WO2012103696A1 - 光线路传输保护系统和方法 - Google Patents

光线路传输保护系统和方法 Download PDF

Info

Publication number
WO2012103696A1
WO2012103696A1 PCT/CN2011/076027 CN2011076027W WO2012103696A1 WO 2012103696 A1 WO2012103696 A1 WO 2012103696A1 CN 2011076027 W CN2011076027 W CN 2011076027W WO 2012103696 A1 WO2012103696 A1 WO 2012103696A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical line
optical
line
optical power
standby
Prior art date
Application number
PCT/CN2011/076027
Other languages
English (en)
French (fr)
Inventor
王红启
李时星
罗军
张德江
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/076027 priority Critical patent/WO2012103696A1/zh
Priority to EP11857963.0A priority patent/EP2688230B1/en
Priority to CN201180001014.XA priority patent/CN102265640B/zh
Priority to ES11857963.0T priority patent/ES2584654T3/es
Publication of WO2012103696A1 publication Critical patent/WO2012103696A1/zh
Priority to US14/136,911 priority patent/US9191101B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0289Optical multiplex section protection
    • H04J14/0291Shared protection at the optical multiplex section (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and in particular, to an optical line transmission protection system and method. Background technique
  • the optical terminal multiplexer (OTM) is used in the OTM single-span or multi-span scenario, and the optical line protection (OLP) is used at the transmitting end.
  • the 50:50 coupler splits the signal light into the main and standby lines, and the receiving end of the OLP uses the optical switch to select.
  • the optical transmission line system introduces an additional loss of about 3 dB due to the use of a 50:50 coupler at the transmitting end; if the transmission distance of the optical transmission line exceeds a certain value, 3 dB Loss has a great influence on the performance of the optical transmission line system (optical power budget and signal-to-noise ratio at the receiving end), and it is necessary to change the configuration scheme of the optical transmission line system.
  • the embodiment of the invention provides an optical line transmission protection system and method, which can solve the defects in the prior art that the switching reliability is low and the switching time is long, and the handshake process is simplified. Improve switching reliability and reduce switching time.
  • An embodiment of the present invention provides an optical line transmission protection system, including: at least a first-level optical line protection segment, where the optical line protection segment includes: a transmitting end and a receiving end, where the transmitting end is provided with an optical power distribution adjusting module, The receiving end is provided with an optical switch;
  • the transmitting end of the local optical line protection and the receiving end of the opposite optical line protection form a main optical line and a standby optical line;
  • the optical power distribution adjustment module is configured to set a splitting ratio of the main optical line and the standby optical line according to a difference in optical state between the current working channel and the non-working channel, and adjust the main light according to the splitting ratio of the main optical line and the standby optical line.
  • the optical power distribution of the transmitting end corresponding to the line and the standby line.
  • the embodiment of the invention further provides an optical line transmission protection method, including:
  • the optical power distribution adjustment module sets a split ratio of the primary optical line and the standby optical line according to a difference in optical state between the current working channel and the non-working channel;
  • the primary optical line and the standby optical line transmit corresponding optical signals according to respective optical power allocations.
  • an optical power distribution adjustment module is disposed at a transmitting end of the optical line protection, and the corresponding optical line and the standby optical line are adjusted according to the split ratio of the current working channel and the non-working channel.
  • the optical power distribution at the transmitting end reduces the insertion loss of the transmitting end while ensuring the smooth operation of the service, thereby solving the 3dB insertion loss problem existing in the 1+1 line protection; and, because the transmitting end is provided with an optical power distribution adjusting module, the upstream and downstream lights Only one-way notification is required between line protections, eliminating the need for a complex handshake protocol with 1:1 line protection, which simplifies the handshake process, improves the reliability of the switching, and reduces the switching time.
  • FIG. 1B is a schematic structural diagram of an optical line transmission protection system according to Embodiment 1 of the present invention
  • FIG. 1b is another schematic structural diagram of an optical line transmission protection system according to Embodiment 1 of the present invention.
  • FIG. 1c is another schematic structural diagram of an optical line transmission protection system according to Embodiment 1 of the present invention.
  • FIG. 2a is a schematic structural diagram of an optical line transmission protection system according to Embodiment 2 of the present invention
  • FIG. 2b is a schematic diagram of an application scenario of an optical line transmission protection system according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic diagram of an application scenario of an optical line transmission protection method according to Embodiment 3 of the present invention.
  • FIG. 3b is a schematic diagram of another application scenario of an optical line transmission protection method according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic flowchart diagram of an optical line transmission protection method according to Embodiment 4 of the present invention. detailed description
  • FIG. 1 is a schematic structural diagram of an optical line transmission protection system according to Embodiment 1 of the present invention.
  • the optical line transmission protection system may include: at least one optical line protection segment, where the optical circuit protection segment includes: a transmitting end and a receiving end, wherein the transmitting end is provided with an optical power distribution adjusting module (Tunable Optical Divide Module; abbreviated as TOD), the receiving end is provided with an optical switch OSW; wherein the primary optical line protection segment is from one OLP to another OLP.
  • An optical line protection segment can then include one or more spans (eg, between two optical amplification stations OA).
  • the optical power distribution adjustment module T0D can preset the splitting ratio of the main optical line and the standby optical line on the current working channel according to the difference between the current working channel and the non-working channel fiber state. When switching, the optical power distribution adjusting module is based on the current working channel. The optical power distribution of the transmitting end corresponding to the main optical line and the standby optical line is adjusted by the split ratio of the main optical line and the standby optical line set in advance.
  • the transmitting end T of the local optical line protection OLP and the receiving end R of the opposite optical line protection OLP form a main optical line and a standby optical line; wherein the transmitting end T and the receiving end R can transmit and receive two optical amplifying stations OA connection, wherein the number of optical amplification stations can be set according to specific application scenarios, and the minimum number of cases can be 0 optical amplification stations. In many cases, the number of optical amplification stations is not limited.
  • the optical line protection can protect the optical signal transmitted on the optical transmission line (main optical line, standby line) of the optical line transmission protection system from the various faults of the optical fiber, and can be good for the optical layer. Protection, providing the protection functions required by the network, providing more effective protection against certain network failures such as node failures, link failures, and channel failures.
  • optical layer protection includes: High speed, recovery of optical layer is faster than other high-level recovery, nodes can act quickly when faults occur, do not need to wait for high-level indication signals; simple, optical layer requires less recovery than higher layers Coordination; Efficient, because resources are shared by different service layers, the optical layer can make more efficient use of recovery resources; transparent, wavelength routing protection is independent of the protocols used by high-level.
  • An optical switch is an optical device having one or more optional transmission ports that are mutually switched or logically operated to optical signals in an optical transmission line or an integrated optical path.
  • the optical line transmission protection system can be disposed between OTM and OTM.
  • the optical line transmission protection system in FIG. 1a includes a first-stage optical line protection section, and the optical line protection section of the optical line protection section and the receiving end R of the opposite-end optical line protection pass through two optical amplification stations OA
  • the connection forms a main optical line and a standby optical line. Therefore, the optical line transmission protection system of FIG. 1a is a single-span system.
  • FIG. 1b is another schematic structural diagram of an optical line transmission protection system according to Embodiment 1 of the present invention, such as As shown in FIG.
  • the optical line transmission protection system includes a first-stage optical line protection section, and a plurality of optical amplification stations between the transmitting end T of the optical line protection section of the optical line protection section and the receiving end R of the opposite optical line protection.
  • the OA connection forms a primary optical line and a standby optical line. Therefore, the optical line transmission protection system of FIG. 1b is a multi-span system.
  • FIG. 1 is a schematic structural diagram of an optical line transmission protection system according to Embodiment 1 of the present invention. As shown in FIG. 1c, the optical line transmission protection system includes a multi-stage optical line protection section, and a local end of the optical line protection section.
  • the optical line protection transmitting end T and the opposite end optical line protecting receiving end R are connected by two (or more than two) optical amplifying stations OA to form a main optical line and a standby optical line. Therefore, the optical line of FIG.
  • the transmission protection system is a cascade system, and the pair of the transmitting end T and the receiving end R of the cascading system may be a single span (including two optical amplification stations OA) or multiple spans (including more than two optical amplifications).
  • Site OA ).
  • the optical power distribution adjustment module TOD is configured to adjust optical power distribution of the transmitting end T corresponding to the primary optical line and the standby optical line according to the splitting ratio of the current working channel and the non-working channel.
  • the optical power distribution adjustment module TOD can use passive components to distribute the input optical signals to different transmission ports on the OLP transmitting end T according to a certain ratio.
  • the implementation of the adjustment function of the optical power distribution adjustment module TOD can depend on the external voltage or The change in current adjusts the split ratio of the different transmission ports.
  • the working principle of the optical line transmission protection system is as follows: After the signal end of the local OLP transmitter T is input into the optical power distribution adjustment module TOD, the optical power distribution adjustment module follows the current working channel and is not working. The different split ratios of the channels divide the optical signal into two paths: the main optical line end 1. At the receiving end R of the opposite end OLP, the two optical signals are selected by the optical switch OSW. Wherein, if the optical switch OSW of the receiving end R is closed on the main ray path, the optical power distribution adjusting module TOD of the transmitting end T adjusts the splitting ratio of the main optical line to be larger, and adjusts the splitting ratio of the standby optical line to be smaller.
  • the optical switch is switched to the state of the main optical path to reach the service, and because the main optical line is relatively large, the service quality of the main optical line is better.
  • the optical switch OSW of the receiving end R switches the current working channel from the main optical line to the standby optical line.
  • the optical power of the standby optical line can ensure service access, but the service quality is not good. Therefore, the opposite end
  • the receiving end of the OLP can be directed to this
  • the transmitting end of the OLP sends an adjustment start command. After receiving the adjustment start command, the transmitting end T can indicate that the optical power distribution adjustment module TOD of the local OLP adjusts the split ratio of the main optical line and the standby line, and reduces the main optical line.
  • the split ratio (for example, from 70% to 40%) increases the split ratio of the standby line (for example, from 30% to 60%), thereby improving the service quality of the standby line.
  • This process does not require the use of a complex handshake protocol, which can correctly complete the switchover and ensure smooth business.
  • the optical power distribution adjustment module TOD is set at the transmitting end T of the optical line protection (OLP), which may be based on the difference of the optical state of the current working channel and the non-working channel, for example: attenuation, polarization mode dispersion (Polarization Mode Dispersion; PMD) and other differences, adjusting the splitting ratio of the optical power distribution of the transmitting end T corresponding to the main optical line and the standby optical line, while ensuring the smooth operation of the service, reducing the insertion loss of the transmitting end T, thereby solving the existence of the 1+1 line protection 3dB insertion loss problem; and, since the transmitting end T is provided with the optical power distribution adjustment module TOD, only one-way notification is required between the upstream and downstream OLPs, and the complicated handshake protocol of 1:1 line protection is not needed, which simplifies the handshake process and improves The switching reliability reduces the switching time.
  • OLP optical line protection
  • the optical power distribution adjustment module may include any one or more of the following units:
  • a first split ratio setting unit 21 configured to set a split ratio of the standby line to a minimum split ratio of the standby line, and a split ratio of the main line if the current working channel is a main optical line Set to "1 minus the minimum split ratio of the standby line";
  • a second split ratio setting unit 23 configured to set a split ratio of the main optical line to a minimum split ratio of the main optical line, and a split ratio of the standby line, if the current working channel is a standby line Set to "1 minus the minimum split ratio of the main optical line";
  • the third split ratio setting unit 25 is configured to select a larger value from a minimum split ratio of the main optical line and a minimum split ratio of the standby line, and set a split ratio of the current non-working channel to the larger Value, set the split ratio of the current working channel to "1 minus the larger value".
  • FIG. 2b is a schematic diagram of an application scenario of an optical line transmission protection system according to Embodiment 2 of the present invention, where the splitting ratios of the main optical line Tx1 port and the standby optical line Tx2 are different. The following conditions:
  • Case 1 When the service is received from the main optical line Txl port, the splitting of the Tx2 port of the standby optical line is relatively small. Assume that under normal operating conditions, the minimum split ratio of the standby optical line can be tolerated by ⁇ @ ⁇ , then the split ratio of the main optical line Txl is 1 minus B@A; 1 minus B@A is working in the main The optimum split ratio under the optical line; this can be achieved by the first split ratio setting unit.
  • Case 2 When the service is received from the Tx2 port of the standby line, the split of the main optical line Txl is relatively small. Assume that under normal operating conditions, the minimum split ratio of the main optical line Txl port that can be tolerated is A@B, then the split ratio of the optical line TX2 is 1 minus A@B; 1 minus A@B is working The optimum split ratio under the optical line; this can be achieved by the second split ratio setting unit.
  • the optical power distribution adjustment module further includes:
  • the adjusting unit 29 is configured to: if the optical power distribution adjustment module receives the adjustment start command returned by the receiving end, adjust the main optical line according to the splitting ratio of the main optical line and the standby optical line set on the current working channel. The optical power distribution of the transmitting end corresponding to the standby line.
  • the power detection control unit of the receiving end of the peer OLP may trigger the transmission of the adjustment start command after the optical switch is switched; the adjusting unit 29 of the optical power distribution adjustment module of the transmitting end of the local OLP receives the return of the receiving end of the opposite OLP. After adjusting the start command, it can be determined that the peer OLP has been switched. This is because the split ratio adjustment scheme of the main optical line and the standby optical path has been preset, and can be directly adjusted according to the current working channel after switching.
  • the adjusting unit 29 can configure the optical power distribution of the transmitting end of the primary and standby optical lines according to the splitting ratio set by the first splitting ratio setting unit 21;
  • the current working channel is the standby light line, and the adjusting unit 29 can configure the optical power distribution of the transmitting end of the primary and standby optical lines according to the splitting ratio set by the second splitting ratio setting unit 23.
  • the adjusting unit 29 can configure the optical power of the transmitting end of the main and standby optical lines according to the splitting ratio set by the third splitting ratio setting unit 25 regardless of whether the current working channel after switching is the main optical line or the standby optical line. distribution.
  • the TOD is set on the transmitting end of the OLP, and the split ratio of the optical power distribution of the transmitting end T corresponding to the main optical line and the standby optical line can be adjusted according to the difference of the optical states of the current working channel and the non-working channel, so as to ensure the smooth flow of the service.
  • the insertion loss of the transmitting end T is reduced, thereby solving the 3dB insertion loss problem existing in the 1+1 line protection; and, since the transmitting end T is provided with the TOD, only one-way notification is required between the upstream and downstream OLPs, and no need to adopt 1 : 1 Complex handshake protocol for line protection, which simplifies the handshake process, improves the reliability of switching, and reduces the switching time.
  • FIG. 3 is a schematic diagram of an application scenario of an optical line transmission protection method according to Embodiment 3 of the present invention.
  • the upstream OLP is switched and the downstream power changes, and if the detection occurs.
  • the difference in speed is likely to cause a false switching of the downstream OLP.
  • a reference light can be coupled and input at the transmitting end of the OLP, and the reference light is separated at the receiving end of the OLP to perform optical power detection.
  • the detection of the reference light and the detection of the signal light are performed simultaneously, and the two signals can be simultaneously used to determine whether the switching condition is satisfied, and the misdirected switching in the cascade application can be solved.
  • the optical line transmission protection system may further include:
  • the optical power detection control module 30 is configured to detect a reference optical power quality indicator of the optical line transmission protection system. If the reference optical power needs to be used as the switching determination condition, the reference optical power quality indicator is detected after the reference power quality indicator is detected.
  • the reference optical power quality indicator is used as a switching judgment condition to perform subsequent switching determination together with other switching determination conditions, which may be based on an upper layer, for example: The network management and server pre-configuration need or do not need to be used as the switching judgment condition to determine whether the reference optical power quality indicator participates in the switching determination. If the reference optical power is not set as the switching determination condition in advance, after the reference optical power quality indication is detected, The reference optical power quality indication is not used as the switching determination condition, and the subsequent switching determination is performed according to other switching determination conditions. In this way, whether the reference optical power quality indicator is used as the switching judgment condition may be determined according to a specific application scenario, and the configuration may be flexibly configured into various specific systems.
  • FIG. 3b is a schematic diagram of another application scenario of the optical line transmission protection method according to Embodiment 3 of the present invention.
  • the optical power distribution adjustment module TOD can divide the combined optical light into two paths according to different splitting ratios, wherein the main optical line is input to the Txl port, and the standby optical line is input to the Tx2 port.
  • the combined optical path is transmitted from the two lines (Txl port, Tx2 port) to the two ports of the receiving end: the Rxl port of the main optical line and the standby optical line receive the Rx2 port, and the two paths are combined.
  • the light passes through the processing of the optical power detection control module 30, outputs a reference optical power quality indication signal, and is modulated into the downstream reference light.
  • the signal light is selected by the optical switch OSW and transmitted to the receiving end Rx to complete the reception of the signal light.
  • the optical switch (OSW) of the receiving end is closed on the Rx1 port of the main optical line.
  • the optical power distribution adjustment module of the transmitting end adjusts the split ratio of the Txl port of the main optical line to be larger, and will be prepared.
  • the splitting ratio of the Tx2 port of the optical line is adjusted to be small, ensuring that the optical switch is switched to the state where the service can be reached (the error rate is large before the correction), and the service quality is better because the Txl port is relatively large.
  • the optical switch (OSW) at the receiving end is switched to the Rx2 port of the standby optical line.
  • the optical power of the standby optical line can ensure service access, but the service quality is not good, and the receiving end can transmit to the transmitting end.
  • the optical power distribution adjustment module adjusts the split ratio of the main optical line and the standby line, reduces the split ratio of the Txl port, and increases the split ratio of the Tx2 port. This process does not have to use a complex handshake protocol to properly complete the switchover.
  • the transmitting end Tx of the local OLP combines the signal light and the reference light, and passes through the chief ray.
  • the road or the standby line sends the combined light to the receiving end Rx of the opposite OLP.
  • the optical power detection control module 30 of the receiving end Rx of the peer OLP can detect the reference optical power quality indication from the combined optical, and according to the previous configuration, can determine whether the reference optical power quality indicator participates in the judgment of the switching condition, and Decide whether the reference optical power quality indicator is transparently transmitted at the OLP. Therefore, the problem that the multiple spans cannot be normally protected due to the lack of an effective reference optical regenerative transmission scheme can be solved, and the misdirected switching problem of the cascade can be simultaneously solved.
  • the settings of the reference optical power quality indicator may be different in different scenarios, and are specifically classified into the following scenarios:
  • Scenario 2 In multi-span optical line protection between OTM and OTM, see Figure lb. Since the reference light of the OA station in the middle needs to be regenerated, it is necessary to set the reference optical power quality indicator of each OA station to an effective value. Both the reference optical power quality indication and the signal light are used as the switching judgment conditions.
  • Scenario 3 Cascaded optical line protection, see Figure lc, because the reference optical power indication between two adjacent OLPs in the middle will be downlinked step by step, resulting in downstream cascade switching, so the middle two adjacent The reference optical power quality indicator of the site where the OLP is located is set to an invalid value (ie, not used or invalid) to avoid cascade switching of the downstream OLP.
  • the optical power detection control module may correspond to any one or more of the following units:
  • a single span detection control unit configured to set a reference optical power quality indicator of the single span of the optical line transmission protection system to be valid and as a default value; determining, according to the detected default value, a reference optical power quality Indicates a downstream switching judgment condition as the single span; it can be used for the optical path of the single span shown in FIG.
  • a multi-span detection control unit configured to set a reference optical power quality indicator of the multi-span of the optical line transmission protection system to an effective value; determining, according to the detected effective value, a reference optical power quality indicator Determining conditions for downstream switching of multiple spans; can be used for multiple spans as shown in Figure lb
  • the optical line of the segment solves the problem that the multi-span reference light needs to be regenerated.
  • a cascade detection control unit configured to set a reference optical power quality indicator of the cascaded optical line protection of the optical line transmission protection system to an invalid value; and determine, according to the detected invalid value, a reference optical power quality Indicates a downstream switching determination condition as the multi-span, and does not perform switching of the downstream cascaded optical line protection. It can be used for the cascaded optical line shown in Figure lc to solve the problem of cascade switching.
  • an optical power distribution adjustment module is set at the transmitting end of the OLP, and the optical power distribution adjustment module can adjust the optical power allocation of the transmitting end corresponding to the primary optical line and the standby optical line according to the split ratio of the current working channel and the non-working channel. While ensuring the smooth flow of the service, the insertion loss of the transmitting end is reduced, thereby solving the 3dB insertion loss problem existing in the 1+1 line protection; and, since the optical power distribution adjustment module is provided at the transmitting end, only one-way notification is required between the upstream and downstream OLPs.
  • the service can be adjusted to the best, without the complicated handshake protocol of 1:1 line protection, which simplifies the handshake process, improves the reliability of the switching, and reduces the switching time.
  • the reference optical power quality indication to the downstream OLP, it can be determined whether the reference light is used as the switching judgment condition, and in the cascade system, the reference optical power quality indication is transmitted to the downstream OLP, so that the downstream OLP can identify whether the OLP has Invalid value, combined with optional configuration items, prevents misleading, further improving the reliability of the switching.
  • the optical line transmission protection method includes:
  • Step 101 The optical power distribution adjustment module sets a split ratio of the primary optical line and the standby optical line according to the difference between the current working channel and the non-working channel fiber state.
  • the minimum split ratio of the primary optical line and the standby optical line may be determined by its own fiber state, such as: attenuation, PMD, etc., so the optical power distribution adjustment module sets the fiber state difference according to the current working channel and the non-working channel.
  • the split ratio of the main optical line and the standby optical line may specifically include any of the following cases:
  • Case 1 If the current working channel is the main optical line, the splitting ratio of the standby line is set. For the minimum split ratio of the standby line, set the split ratio of the main line to "1 minus the minimum split ratio of the standby line"; or
  • Case 2 If the current working channel is a standby optical line, set a split ratio of the main optical line to a minimum split ratio of the main optical line, and set a split ratio of the standby line to "1 minus The minimum split ratio of the main optical line"; or
  • Case 3 selecting a larger value from a minimum split ratio of the main optical line and a minimum split ratio of the standby line, and setting a split ratio of the current non-working channel to the larger value, and the current working channel
  • the split ratio is set to "1 minus the larger value”.
  • Step 102 Adjust optical power distribution of the transmitting end corresponding to the primary optical line and the standby optical line according to the split ratio of the primary optical line and the standby optical line.
  • the step 102 may specifically include:
  • the optical power distribution adjustment module receives the adjustment start command returned by the receiving end, according to the splitting ratio of the main optical line and the standby optical line set on the current working channel, according to the optical status of the current working channel and the current non-working channel Difference, adjusting the splitting ratio of the optical power distribution of the transmitting end corresponding to the main optical line and the standby line.
  • Step 103 The primary optical line and the standby optical line transmit corresponding optical signals according to respective optical power allocations.
  • the optical line transmission protection method may further include: detecting a reference optical power quality indication of the various optical line transmission protection systems, if the reference optical power is required to be preset As the switching determination condition, after the reference optical power quality indication is detected, the reference optical power quality indicator is used as a switching determination condition to perform subsequent switching determination together with other switching determination conditions; or, if not set in advance, reference is not made.
  • the optical power is used as the switching judgment condition, and after the reference optical power quality indicator is detected, the reference optical power quality indicator is not used as the switching determination condition, and the subsequent switching determination is performed according to other switching determination conditions, which may specifically include the following scenarios:
  • the reference optical power quality indication of the single span of the optical line transmission protection system is set. Setting a default value; determining, according to the detected default value, a reference optical power quality indicator as a downstream switching determination condition of the single span; may be used for a single-span optical line as shown in FIG. 1a; or a scene And setting a reference optical power quality indicator of the multiple spans of the optical line transmission protection system to an effective value; determining, according to the detected valid value, a reference optical power quality indicator as a downstream switching of the multiple spans Judging conditions; can be used for the multi-span optical line shown in Figure lb, to solve the problem that multi-span reference light needs to be regenerated; or
  • Scenario 3 setting a reference optical power quality indicator of the cascaded optical line protection of the optical line transmission protection system to an invalid value; determining, according to the detected invalid value, that the reference optical power quality indicator is not the The condition of the downstream switching of the segment is judged, and the switching of the optical line protection of the downstream cascade is not performed. It can be used in the cascaded optical line shown in Figure lc to solve the problem of cascade switching.
  • an optical power distribution adjustment module is disposed at the transmitting end of the optical line protection, and the corresponding transmission of the primary optical line and the standby optical line can be adjusted according to differences in optical states of the current working channel and the non-working channel, such as: attenuation, PMD, and the like.
  • the optical power distribution at the end ensures the 3° insertion loss of the 1+1 line protection while ensuring the smooth operation of the service, and solves the 3dB insertion loss problem of the 1+1 line protection.
  • the transmitting end is provided with an optical power distribution adjustment module, the upstream and downstream optical lines are provided.
  • optical line transmission protection system and method of the embodiments of the present invention can be applied to communication fields such as a WDM system, an SDH system, and a mobile communication system.
  • the storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

光线路传输保护系统和方法 技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种光线路传输保护系统和 方法。 背景技术
在 1+1 线路保护中, 光终端复用器(Optical Terminal Multiplexer ; 简称: OTM ) 到 OTM单跨段或多跨段场景下, 光线路保护 (Optical Line Protector; 简称: OLP ) 的发送端使用 50: 50耦合器将信号光对等分光后发 送到主备线路上, OLP的接收端采用光开关进行选收。 在 OTM到 OTM单 跨段或多跨段传输应用场景下, 由于发送端使用 50:50耦合器, 光传输线路 系统引入额外 3dB左右的损耗;如果光传输线路的传输距离超过一定值, 3dB 的损耗对光传输线路系统性能(接收端的光功率预算和信噪比 )的影响较大, 需要改变光传输线路系统的配置方案。
现有技术为了解决 1+1线路保护中 OLP发送端使用 50: 50耦合器引入 的 3dB插损问题, 可以采用 1 : 1 线路保护, 在 OLP的发送端使用光开关 ( Optical Switch; 简称: OSW )替代 50: 50耦合器, 将信号光有选择的发 送到主线路或备线路上, 在接收端使用光开关进行选收。
但是, 由于 1 : 1线路保护上下游之间需要同步切换, 因此, 1 : 1线路 保护的上下游之间需要使用复杂的握手协议, 上下游之间通过多次握手确保 保护切换完成, 倒换可靠性降低, 比 1+1线路保护的倒换时间长。 发明内容
本发明实施例提供一种光线路传输保护系统和方法, 用以解决现有技术 中无法同时解决倒换可靠性低和倒换时间长的缺陷, 简化了握手过程, 实现 提高倒换可靠性和减少倒换时间。
本发明实施例提供一种光线路传输保护系统, 包括: 至少一级光线路保 护段, 所述光线路保护段包括: 发送端和接收端, 所述发送端设置有光功率 分配调整模块, 所述接收端设置有光开关;
本端光线路保护的发送端和对端光线路保护的接收端连接形成主光线路 和备光线路;
所述光功率分配调整模块, 用于根据当前工作通道和非工作通道的光纤 状态差异设置主光线路和备光线路的分光比, 根据所述主光线路和备光线路 的分光比调整主光线路和备光线路对应的发送端的光功率分配。
本发明实施例还提供一种光线路传输保护方法, 包括:
光功率分配调整模块根据当前工作通道和非工作通道的光纤状态差异设 置主光线路和备光线路的分光比;
根据所述主光线路和备光线路的分光比, 调整主光线路和备光线路对应 的发送端的光功率分配;
所述主光线路和备光线路根据各自的光功率分配传输对应光信号。
本发明实施例的光线路传输保护系统和方法, 在光线路保护的发送端设 置光功率分配调整模块, 可以根据当前工作通道和非工作通道的分光比, 调 整主光线路和备光线路对应的发送端的光功率分配,在保证业务畅通的同时, 降低了发送端的插损, 从而解决 1+1线路保护存在的 3dB插损问题; 并且, 由 于发送端设置有光功率分配调整模块, 上下游光线路保护之间只需要单向通 知, 无需采用 1 : 1线路保护的复杂握手协议, 简化了握手过程, 提高了倒换 可靠性, 减少了倒换时间。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 la为本发明实施例一提供的光线路传输保护系统的一种结构示意图; 图 lb为本发明实施例一提供的光线路传输保护系统的另一种结构示意 图;
图 lc为本发明实施例一提供的光线路传输保护系统的另一种结构示意 图;
图 2a为本发明实施例二提供的光线路传输保护系统的结构示意图; 图 2b为本发明实施例二提供的光线路传输保护系统的应用场景的示意 图;
图 3a为本发明实施例三提供的光线路传输保护方法的一种应用场景的示 意图;
图 3b为本发明实施例三提供的光线路传输保护方法的另一种应用场景的 示意图;
图 4为本发明实施例四提供的光线路传输保护方法的流程示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
实施例一
图 la为本发明实施例一提供的光线路传输保护系统的一种结构示意图, 如图 la, 该光线路传输保护系统可以包括: 至少一级光线路保护段, 所述光 线路保护段包括: 发送端和接收端, 所述发送端设置有光功率分配调整模块 (Tunable Optical Divide Module;简称: TOD),所述接收端设置有光开关 OSW; 其中, 一级光线路保护段为从一个 OLP到另一个 OLP。 一个光线路保护段则 可以包括一个或者多个跨度(例如: 两个光放大站点 OA之间)。 光功率分配 调整模块 T0D可以根据当前工作通道和非工作通道光纤状态差异, 预先设置 当前工作通道上的主光线路和备光线路的分光比, 在切换时, 光功率分配调 整模块根据当前工作通道上预先设置的主光线路和备光线路的分光比, 调整 主光线路和备光线路对应的发送端的光功率分配。
本端光线路保护 OLP的发送端 T和对端光线路保护 OLP的接收端 R连接形 成主光线路和备光线路; 其中, 发送端 T和接收端 R之间可以通过收发两个光 放大站点 OA连接, 其中光放大站点的个数可以根据具体的应用场景设置, 最 少的情况可以为 0个光放大站点, 多的情况光放大站点的数目不进行限定。
其中, 采用光线路保护 (OLP ) 可以保护光线路传输保护系统的光传输 线路(主光线路、 备光线路)上的传输的光信号不受光纤各类故障影响, 可 以对光层起到良好的保护作用, 提供网络所需的保护功能, 对某些特定的网 络故障, 如: 节点故障、 链路故障、 通道故障等能提供更有效的保护。 光层 保护的优点包括: 高速, 光层的恢复比其他高层的恢复速度更快, 节点可以 在故障出现时迅速动作, 不需要等待高层的指示信号; 简单, 光层比高层的 恢复需要更少的协调性; 高效, 由于资源由不同的服务层共享, 光层可更有 效地利用恢复资源; 透明, 波长的路由保护独立于高层使用的协议。 光开关 ( OSW )是一种具有一个或多个可选的传输端口, 是对光传输线路或集成光 路中的光信号进行相互切换或逻辑操作的光学器件。
具体地, 该光线路传输保护系统可以设置于 OTM到 OTM之间。 图 la中该 光线路传输保护系统包括一级光线路保护段, 光线路保护段的本端光线路保 护的发送端 T和对端光线路保护的接收端 R之间通过两个光放大站点 OA连接 形成主光线路和备光线路, 因此, 图 la的光线路传输保护系统为单跨段系统。 图 lb为本发明实施例一提供的光线路传输保护系统的另一种结构示意图, 如 图 lb所示, 该光线路传输保护系统包括一级光线路保护段, 光线路保护段的 本端光线路保护的发送端 T和对端光线路保护的接收端 R之间多个光放大站 点 OA连接形成主光线路和备光线路, 因此, 图 lb的光线路传输保护系统为多 跨段系统。 图 1 c为本发明实施例一提供的光线路传输保护系统的另一种结构 示意图, 如图 lc所示, 该光线路传输保护系统包括多级光线路保护段, 光线 路保护段的本端光线路保护的发送端 T和对端光线路保护的接收端 R之间通 过两个(也可以大于两个)光放大站点 OA连接形成主光线路和备光线路, 因 此, 图 lc的光线路传输保护系统为级联系统, 级联系统的一对发送端 T和接收 端 R之间可以为单跨段 (包括两个光放大站点 OA )也可以为多跨段 (包括大 于两个光放大站点 OA ) 。
所述光功率分配调整模块 TOD, 用于根据当前工作通道和非工作通道的 分光比,调整主光线路和备光线路对应的发送端 T的光功率分配。 光功率分配 调整模块 TOD可以采用无源器件, 将输入的光信号按照一定的比例分配到 OLP发送端 T上不同的传输端口,光功率分配调整模块 TOD的调整功能的实现 可以依赖于外界电压或电流的变化, 调整不同传输端口的分光比。
以图 la为例, 光线路传输保护系统的工作原理如下: 在本端 OLP的发送 端 T,信号光输入到光功率分配调整模块 TOD中后,光功率分配调整模块按照 当前工作通道和非工作通道的不同的分光比将光信号分为两路即: 主光线路 端1。 在对端 OLP的接收端 R, 两路光信号经过光开关 OSW的选收。 其中, 如 果接收端 R的光开关 OSW闭合在主光线路上,发送端 T的光功率分配调整模块 TOD将主光线路的分光比调整为较大, 而将备光线路的分光比调整为较小, 确保光开关切换到该主光线路上达到业务能够通的状态, 并且由于主光线路 的分光比较大, 主光线路的业务质量较佳。 如果主光线路出现异常,接收端 R 的光开关 OSW将当前工作通道从主光线路切换到备光线路后, 备光线路的光 功率能够保证业务通, 但业务质量不佳, 因此, 对端 OLP的接收端 R可以向本 端 OLP的发送端发送调整启动命令, 发送端 T收到该调整启动命令后, 可以指 示本端 OLP的光功率分配调整模块 TOD调整主光线路与备光线路的分光比, 减小主光线路的分光比(例如: 从 70%调整为 40% ) , 增加备光线路的分光比 (例如: 从 30%调整为 60% ) , 从而提高备光线路的业务质量。 该过程不必须 使用复杂的握手协议, 可以正确完成倒换, 并保证业务畅通。
本实施例在光线路保护( OLP )的发送端 T设置光功率分配调整模块 TOD, 可以根据当前工作通道和非工作通道的光纤状态差异例如: 衰耗、 偏振模色 散( Polarization Mode Dispersion; 简称: PMD )等差异, 调整主光线路和备 光线路对应的发送端 T的光功率分配的分光比,在保证业务畅通的同时, 降低 了发送端 T的插损, 从而解决 1+1线路保护存在的 3dB插损问题; 并且, 由于 发送端 T设置有光功率分配调整模块 TOD , 上下游 OLP之间只需要单向通知, 无需采用 1 : 1线路保护的复杂握手协议, 简化了握手过程, 提高了倒换可靠 性, 减少了倒换时间。
实施例二
图 2a为本发明实施例二提供的光线路传输保护系统的结构示意图, 如图 2a所示, 在实施例一的基础上, 光功率分配调整模块可以包括以下单元的任 意一个或者多个:
第一分光比设置单元 21 , 用于若当前工作通道为主光线路, 则将所述备 光线路的分光比设置为所述备光线路的最小分光比, 将所述主光线路的分光 比设置为 "1减去所述备光线路的最小分光比" ;
第二分光比设置单元 23 , 用于若当前工作通道为备光线路, 则将所述主 光线路的分光比设置为所述主光线路的最小分光比, 将所述备光线路的分光 比设置为 "1减去所述主光线路的最小分光比" ;
第三分光比设置单元 25, 用于从所述主光线路的最小分光比和所述备光 线路的最小分光比中选取较大值, 将当前非工作通道的分光比设置为所述较 大值, 将当前工作通道的分光比设置为 "1减去所述较大值" 。 具体地, 参见图 2b , 为本发明实施例二提供的光线路传输保护系统的应 用场景的示意图, 其中, 主光线路 Txl口和备光线路 Tx2口不同状态下的分光 比的设置可以分为以下情况:
情况一、 当业务从主光线路 Txl口接收时,备光线路 Tx2口的分光比较小。 假设正常工作情况下, 能够容忍的备光线路 Τχ2口的最小分光比为 Β@Α, 则 主光线路 Txl口的分光比为 1减去 B@A; 1减去 B@A是工作在主光线路下的最 佳分光比; 该情况可以由第一分光比设置单元实现。
情况二、 当业务从备光线路 Tx2口接收时,主光线路 Txl口的分光比较小。 假设正常工作情况下, 能够容忍的主光线路 Txl口的最小分光比为 A@B , 则 备光线路 TX2口的分光比为 1减去 A@B; 1减去 A@B是工作在备光线路下的 最佳分光比; 该情况可以由第二分光比设置单元实现。
情况三、 由于主光线路和备光线路的链路长度通常不同, 通常情况下 Β@Α≠Α@Β , 为了减少判断的复杂度, 可以取二者中的较大值, 即非工作 通道的分光比取 max ( B@A, A@B ) 。 该情况可以由第三分光比设置单元实 现。
进一步地, 参见图 2a, 该光功率分配调整模块还包括:
调整单元 29 , 用于若光功率分配调整模块接收所述接收端返回的调整启 动命令, 则根据当前工作通道上设置的所述主光线路和备光线路的分光比, 调整所述主光线路和备光线路对应的发送端的光功率分配。
具体地, 对端 OLP的接收端的功率检测控制单元可以在光开关倒换后触 发调整启动命令的发送; 本端 OLP的发送端的光功率分配调整模块的调整单 元 29接收到对端 OLP的接收端返回的调整启动命令后, 可以确定对端 OLP发 生了切换。 这是, 由于主光线路和备光线路上的分光比调整方案已经预先设 置了, 可以直接按照切换后的当前工作通道进行调整。 例如: 一种情况下, 如果切换后的当前工作通道为主光线路, 调整单元 29可以按照第一分光比设 置单元 21设置的分光比配置主、 备光线路的发送端的光功率分配; 如果切换 后的当前工作通道为备光线路, 调整单元 29可以按照第二分光比设置单元 23 设置的分光比配置主、 备光线路的发送端的光功率分配。 另一种情况下, 不 论切换后的当前工作通道为主光线路还是备光线路, 调整单元 29都可以按照 第三分光比设置单元 25设置的分光比配置主、 备光线路的发送端的光功率分 配。
本实施例在 OLP的发送端设置 TOD, 可以根据当前工作通道和非工作 通道的光纤状态差异, 调整主光线路和备光线路对应的发送端 T的光功率分 配的分光比,在保证业务畅通的同时,降低了发送端 T的插损,从而解决 1+1 线路保护存在的 3dB插损问题; 并且, 由于发送端 T设置有 TOD, 上下游 OLP之间只需要单向通知, 无需采用 1 : 1 线路保护的复杂握手协议, 简化 了握手过程, 提高了倒换可靠性, 减少了倒换时间。
实施例三
图 3a 为本发明实施例三提供的光线路传输保护方法的一种应用场景的 示意图, 由于对级联系统的 OLP进行信号光功率检测时, 上游 OLP发生倒 换导致下游功率的变化, 如果出现检测速度的差异, 容易引起下游 OLP的误 倒换。 为了解决级联系统中的误导换问题, 可以在 OLP的发送端耦合输入一 个参考光, 在 OLP的接收端将参考光分离出来, 进行光功率检测。 参考光的 检测与信号光的检测同时进行, 并可以利用两个信号同时判断是否满足倒换 条件, 可以解决级联应用中的误导换。 但是, 由于参考光是独立的信号, 在 OTM到 OTM之间没有形成一个系统, 在级联应用的某个单跨段中, 没有有 效的参考光再生传输方案, 无法正常的进行保护。 因此, 如图 3a所示, 该光 线路传输保护系统还可以进一步包括:
光功率检测控制模块 30, 用于检测各种光线路传输保护系统的参考光功 率质量指示; 如果预先设置需要将参考光功率作为倒换判断条件, 则在检测 到参考光功率质量指示后, 将该参考光功率质量指示作为一个倒换判断条件 与其他的倒换判断条件一起进行后续的倒换判断, 具体可以根据上层例如: 网管、 服务器预先配置需要或者不需要作为倒换判断条件, 决定该参考光功 率质量指示是否参与倒换判断; 如果预先设置不将参考光功率作为倒换判断 条件, 则在检测到参考光功率质量指示后, 不将该参考光功率质量指示作为 倒换判断条件, 根据其他的倒换判断条件进行后续的倒换判断。 这样, 可以 根据具体的应用场景决定是否将参考光功率质量指示作为倒换判断条件, 可 以灵活配置到各种具体的系统中。
具体地, 图 3b为本发明实施例三提供的光线路传输保护方法的另一种应 用场景的示意图, 如图 3b所示, 在一个 OLP的发送端 Tx, 信号光和参考光耦 合后输入到光功率分配调整模块中, 光功率分配调整模块 TOD可以按照不同 的分光比将合路光分为两路, 其中主光线路输入到 Txl口, 备光线路输入到 Tx2口。 在 OLP的接收端 Rx, 合路光从两个线路(Txl口、 Tx2口 )分别传输 至接收端的两个端口即: 主光线路的 Rxl口和备光线路收到 Rx2口, 两路合路 光经过光功率检测控制模块 30的处理, 输出参考光功率质量指示信号并调制 到下游的参考光中。 信号光经过光开关 OSW的选收, 传输到接收端 Rx, 完成 信号光的接收。
例如: 在默认状态下, 接收端的光开关 (OSW ) 闭合在主光线路的 Rxl 口上,此时,发送端的光功率分配调整模块将主光线路的 Txl口分光比调整为 较大, 而将备光线路的 Tx2口分光比调整为较小,确保光开关切换到该主光线 路上达到业务能够通的状态(纠前误码率较大),并且由于 Txl口分光比较大, 业务质量较佳。 当主光线路异常的情况下, 接收端的光开关(OSW )切换到 备光线路的 Rx2口, 此时, 备光线路的光功率能够保证业务通, 但业务质量不 佳, 接收端可以向发送端发送调整启动命令, 发送端接收到该调整启动命令 后, 光功率分配调整模块的调整主光线路与备光线路的分光比,减小 Txl口的 分光比, 增加 Tx2口的分光比。 该过程不必须使用复杂的握手协议, 可以正确 完成倒换。
参见图 3b, 本端 OLP的发送端 Tx将信号光和参考光合波后, 通过主光线 路或备光线路, 将合路光发送给对端 OLP的接收端 Rx。 对端 OLP的接收端 Rx 的光功率检测控制模块 30可以从合路光中检测得到参考光功率质量指示, 并 且根据预先的配置, 可以决定是否该参考光功率质量指示参与倒换条件的判 断, 并决定是否在该 OLP透传该参考光功率质量指示。 从而既可以解决多跨 段中由于没有有效的参考光再生传输方案而无法正常的进行保护的问题, 又 可以同时解决级联的误导换问题。 其中, 在不同场景下, 参考光功率质量指 示的设置可以不同, 具体分为以下场景:
场景一、 OTM到 OTM之间的单跨段光线路保护中, 参见图 la, 参考光是 否参与倒换条件的判断不用设置, 使用默认值即可, 可以将参考光功率质量 指示和主备线路的光信号都作为倒换判断条件。
场景二、 OTM到 OTM之间的多跨段光线路保护中, 参见图 lb, 由于其中 间的 OA站点的参考光需要再生, 因此, 需要将各个 OA站点参考光功率质量 指示设置为有效值, 将参考光功率质量指示和信号光都作为倒换判断条件。
场景三、 级联光线路保护, 参见图 lc, 由于中间的两个相邻的 OLP之间 的参考光功率指示会逐级下传, 导致下游的级联倒换, 因此需要将中间两个 相邻的 OLP所在站点的参考光功率质量指示设置为无效值 (即不使用或无 效) , 避免下游 OLP的级联倒换。
根据上述场景, 光功率检测控制模块可以对应包括以下单元的任意一个 或者多个:
单跨段检测控制单元, 用于将所述光线路传输保护系统的单跨段的参考 光功率质量指示设置为有效并作为默认值; 根据检测到的所述默认值, 确定 将参考光功率质量指示作为所述单跨段的下游倒换判断条件; 可以用于图 la 所示的单跨段的光线路。
多跨段检测控制单元, 用于将所述光线路传输保护系统的多跨段的参考 光功率质量指示设置为有效值; 根据检测到的所述有效值, 确定将参考光功 率质量指示作为所述多跨段的下游倒换判断条件; 可以用于图 lb所示的多跨 段的光线路, 解决多跨段参考光需要再生的问题。
级联检测控制单元, 用于将所述光线路传输保护系统的级联的光线路保 护的参考光功率质量指示设置为无效值; 根据检测到的所述无效值, 确定不 将参考光功率质量指示作为所述多跨段的下游倒换判断条件, 并且不进行下 游级联的光线路保护的倒换。 可以用于图 l c所示的级联的光线路, 解决级联 倒换的问题。
本实施例在 OLP的发送端设置光功率分配调整模块, 光功率分配调整模 块可以根据当前工作通道和非工作通道的分光比, 调整主光线路和备光线路 对应的发送端的光功率分配, 在保证业务畅通的同时, 降低了发送端的插损, 从而解决 1+1线路保护存在的 3dB插损问题; 并且, 由于发送端设置有光功率 分配调整模块, 上下游 OLP之间只需要单向通知, 根据收到调整启动命令都 可以将业务调节到最佳, 无需采用 1 : 1线路保护的复杂握手协议, 简化了握 手过程, 提高了倒换可靠性, 减少了倒换时间。 此外, 通过向下游 OLP传递 参考光功率质量指示, 可以确定是否将参考光作为倒换判断条件, 在级联系 统中, 向下游 OLP传递参考光功率质量指示,可以使下游 OLP识别本 OLP上是 否有无效值, 配合可选配置项, 防止出现误导换, 进一步提高了倒换可靠性。
实施例四
图 4为本发明实施例四提供的光线路传输保护方法的流程示意图, 如图 4 所示, 该光线路传输保护方法包括:
步骤 101、光功率分配调整模块根据当前工作通道和非工作通道光纤状态 差异设置主光线路和备光线路的分光比;
在步骤 101中,主光线路和备光线路的最小分光比可以由其自身的光纤状 态例如: 衰耗、 PMD等决定, 因此光功率分配调整模块根据当前工作通道和 非工作通道光纤状态差异设置主光线路和备光线路的分光比, 具体可以包括 以下任一情况:
情况一、 若当前工作通道为主光线路, 则将所述备光线路的分光比设置 为所述备光线路的最小分光比, 将所述主光线路的分光比设置为 " 1减去所述 备光线路的最小分光比" ; 或
情况二、 若当前工作通道为备光线路, 则将所述主光线路的分光比设置 为所述主光线路的最小分光比, 将所述备光线路的分光比设置为 " 1减去所述 主光线路的最小分光比" ; 或
情况三、 从所述主光线路的最小分光比和所述备光线路的最小分光比中 选取较大值, 将当前非工作通道的分光比设置为所述较大值, 将当前工作通 道的分光比设置为 " 1减去所述较大值" 。
步骤 102、根据所述主光线路和备光线路的分光比, 调整主光线路和备光 线路对应的发送端的光功率分配;
其中, 步骤 102具体可以包括:
若光功率分配调整模块接收所述接收端返回的调整启动命令, 则根据当 前工作通道上设置的所述主光线路和备光线路的分光比, 按照当前工作通道 和当前非工作通道的光纤状态差异, 调整所述主光线路和备光线路对应的发 送端的光功率分配的分光比。
步骤 103、所述主光线路和备光线路根据各自的光功率分配传输对应光信 号。
进一步地, 为了降低参考光检测对光线路传输保护系统的影响, 该光线 路传输保护方法还可以包括: 检测各种光线路传输保护系统的参考光功率质 量指示, 如果预先设置需要将参考光功率作为倒换判断条件, 则在检测到参 考光功率质量指示后, 将所述参考光功率质量指示作为一个倒换判断条件与 其他的倒换判断条件一起进行后续的倒换判断; 或者, 如果预先设置不将参 考光功率作为倒换判断条件, 则在检测到参考光功率质量指示后, 不将该参 考光功率质量指示作为倒换判断条件 , 根据其他的倒换判断条件进行后续的 倒换判断, 具体可以包括以下场景:
场景一、 将所述光线路传输保护系统的单跨段的参考光功率质量指示设 置为默认值; 根据检测到的所述默认值, 确定将参考光功率质量指示作为所 述单跨段的下游倒换判断条件; 可以用于图 la所示的单跨段的光线路; 或 场景二、 将所述光线路传输保护系统的多跨段的参考光功率质量指示设 置为有效值; 根据检测到的所述有效值, 确定将参考光功率质量指示作为所 述多跨段的下游倒换判断条件; 可以用于图 lb所示的多跨段的光线路, 解决 多跨段参考光需要再生的问题; 或
场景三、 将所述光线路传输保护系统的级联的光线路保护的参考光功率 质量指示设置为无效值; 根据检测到的所述无效值, 确定不将参考光功率质 量指示作为所述多跨段的下游倒换判断条件, 并且不进行下游级联的光线路 保护的倒换。 可以用于图 lc所示的级联的光线路, 解决级联倒换的问题。
本实施例在光线路保护的发送端设置光功率分配调整模块, 可以根据当 前工作通道和非工作通道的光纤状态差异例如: 衰耗、 PMD等差异, 调整主 光线路和备光线路对应的发送端的光功率分配, 在保证业务畅通的同时, 降 低了发送端的插损, 从而解决 1+1线路保护存在的 3dB插损问题; 并且, 由于 发送端设置有光功率分配调整模块,上下游光线路保护之间只需要单向通知, 无需采用 1 : 1线路保护的复杂握手协议, 简化了握手过程, 提高了倒换可靠 性, 减少了倒换时间。 此外, 通过向下游 OLP传递参考光功率质量指示, 可 以确定是否将参考光作为倒换判断条件, 在级联系统中, 向下游 OLP传递参 考光功率质量指示, 可以使下游 OLP识别本 OLP上是否有无效值, 配合可选 配置项, 防止出现误导换, 进一步提高了倒换可靠性, 有效解决了多跨保护 和保护级联应用的问题, 使得该线路保护的应用范围更广。
本发明实施例的光线路传输保护系统和方法可以应用于 WDM系统、 SDH 系统、 移动通信系统等通信领域。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 前述的 存储介质包括: ROM, RAM,磁碟或者光盘等各种可以存储程序代码的介质。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种光线路传输保护系统, 其特征在于, 包括: 至少一级光线路保护 段, 所述光线路保护段包括: 发送端和接收端, 所述发送端设置有光功率分 配调整模块, 所述接收端设置有光开关;
本端光线路保护的发送端和对端光线路保护的接收端连接形成主光线路 和备光线路;
所述光功率分配调整模块, 用于根据当前工作通道和非工作通道的光纤 状态差异设置主光线路和备光线路的分光比, 根据所述主光线路和备光线路 的分光比调整主光线路和备光线路对应的发送端的光功率分配。
2、 根据权利要求 1所述的光线路传输保护系统, 其特征在于, 所述光功 率分配调整模块包括以下单元的任意一个或者多个:
第一分光比设置单元, 用于若当前工作通道为主光线路, 则将所述备光 线路的分光比设置为所述备光线路的最小分光比, 将所述主光线路的分光比 设置为 "1减去所述备光线路的最小分光比" ;
第二分光比设置单元, 用于若当前工作通道为备光线路, 则将所述主光 线路的分光比设置为所述主光线路的最小分光比, 将所述备光线路的分光比 设置为 "1减去所述主光线路的最小分光比" ;
第三分光比设置单元, 用于从所述主光线路的最小分光比和所述备光线 路的最小分光比中选取较大值, 将当前非工作通道的分光比设置为所述较大 值, 将当前工作通道的分光比设置为 "1减去所述较大值" 。
3、 根据权利要求 1或 2所述的光线路传输保护系统, 其特征在于, 所述光 功率分配调整模块还包括:
调整单元, 用于若光功率分配调整模块接收所述接收端返回的调整启动 命令, 则根据当前工作通道上设置的所述主光线路和备光线路的分光比, 调 整所述主光线路和备光线路对应的发送端的光功率分配。
4、 根据权利要求 1所述的光线路传输保护系统, 其特征在于, 还包括: 光功率检测控制模块, 用于检测各种光线路传输保护系统的参考光功率 质量指示; 如果预先设置需要将参考光功率作为倒换判断条件, 则在检测到 参考光功率质量指示后, 将所述参考光功率质量指示作为一个倒换判断条件 与其他的倒换判断条件一起进行后续的倒换判断。
5、 根据权利要求 4所述的光线路传输保护系统, 其特征在于, 所述光功 率检测控制模块还用于: 如果预先设置不将参考光功率作为倒换判断条件, 则在检测到参考光功率质量指示后, 不将该参考光功率质量指示作为倒换判 断条件, 根据其他的倒换判断条件进行后续的倒换判断。
6、 根据权利要求 4或 5所述的光线路传输保护系统, 其特征在于, 所述光 功率检测控制模块包括以下单元的任意一个或者多个:
单跨段检测控制单元, 用于将所述光线路传输保护系统的单跨段的参考 光功率质量指示设置为有效并作为默认值; 根据检测到的所述默认值, 确定 将参考光功率质量指示作为所述单跨段的下游倒换判断条件;
多跨段检测控制单元, 用于将所述光线路传输保护系统的多跨段的参考 光功率质量指示设置为有效值; 根据检测到的所述有效值, 确定将参考光功 率质量指示作为所述多跨段的下游倒换判断条件;
级联检测控制单元, 用于将所述光线路传输保护系统的级联的光线路保 护的参考光功率质量指示设置为无效值; 根据检测到的所述无效值, 确定不 将参考光功率质量指示作为所述多跨段的下游倒换判断条件, 并且不进行下 游级联的光线路保护的倒换。
7、 一种光线路传输保护方法, 其特征在于, 包括:
光功率分配调整模块根据当前工作通道和非工作通道的光纤状态差异设 置主光线路和备光线路的分光比;
根据所述主光线路和备光线路的分光比, 调整主光线路和备光线路对应 的发送端的光功率分配;
所述主光线路和备光线路根据各自的光功率分配传输对应光信号。
8、 根据权利要求 7所述的光线路传输保护方法, 其特征在于, 所述光功 率分配调整模块根据当前工作通道和非工作通道的光纤状态差异设置主光线 路和备光线路的分光比, 包括:
若当前工作通道为主光线路, 则将所述备光线路的分光比设置为所述备 光线路的最小分光比, 将所述主光线路的分光比设置为 " 1减去所述备光线路 的最小分光比" ; 或
若当前工作通道为备光线路, 则将所述主光线路的分光比设置为所述主 光线路的最小分光比, 将所述备光线路的分光比设置为 " 1减去所述主光线路 的最小分光比" ; 或
从所述主光线路的最小分光比和所述备光线路的最小分光比中选取较大 值, 将当前非工作通道的分光比设置为所述较大值, 将当前工作通道的分光 比设置为 " 1减去所述较大值" 。
9、 根据权利要求 7或 8所述的光线路传输保护方法, 其特征在于, 所述根 据所述主光线路和备光线路的分光比, 调整主光线路和备光线路对应的发送 端的光功率分配, 包括:
若光功率分配调整模块接收所述接收端返回的调整启动命令, 则根据当 前工作通道上设置的所述主光线路和备光线路的分光比, 调整所述主光线路 和备光线路对应的发送端的光功率分配。
10、 根据权利要求 7或 8所述的光线路传输保护方法, 其特征在于, 还包 括:
检测各种光线路传输保护系统的参考光功率质量指示, 如果预先设置需 要将参考光功率作为倒换判断条件, 则在检测到参考光功率质量指示后, 将 所述参考光功率质量指示作为一个倒换判断条件与其他的倒换判断条件一起 进行后续的倒换判断; 或者, 如果预先设置不将参考光功率作为倒换判断条 件, 则在检测到参考光功率质量指示后, 不将该参考光功率质量指示作为倒 换判断条件, 根据其他的倒换判断条件进行后续的倒换判断。
11、 根据权利要求 10所述的光线路传输保护方法, 其特征在于, 所述如 果预先设置需要将参考光功率作为倒换判断条件, 则在检测到参考光功率质 量指示后, 将所述参考光功率质量指示作为一个倒换判断条件与其他的倒换 判断条件一起进行后续的倒换判断; 或者, 如果预先设置不将参考光功率作 为倒换判断条件, 则在检测到参考光功率质量指示后, 不将该参考光功率质 量指示作为倒换判断条件 , 根据其他的倒换判断条件进行后续的倒换判断 , 包括:
将所述光线路传输保护系统的单跨段的参考光功率质量指示设置为有效 并作为默认值; 根据检测到的所述默认值, 确定将参考光功率质量指示作为 所述单跨段的下游倒换判断条件; 或
将所述光线路传输保护系统的多跨段的参考光功率质量指示设置为有效 值; 根据检测到的所述有效值, 确定将参考光功率质量指示作为所述多跨段 的下游倒换判断条件; 或
将所述光线路传输保护系统的级联的光线路保护的参考光功率质量指示 设置为无效值; 根据检测到的所述无效值, 确定不将参考光功率质量指示作 为所述多跨段的下游倒换判断条件, 并且不进行下游级联的光线路保护的倒 换。
PCT/CN2011/076027 2011-06-21 2011-06-21 光线路传输保护系统和方法 WO2012103696A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2011/076027 WO2012103696A1 (zh) 2011-06-21 2011-06-21 光线路传输保护系统和方法
EP11857963.0A EP2688230B1 (en) 2011-06-21 2011-06-21 Optical line transmission protection system and method
CN201180001014.XA CN102265640B (zh) 2011-06-21 2011-06-21 光线路传输保护系统和方法
ES11857963.0T ES2584654T3 (es) 2011-06-21 2011-06-21 Sistema y método de protección de transmisión por línea óptica
US14/136,911 US9191101B2 (en) 2011-06-21 2013-12-20 Optical line transmission protection system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076027 WO2012103696A1 (zh) 2011-06-21 2011-06-21 光线路传输保护系统和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/136,911 Continuation US9191101B2 (en) 2011-06-21 2013-12-20 Optical line transmission protection system and method

Publications (1)

Publication Number Publication Date
WO2012103696A1 true WO2012103696A1 (zh) 2012-08-09

Family

ID=45010621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076027 WO2012103696A1 (zh) 2011-06-21 2011-06-21 光线路传输保护系统和方法

Country Status (5)

Country Link
US (1) US9191101B2 (zh)
EP (1) EP2688230B1 (zh)
CN (1) CN102265640B (zh)
ES (1) ES2584654T3 (zh)
WO (1) WO2012103696A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10820280B2 (en) * 2015-09-29 2020-10-27 Huawei Technologies Co., Ltd. Method for controlling transmit power of wireless communications terminal, and wireless communications terminal
CN108599843B (zh) * 2018-05-07 2021-02-12 上海市共进通信技术有限公司 Sfp ont光模块和宿主机中支持输出1pps和tod信号的功能检测控制方法
CN110995336B (zh) * 2019-11-15 2021-05-11 武汉光迅信息技术有限公司 一种olp传输链路的切换方法、装置、存储介质及olp
CN111049570A (zh) * 2019-12-20 2020-04-21 国家电网有限公司 光纤线路自动切换保护系统
CN114826388B (zh) * 2022-04-19 2022-11-29 北京中昱光通科技有限公司 一种新型零插损型olp光线路保护切换监测方法及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1731228A (zh) * 2005-06-07 2006-02-08 烽火通信科技股份有限公司 波分复用光传输系统的四纤双向光放大段线路保护装置
CN1816977A (zh) * 2003-07-25 2006-08-09 诺基亚公司 电信网络中的单光纤保护
CN101005318A (zh) * 2007-01-23 2007-07-25 中国联合通信有限公司 一种用于光网络中的启动保护倒换系统的判别方法及系统
CN101789827A (zh) * 2010-01-27 2010-07-28 山东大学 一种高精度可远控光路切换方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339344A (ja) * 2000-05-29 2001-12-07 Hitachi Ltd 光信号切替装置
US7072584B1 (en) 2002-04-22 2006-07-04 Atrica Israel Ltd. Network hub employing 1:N optical protection
CN100373825C (zh) 2002-07-26 2008-03-05 北京邮电大学 高速并行光传输系统中的线路保护倒换方法
US7389043B2 (en) * 2003-10-31 2008-06-17 Nortel Networks Limited Protection architecture for photonic switch using tunable optical filter
US7289728B2 (en) * 2004-03-11 2007-10-30 General Instrument Corporation Use of variable ratio couplers for network protection and recovery
CN101826917A (zh) 2010-04-21 2010-09-08 瑞斯康达科技发展股份有限公司 一种光纤线路保护装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816977A (zh) * 2003-07-25 2006-08-09 诺基亚公司 电信网络中的单光纤保护
CN1731228A (zh) * 2005-06-07 2006-02-08 烽火通信科技股份有限公司 波分复用光传输系统的四纤双向光放大段线路保护装置
CN101005318A (zh) * 2007-01-23 2007-07-25 中国联合通信有限公司 一种用于光网络中的启动保护倒换系统的判别方法及系统
CN101789827A (zh) * 2010-01-27 2010-07-28 山东大学 一种高精度可远控光路切换方法及系统

Also Published As

Publication number Publication date
CN102265640B (zh) 2014-04-16
EP2688230A1 (en) 2014-01-22
ES2584654T3 (es) 2016-09-28
US9191101B2 (en) 2015-11-17
EP2688230B1 (en) 2016-04-27
EP2688230A4 (en) 2014-05-07
CN102265640A (zh) 2011-11-30
US20140112654A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
US10826601B2 (en) Optical switch with path continuity monitoring for optical protection switching
EP3089382B1 (en) Optical branching unit for optical add drop multiplexing
KR100952329B1 (ko) 원격통신 네트워크들에서 단일-광섬유 보호
EP2051442B1 (en) Method, system and apparatus for protecting wavelength division multiplex transmission
EP2627039B1 (en) Method and device for switching aggregation links
US10476587B2 (en) System and method for enhancing reliability in a transport network
US20140161438A1 (en) Protection for distributed radio access networks
US10554296B2 (en) Optical network system
WO2012103696A1 (zh) 光线路传输保护系统和方法
JP4017395B2 (ja) 混合光学wdmシステムの保護
WO2012065491A1 (zh) 复杂光网络保护倒换的方法及网管系统
CN202940821U (zh) 光旁路保护设备
JP4625284B2 (ja) 光伝送装置
CN115529516A (zh) 一种远端单元保护系统
US20020168129A1 (en) System and method for bridge and roll in a photonic switch
CN101291160A (zh) 微波光纤链路备份系统及其备份方法
JP5359618B2 (ja) 光通信ネットワーク
WO2006035481A1 (ja) 光波長分岐挿入装置および障害回復方法
WO2019057628A1 (en) MODE COUPLING RECEIVER FOR QUANTUM COMMUNICATIONS AND QUANTUM COMMUNICATION SYSTEM COMPRISING SAID RECEIVER
JP2002101046A (ja) 光伝送システム
JP4944638B2 (ja) Awgシングルホップwdmネットワーク予備面構成方法およびその方法を用いたネットワークシステム
JP2002271269A (ja) 受信レベル調節機能またはプロテクション光スイッチ機能付き光伝送システム
KR20100065027A (ko) 환형 수동형 광 가입자망에서의 보호복구 절체 장치
WO2009047014A1 (en) Method and system for channel diversity and hot-stand-by protection in communication networks with distributed decision making intelligence, corresponding network and computer program product
WO2015096864A1 (en) An optical line terminal

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001014.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011857963

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE