WO2012103042A1 - Arylalkyl esters of 4-amino-6-(substituted phenyl)picolinates and 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylates and their use as herbicides - Google Patents

Arylalkyl esters of 4-amino-6-(substituted phenyl)picolinates and 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylates and their use as herbicides Download PDF

Info

Publication number
WO2012103042A1
WO2012103042A1 PCT/US2012/022286 US2012022286W WO2012103042A1 WO 2012103042 A1 WO2012103042 A1 WO 2012103042A1 US 2012022286 W US2012022286 W US 2012022286W WO 2012103042 A1 WO2012103042 A1 WO 2012103042A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
amino
chloro
mmol
compounds
Prior art date
Application number
PCT/US2012/022286
Other languages
French (fr)
Inventor
Carla N. Yerkes
Christian T. Lowe
Joseph D. Eckelbarger
Jeffrey B. Epp
Katherine A. Guenthenspberger
Thomas L. Siddall
Paul R. Schmitzer
Original Assignee
Dow Agrosciences Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2012209278A priority Critical patent/AU2012209278B2/en
Priority to CA2825878A priority patent/CA2825878C/en
Priority to KR1020137022046A priority patent/KR101542313B1/en
Priority to BR112013019007A priority patent/BR112013019007A8/en
Application filed by Dow Agrosciences Llc filed Critical Dow Agrosciences Llc
Priority to RU2013139370/04A priority patent/RU2566760C2/en
Priority to CN201280014920.8A priority patent/CN103442570B/en
Priority to MX2013008608A priority patent/MX336673B/en
Priority to JP2013551276A priority patent/JP5873880B2/en
Priority to EP12738782.7A priority patent/EP2667716A4/en
Priority to KR20157004185A priority patent/KR20150024446A/en
Priority to UAA201310364A priority patent/UA108922C2/en
Priority to NZ613477A priority patent/NZ613477B2/en
Publication of WO2012103042A1 publication Critical patent/WO2012103042A1/en
Priority to ZA2013/05581A priority patent/ZA201305581B/en
Priority to HK14100880.7A priority patent/HK1187782A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/61Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/34One oxygen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/47One nitrogen atom and one oxygen or sulfur atom, e.g. cytosine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D247/00Heterocyclic compounds containing rings having two nitrogen atoms as the only ring hetero atoms, according to more than one of groups C07D229/00 - C07D245/00
    • C07D247/02Heterocyclic compounds containing rings having two nitrogen atoms as the only ring hetero atoms, according to more than one of groups C07D229/00 - C07D245/00 having the nitrogen atoms in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/73Unsubstituted amino or imino radicals

Definitions

  • This invention relates to certain novel esters of 4-amino-6-(substituted phenyl)- picolinic acids and 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylic acids and to the use of these compounds as herbicides for control of weeds especially those species common to rice and wheat cropping systems and in pasture management programs.
  • U.S. Patent 6,784,137 B2 and U.S. Patent 7,314,849 B2 disclose a genus of 4-amino-6- arylpicolinic acids and their derivatives and their use as selective herbicides, particularly for rice and cereals such as wheat and barley.
  • Patent 7,786,044 B2 disclose certain 6-amino-2-substituted-4-pyrimidinecarboxylic acids and their derivatives and their use as herbicides. It has now been discovered that certain esters of 4- amino-6-(substituted phenyl)picolinic acids and of 6-amino-2-(substituted phenyl)-4- pyrimidinecarboxylic acids can provide superior weed control especially in rice and wheat cropping systems and in pasture management programs.
  • Certain arylalkyl esters of 4-amino-6-(substituted phenyl)picolinic acids and of 6- amino-2-(substituted phenyl)-4-pyrimidinecarboxylic acids are superior herbicides with a broad spectrum of broadleaf, grass, and sedge weed control especially in rice and wheat cropping systems and in pasture management programs.
  • the compounds further possess excellent toxicological or environmental profiles.
  • the invention includes compounds of Formula IA:
  • Z represents halogen, C1-C 3 alkoxy, or C 2 -C 4 alkenyl
  • R 1 and R 2 independently represent H, Ci-C 6 alkyl, or Ci-C 6 acyl
  • R 3 represents unsubstituted or substituted C7-C11 arylalkyl.
  • the invention also includes compounds of Formula IB:
  • R 3 represents unsubstituted or substituted C7-C11 arylalkyl.
  • Preferred compounds include those in which X represents H or F, Y represents substituted phenyl, Z represents CI, R 1 and R 2 represent H, R 3 represents unsubstituted or ortho-, meta-, or para-monosubstituted benzyl.
  • the invention includes herbicidal compositions comprising an herbicidally effective amount of a compound of Formula IA or IB in a mixture with an agriculturally acceptable adjuvant or carrier.
  • the invention also includes a method of use of the compounds and compositions of the present invention to kill or control undesirable vegetation by application of an herbicidal amount of the compound to the vegetation or to the locus of the vegetation as well as to the soil prior to emergence of the vegetation or to the irrigation or flood water, prior to, or after emergence.
  • the invention further includes a method for the selective postemergent control of undesirable vegetation in the presence of rice, wheat or forage, which comprises applying to said undesirable vegetation an herbicidally effective amount of a compound of the present invention.
  • the invention also includes a method of making the compounds of the present invention.
  • herbicidal compounds of the present invention are arylyalkyl esters of 4-amino-6-
  • IB are derived are a new class of compounds having herbicidal activity.
  • a number of picolinic acid compounds are described in U.S. Patent 6,784,137 B2 and U.S. Patent
  • 7,314,849 B2 including inter alia, 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxy- phenyl)picolinic acid, 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3- methoxyphenyl)picolinic acid and 4-amino-3-chloro-6-(2,4-dichloro-3- methoxyphenyl)picolinic acid.
  • Formula IA are derived are also a new class of compounds having herbicidal activity.
  • a number of pyrimidinecarboxylic acid compounds are described in WO 2005/063721 Al, WO
  • Preferred ester groups are those which produce greater levels of weed control than an acid equivalent rate of the methyl esters.
  • Preferred ester groups include the unsubstituted benzyl ester and ortho-, meta-, and para-monosubstituted benzyl esters.
  • arylalkyl esters of the 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylic acids can be prepared by reacting the pyrimidinecarboxylic acid with an arylalkyl halide in the presence of a base.
  • the arylalkyl esters of the picolinic acids can be prepared by coupling of picolinic acid with an alcohol using any number of suitable activating agents such as those used for peptide couplings such as dicyclohexylcarbodiimide (DCC) or carbonyl diimidazole (CDI) or by reacting the corresponding acid with an appropriate arylalkyl alcohol in the presence of an acid catalyst.
  • suitable activating agents such as those used for peptide couplings such as dicyclohexylcarbodiimide (DCC) or carbonyl diimidazole (CDI)
  • DCC dicyclohexylcarbodiimide
  • CDI carbonyl diimidazole
  • the arylalkyl esters can be prepared by reacting the picolinic acid with an arylalkyl halide in the presence of a base.
  • alkoxy “acyl” and “alkylthio,” as used herein, include within their scope straight chain and branched chain moieties. Unless specifically stated otherwise, each may be unsubstituted or substituted with one or more substituents selected from but not limited to halogen, alkoxy, alkylthio, or aminoalkyl, provided that the substituents are sterically compatible and the rules of chemical bonding and strain energy are satisfied.
  • alkenyl and alkynyl are intended to include one or more unsaturated bonds.
  • arylalkyl refers to a phenyl substituted alkyl group having a total of 7 to 11 carbon atoms, such as benzyl (-CH2C6H5), 2-methylnaphthyl (-CH2C1 0 H7) and 1- or 2-phenethyl (-CH 2 CH 2 C6H 5 or -CH(CH 3 )C 6 H 5 ).
  • the term halogen includes fluorine, chlorine, bromine, and iodine.
  • the compounds of Formula IA or IB have been found to be useful as pre-emergence and post-emergence herbicides for rice and cereals cropping systems and for pasture management programs.
  • herbicide is used herein to mean an active ingredient that kills, controls or otherwise adversely modifies the growth of plants.
  • An herbicidally effective or vegetation controlling amount is an amount of active ingredient which causes an adversely modifying effect and includes deviations from natural development, killing, regulation, desiccation, retardation, and the like.
  • plants and vegetation include germinating seeds, emerging seedlings, above and below ground plant parts such as shoots, roots, tubers, rhizomes and the like, and established vegetation.
  • Herbicidal activity is exhibited by the compounds of the present invention when they are applied directly to the plant or to the locus of the plant at any stage of growth or before planting or emergence. The effect observed depends upon the plant species to be controlled, the stage of growth of the plant, the application parameters of dilution and spray drop size, the particle size of solid components, the environmental conditions at the time of use, the specific compound employed, the specific adjuvants and carriers employed, the soil type, water quality, and the like, as well as the amount of chemical applied. These and other factors can be adjusted as is known in the art to promote selective herbicidal action.
  • Application rates of 1 to 500 grams per hectare (g/ha) are generally employed in foliar-applied and water-applied postemergence operations. Preferred application rates are 10 to 300 g/ha. For preemergence applications, rates of 5 to 500 g/ha are generally employed. Preferred application rates are 30 to 300 g/ha. The higher rates designated generally give non-selective control of a broad variety of undesirable vegetation. The lower rates typically give selective control and can be employed in the locus of crops.
  • the herbicidal compounds of the present invention are often applied in conjunction with one or more other herbicides to control a wider variety of undesirable vegetation.
  • the presently claimed compounds can be formulated with the other herbicide or herbicides, tank mixed with the other herbicide or herbicides or applied sequentially with the other herbicide or herbicides.
  • the compounds of the present invention can additionally be employed to control undesirable vegetation in many crops that have been made tolerant to or resistant to them or to other herbicides by genetic manipulation or by mutation and selection.
  • the herbicidal compounds of the present invention can, further, be used in conjunction with glyphosate, glufosinate, dicamba, imidazolinones, aryloxyphenoxypropionates or 2,4-D on glyphosate - tolerant, glufosinate-tolerant, dicamba-tolerant, imidazolinone-tolerant, aryloxyphenoxy- propionate tolerant or 2,4-D-tolerant crops.
  • the compounds of the invention can be used in conjunction with herbicides that are selective for the crop being treated and which complement the spectrum of weeds controlled by these compounds at the application rate employed. It is further generally preferred to apply the compounds of the invention and other complementary herbicides at the same time, either as a combination formulation or as a tank mix.
  • the herbicidal compounds of the present invention can be used in conjunction with acetolactate synthase (ALS) inhibitors on acetolactate synthase inhibitor tolerant crops or with 4-hydroxyphenyl pyruvate dioxygenase (HPPD) inhibitors on 4- hydroxyphenyl pyruvate dioxygenase inhibitor tolerant crops.
  • ALS acetolactate synthase
  • HPPD 4-hydroxyphenyl pyruvate dioxygenase
  • the compounds of the present invention can generally be employed in combination with known herbicide safeners, such as benoxacor, benthiocarb, brassinolide, cloquintocet (mexyl), cyometrinil, cyprosulfamide, daimuron, dichlormid, dicyclonon, dietholate, dimepiperate, disulfoton, fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, harpin proteins, isoxadifen-ethyl, mefenpyr-diethyl, mephenate, MG 191, MON 4660, naphthalic anhydride (NA), oxabetrinil, R29148 and N-phenyl-sulfonylbenzoic acid amides, to enhance their selectivity.
  • known herbicide safeners such as benoxacor, benthiocarb, brassinolide, cloquintocet
  • plants can additionally be employed to control undesirable vegetation in many crops that have been made tolerant to or resistant to them or to other herbicides by genetic manipulation or by mutation and selection.
  • corn, wheat, rice, soybean, sugar beet, cotton, canola, and other crops that have been made tolerant or resistant to compounds that are acetolactate synthase inhibitors in sensitive plants can be treated.
  • Many glyphosate- and glufosinate-tolerant crops can be treated as well, alone or in combination with these herbicides.
  • Some crops have been made tolerant to auxinic herbicides and ACCase herbicides such as 2,4-(dichlorophenoxy)acetic acid (2,4-D) and dicamba and aryloxyphenoxypropionates.
  • herbicides may be used to treat such resistant crops or other auxin tolerant crops.
  • Some crops have been made tolerant to 4- hydroxyphenyl pyruvate dioxygenase inhibiting herbicides, and these herbicides may be used to treat such resistant crops.
  • Suitable adjuvants or carriers should not be phytotoxic to valuable crops, particularly at the concentrations employed in applying the compositions for selective weed control in the presence of crops, and should not react chemically with the compounds of Formula IA or IB or other composition ingredients.
  • Such mixtures can be designed for application directly to weeds or their locus or can be concentrates or formulations that are normally diluted with additional carriers and adjuvants before application.
  • They can be solids, such as, for example, dusts, granules, water dispersible granules, or wettable powders, or liquids, such as, for example, emulsifiable concentrates, solutions, emulsions or suspensions. They can also be provided as a pre-mix or tank mixed.
  • Suitable agricultural adjuvants and carriers that are useful in preparing the herbicidal mixtures of the invention are well known to those skilled in the art.
  • Some of these adjuvants include, but are not limited to, crop oil concentrate (mineral oil (85%) + emulsifiers (15%)); nonylphenol ethoxylate; benzylcocoalkyldimethyl quaternary ammonium salt; blend of petroleum hydrocarbon, alkyl esters, organic acid, and anionic surfactant; C9-C11
  • alky lpoly glycoside phosphated alcohol ethoxylate; natural primary alcohol (C 12 -C 16 ) ethoxylate; di-seobutylphenol EO-PO block copolymer; polysiloxane-methyl cap;
  • Liquid carriers that can be employed include water and organic solvents.
  • the organic solvents typically used include, but are not limited to, petroleum fractions or hydrocarbons such as mineral oil, aromatic solvents, paraffinic oils, and the like; vegetable oils such as soybean oil, rapeseed oil, olive oil, castor oil, sunflower seed oil, coconut oil, corn oil, cottonseed oil, linseed oil, palm oil, peanut oil, safflower oil, sesame oil, tung oil and the like; esters of the above vegetable oils; esters of monoalcohols or dihydric, trihydric, or other lower polyalcohols (4-6 hydroxy containing), such as 2-ethyl hexyl stearate, n-butyl oleate, isopropyl myristate, propylene glycol dioleate, di-octyl succinate, di-butyl adipate, di-octyl phthalate and the like; esters of mono, di and poly
  • organic solvents include toluene, xylene, petroleum naphtha, crop oil, acetone, methyl ethyl ketone, cyclohexanone, trichloroethylene, perchloroethylene, ethyl acetate, amyl acetate, butyl acetate, propylene glycol monomethyl ether and diethylene glycol monomethyl ether, methyl alcohol, ethyl alcohol, isopropyl alcohol, amyl alcohol, ethylene glycol, propylene glycol, glycerine, N-methyl-2-pyrrolidinone, N,N-dimethyl alkylamides, dimethyl sulfoxide, liquid fertilizers and the like.
  • Water is generally the carrier of choice for the dilution of concentrates.
  • suitable solid carriers include talc, pyrophyllite clay, silica, attapulgus clay, kaolin clay, kieselguhr, chalk, diatomaceous earth, lime, calcium carbonate, bentonite clay, Fuller's earth, cottonseed hulls, wheat flour, soybean flour, pumice, wood flour, walnut shell flour, lignin, and the like.
  • compositions of the present invention are advantageously employed in both solid and liquid compositions, especially those designed to be diluted with carrier before application.
  • the surface- active agents can be anionic, cationic or nonionic in character and can be employed as emulsifying agents, wetting agents, suspending agents, or for other purposes.
  • Surfactants conventionally used in the art of formulation and which may also be used in the present formulations are described, inter alia, in "McCutcheon's
  • Typical surface-active agents include salts of alkyl sulfates, such as diethanolammonium lauryl sulfate; alkylarylsulfonate salts, such as calcium dodecylbenzenesulfonate;
  • alky lphenol- alky lene oxide addition products such as nonylphenol-Cis ethoxylate
  • alcohol-alkylene oxide addition products such as tridecyl alcohol-Ci6 ethoxylate
  • soaps such as sodium stearate
  • alkylnaphthalene-sulfonate salts such as sodium dibutyl- naphthalenesulfonate
  • dialkyl esters of sulfosuccinate salts such as sodium di(2-ethylhexyl) sulfosuccinate
  • sorbitol esters such as sorbitol oleate
  • quaternary amines such as lauryl trimethylammonium chloride
  • polyethylene glycol esters of fatty acids such as polyethylene glycol stearate
  • salts of mono and dialkyl phosphate esters such as soybean oil, rapeseed/canola oil, olive oil, castor oil, sunflower seed oil, coconut oil, corn oil, cottonseed oil, linseed
  • compositions may also contain other compatible components, for example, other herbicides, plant growth regulants, fungicides, insecticides, and the like and can be formulated with liquid fertilizers or solid, particulate fertilizer carriers such as ammonium nitrate, urea and the like.
  • concentration of the active ingredients in the herbicidal compositions of this invention is generally from 0.001 to 98 percent by weight.
  • compositions designed to be employed as concentrates the active ingredient is generally present in a concentration from 5 to 98 weight percent, preferably 10 to 90 weight percent.
  • Such compositions are typically diluted with an inert carrier, such as water, before application.
  • the diluted compositions usually applied to weeds or the locus of weeds generally contain 0.0001 to 1 weight percent active ingredient and preferably contain 0.001 to 0.05 weight percent.
  • compositions can be applied to weeds or their locus by the use of conventional ground or aerial dusters, sprayers, and granule applicators, by addition to irrigation water or paddy flood water, and by other conventional means known to those skilled in the art.
  • Microwave heating was carried out using a Biotage InitiatorTM microwave reactor.
  • the microwave reactions were conducted in closed reaction vessels with magnetic stirring and with the temperature controlled via infrared (IR) detection.
  • IR infrared
  • Methyl 4-amino-3-chloro-6-(2,4-dichloro-3-methoxyphenyl)picolinate (Compound C, prepared by the methods described in U. S. Patent 7,314849 B2; 500 mg, 1.4 mmol) was dissolved in benzyl alcohol (10 mL), treated with titanium(IV) isopropoxide (ca 100 ⁇ ) and heated at 85-90 °C. After 2 h, another portion of titanium(IV) isopropoxide (100 ⁇ ) was added and heating was continued for another 18 h.
  • Step A Methyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-(l-fluoroethyl)phenyl)-5- fluoropicolinate (Compound H). 2-(4-Chloro-2-fluoro-3-(l-fluoroethyl)phenyl)-4,4,5,5- tetramethyl-l,3,2-dioxaborolane (510 mg, 1.7 mmol, 1.0 equivalent (equiv)) and methyl 4- amino-3,6-dichloro-5-fluoropicolinate (prepared by the methods described in U.S.
  • Patent 6,784,137 B2 400 mg, 1.7 mmol, 1.0 equiv) were sequentially added to a 5 niL Biotage microwave vessel, followed by cesium fluoride (CsF; 510 mg, 3.3 mmol, 2.0 equiv), palladium(II) acetate (19 mg, 0.084 mmol, 0.05 equiv), and sodium 3, 3', 3"- phosphinetriyltribenzenesulfonate (95 mg, 0.17 mmol, 0.10 equiv).
  • CsF cesium fluoride
  • palladium(II) acetate (19 mg, 0.084 mmol, 0.05 equiv)
  • sodium 3, 3', 3"- phosphinetriyltribenzenesulfonate 95 mg, 0.17 mmol, 0.10 equiv.
  • a 3 1 mixture of water- acetonitrile (3.2 mL) was added and the resulting brown mixture was heated in a
  • the cooled reaction mixture was diluted with water (150 mL) and extracted with CH 2 CI 2 (4 x 50 mL). The combined organic extracts were dried with magnesium sulfate (MgS0 4 ), gravity filtered, and concentrated by rotary evaporation.
  • MgS0 4 magnesium sulfate
  • Step B 4-Amino-3-chloro-6-(4-chloro-2-fluoro-3-(l-fluoroetliyl)plienyl)-5- fluoropicolinic acid.
  • a 2 molar (M) solution of aqueous sodium hydroxide (NaOH; 580 ⁇ , 1.2 mmol, 4.0 equiv) was added to a stirred suspension of methyl 4-amino-3-chloro-6-(4- chloro-2-fluoro-3-(l-fluoroethyl)phenyl)-5-fluoropicolinate (110 mg, 0.29 mmol, 1.0 equiv) in methyl alcohol (1.9 mL) at 23 °C.
  • Step C Benzyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-(l-fluoroethyl)phenyl)-5- fluoropicolinate.
  • Triethylamine 190 xL, 1.4 mmol, 2.0 equiv
  • benzyl bromide 120 xL, 1.0 mmol, 1.5 equiv
  • 4-amino-3-chloro-6-(4- chloro-2-fluoro-3-(l-fluoroethyl)phenyl)-5-fluoropicolinic acid (0.25 g, 0.69 mmol, 1.0 equiv) in THF (3.4 mL) at 23 °C.
  • the resulting cloudy pale yellow solution was stirred at 23 °C for 18 h.
  • the reaction mixture was diluted with water (150 mL) and extracted with CH 2 CI 2 (3 x 70 mL).
  • the combined organic layers were dried (MgS0 4 ), gravity filtered, and concentrated by rotary evaporation.
  • Step A Methyl 4-amino-3-chloro-6-(4-chloro-3-ethoxy-2-fluorophenyl)-5- fluoropicolinate (Compound A).
  • 2-(4-Chloro-3-ethoxy-2-fluorophenyl)-4,4,5,5-tetramethyl- 1,3,2-dioxaborolane (500 mg, 1.7 mmol, 1.0 equiv) and methyl 4-amino-3,6-dichloro-5- fluoropicolinate (400 mg, 1.7 mmol, 1.0 equiv) were sequentially added to a 5 mL Biotage microwave vessel, followed by CsF (510 mg, 3.3 mmol, 2.0 equiv), palladium(II) acetate (19 mg, 0.084 mmol, 0.05 equiv), and sodium 3,3',3"-phosphinetriyltribenzene-sulfonate (95 mg, 0.17 mmol, 0.10 equi
  • Step B 4-Amino-3-chloro-6-(4-chloro-3-ethoxy-2-fluorophenyl)-5-fluoropicolinic acid.
  • a 2 M solution of aqueous NaOH (900 ⁇ L ⁇ , 1.8 mmol, 4.0 equiv) was added to a stirred suspension of methyl 4-amino-3-chloro-6-(4-chloro-3-ethoxy-2-fluorophenyl)-5- fluoropicolinate (170 mg, 0.45 mmol, 1.0 equiv) in methyl alcohol (3.0 mL) at 23 °C.
  • the resulting heterogeneous white mixture was stirred at 23 °C for 4 h.
  • Step C Benzyl 4-amino-3-chloro-6-(4-chloro-3-ethoxy-2-fluorophenyl)-5- fluoropicolinate.
  • Triethylamine (290 ⁇ L ⁇ , 2.1 mmol, 2.0 equiv) and benzyl bromide (190 ⁇ L ⁇ , 1.6 mmol, 1.5 equiv) were sequentially added to a stirred solution of 4-amino-3-chloro-6-(4- chloro-3-ethoxy-2-fluorophenyl)-5-fluoropicolinic acid (0.38 g, 1.1 mmol, 1.0 equiv) in THF (7.0 mL) at 23 °C.
  • the resulting cloudy brown solution was stirred at 23 °C for 18 h.
  • the reaction mixture was diluted with water (150 mL) and extracted with CH2CI2 (3 x 70 mL).
  • the combined organic extracts were dried (MgS0 4 ), gravity filtered, and concentrated by rotary evaporation.
  • Step A Ethyl 4-amino-3-chloro-6-(4-cyclopropylphenyl)-5-fluoropicolinate.
  • 4- Cyclopropylphenylboronic acid 250 mg, 1.5 mmol, 1.2 equiv
  • methyl 4-amino-3,6- dichloro-5-fluoropicolinate 300 mg, 1.3 mmol, 1.0 equiv
  • CsF 380 mg, 2.5 mmol, 2.0 equiv
  • palladium(II) acetate 14 mg, 0.063 mmol, 0.05 equiv
  • sodium 3,3',3"-phosphinetriyl- tribenzenesulfonate 71 mg, 0.13 mmol, 0.10 equiv.
  • Step B 4-Amino-3-chloro-6-(4-cyclopropylphenyl)-5-fluoropicolinic acid.
  • a 2 M solution of aqueous NaOH (600 ⁇ L ⁇ , 1.2 mmol, 2.0 equiv) was added to a stirred suspension of methyl 4-amino-3-chloro-6-(4-cyclopropylphenyl)-5-fluoropicolinate (190 mg, 0.59 mmol, 1.0 equiv) in methyl alcohol (3.0 mL) at 23 °C.
  • the resulting heterogeneous white mixture was stirred at 23 °C for 3 h.
  • Step C Benzyl 4-amino-3-chloro-6-(4-cyclopropylphenyl)-5-fluoropicolinate.
  • Triethylamine (220 ⁇ L ⁇ , 1.6 mmol, 2.0 equiv) and benzyl bromide (140 ⁇ L ⁇ , 1.2 mmol, 1.5 equiv) were sequentially added to a stirred solution of 4-amino-3-chloro-6-(4-chloro-3- ethoxy-2-fluorophenyl)-5-fluoropicolinic acid (0.24 g, 0.78 mmol, 1.0 equiv) in THF (5.2 mL) at 23 °C.
  • the resulting cloudy pale yellow solution was stirred at 23 °C for 72 h.
  • the reaction mixture was diluted with water (150 mL) and extracted with CH2CI2 (3 x 70 mL).
  • Step A A mixture of methyl 4,5,6-trichloropicolinate (prepared by the methods described in U. S. Patent 6,784,137 B2; 25 g, 0.10 moles (mol)) and benzyl alcohol (100 g, 0.2 mol) in a 250 mL three-neck round bottom flask was heated under nitrogen at 100 °C. Titanium isopropoxide (0.6 g, 0.02 mol) was added. After 4 h at 100 °C, the nearly colorless solution was cooled and transferred to a 250 mL round bottom single neck flask.
  • Step B A 250 mL three-neck flask equipped with a reflux condenser and nitrogen (N 2 ) inlet was charged with benzyl 4,5,6-trichloropicolinate (17.77 g, 56.10 mmol), 2-(4- chloro-2-fluoro-3-methoxyphenyl)-l,3,2-dioxaborinane (19.20 g, 79.0 mmol) and CsF (17.04 g, 112.0 mmol). Acetonitrile (100 mL) and water (30 mL) were added. The reaction mixture was evacuated/backfilled with N 2 (5x).
  • Step C A 250 mL three-neck flask was equipped with a distillation head, a N 2 inlet, a mechanical stirrer and a thermocouple. The flask was charged with CsF (21.07 g, 139.0 mmol). Anhydrous DMSO (100 mL) was added, and the suspension was
  • the reaction mixture was poured into ice-water (400 g) and was extracted with EtOAc (3 x 200 mL). The combined organic extracts were washed with saturated (satd) NaHC0 3 solution, water (5 x 100 mL) and brine. The extracts were dried (MgS0 4 ) and concentrated under reduced pressure to give a tan solid (12.97 g).
  • Step D Benzyl 4,5-difluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl)picolinate (4.99 g, 12.2 mmol) was slurried in DMSO (100 mL). Ammonia was bubbled through the solution for 30 min. After stirring overnight, the reaction mixture was poured into ice-water (500 mL). The product was extracted into EtOAc (3 x 150 mL).
  • Step E N-Bromosuccinimide (NBS; 580 mg, 3.3 mmol, 1.1 equiv) was added to a stirred suspension of benzyl 4-amino-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoro- picolinate (1.2 g, 3.0 mmol, 1.0 equiv) in 1,2-dichloroethane (15 mL) at 23 °C. The resulting bright yellow mixture was stirred at 23 °C for 72 h.
  • Step A Tributyltin hydride (2.0 mL, 7.3 mmol, 1.0 equiv) and ethynyltrimethylsilane (2.1 mL, 15 mmol, 2.0 equiv) were combined, 2,2'-azobis(2-methylpropionitrile) (AIBN; 60 mg, 0.36 mmol, 0.05 equiv) was added, and the resulting colorless neat solution was heated to 80 °C. Upon heating, an exothermed to -110 °C was observed. The reaction mixture was cooled back to 80 °C and stirred for 20 h.
  • AIBN 2,2'-azobis(2-methylpropionitrile)
  • Step B (E)-Trimethyl(2-(tributylstannyl)vinyl)silane (1.1 g, 2.7 mmol, 1.1 equiv) was added to a stirred mixture of benzyl 4-amino-3-bromo-6-(4-chloro-2-fluoro-3- methoxyphenyl)-5-fluoropicolinate (Compound 43; 1.2 g, 2.5 mmol, 1.0 equiv) and tetrakis(triphenylphosphine)palladium(0) (290 mg, 0.25 mmol, 0.10 equiv) in DMF (8.3 mL) at 23 °C.
  • reaction mixture was heated to 90 °C, resulting in a homogeneous dark yellow solution, and the reaction mixture was stirred for 20 h.
  • the cooled reaction mixture was diluted with water (400 mL) and extracted with Et 2 0 (4 x 100 mL).
  • the organic layer was dried (MgS0 4 ), gravity filtered, and concentrated by rotary evaporation.
  • N-Chlorosuccinimide (NCS; 190 mg, 1.4 mmol, 2.0 equiv) was added to a stirred solution of (£)-benzyl 4-amino-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoro-3-(2- (trimethylsilyl)vinyl)picolinate (350 mg, 0.70 mmol, 1.0 equiv) in DMF (7.0 mL) at 23 °C. The homogeneous pale green solution was heated to 50 °C and stirred for 24 h. The cooled reaction mixture was diluted with water (400 mL) and extracted with Et 2 0 (4 x 100 mL).
  • Seeds or nutlets of the desired test plant species were planted in Sun Gro Metro-Mix® 360 planting mixture, which typically has a pH of 6.0 to 6.8 and an organic matter content of 30 percent, in plastic pots with a surface area of 84.6 square centimeters (cm 2 ).
  • a fungicide treatment and/or other chemical or physical treatment was applied.
  • the plants were grown for 7-31 days (d) in a greenhouse with an approximate 15 hour (h) photoperiod which was maintained at 23-29 °C during the day and 22-28 °C during the night.
  • Nutrients and water were added on a regular basis and supplemental lighting was provided with overhead metal halide 1000-Watt lamps as necessary. The plants were employed for testing when they reached the first or second true leaf stage.
  • Treatments consisted of esters of compounds 33 and 39 and F and G.
  • Compound F is methyl 6-amino-2-(4-chloro-2-fluoro-3-methoxyphenyl)-5-methoxypyrimidine-4- carboxylate; and compound G is methyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3- methoxyphenyl)picolinate.
  • a weighed amount, determined by the highest rate to be tested, of each test compound was placed in a 25 mL glass vial and was dissolved in 4 mL of a 97:3 v/v (volume/volume) mixture of acetone and dimethyl sulfoxide (DMSO) to obtain concentrated stock solutions.
  • DMSO dimethyl sulfoxide
  • test compound did not dissolve readily, the mixture was warmed and/or sonicated.
  • the concentrated stock solutions obtained were diluted with 20 mL of an aqueous mixture containing acetone, water, isopropyl alcohol, DMSO, Atplus 41 IF crop oil concentrate, and Triton® X-155 surfactant in a 48.5:39:10: 1.5: 1.0:0.02 v/v ratio to obtain spray solutions containing the highest application rates.
  • Additional application rates were obtained by serial dilution of 12 mL of the high rate solution into a solution containing 2 mL of a 97:3 v/v (volume/volume) mixture of acetone and DMSO and 10 mL of an aqueous mixture containing acetone, water, isopropyl alcohol, DMSO, Atplus 41 IF crop oil concentrate, and Triton X-155 surfactant in a 48.5:39:10:1.5:1.0:0.02 v/v ratio to obtain 1/2X, 1/4X, 1/8X and 1/16X rates of the high rate.
  • Compound requirements are based upon a 12 mL application volume at a rate of 187 liters per hectare (L/ha).
  • Formulated compounds were applied to the plant material with an overhead Mandel track sprayer equipped with 8002E nozzles calibrated to deliver 187 L/ha over an application area of 0.503 square meters (m 2 ) at a spray height of 18 inches (43 cm) above the average plant canopy height. Control plants were sprayed in the same manner with the solvent blank.
  • the treated plants and control plants were placed in a greenhouse as described above and watered by sub-irrigation to prevent wash-off of the test compounds. After 14 d, the condition of the test plants as compared with that of the untreated plants was determined visually and scored on a scale of 0 to 100 percent where 0 corresponds to no injury and 100 corresponds to complete kill.
  • IPOHE Ipomoea hederacea (Morningglory, ivyleaf)
  • ORYSA Oryza sativa (Rice)
  • STEME Stellaria media (Chickweed, common)
  • TRZAS Triticum aestivum (Wheat, spring)
  • VIOTR Viola tricolor (Pansy, wild)
  • g ai/ha grams active ingredient per hectare
  • planting mixture which typically has a pH of 6.0 to 6.8 and an organic matter content of 30 percent, in plastic pots with a surface area of 84.6 cm 2 .
  • the plants were grown for 7-36 d in a greenhouse with an
  • Treatments consisted of esters of compounds 33, 34, 39, 40 and 42 and B, F, G and H.
  • Compound B is methyl 4-amino-3-chloro-6-(4-cyclopropylphenyl)-5-fluoropicolinate
  • compound F is methyl 6-amino-2-(4-chloro-2-fluoro-3-methoxyphenyl)-5- methoxypyrimidine-4-carboxylate
  • compound G is methyl 4-amino-3-chloro-6-(4-chloro-2- fluoro-3-methoxyphenyl)picolinate
  • compound H is methyl 4-amino-3-chloro-6-(4- chloro-2-fluoro-3-(l-fluoroethyl)phenyl)-5-fluoropicolinate.
  • a weighed amount, determined by the highest rate to be tested, of each test compound was placed in a 25 mL glass vial and was dissolved in 8 mL of a 97:3 v/v mixture of acetone and DMSO to obtain concentrated stock solutions. If the test compound did not dissolve readily, the mixture was warmed and/or sonicated. The concentrated stock solutions obtained were diluted with 16 mL of an aqueous mixture containing acetone, water, isopropyl alcohol, DMSO, Agri-dex crop oil
  • Triton X-77 surfactant in a 64.7:26.0:6.7:2.0:0.7:0.01 v/v ratio to obtain spray solutions containing the highest application rates. Additional application rates were obtained by serial dilution of 12 mL of the high rate solution into a solution containing 4 mL of a 97:3 v/v mixture of acetone and DMSO and 8 mL of an aqueous mixture containing acetone, water, isopropyl alcohol, DMSO, Agri-dex crop oil concentrate, and Triton ® X-77 surfactant in a 48.5:39.0:10.0:1.5:1.0:0.02 v/v ratio to obtain 1/2X, 1/4X, 1/8X and 1/16X rates of the high rate.
  • Table 8 Activity of Herbicidal Compounds in Wheat Cropping Systems (8.75 g ae/ha and 21
  • Table 10 Activity of Herbicidal Compounds in Wheat Cropping Systems (17.5 g ae/ha and
  • KCHSC Kochia scoparia (Kochia)
  • MATCH Matricaria chamomilla (Mayweed, wild)
  • PESGL Pennisetum glaucum (Foxtail, yellow)
  • POLCO Polygonum convolvulus (Buckwheat, wild)
  • SASKR Salsola kali (Thistle, Russian)
  • SETVI Setaria viridis (Foxtail, green)
  • SINAR Brassica sinapis (Mustard, wild)
  • VERPE Veronica persica (Speedwell, birdseye)
  • Seeds of the desired test plant species were planted in Sun Gro Metro-Mix® 360 planting mixture, which typically has a pH of 6.0 to 6.8 and an organic matter content of 30 percent, in plastic pots with a surface area of 139.7 cm 2 .
  • a fungicide treatment and/or other chemical or physical treatment was applied.
  • the plants were grown with an approximate 14 h photoperiod which was maintained at 24 °C during the day and 21 °C during the night.
  • Nutrients and water were added on a regular basis and supplemental lighting was provided with overhead metal halide 1000- Watt lamps as necessary. The plants were employed for testing when they reached the four or six true leaf stage, depending on species.
  • Treatments consisted of esters of compounds 39 and G.
  • Compound G is methyl 4- amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)picolinate.
  • a weighed amount, determined by the highest rate to be tested, of each test compound was placed in a 25 mL glass vial and was dissolved in 8 mL of a 97:3 v/v mixture of acetone and DMSO to obtain concentrated stock solutions. If the test compound did not dissolve readily, the mixture was warmed and/or sonicated.
  • the concentrated stock solutions obtained were diluted with 16 mL of an aqueous mixture containing acetone, water, isopropyl alcohol, DMSO, Agri-dex
  • Triton X-77 surfactant in a 64.7:26.0:6.7:2.0:0.7:0.01 v/v ratio to obtain spray solutions containing the highest application rates. Additional application rates were obtained by serial dilution of 12 mL of the high rate solution into a solution containing 4 mL of a 97:3 v/v mixture of acetone and DMSO and 8 mL of an aqueous mixture containing acetone, water, isopropyl alcohol, DMSO, Agri-dex crop oil concentrate, and Triton ® X-77 surfactant in a 48.5:39.0:10.0:1.5:1.0:0.02 v/v ratio to obtain 1/2X, 1/4X, 1/8X and 1/16X rates of the high rate.
  • Compound requirements are based upon a 12 mL application volume at a rate of 187 L/ha.
  • Formulated compounds were applied to the plant material with an overhead Mandel track sprayer equipped with 8002E nozzles calibrated to deliver 187 L/ha over an application area of 0.503 m 2 at a spray height of 18 inches (43 cm) above average plant canopy height. Control plants were sprayed in the same manner with the blank.
  • the treated plants and control plants were placed in a greenhouse as described above and watered by sub-irrigation to prevent wash-off of the test compounds. After 35 d, the condition of the test plants as compared with that of the untreated plants was determined visually and scored on a scale of 0 to 100 percent where 0 corresponds to no injury and 100 corresponds to complete kill.
  • Table 11 Activity of Herbicidal Compounds in Pasture Cropping Systems at various rates
  • Seeds or nutlets of the desired test plant species were planted in a soil matrix prepared by mixing a loam soil (43 percent silt, 19 percent clay, and 38 percent sand, with a pH of 8.1 and an organic matter content of 1.5 percent) and river sand in an 80 to 20 ratio.
  • the soil matrix was contained in plastic pots with a surface area of 139.7 cm 2 .
  • a fungicide treatment and/or other chemical or physical treatment was applied.
  • the plants were grown for 10-17 d in a greenhouse with an approximate 14-h photoperiod which was maintained at 29 °C during the day and 26 °C during the night. Nutrients and water were added on a regular basis and supplemental lighting was provided with overhead metal halide 1000- Watt lamps as necessary. The plants were employed for testing when they reached the second or third true leaf stage.
  • Treatments consisted of esters of compounds 1-4, 6-8, 10, 11, 13-16, 20-31, 35, 38, 41 and 42 and A-E.
  • Compound A is methyl 4-amino-3-chloro-6-(4-chloro-3-ethoxy-2- fluorophenyl)-5-fluoropicolinate;
  • compound B is methyl 4-amino-3-chloro-6-(4- cyclopropylphenyl)-5-fluoropicolinate;
  • compound C is methyl 4-amino-3-chloro-6-(2,4- dichloro-3-methoxyphenyl)picolinate;
  • compound D is methyl 6-amino-2-(4-chloro-2-fluoro- 3-methoxyphenyl)-5-vinylpyrimidine-4-carboxylate; and
  • compound E is methyl 4-amino-3- chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoropicolinate.
  • Spray solutions were applied to the plant material with an overhead Mandel track sprayer equipped with 8002E nozzles calibrated to deliver 187 L/ha over an application area of 0.503 square meters (m 2 ) at a spray height of 18 inches (43 cm) above average plant canopy height. Control plants were sprayed in the same manner with the solvent blank.
  • the treated plants and control plants were placed in a greenhouse as described above and watered by sub-irrigation to prevent wash-off of the test compounds. After 3 weeks, the condition of the test plants, compared with that of the untreated plants, was determined visually and scored on a scale of 0 to 100 percent where 0 corresponds to no injury and 100 corresponds to complete kill.
  • GR5 0 and GRso values are defined as growth reduction factors that correspond to the effective dose of herbicide required to kill or control 50 percent or 80 percent, respectively, of a target plant.
  • Table 13 Activity of Herbicidal Compounds in Rice Cropping Systems (17.5 g ae/ha and 21 DAA;
  • Table 14 Activity of Herbicidal Compounds in Rice Cropping Systems (8.75 g ae/ha and 21 DAA;
  • AESSE Aeschynomene sensitive SW./L. (sensitive jointvetch)
  • BRAPP Brachiaria platyphylla (GRISEB.) NASH (broadleaf signalgrass)
  • CYPDI Cyperus difformis L. (small-flower flatsedge)
  • CYPES Cyperus esculentus L. (yellow nutsedge)
  • CYPIR Cyperus iria L. (rice flatsedge)
  • ECHCG Echinochloa crus-galli (L.) P.BEAUV. (barnyardgrass)
  • ECHCO Echinochloa colonum (L.) LINK (junglerice)
  • POLPY Polygonum pensylvanicum L. (Pennsylvania smartweed)
  • SCPJU Scirpus juncoides ROXB. (Japanese bulrush)
  • GR5 0 concentration of compound needed to reduce the growth of a plant by 50% relative to untreated plant
  • GRso concentration of compound needed to reduce the growth of a plant by 80% relative to untreated plant
  • GR9 0 concentration of compound needed to reduce the growth of a plant by 90% relative to untreated plant
  • mud puddled soil
  • a non- sterilized mineral soil 28 percent silt, 18 percent clay, and 54 percent sand, with a pH of 7.3 to 7.8 and an organic matter content of 1.0 percent
  • the prepared mud was dispensed in 250 mL aliquots into 480 mL non-perforated plastic pots with a surface area of 91.6 cm 2 leaving a headspace of 3 cm in each pot.
  • Rice seeds were planted in Sun Gro MetroMix 306 planting mixture, which typically has a pH of 6.0 to 6.8 and an organic matter content of 30 percent, in plastic plug trays. Seedlings at the second or third leaf stage of growth were transplanted into 650 mL of mud contained in 960 mL non-perforated plastic pots with a surface area of 91.6 cm 2 four days prior to herbicide application. The paddy was created by filling the 3 cm headspace of the pots with water. When required to ensure good germination and healthy plants, a fungicide treatment and/or other chemical or physical treatment was applied. The plants were grown for 4-14 d in a greenhouse with an approximate 14-h photoperiod which was maintained at 29 °C during the day and 26 °C during the night. Nutrients were added as Osmocote (17:6: 10,
  • Treatments consisted of esters of compounds 1-4, 6-33, 35-39, 41 and 42 and A-G.
  • Compound A is methyl 4-amino-3-chloro-6-(4-chloro-3-ethoxy-2-fluorophenyl)-5- fluoropicolinate;
  • compound B is methyl 4-amino-3-chloro-6-(4-cyclopropylphenyl)-5- fluoropicolinate;
  • compound C is methyl 4-amino-3-chloro-6-(2,4-dichloro-3- methoxyphenyl)picolinate;
  • compound D is methyl 6-amino-2-(4-chloro-2-fluoro-3- methoxyphenyl)-5-vinylpyrimidine-4-carboxylate;
  • compound E is methyl 4-amino-3-chloro- 6-(4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoropicolinate;
  • compound F is methyl 6-a
  • the treated plants and control plants were placed in a greenhouse as described above and water was added as needed to maintain a paddy flood. After 3 weeks the condition of the test plants, compared with that of the untreated plants, was determined visually and scored on a scale of 0 to 100 percent where 0 corresponds to no injury and 100 corresponds to complete kill.
  • GR5 0 and GRso values are defined as growth reduction factors that correspond to the effective dose of herbicide required to kill or control 50 percent or 80 percent, respectively, of a target plant.
  • Table 20 Activity of Herbicidal Compounds in Rice Cropping Systems (17.5 g ae/ha and 21
  • Table 22 Activity of Herbicidal Compounds in Rice Cropping Systems (35 g ae/ha and 21 DAA;
  • Table 24 Activity of Herbicidal Compounds in Rice Cropping Systems (35 g ae/ha and 21
  • Table 26 Activity of Herbicidal Compounds in Rice Cropping Systems (35 g ae/ha and 21
  • CYPRO Cyperus rotundus L. (purple nutsedge)
  • ECHCG Echinochloa crus-galli (L.) P.BEAUV. (barnyardgrass)
  • FIMMI Fimbristylis miliacea (L.) VAHL (globe fringerush)
  • LEFCH Leptochloa chinensis (L.) NEES (Chinese sprangletop)
  • SCPJU Scirpus juncoides ROXB. (Japanese bulrush)
  • GR5 0 concentration of compound needed to reduce the growth of a plant by 50% relative to untreated plant
  • GRso concentration of compound needed to reduce the growth of a plant by 80% relative to untreated plant
  • GR9 0 concentration of compound needed to reduce the growth of a plant by 90% relative to untreated plant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Arylalkyl esters of 4-aminopicolinic acids and 6-amino-4-pyrimidinecarboxylates are herbicides for control of weeds especially those species common to rice and wheat cropping systems and in pasture management programs.

Description

ARYLALKYL ESTERS OF 4-AMINO-6-(SUBSTITUTED PHENYL)PICOLINATES AND 6-AMINO-2-(SUBSTITUTED PHENYL)-4-PYRIMIDINECARBOXYLATES AND
THEIR USE AS HERBICIDES
This invention relates to certain novel esters of 4-amino-6-(substituted phenyl)- picolinic acids and 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylic acids and to the use of these compounds as herbicides for control of weeds especially those species common to rice and wheat cropping systems and in pasture management programs.
A number of picolinic acids and their pesticidal properties have been described in the art. U.S. Patent 6,784,137 B2 and U.S. Patent 7,314,849 B2 disclose a genus of 4-amino-6- arylpicolinic acids and their derivatives and their use as selective herbicides, particularly for rice and cereals such as wheat and barley. WO 2005/063721 Al, WO 2007/082076 Al, U.S. Patent 7,863,220 B2, U.S. Patent 7,300,907 B2, U.S. Patent 7,642,220 B2, and U.S. Patent 7,786,044 B2 disclose certain 6-amino-2-substituted-4-pyrimidinecarboxylic acids and their derivatives and their use as herbicides. It has now been discovered that certain esters of 4- amino-6-(substituted phenyl)picolinic acids and of 6-amino-2-(substituted phenyl)-4- pyrimidinecarboxylic acids can provide superior weed control especially in rice and wheat cropping systems and in pasture management programs.
Certain arylalkyl esters of 4-amino-6-(substituted phenyl)picolinic acids and of 6- amino-2-(substituted phenyl)-4-pyrimidinecarboxylic acids are superior herbicides with a broad spectrum of broadleaf, grass, and sedge weed control especially in rice and wheat cropping systems and in pasture management programs. The compounds further possess excellent toxicological or environmental profiles.
The invention includes compounds of Formula IA:
Figure imgf000002_0001
IA wherein
Y represents Q-Cs alkyl, C3-C6 cycloalkyl, or phenyl substituted with 1 - 4 substituents independently selected from halogen, C1-C3 alkyl, C3-C6 cycloalkyl, C1-C3 alkoxy, C1-C3 haloalkyl, C1-C3 haloalkoxy, cyano, nitro, NR]R2, or where two adjacent substituents are taken together as -0(CH2)nO- or -0(CH2)n- wherein n=l or 2;
Z represents halogen, C1-C3 alkoxy, or C2-C4 alkenyl;
R1 and R2 independently represent H, Ci-C6 alkyl, or Ci-C6 acyl;
R3 represents unsubstituted or substituted C7-C11 arylalkyl.
Preferred compounds include those in which Y represents substituted phenyl, Z represents CI, -CH=CH2 or OCH3, R1 and R2 represent H, R3 represents unsubstituted or ortho-, meta-, or para-monosubstituted benzyl.
The invention also includes compounds of Formula IB:
Figure imgf000003_0001
IB wherein X = H or F;
Y represents halogen, Ci-Cs alkyl, C3-C6 cycloalkyl, or phenyl substituted with 1 - 4 substituents independently selected from halogen, C1-C3 alkyl, C3-C6 cycloalkyl, C1-C3 alkoxy, C1-C3 haloalkyl, C1-C3 haloalkoxy, cyano, nitro, NR]R2, or where two adjacent substituents are taken together as -0(CH2)nO- or -0(CH2)n- wherein n=l or 2; Z represents halogen or C2-C4 alkenyl; R1 and R2 independently represent H, Ci-C6 alkyl, or Ci-C6 acyl;
R3 represents unsubstituted or substituted C7-C11 arylalkyl.
Preferred compounds include those in which X represents H or F, Y represents substituted phenyl, Z represents CI, R1 and R2 represent H, R3 represents unsubstituted or ortho-, meta-, or para-monosubstituted benzyl.
The invention includes herbicidal compositions comprising an herbicidally effective amount of a compound of Formula IA or IB in a mixture with an agriculturally acceptable adjuvant or carrier. The invention also includes a method of use of the compounds and compositions of the present invention to kill or control undesirable vegetation by application of an herbicidal amount of the compound to the vegetation or to the locus of the vegetation as well as to the soil prior to emergence of the vegetation or to the irrigation or flood water, prior to, or after emergence. The invention further includes a method for the selective postemergent control of undesirable vegetation in the presence of rice, wheat or forage, which comprises applying to said undesirable vegetation an herbicidally effective amount of a compound of the present invention. The invention also includes a method of making the compounds of the present invention.
The herbicidal compounds of the present invention are arylyalkyl esters of 4-amino-6-
(substituted phenyl)picolinic acids and 6-amino-2-(substituted phenyl)-4-pyrimidine- carboxylic acids and their derivatives. The picolinic acids from which the esters of Formula
IB are derived are a new class of compounds having herbicidal activity. A number of picolinic acid compounds are described in U.S. Patent 6,784,137 B2 and U.S. Patent
7,314,849 B2, including inter alia, 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxy- phenyl)picolinic acid, 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3- methoxyphenyl)picolinic acid and 4-amino-3-chloro-6-(2,4-dichloro-3- methoxyphenyl)picolinic acid. The pyrimidinecarboxylic acids from which the esters of
Formula IA are derived are also a new class of compounds having herbicidal activity. A number of pyrimidinecarboxylic acid compounds are described in WO 2005/063721 Al, WO
2007/082076 Al, U.S. Patent 7,863,220 B2, U.S. Patent 7,300,907 B2, U.S. Patent 7,642,220
B2, and U.S. Patent 7,786,044 B2. These picolinic acids and pyrimidinecarboxylic acids control annual grass weeds, broadleaf weeds, and sedges in rice and wheat, but arylalkyl esters of the present invention demonstrate greater efficacy than the known esters, especially against weeds prominent in rice and wheat cropping systems and in pasture management programs.
Preferred ester groups are those which produce greater levels of weed control than an acid equivalent rate of the methyl esters. Preferred ester groups include the unsubstituted benzyl ester and ortho-, meta-, and para-monosubstituted benzyl esters.
The arylalkyl esters of the 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylic acids can be prepared by reacting the pyrimidinecarboxylic acid with an arylalkyl halide in the presence of a base.
Figure imgf000005_0001
Π IA
The arylalkyl esters of the picolinic acids can be prepared by coupling of picolinic acid with an alcohol using any number of suitable activating agents such as those used for peptide couplings such as dicyclohexylcarbodiimide (DCC) or carbonyl diimidazole (CDI) or by reacting the corresponding acid with an appropriate arylalkyl alcohol in the presence of an acid catalyst. Alternatively, the arylalkyl esters can be prepared by reacting the picolinic acid with an arylalkyl halide in the presence of a base.
Figure imgf000005_0002
It is recognized that some reagents and reaction conditions disclosed herein or in the chemical literature for preparing compounds of Formula IA or IB may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis. The terms "alkyl," "alkenyl" and "alkynyl," as well as derivative terms such as
"alkoxy," "acyl" and "alkylthio," as used herein, include within their scope straight chain and branched chain moieties. Unless specifically stated otherwise, each may be unsubstituted or substituted with one or more substituents selected from but not limited to halogen, alkoxy, alkylthio, or aminoalkyl, provided that the substituents are sterically compatible and the rules of chemical bonding and strain energy are satisfied. The terms "alkenyl" and "alkynyl" are intended to include one or more unsaturated bonds.
The term "arylalkyl," as used herein, refers to a phenyl substituted alkyl group having a total of 7 to 11 carbon atoms, such as benzyl (-CH2C6H5), 2-methylnaphthyl (-CH2C10H7) and 1- or 2-phenethyl (-CH2CH2C6H5 or -CH(CH3)C6H5). The phenyl group may itself be unsubstituted or substituted with one or more substituents independently selected from halogen, nitro, cyano, Ci-C6 alkyl, Ci-C6 alkoxy, halogenated Ci-C6 alkyl, halogenated Ci-C6 alkoxy, Ci-C6 alkylthio, C(0)OCi-C6alkyl, or where two adjacent substituents are taken together as -0(CH2)nO- wherein n=l or 2, provided that the substituents are sterically compatible and the rules of chemical bonding and strain energy are satisfied. Unless specifically limited otherwise, the term halogen includes fluorine, chlorine, bromine, and iodine.
The compounds of Formula IA or IB have been found to be useful as pre-emergence and post-emergence herbicides for rice and cereals cropping systems and for pasture management programs. The term herbicide is used herein to mean an active ingredient that kills, controls or otherwise adversely modifies the growth of plants. An herbicidally effective or vegetation controlling amount is an amount of active ingredient which causes an adversely modifying effect and includes deviations from natural development, killing, regulation, desiccation, retardation, and the like. The terms plants and vegetation include germinating seeds, emerging seedlings, above and below ground plant parts such as shoots, roots, tubers, rhizomes and the like, and established vegetation. Herbicidal activity is exhibited by the compounds of the present invention when they are applied directly to the plant or to the locus of the plant at any stage of growth or before planting or emergence. The effect observed depends upon the plant species to be controlled, the stage of growth of the plant, the application parameters of dilution and spray drop size, the particle size of solid components, the environmental conditions at the time of use, the specific compound employed, the specific adjuvants and carriers employed, the soil type, water quality, and the like, as well as the amount of chemical applied. These and other factors can be adjusted as is known in the art to promote selective herbicidal action.
Generally, it is preferred to apply the compounds of Formula IA or IB postemergence via spray or water application to relatively immature undesirable vegetation to achieve the maximum control of weeds.
Application rates of 1 to 500 grams per hectare (g/ha) are generally employed in foliar-applied and water-applied postemergence operations. Preferred application rates are 10 to 300 g/ha. For preemergence applications, rates of 5 to 500 g/ha are generally employed. Preferred application rates are 30 to 300 g/ha. The higher rates designated generally give non-selective control of a broad variety of undesirable vegetation. The lower rates typically give selective control and can be employed in the locus of crops.
The herbicidal compounds of the present invention are often applied in conjunction with one or more other herbicides to control a wider variety of undesirable vegetation. When used in conjunction with other herbicides, the presently claimed compounds can be formulated with the other herbicide or herbicides, tank mixed with the other herbicide or herbicides or applied sequentially with the other herbicide or herbicides. Some of the herbicides that can be employed in conjunction with the compounds of the present invention include: 2,4-D salts, esters and amines, acetochlor, acifluorfen, alachlor, amidosulfuron, aminopyralid, aminotriazole, ammonium thiocyanate, anilifos, atrazine, azimsulfuron, benfuresate, bensulfuron-methyl, bentazon, benthiocarb, benzobicyclon, benzofenap, bifenox, bispyribac-sodium, bromobutide, butachlor, cafenstrole, carfentrazone-ethyl, chlodinafop- propyrgyl, chlorimuron, chlorpropham, cinosulfuron, clethodim, clomazone, clomeprop, clopyralid, cloransulam-methyl, cyclosulfamuron, cycloxydim, cyhalofop-butyl, cumyluron, daimuron, diclosulam, diflufenican, diflufenzopyr, dimepiperate, dimethametryn, diquat, dithiopyr, EK2612, EPTC, esprocarb, ET-751, ethoxysulfuron, ethbenzanid, fenoxaprop, fenoxaprop-ethyl, fenoxaprop-ethyl + isoxadif en-ethyl, fentrazamide, flazasulfuron, florasulam, fluazifop, fluazifop-P-butyl, flucetosulfuron, flufenacet, flufenpyr-ethyl, flumetsulam, flumioxazin, flupyrsulfuron, fluroxypyr, fomesafen, foramsulfuron, glufosinate, glufosinate-P, glyphosate, halosulfuron-methyl, haloxyfop-methyl, haloxyfop-R, haloxyfop- R-methyl, imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, indanofan, ioxynil, ipfencarbazone, isoxaben, MCPA, MCPB, mefenacet, mesosulfuron, mesotrione, metamifop, metazosulfuron, metolachlor, metosulam,
metsulfuron, molinate, monosulfuron, MSMA, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxazichlomefone, oxyfluorfen, paraquat, pendimethalin, penoxsulam, pentoxazone, pethoxamid, picloram, piperophos, pretilachlor, profoxydim, prohexadione- calcium, propachlor, propanil, propisochlor, propyzamide, propyrisulfuron, prosulfuron, pyrabuticarb, pyraclonil, pyrazogyl, pyrazolynate, pyrazosulfuron-ethyl, pyrazoxyfen, pyribenzoxim, pyridate, pyriftalid, pyriminobac-methyl, pyrimisulfan, primisulfuron, pyroxsulam, quinoclamine, quinclorac, quizalofop-P-ethyl, S-3252, sethoxydim, simazine, simetryne, s-metolachlor, sulcotrione, sulfentrazone, sulfosate, tefuryltrione, thenylchlor, thiazopyr, thiobencarb, triclopyr, triclopyr-esters and amines, trifluralin, trinexapac-ethyl, tritosulfuron, and other 4-amino-6-(substituted phenyl)picolinates and 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylates and their salts and esters.
The compounds of the present invention can additionally be employed to control undesirable vegetation in many crops that have been made tolerant to or resistant to them or to other herbicides by genetic manipulation or by mutation and selection. The herbicidal compounds of the present invention can, further, be used in conjunction with glyphosate, glufosinate, dicamba, imidazolinones, aryloxyphenoxypropionates or 2,4-D on glyphosate - tolerant, glufosinate-tolerant, dicamba-tolerant, imidazolinone-tolerant, aryloxyphenoxy- propionate tolerant or 2,4-D-tolerant crops. It is generally preferred to use the compounds of the invention in combination with herbicides that are selective for the crop being treated and which complement the spectrum of weeds controlled by these compounds at the application rate employed. It is further generally preferred to apply the compounds of the invention and other complementary herbicides at the same time, either as a combination formulation or as a tank mix. Similarly the herbicidal compounds of the present invention can be used in conjunction with acetolactate synthase (ALS) inhibitors on acetolactate synthase inhibitor tolerant crops or with 4-hydroxyphenyl pyruvate dioxygenase (HPPD) inhibitors on 4- hydroxyphenyl pyruvate dioxygenase inhibitor tolerant crops. The compounds of the present invention can generally be employed in combination with known herbicide safeners, such as benoxacor, benthiocarb, brassinolide, cloquintocet (mexyl), cyometrinil, cyprosulfamide, daimuron, dichlormid, dicyclonon, dietholate, dimepiperate, disulfoton, fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, harpin proteins, isoxadifen-ethyl, mefenpyr-diethyl, mephenate, MG 191, MON 4660, naphthalic anhydride (NA), oxabetrinil, R29148 and N-phenyl-sulfonylbenzoic acid amides, to enhance their selectivity. They can additionally be employed to control undesirable vegetation in many crops that have been made tolerant to or resistant to them or to other herbicides by genetic manipulation or by mutation and selection. For example, corn, wheat, rice, soybean, sugar beet, cotton, canola, and other crops that have been made tolerant or resistant to compounds that are acetolactate synthase inhibitors in sensitive plants can be treated. Many glyphosate- and glufosinate-tolerant crops can be treated as well, alone or in combination with these herbicides. Some crops have been made tolerant to auxinic herbicides and ACCase herbicides such as 2,4-(dichlorophenoxy)acetic acid (2,4-D) and dicamba and aryloxyphenoxypropionates. These herbicides may be used to treat such resistant crops or other auxin tolerant crops. Some crops have been made tolerant to 4- hydroxyphenyl pyruvate dioxygenase inhibiting herbicides, and these herbicides may be used to treat such resistant crops.
While it is possible to utilize the compounds of Formula IA or IB directly as herbicides, it is preferable to use them in mixtures containing an herbicidally effective amount of the compound along with at least one agriculturally acceptable adjuvant or carrier. Suitable adjuvants or carriers should not be phytotoxic to valuable crops, particularly at the concentrations employed in applying the compositions for selective weed control in the presence of crops, and should not react chemically with the compounds of Formula IA or IB or other composition ingredients. Such mixtures can be designed for application directly to weeds or their locus or can be concentrates or formulations that are normally diluted with additional carriers and adjuvants before application. They can be solids, such as, for example, dusts, granules, water dispersible granules, or wettable powders, or liquids, such as, for example, emulsifiable concentrates, solutions, emulsions or suspensions. They can also be provided as a pre-mix or tank mixed.
Suitable agricultural adjuvants and carriers that are useful in preparing the herbicidal mixtures of the invention are well known to those skilled in the art. Some of these adjuvants include, but are not limited to, crop oil concentrate (mineral oil (85%) + emulsifiers (15%)); nonylphenol ethoxylate; benzylcocoalkyldimethyl quaternary ammonium salt; blend of petroleum hydrocarbon, alkyl esters, organic acid, and anionic surfactant; C9-C11
alky lpoly glycoside; phosphated alcohol ethoxylate; natural primary alcohol (C12-C16) ethoxylate; di-seobutylphenol EO-PO block copolymer; polysiloxane-methyl cap;
nonylphenol ethoxylate + urea ammonium nitrate; emulsified methylated seed oil; tridecyl alcohol (synthetic) ethoxylate (8EO); tallow amine ethoxylate (15 EO); PEG(400) dioleate- 99.
Liquid carriers that can be employed include water and organic solvents. The organic solvents typically used include, but are not limited to, petroleum fractions or hydrocarbons such as mineral oil, aromatic solvents, paraffinic oils, and the like; vegetable oils such as soybean oil, rapeseed oil, olive oil, castor oil, sunflower seed oil, coconut oil, corn oil, cottonseed oil, linseed oil, palm oil, peanut oil, safflower oil, sesame oil, tung oil and the like; esters of the above vegetable oils; esters of monoalcohols or dihydric, trihydric, or other lower polyalcohols (4-6 hydroxy containing), such as 2-ethyl hexyl stearate, n-butyl oleate, isopropyl myristate, propylene glycol dioleate, di-octyl succinate, di-butyl adipate, di-octyl phthalate and the like; esters of mono, di and polycarboxylic acids and the like. Specific organic solvents include toluene, xylene, petroleum naphtha, crop oil, acetone, methyl ethyl ketone, cyclohexanone, trichloroethylene, perchloroethylene, ethyl acetate, amyl acetate, butyl acetate, propylene glycol monomethyl ether and diethylene glycol monomethyl ether, methyl alcohol, ethyl alcohol, isopropyl alcohol, amyl alcohol, ethylene glycol, propylene glycol, glycerine, N-methyl-2-pyrrolidinone, N,N-dimethyl alkylamides, dimethyl sulfoxide, liquid fertilizers and the like. Water is generally the carrier of choice for the dilution of concentrates. Suitable solid carriers include talc, pyrophyllite clay, silica, attapulgus clay, kaolin clay, kieselguhr, chalk, diatomaceous earth, lime, calcium carbonate, bentonite clay, Fuller's earth, cottonseed hulls, wheat flour, soybean flour, pumice, wood flour, walnut shell flour, lignin, and the like.
It is usually desirable to incorporate one or more surface-active agents into the compositions of the present invention. Such surface-active agents are advantageously employed in both solid and liquid compositions, especially those designed to be diluted with carrier before application. The surface- active agents can be anionic, cationic or nonionic in character and can be employed as emulsifying agents, wetting agents, suspending agents, or for other purposes. Surfactants conventionally used in the art of formulation and which may also be used in the present formulations are described, inter alia, in "McCutcheon's
Detergents and Emulsifiers Annual," MC Publishing Corp., Ridgewood, New Jersey, 1998 and in "Encyclopedia of Surfactants," Vol. I-III, Chemical Publishing Co., New York, 1980- 81. Typical surface-active agents include salts of alkyl sulfates, such as diethanolammonium lauryl sulfate; alkylarylsulfonate salts, such as calcium dodecylbenzenesulfonate;
alky lphenol- alky lene oxide addition products, such as nonylphenol-Cis ethoxylate;
alcohol-alkylene oxide addition products, such as tridecyl alcohol-Ci6 ethoxylate; soaps, such as sodium stearate; alkylnaphthalene-sulfonate salts, such as sodium dibutyl- naphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2-ethylhexyl) sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryl trimethylammonium chloride; polyethylene glycol esters of fatty acids, such as polyethylene glycol stearate; block copolymers of ethylene oxide and propylene oxide; salts of mono and dialkyl phosphate esters; vegetable or seed oils such as soybean oil, rapeseed/canola oil, olive oil, castor oil, sunflower seed oil, coconut oil, corn oil, cottonseed oil, linseed oil, palm oil, peanut oil, safflower oil, sesame oil, tung oil and the like; and esters of the above vegetable oils, particularly methyl esters. Oftentimes, some of these materials, such as vegetable or seed oils and their esters, can be used interchangeably as an agricultural adjuvant, as a liquid carrier or as a surface active agent.
Other adjuvants commonly used in agricultural compositions include compatibilizing agents, antifoam agents, sequestering agents, neutralizing agents and buffers, corrosion inhibitors, dyes, odorants, spreading agents, penetration aids, sticking agents, dispersing agents, thickening agents, freezing point depressants, antimicrobial agents, and the like. The compositions may also contain other compatible components, for example, other herbicides, plant growth regulants, fungicides, insecticides, and the like and can be formulated with liquid fertilizers or solid, particulate fertilizer carriers such as ammonium nitrate, urea and the like. The concentration of the active ingredients in the herbicidal compositions of this invention is generally from 0.001 to 98 percent by weight. Concentrations from 0.01 to 90 percent by weight are often employed. In compositions designed to be employed as concentrates, the active ingredient is generally present in a concentration from 5 to 98 weight percent, preferably 10 to 90 weight percent. Such compositions are typically diluted with an inert carrier, such as water, before application. The diluted compositions usually applied to weeds or the locus of weeds generally contain 0.0001 to 1 weight percent active ingredient and preferably contain 0.001 to 0.05 weight percent.
The present compositions can be applied to weeds or their locus by the use of conventional ground or aerial dusters, sprayers, and granule applicators, by addition to irrigation water or paddy flood water, and by other conventional means known to those skilled in the art.
The following Examples are presented to illustrate the various aspects of this invention and should not be construed as limitations to the claims.
Examples
General: Microwave heating was carried out using a Biotage Initiator™ microwave reactor. The microwave reactions were conducted in closed reaction vessels with magnetic stirring and with the temperature controlled via infrared (IR) detection.
Example 1. Preparation of benzyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)- 5-fluoropicolinate (Compound 1)
Figure imgf000013_0001
To a solution of 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5- fluoropicolinic acid (prepared by the methods described in U. S. Patent 7,314,849 B2; 100 milligrams (mg), 0.29 millimoles (mmol)) in tetrahydrofuran (THF; 1 milliliter (mL)) was added carbonyl diimidazole (51 mg, 0.32 mmol). The reaction mixture was stirred at ambient temperature for 30 minutes (min) when carbon dioxide (C02) evolution ceased. Benzyl alcohol (62 mg, 0.58 mmol) was added, and the reaction mixture was heated in a benchtop microwave at 90 °C for 20 min. The reaction mixture was purified by silica gel
chromatography (applied directly to an Isco 40 gram (g) RediSep® column eluting with 0- 100% diethyl ether (Et20) in hexanes) to yield a white solid (147 mg, 78%): mp 132-133 °C, ]H NMR (400 MHz, DMSO-d6) δ 7.50 - 7.33 (m, 6H), 7.29 (dd, / = 8.5, 7.1 Hz, 1H), 7.13 (s, 2H), 5.37 (s, 2H), 3.92 (s, 3H); ESIMS m/z 439 ([M+H]+). Example 2. Preparation of 4-chlorobenzyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3- methoxyphenyl)-5-fluoropicolinate (Compound 2)
Figure imgf000013_0002
A suspension of 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5- fluoropicolinic acid (150 mg, 0.43 mmol), l-(bromomethyl)-4-methylbenzene (159 mg, 0.86 mmol), potassium carbonate (K2CO3; 118 mg, 0.86 mmol) and sodium iodide (Nal; 6 mg, 0.04 mmol) in N,N-dimethylformamide (DMF; 1 mL) was heated in a benchtop microwave at 100 °C for 5 min. The reaction mixture was then diluted with Et20, washed with brine, dried over sodium sulfate (Na2S04) and concentrated in vacuo. The residue was purified by silica gel chromatography (eluting with a 0-70% ethyl acetate (EtOAc)/hexanes gradient) to yield a white solid (148 mg, 73%): mp 143 °C; ]H NMR (400 MHz, DMSO-d6) δ 7.50 - 7.42 (m, 5H), 7.28 (dd, 7 = 8.5, 7.1 Hz, 1H), 7.08 (s, 2H), 5.37 (s, 2H), 3.93 (d, 7 = 0.8 Hz, 3H);
ESIMS m/z 475 ([M+H]+).
Compounds 3-16 in Table 1 were synthesized as in Example 2.
Example 3. Preparation of 2,4-dichlorobenzyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3- methoxyphenyl)picolinate (Compound 17)
Figure imgf000014_0001
4-Amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)picolinic acid (prepared by the methods described in U. S. Patent 7,314849 B2; 828 mg, 2.5 mmol) was dissolved in DMF (4 mL). Sodium hydride (NaH, 60% disperson in mineral oil; 154 mg, 3.85 mmol) was added portion wise. To the mixture was added 2,4-dichloro-l-(chloromethyl)benzene (586 mg, 3.0 mmol). The reaction mixture was allowed to stir for 24 hours (h). Water was added to the reaction mixture, and the aqueous phase was extracted with EtOAc (x3). The combined organic extracts were washed with brine, dried with Na2S04, filtered, and concentrated. Purification by normal phase chromatography gave a white solid (440 mg, 35%): mp 165-168 °C, ]H NMR (400 MHz, CDC13) δ 7.68 (dd, 7 = 8.6, 7.8 Hz, 1H), 7.54 (d, 7 = 8.3 Hz, 1H), 7.43 (d, 7 = 2.1 Hz, 1H), 7.28 (d, 7 = 2.1 Hz, 1H), 7.23 (d, 7 = 1.8 Hz, 1H), 7.21 (d, / = 1.6 Hz, 1H), 5.50 (s, 2H), 4.83 (s, 2H), 3.97 (d, / = 0.8 Hz, 3H); ESIMS m/z 489 ([M-H]).
Compounds 18 and 19 in Table 1 were synthesized as in Example 3.
Example 4. Preparation of 4-trifluoromethoxybenzyl 4-amino-3-chloro-6-(4-chloro-2-fluoro- 3-methoxyphenyl)-5-fluoropicolinate (Compound 20)
Figure imgf000015_0001
A suspension of 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5- fluoropicolinic acid (200 mg, 0.573 mmol), l-(bromomethyl)-4-(trifluoromethoxy)benzene (161 mg, 0.630 mmol) and K2C03 (119 mg, 0.859 mmol) in DMF (2 mL) was heated at 50 °C overnight. The reaction mixture was then concentrated in vacuo. The residue was purified by silica gel chromatography (eluting with 0-80% EtOAc/hexane gradient) to yield a white solid (154 mg, 51.4%): mp 155-156 °C; *H NMR (400 MHz, DMSO-d6) δ 7.60 (d, J = 8.7 Hz, 2H), 7.47 (dd, / = 8.5, 1.5 Hz, 1H), 7.41 (d, / = 8.0 Hz, 2H), 7.29 (dd, / = 8.5, 7.1 Hz, 1H), 7.14 (s, 2H), 5.41 (s, 2H), 3.95 - 3.90 (m, 3H); ESIMS m/z 523 ([M+H]+), 521 ([M-H]").
Compounds 21-34 in Table 1 were synthesized as in Example 4.
Example 5. Preparation of benzyl 6-amino-2-(4-chloro-2-fluoro-3-methoxyph(
vinylpyrimidine-4-carboxylate (Compound 35)
Figure imgf000016_0001
6-Amino-2-(4-chloro-2-fluoro-3-methoxyphenyl)-5-vinylpyrirnidine-4-carboxylic acid (prepared by the methods described in U.S. Pat. 7,786,044 B2; 0.150 g, 0.463 mmol), (bromomethyl)benzene (0.103 g, 0.602 mmol), and lithium carbonate (L12CO3; 0.044 g, 0.602 mmol) were combined in DMF (1.5 mL) and heated at 60 °C overnight. The cooled reaction mixture was concentrated and then partitioned between EtOAc and water. The organic phase was dried, concentrated and purified by column chromatography (eluting with an
EtOAc/hexanes gradient) to yield benzyl 6-amino-2-(4-chloro-2-fluoro-3-methoxyphenyl)-5- vinylpyrimidine-4-carboxylate as a white solid (0.154 g, 80%): mp 119-121 °C; !H NMR (400 MHz, CDCI3) δ 7.67 (dd, / = 8.5, 7.5 Hz, 1H), 7.49 - 7.42 (m, 2H), 7.42 - 7.32 (m, 3H), 7.21 (dd, 7 = 8.6, 1.7 Hz, 1H), 6.70 (dd, / = 17.8, 11.6 Hz, 1H), 5.60 (dd, 7 = 7.7, 1.0 Hz, 1H), 5.57 (s, 1H), 5.39 (s, 2H), 5.35 (s, 2H), 4.00 (d, / = 0.8 Hz, 3H); ESIMS m/z 414 ([M+H]+).
Example 6. Preparation of 4-methoxybenzyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3- methoxyphenyl)picolinate (Compound 36)
Figure imgf000016_0002
To a solution of 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)picolinic acid (600 mg, 1.81 mmol) in THF (10 mL) was added triphenylphosphine (475 mg, 1.81 mmol), diethyl azodicarboxylate (0.29 mL, 1.81 mmol), and 4-methoxybenzyl alcohol (0.34 mL, 2.72 mmol). The reaction mixture was stirred for 48 h. Additional triphenylphosphine (475 mg, 1.81 mmol) was added to the reaction, and the reaction mixture was stirred for 24 h. The reaction mixture was concentrated to dryness and was purified by silica gel
chromatography (eluting with a 0-100% EtOAc/hexane gradient) to provide an off-white solid (170 mg, 26%): mp 73-83°C; *H NMR (400 MHz, CDC13) δ 7.66 (dd, J = 8.6, 7.8 Hz, 1H), 7.45 - 7.38 (m, 2H), 7.22 (dd, / = 8.7, 1.8 Hz, 1H), 7.16 (d, / = 1.7 Hz, 1H), 6.94 - 6.87 (m, 2H), 5.38 (s, 2H), 4.80 (s, 2H), 3.96 (d, J = 0.8 Hz, 3H), 3.81 (s, 3H); ESIMS m/z 451 ([M+H]+), 449 ([M-H]").
Compound 37 in Table 1 was synthesized as in Example 6.
Example 7. Preparation of benzyl 4-amino-3-chloro-6-(2,4-dichloro-3-methoxyphenyl)- picolinate (Compound 38)
Figure imgf000017_0001
Methyl 4-amino-3-chloro-6-(2,4-dichloro-3-methoxyphenyl)picolinate (Compound C, prepared by the methods described in U. S. Patent 7,314849 B2; 500 mg, 1.4 mmol) was dissolved in benzyl alcohol (10 mL), treated with titanium(IV) isopropoxide (ca 100 μί) and heated at 85-90 °C. After 2 h, another portion of titanium(IV) isopropoxide (100 μί) was added and heating was continued for another 18 h. The volatiles were removed under high vacuum, and the residue was purified by silica gel chromatography (eluting with 5% Et20- 30% dichloromethane (CH2Cl2)-65% hexane). The material was further purified by reverse phase high performance liquid chromatography (RP-HPLC; eluting with 70% acetonitrile) to give the title compound (375 mg, 61%): mp 107-108 °C; ]H NMR (400 MHz, CDC13) δ 7.50 - 7.26 (m, 8H), 6.97 (s, 1H), 5.42 (s, 2H), 4.85 (s, 2H), 3.91 (s, 3H); ESIMS m/z 437 ([M+H]+).
Compound 39 in Table 1 was synthesized as in Example 7.
Example 8. Preparation of benzyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-(l- fluoroethyl)phenyl)-5-fluoropicolinate (Compound 40)
Figure imgf000018_0001
Step A. Methyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-(l-fluoroethyl)phenyl)-5- fluoropicolinate (Compound H). 2-(4-Chloro-2-fluoro-3-(l-fluoroethyl)phenyl)-4,4,5,5- tetramethyl-l,3,2-dioxaborolane (510 mg, 1.7 mmol, 1.0 equivalent (equiv)) and methyl 4- amino-3,6-dichloro-5-fluoropicolinate (prepared by the methods described in U.S. Patent 6,784,137 B2; 400 mg, 1.7 mmol, 1.0 equiv) were sequentially added to a 5 niL Biotage microwave vessel, followed by cesium fluoride (CsF; 510 mg, 3.3 mmol, 2.0 equiv), palladium(II) acetate (19 mg, 0.084 mmol, 0.05 equiv), and sodium 3, 3', 3"- phosphinetriyltribenzenesulfonate (95 mg, 0.17 mmol, 0.10 equiv). A 3: 1 mixture of water- acetonitrile (3.2 mL) was added and the resulting brown mixture was heated in a benchtop microwave at 150°C for 5 min. The cooled reaction mixture was diluted with water (150 mL) and extracted with CH2CI2 (4 x 50 mL). The combined organic extracts were dried with magnesium sulfate (MgS04), gravity filtered, and concentrated by rotary evaporation. The residue was purified by reverse phase column chromatography (eluting with a 5% acetonitrile to 100% acetonitrile gradient) to afford the desired product, methyl 4-amino-3-chloro-6-(4- chloro-2-fluoro-3-(l-fluoroethyl)phenyl)-5-fluoropicolinate as a tan semisolid (220 mg, 35%): IR (thin film) 3475 (w), 3353 (m), 3204 (w), 3001 (w), 2955 (w), 1738 (s), 1711 (s), 1624 (s) cm"1; ]H NMR (300 MHz, CDC13) δ 7.50 (m, 1H), 7.30 (m, 1H), 7.21 (d, J = 2 Hz, 1H), 6.16 (dq, J = 46, 1 Hz, 1H), 4.96 (br s, 2H), 3.97 (s, 3H), 1.75 (dd, J = 23, 1 Hz, 3H); ESIMS m/z 379 ([M+H]+). Step B. 4-Amino-3-chloro-6-(4-chloro-2-fluoro-3-(l-fluoroetliyl)plienyl)-5- fluoropicolinic acid. A 2 molar (M) solution of aqueous sodium hydroxide (NaOH; 580 μί, 1.2 mmol, 4.0 equiv) was added to a stirred suspension of methyl 4-amino-3-chloro-6-(4- chloro-2-fluoro-3-(l-fluoroethyl)phenyl)-5-fluoropicolinate (110 mg, 0.29 mmol, 1.0 equiv) in methyl alcohol (1.9 mL) at 23 °C. The resulting homogeneous pale yellow solution was stirred at 23 °C for 20 h. The reaction mixture was adjusted to approximately pH=4 via dropwise addition of concentrated hydrochloric acid (HC1) and concentrated via rotary evaporation. The residue was slurried in water and vacuum filtered to afford the desired product, 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-(l-fluoroethyl)phenyl)-5-fluoropicolinic acid as a white powder (55 mg, 50%): IR (thin film) 3319 (m), 3193 (w), 2983 (w), 1719 (m), 1629 (s) cm"1 ; ]H NMR (300 MHz, DMSO-i¾ δ 7.58 (t, / = 9 Hz, 1H), 7.49 (d, / = 9 Hz, 1H), 6.99 (br s, 2H), 6.15 (dq, J = 44, 1 Hz, 1H), 1.71 (dd, / = 23, 7 Hz, 3H); ESIMS m/z 365 ([M+H]+).
Step C. Benzyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-(l-fluoroethyl)phenyl)-5- fluoropicolinate. Triethylamine (190 xL, 1.4 mmol, 2.0 equiv) and benzyl bromide (120 xL, 1.0 mmol, 1.5 equiv) were sequentially added to a stirred solution of 4-amino-3-chloro-6-(4- chloro-2-fluoro-3-(l-fluoroethyl)phenyl)-5-fluoropicolinic acid (0.25 g, 0.69 mmol, 1.0 equiv) in THF (3.4 mL) at 23 °C. The resulting cloudy pale yellow solution was stirred at 23 °C for 18 h. The reaction mixture was diluted with water (150 mL) and extracted with CH2CI2 (3 x 70 mL). The combined organic layers were dried (MgS04), gravity filtered, and concentrated by rotary evaporation. The residue was purified by reverse phase column chromatography (eluting with a 5% acetonitrile to 100% acetonitrile gradient) to afford the desired product, benzyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-(l-fluoroethyl)phenyl)-5- fluoropicolinate as a yellow semisolid (160 mg, 52%): IR (thin film) 3485 (m), 3393 (m), 3196 (w), 3035 (w), 2983 (w), 1737 (s), 1622 (s) cm"1 ; ]H NMR (300 MHz, CDC13) δ 7.23 - 7.57 (m, 7H), 6.18 (dq, / = 45, 6 Hz, 1H), 5.45 (s, 2H), 4.94 (br s, 2H), 1.78 (ddd, J = 23, 7, 1 Hz, 3H); ESIMS m/z 453 ([M+H]+). Example 9. Preparation of benzyl 4-amino-3-chloro-6-(4-chloro-3-ethoxy-2-fluoroph( fluoropicolinate (Compound 41)
Figure imgf000020_0001
Step A. Methyl 4-amino-3-chloro-6-(4-chloro-3-ethoxy-2-fluorophenyl)-5- fluoropicolinate (Compound A). 2-(4-Chloro-3-ethoxy-2-fluorophenyl)-4,4,5,5-tetramethyl- 1,3,2-dioxaborolane (500 mg, 1.7 mmol, 1.0 equiv) and methyl 4-amino-3,6-dichloro-5- fluoropicolinate (400 mg, 1.7 mmol, 1.0 equiv) were sequentially added to a 5 mL Biotage microwave vessel, followed by CsF (510 mg, 3.3 mmol, 2.0 equiv), palladium(II) acetate (19 mg, 0.084 mmol, 0.05 equiv), and sodium 3,3',3"-phosphinetriyltribenzene-sulfonate (95 mg, 0.17 mmol, 0.10 equiv). A 3: 1 mixture of water-acetonitrile (3.2 mL) was added, and the resulting brown mixture was heated in a benchtop microwave at 150 °C for 5 min. The cooled reaction mixture was diluted with water (150 mL) and extracted with CH2CI2 (4 x 50 mL). The combined organic extracts were dried (MgS04), gravity filtered, and concentrated by rotary evaporation. The residue was purified by silica gel column chromatography (eluting with 33% EtOAc/hexane) to afford the desired product, methyl 4-amino-3-chloro-6- (4-chloro-3-ethoxy-2-fluorophenyl)-5-fluoropicolinate as a tan powder (450 mg, 63%): mp 170-172 °C; IR (thin film) 3485 (m), 3380 (s), 2951 (w), 1739 (s), 1610 (s) cm"1; ]H NMR (300 MHz, CDCI3) δ 7.20 - 7.30 (m, 2H), 4.95 (br s, 2H), 4.19 (q, / = 7 Hz, 2H), 3.98 (s, 3H), 1.43 (t, / = 7 Hz, 3H); ESIMS m/z 377 ([M+H]+). Step B. 4-Amino-3-chloro-6-(4-chloro-3-ethoxy-2-fluorophenyl)-5-fluoropicolinic acid. A 2 M solution of aqueous NaOH (900 μL·, 1.8 mmol, 4.0 equiv) was added to a stirred suspension of methyl 4-amino-3-chloro-6-(4-chloro-3-ethoxy-2-fluorophenyl)-5- fluoropicolinate (170 mg, 0.45 mmol, 1.0 equiv) in methyl alcohol (3.0 mL) at 23 °C. The resulting heterogeneous white mixture was stirred at 23 °C for 4 h. The reaction mixture was adjusted to approximately pH=4 via dropwise addition of concentrated HC1 and then concentrated via rotary evaporation. The residue was slurried in water and vacuum filtered to afford the desired product, 4-amino-3-chloro-6-(4-chloro-3-ethoxy-2-fluorophenyl)-5- fluoropicolinic acid as a white powder (140 mg, 88%): mp 163-165 °C; IR (thin film) 3486 (m), 3377 (s), 3155 (w), 2981 (w), 2935 (w), 1718 (s), 1614 (s) cm"1 ; ]H NMR (300 MHz, DMSO-i¾ δ 7.45 (dd, J = 9, 2 Hz, 1H), 7.28 (dd, 7 = 9, 7 Hz, 1H), 7.01 (br s, 2H), 4.15 (q, J = 7 Hz, 2H), 1.33 (t, / = 7 Hz, 3H); ESIMS m/z 363 ([M+H]+).
Step C. Benzyl 4-amino-3-chloro-6-(4-chloro-3-ethoxy-2-fluorophenyl)-5- fluoropicolinate. Triethylamine (290 μL·, 2.1 mmol, 2.0 equiv) and benzyl bromide (190 μL·, 1.6 mmol, 1.5 equiv) were sequentially added to a stirred solution of 4-amino-3-chloro-6-(4- chloro-3-ethoxy-2-fluorophenyl)-5-fluoropicolinic acid (0.38 g, 1.1 mmol, 1.0 equiv) in THF (7.0 mL) at 23 °C. The resulting cloudy brown solution was stirred at 23 °C for 18 h. The reaction mixture was diluted with water (150 mL) and extracted with CH2CI2 (3 x 70 mL). The combined organic extracts were dried (MgS04), gravity filtered, and concentrated by rotary evaporation. The residue was purified by RP-HPLC (eluting with a 5% acetonitrile to 100% acetonitrile gradient) to afford the desired product, benzyl 4-amino-3-chloro-6-(4- chloro-3-ethoxy-2-fluorophenyl)-5-fluoropicolinate as a white powder (230 mg, 49%): mp 122-124 °C; IR (thin film) 3477 (s), 3372 (s), 3194 (w), 3036 (w), 2992 (m), 2943 (w), 2900 (w), 1729 (s), 1616 (s) cm"1 ; ]H NMR (300 MHz, CDC13) δ 7.49 - 7.32 (m, 5H), 7.29 - 7.21 (m, 2H), 5.43 (s, 2H), 4.91 (br s, 2H), 4.19 (q, / = 7 Hz, 2H), 1.43 (t, / = 7 Hz, 3H); ESIMS m/z 453 ([M+H]+).
Example 10. Preparation of benzyl 4-amino-3-chloro-6-(4-cyclopropylphenyl)-5- fluoropicolinate (Compound 42)
Figure imgf000021_0001
Step A. Ethyl 4-amino-3-chloro-6-(4-cyclopropylphenyl)-5-fluoropicolinate. 4- Cyclopropylphenylboronic acid (250 mg, 1.5 mmol, 1.2 equiv) and methyl 4-amino-3,6- dichloro-5-fluoropicolinate (300 mg, 1.3 mmol, 1.0 equiv) were sequentially added to a 5 mL Biotage microwave vessel, followed by CsF (380 mg, 2.5 mmol, 2.0 equiv), palladium(II) acetate (14 mg, 0.063 mmol, 0.05 equiv), and sodium 3,3',3"-phosphinetriyl- tribenzenesulfonate (71 mg, 0.13 mmol, 0.10 equiv). A 3 : 1 mixture of water-acetonitrile (2.5 mL) was added, and the resulting brown mixture was heated in a benchtop microwave at 150 °C for 5 min. The cooled reaction mixture was diluted with water (150 mL) and extracted with CH2CI2 (4 x 50 mL). The combined organic extracts were dried (MgS04), gravity filtered, and concentrated by rotary evaporation. The residue was purified by RP-HPLC (eluting with a 5% acetonitrile to 100% acetonitrile gradient) to afford the desired product, methyl 4-amino-3-chloro-6-(4-cyclopropylphenyl)-5-fluoropicolinate as a white powder (310 mg, 78%): mp 116-119 °C; IR (thin film) 3475 (s), 3357 (s), 3089 (w), 3013 (w), 2954 (w), 1724 (m), 1607 (m) cm"1 ; ]H NMR (300 MHz, CDC13) δ 7.81 (m, 2H), 7.15 (m, 2H), 4.85 (br s, 2H), 3.98 (s, 3H), 1.94 (m, 1H), 1.01 (m, 2H), 0.74 (m, 2H); ESIMS m/z 321 ([M+H]+).
Step B. 4-Amino-3-chloro-6-(4-cyclopropylphenyl)-5-fluoropicolinic acid. A 2 M solution of aqueous NaOH (600 μL·, 1.2 mmol, 2.0 equiv) was added to a stirred suspension of methyl 4-amino-3-chloro-6-(4-cyclopropylphenyl)-5-fluoropicolinate (190 mg, 0.59 mmol, 1.0 equiv) in methyl alcohol (3.0 mL) at 23 °C. The resulting heterogeneous white mixture was stirred at 23 °C for 3 h. The reaction mixture was adjusted to approximately pH=4 via dropwise addition of concentrated HC1 and then concentrated via rotary evaporation. The residue was slurried in water and vacuum filtered to afford the desired product, 4-amino-3- chloro-6-(4-cyclopropylphenyl)-5-fluoropicolinic acid as a white powder (170 mg, 94% yield): mp 147-149 °C; IR (thin film) 3463 (s), 3339 (s), 3202 (m), 3084 (w), 3007 (w), 1721 (m), 1630 (s) cm"1 ; ]H NMR (300 MHz, DMSO-i¾ δ 7.70 (m, 2H), 7.17 (m, 2H), 6.81 (br s, 2H), 1.96 (m, 1H), 0.99 (m, 2H), 0.71 (m, 2H); ESIMS m/z 307 ([M+H]+).
Step C. Benzyl 4-amino-3-chloro-6-(4-cyclopropylphenyl)-5-fluoropicolinate.
Triethylamine (220 μL·, 1.6 mmol, 2.0 equiv) and benzyl bromide (140 μL·, 1.2 mmol, 1.5 equiv) were sequentially added to a stirred solution of 4-amino-3-chloro-6-(4-chloro-3- ethoxy-2-fluorophenyl)-5-fluoropicolinic acid (0.24 g, 0.78 mmol, 1.0 equiv) in THF (5.2 mL) at 23 °C. The resulting cloudy pale yellow solution was stirred at 23 °C for 72 h. The reaction mixture was diluted with water (150 mL) and extracted with CH2CI2 (3 x 70 mL). The combined organic extracts were dried (MgS04), gravity filtered, and concentrated by rotary evaporation. The residue was purified by RP-HPLC (eluting with a 5% acetonitrile to 100% acetonitrile gradient) to afford the desired product, benzyl 4-amino-3-chloro-6-(4- cyclopropylphenyl)-5-fluoropicolinate as a white powder (180 mg, 58%): mp 129-131 °C; IR (thin film) 3389 (s), 3229 (w), 3194 (w), 3083 (w), 3068 (w), 3033 (w), 3008 (w), 1737 (s), 1616 (s) cm"1; ]H NMR (300 MHz, CDC13) δ 7.83 (m, 2H), 7.48 (m, 2H), 7.33 - 7.42 (m, 3H), 7.15 (m, 2H), 5.43 (s, 2H), 4.82 (br s, 2H), 1.94 (m, 1H), 1.01 (m, 2H), 0.75 (m, 2H); ESIMS m/z 497 ([M+H]+).
Example 11: Preparation of benzyl 4-amino-3-bromo-6-(4-chloro-2-fluoro-3-methoxy- phenyl)-5-fluoropicolinate (Compound 43)
Figure imgf000023_0001
Step A. A mixture of methyl 4,5,6-trichloropicolinate (prepared by the methods described in U. S. Patent 6,784,137 B2; 25 g, 0.10 moles (mol)) and benzyl alcohol (100 g, 0.2 mol) in a 250 mL three-neck round bottom flask was heated under nitrogen at 100 °C. Titanium isopropoxide (0.6 g, 0.02 mol) was added. After 4 h at 100 °C, the nearly colorless solution was cooled and transferred to a 250 mL round bottom single neck flask. Excess benzyl alcohol was removed under vacuum to give a nearly white solid (31 g, 94%): mp 125-126.5 °C; ]H NMR (400 MHz, CDC13) δ 8.08 (s, 1H, pyridine H), 7.42 (m, 2H, phenyl), 7.31 (m, 3H, phenyl), 5.40 (s, 2H, CH2Ph); "C^H} NMR (101 MHz, CDC13) δ 162.0 (C02R), 150.4, 145.0, 144.9, 134.7, 133.1, 128.3 (phenyl CH), 125.4 (pyridine CH), 67.88 (CH2Ph).
Step B. A 250 mL three-neck flask equipped with a reflux condenser and nitrogen (N2) inlet was charged with benzyl 4,5,6-trichloropicolinate (17.77 g, 56.10 mmol), 2-(4- chloro-2-fluoro-3-methoxyphenyl)-l,3,2-dioxaborinane (19.20 g, 79.0 mmol) and CsF (17.04 g, 112.0 mmol). Acetonitrile (100 mL) and water (30 mL) were added. The reaction mixture was evacuated/backfilled with N2 (5x). Solid dichlorobis(triphenylphosphine)palladium(II) (Pd(PPh3)2Cl2; 1.724 g, 2.456 mmol) was added. The solution was evacuated/backfilled with N2 (5x) and then stirred at reflux for 90 min. A white solid precipitated upon cooling to room temperature. The solid was filtered, washed with water and dried in air (18.66 g, 75%): ]H NMR (400 MHz, CDC13) δ 8.23 (s, 1H, pyridine H), 7.52 - 7.32 (m, 5H, phenyl), 7.27 (dd, /H-H = 8.4 Hz , /F_H = 1.7 Hz, 1H, aromatic), 7.10 (dd, /H-H = 8.4 Hz, 7F_H = 6.8 Hz, 1H, aromatic), 5.44 (s, 2H, CH2Ph), 3.98 (d, 7F-H = 1.3 Hz, 3H, OMe); "C^H} NMR (101 MHz, CDC13) δ 163.0, 153.7, 153.5 (d, /F.c = 253 Hz, C2'), 146.0, 144.5 (d, /F.c = 13 Hz), 144.1 , 135.0, 134.2, 129.9 (d, /F_c = 3 Hz), 128.5, 126.1 , 125.8 (d, /F_c = 14 Hz), 125.3 (d, /F_c = 3 Hz), 124.9 (d, /F_c = 2 Hz), 67.9 (CH2), 61.5 (d, /F_c = 4 Hz, OMe). Anal. Calcd for
C2oH13Cl3FN03: C, 54.51 ; H, 2.97; N, 3.18. Found: C, 54.60; H, 3.08; N, 3.16.
Step C. A 250 mL three-neck flask was equipped with a distillation head, a N2 inlet, a mechanical stirrer and a thermocouple. The flask was charged with CsF (21.07 g, 139.0 mmol). Anhydrous DMSO (100 mL) was added, and the suspension was
evacuated/backfilled (5x) with N2. The suspension was heated at 80 °C for 30 min. DMSO (30 mL) was distilled off under vacuum to remove any residual water. Solid benzyl 4,5- dichloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)picolinate (15.34 g, 34.8 mmol) was added, and the solution was evacuated/backfilled with N2 (5x). The reaction mixture was heated to 105 °C under N2. After 6 h at 105 °C, analysis of an aliquot by GC showed no peak for the monofluoro intermediate. The reaction mixture was allowed to cool to room temperature. The reaction mixture was poured into ice-water (400 g) and was extracted with EtOAc (3 x 200 mL). The combined organic extracts were washed with saturated (satd) NaHC03 solution, water (5 x 100 mL) and brine. The extracts were dried (MgS04) and concentrated under reduced pressure to give a tan solid (12.97 g). The solid was purified by flash chromatography (330 g silica column; 0-20% EtOAc-gradient) to give a white solid (9.95 g; 70%): mp 114-116 °C; ]H NMR (400 MHz, CDC13) δ 8.01 (dd, 7F-H = 9.4, 5.5 Hz, 1H, pyridine H), 7.53 - 7.20 (m, 7H, phenyl), 5.44 (s, 2H, CH2Ph), 3.99 (d, 7F-H = 1.2 Hz, 3H, OMe); 13C NMR (101 MHz, CDC13) δ 162.8 (d, /F_c = 3 Hz, C02Bn), 156.2 (dd, /F_c = 267, 12 Hz), 153.9 (d, /F_c = 255 Hz), 148.0 (dd, /F_c = 269, 11 Hz), 145.4 (t, /F_c = 7 Hz), 144.7 (d, /F_c = 13 Hz), 144.6 (dd, /F_c = 13, 2 Hz), 135.2 (s), 130.6 (d, /F_c = 3 Hz), 125.6 (d, /F_c = 4 Hz), 125.4 (d, /F_c = 2 Hz), 122.0 (d, /F_c = 14 Hz), 115.0 (d, /F_c = 16 Hz), 67.9 (s, CH2Ph), 61.6 (d, /F_c = 5 Hz, OMe); 19F{ ]H} NMR (376 MHz, CDC13) δ - 123.90 (d, /F_F = 19.7 Hz, F4), - 128.37 (d, /F_F = 33.5 Hz, F2'), - 139.64 (dd, /F_F = 33.5, 19.7 Hz, F5). Anal. Calcd for C2oH13ClF3N03: C, 58.91 ; H, 3.21 ; N, 3.43. Found: C, 59.03; H, 3.20; N, 3.39.
Step D. Benzyl 4,5-difluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl)picolinate (4.99 g, 12.2 mmol) was slurried in DMSO (100 mL). Ammonia was bubbled through the solution for 30 min. After stirring overnight, the reaction mixture was poured into ice-water (500 mL). The product was extracted into EtOAc (3 x 150 mL). The combined organic extracts were washed with water (5 x 100 mL) and brine, dried (MgS04) and concentrated under reduced pressure to give a white solid (4.99 g, 101 %); ]H NMR (400 MHz, CDC13) δ 7.52 (d, /F_H = 6.5 Hz, 1H, pyridine H3), 7.45 - 7.38 (m, 2H), 7.37 - 7.17 (m, 5H), 5.38 (s, 2H, CH2Ph), 4.67 (br s, 2Η, N¾), 3.94 (d, 7F_H = 1.1 Hz, 3H, OMe); "C^H} NMR (101 MHz, CDC13) δ 164.4 (C02R), 153.9 (d, /F.c = 254 Hz), 147.6 (d, /F.c = 256 Hz), 144.4 (d, /F.c = 14 Hz), 144.0 (d, /F.c = 5 Hz), 142.2 (d, /F.c = 12 Hz), 140.4 (d, /F.c = 15 Hz), 135.6 (s), 129.5 (d, /F_c = 3 Hz), 128.5 (CH), 128.3 (CH), 128.3 (CH), 125.6 (d, /F_c = 3 Hz, CH), 125.2 (d, /F_c = 4 Hz, CH), 123.3 (dd, /F_c = 14, 4 Hz), 113.1 (d, /F_c = 4 Hz, C3), 67.3 (s, CH2Ph), 61.5 (d, /F_c = 4 Hz, OMe); 19F{ ]H} NMR (376 MHz, CDC13) δ -128.54 (dd, J = 30.7, 5.2 Hz, F2'), - 141.84 (dd, J = 30.8, 6.5 Hz, F5). HRMS-ESI (m/z) [M]+ calcd for
C2oH15ClF2N203, 404.0739; found, 404.0757.
Step E. N-Bromosuccinimide (NBS; 580 mg, 3.3 mmol, 1.1 equiv) was added to a stirred suspension of benzyl 4-amino-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoro- picolinate (1.2 g, 3.0 mmol, 1.0 equiv) in 1,2-dichloroethane (15 mL) at 23 °C. The resulting bright yellow mixture was stirred at 23 °C for 72 h. The brown reaction mixture was concentrated by N2 stream and the residue was purified by silica gel column chromatography (eluting with 29% EtOAc/hexane) to afford the desired product, benzyl 4-amino-3-bromo-6- (4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoropicolinate as a tan powder (1.3 g, 93%): mp 144-146 °C; IR (thin film) 3370 (s), 3225 (w), 3190 (w), 3093 (w), 3066 (w), 3037 (w), 2948 (w), 1731 (s), 1616 (s) cm"1 ; ]H NMR (400 MHz, CDC13) δ 7.47 (m, 2H), 7.41 - 7.33 (m, 3H), 7.26 - 7.22 (m, 2H), 5.42 (s, 2H), 4.98 (br s, 2H), 3.96 (d, / = 1 Hz, 3H); ESIMS m/z 485 ([M+H]+). Example 12: Preparation of (£)-benzyl 4-amino-6-(4-chloro-2-fluoro-3-methoxy-phi (2-chlorovinyl)-5-fluoropicolinate (Compound 44)
Figure imgf000026_0001
Step A. Tributyltin hydride (2.0 mL, 7.3 mmol, 1.0 equiv) and ethynyltrimethylsilane (2.1 mL, 15 mmol, 2.0 equiv) were combined, 2,2'-azobis(2-methylpropionitrile) (AIBN; 60 mg, 0.36 mmol, 0.05 equiv) was added, and the resulting colorless neat solution was heated to 80 °C. Upon heating, an exothermed to -110 °C was observed. The reaction mixture was cooled back to 80 °C and stirred for 20 h. The reaction mixture was cooled to 23 °C to afford the crude desired product, (£)-trimethyl(2-(tributylstannyl)vinyl)silane, as a pale yellow oil (2.8 g, 99% crude yield): ]H NMR (400 MHz, CDC13) δ 6.96 (d, J = 22.5 Hz, 1H), 6.60 (d, J = 22.5 Hz, 1H), 1.54 - 1.44 (m, 6H), 1.35 - 1.23 (m, 6H), 0.91 - 0.82 (m, 15H), 0.03 (s, 9H).
Step B. (E)-Trimethyl(2-(tributylstannyl)vinyl)silane (1.1 g, 2.7 mmol, 1.1 equiv) was added to a stirred mixture of benzyl 4-amino-3-bromo-6-(4-chloro-2-fluoro-3- methoxyphenyl)-5-fluoropicolinate (Compound 43; 1.2 g, 2.5 mmol, 1.0 equiv) and tetrakis(triphenylphosphine)palladium(0) (290 mg, 0.25 mmol, 0.10 equiv) in DMF (8.3 mL) at 23 °C. The reaction mixture was heated to 90 °C, resulting in a homogeneous dark yellow solution, and the reaction mixture was stirred for 20 h. The cooled reaction mixture was diluted with water (400 mL) and extracted with Et20 (4 x 100 mL). The organic layer was dried (MgS04), gravity filtered, and concentrated by rotary evaporation. The residue was purified by reverse phase column chromatography (5% acetonitrile to 100% acetonitrile gradient) to afford the desired product, (£)-benzyl 4-amino-6-(4-chloro-2-fluoro-3- methoxyphenyl)-5-fluoro-3-(2-(trimethylsilyl)vinyl)picolinate, as a light brown oil (460 mg, 38%): IR (thin film) 3483 (w), 3376 (m), 3206 (w), 3069 (w), 2955 (s), 2897 (w), 1732 (s), 1619 (s) cm-1; 1H NMR (400 MHz, CDCI3) δ 7.44 - 7.27 (m, 7H), 6.94 (d, / = 20 Hz, 1H), 6.28 (d, J = 20 Hz, 1H), 5.33 (s, 2H), 4.62 (br s, 2H), 3.95 (d, / = 1 Hz, 3H), 0.09 (s, 9H); ESIMS m/z 503 ([M+H]+). Step C. N-Chlorosuccinimide (NCS; 190 mg, 1.4 mmol, 2.0 equiv) was added to a stirred solution of (£)-benzyl 4-amino-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoro-3-(2- (trimethylsilyl)vinyl)picolinate (350 mg, 0.70 mmol, 1.0 equiv) in DMF (7.0 mL) at 23 °C. The homogeneous pale green solution was heated to 50 °C and stirred for 24 h. The cooled reaction mixture was diluted with water (400 mL) and extracted with Et20 (4 x 100 mL). The combined organic layers were dried (MgS04), gravity filtered, and concentrated by rotary evaporation. The residue was purified by reverse phase column chromatography (5% acetonitrile to 100% acetonitrile gradient) to afford the desired product, (£)-benzyl 4-amino- 6-(4-chloro-2-fluoro-3-methoxyphenyl)-3-(2-chlorovinyl)-5-fluoropicolinate as a tan powder (70 mg, 22% yield): mp 133-135 °C; IR (thin film) 3486 (s), 3345 (s), 3215 (w), 3069 (w), 3037 (w), 2953 (w), 1719 (s), 1616 (s) cm-1 ; iH NMR (400 MHz, CDCI3) δ 7.47 - 7.43 (m, 2H), 7.41 - 7.33 (m, 3H), 7.27 (m, 2H), 6.89 (d, 7 = 14 Hz, 1H), 6.45 (d, 7 = 14 Hz, 1H), 5.37 (s, 2H), 4.62 (br s, 2H), 3.97 (d, / = 1 Hz, 3H); ESIMS m/z 465 ([M+H]+).
Table 1. Structures of Compounds in Examples
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000033_0001
Table 2. Analytical Data for Compounds in Table 1
Figure imgf000034_0001
Compound mp ESIMS 1H NMR (field strength, Other NMR
Appearance
Number (°C) m/z solvent) Data
(400 MHz, DMSO- ) δ
453 7.50-7.38 (m, 2H), 7.33
«M+H]+), -7.18 (m, 4H), 7.13 (s,
8 White Solid 135
451 2H), 5.39 (s, 2H), 3.92
([M-H]") (d,/ = 0.7 Hz, 3H),2.35
(s, 3H)
(400 MHz, DMSO- ) δ
474 7.62 (dd, J = 7.0, 2.3 Hz,
183- «M+H]+), 1H), 7.57-7.37 (m, 4H),
9 White Solid
184 472 7.30 (dd, 7 = 8.5,7.1 Hz,
([M-H]") 1H), 7.14 (s, 2H), 5.45 (s,
2H), 3.92 (s, 3H)
(400 MHz, DMSO-d6) δ
7.46 (dd, .7=8.5, 1.5 Hz,
1H), 7.43-7.33 (m, 2H),
7.29 (dd, J= 8.5, 7.1 Hz,
135- 469
10 White Solid 1H),7.11 (s, 2H),7.05
136 ([M+H]+)
(d, J = 8.0 Hz, 1H), 6.96
(td, J = 7.4, 0.9 Hz, 1H),
5.34 (s, 2H), 3.92 (d,/ =
0.5 Hz, 3H), 3.81 (s, 3H)
(400 MHz, DMSO- ) δ
7.46 (dd, .7=8.5, 1.5 Hz,
453
1H), 7.32-7.21 (m, 4H),
([M+H]+),
11 White Solid 150 7.17 (d,i=7.2 Hz, 1H),
451
7.13 (s,2H), 5.34 (s, 2H),
([M-H])
3.92 (d,7 = 0.7 Hz, 3H),
2.31 (s, 3H)
(400 MHz, DMSO- ) δ
474 7.55 (s, 1H), 7.51 -7.39
147- ([M+H]+), (m, 4H), 7.30 (dd,/ =
12 White Solid
148 472 8.5, 7.1Hz, lH),7.15(s,
([M-H]) 2H), 5.40 (s, 2H), 3.93
(d,/ = 0.7 Hz, 3H) Compound mp ESIMS 1H NMR (field strength, Other NMR
Appearance
Number (°C) m/z solvent) Data
(400 MHz, DMSO- ) δ
7.47 (dd, 7=8.5, 1.5 Hz,
469 IH), 7.36-7.25 (m, 2H),
164- «M+H]+), 7.14 (s, 2H), 7.02 (d,7 =
13 White Solid
165 467 7.4 Hz, 2H), 6.96 - 6.88
([M-H]") (m, IH), 5.35 (s, 2H),
3.93 (d, 7=0.7 Hz, 3H),
3.74 (s, 3H)
(400 MHz, DMSO- ) δ
19F NMR (376 7.50-7.43 (m, 3H), 7.41
MHz, DMSO-
453 -7.35(m, 2H),7.35- d6) δ -129.03 «M+H]+), 7.26 (m, 2H), 7.07 (s,
14 Colorless Oil (d, 7= 28.1
451 2H), 6.08 (q, 7=6.5 Hz,
Hz), -137.77 ([M-H]") IH), 3.93 (d, 7 = 0.9 Hz,
(d, 7= 28.1 3H), 1.61 (d, 7 =6.6 Hz,
Hz) 3H)
(400 MHz, DMSO- ) δ
7.47 (dd, 7=8.5, 1.6 Hz,
453
IH), 7.36 -7.18 (m, 6H),
«M+H]+),
15 White Solid 84-85 7.05 (s, 2H),4.53 (t,7 =
451
6.8 Hz, 2H), 3.93 (d,7 =
([M-H])
1.0 Hz, 3H), 3.02 (t,7 =
6.8 Hz, 2H)
(400 MHz, DMSO- ) δ
8.02-7.95 (m, 2H), 7.59
498 (d, 7 =8.5 Hz, 2H),7.46
«M+H]+), (dd,7=8.5, 1.6 Hz, IH),
16 White Solid 182
496 7.30 (dd, 7=8.5,7.1 Hz,
([M-H]) IH), 7.09 (s, 2H), 5.47 (s,
2H), 3.93 (d,7= 1.0 Hz,
3H), 3.86 (s, 3H)
(400 MHz, CDC13) δ
7.64 (dd, 7=8.6, 7.8 Hz,
457 IH), 7.44-7.32 (m, 4H),
100- «M+H]+), 7.22 (dd, 7=8.7, 1.8 Hz,
18 White Solid
108 455 IH), 7.17 (d, 7= 1.6 Hz,
([M-H]) IH), 5.40 (s, 2H), 4.85 (s,
2H), 3.96 (d, 7 = 0.9 Hz,
3H) Compound mp ESIMS 1H NMR (field strength, Other NMR
Appearance
Number (°C) m/z solvent) Data
(400 MHz, CDC13) δ
7.71 (dd, 7=8.6, 7.8 Hz,
1H),7.49 (dd, 7=5.4,
3.4 Hz, 2H), 7.40-7.34
435
(m, 2H), 7.33 - 7.28 (m,
110- «M+H]+),
19 White Solid 1H),7.23 (dd,7=8.7,
113 433
1.7 Hz, IH), 7.18(d, 7 =
([M-H]")
1.6 Hz, IH), 6.21 (q,7 =
6.6 Hz, IH), 4.80 (s, 2H),
3.97 (d, 7=0.8 Hz, 3H),
1.72 (d, 7 =6.6 Hz, 3H)
(400 MHz, acetone-d6) δ
8.33-8.25 (m, 2H), 7.85
484
- 7.77 (m, 2H), 7.40
207- «M+H]+),
21 White Solid (ddd,7= 15.3, 8.5,4.1
208 482
Hz, 2H), 6.52 (s, IH),
([M-H]")
5.59 (s, 2H), 3.99 (d,7 =
1.1 Hz, 3H)
(400 MHz, DMSO-d6) δ
7.48 (dd, 7=8.5, 1.6 Hz,
IH), 7.34 (s, 4H), 7.27
107- 485 (dd, 7=8.5, 7.1Hz, IH),
22 White Solid
108 ([M-H]) 7.09 (s, 2H),4.52 (t,7 =
6.6 Hz, 2H), 3.93 (d,7 =
0.8 Hz, 3H), 3.01 (t,7 =
6.6 Hz, 2H)
(400 MHz, DMSO- ) δ
457 7.50-7.41 (m, 2H), 7.34
160- ([M+H]+), -7.26 (m, 3H), 7.20 (s,
23 White Solid
161 455 IH), 7.14 (s, 2H), 5.40 (s,
([M-H]) 2H), 3.92 (d, 7 = 0.6 Hz,
3H)
(400 MHz, DMSO- ) δ
7.55-7.50 (m, 2H), 7.46
143- 457 (dd,7=8.5, 1.5 Hz, IH),
24 White Solid
144 ([M+H]+) 7.31-7.20 (m, 3H), 7.13
(s, 2H), 5.36 (s, 2H), 3.92
(s, 3H) Compound mp ESIMS 1H NMR (field strength, Other NMR
Appearance
Number (°C) m/z solvent) Data
(400 MHz, DMSO- ) δ
7.57 (dt, 7=9.4, 4.7 Hz,
457 1H), 7.45 (ddd, 7=9.4,
«M+H]+), 4.6, 1.7 Hz, 2H), 7.26
25 White Solid 169
455 (ddd,7= 15.6, 7.3,2.8
([M-H]") Hz, 3H), 7.13 (s, 2H),
5.42 (s, 2H), 3.92 (d,7 =
0.5 Hz, 3H)
(400 MHz, DMSO- ) δ
7.84-7.69 (m, 3H), 7.61
507 (t, 7 = 7.5 Hz, 1H), 7.48
133- «M+H]+), (dd, 7=8.5, 1.5 Hz, 1H),
26 White Solid
134 505 7.29 (dd, 7=8.5,7.1 Hz,
([M-H]") 1H), 7.15 (s, 2H), 5.53 (s,
2H), 3.92 (d, 7 = 0.6 Hz,
3H)
(400 MHz, DMSO- ) δ
7.46 (dd, 7=8.5, 1.5 Hz,
1H), 7.37 (d, 7= 8.1 Hz,
481
2H), 7.32-7.23 (m, 3H),
«M+H]+),
27 White Solid 75-76 7.12 (s,2H), 5.32 (s, 2H),
479
3.92 (d, 7=0.7 Hz, 3H),
([M-H])
2.88 (dt, 7=13.7, 6.8 Hz,
1H), 1.19 (d, 7= 6.9 Hz,
6H)
(400 MHz, acetone-d6) δ
8.06 (s, 1H), 8.00-7.90
(m, 3H), 7.65 (dd,7 =
489
8.5, 1.7 Hz, 1H), 7.59-
142- «M+H]+),
28 White Solid 7.51 (m, 2H),7.40 (ddd,
143 487
7= 15.3, 8.5,4.1 Hz,
([M-H])
2H), 6.49 (s, 2H), 5.61 (s,
2H), 4.00 (d, 7 =1.1 Hz,
3H)
Compound mp ESIMS 1H NMR (field strength, Other NMR
Appearance
Number (°C) m/z solvent) Data
(400 MHz, acetone- ) δ
8.19 (dd,7 = 1.7, 1.2 Hz,
1H), 8.01 (dt, 7=7.8, 1.4
Hz, 1H), 7.79 (ddd,7 =
497
7.7, 1.7, 1.2 Hz, 1H),
144- «M+H]+),
29 White Solid 7.58 (t, 7 = 7.7 Hz, 1H),
145 495
7.43 (dd, 7=8.5, 1.5 Hz,
([M-H]")
1H),7.37 (dd,7=8.5,
6.7 Hz, 1H), 6.50 (s, 2H),
5.53 (s, 2H),4.00 (d,7 =
1.1 Hz, 3H), 3.90 (s, 3H)
(400 MHz, acetone-d6) δ
7.51 (d, 7=8.2 Hz, 1H),
7.43 (dd,7=8.5, 1.6 Hz,
167- 485 1H), 7.37-7.30 (m, 2H),
30 White Solid
168 ([M-H]) 7.26 (dd, 7= 8.1, 2.0 Hz,
1H), 6.49 (s, 2H), 5.43 (s,
2H), 4.00 (d, 7= 1.1 Hz,
3H)
(400 MHz, acetone-d6) δ
485 7.50-7.39 (m, 3H), 7.33
«M+H]+), (ddd,7=8.4, 7.9, 4.4 Hz,
31 White Solid 145
483 3H), 6.48 (s, 2H), 5.38 (s,
([M-H]) 2H), 4.00 (d, 7= 1.1 Hz,
3H)
(400 MHz, acetone-d6) δ
8.02 (dd,7 = 7.8, 1.3 Hz,
1H),7.78 (dd,7 = 7.8,
497
0.6 Hz, 1H), 7.65 (td,7 =
Colorless «M+H]+),
32 161 7.6, 1.4 Hz, 1H), 7.54- Solid 495
7.35 (m, 3H), 6.50 (s,
([M-H])
1H), 5.82 (s, 2H), 4.01
(d, 7= 1.1 Hz, 3H), 3.91
(s, 3H)
(400 MHz, CDC13) δ
7.65 -7.15 (m, 9H), 5.45
19F NMR (376
145- 417 (d,7 = 4.1 Hz, 2H), 5.40
33 White Solid MHz, CDCI3)
147 ([M+H]+) (s, 2H), 3.99 (d,7= 1.0
δ -129.38 (s) Hz, 3H), 3.81 (d,7 = 7.2
Hz, 3H) Compound mp ESIMS 1H NMR (field strength, Other NMR
Appearance
Number ( °C) m/z solvent) Data
(400 MHz, CDC13) δ
7.59 (dd, 7 = 8.6, 7.5 Hz,
1H), 7.35 - 7.15 (m, 6H), 19F NMR (376
431
34 Clear Oil 5.63 (s, 2H), 4.63 (td, 7 = MHz, CDCI3)
«M+H]+)
7.0, 4.0 Hz, 2H), 3.98 (d, δ -129.46 (s) 7 = 0.9 Hz, 3H), 3.75 (s,
3H), 3.15 - 3.07 (m, 2H)
Figure imgf000040_0001
7.67 (dd, 7 = 8.6, 7.9 Hz,
1H), 7.29 (dd, 7 = 15.8,
435
3.6 Hz, 4H), 7.25 - 7.20
«M+H]+),
37 Yellow Oil (m, 2H), 7.19 (d, 7 = 1.6
433
Hz, 1H), 4.81 (s, 2H),
([M-H]")
4.62 (t, 7 = 7.2 Hz, 2H),
3.97 (d, 7 = 0.7 Hz, 3H),
3.12 (t, 7 = 7.1 Hz, 2H)
Figure imgf000040_0002
White 90- 421 7.73 - 7.11 (m, 9H), 5.45
39
Crystals 91.5 «M+H]+) (s, 2H), 4.81 (s, 2H), 3.97
(d, 7 = 0.6 Hz, 3H)
Example 13. Evaluation of General Postemergence Herbicidal Activity
Seeds or nutlets of the desired test plant species were planted in Sun Gro Metro-Mix® 360 planting mixture, which typically has a pH of 6.0 to 6.8 and an organic matter content of 30 percent, in plastic pots with a surface area of 84.6 square centimeters (cm2). When required to ensure good germination and healthy plants, a fungicide treatment and/or other chemical or physical treatment was applied. The plants were grown for 7-31 days (d) in a greenhouse with an approximate 15 hour (h) photoperiod which was maintained at 23-29 °C during the day and 22-28 °C during the night. Nutrients and water were added on a regular basis and supplemental lighting was provided with overhead metal halide 1000-Watt lamps as necessary. The plants were employed for testing when they reached the first or second true leaf stage.
Treatments consisted of esters of compounds 33 and 39 and F and G. Compound F is methyl 6-amino-2-(4-chloro-2-fluoro-3-methoxyphenyl)-5-methoxypyrimidine-4- carboxylate; and compound G is methyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3- methoxyphenyl)picolinate. A weighed amount, determined by the highest rate to be tested, of each test compound was placed in a 25 mL glass vial and was dissolved in 4 mL of a 97:3 v/v (volume/volume) mixture of acetone and dimethyl sulfoxide (DMSO) to obtain concentrated stock solutions. If the test compound did not dissolve readily, the mixture was warmed and/or sonicated. The concentrated stock solutions obtained were diluted with 20 mL of an aqueous mixture containing acetone, water, isopropyl alcohol, DMSO, Atplus 41 IF crop oil concentrate, and Triton® X-155 surfactant in a 48.5:39:10: 1.5: 1.0:0.02 v/v ratio to obtain spray solutions containing the highest application rates. Additional application rates were obtained by serial dilution of 12 mL of the high rate solution into a solution containing 2 mL of a 97:3 v/v (volume/volume) mixture of acetone and DMSO and 10 mL of an aqueous mixture containing acetone, water, isopropyl alcohol, DMSO, Atplus 41 IF crop oil concentrate, and Triton X-155 surfactant in a 48.5:39:10:1.5:1.0:0.02 v/v ratio to obtain 1/2X, 1/4X, 1/8X and 1/16X rates of the high rate. Compound requirements are based upon a 12 mL application volume at a rate of 187 liters per hectare (L/ha). Formulated compounds were applied to the plant material with an overhead Mandel track sprayer equipped with 8002E nozzles calibrated to deliver 187 L/ha over an application area of 0.503 square meters (m2) at a spray height of 18 inches (43 cm) above the average plant canopy height. Control plants were sprayed in the same manner with the solvent blank.
The treated plants and control plants were placed in a greenhouse as described above and watered by sub-irrigation to prevent wash-off of the test compounds. After 14 d, the condition of the test plants as compared with that of the untreated plants was determined visually and scored on a scale of 0 to 100 percent where 0 corresponds to no injury and 100 corresponds to complete kill.
Some of the compounds tested, application rates employed, plant species tested, and results are given in Tables 3 and 4.
Activity of Herbicidal Compounds in Post-emergent Applications at Various Rates
(14 Days After Application (DAA))
Figure imgf000042_0001
Table 4: Activity of Herbicidal Compounds in Post-emergent Applications (70 g ai/ha and 14 DAA)
Figure imgf000042_0002
IPOHE = Ipomoea hederacea (Morningglory, ivyleaf)
ORYSA = Oryza sativa (Rice)
STEME = Stellaria media (Chickweed, common)
TRZAS = Triticum aestivum (Wheat, spring)
VIOTR = Viola tricolor (Pansy, wild)
g ai/ha = grams active ingredient per hectare
DAA = days after application
Example 14. Evaluation of Postemergence Herbicidal Activity in Cereal Crops
Seeds of the desired test plant species were planted in Sun Gro Metro-Mix® 360
planting mixture, which typically has a pH of 6.0 to 6.8 and an organic matter content of 30 percent, in plastic pots with a surface area of 84.6 cm2. When required to ensure good
germination and healthy plants, a fungicide treatment and/or other chemical or physical
treatment was applied. The plants were grown for 7-36 d in a greenhouse with an
approximate 14 h photoperiod which was maintained at 18 °C during the day and 17 °C
during the night. Nutrients and water were added on a regular basis and supplemental lighting was provided with overhead metal halide 1000- Watt lamps as necessary. The plants were employed for testing when they reached the second or third true leaf stage.
Treatments consisted of esters of compounds 33, 34, 39, 40 and 42 and B, F, G and H. Compound B is methyl 4-amino-3-chloro-6-(4-cyclopropylphenyl)-5-fluoropicolinate; compound F is methyl 6-amino-2-(4-chloro-2-fluoro-3-methoxyphenyl)-5- methoxypyrimidine-4-carboxylate; compound G is methyl 4-amino-3-chloro-6-(4-chloro-2- fluoro-3-methoxyphenyl)picolinate; and compound H is methyl 4-amino-3-chloro-6-(4- chloro-2-fluoro-3-(l-fluoroethyl)phenyl)-5-fluoropicolinate. A weighed amount, determined by the highest rate to be tested, of each test compound was placed in a 25 mL glass vial and was dissolved in 8 mL of a 97:3 v/v mixture of acetone and DMSO to obtain concentrated stock solutions. If the test compound did not dissolve readily, the mixture was warmed and/or sonicated. The concentrated stock solutions obtained were diluted with 16 mL of an aqueous mixture containing acetone, water, isopropyl alcohol, DMSO, Agri-dex crop oil
®
concentrate, and Triton X-77 surfactant in a 64.7:26.0:6.7:2.0:0.7:0.01 v/v ratio to obtain spray solutions containing the highest application rates. Additional application rates were obtained by serial dilution of 12 mL of the high rate solution into a solution containing 4 mL of a 97:3 v/v mixture of acetone and DMSO and 8 mL of an aqueous mixture containing acetone, water, isopropyl alcohol, DMSO, Agri-dex crop oil concentrate, and Triton® X-77 surfactant in a 48.5:39.0:10.0:1.5:1.0:0.02 v/v ratio to obtain 1/2X, 1/4X, 1/8X and 1/16X rates of the high rate. Compound requirements are based upon a 12 mL application volume at a rate of 187 L/ha. Formulated compounds were applied to the plant material with an overhead Mandel track sprayer equipped with 8002E nozzles calibrated to deliver 187 L/ha over an application area of 0.503 m2 at a spray height of 18 inches (43 cm) above average plant canopy height. Control plants were sprayed in the same manner with the blank. The treated plants and control plants were placed in a greenhouse as described above and watered by sub-irrigation to prevent wash-off of the test compounds. After 20-22 d, the condition of the test plants as compared with that of the untreated plants was determined visually and scored on a scale of 0 to 100 percent where 0 corresponds to no injury and 100 corresponds to complete kill. Some of the compounds tested, application rates employed, plant species tested, and results are given in Tables 5-10. Table 5: Activity of Herbicidal Compounds in Wheat Cropping Systems (35 g ae/ha and 21
DAA)
Figure imgf000044_0001
Table 6: Activity of Herbicidal Compounds in Wheat Cropping Systems (35 g ae/ha and 21
DAA)
Figure imgf000044_0002
Table 7: Activity of Herbicidal Compounds in Wheat Cropping Systems at various rates (21
DAA)
Figure imgf000044_0003
Table 8: Activity of Herbicidal Compounds in Wheat Cropping Systems (8.75 g ae/ha and 21
DAA)
Figure imgf000044_0004
Table 9: Activity of Herbicidal Compounds in Wheat Cropping Systems (35 g ae/ha and 21
DAA)
Figure imgf000045_0001
Table 10: Activity of Herbicidal Compounds in Wheat Cropping Systems (17.5 g ae/ha and
21 DAA)
Figure imgf000045_0002
AVEFA = Avenafatua (Oat, wild)
CIRAR = Cirsium arvense (Thistle, Canada)
KCHSC = Kochia scoparia (Kochia)
LOLMU = Lolium multiflorum (Ryegrass, Italian)
MATCH = Matricaria chamomilla (Mayweed, wild)
PESGL = Pennisetum glaucum (Foxtail, yellow)
POLCO = Polygonum convolvulus (Buckwheat, wild)
SASKR = Salsola kali (Thistle, Russian)
SETVI = Setaria viridis (Foxtail, green)
SINAR = Brassica sinapis (Mustard, wild)
VERPE = Veronica persica (Speedwell, birdseye)
g ae/ha = grams acid equivalent per hectare
DAA = days after application
Example 15. Evaluation of Postemergence Herbicidal Activity in Pastures
Seeds of the desired test plant species were planted in Sun Gro Metro-Mix® 360 planting mixture, which typically has a pH of 6.0 to 6.8 and an organic matter content of 30 percent, in plastic pots with a surface area of 139.7 cm2. When required to ensure good germination and healthy plants, a fungicide treatment and/or other chemical or physical treatment was applied. The plants were grown with an approximate 14 h photoperiod which was maintained at 24 °C during the day and 21 °C during the night. Nutrients and water were added on a regular basis and supplemental lighting was provided with overhead metal halide 1000- Watt lamps as necessary. The plants were employed for testing when they reached the four or six true leaf stage, depending on species.
Treatments consisted of esters of compounds 39 and G. Compound G is methyl 4- amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)picolinate. A weighed amount, determined by the highest rate to be tested, of each test compound was placed in a 25 mL glass vial and was dissolved in 8 mL of a 97:3 v/v mixture of acetone and DMSO to obtain concentrated stock solutions. If the test compound did not dissolve readily, the mixture was warmed and/or sonicated. The concentrated stock solutions obtained were diluted with 16 mL of an aqueous mixture containing acetone, water, isopropyl alcohol, DMSO, Agri-dex
®
crop oil concentrate, and Triton X-77 surfactant in a 64.7:26.0:6.7:2.0:0.7:0.01 v/v ratio to obtain spray solutions containing the highest application rates. Additional application rates were obtained by serial dilution of 12 mL of the high rate solution into a solution containing 4 mL of a 97:3 v/v mixture of acetone and DMSO and 8 mL of an aqueous mixture containing acetone, water, isopropyl alcohol, DMSO, Agri-dex crop oil concentrate, and Triton® X-77 surfactant in a 48.5:39.0:10.0:1.5:1.0:0.02 v/v ratio to obtain 1/2X, 1/4X, 1/8X and 1/16X rates of the high rate. Compound requirements are based upon a 12 mL application volume at a rate of 187 L/ha. Formulated compounds were applied to the plant material with an overhead Mandel track sprayer equipped with 8002E nozzles calibrated to deliver 187 L/ha over an application area of 0.503 m2 at a spray height of 18 inches (43 cm) above average plant canopy height. Control plants were sprayed in the same manner with the blank.
The treated plants and control plants were placed in a greenhouse as described above and watered by sub-irrigation to prevent wash-off of the test compounds. After 35 d, the condition of the test plants as compared with that of the untreated plants was determined visually and scored on a scale of 0 to 100 percent where 0 corresponds to no injury and 100 corresponds to complete kill.
Some of the compounds tested, application rates employed, plant species tested, and results are given in Tables 11 and 12. Table 11 : Activity of Herbicidal Compounds in Pasture Cropping Systems at various rates
(35 DAA)
Figure imgf000047_0001
Table 12: Activity of Herbicidal Compounds in Pasture Cropping Systems at Various Rates
(35 DAA)
Figure imgf000047_0002
CIRAR = Cirsium arvense (Thistle, Canada)
SOOSS = Solidago L. spec (Goldenrod)
g ae/ha = g acid equivalent per hectare
DAA = days after application
Example 16. Evaluation of Postemergence Foliar- Applied Herbicidal Activity in Direct Seeded Rice
Seeds or nutlets of the desired test plant species were planted in a soil matrix prepared by mixing a loam soil (43 percent silt, 19 percent clay, and 38 percent sand, with a pH of 8.1 and an organic matter content of 1.5 percent) and river sand in an 80 to 20 ratio. The soil matrix was contained in plastic pots with a surface area of 139.7 cm2. When required to ensure good germination and healthy plants, a fungicide treatment and/or other chemical or physical treatment was applied. The plants were grown for 10-17 d in a greenhouse with an approximate 14-h photoperiod which was maintained at 29 °C during the day and 26 °C during the night. Nutrients and water were added on a regular basis and supplemental lighting was provided with overhead metal halide 1000- Watt lamps as necessary. The plants were employed for testing when they reached the second or third true leaf stage.
Treatments consisted of esters of compounds 1-4, 6-8, 10, 11, 13-16, 20-31, 35, 38, 41 and 42 and A-E. Compound A is methyl 4-amino-3-chloro-6-(4-chloro-3-ethoxy-2- fluorophenyl)-5-fluoropicolinate; compound B is methyl 4-amino-3-chloro-6-(4- cyclopropylphenyl)-5-fluoropicolinate; compound C is methyl 4-amino-3-chloro-6-(2,4- dichloro-3-methoxyphenyl)picolinate; compound D is methyl 6-amino-2-(4-chloro-2-fluoro- 3-methoxyphenyl)-5-vinylpyrimidine-4-carboxylate; and compound E is methyl 4-amino-3- chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoropicolinate. Weighed amounts of technical grade compounds were placed in 25 mL glass vials and dissolved in a volume of
97:3 v/v acetone-DMSO to obtain 12X stock solutions. If the test compound did not dissolve readily, the mixture was warmed and/or sonicated. The concentrated stock solutions were added to the spray solutions so that the final acetone and DMSO concentrations were 16.2% and 0.5%, respectively. Spray solutions were diluted to the appropriate final concentrations with the addition of 10 mL of an aqueous mixture of 1.5% (v/v) Agri-dex crop oil concentrate. Generally, multiple concentrations of spray solutions were formulated and tested utilizing the same stock solution. The final spray solutions contained 1.25% (v/v) Agri- dex crop oil concentrate. Compound requirements are based upon a 12 mL application volume at a rate of 187 L/ha. Spray solutions were applied to the plant material with an overhead Mandel track sprayer equipped with 8002E nozzles calibrated to deliver 187 L/ha over an application area of 0.503 square meters (m2) at a spray height of 18 inches (43 cm) above average plant canopy height. Control plants were sprayed in the same manner with the solvent blank.
The treated plants and control plants were placed in a greenhouse as described above and watered by sub-irrigation to prevent wash-off of the test compounds. After 3 weeks, the condition of the test plants, compared with that of the untreated plants, was determined visually and scored on a scale of 0 to 100 percent where 0 corresponds to no injury and 100 corresponds to complete kill.
By applying the well-accepted probit analysis as described by J. Berkson in Journal of the American Statistical Society, 48, 565 (1953) and by D. Finney in "Probit Analysis"
Cambridge University Press (1952), the data gathered can be used to calculate GR50 and GRso values, which are defined as growth reduction factors that correspond to the effective dose of herbicide required to kill or control 50 percent or 80 percent, respectively, of a target plant.
Some of the application rates and ratios employed, plant species tested, and results are given in Tables 13-18.
Table 13: Activity of Herbicidal Compounds in Rice Cropping Systems (17.5 g ae/ha and 21 DAA;
visual injury may represent data gathered in multiple trials)
Figure imgf000049_0001
Table 14: Activity of Herbicidal Compounds in Rice Cropping Systems (8.75 g ae/ha and 21 DAA;
visual injury may represent data gathered in multiple trials)
Figure imgf000049_0002
Activity of Herbicidal Compounds in Rice Cropping Systems (8.75 g ae/ha and 21 DAA;
visual injury may represent data gathered in multiple trials)
Figure imgf000049_0003
Activity of Herbicidal Compounds in Rice Cropping Systems (8.75 g ae/ha and 21
DAA; visual injury may represent data gathered in multiple trials)
Visual Injury (%)
Compound
Number
ECHCG ECHCO
D 87 79
35 95 90 Activity of Herbicidal Compounds in Rice Cropping Systems (8.75 g ae/ha and 21 DAA; visual injury may represent data gathered in multiple trials)
Figure imgf000050_0001
Table 18: Growth Reduction Calculations for Compounds in Rice Cropping Systems
Figure imgf000051_0001
AESSE = Aeschynomene sensitive SW./L. (sensitive jointvetch)
BRAPP = Brachiaria platyphylla (GRISEB.) NASH (broadleaf signalgrass)
CYPDI = Cyperus difformis L. (small-flower flatsedge)
CYPES = Cyperus esculentus L. (yellow nutsedge)
CYPIR = Cyperus iria L. (rice flatsedge)
ECHCG = Echinochloa crus-galli (L.) P.BEAUV. (barnyardgrass)
ECHCO = Echinochloa colonum (L.) LINK (junglerice)
POLPY = Polygonum pensylvanicum L. (Pennsylvania smartweed)
SCPJU = Scirpus juncoides ROXB. (Japanese bulrush)
SEBEX = Sesbania exaltata (RAF.) CORY/RYDB. (hemp sesbania) g ae/ha = gram acid equivalent per hectare
DAA = days after application
GR50 = concentration of compound needed to reduce the growth of a plant by 50% relative to untreated plant
GRso = concentration of compound needed to reduce the growth of a plant by 80% relative to untreated plant
GR90 = concentration of compound needed to reduce the growth of a plant by 90% relative to untreated plant
Example 17. Evaluation of In- Water Applied Herbicidal Activity in Transplanted Paddy
Rice
Weed seeds or nutlets of the desired test plant species were planted in puddled soil (mud) prepared by mixing a non- sterilized mineral soil (28 percent silt, 18 percent clay, and 54 percent sand, with a pH of 7.3 to 7.8 and an organic matter content of 1.0 percent) and water at a ratio of 100 kilograms (kg) of soil to 19 liters (L) of water. The prepared mud was dispensed in 250 mL aliquots into 480 mL non-perforated plastic pots with a surface area of 91.6 cm2 leaving a headspace of 3 cm in each pot. Rice seeds were planted in Sun Gro MetroMix 306 planting mixture, which typically has a pH of 6.0 to 6.8 and an organic matter content of 30 percent, in plastic plug trays. Seedlings at the second or third leaf stage of growth were transplanted into 650 mL of mud contained in 960 mL non-perforated plastic pots with a surface area of 91.6 cm2 four days prior to herbicide application. The paddy was created by filling the 3 cm headspace of the pots with water. When required to ensure good germination and healthy plants, a fungicide treatment and/or other chemical or physical treatment was applied. The plants were grown for 4-14 d in a greenhouse with an approximate 14-h photoperiod which was maintained at 29 °C during the day and 26 °C during the night. Nutrients were added as Osmocote (17:6: 10,
Nitrogen:Phosphorus:Potassium (N:P:K) + minor nutrients) at 2 grams (g) per cup. Water was added on a regular basis to maintain the paddy flood, and supplemental lighting was provided with overhead metal halide 1000- Watt lamps as necessary. The plants were employed for testing when they reached the second or third true leaf stage.
Treatments consisted of esters of compounds 1-4, 6-33, 35-39, 41 and 42 and A-G. Compound A is methyl 4-amino-3-chloro-6-(4-chloro-3-ethoxy-2-fluorophenyl)-5- fluoropicolinate; compound B is methyl 4-amino-3-chloro-6-(4-cyclopropylphenyl)-5- fluoropicolinate; compound C is methyl 4-amino-3-chloro-6-(2,4-dichloro-3- methoxyphenyl)picolinate; compound D is methyl 6-amino-2-(4-chloro-2-fluoro-3- methoxyphenyl)-5-vinylpyrimidine-4-carboxylate; compound E is methyl 4-amino-3-chloro- 6-(4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoropicolinate; compound F is methyl 6-amino- 2-(4-chloro-2-fluoro-3-methoxyphenyl)-5-methoxypyrimidine-4-carboxylate; and compound G is methyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)picolinate. Weighed amounts of technical grade compounds were placed in individual 120 mL glass vials and were dissolved in 20 mL of acetone to obtain concentrated stock solutions. If the test compound did not dissolve readily, the mixture was warmed and/or sonicated. The concentrated stock solutions obtained were diluted with 20 mL of an aqueous mixture containing 2.5% Agri-dex crop oil concentrate (v/v). The final application solutions contained 1.25% (v/v) Agri-dex crop oil concentrate. Generally, multiple concentrations were tested utilizing the same stock solution. Applications were made by injecting an appropriate amount of the application solution into the aqueous layer of the paddy. Control plants were treated in the same manner with the solvent blank.
The treated plants and control plants were placed in a greenhouse as described above and water was added as needed to maintain a paddy flood. After 3 weeks the condition of the test plants, compared with that of the untreated plants, was determined visually and scored on a scale of 0 to 100 percent where 0 corresponds to no injury and 100 corresponds to complete kill.
By applying the well-accepted probit analysis as described by J. Berkson in Journal of the American Statistical Society, 48, 565 (1953) and by D. Finney in "Probit Analysis"
Cambridge University Press (1952), the data gathered can be used to calculate GR50 and GRso values, which are defined as growth reduction factors that correspond to the effective dose of herbicide required to kill or control 50 percent or 80 percent, respectively, of a target plant.
Some of the compounds tested, application rates employed, plant species tested, and results are given in Tables 19-28.
Activity of Herbicidal Compounds in Rice Cropping Systems (35 g ae/ha and 21 DAA; visual injury may represent data gathered in multiple trials)
Figure imgf000053_0001
Table 20: Activity of Herbicidal Compounds in Rice Cropping Systems (17.5 g ae/ha and 21
DAA; visual injury may represent data gathered in multiple trials)
Figure imgf000053_0002
Activity of Herbicidal Compounds in Rice Cropping Systems (35 g ae/ha and 21 DAA; visual injury may represent data gathered in multiple trials)
Figure imgf000054_0001
Table 22: Activity of Herbicidal Compounds in Rice Cropping Systems (35 g ae/ha and 21 DAA;
visual injury may represent data gathered in multiple trials)
Figure imgf000054_0002
Activity of Herbicidal Compounds in Rice Cropping Systems (35 g ae/ha and 21 DAA; visual injury may represent data gathered in multiple trials)
Figure imgf000054_0003
Table 24: Activity of Herbicidal Compounds in Rice Cropping Systems (35 g ae/ha and 21
DAA; visual injury may represent data gathered in multiple trials)
Figure imgf000054_0004
Activity of Herbicidal Compounds in Rice Cropping Systems (35 g ae/ha and 21 DAA; visual injury may represent data gathered in multiple trials)
Figure imgf000055_0001
Table 26: Activity of Herbicidal Compounds in Rice Cropping Systems (35 g ae/ha and 21
DAA; visual injury may represent data gathered in multiple trials)
Figure imgf000055_0002
Activity of Herbicidal Compounds in Rice Cropping Systems (17.5 g ae/ha and 21 DAA; visual injury may represent data gathered in multiple trials)
Figure imgf000056_0001
Table 28: Growth Reduction Calculations for Compounds in Rice Cropping Systems
Figure imgf000057_0001
CYPRO = Cyperus rotundus L. (purple nutsedge)
ECHCG = Echinochloa crus-galli (L.) P.BEAUV. (barnyardgrass)
FIMMI = Fimbristylis miliacea (L.) VAHL (globe fringerush)
LEFCH = Leptochloa chinensis (L.) NEES (Chinese sprangletop)
SCPJU = Scirpus juncoides ROXB. (Japanese bulrush)
g ae/ha = gram acid equivalent per hectare
DAA = days after application
GR50 = concentration of compound needed to reduce the growth of a plant by 50% relative to untreated plant
GRso = concentration of compound needed to reduce the growth of a plant by 80% relative to untreated plant
GR90 = concentration of compound needed to reduce the growth of a plant by 90% relative to untreated plant

Claims

WHAT IS CLAIMED IS:
1. A compound of Formula IA:
Figure imgf000058_0001
IA wherein
Y represents Ci-Cs alkyl, C3-C6 cycloalkyl, or phenyl substituted with 1 - 4 substituents independently selected from halogen, C1-C3 alkyl, C3-C6 cycloalkyl, C1-C3 alkoxy, C1-C3 haloalkyl, C1-C3 haloalkoxy, cyano, nitro, NR]R2, or where two adjacent substituents are taken together as -0(Ο¾)η0- or -0(Ο¾)η- wherein n=l or 2;
Z represents halogen, C1-C3 alkoxy, or C2-C4 alkenyl;
R1 and R2 independently represent H, Ci-C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, hydroxy, Ci-C6 alkoxy, amino, or Ci-C6 acyl;
R3 represents unsubstituted or substituted C7-C11 arylalkyl.
2. The compound of Claim 1 in which Y represents substituted phenyl.
3. The compound of Claim 1 in which Z represents CI, -CH=CH2 or OCH3.
4. The compound of Claim 1 in which R1 and R2 represent H.
5. The compound of Claim 1 in which R3 represents a benzyl.
6. The compound of Claim 1 in which R3 represents an unsubstituted or ortho-, meta- or para-monosubstituted benzyl.
A compound of Formula IB
Figure imgf000059_0001
wherein
X represents H or F;
Y represents halogen, Ci-Cs alkyl, C3-C6 cycloalkyl, or phenyl substituted with 1 - 4 substituents independently selected from halogen, C1-C3 alkyl, C3-C6 cycloalkyl, C1-C3 alkoxy, C1-C3 haloalkyl, C1-C3 haloalkoxy, cyano, nitro, NR]R2, or where two adjacent substituents are taken together as -0(CH2)nO- or -0(CH2)n- wherein n=l or 2;
Z represents halogen or C2-C4 alkenyl;
R1 and R2 independently represent H, Ci-C6 alkyl, or Ci-C6 acyl; R3 represents unsubstituted or substituted C7-C11 arylalkyl.
8. The compount of Claim 7 in which X represents H.
9. The compount of Claim 7 in which X represents F.
10. The compound of Claim 7 in which Y represents substituted phenyl.
11. The compound of Claim 7 in which Z represents CI.
12. The compound of Claim 7 in which R1 and R2 represent H.
13. The compound of Claim 7 in which R3 represents a benzyl.
14. The compound of Claim 7 in which R3 represents an unsubstituted or ortho-, meta- or para-monosubstituted benzyl.
15. An herbicidal composition comprising an herbicidally effective amount of a compound of Formula IA, according to Claim 1, or a compound of Formula IB, according to Claim 7, in a mixture with an agriculturally acceptable adjuvant or carrier.
16. A method of controlling undesirable vegetation which comprises contacting the vegetation via foliar or water application or the locus thereof with or applying to the soil or water to prevent the emergence of vegetation an herbicidally effective amount of a compound of Formula IA, according to Claim 1, or a compound of Formula IB, according to Claim 7.
17. A method for the selective postemergent control of undesirable vegetation in the presence of rice, wheat or forage which comprises applying to said undesirable vegetation an herbicidally effective amount of a compound of Formula IA, according to Claim 1 , or a compound of Formula IB, according to Claim 7, or an herbicidal composition thereof.
PCT/US2012/022286 2011-01-25 2012-01-24 Arylalkyl esters of 4-amino-6-(substituted phenyl)picolinates and 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylates and their use as herbicides WO2012103042A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CN201280014920.8A CN103442570B (en) 2011-01-25 2012-01-24 The alkyl aryl of 4-amino-6-(phenyl of replacement) pyridine-2-formic acid and 6-amino-2-(phenyl of the replacement)-alkyl aryl of pyrimidine-4-formic acid and the purposes as weedicide thereof
KR1020137022046A KR101542313B1 (en) 2011-01-25 2012-01-24 Arylalkyl esters of 4-amino-6-(substituted phenyl)picolinates and 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylates and their use as herbicides
BR112013019007A BR112013019007A8 (en) 2011-01-25 2012-01-24 "ARYLALKYL ESTERS OF 4-AMINO-6-( SUBSTITUTED PHENYL) PICOLINATES AND 6-AMINO-2-( SUBSTITUTED PHENYL)-4-PYRIMIDINECARBOXYLATES AND THEIR USE AS HERBICIDES"
JP2013551276A JP5873880B2 (en) 2011-01-25 2012-01-24 Arylalkyl esters of 4-amino-6- (substituted phenyl) picolinate and 6-amino-2- (substituted phenyl) -4-pyrimidinecarboxylates and their use as herbicides
RU2013139370/04A RU2566760C2 (en) 2011-01-25 2012-01-24 Arylalkyl esters of 4-amino-6-(substituted phenyl)picolinates and 6-amino-2-(substituted phenyl)-4-pyrimidine carboxylates and use thereof as herbicides
CA2825878A CA2825878C (en) 2011-01-25 2012-01-24 Arylalkyl esters of 4-amino-6-(substituted phenyl)picolinates and its use as herbicides
MX2013008608A MX336673B (en) 2011-01-25 2012-01-24 Arylalkyl esters of 4-amino-6-(substituted phenyl)picolinates and 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylates and their use as herbicides.
AU2012209278A AU2012209278B2 (en) 2011-01-25 2012-01-24 Arylalkyl esters of 4-amino-6-(substituted phenyl)picolinates and 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylates and their use as herbicides
EP12738782.7A EP2667716A4 (en) 2011-01-25 2012-01-24 Arylalkyl esters of 4-amino-6-(substituted phenyl)picolinates and 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylates and their use as herbicides
KR20157004185A KR20150024446A (en) 2011-01-25 2012-01-24 Arylalkyl esters of 4-amino-6-(substituted phenyl)picolinates and 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylates and their use as herbicides
UAA201310364A UA108922C2 (en) 2011-01-25 2012-01-24 Arylalkyl ethers sophisticated 4-amino-6- (substituted phenyl) picolinate and their use as herbicides
NZ613477A NZ613477B2 (en) 2011-01-25 2012-01-24 Arylalkyl esters of 4-amino-6-(substituted phenyl)picolinates and 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylates and their use as herbicides
ZA2013/05581A ZA201305581B (en) 2011-01-25 2013-07-23 Arylalkyl esters of 4-amino-6-(substituted phenyl)picolinates and 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylates and their use as herbicides
HK14100880.7A HK1187782A1 (en) 2011-01-25 2014-01-28 Arylalkyl esters of 4-amino-6-(substituted phenyl)picolinates and 6-amino- 2-(substituted phenyl)-4-pyrimidinecarboxylates and their use as herbicides 4--6-()-2- 6--2-()--4-

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161435925P 2011-01-25 2011-01-25
US61/435,925 2011-01-25

Publications (1)

Publication Number Publication Date
WO2012103042A1 true WO2012103042A1 (en) 2012-08-02

Family

ID=46544610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/022286 WO2012103042A1 (en) 2011-01-25 2012-01-24 Arylalkyl esters of 4-amino-6-(substituted phenyl)picolinates and 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylates and their use as herbicides

Country Status (24)

Country Link
US (2) US8883688B2 (en)
EP (2) EP2667716A4 (en)
JP (2) JP5873880B2 (en)
KR (2) KR20150024446A (en)
CN (1) CN103442570B (en)
AR (1) AR085019A1 (en)
AU (1) AU2012209278B2 (en)
BR (2) BR112013019007A8 (en)
CA (2) CA2825878C (en)
CL (2) CL2013002114A1 (en)
CO (1) CO6731127A2 (en)
DK (1) DK2899182T3 (en)
EC (1) ECSP13012789A (en)
ES (1) ES2657385T3 (en)
FR (1) FR21C1035I2 (en)
HK (2) HK1187782A1 (en)
MX (1) MX336673B (en)
PL (1) PL2899182T3 (en)
RU (1) RU2566760C2 (en)
TW (1) TWI596088B (en)
UA (1) UA108922C2 (en)
UY (1) UY33878A (en)
WO (1) WO2012103042A1 (en)
ZA (1) ZA201305581B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024927A1 (en) * 2012-08-07 2014-02-13 日産化学工業株式会社 Herbicidal composition
CN104936449A (en) * 2012-07-24 2015-09-23 美国陶氏益农公司 Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and certain ps ii inhibitors
JP2016501908A (en) * 2012-12-21 2016-01-21 ダウ アグロサイエンシィズ エルエルシー A herbicidal composition comprising 4-amino-3-chloro-6- (4-chloro-2-fluoro-3-methoxyphenyl) -5-fluoropyridine-2-carboxylic acid or a derivative thereof, and flurtamone, diflufenican or picolinafene
JP2016514127A (en) * 2013-03-15 2016-05-19 ダウ アグロサイエンシィズ エルエルシー Herbicidal composition comprising 4-amino-3-chloro-5-fluoro-6- (4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof, and a fungicide
JP2016516697A (en) * 2013-03-12 2016-06-09 ダウ アグロサイエンシィズ エルエルシー Herbicidal composition comprising 4-amino-3-chloro-5-fluoro-6- (4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid
AU2013293356B2 (en) * 2012-07-24 2016-11-10 Corteva Agriscience Llc Safened herbicidal compositions for use in rice
JP2018199686A (en) * 2013-03-15 2018-12-20 ダウ アグロサイエンシィズ エルエルシー Novel 4-aminopyridine carboxylates and 6-aminopyrimidine carboxylates as herbicides
EP3679794A1 (en) 2019-11-27 2020-07-15 Bayer AG Herbicidal compositions

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2552166T3 (en) * 2010-04-12 2015-11-26 Supernus Pharmaceuticals, Inc. Methods for producing viloxazine salts and novel polymorphs thereof
CA2825392C (en) * 2011-01-25 2016-10-25 Dow Agrosciences Llc 6-amino-2-substituted-5-vinylsilylpyrimidine-4-carboxylic acids and esters and 4-amino-6-substituted-3-vinylsilylpyridine-2-carboxylic acids and esters as herbicides
US8871681B2 (en) * 2012-07-24 2014-10-28 Dow Agrosciences Llc Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and certain sulfonylureas
US8906826B2 (en) 2012-07-24 2014-12-09 Dow Agrosciences, Llc. Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and imidazolinones
US8912120B2 (en) 2012-07-24 2014-12-16 Dow Agrosciences, Llc. Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and synthetic auxin herbicides
US8889591B2 (en) 2012-07-24 2014-11-18 Dow Agrosciences, Llc. Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl)pyridine-2-carboxylic acid or a derivative thereof and bromobutide, daimuron, oxaziclomefone or pyributicarb
US9644469B2 (en) 2012-07-24 2017-05-09 Dow Agrosciences Llc Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and VLCFA and lipid synthesis inhibiting herbicides
US8841233B2 (en) * 2012-07-24 2014-09-23 Dow Agrosciences Llc Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and 4-hydroxyphenyl-pyruvate dioxygenase (HPPD) inhibitors
US8791048B2 (en) * 2012-07-24 2014-07-29 Dow Agrosciences Llc Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and clomazone
US8796177B2 (en) 2012-07-24 2014-08-05 Dow Agrosciences Llc Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl)pyridine-2-carboxylic acid or a derivative thereof and acetyl-CoA carboxylase (ACCase) inhibitors
US8895470B2 (en) 2012-07-24 2014-11-25 Dow Agrosciences, Llc. Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and glyphosate or glufosinate
US8916499B2 (en) * 2012-07-24 2014-12-23 Dow Agrosciences, Llc. Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and a protoporphyrinogen oxidase inhibitor
US8846570B2 (en) 2012-07-24 2014-09-30 Dow Agrosciences, Llc. Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl)pyridine-2-carboxylic acid or a derivative thereof and microtubule inhibiting herbicides
US8809232B2 (en) 2012-07-24 2014-08-19 Dow Agroscience Llc Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and halosulfuron, pyrazosulfuron and esprocarb
US8906825B2 (en) 2012-07-24 2014-12-09 Dow Agrosciences, Llc. Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and triazolopyrimidine sulfonamides
US8871680B2 (en) * 2012-07-24 2014-10-28 Dow Agrosciences, Llc. Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and a di-methoxy-pyrimidine and derivatives thereof
US8901035B2 (en) 2012-07-24 2014-12-02 Dow Agrosciences, Llc. Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and cellulose biosynthesis inhibitor herbicides
US8883682B2 (en) * 2012-07-24 2014-11-11 Dow Agrosciences, Llc. Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl)pyridine-2-carboxylic acid or a derivative thereof and auxin transport inhibitors
KR20150093799A (en) 2012-12-13 2015-08-18 다우 아그로사이언시즈 엘엘씨 Process for the preparation of 4-amino-5-fluoro-3-chloro-6-(substitu ted)picolinates
SI2947986T1 (en) * 2013-01-25 2019-02-28 Dow Agrosciences Llc Herbicidal compositions comprising 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid
AU2014209311B2 (en) 2013-01-25 2018-03-08 Corteva Agriscience Llc Herbicidal compositions comprising 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)pyridine-2-carboxylic acid
MX2015009610A (en) * 2013-01-25 2016-04-26 Dow Agrosciences Llc Herbicidal compositions comprising 4-amino-3-chloro-6-(4-chloro-2 -fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid.
NZ712866A (en) * 2013-03-14 2020-03-27 Dow Agrosciences Llc Broadleaf crop control with 6-arylpicoline carboxylic acids, 2-arylpyrimidine carboxylic acids, or salts or esters thereof
US9730445B2 (en) 2013-03-15 2017-08-15 Dow Agrosciences Llc Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and fungicides
US9113629B2 (en) 2013-03-15 2015-08-25 Dow Agrosciences Llc 4-amino-6-(4-substituted-phenyl)-picolinates and 6-amino-2-(4-substituted-phenyl)-pyrimidine-4-carboxylates and their use as herbicides
EP3041849A4 (en) 2013-09-05 2017-04-19 Dow AgroSciences LLC Methods for producing borylated arenes
EP3080083A4 (en) * 2013-12-12 2017-04-19 Dow AgroSciences LLC 4-amino-6-(halo-substituted-alkyl)-picolinates and their use as herbicides
TW201625354A (en) 2014-06-16 2016-07-16 陶氏農業科學公司 Methods for producing borylated arenes
AU2016297470B2 (en) 2015-07-17 2019-03-21 Corteva Agriscience Llc Control of aquatic weeds using combinations of halauxifen, florpyrauxifen and other aquatic herbicides
TWI726900B (en) 2015-08-04 2021-05-11 美商陶氏農業科學公司 Process for fluorinating compounds
UA126484C2 (en) 2017-08-10 2022-10-12 Кортева Аґрисайєнс Елелсі Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and tembotrione and/or topramezone
CN109485600A (en) * 2017-09-11 2019-03-19 山东先达农化股份有限公司 Compound of fluorine-containing chloropyridine oxime ester structure and its preparation method and application and a kind of herbicide
CN108774179B (en) * 2018-05-29 2020-01-21 青岛清原化合物有限公司 Substituted pyrimidine-4-formic acid derivative and weeding composition and application thereof
CN108586357B (en) * 2018-07-05 2020-01-21 青岛清原化合物有限公司 Substituted pyrimidineformyl oxime derivatives, preparation method thereof, herbicidal composition and application
CN109042671B (en) * 2018-08-22 2022-03-01 安徽辉隆集团银山药业有限责任公司 Chlorofluoropyridine ester dispersible oil suspending agent and application thereof
CN112110852B (en) * 2019-06-20 2022-04-26 青岛清原化合物有限公司 Substituted picolinic acid pyridine methylene ester derivative and preparation method, herbicidal composition and application thereof
CN110959618A (en) * 2019-11-05 2020-04-07 安徽众邦生物工程有限公司 Weeding composition containing halauxifen-methyl and sulfentrazone
CN112841198B (en) * 2019-11-12 2022-02-01 江苏清原农冠杂草防治有限公司 Herbicidal compositions comprising benzyl pyrimidinecarboxylates and microtubule assembly/VLCFA inhibitors and uses thereof
WO2023114652A1 (en) 2021-12-16 2023-06-22 Corteva Agriscience Llc Method of applying a composition comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof
CN116965414A (en) * 2022-04-21 2023-10-31 青岛清原作物科学有限公司 Weeding composition containing pyrimidine formyl oxime derivative and application thereof
CN115735930B (en) * 2022-12-28 2024-01-30 安徽众邦生物工程有限公司 Weeding composition containing flurbiproflumilast, penoxsulam and clomazone

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3285925A (en) * 1962-03-06 1966-11-15 Dow Chemical Co Amino-trichloropicolinic acid compounds
US3325272A (en) * 1965-06-23 1967-06-13 Dow Chemical Co Plant growth control methods and compositions
US6297197B1 (en) * 2000-01-14 2001-10-02 Dow Agrosciences Llc 4-aminopicolinates and their use as herbicides
US6784137B2 (en) * 2001-07-30 2004-08-31 Dow Agrosciences Llc 6-aryl-4-aminopicolinates and their use as herbicides
US20090048109A1 (en) * 2007-08-13 2009-02-19 Dow Agrosciences Llc 2-(2-fluoro-substituted phenyl)-6-amino-5-chloro-4-pyrimidinecarboxylates and their use as herbicides
US20090088322A1 (en) * 2007-10-02 2009-04-02 Dow Agrosciences Llc 2-substituted-6-amino-5-alkyl, alkenyl or alkynyl-4-pyrimidinecarboxylic acids and 6-substituted-4-amino-3- alkyl, alkenyl or alkynyl picolinic acids and their use as herbicides

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA82358C2 (en) * 2003-04-02 2008-04-10 Дау Агросайенсиз Ллс 6-alkyl or alkenyl-4-amionopicolinates, herbicidal composition, method for controlling undesirable vegetation
TWI355894B (en) * 2003-12-19 2012-01-11 Du Pont Herbicidal pyrimidines
UA84724C2 (en) * 2003-12-19 2008-11-25 Э. И. Дю Пон Де Немур Энд Компани Pyrimidine derivatives, herbicidal mixtures and compositions based thereon, method for controlling undesired vegetation
CA2607934C (en) * 2005-05-06 2013-10-01 E. I. Du Pont De Nemours And Company Method for preparation of optionally 2-substituted 1,6-dihydro-6-oxo-4-pyrimidinecarboxylic acids
TWI396505B (en) 2006-01-13 2013-05-21 Dow Agrosciences Llc 2-(poly-substituted aryl)-6-amino-5-halo-4-pyrimidinecarboxylic acids and their use as herbicides
KR101350071B1 (en) 2006-01-13 2014-01-14 다우 아그로사이언시즈 엘엘씨 6-(poly-substituted aryl)-4-aminopicolinates and their use as herbicides
AU2007212702A1 (en) * 2006-02-02 2007-08-16 E. I. Du Pont De Nemours And Company Method for improving harvestability of crops
AR060415A1 (en) * 2006-04-10 2008-06-18 Du Pont HERBICIDE BLENDS
WO2008073369A1 (en) * 2006-12-12 2008-06-19 E. I. Du Pont De Nemours And Company Herbicidal mixtures
AR068145A1 (en) 2007-08-30 2009-11-04 Dow Agrosciences Llc 2- (REPLACED PHENYL) -6-AMINO-5-ALCOXI, TIOLCOXI AND AMINOALQUIL-4- PIRIMIDINE CARBOXYLATES, THEIR USES AS HERBICIDES AND HERBICIDE COMPOSITION
EP2191720A1 (en) * 2008-11-29 2010-06-02 Bayer CropScience AG Herbicide-safener combination
GB0902474D0 (en) * 2009-02-13 2009-04-01 Syngenta Ltd Chemical compounds
GB0907625D0 (en) * 2009-05-01 2009-06-10 Syngenta Ltd Method of controlling undesired vegetation
GB201008290D0 (en) * 2010-05-18 2010-06-30 Syngenta Ltd Chemical compounds
TWI529163B (en) * 2011-01-25 2016-04-11 陶氏農業科學公司 Process for the preparation of 4-amino-5-fluoro-3-halo-6-(substituted)picolinates

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3285925A (en) * 1962-03-06 1966-11-15 Dow Chemical Co Amino-trichloropicolinic acid compounds
US3325272A (en) * 1965-06-23 1967-06-13 Dow Chemical Co Plant growth control methods and compositions
US6297197B1 (en) * 2000-01-14 2001-10-02 Dow Agrosciences Llc 4-aminopicolinates and their use as herbicides
US6784137B2 (en) * 2001-07-30 2004-08-31 Dow Agrosciences Llc 6-aryl-4-aminopicolinates and their use as herbicides
US20090048109A1 (en) * 2007-08-13 2009-02-19 Dow Agrosciences Llc 2-(2-fluoro-substituted phenyl)-6-amino-5-chloro-4-pyrimidinecarboxylates and their use as herbicides
US20090088322A1 (en) * 2007-10-02 2009-04-02 Dow Agrosciences Llc 2-substituted-6-amino-5-alkyl, alkenyl or alkynyl-4-pyrimidinecarboxylic acids and 6-substituted-4-amino-3- alkyl, alkenyl or alkynyl picolinic acids and their use as herbicides
US20100041556A1 (en) * 2007-10-02 2010-02-18 Dow Agrosciences Llc 2-substituted-6-amino-5-alkyl, alkenyl or alkynyl-4-pyrimidinecarboxylic acids and 6-substituted-4-amino-3-alkyl, alkenyl or alkynyl picolinic acids and their use as herbicides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2667716A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104936449A (en) * 2012-07-24 2015-09-23 美国陶氏益农公司 Herbicidal compositions comprising 4-amino-3-chloro-5-fluoro-6-(4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof and certain ps ii inhibitors
AU2013293356B2 (en) * 2012-07-24 2016-11-10 Corteva Agriscience Llc Safened herbicidal compositions for use in rice
CN104936449B (en) * 2012-07-24 2018-03-02 美国陶氏益农公司 Include the Herbicidal combinations of the formic acid of 4 amino, 3 chlorine 5 fluorine 6 (methoxyphenyl of 4 chlorine, 2 fluorine 3) pyridine 2
WO2014024927A1 (en) * 2012-08-07 2014-02-13 日産化学工業株式会社 Herbicidal composition
JPWO2014024927A1 (en) * 2012-08-07 2016-07-25 日産化学工業株式会社 Herbicidal composition
JP2016501908A (en) * 2012-12-21 2016-01-21 ダウ アグロサイエンシィズ エルエルシー A herbicidal composition comprising 4-amino-3-chloro-6- (4-chloro-2-fluoro-3-methoxyphenyl) -5-fluoropyridine-2-carboxylic acid or a derivative thereof, and flurtamone, diflufenican or picolinafene
JP2016516697A (en) * 2013-03-12 2016-06-09 ダウ アグロサイエンシィズ エルエルシー Herbicidal composition comprising 4-amino-3-chloro-5-fluoro-6- (4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid
JP2016514127A (en) * 2013-03-15 2016-05-19 ダウ アグロサイエンシィズ エルエルシー Herbicidal composition comprising 4-amino-3-chloro-5-fluoro-6- (4-chloro-2-fluoro-3-methoxyphenyl) pyridine-2-carboxylic acid or a derivative thereof, and a fungicide
JP2018199686A (en) * 2013-03-15 2018-12-20 ダウ アグロサイエンシィズ エルエルシー Novel 4-aminopyridine carboxylates and 6-aminopyrimidine carboxylates as herbicides
EP3679794A1 (en) 2019-11-27 2020-07-15 Bayer AG Herbicidal compositions

Also Published As

Publication number Publication date
ECSP13012789A (en) 2013-09-30
KR101542313B1 (en) 2015-08-06
CA2825878A1 (en) 2012-08-02
CN103442570A (en) 2013-12-11
NZ613477A (en) 2015-02-27
RU2013139370A (en) 2015-03-10
MX2013008608A (en) 2013-08-12
FR21C1035I1 (en) 2021-10-15
BR102012001641A2 (en) 2014-04-22
CO6731127A2 (en) 2013-08-15
RU2566760C2 (en) 2015-10-27
MX336673B (en) 2016-01-27
TWI596088B (en) 2017-08-21
AU2012209278B2 (en) 2015-04-16
BR112013019007A8 (en) 2018-07-31
ZA201305581B (en) 2014-09-25
CL2013002114A1 (en) 2013-12-06
EP2899182B1 (en) 2018-01-10
HK1187782A1 (en) 2014-04-17
US8883688B2 (en) 2014-11-11
HK1207640A1 (en) 2016-02-05
US20150025238A1 (en) 2015-01-22
EP2667716A1 (en) 2013-12-04
CA2925262C (en) 2018-09-11
DK2899182T3 (en) 2018-04-16
US20120190551A1 (en) 2012-07-26
JP5873880B2 (en) 2016-03-01
BR112013019007A2 (en) 2016-07-12
JP2016074722A (en) 2016-05-12
EP2667716A4 (en) 2014-06-11
KR20130121954A (en) 2013-11-06
PL2899182T3 (en) 2018-07-31
KR20150024446A (en) 2015-03-06
TW201309646A (en) 2013-03-01
CA2825878C (en) 2016-10-18
UY33878A (en) 2012-09-28
FR21C1035I2 (en) 2023-05-26
US9169217B2 (en) 2015-10-27
AR085019A1 (en) 2013-08-07
JP2014505072A (en) 2014-02-27
BR102012001641B1 (en) 2019-04-02
ES2657385T3 (en) 2018-03-05
CN103442570B (en) 2016-01-13
EP2899182A1 (en) 2015-07-29
CA2925262A1 (en) 2012-08-02
CL2016000212A1 (en) 2016-12-09
UA108922C2 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
US9169217B2 (en) Arylalkyl esters of 4-amino-6-(substituted phenyl)-picolinates and 6-amino-2-(substituted phenyl)-pyrimidinecarboxylates and their use as selective herbicides for crops
AU2012209278A1 (en) Arylalkyl esters of 4-amino-6-(substituted phenyl)picolinates and 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylates and their use as herbicides
US6297197B1 (en) 4-aminopicolinates and their use as herbicides
EP1246802B1 (en) 4-aminopicolinates and their use as herbicides
RU2771326C2 (en) 4-amino-6-(4-substituted-phenyl)-picolinates and 6-amino-2-(4-substituted-phenyl)-pyrimidine-4-carboxylates and their use as herbicides
WO2010099279A1 (en) N-alkoxyamides of 6-(substituted phenyl)-4-aminopicolinates and 2-(substituted phenyl)-6-amino-4-pyrimidinecarboxylates and their use as selective herbicides for crops
NZ613477B2 (en) Arylalkyl esters of 4-amino-6-(substituted phenyl)picolinates and 6-amino-2-(substituted phenyl)-4-pyrimidinecarboxylates and their use as herbicides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12738782

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013002114

Country of ref document: CL

ENP Entry into the national phase

Ref document number: 2013551276

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/008608

Country of ref document: MX

Ref document number: 12013501559

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2825878

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004134

Country of ref document: TH

Ref document number: 13175747

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 2012738782

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012209278

Country of ref document: AU

Date of ref document: 20120124

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137022046

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013139370

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013019007

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013019007

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130724