident on the light receiving element 50, and the light receiving element 50 outputs a detection signal Sd corresponding to the amount of the laser light. To do. The laser driver ASIC 7 adjusts the power of the red laser LD1, the blue laser LD2, and the green laser LD3 according to the detection signal Sd.
 例えば、赤色レーザLD1のパワー調整を行う場合、レーザドライバASIC7は赤色レーザ駆動回路71のみを動作させ、赤色レーザLD1へ駆動電流を供給して赤色レーザLD1から赤色レーザ光を出射させる。この赤色レーザ光の一部は受光素子50により受光され、その光量に応じた検出信号SdがレーザドライバASIC7へフィードバックされる。レーザドライバASIC7は、検出信号Sdが示す光量が適正な光量となるように、赤色レーザ駆動回路71から赤色レーザLD1へ供給される駆動電流を調整する。こうして、パワー調整がなされる。青色レーザLD2のパワー調整及び緑色レーザLD3のパワー調整も同様に行われる。 For example, when the power of the red laser LD1 is adjusted, the laser driver ASIC 7 operates only the red laser driving circuit 71, supplies a driving current to the red laser LD1, and emits red laser light from the red laser LD1. A part of the red laser light is received by the light receiving element 50, and a detection signal Sd corresponding to the amount of light is fed back to the laser driver ASIC7. The laser driver ASIC 7 adjusts the drive current supplied from the red laser drive circuit 71 to the red laser LD1 so that the light amount indicated by the detection signal Sd is an appropriate light amount. In this way, power adjustment is performed. The power adjustment of the blue laser LD2 and the power adjustment of the green laser LD3 are similarly performed.
 なお、赤色レーザ光、青色レーザ光及び緑色レーザ光を同時に受光素子50へ入射させ、同時に各レーザ光についてのパワー調整を行うことも可能である。 Note that it is also possible to simultaneously make red laser light, blue laser light, and green laser light incident on the light receiving element 50 and simultaneously adjust the power of each laser light.
 サーミスタ98は、レーザ光源ユニット9の温度を検出する。なお、サーミスタ98は、レーザ光源ユニット9内に設けられた赤色レーザLD1、青色レーザLD2及び緑色レーザLD3の温度を代表する温度を検出する役割を有するので、できる限りこれら3つのレーザ自体の温度に近い温度を検出できるような位置に配置されることが望ましい。サーミスタ98が検出した温度(以下、「検出温度」と呼ぶ。)は、検出信号StとしてビデオASIC3へ供給される。ビデオASIC3は、検出温度に基づいて以下に述べる表示制御を行い、表示する画像の色調を変化させる。 The thermistor 98 detects the temperature of the laser light source unit 9. The thermistor 98 has a role of detecting temperatures representative of the temperatures of the red laser LD1, the blue laser LD2, and the green laser LD3 provided in the laser light source unit 9, so that the temperatures of these three lasers themselves are as high as possible. It is desirable to arrange at a position where a close temperature can be detected. The temperature detected by the thermistor 98 (hereinafter referred to as “detected temperature”) is supplied to the video ASIC 3 as a detection signal St. The video ASIC 3 performs display control described below based on the detected temperature, and changes the color tone of the displayed image.
 なお、上記の構成において、サーミスタ98は本発明の温度検出手段の一例であり、画像信号入力部2は入力手段の一例であり、ビデオASIC3は表示制御手段の一例である。 In the above configuration, the thermistor 98 is an example of the temperature detection means of the present invention, the image signal input unit 2 is an example of the input means, and the video ASIC 3 is an example of the display control means.
 [表示制御]
 前述のように、ビデオASIC3においては、画像信号入力部2から入力された画像信号中の画像データがビットデータに変換される。例えば、表示ビット数が8ビットである場合、ビットデータ変換部32は、RGB各色について、0~255の階調値を有するビットデータを発光パターン変換部33へ供給する。発光パターン変換部33は、RGB各色について、入力された階調値に対応する駆動波形をレーザドライバASIC7のレーザ駆動回路71~73へ供給して各色のレーザLD1~LD3を駆動し、発光させる。
[Display control]
As described above, in the video ASIC 3, the image data in the image signal input from the image signal input unit 2 is converted into bit data. For example, when the number of display bits is 8 bits, the bit data conversion unit 32 supplies bit data having gradation values of 0 to 255 to the light emission pattern conversion unit 33 for each color of RGB. The light emission pattern conversion unit 33 supplies a drive waveform corresponding to the input gradation value to each of the RGB colors to the laser drive circuits 71 to 73 of the laser driver ASIC 7 to drive the lasers LD1 to LD3 of each color to emit light.
 図2(a)は、50℃、60℃及び70℃でのレーザの動作電流と、出力パワーとの関係を示す。図示のように、レーザは温度が上昇すると動作電流が増加していき、許容最大温度(図2(a)の例では60℃)を超えると電流を増やしても光パワーが出ない状態となる。その状態でさらに電流を入力すると、レーザチップがダメージを受け、劣化する。そのため、各色のレーザLD1~LD3を許容最大温度以下で使用する必要がある。 FIG. 2 (a) shows the relationship between the laser operating current at 50 ° C., 60 ° C. and 70 ° C. and the output power. As shown in the figure, the operating current of the laser increases as the temperature rises, and when the allowable maximum temperature (60 ° C. in the example of FIG. 2A) is exceeded, the optical power is not emitted even if the current is increased. . If a current is further input in this state, the laser chip is damaged and deteriorates. For this reason, it is necessary to use the lasers LD1 to LD3 of each color at an allowable maximum temperature or less.
 通常、各色のレーザLD1~LD3は、それぞれ温度特性が異なっており、許容最大温度が異なる。以下、赤色レーザLD1の許容最大温度Tr℃、青色レーザLD2の許容最大温度Tb℃、緑色レーザLD3の許容最大温度Tg℃について、
   Tr<Tg<Tb
の関係があるとする。本実施例では、検出温度が許容最大温度を超えた場合、そのレーザを使用せず、残りのレーザのみを使用して表示画像の色調を変化させた上で表示を行う。
Normally, the lasers LD1 to LD3 of the respective colors have different temperature characteristics and different allowable maximum temperatures. Hereinafter, the allowable maximum temperature Tr ° C of the red laser LD1, the allowable maximum temperature Tb ° C of the blue laser LD2, and the allowable maximum temperature Tg ° C of the green laser LD3,
Tr <Tg <Tb
Suppose there is a relationship. In this embodiment, when the detected temperature exceeds the allowable maximum temperature, the laser is not used, and only the remaining laser is used to display the display image after changing the color tone.
 (第1実施例)
 以下、第1実施例について説明する。具体的に、サーミスタ98による検出温度Tdが3つのレーザLD1~LD3の許容最大温度の最小値Tr以下である場合(即ち、Td<Tr)、3つのレーザLD1~LD3を全て使用することができるので、画像表示装置は図2(b)に示す色度図において3つの頂点R、G、Bにより形成される三角形RGB内の色を表示することができる。
(First embodiment)
The first embodiment will be described below. Specifically, when the temperature Td detected by the thermistor 98 is not more than the minimum value Tr of the maximum allowable temperatures of the three lasers LD1 to LD3 (ie, Td <Tr), all the three lasers LD1 to LD3 can be used. Therefore, the image display device can display colors in the triangle RGB formed by the three vertices R, G, and B in the chromaticity diagram shown in FIG.
 検出温度Tdが赤色レーザLD1の許容最大温度Trより高く、緑色レーザLD3の許容最大温度Tgより低い場合(即ち、Tr<Td<tg)、赤色レーザLD1は使用されない。この場合、画像表示装置は図2(b)に示す色度図において、線分GB上の色のみを使用して表示を行う。 When the detected temperature Td is higher than the allowable maximum temperature Tr of the red laser LD1 and lower than the allowable maximum temperature Tg of the green laser LD3 (that is, Tr <Td <tg), the red laser LD1 is not used. In this case, the image display apparatus performs display using only the color on the line segment GB in the chromaticity diagram shown in FIG.
 検出温度Tdが緑色レーザLD3の許容最大温度Tgより高く、青色レーザの許容最大温度Tbより低い場合(即ち、Tg<Td<Tb)、赤色レーザLD1及び緑色レーザLD3は使用されない。この場合、画像表示装置は、青色のみを使用して表示を行う。 When the detection temperature Td is higher than the allowable maximum temperature Tg of the green laser LD3 and lower than the allowable maximum temperature Tb of the blue laser (that is, Tg <Td <Tb), the red laser LD1 and the green laser LD3 are not used. In this case, the image display apparatus performs display using only blue.
 さらに、検出温度Tdが青色レーザの許容最大温度Tbより高い場合(即ち、Tb<Td)、全てのレーザLDが許容最大温度を超えているので、表示を停止する。 Further, when the detected temperature Td is higher than the allowable maximum temperature Tb of the blue laser (that is, Tb <Td), the display is stopped because all the laser LDs exceed the allowable maximum temperature.
 図3(a)~(c)に、本実施例の表示制御を行った場合の表示画像例を示す。図3(a)~(c)はナビゲーション装置の表示画像例であり、表示内容は同一である。温度によって、表示色が異なるので、表示色を括弧書きで示している。 3A to 3C show examples of display images when the display control of this embodiment is performed. FIGS. 3A to 3C are display image examples of the navigation device, and the display contents are the same. Since the display color differs depending on the temperature, the display color is shown in parentheses.
 検出温度Td<Trの場合、図2(b)における三角形RGB内の全ての色が表示できるので、図3(a)に示すように、赤、黄、青、紫など様々な色で画像が表示される。また、Tr<Td<Tgの場合、図2(b)に示す線分GB上の色のみが使用できるので、図3(b)に示すように、青、緑及びそれらの中間色のみで画像が表示される。Tg<Td<Tbの場合、図3(c)に示すように、青色のみで画像が表示される。 When the detected temperature Td <Tr, all the colors in the triangle RGB in FIG. 2B can be displayed. As shown in FIG. 3A, the image is displayed in various colors such as red, yellow, blue, and purple. Is displayed. In addition, when Tr <Td <Tg, only the colors on the line segment GB shown in FIG. 2B can be used. Therefore, as shown in FIG. 3B, the image is displayed only with blue, green, and their intermediate colors. Is displayed. When Tg <Td <Tb, as shown in FIG. 3C, the image is displayed only in blue.
 なお、図3(b)及び3(c)に示すように、一部のレーザLDを停止した場合には、表示画像中にその旨を示すメッセージ42を表示することが望ましい。これにより、温度によって表示色が制限されて表示画像の色調が変化した場合に、ユーザが画像表示装置の不具合と勘違いすることが防止できる。 Note that, as shown in FIGS. 3B and 3C, when a part of the laser LD is stopped, it is desirable to display a message 42 indicating that in the display image. Accordingly, when the display color is limited by the temperature and the color tone of the display image changes, it is possible to prevent the user from misunderstanding that the image display apparatus is defective.
 図4は、第1実施例による表示制御処理のフローチャートである。この処理は、主としてビデオASIC3がレーザドライバASIC7などを制御することにより実行される。また、この処理は、所定の時間間隔をおいて繰り返し実行される。 FIG. 4 is a flowchart of the display control process according to the first embodiment. This processing is executed mainly by the video ASIC 3 controlling the laser driver ASIC 7 and the like. Further, this process is repeatedly executed at predetermined time intervals.
 まず、ビデオASIC3は、サーミスタ98からの検出信号Stに基づいて、検出温度Tdを取得する(ステップS11)。そして、ビデオASIC3は、検出温度Tdが3つのレーザLDの許容最大温度のうちの最低の許容最大温度Trより高いか否かを判定し(ステップS12)、高くない場合には通常通り3色のレーザLD1~LD3を使用して表示を行う(ステップS13)。 First, the video ASIC 3 acquires the detection temperature Td based on the detection signal St from the thermistor 98 (step S11). Then, the video ASIC 3 determines whether or not the detected temperature Td is higher than the lowest allowable maximum temperature Tr among the allowable maximum temperatures of the three lasers LD (step S12). Display is performed using the lasers LD1 to LD3 (step S13).
 一方、検出温度Tdが許容最大温度Trより高い場合(ステップS12;Yes)、ビデオASIC3は検出温度Tdが許容最大温度Tgより高いか否かを判定する(ステップS14)。高くない場合(ステップS14;No)、ビデオASIC3は緑色のレーザLD3及び青色のレーザLD2を使用して表示を行う(ステップS15)。 On the other hand, when the detected temperature Td is higher than the allowable maximum temperature Tr (step S12; Yes), the video ASIC 3 determines whether the detected temperature Td is higher than the allowable maximum temperature Tg (step S14). If not high (step S14; No), the video ASIC 3 performs display using the green laser LD3 and the blue laser LD2 (step S15).
 一方、検出温度Tdが許容最大温度Tgより高い場合(ステップS14;Yes)、ビデオASIC3は検出温度Tdが許容最大温度Tbより高いか否かを判定する(ステップS16)。高くない場合(ステップS16;No)、ビデオASIC3は青色のみを使用して表示を行う(ステップS17)。一方、検出温度が許容最大温度Tgより高い場合(ステップS16;Yes)、ビデオASIC3は全てのレーザLD1~LD3を停止し、表示を停止する(ステップS18)。 On the other hand, when the detected temperature Td is higher than the allowable maximum temperature Tg (step S14; Yes), the video ASIC 3 determines whether the detected temperature Td is higher than the allowable maximum temperature Tb (step S16). If not high (step S16; No), the video ASIC 3 performs display using only blue (step S17). On the other hand, when the detected temperature is higher than the allowable maximum temperature Tg (step S16; Yes), the video ASIC 3 stops all the lasers LD1 to LD3 and stops the display (step S18).
 以上のように、第1実施例では、サーミスタ98による検出温度に基づいて、許容最大温度を超えたレーザを停止し、許容最大温度を超えていないレーザのみを用いて色調を変えて表示を行う。よって、検出温度が一部のレーザの許容最大温度を超えた場合でも、表示画像の色調は変化するものの、表示を継続することができる。よって、レーザが高温となった場合でも、レーザを保護しつつ、可能な限り情報の表示を継続することが可能となる。 As described above, in the first embodiment, based on the temperature detected by the thermistor 98, the laser exceeding the allowable maximum temperature is stopped, and only the laser that does not exceed the allowable maximum temperature is used to change the color tone for display. . Therefore, even when the detected temperature exceeds the allowable maximum temperature of some lasers, the color of the display image changes, but the display can be continued. Therefore, even when the laser becomes high temperature, it is possible to continue displaying information as much as possible while protecting the laser.
 また、これにより、装置の起動時間を短縮する効果も得られる。夏の日中など装置が高温になっている状況において、冷却手段を備える通常の装置では、複数のレーザのうち最低の許容最大温度以下になるまで全てのレーザが冷却されないと、装置を起動することができない。例えば、上記の3色のレーザの例では、レーザが3つのレーザのうちの最低の許容最大温度Tr以下まで冷却されないと装置は起動されない。これに対し、第1実施例では、レーザが最高の許容最大温度Tb以下まで冷却された時点で、青色のみを用いて表示を開始できる。よって、装置の起動までの時間を短縮し、ユーザに早く情報を表示することが可能となる。 This also has the effect of shortening the startup time of the apparatus. In a situation where the device is hot, such as during the summer, in a normal device equipped with cooling means, if all lasers are not cooled until the temperature falls below the lowest allowable maximum temperature among a plurality of lasers, the device is started. I can't. For example, in the above-described three-color laser example, the apparatus is not started unless the laser is cooled below the lowest allowable maximum temperature Tr of the three lasers. In contrast, in the first embodiment, when the laser is cooled to the maximum allowable maximum temperature Tb or less, display can be started using only blue. Therefore, it is possible to shorten the time until the apparatus is activated and display information to the user quickly.
 (第2実施例)
 次に、第2実施例について説明する。第2実施例においても、許容最大温度を超えたレーザは使用せずに表示を行う。但し、第2実施例においては、検出温度Tdが許容最大温度を超えなくても、許容最大温度に近づいた場合には、そのレーザの出力を減少させる。
(Second embodiment)
Next, a second embodiment will be described. Also in the second embodiment, display is performed without using a laser whose allowable maximum temperature has been exceeded. However, in the second embodiment, even if the detected temperature Td does not exceed the allowable maximum temperature, if the detected temperature Td approaches the allowable maximum temperature, the output of the laser is decreased.
 図5(a)に示すように、半導体レーザは、温度が上昇すると、同じ累積故障率に達するまでの時間が短くなる。即ち、温度が高くなるほど寿命が短くなる特性を示す。RGB3色のレーザの中で、最も寿命の短いレーザをより温度の低い状態で使用することが、装置全体の寿命を延ばすことにつながる。よって、第2実施例では、最も寿命の短いレーザをより長く使用するために、温度が上昇してきたら、そのレーザの出力を下げて発光部の温度を下げて表示機能を維持しつつ装置全体の寿命を延ばす。 As shown in FIG. 5A, when the temperature of the semiconductor laser rises, the time required to reach the same cumulative failure rate is shortened. That is, the lifetime is shortened as the temperature increases. Use of the laser with the shortest lifetime among the RGB three-color lasers at a lower temperature leads to extending the lifetime of the entire apparatus. Therefore, in the second embodiment, in order to use the laser with the shortest lifetime for a long time, when the temperature rises, the output of the laser is lowered to lower the temperature of the light emitting unit, and the display function is maintained. Extend life.
 いま、赤色レーザLD1の許容最大温度Trを60℃とし、動作制限温度Trxを40℃とする。「動作制限温度」とは、許容最大温度には達しないが、それに近づいているため、出力レベルを低下させる温度である。よって、検出温度Tdが動作制限温度Trxに達した場合には赤色レーザLD1の出力を減少させ、検出温度Tdが許容最大温度Trに達した場合には赤色レーザLD1は停止させる。同様に、緑色レーザLD3の許容最大温度Tgを80℃とし、動作制限温度Tgxを60℃とする。また、青色レーザLD2の許容最大温度Tbを85℃とする。 Now, the allowable maximum temperature Tr of the red laser LD1 is set to 60 ° C., and the operation limit temperature Trx is set to 40 ° C. The “operation limit temperature” is a temperature that does not reach the maximum allowable temperature but approaches it, so that the output level is lowered. Therefore, when the detected temperature Td reaches the operation limit temperature Trx, the output of the red laser LD1 is decreased, and when the detected temperature Td reaches the allowable maximum temperature Tr, the red laser LD1 is stopped. Similarly, the allowable maximum temperature Tg of the green laser LD3 is 80 ° C., and the operation limit temperature Tgx is 60 ° C. Further, the allowable maximum temperature Tb of the blue laser LD2 is set to 85 ° C.
 具体的な制御手法の一例を図5(b)に示す。まず、検出温度Tdが赤色レーザLD1の動作制限温度Trx以下である場合、画像表示装置は3色のレーザLD1~LD3を制限なく使用して表示を行う。よって、赤色で表示されるべき画像は図5(b)の色度図における点Rに対応する赤色で表示される。この場合、図5(b)における三角形RGB内の色を使用して表示が可能である。 An example of a specific control method is shown in FIG. First, when the detected temperature Td is equal to or lower than the operation limit temperature Trx of the red laser LD1, the image display device performs display using the lasers LD1 to LD3 of three colors without limitation. Therefore, the image to be displayed in red is displayed in red corresponding to the point R in the chromaticity diagram of FIG. In this case, the display can be performed using the colors in the triangle RGB in FIG.
 検出温度Tdが40~45℃になった場合、赤色レーザLD1の出力を低下させ、本来点Rに対応する赤色で表示すべき画像を点R1の色を用いて表示する。この場合、表示可能な色は、図5(b)における点R1、G、Bにより形成される三角形内に制限される。 When the detected temperature Td becomes 40 to 45 ° C., the output of the red laser LD1 is lowered, and an image to be displayed in red corresponding to the point R is displayed using the color of the point R1. In this case, the displayable colors are limited within the triangle formed by the points R1, G, and B in FIG.
 同様に、検出温度Tdが45~50℃になった場合、本来点Rに対応する赤色で表示すべき画像を点R2の色で表示し、検出温度Tdが50~55℃になった場合、本来点Rに対応する赤色で表示すべき画像を点R3の色で表示する。そして、検出温度Tdが赤色レーザLD1の許容最大温度Tr(=60℃)に達すると、赤色レーザLD1は停止され、使用されなくなるので、線分GB上の色のみを使用して表示が行われることになる。 Similarly, when the detected temperature Td becomes 45 to 50 ° C., an image that should be displayed in red corresponding to the point R is displayed in the color of the point R2, and when the detected temperature Td becomes 50 to 55 ° C. The image that should originally be displayed in red corresponding to the point R is displayed in the color of the point R3. When the detected temperature Td reaches the allowable maximum temperature Tr (= 60 ° C.) of the red laser LD1, the red laser LD1 is stopped and is not used, so that only the color on the line segment GB is used for display. It will be.
 次に、検出温度が60~65℃になった場合、緑色レーザLD3の出力を低下させ、本来点Gに対応する緑色で表示すべき画像を点G1の色を用いて表示する。この場合、表示可能な色は、点G1と点Bとで形成される線分G1B上の色に制限される。 Next, when the detected temperature reaches 60 to 65 ° C., the output of the green laser LD3 is reduced, and an image to be displayed in green corresponding to the point G is displayed using the color of the point G1. In this case, the displayable color is limited to the color on the line segment G1B formed by the point G1 and the point B.
 同様に、検出温度Tdが65~70℃になった場合、本来点Gに対応する緑色で表示すべき画像を点G2の色で表示し、検出温度Tdが70~75℃になった場合、本来点Gの位置に対応する緑色で表示すべき画像を点G3の色で表示し、検出温度Tdが75~80℃になった場合、本来点Gの位置に対応する緑色で表示すべき画像を点G4の色で表示する。そして、検出温度Tdが緑色レーザLD3の許容最大温度Tg(=80℃)に達すると、緑色レーザLD3は停止され、使用されなくなるので、青色のみを使用して表示が行われることになる。 Similarly, when the detected temperature Td is 65 to 70 ° C., an image that should be displayed in green corresponding to the point G is displayed in the color of the point G2, and when the detected temperature Td is 70 to 75 ° C., An image that should originally be displayed in green corresponding to the position of the point G is displayed in the color of point G3, and when the detected temperature Td reaches 75 to 80 ° C., an image that should be displayed in green that originally corresponds to the position of the point G Is displayed in the color of point G4. When the detected temperature Td reaches the allowable maximum temperature Tg (= 80 ° C.) of the green laser LD3, the green laser LD3 is stopped and is not used, so that display is performed using only blue.
 なお、検出温度Tdが動作制限温度を超えた場合にレーザの出力を減少させる割合は一定であってもよく、動作制限温度を超えた分、即ち、検出温度と動作制限温度との差が大きいほど、レーザの出力の減少割合を大きくするようにしてもよい。 Note that when the detected temperature Td exceeds the operation limit temperature, the ratio of decreasing the laser output may be constant, and the difference between the detection temperature and the operation limit temperature is large, that is, the amount exceeding the operation limit temperature. The reduction rate of the laser output may be increased.
 図6(a)に制御手法の他の例を示す。この例では、検出温度Tdが赤色レーザLD1の動作制限温度Trx(=40℃)を超えた場合に、赤色レーザLD1の出力を減少させ、表示色を色度図上で青色方向へシフトする。具体的に、検出温度Tdが40~45℃の場合は本来点Rの色で表示する画像を点R11の色で表示し、検出温度Tdが45~50℃の場合は本来点Rの色で表示する画像を点R12の色で表示し、検出温度Tdが50~55℃の場合は本来点Rの色で表示する画像を点R13の色で表示する。検出温度Tdが許容最大温度Tr(=60℃)に達した場合、赤色レーザLD1は停止され、線分GB上の色で表示がなされることになる。 Fig. 6 (a) shows another example of the control method. In this example, when the detected temperature Td exceeds the operation limit temperature Trx (= 40 ° C.) of the red laser LD1, the output of the red laser LD1 is decreased and the display color is shifted in the blue direction on the chromaticity diagram. Specifically, when the detected temperature Td is 40 to 45 ° C., the image originally displayed in the color of the point R is displayed in the color of the point R11, and when the detected temperature Td is 45 to 50 ° C., the color of the original point R is displayed. The image to be displayed is displayed in the color of the point R12. When the detected temperature Td is 50 to 55 ° C., the image originally displayed in the color of the point R is displayed in the color of the point R13. When the detected temperature Td reaches the allowable maximum temperature Tr (= 60 ° C.), the red laser LD1 is stopped and display is performed in the color on the line segment GB.
 図6(b)に制御手法の更に他の例を示す。この例では、検出温度Tdが赤色レーザLD1の動作制限温度Trx(=40℃)を超えた場合に、赤色レーザLD1の出力を減少させ、表示色を色度図上で図8(b)中の矢印に示す方向へシフトする例である。具体的に、検出温度Tdが40~45℃の場合は本来点Rの色で表示する画像を点P1の色で表示し、検出温度Tdが45~50℃の場合は本来点Rの色で表示する画像を点P2の色で表示し、検出温度Tdが50~55℃の場合は本来点Rの色で表示する画像を点P3の色で表示する。検出温度Tdが許容最大温度Tr(=60℃)に達した場合、赤色レーザLD1は停止され、線分GB上の色で表示がなされることになる。 FIG. 6B shows still another example of the control method. In this example, when the detected temperature Td exceeds the operation limit temperature Trx (= 40 ° C.) of the red laser LD1, the output of the red laser LD1 is decreased, and the display color is shown in FIG. 8B on the chromaticity diagram. This is an example of shifting in the direction indicated by the arrow. Specifically, when the detected temperature Td is 40 to 45 ° C., the image originally displayed in the color of the point R is displayed in the color of the point P1, and when the detected temperature Td is 45 to 50 ° C., the color of the original point R is displayed. The image to be displayed is displayed in the color of the point P2, and when the detected temperature Td is 50 to 55 ° C., the image originally displayed in the color of the point R is displayed in the color of the point P3. When the detected temperature Td reaches the allowable maximum temperature Tr (= 60 ° C.), the red laser LD1 is stopped and display is performed in the color on the line segment GB.
 なお、上記のような表示色のシフトは、実際には画像信号中の色とRGB各色の階調値とを対応付けた変換テーブルを用いて実現することができる。具体的には、検出温度Tdが40℃以下の場合のテーブル、40~45℃の場合の変換テーブル、45~50℃の場合の変換テーブルなど、温度範囲の異なる複数の変換テーブルを予め用意しておく。例えば、点Rに対応する赤色は、検出温度Tdが40℃以下の場合の変換テーブルではRの階調値が255に設定され、検出温度Tdが40~45℃の場合の変換テーブルではRの階調値が240に設定される。こうして、画像処理装置は、検出温度Tdに応じて、対応する温度範囲の変換テーブルを参照してRGB各色の階調値を決定し、それに基づいて各色のレーザを駆動すればよい。 It should be noted that the display color shift as described above can actually be realized by using a conversion table in which colors in an image signal are associated with gradation values of RGB colors. Specifically, a plurality of conversion tables having different temperature ranges are prepared in advance, such as a table when the detected temperature Td is 40 ° C. or less, a conversion table when the temperature is 40 to 45 ° C., and a conversion table when the temperature is 45 to 50 ° C. Keep it. For example, the red color corresponding to the point R has a gradation value of R set to 255 in the conversion table when the detection temperature Td is 40 ° C. or lower, and R of the conversion table when the detection temperature Td is 40 to 45 ° C. The gradation value is set to 240. In this way, the image processing apparatus may determine the gradation value of each RGB color by referring to the conversion table of the corresponding temperature range according to the detected temperature Td, and drive the laser of each color based on that.
 以上説明したように、第2実施例では、検出温度Tdが動作許容温度に達しなくても、動作制限温度に達した場合には、そのレーザLDの出力を減少させることにより、更なる温度上昇を防止し、そのレーザをできるかぎり動作許容温度よりも低い状態で使用する。こうしてレーザの寿命を延ばすことにより、装置全体の寿命を延ばすことができる。 As described above, in the second embodiment, even if the detected temperature Td does not reach the operation allowable temperature, when the operation limit temperature is reached, the output of the laser LD is decreased to further increase the temperature. The laser is used at a temperature lower than the allowable operating temperature as much as possible. By extending the lifetime of the laser in this way, the lifetime of the entire apparatus can be extended.
 なお、第2実施例では、検出温度Tdが動作制限温度に達した場合にはそのレーザの出力を減少させるが、その減少分を補うために他の色のレーザの出力を増加させてもよい。例えば、検出温度Tdが赤色レーザLD1の動作制限温度を超えた場合には、赤色レーザLD1の出力を減少させるとともに、赤色レーザLD1よりも許容最大温度が高い緑色レーザLD3及び/又は青色レーザLD2の出力を増加させて表示画像のレベルが低下することを防止するようにしてもよい。 In the second embodiment, when the detected temperature Td reaches the operation limit temperature, the output of the laser is decreased. However, in order to compensate for the decrease, the outputs of lasers of other colors may be increased. . For example, when the detection temperature Td exceeds the operation limit temperature of the red laser LD1, the output of the red laser LD1 is decreased, and the green laser LD3 and / or the blue laser LD2 whose allowable maximum temperature is higher than that of the red laser LD1. The output may be increased to prevent the display image level from being lowered.
 また、第2実施例においても、一部のレーザLDを停止し又はその出力を減少させた場合には、表示画像中にその旨を示すメッセージを表示することが望ましい。これにより、レーザが高温となっていることを知ることができるとともに、温度によって表示色が制限されて表示画像の色調が変化したと知ることができる。 Also in the second embodiment, when a part of the laser LD is stopped or its output is reduced, it is desirable to display a message indicating that in the display image. Thereby, it can be known that the laser is at a high temperature and that the display color is limited by the temperature and the color tone of the display image has changed.
 図7は、第2実施例による表示制御処理のフローチャートである。この処理も、主としてビデオASIC3がレーザドライバASIC7などを制御することにより実行される。また、この処理は、所定の時間間隔をおいて繰り返し実行される。 FIG. 7 is a flowchart of the display control process according to the second embodiment. This process is also executed mainly by the video ASIC 3 controlling the laser driver ASIC 7 and the like. Further, this process is repeatedly executed at predetermined time intervals.
 まず、ビデオASIC3は、サーミスタ98からの検出信号Stに基づいて、検出温度Tdを取得する(ステップS21)。そして、ビデオASIC3は、検出温度Tdが3つのレーザLDの動作制限温度のうち最低である赤色レーザLD1の動作制限温度Trxより高いか否かを判定し(ステップS22)、高くない場合には通常通り3色のレーザLD1~LD3を使用して表示を行う(ステップS23)。 First, the video ASIC 3 acquires the detection temperature Td based on the detection signal St from the thermistor 98 (step S21). Then, the video ASIC 3 determines whether or not the detected temperature Td is higher than the operation limit temperature Trx of the red laser LD1 that is the lowest of the three laser LD operation limit temperatures (step S22). The display is performed using the three color lasers LD1 to LD3 (step S23).
 一方、検出温度Tdが動作制限温度Trxより高い場合(ステップS22;Yes)、ビデオASIC3は検出温度Tdが許容最大温度Trより高いか否かを判定する(ステップS24)。高くない場合(ステップS24;No)、ビデオASIC3は、上述したように赤色レーザLD1の出力を減少させつつ3色のレーザLD1~LD3を使用して表示を行う(ステップS25)。 On the other hand, when the detected temperature Td is higher than the operation limit temperature Trx (step S22; Yes), the video ASIC 3 determines whether or not the detected temperature Td is higher than the allowable maximum temperature Tr (step S24). If not high (step S24; No), the video ASIC 3 performs display using the three-color lasers LD1 to LD3 while reducing the output of the red laser LD1 as described above (step S25).
 検出温度Tdが許容最大温度Trより高い場合(ステップS24;Yes)、ビデオASIC3は検出温度が緑色レーザLD3の動作制限温度Tgxより高いか否かを判定する(ステップS26)。高くない場合(ステップS26;No)、ビデオASIC3は緑色レーザLD3及び青色レーザLD2を使用して表示を行う(ステップS27)。一方、検出温度Tdが動作制限温度Tgxより高い場合(ステップS26;Yes)、ビデオASIC3は検出温度Tdが緑色レーザLD1の許容最大温度Tgより高いか否かを判定する(ステップS28)。高くない場合(ステップS28;No)、ビデオASIC3は緑色レーザLD3の出力を減少させつつ、緑色レーザLD3及び青色レーザLD2を使用して表示を行う(ステップS29)。 When the detected temperature Td is higher than the allowable maximum temperature Tr (step S24; Yes), the video ASIC 3 determines whether the detected temperature is higher than the operation limit temperature Tgx of the green laser LD3 (step S26). If not high (step S26; No), the video ASIC 3 performs display using the green laser LD3 and the blue laser LD2 (step S27). On the other hand, when the detected temperature Td is higher than the operation limit temperature Tgx (step S26; Yes), the video ASIC 3 determines whether the detected temperature Td is higher than the allowable maximum temperature Tg of the green laser LD1 (step S28). If not high (step S28; No), the video ASIC 3 performs display using the green laser LD3 and the blue laser LD2 while reducing the output of the green laser LD3 (step S29).
 検出温度Tdが許容最大温度Tgより高い場合(ステップS28;Yes)、ビデオASIC3は検出温度Tdが青色レーザLD2の許容最大温度Tbより高いか否かを判定する(ステップS30)。高くない場合(ステップS30;No)、ビデオASIC3は青色レーザLD2のみを使用して表示を行う(ステップS31)。一方、検出温度Tdが許容最大温度Tbより高い場合(ステップS30;Yes)、ビデオASIC3は全てのレーザLD1~LD3を停止し、表示を停止する(ステップS32)。 When the detected temperature Td is higher than the allowable maximum temperature Tg (step S28; Yes), the video ASIC 3 determines whether the detected temperature Td is higher than the allowable maximum temperature Tb of the blue laser LD2 (step S30). If not high (step S30; No), the video ASIC 3 displays using only the blue laser LD2 (step S31). On the other hand, when the detected temperature Td is higher than the allowable maximum temperature Tb (step S30; Yes), the video ASIC 3 stops all the lasers LD1 to LD3 and stops displaying (step S32).
 以上のように、第2実施例では、第1実施例の効果に加えて、検出温度が許容最大温度に近くなると、そのレーザの出力を減少させて温度上昇を抑制するので、各レーザをより温度の低い状態で使用することができ、寿命を延ばすことができる。 As described above, in the second embodiment, in addition to the effects of the first embodiment, when the detected temperature approaches the allowable maximum temperature, the laser output is reduced to suppress the temperature rise, so that each laser is more It can be used in a low temperature state, and the life can be extended.
 本発明は、レーザプロジェクタ、ヘッドアップディスプレイ、ヘッドマウントディスプレイなど、RGBレーザを利用した映像機器に利用することができる。 The present invention can be used for video equipment using an RGB laser, such as a laser projector, a head-up display, and a head-mounted display.
 1 画像表示装置
 3 ビデオASIC
 7 レーザドライバASIC
 8 MEMS制御部
 9 レーザ光源ユニット
 50 受光素子
 98 サーミスタ
1 Image display device 3 Video ASIC
7 Laser driver ASIC
8 MEMS control unit 9 Laser light source unit 50 Light receiving element 98 Thermistor

Claims (10)

  1.  それぞれ出力光の波長が異なる少なくとも2つのレーザ光源と、
     前記レーザ光源の温度を検出する温度検出手段と、
     画像データを入力する入力手段と、
     前記レーザ光源を駆動して前記画像データに対応する画像を表示する表示制御手段と、を備え、
     前記表示制御手段は、前記温度検出手段による検出温度に基づいて前記画像の色調を変化させることを特徴とする画像表示装置。
    At least two laser light sources each having a different output light wavelength;
    Temperature detecting means for detecting the temperature of the laser light source;
    Input means for inputting image data;
    Display control means for driving the laser light source to display an image corresponding to the image data,
    The image display apparatus, wherein the display control means changes a color tone of the image based on a temperature detected by the temperature detection means.
  2.  前記表示制御手段は、前記検出温度が所定温度より高い場合、少なくとも1つの前記レーザ光源を停止し、他のレーザ光源を使用して画像を表示することを特徴とする請求項1に記載の画像表示装置。 2. The image according to claim 1, wherein when the detected temperature is higher than a predetermined temperature, the display control unit stops at least one of the laser light sources and displays an image using another laser light source. Display device.
  3.  各レーザ光源は、使用可能な上限温度を示す許容最大温度をそれぞれ有し、
     前記表示制御手段は、各レーザ光源の許容最大温度と前記検出温度とを比較し、前記検出温度が許容最大温度より高いレーザ光源を停止し、前記検出温度が許容最大温度より低いレーザ光源を使用して画像を表示することを特徴とする請求項2に記載の画像表示装置。
    Each laser light source has an allowable maximum temperature indicating an upper limit temperature that can be used,
    The display control means compares the maximum allowable temperature of each laser light source with the detection temperature, stops the laser light source whose detection temperature is higher than the maximum allowable temperature, and uses the laser light source whose detection temperature is lower than the maximum allowable temperature. The image display device according to claim 2, wherein the image is displayed.
  4.  前記表示制御手段は、前記検出温度が所定温度より高い場合、少なくとも1つの前記レーザ光源の出力を、所定温度より低い場合の出力よりも減少させることを特徴とする請求項1に記載の画像表示装置。 2. The image display according to claim 1, wherein when the detected temperature is higher than a predetermined temperature, the display control unit reduces an output of at least one of the laser light sources to be lower than an output when the detected temperature is lower than the predetermined temperature. apparatus.
  5.  各レーザ光源は、許容最大温度より低い動作制限温度をそれぞれ有し、
     前記表示制御手段は、各レーザ光源の動作制限温度と前記検出温度とを比較し、前記検出温度が動作制限温度より高いレーザ光源の出力を、動作制限温度より低い場合の出力よりも減少させることを特徴とする請求項3に記載の画像表示装置。
    Each laser light source has an operation limit temperature lower than the maximum allowable temperature,
    The display control means compares the operation limit temperature of each laser light source with the detection temperature, and reduces the output of the laser light source whose detection temperature is higher than the operation limit temperature than the output when the detection temperature is lower than the operation limit temperature. The image display device according to claim 3.
  6.  前記表示制御手段は、前記検出温度が動作制限温度より高いレーザ光源について、検出温度と動作制限温度との差が大きいほど、当該レーザ光源の出力を減少させる割合を大きくすることを特徴とする請求項5に記載の画像表示装置。 The display control means increases the ratio of decreasing the output of the laser light source as the difference between the detected temperature and the operation restricted temperature is larger for a laser light source whose detected temperature is higher than the operation restricted temperature. Item 6. The image display device according to Item 5.
  7.  前記表示制御手段は、前記少なくとも1つのレーザ光源の出力を減少させた場合には、他方のレーザ光源の出力を増加させることを特徴とする請求項4に記載の画像表示装置。 The image display device according to claim 4, wherein the display control means increases the output of the other laser light source when the output of the at least one laser light source is decreased.
  8.  前記表示制御手段は、前記少なくとも1つの前記レーザ光源の出力を停止し又はその出力を減少させた場合、前記画像データに対応する画像中に当該停止または減少を示すメッセージを表示することを特徴とする請求項2又は4に記載の画像表示装置。 When the output of the at least one laser light source is stopped or reduced, the display control means displays a message indicating the stop or reduction in an image corresponding to the image data. The image display device according to claim 2 or 4.
  9.  それぞれ出力光の波長が異なる少なくとも2つのレーザ光源を備える画像表示装置により実行される画像表示方法であって、
     前記レーザ光源の温度を検出する温度検出工程と、
     画像データを入力する入力工程と、
     前記レーザ光源を駆動して前記画像データに対応する画像を表示する表示制御工程と、を有し、
     前記表示制御工程は、前記温度検出手段による検出温度に基づいて前記画像の色調を変化させることを特徴とする画像表示方法。
    An image display method executed by an image display device including at least two laser light sources each having a different wavelength of output light,
    A temperature detecting step for detecting the temperature of the laser light source;
    An input process for inputting image data;
    A display control step of driving the laser light source to display an image corresponding to the image data,
    The display control step of changing the color tone of the image based on the temperature detected by the temperature detecting means.
  10.  それぞれ出力光の波長が異なる少なくとも2つのレーザ光源を備える画像表示装置により実行される画像表示プログラムであって、
     前記レーザ光源の温度を検出する温度検出手段、
     画像データを入力する入力手段、
     前記レーザ光源を駆動して前記画像データに対応する画像を表示する表示制御手段、として前記画像表示装置を機能させ、
     前記表示制御手段は、前記温度検出手段による検出温度に基づいて前記画像の色調を変化させることを特徴とする画像表示プログラム。
    An image display program executed by an image display device including at least two laser light sources each having a different wavelength of output light,
    Temperature detecting means for detecting the temperature of the laser light source;
    Input means for inputting image data;
    Causing the image display device to function as display control means for driving the laser light source to display an image corresponding to the image data;
    The image display program characterized in that the display control means changes the color tone of the image based on the temperature detected by the temperature detection means.
PCT/JP2011/051937 2011-01-31 2011-01-31 Image display device, image display method, image display program WO2012104968A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/051937 WO2012104968A1 (en) 2011-01-31 2011-01-31 Image display device, image display method, image display program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/051937 WO2012104968A1 (en) 2011-01-31 2011-01-31 Image display device, image display method, image display program

Publications (1)

Publication Number Publication Date
WO2012104968A1 true WO2012104968A1 (en) 2012-08-09

Family

ID=46602215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051937 WO2012104968A1 (en) 2011-01-31 2011-01-31 Image display device, image display method, image display program

Country Status (1)

Country Link
WO (1) WO2012104968A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014130288A (en) * 2012-12-28 2014-07-10 Jvc Kenwood Corp Image display device
US20140293230A1 (en) * 2013-03-29 2014-10-02 Funai Electric Co., Ltd. Projector device, head-up display device, and projector device control method
JP2014194503A (en) * 2013-03-29 2014-10-09 Funai Electric Co Ltd Head-up display device
JP2014197052A (en) * 2013-03-29 2014-10-16 船井電機株式会社 Projector device and head-up display device
JP2015152838A (en) * 2014-02-18 2015-08-24 日本精機株式会社 Display device for vehicle
JP2016062095A (en) * 2014-09-12 2016-04-25 日本精機株式会社 Laser scan type display device and head-up display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005126A (en) * 2001-06-18 2003-01-08 Sony Corp Light source control device, its method and light source system, projection display device and its light source management system
JP2004317557A (en) * 2003-04-11 2004-11-11 Seiko Epson Corp Display device, projector, and driving method therefor
JP2007164099A (en) * 2005-12-16 2007-06-28 Seiko Epson Corp Image display device and projector
JP2008193054A (en) * 2007-01-09 2008-08-21 Seiko Epson Corp Light source device, projector device, monitor device, and lighting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005126A (en) * 2001-06-18 2003-01-08 Sony Corp Light source control device, its method and light source system, projection display device and its light source management system
JP2004317557A (en) * 2003-04-11 2004-11-11 Seiko Epson Corp Display device, projector, and driving method therefor
JP2007164099A (en) * 2005-12-16 2007-06-28 Seiko Epson Corp Image display device and projector
JP2008193054A (en) * 2007-01-09 2008-08-21 Seiko Epson Corp Light source device, projector device, monitor device, and lighting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014130288A (en) * 2012-12-28 2014-07-10 Jvc Kenwood Corp Image display device
US20140293230A1 (en) * 2013-03-29 2014-10-02 Funai Electric Co., Ltd. Projector device, head-up display device, and projector device control method
JP2014194503A (en) * 2013-03-29 2014-10-09 Funai Electric Co Ltd Head-up display device
JP2014197052A (en) * 2013-03-29 2014-10-16 船井電機株式会社 Projector device and head-up display device
JP2015152838A (en) * 2014-02-18 2015-08-24 日本精機株式会社 Display device for vehicle
JP2016062095A (en) * 2014-09-12 2016-04-25 日本精機株式会社 Laser scan type display device and head-up display device

Similar Documents

Publication Publication Date Title
US7873087B2 (en) Light source, light source device, laser image forming device and integrated circuit
WO2012104968A1 (en) Image display device, image display method, image display program
JP4582179B2 (en) Image display device
JP6135389B2 (en) Image display device and optical component
JP6406739B2 (en) LIGHTING DEVICE, PROJECTOR, DISPLAY SYSTEM, AND LIGHT SOURCE ADJUSTING METHOD
JP5956949B2 (en) Image display device
US20170164449A1 (en) Projecting device
US20170160544A1 (en) Projector
US20120026170A1 (en) Projection display apparatus
JP2017097153A (en) Projector
JP4809507B1 (en) Laser light source unit and image display device
JP2014197044A (en) Projector, head-up display device, and method for controlling projector
EP3318917B1 (en) Light projection device
JP2005208231A (en) Light source device, apparatus and method for controlling light source device, and projector
JP6010632B2 (en) Light source unit, light source unit control method, program, and recording medium
US20180267394A1 (en) Illumination device and light source control method, and projection display apparatus
WO2012104967A1 (en) Image display device, image display method, image display program
JP2012141362A (en) Image display device
JP5976925B2 (en) Projection apparatus, head-up display, control method, program, and storage medium
JP2007156211A (en) Video display device
JP5666003B2 (en) Light source unit and method for manufacturing light source unit
JP2008275930A (en) Projection-type image display apparatus
JP2014007358A (en) Projection apparatus, head-up display, control method, program, and recording medium
JP2019175782A (en) Light source device, projector, color temperature adjusting method and program
JPWO2013001590A1 (en) Head mounted display, control method and program performed in head mounted display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP