WO2012102419A9 - Hardware platform for a multi-node wireless charging base station, and energy transmission unit therefor - Google Patents

Hardware platform for a multi-node wireless charging base station, and energy transmission unit therefor Download PDF

Info

Publication number
WO2012102419A9
WO2012102419A9 PCT/KR2011/000511 KR2011000511W WO2012102419A9 WO 2012102419 A9 WO2012102419 A9 WO 2012102419A9 KR 2011000511 W KR2011000511 W KR 2011000511W WO 2012102419 A9 WO2012102419 A9 WO 2012102419A9
Authority
WO
WIPO (PCT)
Prior art keywords
wireless charging
base station
charging base
power
energy
Prior art date
Application number
PCT/KR2011/000511
Other languages
French (fr)
Korean (ko)
Other versions
WO2012102419A1 (en
Inventor
문연국
임승옥
원윤재
김선희
황규성
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2012102419A1 publication Critical patent/WO2012102419A1/en
Publication of WO2012102419A9 publication Critical patent/WO2012102419A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/30Charge provided using DC bus or data bus of a computer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a wireless charging base station hardware platform, and more particularly, to a multi-node wireless charging base station hardware platform capable of wirelessly charging a plurality of devices using a magnetic resonance induction method and an energy transmitter thereof.
  • a wireless charging system using magnetic induction is used as a wireless power transmission technology for wirelessly transmitting energy.
  • the magnetic induction method of inducing current through a magnetic field from one coil to another is very sensitive to the distance and relative position between the coils, so that the transmission efficiency drops rapidly even if the distance between the two coils is slightly dropped or twisted. Accordingly, this magnetic induction charging system can only be used in a short distance of several cm or less.
  • US Patent 7,741,735 discloses a non-radiative energy transfer method based on the attenuation wave coupling of the resonant field. This is because two resonators with the same frequency do not affect other non-resonators around them, but they tend to couple with each other and are introduced as a technology that can transfer energy over a long distance compared to conventional electromagnetic induction. .
  • the present invention has been made in view of the above technical background, and provides a self-resonant multi-node wireless charging base station hardware platform capable of providing efficient charging for a plurality of wireless chargers and an energy transmitter thereof. It is a task.
  • Another object of the present invention is to provide a magnetic resonance-induced multi-node wireless charging base station hardware platform and its energy transmitter capable of efficiently charging a plurality of nodes using magnetic field communication.
  • the present invention provides a multi-node wireless charging base station that transmits power in a self-resonance induction manner to a plurality of wireless chargers.
  • the multi-node wireless charging base station includes: A platform control module including an MCU for controlling main functions of a wireless charging base station, a clock generator for providing a clock to the MCU, a power control unit for controlling a power source as a power supply for wireless charging, and a communication control unit, A charging communication fusion hardware module including an optimizer for controlling power transmission in an optimized state and an energy transmitter and a communication unit, an antenna interface unit providing an antenna for wirelessly transmitting energy, and an interface between the energy transmitter and the antenna. This includes the antenna module included Eojinda.
  • the communication control unit may include a USB / RS-232 / Ethernet communication block providing a USB / RS-232 / Ethernet interface and a magnetic field communication block providing a magnetic field communication interface
  • the optimizer includes the wireless charging base. Emission of energy other than wireless power transmitted in a magnetic resonance induction method between the resonance efficiency improving unit for improving the resonance efficiency between the station and the wireless charger to be charged and the wireless charging base station and the wireless charger to be charged It may include an unintentional energy emission minimization unit to minimize the.
  • the energy transmitter includes a plurality of slots connected to a system bus, and the plurality of slots may include a low frequency low power (LF LP) mode, a low frequency high power (LF HP) mode, and a high frequency low HF LP. Power and HF High Frequency High Power (HP) mode slots.
  • LF LP low frequency low power
  • LF HP low frequency high power
  • HP High Frequency High Power
  • each of the plurality of slots may include an inverter type or a power amplifier type energy transmission circuit.
  • the antenna module preferably includes a low frequency (LF) antenna and a high frequency (HF) antenna for dual band transmission.
  • LF low frequency
  • HF high frequency
  • an energy transmitter of a multi-node wireless charging base station that transmits power in a self-resonant manner to a plurality of wireless chargers, which are configured to be mounted in a plurality of slots connected to a system bus.
  • the multi-node wireless charging base station using the magnetic resonance induction method can efficiently charge a plurality of wireless chargers, and can efficiently manage the charging process of the entire multi-node wireless charging system.
  • FIG. 1 is a block diagram schematically showing the overall configuration of a multi-node wireless charging system using a magnetic resonance induction method according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing in detail the configuration of a wireless charging base station according to an embodiment of the present invention.
  • Figure 3 shows the configuration of a wireless charging base station according to an embodiment of the present invention as a functional block.
  • 4 to 8 illustrate a Simulink Model used for system specification analysis and system budget design for a link budget of wireless charging in a wireless charging system according to an embodiment of the present invention.
  • FIG. 9 is a block diagram illustrating an energy transmitter of a wireless charging base station according to an embodiment of the present invention.
  • FIG. 10 and 11 are block diagrams showing the configuration of the slots shown in FIG. 9, respectively.
  • the multi-node wireless charging system using the magnetic resonance induction method includes a wireless charging base station 10 that wirelessly supplies power through a magnetic resonance induction method, and a wireless charging base.
  • Magnetic resonance induction is a method of maximizing the wireless transmission efficiency of energy by the resonance between the transmitting antenna and the receiving antenna.
  • a resonance channel is formed by matching a resonance frequency between the wireless charging base station 10 and the wireless chargers 50_1, 50_2,..., 50_N, and transmits wireless power.
  • the wireless charging base station 10 may communicate with the wireless chargers 50_1, 50_2,..., 50_N through the magnetic field communication, and may include the wireless chargers 50_1, 50_2, including identification information, type, location, or state of charge of the charger. ..., 50_N) may be received, and power may be transmitted to the wireless chargers 50_1, 50_2,..., 50_N based on the charging information.
  • the wireless charging base station 10 is composed of dual bands (high frequency band and low frequency band) to simultaneously perform magnetic field communication and wireless charging.
  • Low frequency bands are typically used for magnetic field communication and remote charging, while high frequency bands can be used for high efficiency charging.
  • the low frequency and high frequency bands can be charged using the low power and high power modes, respectively.
  • Wireless charging base station 10 may be implemented in a fixed or mobile, if the fixed type can be installed indoors, such as the ceiling or table furniture, and in the outdoors can be installed in the form of implants such as bus stops and subway stations
  • the wireless charging base station 10 may be installed inside a moving object such as a vehicle, a train or a subway.
  • the wireless charging base station 10 itself may be implemented as a separate mobile device, or may be implemented as part of another digital device such as a cover of a notebook computer. .
  • the wireless chargers 50_1, 50_2, .., 50_N may include all digital devices including batteries such as various mobile terminals, digital cameras, and notebook computers, and are not easily accessible to underground, underwater, and inside buildings. It may also be an electronic device such as a sensor and a measuring instrument.
  • FIG. 2 is a block diagram showing in detail the configuration of the wireless charging base station 10 of the multi-node wireless charging system using the magnetic resonance induction method according to an embodiment of the present invention.
  • the wireless charging base station 10 includes a platform control module 100, a charging communication fusion hardware module 200, and an antenna module 300.
  • the platform control module 100 controls the MCU 120, the clock generator 110, the power controller 140, the analog controller 150, debugging and status monitoring for controlling the main functions of the wireless charging base station 10.
  • the communication control unit 130 includes a block 132 for providing a USB / RS-232 / Ethernet interface and a block 134 for providing a magnetic field communication interface.
  • the charging communication fusion hardware module 200 includes an optimizer 210, a communicator 220, and an energy transmitter 230 to provide optimized charging.
  • the optimizer 210 includes a resonance efficiency improver 212 and an unintentional energy emission minimizer 214 to control power transmission in an optimized state according to a load.
  • the communication unit 220 includes analog and digital modules 222 and 224, and the energy transmitter 230 uses the LF and HF modules 232 and 234 for efficient charging such as charging distance, energy transmission efficiency and directivity. Include.
  • the antenna module 300 includes an antenna interface 310 and an antenna 320 that provide an interface between the energy transmitter 230 and the antenna 320 of the charging communication fusion hardware module 200.
  • the antenna interface 310 again includes an impedance matching unit 312 and a magnetic trapper 314, and the antenna 320 includes an LF antenna 322 and an HF antenna 324 for dual band transmission.
  • Figure 3 shows the configuration of the wireless charging base station 10 of the multi-node wireless charging system using a magnetic resonance induction method according to an embodiment of the present invention as a functional block.
  • the wireless charging base station 10 uses the charging state information of the charger to select the optimal charging mode of the wireless chargers 50_1, 50_2,..., 50_N. It has a functional block to classify and a functional block for controlling the resources set in the hardware by storing and reading the position and status information of the charger.
  • LF / HF wireless energy transmission / reception strength, wireless charging channel observation value, location status of charger, charging information and interference information of devices are stored in status register to maintain optimal charging status.
  • the base station of the wireless charging communication convergence system provides simultaneous charging of up to four terminal nodes by minimizing interference of the LF and HF bands.
  • the power transmitted from the power transmitter should be controlled in consideration of the reception state and distance of the receiving terminal, i.e., the wireless charger.
  • the calculated transmission power enters the antenna of the wireless charger through the path loss and enters the analog power receiver through the loss of the front end block including the matching block.
  • This signal obtains the reception characteristics of the power receiver in the DC-DC converter through the voltage multiplier and rectifier, and the efficiency characteristic at this time determines the main performance.
  • Stable DC characteristics and characteristics for battery supply are input to the battery through the LDO regulator, charger and battery interface.
  • FIG. 4 shows a Simulink Model for Link Budget.
  • 5 shows a Simulink Model of a communication block
  • FIG. 6 shows a block diagram of a Simulink block.
  • Efficiency should be considered in the configuration of the main system block, slot for module interface, power transmission module, data transmission / reception module, matching circuit block, antenna block, and the like. Operation must be guaranteed.
  • the power is sensitive to output strength, matching circuit characteristics, and effective charging distance, and the output power of the transmitter is sufficient from 6 W to 20 W. It can be seen that power-control should be achieved.
  • the loss of the RF-frontend module can represent more than 50% of loss according to each environment variable. Therefore, it is essential to take measurements from the platform and optimize them through sufficient iteration.
  • the loss of the RF-frontend module is set to be variable according to the matching characteristics, and the loss of the Power Loop Control block is assumed to be zero.
  • the faucet parameter can contain all of the unforeseen loss of reception characteristics during actual implementation. However, in order to minimize the difference between the measured value and the simulation, the repeated simulation is performed by receiving the actual measured value as the environmental variable.
  • the wireless charging base station 10 has a power conversion efficiency of 70% or more when transmitting power of 6W to 20W in the frequency range of 20kHz to 1MHz in the LF band. With this, an effective charging distance of 0.2 m or more can be obtained and the communication transmission distance is 1 m or more.
  • the HF band has a power conversion efficiency of 70% or more and transmits an effective charging distance of 0.2 m or more when transmitting power of 6W to 20W in the frequency range of 6MHz to 20MHz.
  • FIG 9 is a view showing in more detail the energy transmitter 230 of the wireless charging base station 10 according to an embodiment of the present invention.
  • the energy transmitter 230 is a block which generates a carrier according to the input data of the input frequency, RF-processes it, and transmits it to the antenna.
  • the LF power transmission carrier uses a 128 kHz band
  • the HF power transmission carrier uses a 13.5 MHz band.
  • the energy transmitter 230 may be manufactured in a manner of being mounted in a plurality of slots of the main board, and as shown in FIG. 9, a plurality of slots having different bands and output modes may be mounted, and a plurality of slots may be mounted. Slots connect to the system bus.
  • a low frequency low power (LF LP) mode and a magnetic field communication unit are allocated to the first slot 232_1, and a second slot 232_2 is assigned a low frequency high power (LF HP) mode, and a third slot 234_1
  • the fourth slot 234_2 is assigned an HF LP (High Frequency Low Power) and HF HP (High Frequency High Power) mode, respectively.
  • the number of such slots is not limited to four, of course, can be reduced or increased as needed.
  • 10 and 11 are block diagrams illustrating the configuration of each slot shown in FIG. 9.
  • FIG. 10 shows the configuration of the first slot of FIG. 9, and as shown in FIG. 10, an LF LP energy transmission circuit and an impedance matching circuit are included, and a communication module for magnetic field communication and an impedance matching circuit thereof are also included. .
  • FIG. 11 shows the configuration of the second to fourth slots of FIG. 9, and unlike FIG. 10, only the energy transmission circuit and the impedance matching circuit are included since they are used only for energy transmission.
  • the energy transmission circuit of FIG. 10 is shown as using an inverter method, and the energy transmission circuit of FIG. 11 is shown as using a power amplifier (PA) method, the configuration of the energy transmission circuit is necessarily. It is not necessary to follow the configurations shown in FIGS. 10 and 11, and an inverter method or a power amplifier method may be appropriately selected and used for each slot of the energy transmitter.
  • PA power amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention relates to a hardware platform for a multi-node wireless charging base station for wirelessly charging a plurality of devices using a magnetic resonance induction method, and to an energy transmission unit therefor. The hardware platform for a multi-node wireless charging base station of the present invention includes: an MCU controlling a main function of the wireless charging base station; a clock generator providing a clock to the MCU; a platform control module including a power control unit for controlling the power of a power-supply source for wireless charging, and a communication control unit; a hardware module combining charging and communication functions, including an optimizing unit for controlling power transmission in an optimized state according to a load, a transmission unit, and a communication unit; and an antenna module including an antenna for transmitting energy wirelessly, and an antenna interface unit for providing an interface between the energy transmission unit and the antenna.

Description

멀티노드 무선 충전 베이스 스테이션 하드웨어 플랫폼 및 그 에너지 전송부 Multi-node wireless charging base station hardware platform and its energy transmitter
본 발명은 무선 충전 베이스 스테이션 하드웨어 플랫폼에 관한 것으로서, 더 구체적으로는 자기공진유도 방식을 이용하여 다수의 기기를 무선 충전할 수 있는 멀티노드 무선 충전 베이스 스테이션 하드웨어 플랫폼과 그 에너지 전송부에 관한 것이다.The present invention relates to a wireless charging base station hardware platform, and more particularly, to a multi-node wireless charging base station hardware platform capable of wirelessly charging a plurality of devices using a magnetic resonance induction method and an energy transmitter thereof.
무선으로 에너지를 전달하는 무선 전력 전송 기술로서 자기유도 현상을 이용한 무선 충전 시스템이 사용되고 있다. As a wireless power transmission technology for wirelessly transmitting energy, a wireless charging system using magnetic induction is used.
예컨대, 전동칫솔 또는 무선 면도기 등이 전자기 유도의 원리로 충전되며, 최근에는 전자기 유도를 이용하여 휴대전화나 PDA, MP3 플레이어, 노트북 컴퓨터와 같은 휴대기기를 충전할 수 있는 무선충전제품들이 출시되고 있다. For example, electric toothbrushes or wireless shavers are charged with the principle of electromagnetic induction. Recently, wireless charging products for charging mobile devices such as mobile phones, PDAs, MP3 players, and notebook computers using electromagnetic induction have been introduced. .
그러나, 하나의 코일에서 다른 코일로 자기장을 통해 전류를 유도하는 자기유도 방식은 코일 사이의 거리 및 상대적 위치에 매우 민감하여 두 코일 사이의 거리가 약간 떨어지거나 틀어져도 전송 효율이 급속히 떨어진다. 이에 따라 이러한 자기유도 방식의 충전 시스템은 수 cm 이하의 근거리에서만 사용할 수 있다는 약점이 있다.However, the magnetic induction method of inducing current through a magnetic field from one coil to another is very sensitive to the distance and relative position between the coils, so that the transmission efficiency drops rapidly even if the distance between the two coils is slightly dropped or twisted. Accordingly, this magnetic induction charging system can only be used in a short distance of several cm or less.
한편, 미국특허 7,741,735호에서는 공진장의 감쇄파 결합에 기반을 둔 비방사형 에너지 전달 방식을 개시하고 있다. 이는 두 개의 동일한 주파수를 갖는 공진체가 주위의 다른 비공진체와는 영향을 미치지 않지만 서로 커플링하려는 경향을 가지는 점을 이용한 것으로 기존의 전자기 유도에 비하여 먼 거리까지 에너지를 전달할 수 있는 기술로서 소개되고 있다. On the other hand, US Patent 7,741,735 discloses a non-radiative energy transfer method based on the attenuation wave coupling of the resonant field. This is because two resonators with the same frequency do not affect other non-resonators around them, but they tend to couple with each other and are introduced as a technology that can transfer energy over a long distance compared to conventional electromagnetic induction. .
그러나 공진을 이용하여 무선으로 에너지를 전송하는 시스템에서 다수의 수신측이 있을 경우에는 공진이 이루어지는 모든 수신측 기기로 전력이 전송되어 비효율적이다. However, when there are a plurality of receivers in a system for transmitting energy wirelessly using resonance, power is transmitted to all receiver apparatuses where resonance occurs, which is inefficient.
본 발명은 상술한 바와 같은 기술적 배경에서 안출된 것으로서, 다수의 무선 충전기기를 대상으로 효율적인 충전을 제공할 수 있는 자기공진유도 방식의 멀티노드 무선 충전 베이스 스테이션 하드웨어 플랫폼과 그 에너지 전송부를 제공하는 것을 그 과제로 한다.SUMMARY OF THE INVENTION The present invention has been made in view of the above technical background, and provides a self-resonant multi-node wireless charging base station hardware platform capable of providing efficient charging for a plurality of wireless chargers and an energy transmitter thereof. It is a task.
본 발명의 다른 과제는 자기장 통신을 이용하여 다수의 노드를 효율적으로 충전할 수 있는 자기공진유도 방식의 멀티노드 무선 충전 베이스 스테이션 하드웨어 플랫폼과 그 에너지 전송부를 제공하고자 하는 것이다.Another object of the present invention is to provide a magnetic resonance-induced multi-node wireless charging base station hardware platform and its energy transmitter capable of efficiently charging a plurality of nodes using magnetic field communication.
이와 같은 과제를 해결하기 위하여 본 발명에서는 다수의 무선 충전기기로 자기공진유도 방식으로 전력을 송신하는 멀티노드 무선 충전 베이스 스테이션이 제공되는바, 본 발명의 일면에 따른 멀티노드 무선 충전 베이스 스테이션은, 상기 무선 충전 베이스 스테이션의 주요기능을 제어하기 위한 MCU, 상기 MCU에 클럭을 제공하는 클럭 생성기, 무선 충전을 위한 전력 공급원인 전원을 제어하는 전원 제어부 및 통신 제어부를 포함하는 플랫폼 제어 모듈과, 부하에 따른 최적화된 상태로 전력 전송을 제어하는 최적화부와 에너지 전송부 및 통신부를 포함하는 충전 통신 융합 하드웨어 모듈과, 에너지를 무선 전송하는 안테나와 상기 에너지 전송부와 상기 안테나 사이의 인터페이스를 제공하는 안테나 인터페이스부를 포함하는 안테나 모듈을 포함하여 이루어진다.In order to solve the above problems, the present invention provides a multi-node wireless charging base station that transmits power in a self-resonance induction manner to a plurality of wireless chargers. The multi-node wireless charging base station according to an aspect of the present invention includes: A platform control module including an MCU for controlling main functions of a wireless charging base station, a clock generator for providing a clock to the MCU, a power control unit for controlling a power source as a power supply for wireless charging, and a communication control unit, A charging communication fusion hardware module including an optimizer for controlling power transmission in an optimized state and an energy transmitter and a communication unit, an antenna interface unit providing an antenna for wirelessly transmitting energy, and an interface between the energy transmitter and the antenna. This includes the antenna module included Eojinda.
여기에서, 상기 통신 제어부는 USB/RS-232/Ethernet 인터페이스를 제공하는 USB/RS-232/Ethernet 통신 블록과 자기장 통신 인터페이스를 제공하는 자기장 통신 블록을 포함할 수 있으며, 상기 최적화부는 상기 무선 충전 베이스 스테이션과 충전하고자 하는 상기 무선 충전기기 사이의 공진효율을 개선하기 위한 공진효율 개선부와 상기 무선 충전 베이스 스테이션과 충전하고자 하는 상기 무선 충전기기 사이에서 자기공진유도 방식으로 전달되는 무선 전력 이외의 에너지 방출을 최소화하는 비의도 에너지 방출 최소화부를 포함할 수 있다. Herein, the communication control unit may include a USB / RS-232 / Ethernet communication block providing a USB / RS-232 / Ethernet interface and a magnetic field communication block providing a magnetic field communication interface, and the optimizer includes the wireless charging base. Emission of energy other than wireless power transmitted in a magnetic resonance induction method between the resonance efficiency improving unit for improving the resonance efficiency between the station and the wireless charger to be charged and the wireless charging base station and the wireless charger to be charged It may include an unintentional energy emission minimization unit to minimize the.
상기 에너지 전송부는 시스템 버스로 연결되는 다수의 슬롯을 포함하는 것이 바람직하며, 상기 다수의 슬롯은 LF LP(Low Frequency Low Power) 모드, LF HP(Low Frequency High Power) 모드, HF LP(High Frequency Low Power) 및 HF HP(High Frequency High Power) 모드 슬롯을 포함할 수 있다.Preferably, the energy transmitter includes a plurality of slots connected to a system bus, and the plurality of slots may include a low frequency low power (LF LP) mode, a low frequency high power (LF HP) mode, and a high frequency low HF LP. Power and HF High Frequency High Power (HP) mode slots.
또한, 상기 LF LP 모드 슬롯은 자기장 통신 블록을 포함하는 것이 바람직하며, 상기 다수의 슬롯 각각은 인버터 방식 또는 파워 앰프 방식의 에너지 전송 회로를 포함할 수 있다.In addition, the LF LP mode slot preferably includes a magnetic field communication block, each of the plurality of slots may include an inverter type or a power amplifier type energy transmission circuit.
상기 안테나 모듈은 듀얼 밴드 전송을 위하여 LF(Low Frequency) 안테나와 HF(High Frequency) 안테나를 포함하는 것이 바람직하다.The antenna module preferably includes a low frequency (LF) antenna and a high frequency (HF) antenna for dual band transmission.
본 발명의 다른 면에 따르면, 다수의 무선 충전기기로 자기공진유도 방식으로 전력을 송신하는 멀티노드 무선 충전 베이스 스테이션의 에너지 전송부가 제공되며, 이는 시스템 버스로 연결되는 다수의 슬롯에 장착하도록 형성된다.According to another aspect of the invention, there is provided an energy transmitter of a multi-node wireless charging base station that transmits power in a self-resonant manner to a plurality of wireless chargers, which are configured to be mounted in a plurality of slots connected to a system bus.
본 발명에 따르면, 자기공진유도 방식을 이용한 멀티노드 무선 충전 베이스 스테이션이 다수의 무선 충전기기를 효율적으로 충전할 수 있으며, 전체 멀티노드 무선 충전 시스템의 충전 과정을 효율적으로 관리할 수 있다. According to the present invention, the multi-node wireless charging base station using the magnetic resonance induction method can efficiently charge a plurality of wireless chargers, and can efficiently manage the charging process of the entire multi-node wireless charging system.
도 1은 본 발명의 실시예에 따른 자기공진유도 방식을 이용한 멀티노드 무선 충전 시스템의 전체 구성을 개략적으로 나타낸 블록도이다.1 is a block diagram schematically showing the overall configuration of a multi-node wireless charging system using a magnetic resonance induction method according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 무선 충전 베이스 스테이션의 구성을 자세히 나타낸 블록도이다.2 is a block diagram showing in detail the configuration of a wireless charging base station according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 무선 충전 베이스 스테이션의 구성을 기능블록으로 나타낸 것이다.Figure 3 shows the configuration of a wireless charging base station according to an embodiment of the present invention as a functional block.
도 4 내지 도 8은 본 발명의 실시예에 따른 무선 충전 시스템에서 무선 충전의 Link Budget을 위한 시스템 사양 분석과 시스템 Budget 설계를 위해 사용한 Simulink Model을 나타낸다. 4 to 8 illustrate a Simulink Model used for system specification analysis and system budget design for a link budget of wireless charging in a wireless charging system according to an embodiment of the present invention.
도 9는 본 발명의 실시예에 따른 무선 충전 베이스 스테이션의 에너지 전송부를 나타낸 블록도이다. 9 is a block diagram illustrating an energy transmitter of a wireless charging base station according to an embodiment of the present invention.
도 10 및 도 11은 도 9에 나타난 슬롯의 구성을 각각 나타내는 블록도이다. 10 and 11 are block diagrams showing the configuration of the slots shown in FIG. 9, respectively.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다. Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims. Meanwhile, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, “comprises” and / or “comprising” refers to the presence of one or more other components, steps, operations and / or elements. Or does not exclude additions.
이하에서, 첨부한 도면을 참고로 하여 본 발명의 실시예에 따른 자기공진유도 방식을 이용한 멀티노드 무선 충전 시스템에 대하여 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings, a multi-node wireless charging system using a magnetic resonance induction method according to an embodiment of the present invention will be described in detail.
도 1에 나타난 바와 같이, 본 발명의 실시예에 따른 자기공진유도 방식을 이용한 멀티노드 무선 충전 시스템은 자기공진유도 방식을 통해 무선으로 전력을 공급하는 무선 충전 베이스 스테이션(10)과, 무선 충전 베이스 스테이션(10)과 소정의 거리만큼 떨어진 곳에 위치하며 무선 충전 베이스 스테이션(10)으로부터 무선으로 전력을 공급받는 다수의 무선 충전기기(50_1, 50_2, .., 50_N)를 포함하여 구성된다. As shown in FIG. 1, the multi-node wireless charging system using the magnetic resonance induction method according to an embodiment of the present invention includes a wireless charging base station 10 that wirelessly supplies power through a magnetic resonance induction method, and a wireless charging base. A plurality of wireless chargers 50_1, 50_2,... 50_N, which are located at a predetermined distance from the station 10, and are wirelessly powered from the wireless charging base station 10, are included.
자기공진유도 방식은 송신 안테나와 수신 안테나 사이의 공진에 의하여 에너지의 무선 전송 효율을 극대화시키는 방법이다. 이를 위하여 무선 충전 베이스 스테이션(10)과 무선 충전기기(50_1, 50_2, .., 50_N) 사이의 공진 주파수를 맞추어 공진 채널을 형성하고 이를 통하여 무선 전력을 송신한다. Magnetic resonance induction is a method of maximizing the wireless transmission efficiency of energy by the resonance between the transmitting antenna and the receiving antenna. To this end, a resonance channel is formed by matching a resonance frequency between the wireless charging base station 10 and the wireless chargers 50_1, 50_2,..., 50_N, and transmits wireless power.
무선 충전 베이스 스테이션(10)은 무선 충전기기(50_1, 50_2, .., 50_N)와 자기장 통신을 통해 충전기기의 식별정보, 종류, 위치, 또는 충전상태를 포함하는 무선 충전기기(50_1, 50_2, .., 50_N)의 정보를 수신할 수 있으며, 이와 같은 충전 정보를 바탕으로 무선 충전기기(50_1, 50_2, .., 50_N)로 전력을 전송할 수 있다. The wireless charging base station 10 may communicate with the wireless chargers 50_1, 50_2,..., 50_N through the magnetic field communication, and may include the wireless chargers 50_1, 50_2, including identification information, type, location, or state of charge of the charger. ..., 50_N) may be received, and power may be transmitted to the wireless chargers 50_1, 50_2,..., 50_N based on the charging information.
무선 충전 베이스 스테이션(10)은 자기장 통신과 무선 충전을 동시에 수행하기 위하여 듀얼 밴드(고주파 대역 및 저주파 대역)로 구성된다. 저주파 밴드는 통상 자기장 통신과 원거리 충전을 위해 사용되며, 고주파 밴드는 고효율 충전을 위해 사용될 수 있다. 또한 저주파 및 고주파 밴드 각각에 대하여 저출력 및 고출력 모드를 사용하여 충전할 수 있다. The wireless charging base station 10 is composed of dual bands (high frequency band and low frequency band) to simultaneously perform magnetic field communication and wireless charging. Low frequency bands are typically used for magnetic field communication and remote charging, while high frequency bands can be used for high efficiency charging. In addition, the low frequency and high frequency bands can be charged using the low power and high power modes, respectively.
무선 충전 베이스 스테이션(10)은 고정형 또는 이동형으로 구현될 수 있으며, 고정형으로 구현될 경우 실내에서는 천장이나 테이블 등의 가구 등에 설치될 수 있고, 실외에서는 버스 정류장이나 지하철역 등에 임플란트 형식으로 설치될 수 있으며, 무선 충전 베이스 스테이션(10)이 차량이나 기차, 지하철과 같은 이동체의 내부에 설치될 수도 있다. 무선 충전 베이스 스테이션(10)이 이동형으로 구현되는 경우에는, 무선 충전 베이스 스테이션(10) 자체가 별도의 이동형 장치로 구현될 수도 있고, 노트북 컴퓨터의 덮개 등과 같이 다른 디지털 기기의 일부로서 구현될 수도 있다. Wireless charging base station 10 may be implemented in a fixed or mobile, if the fixed type can be installed indoors, such as the ceiling or table furniture, and in the outdoors can be installed in the form of implants such as bus stops and subway stations The wireless charging base station 10 may be installed inside a moving object such as a vehicle, a train or a subway. When the wireless charging base station 10 is implemented as a mobile, the wireless charging base station 10 itself may be implemented as a separate mobile device, or may be implemented as part of another digital device such as a cover of a notebook computer. .
무선 충전기기(50_1, 50_2, .., 50_N)는 각종 모바일 단말기, 디지털 카메라, 노트북 컴퓨터 등 배터리를 구비하는 모든 디지털 기기를 포함할 수 있으며, 지중, 수중, 건물 내부 등 접근이 용이하지 않은 곳에 배치되는 센서 및 계측기 등의 전자기기가 될 수도 있다. The wireless chargers 50_1, 50_2, .., 50_N may include all digital devices including batteries such as various mobile terminals, digital cameras, and notebook computers, and are not easily accessible to underground, underwater, and inside buildings. It may also be an electronic device such as a sensor and a measuring instrument.
도 2는 본 발명의 실시예에 따른 자기공진유도 방식을 이용한 멀티노드 무선 충전 시스템의 무선 충전 베이스 스테이션(10)의 구성을 자세히 나타낸 블록도이다.2 is a block diagram showing in detail the configuration of the wireless charging base station 10 of the multi-node wireless charging system using the magnetic resonance induction method according to an embodiment of the present invention.
도 2에 나타난 바와 같이, 본 발명의 실시예에 따른 무선 충전 베이스 스테이션(10)은 크게 플랫폼 제어모듈(100), 충전 통신 융합 하드웨어 모듈(200) 및 안테나 모듈(300)을 포함하여 이루어진다.As shown in FIG. 2, the wireless charging base station 10 according to the embodiment of the present invention includes a platform control module 100, a charging communication fusion hardware module 200, and an antenna module 300.
플랫폼 제어모듈(100)은 무선 충전 베이스 스테이션(10)의 주요기능을 제어하기 위한 MCU(120), Clock generator(110), 전원 제어부(140), 아날로그 제어부(150), 디버깅과 상태 모니터링 등을 위한 표시부(LCD)(160) 및 통신 제어부(130)를 포함한다. 통신 제어부(130)는 USB/RS-232/Ethernet 인터페이스를 제공하는 블록(132)과 자기장 통신 인터페이스를 제공하는 블록(134)을 포함한다.The platform control module 100 controls the MCU 120, the clock generator 110, the power controller 140, the analog controller 150, debugging and status monitoring for controlling the main functions of the wireless charging base station 10. A display unit (LCD) 160 and a communication control unit 130. The communication control unit 130 includes a block 132 for providing a USB / RS-232 / Ethernet interface and a block 134 for providing a magnetic field communication interface.
충전 통신 융합 하드웨어 모듈(200)은 최적화된 충전을 제공하기 위한 최적화부(210), 통신부(220) 및 에너지 전송부(230)를 포함한다. 최적화부(210)는 부하에 따른 최적화된 상태로 전력 전송을 제어하기 위하여 공진효율 개선부(212)와 비의도 에너지 방출 최소화부(214)를 포함한다. 통신부(220)는 아날로그 및 디지털 모듈(222, 224)을 포함하며, 에너지 전송부(230)는 충전 거리와 에너지 전송 효율, 지향성 극복 등의 효율적인 충전을 위하여 LF 및 HF 모듈(232, 234)을 포함한다. The charging communication fusion hardware module 200 includes an optimizer 210, a communicator 220, and an energy transmitter 230 to provide optimized charging. The optimizer 210 includes a resonance efficiency improver 212 and an unintentional energy emission minimizer 214 to control power transmission in an optimized state according to a load. The communication unit 220 includes analog and digital modules 222 and 224, and the energy transmitter 230 uses the LF and HF modules 232 and 234 for efficient charging such as charging distance, energy transmission efficiency and directivity. Include.
안테나 모듈(300)은 충전 통신 융합 하드웨어 모듈(200)의 에너지 전송부(230)와 안테나(320) 사이의 인터페이스를 제공하는 안테나 인터페이스부(310)와 안테나(320)를 포함한다. 안테나 인터페이스부(310)는 다시 임피던스 매칭부(312)와 마그네틱 트랩퍼(314)를 포함하며, 안테나(320)는 듀얼 밴드 전송을 위해 LF 안테나(322)와 HF 안테나(324)를 포함한다.The antenna module 300 includes an antenna interface 310 and an antenna 320 that provide an interface between the energy transmitter 230 and the antenna 320 of the charging communication fusion hardware module 200. The antenna interface 310 again includes an impedance matching unit 312 and a magnetic trapper 314, and the antenna 320 includes an LF antenna 322 and an HF antenna 324 for dual band transmission.
도 3은 본 발명의 실시예에 따른 자기공진유도 방식을 이용한 멀티노드 무선 충전 시스템의 무선 충전 베이스 스테이션(10)의 구성을 기능블록으로 나타낸 것이다.Figure 3 shows the configuration of the wireless charging base station 10 of the multi-node wireless charging system using a magnetic resonance induction method according to an embodiment of the present invention as a functional block.
도 3에 나타난 바와 같이, 본 발명의 실시예에 따른 무선 충전 베이스 스테이션(10)은 무선 충전기기(50_1, 50_2, .., 50_N)의 최적 충전 모드를 선택하기 위하여 충전기기의 충전상태 정보를 분류하는 기능블록과 충전기기의 위치와 상황정보를 저장 및 판독하여 하드웨어에 설정된 리소스를 제어하는 기능블록을 갖는다.As shown in FIG. 3, the wireless charging base station 10 according to an embodiment of the present invention uses the charging state information of the charger to select the optimal charging mode of the wireless chargers 50_1, 50_2,..., 50_N. It has a functional block to classify and a functional block for controlling the resources set in the hardware by storing and reading the position and status information of the charger.
또, 최적 자기 공진 및 안테나 최적화를 위한 대역폭 변환기능과 LCR 제어회로를 내장한다. LF/HF 무선에너지 송수신 세기, 무선충전 채널 관측값, 충전기기의 위치 상황, 기기들의 충전정보와 간섭정보는 최적의 충전상황을 유지하기 위하여 상태 레지스터에 저장한다. 무선충전 통신융합 시스템의 베이스 스테이션은 LF와 HF 대역의 간섭을 최소화하여 최대 4개의 단말 노드의 동시 충전을 제공한다.It also incorporates a bandwidth conversion function and LCR control circuit for optimal magnetic resonance and antenna optimization. LF / HF wireless energy transmission / reception strength, wireless charging channel observation value, location status of charger, charging information and interference information of devices are stored in status register to maintain optimal charging status. The base station of the wireless charging communication convergence system provides simultaneous charging of up to four terminal nodes by minimizing interference of the LF and HF bands.
한편, 본 발명의 실시예에 따른 자기공진유도 방식을 이용한 멀티노드 무선 충전 시스템에서 원하는 충전 성능을 얻기 위해서는 주파수 대역, 출력 제어 방식, 출력 범위, 매칭 특성, 유효 충전거리 등의 관계를 주의깊게 고려하여야만 한다. On the other hand, in order to obtain a desired charging performance in the multi-node wireless charging system using the magnetic resonance induction method according to an embodiment of the present invention, carefully consider the relationship between the frequency band, output control method, output range, matching characteristics, effective charging distance, etc. You must do it.
전력 송신기, 즉 무선 충전 베이스 스테이션(10)에서 송신하는 전력은 수신 단말, 즉 무선 충전기기의 수신 상태와 거리를 감안하여 제어되어야 한다. 이렇게 계산된 송신 전력은 경로 손실을 거쳐 무선 충전기기의 안테나로 들어가고 매칭블록을 포함한 전단 블록의 손실을 거쳐 아날로그 전력 수신부로 들어간다. 이 신호는 Voltage Multiplier와 Rectifier를 거처 DC-DC Converter에서 전력 수신부의 수신 특성을 얻게되는데, 이때의 효율 특성이 주요성능을 결정짓게 된다. 안정적인 DC 특성과 배터리 공급을 위한 특성은 LDO Regulator와 Charger 및 Battery Interface를 통해 Battery로 입력된다.The power transmitted from the power transmitter, i.e., the wireless charging base station 10, should be controlled in consideration of the reception state and distance of the receiving terminal, i.e., the wireless charger. The calculated transmission power enters the antenna of the wireless charger through the path loss and enters the analog power receiver through the loss of the front end block including the matching block. This signal obtains the reception characteristics of the power receiver in the DC-DC converter through the voltage multiplier and rectifier, and the efficiency characteristic at this time determines the main performance. Stable DC characteristics and characteristics for battery supply are input to the battery through the LDO regulator, charger and battery interface.
본 발명의 실시예에 따른 자기공진유도 방식을 이용한 멀티노드 무선 충전 시스템의 무선 충전 베이스 스테이션에서는, 무선 충전의 Link Budget을 위한 시스템 사양 분석과 시스템 Budget 설계를 위해 Matlab Simulink Tool을 이용한 베이스 스테이션 플랫폼에 필요한 환경변수를 제어하여 전력전송 기능을 수행할 수 있도록 모델링하였다. In the wireless charging base station of the multi-node wireless charging system using the magnetic resonance induction method according to the embodiment of the present invention, the system specification analysis for the Link Budget of wireless charging and the base station platform using the Matlab Simulink Tool for system budget design It is modeled to perform power transmission function by controlling necessary environmental variables.
도 4는 Link Budget을 위한 Simulink Model을 나타낸다. 도 5는 통신블록의 Simulink Model을 보여주고, 도 6은 Simulink 블록 구성도를 나타낸다. 4 shows a Simulink Model for Link Budget. 5 shows a Simulink Model of a communication block, and FIG. 6 shows a block diagram of a Simulink block.
메인 시스템 블록, 모듈 인터페이스를 위한 슬롯, 전력 송신 모듈, 데이터 송수신 모듈, 매칭 회로 블록, 안테나 블록 등의 구성에 있어서 효율을 고려하여야 하며, 베이스 스테이션과 충전 디바이스 간의 효율적인 충전을 위하여 통신과 충전 대역의 동작을 보장할 수 있어야 한다.Efficiency should be considered in the configuration of the main system block, slot for module interface, power transmission module, data transmission / reception module, matching circuit block, antenna block, and the like. Operation must be guaranteed.
도 4에서 나타난 바와 같이, LF/HF 수전부에서 4W 이상의 충분한 파워를 수신하기 위해서는 출력 파워의 세기, 매칭회로 특성, 유효충전 거리에 민감한 특성을 나타내고, 송전부의 출력파워를 6W에서 20W까지 충분한 power-control이 이뤄져야 함을 알 수 있다. 이때의 RF-frontend 모듈의 손실은 각각의 환경변수에 따라 50% 이상의 손실을 나타낼 수 있다. 따라서, 플랫폼에서 측정치를 입력받아서 충분한 Iteration을 통해 최적화하는 작업이 필수적이다. As shown in FIG. 4, in order to receive sufficient power of 4 W or more in the LF / HF power receiver, the power is sensitive to output strength, matching circuit characteristics, and effective charging distance, and the output power of the transmitter is sufficient from 6 W to 20 W. It can be seen that power-control should be achieved. At this time, the loss of the RF-frontend module can represent more than 50% of loss according to each environment variable. Therefore, it is essential to take measurements from the platform and optimize them through sufficient iteration.
도 7은 환경변수에 따른 LF Simulink 모델링을 보여준다. RF-frontend 모듈의 손실은 매칭특성에 따라 가변될 수 있도록 설정되었고, Power Loop Control 블록의 손실을 0으로 가정한다.7 shows LF Simulink modeling according to environment variables. The loss of the RF-frontend module is set to be variable according to the matching characteristics, and the loss of the Power Loop Control block is assumed to be zero.
도 8는 HF Simulink 모델링을 보여준다. 수전부 파라미터는 실제 implementation시 나타나는 예측치 못하는 수신 특성의 손실 등을 모두 여기에 넣을 수가 있다. 그러나, 실측치와 모의실험의 상이함을 최대한 줄이기 위하여 실제 측정된 값을 환경변수로 입력받아 반복 모의실험을 수행한다.8 shows HF Simulink modeling. The faucet parameter can contain all of the unforeseen loss of reception characteristics during actual implementation. However, in order to minimize the difference between the measured value and the simulation, the repeated simulation is performed by receiving the actual measured value as the environmental variable.
Simulink 모델과 Link Budget을 통해 LF 대역과 HF 대역에서 필요한 베이스 스테이션 플랫폼의 주요사양을 다음의 [표 1]로 정리하였다. Through the Simulink model and the Link Budget, the main specifications of the base station platform needed in the LF band and the HF band are summarized in the following [Table 1].
표 1
항목 세부항목 사양 비고
LF 밴드 주파수 범위 20kHz-1MHz 전력 송신시 125kHz
출력 제어 방식 가변 DUTY PWM
출력 범위 6W-20W 가변, Slot type
전력변환효율 >70% DC to RF 기준
유효충전거리 >0.2m
통신 변조 PSK 자기장 통신 규격
통신 전송거리 >1m
HF 밴드 주파수 범위 6MHz-20MHz 전력 송신시 13.56MHz
출력 제어 방식 가변 DUTY
전력변환효율 >70% DC to RF 기준
출력 범위 6W-20W 가변, Slot type
유효충전거리 >0.2m
공통사항 외부 Interface Ethernet USB option
내부 Interface RS-232 Android 기반 P/F ↔메인보드
전원 24V DC, 5A3.5Φ잭 최대10A option
메인보드 전원 24V 동작전원
5V, 3.3V 시스템 전원
모듈 전원 24V 메인 앰프 전원
5V 주변회로 전원
OS Android
Display LCD
모듈용 Slot 수 4개
출력 커넥터 50ohm BNC Femail
Table 1
Item Details Specification Remarks
LF band Frequency range 20 kHz-1 MHz 125 kHz for power transmission
Output control method Variable Duty PWM
Output range 6W-20W Variable, Slot type
Power conversion efficiency > 70% DC to RF standard
Effective charging distance > 0.2m
Communication modulation PSK Magnetic Field Communication Specification
Communication distance > 1m
HF band Frequency range 6 MHz-20 MHz 13.56 MHz for power transmission
Output control method Variable duty
Power conversion efficiency > 70% DC to RF standard
Output range 6W-20W Variable, Slot type
Effective charging distance > 0.2m
Common External Interface Ethernet USB option
Internal Interface RS-232 Android-based P / F ↔ Mainboard
power 24V DC, 5A3.5Φ Jack 10A option
Motherboard power 24V Operating power
5V, 3.3V System power
Module power 24V Main amplifier power
5 V Peripheral Circuit Power
OS Android
Display LCD
Slot number for module Four
Output connector 50ohm BNC Femail
[표 1]에 나타난 바와 같이, 본 발명의 실시예에 따른 무선 충전 베이스 스테이션(10)은 LF 밴드에서 20kHz 내지 1MHz의 주파수 범위에서 6W 내지 20W의 전력을 송신할 때 70% 이상의 전력변환효율을 갖고, 0.2 m 이상의 유효 충전 거리를 얻을 수 있으며 통신 전송 거리는 1m 이상이다. 또한, HF 밴드에서는 6MHz 내지 20MHz의 주파수 범위에서 6W 내지 20W의 전력을 송신할 때 70% 이상의 전력변환효율을 갖고, 0.2 m 이상의 유효 충전 거리를 얻을 수 있다.As shown in Table 1, the wireless charging base station 10 according to an embodiment of the present invention has a power conversion efficiency of 70% or more when transmitting power of 6W to 20W in the frequency range of 20kHz to 1MHz in the LF band. With this, an effective charging distance of 0.2 m or more can be obtained and the communication transmission distance is 1 m or more. In addition, the HF band has a power conversion efficiency of 70% or more and transmits an effective charging distance of 0.2 m or more when transmitting power of 6W to 20W in the frequency range of 6MHz to 20MHz.
도 9는 본 발명의 실시예에 따른 무선 충전 베이스 스테이션(10)의 에너지 전송부(230)를 좀 더 구체적으로 나타낸 도면이다.9 is a view showing in more detail the energy transmitter 230 of the wireless charging base station 10 according to an embodiment of the present invention.
에너지 전송부(230)는 입력된 주파수의 설정 데이터에 따른 캐리어를 생성하고 이를 RF 처리하여 안테나로 전송하는 블록이다. 본 발명의 실시예에 따른 무선 충전 베이스 스테이션(10)에서 LF 전력 전송 캐리어는 128kHz 대역을 사용하고, HF 전력 전송 캐리어는 13.5MHz 대역을 사용한다. The energy transmitter 230 is a block which generates a carrier according to the input data of the input frequency, RF-processes it, and transmits it to the antenna. In the wireless charging base station 10 according to the embodiment of the present invention, the LF power transmission carrier uses a 128 kHz band, and the HF power transmission carrier uses a 13.5 MHz band.
에너지 전송부(230)는 메인보드의 다수의 슬롯에 실탈장되는 방식으로 제작될 수 있으며, 도 9에 나타난 바와 같이, 각각 다른 대역 및 출력 모드를 갖는 다수의 슬롯이 실장될 수 있으며, 다수의 슬롯은 시스템 버스로 연결된다. The energy transmitter 230 may be manufactured in a manner of being mounted in a plurality of slots of the main board, and as shown in FIG. 9, a plurality of slots having different bands and output modes may be mounted, and a plurality of slots may be mounted. Slots connect to the system bus.
도 9에서는 첫번째 슬롯(232_1)에 LF LP(Low Frequency Low Power) 모드와 자기장 통신부가 할당되고, 두번째 슬롯(232_2)은 LF HP(Low Frequency High Power) 모드가 할당되며, 세번째 슬롯(234_1)과 네번째 슬롯(234_2)에는 각각 HF LP(High Frequency Low Power) 및 HF HP(High Frequency High Power) 모드가 할당되어 있다. In FIG. 9, a low frequency low power (LF LP) mode and a magnetic field communication unit are allocated to the first slot 232_1, and a second slot 232_2 is assigned a low frequency high power (LF HP) mode, and a third slot 234_1 The fourth slot 234_2 is assigned an HF LP (High Frequency Low Power) and HF HP (High Frequency High Power) mode, respectively.
이와 같은 슬롯의 수는 4개에 한정되지 않으며, 필요에 따라 줄이거나 늘릴 수 있음은 물론이다. The number of such slots is not limited to four, of course, can be reduced or increased as needed.
도 10 및 도 11은 도 9에 나타난 각 슬롯의 구성을 나타내는 블록도이다. 10 and 11 are block diagrams illustrating the configuration of each slot shown in FIG. 9.
도 10은 도 9의 첫번째 슬롯의 구성을 나타내는데, 도 10에 나타난 바와 같이, LF LP 에너지 전송 회로와 임피던스 매칭 회로가 포함되어 있으며, 자기장 통신을 위한 통신 모듈과 이의 임피던스 매칭 회로를 또한 포함하고 있다. FIG. 10 shows the configuration of the first slot of FIG. 9, and as shown in FIG. 10, an LF LP energy transmission circuit and an impedance matching circuit are included, and a communication module for magnetic field communication and an impedance matching circuit thereof are also included. .
도 11은 도 9의 두번째 내지 네번째 슬롯의 구성을 나타내는데, 도 10과 달리 자기장 통신 기능을 위하여 사용되지 않고 에너지 전송을 위해서만 사용되므로 에너지 전송 회로와 이에 따른 임피던스 매칭 회로만을 포함한다.FIG. 11 shows the configuration of the second to fourth slots of FIG. 9, and unlike FIG. 10, only the energy transmission circuit and the impedance matching circuit are included since they are used only for energy transmission.
한편, 도 10의 에너지 전송 회로는 인버터 방식을 사용하는 것으로 도시되어 있고, 도 11의 에너지 전송 회로는 파워 앰프(PA: Power Amplifier) 방식을 사용하는 것으로 도시되어 있지만, 에너지 전송 회로의 구성이 반드시 도 10 및 도 11에 도시된 구성을 따라야 하는 것은 아니며, 에너지 전송부의 각 슬롯에 대하여 인버터 방식 또는 파워 앰프 방식이 필요에 따라 적절히 선택되어 사용될 수 있다. Meanwhile, although the energy transmission circuit of FIG. 10 is shown as using an inverter method, and the energy transmission circuit of FIG. 11 is shown as using a power amplifier (PA) method, the configuration of the energy transmission circuit is necessarily. It is not necessary to follow the configurations shown in FIGS. 10 and 11, and an inverter method or a power amplifier method may be appropriately selected and used for each slot of the energy transmitter.
이상에서 바람직한 실시예를 기준으로 본 발명을 설명하였지만, 본 발명의 장치 및 방법은 반드시 상술된 실시예에 제한되는 것은 아니며 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서, 첨부된 특허청구의 범위는 본 발명의 요지에 속하는 한 이러한 수정이나 변형을 포함할 것이다. Although the present invention has been described above with reference to preferred embodiments, the apparatus and method of the present invention are not necessarily limited to the above-described embodiments, and various modifications and variations can be made without departing from the spirit and scope of the invention. Accordingly, the appended claims will include such modifications and variations as long as they fall within the spirit of the invention.

Claims (12)

  1. 다수의 무선 충전기기로 자기공진유도 방식으로 전력을 송신하는 멀티노드 무선 충전 베이스 스테이션 하드웨어 플랫폼으로서,A multi-node wireless charging base station hardware platform that transmits power in a self-resonant manner to multiple wireless chargers.
    상기 무선 충전 베이스 스테이션의 주요기능을 제어하기 위한 MCU, 상기 MCU에 클럭을 제공하는 클럭 생성기, 무선 충전을 위한 전력 공급원인 전원을 제어하는 전원 제어부 및 통신 제어부를 포함하는 플랫폼 제어 모듈과,A platform control module including a MCU for controlling main functions of the wireless charging base station, a clock generator for providing a clock to the MCU, a power control unit for controlling a power source that is a power supply source for wireless charging, and a communication control unit;
    부하에 따른 최적화된 상태로 전력 전송을 제어하는 최적화부와 에너지 전송부 및 통신부를 포함하는 충전 통신 융합 하드웨어 모듈과,A charging communication fusion hardware module including an optimizer for controlling power transmission in an optimized state according to a load, an energy transmitter, and a communication unit;
    에너지를 무선 전송하는 안테나와 상기 에너지 전송부와 상기 안테나 사이의 인터페이스를 제공하는 안테나 인터페이스부를 포함하는 안테나 모듈을 포함하는 멀티노드 무선 충전 베이스 스테이션 하드웨어 플랫폼.A multi-node wireless charging base station hardware platform comprising an antenna module including an antenna for wirelessly transmitting energy and an antenna interface for providing an interface between the energy transmitter and the antenna.
  2. 제1항에 있어서, 상기 통신 제어부는,The method of claim 1, wherein the communication control unit,
    USB/RS-232/Ethernet 인터페이스를 제공하는 USB/RS-232/Ethernet 통신 블록과 자기장 통신 인터페이스를 제공하는 자기장 통신 블록을 포함하는 멀티노드 무선 충전 베이스 스테이션 하드웨어 플랫폼.Multi-node wireless charging base station hardware platform comprising a USB / RS-232 / Ethernet communication block providing a USB / RS-232 / Ethernet interface and a magnetic field communication block providing a magnetic field communication interface.
  3. 제1항에 있어서, 상기 최적화부는, The method of claim 1, wherein the optimizer,
    상기 무선 충전 베이스 스테이션과 충전하고자 하는 상기 무선 충전기기 사이의 공진효율을 개선하기 위한 공진효율 개선부와 상기 무선 충전 베이스 스테이션과 충전하고자 하는 상기 무선 충전기기 사이에서 자기공진유도 방식으로 전달되는 무선 전력 이외의 에너지 방출을 최소화하는 비의도 에너지 방출 최소화부를 포함하는 멀티노드 무선 충전 베이스 스테이션 하드웨어 플랫폼.Wireless power delivered in a self-resonance induction method between the wireless charging base station and the wireless charging base station and the wireless charging base station to improve the resonant efficiency between the wireless charging base station and the wireless charger to charge A multi-node wireless charging base station hardware platform comprising an unintentional energy release minimizer that minimizes other energy emissions.
  4. 제1항에 있어서, 상기 에너지 전송부는, The method of claim 1, wherein the energy transmission unit,
    시스템 버스로 연결되는 다수의 슬롯을 포함하는 멀티노드 무선 충전 베이스 스테이션 하드웨어 플랫폼.Multi-node wireless charging base station hardware platform with multiple slots connected to the system bus.
  5. 제4항에 있어서, 상기 다수의 슬롯은,The method of claim 4, wherein the plurality of slots,
    LF LP(Low Frequency Low Power) 모드, LF HP(Low Frequency High Power) 모드, HF LP(High Frequency Low Power) 및 HF HP(High Frequency High Power) 모드 슬롯을 포함하는 멀티노드 무선 충전 베이스 스테이션 하드웨어 플랫폼.Multi-node wireless charging base station hardware platform with low frequency low power (LF LP) mode, low frequency high power (LF HP) mode, high frequency low power (HF LP), and high frequency high power (HF HP) mode slots .
  6. 제5항에 있어서, 상기 LF LP 모드 슬롯은,The method of claim 5, wherein the LF LP mode slot,
    자기장 통신 블록을 포함하는 멀티노드 무선 충전 베이스 스테이션 하드웨어 플랫폼.A multi-node wireless charging base station hardware platform comprising a magnetic field communication block.
  7. 제1항에 있어서, 상기 다수의 슬롯 각각은,The method of claim 1, wherein each of the plurality of slots,
    인버터 방식 또는 파워 앰프 방식의 에너지 전송 회로를 포함하는 멀티노드 무선 충전 베이스 스테이션 하드웨어 플랫폼.A multi-node wireless charging base station hardware platform that includes an inverter or power amplifier energy transfer circuit.
  8. 제1항에 있어서, 상기 안테나 모듈은,The method of claim 1, wherein the antenna module,
    듀얼 밴드 전송을 위하여 LF(Low Frequency) 안테나와 HF(High Frequency) 안테나를 포함하는 멀티노드 무선 충전 베이스 스테이션 하드웨어 플랫폼.Multi-node wireless charging base station hardware platform that includes a low frequency (LF) antenna and a high frequency (HF) antenna for dual band transmission.
  9. 다수의 무선 충전기기로 자기공진유도 방식으로 전력을 송신하는 멀티노드 무선 충전 베이스 스테이션의 에너지 전송부로서,An energy transmitter of a multi-node wireless charging base station that transmits power in a magnetic resonance induction manner to a plurality of wireless chargers,
    시스템 버스로 연결되는 다수의 슬롯에 장착하도록 형성된 멀티노드 무선 충전 베이스 스테이션의 에너지 전송부.An energy transmitter of a multi-node wireless charging base station configured to be mounted in a plurality of slots connected to a system bus.
  10. 제9항에 있어서, 상기 다수의 슬롯은,The method of claim 9, wherein the plurality of slots,
    LF LP(Low Frequency Low Power) 모드, LF HP(Low Frequency High Power) 모드, HF LP(High Frequency Low Power) 및 HF HP(High Frequency High Power) 모드 슬롯을 포함하는 멀티노드 무선 충전 베이스 스테이션의 에너지 전송부.Energy from a multi-node wireless charging base station that includes low frequency low power (LF LP) mode, low frequency high power (LF HP) mode, high frequency low power (HF LP), and high frequency high power (HF HP) mode slots. Transmission unit.
  11. 제10항에 있어서, 상기 LF LP 모드 슬롯은,The method of claim 10, wherein the LF LP mode slot,
    자기장 통신 블록을 포함하는 멀티노드 무선 충전 베이스 스테이션의 에너지 전송부.An energy transmitter of a multi-node wireless charging base station comprising a magnetic field communication block.
  12. 제9항에 있어서, 상기 다수의 슬롯 각각은,The method of claim 9, wherein each of the plurality of slots,
    인버터 방식 또는 파워 앰프 방식의 에너지 전송 회로를 포함하는 멀티노드 무선 충전 베이스 스테이션의 에너지 전송부.An energy transmission unit of a multi-node wireless charging base station including an inverter type or a power amplifier type energy transfer circuit.
PCT/KR2011/000511 2011-01-24 2011-01-25 Hardware platform for a multi-node wireless charging base station, and energy transmission unit therefor WO2012102419A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110006850A KR101225089B1 (en) 2011-01-24 2011-01-24 Multi-node wireless charging base station hardware platform using magnetic resonance induction and energy transmission unit thereof
KR10-2011-0006850 2011-01-24

Publications (2)

Publication Number Publication Date
WO2012102419A1 WO2012102419A1 (en) 2012-08-02
WO2012102419A9 true WO2012102419A9 (en) 2012-11-15

Family

ID=46580978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000511 WO2012102419A1 (en) 2011-01-24 2011-01-25 Hardware platform for a multi-node wireless charging base station, and energy transmission unit therefor

Country Status (2)

Country Link
KR (1) KR101225089B1 (en)
WO (1) WO2012102419A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9294149B2 (en) * 2012-05-14 2016-03-22 Brewsterpearah Ventures Llc Integrated contactless connectivity platform for portable electronic devices
JP6273040B2 (en) 2014-04-11 2018-01-31 エルジー エレクトロニクス インコーポレイティド Wireless power transmitter and wireless power transmission method
KR20160025314A (en) 2014-08-27 2016-03-08 현대자동차주식회사 Wireless charging system for variable charging mode
KR102590943B1 (en) * 2016-09-01 2023-10-19 삼성전자주식회사 Apparatus and Method for Power Transmission

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7019617B2 (en) * 2002-10-02 2006-03-28 Battelle Memorial Institute Radio frequency identification devices, backscatter communication device wake-up methods, communication device wake-up methods and a radio frequency identification device wake-up method
US20070248877A1 (en) * 2006-03-31 2007-10-25 Qahoug Jaber A Gradient non-linear adaptive power architecture and scheme
US9178387B2 (en) * 2008-05-13 2015-11-03 Qualcomm Incorporated Receive antenna for wireless power transfer
JP2012501500A (en) * 2008-08-26 2012-01-19 クゥアルコム・インコーポレイテッド Parallel wireless power transfer and near field communication

Also Published As

Publication number Publication date
WO2012102419A1 (en) 2012-08-02
KR101225089B1 (en) 2013-01-22
KR20120085498A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
CN102355037B (en) For the device to multiple power receiving apparatus Wireless power transmission
US9225195B2 (en) Wireless power receiver for increased charging efficiency
WO2012169794A2 (en) Method of performing bidirectional communication between transmitter and receiver in wireless power transmission/reception system, the transmitter, and the receiver
WO2014137199A1 (en) Wireless power transmitter and method for controlling same
WO2013125849A1 (en) Wireless charging apparatus and method
WO2012169769A2 (en) Wireless power-transmission apparatus and system
US20140111018A1 (en) Wireless power transmitter and receiver, and method for transmitting emergency information in a wireless charging network
WO2011112064A2 (en) Method for wireless charging of a mobile terminal and mobile terminal for same
WO2014104813A1 (en) Method for controlling wireless power transmission in resonant wireless power transmission system, wireless power transmitting apparatus using same, and wireless power receiving apparatus using same
WO2014038862A1 (en) Wireless power transmitter for excluding cross-connected wireless power receiver and method for controlling the same
EP3072215A1 (en) Wireless charging apparatus and wireless charging method
WO2012091209A1 (en) Multi-node wireless power transmission system using magnetic resonance induction and wireless charging device
WO2013069951A4 (en) Wireless power transmission and receiving system capable of multi charge
CN104094500A (en) Wireless power transmitter, wireless power receiver, and control methods thereof
WO2012091208A1 (en) Multi-node wireless power transmission system based on battery information and method for charging same
WO2012102419A9 (en) Hardware platform for a multi-node wireless charging base station, and energy transmission unit therefor
KR101173947B1 (en) Method of sending switching instruction in multi-node wireless power transmission
WO2016114629A1 (en) Wireless power transmission device
WO2013172519A1 (en) Method and device for magnetic energy beamforming in wireless power transmission
WO2013048036A1 (en) Wireless power repeater and wireless power transmitter
KR101404013B1 (en) Mobile apparatus including wireless power transmission apparatus and wireless charging system
WO2016195218A1 (en) Wireless charging system
WO2012091207A1 (en) Multi-node wireless power transmission system using magnetic resonance induction and method for charging same
CN105024408A (en) Tandem-type wireless charging system and charging method thereof
WO2014065468A1 (en) Apparatus for supplying wireless power and electronic device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857325

Country of ref document: EP

Kind code of ref document: A1