WO2012102408A1 - Filtration filter and filtration filter production method - Google Patents

Filtration filter and filtration filter production method Download PDF

Info

Publication number
WO2012102408A1
WO2012102408A1 PCT/JP2012/052191 JP2012052191W WO2012102408A1 WO 2012102408 A1 WO2012102408 A1 WO 2012102408A1 JP 2012052191 W JP2012052191 W JP 2012052191W WO 2012102408 A1 WO2012102408 A1 WO 2012102408A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
filter
layer
filtration
nanoparticle
Prior art date
Application number
PCT/JP2012/052191
Other languages
French (fr)
Japanese (ja)
Inventor
剛 守屋
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020137019878A priority Critical patent/KR20140005938A/en
Priority to CN2012800037861A priority patent/CN103228343A/en
Publication of WO2012102408A1 publication Critical patent/WO2012102408A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00413Inorganic membrane manufacture by agglomeration of particles in the dry state by agglomeration of nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0074Inorganic membrane manufacture from melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • B01D69/14111Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix with nanoscale dispersed material, e.g. nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/58Fusion; Welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/023Dense layer within the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00413Materials having an inhomogeneous concentration of ingredients or irregular properties in different layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Definitions

  • the present invention relates to a filter for filtration and a method for producing the filter for filtration, and more particularly to a filter for filtration based on a ceramic sintered body and a method for producing the filter for filtration.
  • the reverse osmosis membrane has a polymer membrane as its main component, so its strength is low, and it will be broken if a pressure is applied to the sewage or seawater (primary pressure) to increase the purification efficiency and a load is applied. There is a problem.
  • a filter made of a porous ceramic body is manufactured by compressing a plurality of particles of metal oxide having a relatively large diameter and bonding them together at a high temperature.
  • a through hole having a diameter larger than a desired diameter may be accidentally formed, and there is still a concern regarding removal of contaminants and salt.
  • viruses of several tens of nanometers in sewage for example, influenza viruses of about 50 nm, picoviruses and parpoviruses of about 20 nm exist, but these viruses pass through a through-hole having a diameter of several tens of nm. There is a risk of doing.
  • An object of the present invention is to provide a filter for filtration and a method for producing the filter for filtration that can easily obtain clean water and fresh water while ensuring rigidity.
  • a plurality of ceramic particles mainly composed of a metal oxide are sintered, and a gap between the ceramic particles is 50 nm to 500 nm. And at least two ceramic layers that are adjusted to each other, and a nanoparticle layer that is formed by melt-bonding a large number of nanoparticles having a particle diameter of 3 nm to 5 nm to each other by heat treatment and sandwiched between two adjacent ceramic layers.
  • the filter for filtration characterized by this is provided.
  • the nanoparticle layer partially penetrates the ceramic layer.
  • each of the nanoparticles preferably has a major axis of 5 nm or less and a minor axis of 3 nm or more.
  • the nanoparticle layer is interposed between two adjacent ceramic layers.
  • the nanoparticle distribution step a large number of nanoparticles having a particle diameter of 3 nm to 5 nm are distributed so as to cover the surface of the generated second ceramic layer, After the ceramic layer generation step, the nanoparticle distribution step, the nanoparticle layer generation step, and the second ceramic layer generation step are preferably repeated a predetermined number of times in this order.
  • a large number of ceramic particles mainly composed of metal oxide are joined together, and the gap between the ceramic particles is adjusted to 50 nm to 500 nm.
  • a ceramic layer generating step for generating a ceramic layer, and a filter filter precursor for forming a filter filter precursor by distributing a large number of nanoparticles having a particle size of 3 nm to 5 nm so as to cover the surface of the generated ceramic layer The two filtration filter precursors formed in the formation step and the filtration filter precursor formation step are bonded together so that the surfaces on which the plurality of nanoparticles are distributed are in contact with each other.
  • the nanoparticle layer is sandwiched between two ceramic layers produced by sintering ceramic particles, the rigidity of the filter for filtration can be secured, and the particle size is 3 nm to 5 nm. Since a nanoparticle layer is formed by melt-bonding a large number of nanoparticles to each other by heat treatment, the size of the gap between each nanoparticle can be set to several nanometers or less. Holes can be generated. As a result, it is possible to eliminate the necessity of using a distillation method or the like for purification of clean water or fresh water, and thus easy to obtain clean water or fresh water.
  • a plurality of ceramic particles mainly composed of a metal oxide are joined together to form a first ceramic layer, and a large number of so as to cover the surface of the generated first ceramic layer.
  • the nanoparticles are distributed, the distributed many nanoparticles are melt-bonded to each other by heat treatment to form a nanoparticle layer, and the ceramic particles are distributed to cover the surface of the generated nanoparticle layer, Moreover, since the second ceramic layer is produced by bonding them together, a filter for filtration having a through hole having a diameter of several nm can be easily obtained.
  • FIG. 1 is a partially enlarged cross-sectional view schematically showing a configuration of a filter for filtration according to the present embodiment.
  • a filter 10 for filtration is formed on a surface of a first ceramic layer 12 made of a large number of ceramic particles 11 made of a metal oxide, for example, silica (SiO 2 ), and the first ceramic layer 12. And a nanoparticle layer 14 composed of a large number of nanoparticles 13.
  • the first ceramic layer 12 is generated by sintering a large number of ceramic particles 11 having a particle size of several hundred nm or more. If the pressure applied to a large number of ceramic particles 11 during sintering is set to be relatively large, a part of each ceramic particle 11 is crushed or the like, so that the contact portion of each ceramic particle 11 with other ceramic particles 11 , The contact area is melted and joined to other ceramic particles 11. Therefore, in the present embodiment, the set value of the pressure applied to the large number of ceramic particles 11 is increased. Thereby, in the 1st ceramic layer 12, the contact area between each ceramic particle
  • the set value of the pressure applied to increase the rigidity is increased as described above, in the first ceramic layer 12, a part of each ceramic particle 11 is crushed, so the gap 16 between each ceramic particle 11.
  • the shape of is irregular, but by adjusting the pressure applied to each ceramic particle 11, the representative length of the gap 16 between each ceramic particle 11, that is, two ceramic particles facing each other via the gap 16 11 is adjusted to 50 nm to 500 nm.
  • the typical length of the gap 17 between the nanoparticles 13 is about 2 nm.
  • the maximum diameter d of the particles 18 that can pass through the gap 17 is about 0.7 nm.
  • the representative length of the gap 17 between each nanoparticle 13 is 2 nm or less, and the particles 18 that can pass through the gap 17. The maximum diameter is 0.7 nm or less.
  • the nanoparticles 13 need to be made of a material whose surface is partially melted at a high temperature.
  • the nanoparticles 13 are made of ceramic (including silica), quartz, various metals, or an organic polymer (polyethylene latex polymer or the like). Is preferred.
  • the nanoparticles 13 are made of silver, since the silver has a bactericidal action, the filter 10 for filtration can provide clean water and fresh water that are completely sterilized.
  • the size of the nanoparticles 13 is 3 nm to 5 nm, it enters the gap 16 of the first ceramic layer 12, particularly the gap 16 existing on the surface. As a result, a part of the nanoparticle layer 14 penetrates the first ceramic layer 12.
  • a large number of ceramic particles 11 are sealed in a predetermined mold, and a predetermined pressure is applied at a high temperature to perform sintering to obtain a first ceramic layer 12.
  • a predetermined pressure is applied at a high temperature to perform sintering to obtain a first ceramic layer 12.
  • the nanoparticles 13 are melt-bonded to each other by heat treatment to obtain the nanoparticle layer 14.
  • the filter for filtration 10 having a predetermined shape is cut out from the laminated body in which the first ceramic layer 12 and the nanoparticle layer 14 are laminated, and this processing is finished.
  • the filter 10 for filtration when a large number of ceramic particles 11 are sintered, a part of each ceramic particle 11 is crushed to increase the contact area between the ceramic particles 11. Therefore, the bonding force between the ceramic particles 11 can be increased, and the rigidity of the first ceramic layer 12 can be improved. As a result, the rigidity of the filter 10 for filtration can be ensured.
  • the representative length of the gaps 17 between the nanoparticles 13 should be set to 2 nm or less. Accordingly, a through hole having a diameter of 2 nm can be generated in the filter 10 for filtration. As a result, if the filter for filtration 10 is used, it is not necessary to use a distillation method or the like for purification of clean water or fresh water, so that clean water or fresh water can be easily obtained.
  • the filter 10 for filtration a part of the nanoparticle layer 14 partially penetrates the first ceramic layer 12, so that the bonding force between the first ceramic layer 12 and the nanoparticle layer 14 can be increased.
  • the occurrence of delamination in the filter for filtration 10 can be prevented, and the rigidity of the entire filter for filtration 10 can be improved.
  • each nanoparticle 13 constituting the nanoparticle layer 14 has a true spherical shape, and the particle diameter thereof is 3 nm to 5 nm.
  • each nanoparticle layer 14 has a true spherical shape. There is no need, and a shape that fits in a rectangle, for example, an elliptical shape having a major axis of 5 nm or less and a minor axis of 3 nm or more may be used.
  • a large number of ceramic particles 11 are joined together to form a first ceramic layer 12, and the surface of the generated first ceramic layer 12 is formed.
  • a large number of nanoparticles 13 are distributed so as to be covered, and the distributed many nanoparticles 13 are melt-bonded to each other by heat treatment to generate a nanoparticle layer 14. It can be easily obtained.
  • FIG. 3 is a partial enlarged cross-sectional view schematically showing the configuration of the filter for filtration according to the present embodiment.
  • two filtering filters each made of the ceramic layer obtained in the first embodiment and a large number of nanoparticles 13 sprayed on the ceramic layer are used as precursors.
  • the second embodiment is different from the first embodiment in that a filter for filtration is configured by bonding the two precursors so that the particles are in contact with each other. Therefore, the description of the duplicated configuration and operation is omitted, and the description of the different configuration and operation is given below.
  • the filter 20 for filtration includes two stacked first ceramic layers 12 and a nanoparticle layer 14 interposed between the two first ceramic layers 12.
  • the nanostructure which comprises the nanoparticle layer 14 is exposed.
  • the particles 13 may flow out of the nanoparticle layer 14.
  • the nanoparticle layer 14 is sandwiched between the two first ceramic layers 12, so that the nanoparticle layer 14 is not exposed. There is no possibility that the nanoparticles 13 will flow out of the particle layer 14.
  • the nanoparticle layer 14 is sandwiched between the two first ceramic layers 12 generated by sintering a large number of ceramic particles 11. Rigidity can be ensured.
  • a first ceramic layer 12 is formed (ceramic layer generation step), and a large number of nanoparticles 13 are formed on the surface of the first ceramic layer 12. Spray to cover and distribute without gaps.
  • a filter filter precursor 19 is used in which a large number of nanoparticles 13 are sprayed on the first ceramic layer 12, and the filter filter precursor 19 is divided into two. (FIG. 4A) (filtration filter precursor forming step).
  • the two filter filter precursors 19 are bonded together so that the numerous sprayed nanoparticles 13 are in contact with each other (FIG. 4B), and then the two filter filter precursors 19 bonded together are 400 ° C. to 400 ° C.
  • the two filter filter precursors 19 bonded together are 400 ° C. to 400 ° C.
  • a large number of nanoparticles 13 in contact with each other are melt-bonded to obtain a nanoparticle layer 14 (nanoparticle layer generation step).
  • the filter 20 for filtration having a predetermined shape is cut out from the laminated body in which the two first ceramic layers 12 and the nanoparticle layer 14 are laminated, and this processing is finished.
  • each nanoparticle 13 is formed in the same manner as in the first embodiment. Control of the size of the gaps 17 between the particles 13 is easy, and the filter 20 for filtration having a through hole having a diameter of 2 nm can be easily obtained.
  • the two filter filter precursors 19 are bonded to each other so that a large number of the sprayed nanoparticles 13 are in contact with each other.
  • the first ceramic layer 12 and the nanoparticle layer 14 are laminated by bonding the surface of the other filtration filter precursor 19 on which the nanoparticles 13 are not sprayed to the surface on which the nanoparticles 13 are sprayed, and then performing heat treatment. You may obtain the laminated body made.
  • the first ceramic layer 12 and the nanoparticle layer can be formed without limiting the number of stacked layers of the first ceramic layer 12 and the nanoparticle layer 14 by repeating the pasting of the filter filter precursor 19.
  • 14 can be laminated alternately, so that a filter for filtration comprising three or more first ceramic layers 12 and two or more nanoparticle layers 14 can be easily obtained.
  • the filtration filter according to the third embodiment of the present invention has the same configuration as the filtration filter 20 according to the second embodiment, but is formed by sequentially laminating two ceramic layers and a nanoparticle layer. This is different from the filtering filter 20 according to the second embodiment in that it is done. Therefore, the description of the duplicated configuration and operation is omitted, and the description of the different configuration and operation is given below.
  • FIG. 5 is a partial enlarged cross-sectional view schematically showing the configuration of the filter for filtration according to the present embodiment.
  • the filtering filter 21 includes a first ceramic layer 12, a nanoparticle layer 14 formed on the first ceramic layer 12, and a first ceramic layer sandwiching the nanoparticle layer 14. 12 and a second ceramic layer 15 facing each other.
  • the filter for filtration 21 since the nanoparticle layer 14 is sandwiched between the first ceramic layer 12 and the second ceramic layer 15, the rigidity of the filter for filtration 21 can be ensured. The risk of the nanoparticles 13 flowing out from the nanoparticle layer 14 can be eliminated.
  • the size of the nanoparticles 13 is 3 nm to 5 nm, it enters the gap 16 between the first ceramic layer 12 and the second ceramic layer 15, particularly the gap 16 existing on the surface. As a result, a part of the nanoparticle layer 14 penetrates into each of the first ceramic layer 12 and the second ceramic layer 15. As a result, the bonding strength of the first ceramic layer 12 and the nanoparticle layer 14 and the second ceramic layer 15 and the nanoparticle layer 14 can be increased, thereby preventing delamination in the filter 10 for filtration. In addition, the rigidity of the entire filter 10 for filtration can be improved.
  • 6A to 6C are process diagrams showing a method for manufacturing a filter for filtration according to the present embodiment.
  • first ceramic layer 12 (FIG. 6A) (first ceramic Layer generation step).
  • nanoparticles 13 are melt-bonded to each other by heat treatment to form nanoparticles.
  • the layer 14 is obtained (FIG. 6B) (nanoparticle layer generation step).
  • the predetermined pressure needs to be set to a value that does not crush the nanoparticles 13 constituting the nanoparticle layer 14, and is, for example, a value lower than the value at the time of forming the first ceramic layer 12. Is preferred.
  • the filter for filtration 21 having a predetermined shape is cut out from the laminated body in which the first ceramic layer 12, the nanoparticle layer 14, and the second ceramic layer 15 are laminated, and this processing is completed.
  • a large number of nanoparticles 13 having a particle size of 3 nm to 5 nm are melt-bonded to each other by heat treatment to generate a nanoparticle layer 14.
  • the representative length of the gap 17 can be set to 2 nm or less, whereby a through hole having a diameter of 2 nm can be generated in the filter 21 for filtration.
  • This embodiment is different from the third embodiment only in that it includes a plurality of nanoparticle layers 14 and second ceramic layers 15, and its configuration and operation are basically the same as those of the third embodiment described above. Therefore, the description of the duplicated configuration and operation will be omitted, and different configurations and operations will be described below.
  • FIG. 7 is a partially enlarged sectional view schematically showing the configuration of the filter for filtration according to the present embodiment.
  • 8A to 8E are process diagrams showing a method for manufacturing a filter for filtration according to the present embodiment.
  • first ceramic particles 11 are sealed in a predetermined mold, and a predetermined pressure is applied under a high temperature to perform sintering to obtain a first ceramic layer 12 (FIG. 8).
  • 8A) first ceramic layer generation step.
  • the nanoparticles 13 are melt-bonded to each other by heat treatment to form a lower part.
  • a nanoparticle layer 14 is obtained (FIG. 8B) (nanoparticle layer generation step).
  • a layer 15 is obtained (FIG. 8C) (second ceramic layer generation step).
  • nanoparticle distribution step After a large number of nanoparticles 13 are sprayed so as to cover the surface of the second ceramic layer 15 below and distributed without gaps (nanoparticle distribution step), the nanoparticles 13 are melt-bonded to each other by heat treatment.
  • the upper nanoparticle layer 14 FIG. 8D
  • nanoparticle layer generation step After obtaining the upper nanoparticle layer 14 (FIG. 8D) (nanoparticle layer generation step), and further distributing a large number of ceramic particles 11 so as to cover the surface of the upper nanoparticle layer 14, under high temperature, By applying a predetermined pressure, sintering is performed to obtain an upper second ceramic layer 15 (FIG. 8E) (second ceramic layer generation step).
  • the filter 10 having a predetermined shape is cut out from the laminate in which the first ceramic layer 12, each nanoparticle layer 14, and each second ceramic layer 15 are laminated, and this processing is finished.
  • the filtering filter 30 includes one first ceramic layer 12 and two second ceramic layers 15, that is, three or more ceramic layers 12 and 15.
  • the rigidity of the filter 30 for filtration can be ensured more reliably.
  • the nanoparticle layer 14 is interposed between two adjacent ceramic layers among the three or more ceramic layers 12 and 15, the plurality of nanoparticle layers 14 are present in the filter 30 as a result. As a result, the filtering ability of the filter 30 for filtration is enhanced, and water and fresh water can be obtained more reliably.
  • the filter 30 for filtration in which the plurality of ceramic layers 12 and 15 and the plurality of nanoparticle layers 14 are laminated can be easily obtained.
  • the two nanoparticle layers 14 and the two second ceramic layers 15 are disposed. However, if the nanoparticle layers 14 and the second ceramic layers 15 are disposed in the same number, The number of the nanoparticle layers 14 and the second ceramic layers 15 may be increased or decreased according to the purpose of use of the filter 30 for filtration without being limited to “2”.
  • the filter for filtration in each of the above-described embodiments causes clogging due to trapped contaminants and salinity when subjected to purification of clean water or fresh water for a certain period of time or more, and the purification efficiency of clean water or fresh water decreases. . Therefore, it is necessary to regenerate the filter for filtration by removing the trapped contaminants and salt by flowing the pressurized chemical solution through the filter for filtration, but the filter for filtration in each embodiment is made of silica or the like. Since it is composed of a relatively hard member, the filter for filtration is hardly damaged or consumed even when a pressurized chemical solution is flowed. That is, the filter for filtration in each embodiment mentioned above is reproducible.
  • trapped contaminants may be removed by flowing a pressurized chemical solution from the direction opposite to the direction of flowing sewage or seawater during filtration. Also in this case, since the filter for filtration is comprised with the hard material, the filter for filtration can also endure comparatively high pressure, and can perform removal of a pollutant etc. efficiently.
  • the filter for filtration in each embodiment includes a relatively hard layer made of sintered ceramic, and thus has a sterilization and antibacterial action such as silver using PVD and CVD. It can be coated with metal and can contribute to purifying clean water and fresh water.
  • the filter for filtration is coated with titanium oxide, and a strong sterilization effect by the photocatalytic action can be obtained by irradiating ultraviolet rays at the time of purification of clean water and fresh water, thereby ensuring sterilization of clean water and fresh water. It can be carried out.

Abstract

Provided is a filter for filtration that is capable of ensuring rigidity while obtaining tap water and fresh water easily. The filtration filter (21) is provided with a first ceramic layer (12, a second ceramic layer (15) and a nanoparticle layer (14). Said nanoparticle layer (14) is interposed between the first ceramic layer (12) and the second ceramic layer (15). The first ceramic layer (12) and the second ceramic layer (15) are formed by sintering multiple ceramic particles (11) that have silica as the main component and the gaps between the respective ceramic particles (11) are adjusted to be 50 nm - 500 nm. The nanoparticle layer (14) is formed by melting and binding a large number of nanoparticles (13) of 3 nm - 5 nm particle diameter to each other by heat treatment.

Description

濾過用フィルタ及び濾過用フィルタの製造方法Filtration filter and method for producing filtration filter
 本発明は、濾過用フィルタ及び濾過用フィルタの製造方法に関し、特に、セラミックの焼結体を基体とする濾過用フィルタ及び濾過用フィルタの製造方法に関する。 The present invention relates to a filter for filtration and a method for producing the filter for filtration, and more particularly to a filter for filtration based on a ceramic sintered body and a method for producing the filter for filtration.
 工場や家庭からの排水(下水)から汚染物質や不純物を除去して上水を精製し、若しくは、海水から塩分等を除去して淡水を精製する際、濾過用フィルタが多用されている。濾過用フィルタとしては、高分子材料から成るもの、例えば、酢酸メチルの高分子膜を用いる逆浸透膜が知られている。逆浸透膜は径が数nmの無数の貫通孔を有し、下水や海水に圧力をかけて逆浸透膜を通過させる際、1個の差し渡しが約0.38nmの水分子は貫通孔を通過するものの、大きさが数十nmの汚染物質の分子や水和によって周囲に水分子が配位するナトリウムイオンは貫通孔を通過しない。これにより、逆浸透膜は水分子と汚染物質や塩分とを分離して下水や海水から上水や淡水を精製する。 Filtration filters are often used when purifying fresh water by removing pollutants and impurities from wastewater (sewage) from factories and households, or purifying fresh water by removing salt from seawater. As a filter for filtration, a reverse osmosis membrane using a polymer material, for example, a methyl acetate polymer membrane is known. A reverse osmosis membrane has innumerable through holes with a diameter of several nanometers, and when water is passed through the reverse osmosis membrane by applying pressure to sewage or seawater, one water molecule of about 0.38 nm passes through the through hole. However, molecules of contaminants with a size of several tens of nanometers and sodium ions coordinated with water molecules around by hydration do not pass through the through holes. Thereby, a reverse osmosis membrane isolate | separates a water molecule, a pollutant, and salt content, and refine | purifies clean water and fresh water from sewage and seawater.
 ところが、途上国や自然災害の被災地において汚水から上水を逆浸透膜によって精製する際、汚水中のバクテリアが高分子膜を腐食するため、逆浸透膜の寿命が極端に短くなるという問題がある。 However, when purifying clean water from sewage using reverse osmosis membranes in developing countries and areas affected by natural disasters, bacteria in the sewage corrode the polymer membranes, resulting in an extremely short reverse osmosis membrane life. is there.
 また、海岸沿いに配置される風車型の風力発電機では、潤滑油に塩分や微細な砂が混じりやすいため、潤滑油から塩分や微細な砂を除去することが強く求められているが、塩分や微細な砂の除去に逆浸透膜を用いた場合、潤滑油の成分が高分子膜を溶解させるため、やはり、逆浸透膜の寿命が極端に短くなるという問題がある。 In addition, in wind turbine type wind power generators arranged along the coast, salt and fine sand are easily mixed in the lubricating oil, so it is strongly required to remove salt and fine sand from the lubricating oil. In addition, when a reverse osmosis membrane is used for removing fine sand, the component of the lubricating oil dissolves the polymer membrane, so that there is still a problem that the life of the reverse osmosis membrane becomes extremely short.
 さらに、逆浸透膜は高分子膜を主要構成要素とするため、強度が低く、精製効率向上のために下水や海水へ印加する圧力(一次側圧力)を上昇させて負荷をかけると破れてしまうという問題がある。 Furthermore, the reverse osmosis membrane has a polymer membrane as its main component, so its strength is low, and it will be broken if a pressure is applied to the sewage or seawater (primary pressure) to increase the purification efficiency and a load is applied. There is a problem.
 そこで、近年、バクテリアによって腐食されることがなく、潤滑油にも溶解せず、且つ剛性の高い多孔質セラミック体からなる濾過用フィルタが開発されている(例えば、特許文献1参照。)。 Therefore, in recent years, a filter for filtration made of a porous ceramic body that is not corroded by bacteria, does not dissolve in lubricating oil, and has a high rigidity has been developed (for example, see Patent Document 1).
特表2007−526819号公報Special table 2007-526819
 しかしながら、多孔質セラミック体からなる濾過用フィルタは比較的径の大きい金属酸化物の複数の粒子を圧縮させて高温で互いに接着することによって製造されるため、粒子間の隙間の大きさを直接的に制御することができず、偶発的に所望の径よりも大きい径の貫通孔が形成されることがあり、汚染物質や塩分の除去に関して依然として懸念がある。 However, a filter made of a porous ceramic body is manufactured by compressing a plurality of particles of metal oxide having a relatively large diameter and bonding them together at a high temperature. In some cases, a through hole having a diameter larger than a desired diameter may be accidentally formed, and there is still a concern regarding removal of contaminants and salt.
 また、下水中には大きさが数十nmのウィルス、例えば、約50nmのインフルエンザウィルスや約20nmのピコウィルスやパルポウィルスが存在するが、これらのウィルスは径が数十nmである貫通孔を通過する虞がある。 In addition, viruses of several tens of nanometers in sewage, for example, influenza viruses of about 50 nm, picoviruses and parpoviruses of about 20 nm exist, but these viruses pass through a through-hole having a diameter of several tens of nm. There is a risk of doing.
 さらに、多孔質セラミック体からなる濾過用フィルタを液体中に含まれる大きさが異なる複数の医薬成分の仕分けに利用する場合、所望の大きさではない医薬成分が貫通孔を通過する虞があり、医薬成分の仕分けができないという問題がある。 Furthermore, when using a filter for filtration made of a porous ceramic body for sorting a plurality of pharmaceutical components having different sizes contained in the liquid, there is a risk that pharmaceutical components that are not of a desired size will pass through the through-holes, There is a problem that the pharmaceutical ingredients cannot be sorted.
 その結果、上水や淡水の精製に蒸留法等を併用する必要があり、また、医薬成分の仕分けに遠心分離法等を併用する必要がある。すなわち、上水や淡水を手軽に得ることができないという問題がある。 As a result, it is necessary to use a distillation method or the like for purification of clean water or fresh water, and also to use a centrifugal method or the like for sorting pharmaceutical ingredients. That is, there is a problem that it is not possible to easily obtain clean water or fresh water.
 本発明の課題は、剛性を確保しつつ、上水や淡水を手軽に得ることができる濾過用フィルタ及び濾過用フィルタの製造方法を提供することにある。 An object of the present invention is to provide a filter for filtration and a method for producing the filter for filtration that can easily obtain clean water and fresh water while ensuring rigidity.
 上記課題を解決するために、本発明の第1の態様によれば、金属酸化物を主成分とする多数のセラミック粒子を焼結させて生成され、各前記セラミック粒子間の隙間が50nm~500nmに調整された少なくとも2つのセラミック層と、粒径が3nm~5nmの多数のナノ粒子を熱処理によって互いに熔融結合させて生成され、隣接する2つの前記セラミック層に挟まれたナノ粒子層とを備えることを特徴とする濾過用フィルタが提供される。 In order to solve the above problems, according to the first aspect of the present invention, a plurality of ceramic particles mainly composed of a metal oxide are sintered, and a gap between the ceramic particles is 50 nm to 500 nm. And at least two ceramic layers that are adjusted to each other, and a nanoparticle layer that is formed by melt-bonding a large number of nanoparticles having a particle diameter of 3 nm to 5 nm to each other by heat treatment and sandwiched between two adjacent ceramic layers The filter for filtration characterized by this is provided.
 本発明の第1の態様において、前記ナノ粒子層の一部が前記セラミックス層に部分的に浸透していることが好ましい。 In the first aspect of the present invention, it is preferable that a part of the nanoparticle layer partially penetrates the ceramic layer.
 本発明の第1の態様において、各前記ナノ粒子は長径が5nm以下且つ短径が3nm以上であることが好ましい。 In the first aspect of the present invention, each of the nanoparticles preferably has a major axis of 5 nm or less and a minor axis of 3 nm or more.
 本発明の第1の態様において、3つ以上の前記セラミック層を備え、前記3つ以上のセラミック層のうち、隣接する2つの前記セラミック層の間には前記ナノ粒子層が介在することが好ましい。 In the first aspect of the present invention, it is preferable that three or more ceramic layers are provided, and among the three or more ceramic layers, the nanoparticle layer is interposed between two adjacent ceramic layers. .
 上記課題を解決するために、本発明の第2の態様によれば、金属酸化物を主成分とする多数のセラミック粒子を互いに接合させ、且つ各前記セラミック粒子間の隙間を50nm~500nmに調整して第1のセラミック層を生成する第1のセラミック層生成ステップと、前記生成された第1のセラミック層の表面を覆うように粒径が3nm~5nmの多数のナノ粒子を分布させるナノ粒子分布ステップと、前記分布した多数のナノ粒子を熱処理によって互いに熔融結合させてナノ粒子層を生成するナノ粒子層生成ステップと、前記生成されたナノ粒子層の表面を覆うように多数の前記セラミック粒子を分布させ、該分布した多数のセラミック粒子を互いに接合させ、且つ各前記セラミック粒子間の隙間を50nm~500nmに調整して第2のセラミック層を生成する第2のセラミック層生成ステップとを有することを特徴とする濾過用フィルタの製造方法が提供される。 In order to solve the above problems, according to the second aspect of the present invention, a large number of ceramic particles mainly composed of a metal oxide are joined together, and the gap between the ceramic particles is adjusted to 50 nm to 500 nm. A first ceramic layer generating step for generating a first ceramic layer, and nanoparticles for distributing a number of nanoparticles having a particle size of 3 nm to 5 nm so as to cover the surface of the generated first ceramic layer A distribution step, a nanoparticle layer generation step of forming a nanoparticle layer by melt-bonding the distributed many nanoparticles to each other by heat treatment, and a plurality of the ceramic particles so as to cover a surface of the generated nanoparticle layer And a plurality of the distributed ceramic particles are bonded to each other, and the gap between the ceramic particles is adjusted to 50 nm to 500 nm to adjust the second Method for producing a filtration filter and having a second ceramic layer generating step of generating a ceramic layer.
 本発明の第2の態様において、前記ナノ粒子分布ステップでは、前記生成された第2のセラミック層の表面を覆うように粒径が3nm~5nmの多数のナノ粒子を分布させ、前記第1のセラミック層生成ステップの後、前記ナノ粒子分布ステップ、前記ナノ粒子層生成ステップ及び第2のセラミック層生成ステップをこの順に所定の回数ほど繰り返すことが好ましい。 In the second aspect of the present invention, in the nanoparticle distribution step, a large number of nanoparticles having a particle diameter of 3 nm to 5 nm are distributed so as to cover the surface of the generated second ceramic layer, After the ceramic layer generation step, the nanoparticle distribution step, the nanoparticle layer generation step, and the second ceramic layer generation step are preferably repeated a predetermined number of times in this order.
 上記課題を解決するために、本発明の第3の態様によれば、金属酸化物を主成分とする多数のセラミック粒子を互いに接合させ、且つ各前記セラミック粒子間の隙間を50nm~500nmに調整してセラミック層を生成するセラミック層生成ステップと、前記生成されたセラミック層の表面を覆うように粒径が3nm~5nmの多数のナノ粒子を分布させ濾過フィルタ前駆体を形成する濾過フィルタ前駆体形成ステップと、前記濾過フィルタ前駆体形成ステップにおいて形成された2つの前記濾過フィルタ前駆体を、前記多数のナノ粒子が分布する面同士が接触するように貼り合わせ、前記分布した多数のナノ粒子を熱処理によって互いに熔融結合させて1つのナノ粒子層を生成するナノ粒子層生成ステップとを有することを特徴とする濾過用フィルタの製造方法が提供される。 In order to solve the above-described problem, according to the third aspect of the present invention, a large number of ceramic particles mainly composed of metal oxide are joined together, and the gap between the ceramic particles is adjusted to 50 nm to 500 nm. A ceramic layer generating step for generating a ceramic layer, and a filter filter precursor for forming a filter filter precursor by distributing a large number of nanoparticles having a particle size of 3 nm to 5 nm so as to cover the surface of the generated ceramic layer The two filtration filter precursors formed in the formation step and the filtration filter precursor formation step are bonded together so that the surfaces on which the plurality of nanoparticles are distributed are in contact with each other. A nanoparticle layer forming step in which one nanoparticle layer is formed by being melt-bonded to each other by heat treatment. Manufacturing method of use filter is provided.
 本発明によれば、セラミック粒子を焼結させて生成された2つのセラミック層に、ナノ粒子層が挟まれるので、濾過用フィルタの剛性を確保することができ、さらに、粒径が3nm~5nmの多数のナノ粒子を熱処理によって互いに熔融結合させてナノ粒子層を生成するので、各ナノ粒子間の隙間の大きさを数nm以下に設定することができ、これにより、直径が数nmの貫通孔を生成することができる。その結果、上水や淡水の精製に蒸留法等を併用する必要を無くすことができ、もって、上水や淡水を手軽に得ることができる。 According to the present invention, since the nanoparticle layer is sandwiched between two ceramic layers produced by sintering ceramic particles, the rigidity of the filter for filtration can be secured, and the particle size is 3 nm to 5 nm. Since a nanoparticle layer is formed by melt-bonding a large number of nanoparticles to each other by heat treatment, the size of the gap between each nanoparticle can be set to several nanometers or less. Holes can be generated. As a result, it is possible to eliminate the necessity of using a distillation method or the like for purification of clean water or fresh water, and thus easy to obtain clean water or fresh water.
 また、本発明によれば、金属酸化物を主成分とする多数のセラミック粒子を互いに接合させて第1のセラミック層を生成し、該生成した第1のセラミック層の表面を覆うように多数のナノ粒子を分布させ、該分布した多数のナノ粒子を熱処理によって互いに熔融結合させてナノ粒子層を生成し、さらに、生成されたナノ粒子層の表面を覆うように多数のセラミック粒子を分布させ、且つ互いに接合させて第2のセラミック層を生成するので、直径が数nmの貫通孔を備える濾過用フィルタを簡便に得ることができる。 Further, according to the present invention, a plurality of ceramic particles mainly composed of a metal oxide are joined together to form a first ceramic layer, and a large number of so as to cover the surface of the generated first ceramic layer. The nanoparticles are distributed, the distributed many nanoparticles are melt-bonded to each other by heat treatment to form a nanoparticle layer, and the ceramic particles are distributed to cover the surface of the generated nanoparticle layer, Moreover, since the second ceramic layer is produced by bonding them together, a filter for filtration having a through hole having a diameter of several nm can be easily obtained.
本発明の第1の実施の形態に係る濾過用フィルタの構成を概略的に示す部分拡大断面図である。It is a partial expanded sectional view which shows roughly the structure of the filter for filtration concerning the 1st Embodiment of this invention. 図1におけるナノ粒子層中の隙間を通過しうる粒子の大きさを説明するための部分拡大図である。It is the elements on larger scale for demonstrating the magnitude | size of the particle | grains which can pass the clearance gap in the nanoparticle layer in FIG. 本発明の第2の実施の形態に係る濾過用フィルタの構成を概略的に示す部分拡大断面図である。It is a partial expanded sectional view which shows roughly the structure of the filter for filtration concerning the 2nd Embodiment of this invention. 本実施の形態に係る濾過用フィルタの製造方法を示す工程図である(濾過フィルタ前駆体形成ステップ)。It is process drawing which shows the manufacturing method of the filter for filtration concerning this Embodiment (filtration filter precursor formation step). 本実施の形態に係る濾過用フィルタの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the filter for filtration concerning this Embodiment. 本実施の形態に係る濾過用フィルタの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the filter for filtration concerning this Embodiment. 本発明の第3の実施の形態に係る濾過用フィルタの構成を概略的に示す部分拡大断面図である。It is a partial expanded sectional view which shows roughly the structure of the filter for filtration concerning the 3rd Embodiment of this invention. 本実施の形態に係る濾過用フィルタの製造方法を示す工程図である(第1のセラミック層生成ステップ)。It is process drawing which shows the manufacturing method of the filter for filtration concerning this Embodiment (1st ceramic layer production | generation step). 本実施の形態に係る濾過用フィルタの製造方法を示す工程図である(ナノ粒子層生成ステップ)。It is process drawing which shows the manufacturing method of the filter for filtration concerning this Embodiment (nanoparticle layer production | generation step). 本実施の形態に係る濾過用フィルタの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the filter for filtration concerning this Embodiment. 本発明の第4の実施の形態に係る濾過用フィルタの構成を概略的に示す部分拡大断面図である。It is a partial expanded sectional view which shows roughly the structure of the filter for filtration concerning the 4th Embodiment of this invention. 本実施の形態に係る濾過用フィルタの製造方法を示す工程図である(第1のセラミック層生成ステップ)。It is process drawing which shows the manufacturing method of the filter for filtration concerning this Embodiment (1st ceramic layer production | generation step). 本実施の形態に係る濾過用フィルタの製造方法を示す工程図である(ナノ粒子層生成ステップ)。It is process drawing which shows the manufacturing method of the filter for filtration concerning this Embodiment (nanoparticle layer production | generation step). 本実施の形態に係る濾過用フィルタの製造方法を示す工程図である(第2のセラミック層生成ステップ)。It is process drawing which shows the manufacturing method of the filter for filtration concerning this Embodiment (2nd ceramic layer production | generation step). 本実施の形態に係る濾過用フィルタの製造方法を示す工程図である(ナノ粒子層生成ステップ)。It is process drawing which shows the manufacturing method of the filter for filtration concerning this Embodiment (nanoparticle layer production | generation step). 本実施の形態に係る濾過用フィルタの製造方法を示す工程図である(第2のセラミック層生成ステップ)。It is process drawing which shows the manufacturing method of the filter for filtration concerning this Embodiment (2nd ceramic layer production | generation step).
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 まず、本発明の第1の実施の形態に係る濾過用フィルタについて説明する。 First, the filter for filtration according to the first embodiment of the present invention will be described.
 図1は、本実施の形態に係る濾過用フィルタの構成を概略的に示す部分拡大断面図である。 FIG. 1 is a partially enlarged cross-sectional view schematically showing a configuration of a filter for filtration according to the present embodiment.
 図1において、濾過用フィルタ10は、金属酸化物、例えば、シリカ(SiO)からなる多数のセラミック粒子11からなる第1のセラミック層12と、該第1のセラミック層12の表面に形成された多数のナノ粒子13からなるナノ粒子層14とを備える。 In FIG. 1, a filter 10 for filtration is formed on a surface of a first ceramic layer 12 made of a large number of ceramic particles 11 made of a metal oxide, for example, silica (SiO 2 ), and the first ceramic layer 12. And a nanoparticle layer 14 composed of a large number of nanoparticles 13.
 第1のセラミック層12は、粒径が数100nm以上の多数のセラミック粒子11を焼結させて生成される。焼結の際に多数のセラミック粒子11に付与される圧力を比較的大きく設定すれば、各セラミック粒子11の一部が破砕する等して各セラミック粒子11における他のセラミック粒子11との接触部分の面積が大きくなり、該接触部分が熔融して他のセラミック粒子11と接合される。そこで、本実施の形態では、多数のセラミック粒子11に付与される圧力の設定値を大きくする。これにより、第1のセラミック層12では、各セラミック粒子11の間の接触面積を大きくすることができ、もって、各セラミック粒子11の間の接合力を高めることができる。その結果、第1のセラミック層12の剛性を向上させ、耐摩耗性も向上させることができる。 The first ceramic layer 12 is generated by sintering a large number of ceramic particles 11 having a particle size of several hundred nm or more. If the pressure applied to a large number of ceramic particles 11 during sintering is set to be relatively large, a part of each ceramic particle 11 is crushed or the like, so that the contact portion of each ceramic particle 11 with other ceramic particles 11 , The contact area is melted and joined to other ceramic particles 11. Therefore, in the present embodiment, the set value of the pressure applied to the large number of ceramic particles 11 is increased. Thereby, in the 1st ceramic layer 12, the contact area between each ceramic particle | grain 11 can be enlarged, and the joining force between each ceramic particle | grain 11 can be raised. As a result, the rigidity of the first ceramic layer 12 can be improved and the wear resistance can also be improved.
 また、上記のように剛性を高めるために付与する圧力の設定値を大きくした場合、第1のセラミック層12では、各セラミック粒子11の一部が破砕するため、各セラミック粒子11間の隙間16の形状は不規則となるが、各セラミック粒子11に付与される圧力を調整することにより、各セラミック粒子11間の隙間16の代表長さ、すなわち、隙間16を介して対向する2つのセラミック粒子11の間の距離の最大値が50nm~500nmに調整される。 In addition, when the set value of the pressure applied to increase the rigidity is increased as described above, in the first ceramic layer 12, a part of each ceramic particle 11 is crushed, so the gap 16 between each ceramic particle 11. The shape of is irregular, but by adjusting the pressure applied to each ceramic particle 11, the representative length of the gap 16 between each ceramic particle 11, that is, two ceramic particles facing each other via the gap 16 11 is adjusted to 50 nm to 500 nm.
 ナノ粒子層14は、粒径が3nm~5nmの多数のナノ粒子13を第1のセラミック層12の表面に噴霧して該第1のセラミック層12の表面上に多数のナノ粒子13を満遍なく分布させ、これらのナノ粒子13を400℃乃至1000℃の高温で熱処理することによって形成される。熱処理の際、各ナノ粒子13において他のナノ粒子13と接触する部分が熔融して各ナノ粒子13同士が接合するが、各ナノ粒子13の一部が破砕するほどの圧力を付与しない。したがって、各ナノ粒子13の間の隙間17の形状は不規則とならず、隙間17の大きさの制御が容易となる。 The nanoparticle layer 14 sprays a large number of nanoparticles 13 having a particle size of 3 nm to 5 nm on the surface of the first ceramic layer 12 to uniformly distribute the large number of nanoparticles 13 on the surface of the first ceramic layer 12. These nanoparticles 13 are formed by heat treatment at a high temperature of 400 ° C. to 1000 ° C. During the heat treatment, a portion of each nanoparticle 13 that comes into contact with the other nanoparticle 13 is melted to join each nanoparticle 13 to each other, but does not apply such a pressure that a part of each nanoparticle 13 is crushed. Therefore, the shape of the gap 17 between the nanoparticles 13 is not irregular, and the size of the gap 17 can be easily controlled.
 例えば、図2に示すように、直径Dが5nmの3つの真球状のナノ粒子13が同一平面上において互いに均等に接触した場合、各ナノ粒子13の間の隙間17の代表長さは約2nmとなり、該隙間17を通過しうる粒子18の最大直径dは約0.7nmとなる。ナノ粒子層14では、各ナノ粒子13の粒径が5nm以下に設定されるため、各ナノ粒子13の間の隙間17の代表長さは2nm以下となり、且つ該隙間17を通過しうる粒子18の最大直径は0.7nm以下となる。 For example, as shown in FIG. 2, when three true spherical nanoparticles 13 having a diameter D of 5 nm contact each other evenly on the same plane, the typical length of the gap 17 between the nanoparticles 13 is about 2 nm. Thus, the maximum diameter d of the particles 18 that can pass through the gap 17 is about 0.7 nm. In the nanoparticle layer 14, since the particle size of each nanoparticle 13 is set to 5 nm or less, the representative length of the gap 17 between each nanoparticle 13 is 2 nm or less, and the particles 18 that can pass through the gap 17. The maximum diameter is 0.7 nm or less.
 ナノ粒子13は、高温で表面が部分的に熔融する材料によって構成される必要があるが、例えば、セラミック(シリカを含む)、石英、各種金属、有機ポリマー(ポリエチレンラテックスのポリマー等)からなるのが好ましい。特に、ナノ粒子13を銀で構成した場合、銀は殺菌作用を有するため、濾過用フィルタ10は完全に殺菌された上水や淡水を提供することができる。 The nanoparticles 13 need to be made of a material whose surface is partially melted at a high temperature. For example, the nanoparticles 13 are made of ceramic (including silica), quartz, various metals, or an organic polymer (polyethylene latex polymer or the like). Is preferred. In particular, when the nanoparticles 13 are made of silver, since the silver has a bactericidal action, the filter 10 for filtration can provide clean water and fresh water that are completely sterilized.
 また、濾過用フィルタ10において、ナノ粒子13の大きさは3nm~5nmなので、第1のセラミック層12の隙間16、特に表面に存在する隙間16に進入する。その結果、ナノ粒子層14の一部が第1のセラミック層12に浸透する。 Further, in the filter 10 for filtration, since the size of the nanoparticles 13 is 3 nm to 5 nm, it enters the gap 16 of the first ceramic layer 12, particularly the gap 16 existing on the surface. As a result, a part of the nanoparticle layer 14 penetrates the first ceramic layer 12.
 次に、本実施の形態に係る濾過用フィルタの製造方法について説明する。 Next, a method for manufacturing the filter for filtration according to the present embodiment will be described.
 まず、多数のセラミック粒子11を所定の型に封入して高温の下、所定の圧力を負荷することにより、焼結を行って第1のセラミック層12を得る。次いで、多数のナノ粒子13を第1のセラミック層12の表面を覆うように噴霧して隙間無く分布させた後、各ナノ粒子13を熱処理によって互いに熔融接合させてナノ粒子層14を得る。 First, a large number of ceramic particles 11 are sealed in a predetermined mold, and a predetermined pressure is applied at a high temperature to perform sintering to obtain a first ceramic layer 12. Next, after spraying a large number of nanoparticles 13 so as to cover the surface of the first ceramic layer 12 without any gaps, the nanoparticles 13 are melt-bonded to each other by heat treatment to obtain the nanoparticle layer 14.
 次いで、第1のセラミック層12及びナノ粒子層14が積層された積層体から所定の形状の濾過用フィルタ10を切り出して本処理を終了する。 Next, the filter for filtration 10 having a predetermined shape is cut out from the laminated body in which the first ceramic layer 12 and the nanoparticle layer 14 are laminated, and this processing is finished.
 本実施の形態に係る濾過用フィルタ10によれば、多数のセラミック粒子11の焼結の際、各セラミック粒子11の一部を破砕する等して各セラミック粒子11の間の接触面積を大きくするので、各セラミック粒子11の間の接合力を高めることができ、もって、第1のセラミック層12の剛性を向上することができる。その結果、濾過用フィルタ10の剛性を確保することができる。 According to the filter 10 for filtration according to the present embodiment, when a large number of ceramic particles 11 are sintered, a part of each ceramic particle 11 is crushed to increase the contact area between the ceramic particles 11. Therefore, the bonding force between the ceramic particles 11 can be increased, and the rigidity of the first ceramic layer 12 can be improved. As a result, the rigidity of the filter 10 for filtration can be ensured.
 さらに、粒径が3nm~5nmの多数のナノ粒子13を熱処理によって互いに熔融結合させてナノ粒子層14を生成するので、各ナノ粒子13間の隙間17の代表長さを2nm以下に設定することができ、これにより、直径が2nmの貫通孔を濾過用フィルタ10に生成することができる。その結果、濾過用フィルタ10を用いれば、上水や淡水の精製に蒸留法等を併用する必要を無くすことができ、もって、上水や淡水を手軽に得ることができる。 Further, since a large number of nanoparticles 13 having a particle diameter of 3 nm to 5 nm are melt-bonded to each other by heat treatment to form the nanoparticle layer 14, the representative length of the gaps 17 between the nanoparticles 13 should be set to 2 nm or less. Accordingly, a through hole having a diameter of 2 nm can be generated in the filter 10 for filtration. As a result, if the filter for filtration 10 is used, it is not necessary to use a distillation method or the like for purification of clean water or fresh water, so that clean water or fresh water can be easily obtained.
 また、濾過用フィルタ10において、ナノ粒子層14の一部が第1のセラミック層12に部分的に浸透しているので、第1のセラミック層12及びナノ粒子層14の結合力を高めることができ、もって、濾過用フィルタ10における層間剥離の発生を防止することができるとともに、濾過用フィルタ10全体の剛性を向上することができる。 Further, in the filter 10 for filtration, a part of the nanoparticle layer 14 partially penetrates the first ceramic layer 12, so that the bonding force between the first ceramic layer 12 and the nanoparticle layer 14 can be increased. Thus, the occurrence of delamination in the filter for filtration 10 can be prevented, and the rigidity of the entire filter for filtration 10 can be improved.
 上述した濾過用フィルタ10では、ナノ粒子層14を構成する各ナノ粒子13は真球状であることを前提とし、その粒径は3nm~5nmであったが、各ナノ粒子層14は真球状である必要はなく、長方形に納まる形状、例えば、長径が5nm以下且つ短径が3nm以上の楕円形状であってもよい。 In the filtering filter 10 described above, it is assumed that each nanoparticle 13 constituting the nanoparticle layer 14 has a true spherical shape, and the particle diameter thereof is 3 nm to 5 nm. However, each nanoparticle layer 14 has a true spherical shape. There is no need, and a shape that fits in a rectangle, for example, an elliptical shape having a major axis of 5 nm or less and a minor axis of 3 nm or more may be used.
 また、本実施の形態に係る濾過用フィルタの製造方法によれば、多数のセラミック粒子11を互いに接合させて第1のセラミック層12を生成し、該生成した第1のセラミック層12の表面を覆うように多数のナノ粒子13を分布させ、該分布した多数のナノ粒子13を熱処理によって互いに熔融結合させてナノ粒子層14を生成するので、直径が2nmの貫通孔を備える濾過用フィルタ10を簡便に得ることができる。 In addition, according to the method for manufacturing a filter for filtration according to the present embodiment, a large number of ceramic particles 11 are joined together to form a first ceramic layer 12, and the surface of the generated first ceramic layer 12 is formed. A large number of nanoparticles 13 are distributed so as to be covered, and the distributed many nanoparticles 13 are melt-bonded to each other by heat treatment to generate a nanoparticle layer 14. It can be easily obtained.
 次に、本発明の第2の実施の形態に係る濾過用フィルタ及びその製造方法について説明する。 Next, a filter for filtration and a method for manufacturing the same according to the second embodiment of the present invention will be described.
 図3は、本実施の形態に係る濾過用フィルタの構成を概略的に示す部分拡大断面図である。第2の実施の形態は、第1の実施の形態で得られたセラミック層と該セラミック層に吹き付けられた多数のナノ粒子13とから成る濾過用フィルタを前駆体として2つ用い、互いのナノ粒子が接触するように該2つの前駆体を貼り合わせることによって濾過用フィルタを構成する点で第1の実施の形態と異なる。したがって、重複した構成、作用については説明を省略し、以下に異なる構成、作用についての説明を行う。 FIG. 3 is a partial enlarged cross-sectional view schematically showing the configuration of the filter for filtration according to the present embodiment. In the second embodiment, two filtering filters each made of the ceramic layer obtained in the first embodiment and a large number of nanoparticles 13 sprayed on the ceramic layer are used as precursors. The second embodiment is different from the first embodiment in that a filter for filtration is configured by bonding the two precursors so that the particles are in contact with each other. Therefore, the description of the duplicated configuration and operation is omitted, and the description of the different configuration and operation is given below.
 図3において、濾過用フィルタ20は、重ねられた2つの第1のセラミック層12と、該2つの第1のセラミック層12の間に介在するナノ粒子層14とを備える。 In FIG. 3, the filter 20 for filtration includes two stacked first ceramic layers 12 and a nanoparticle layer 14 interposed between the two first ceramic layers 12.
 ところで、第1の実施の形態に係る濾過用フィルタ10では、第1のセラミック層12に比べて耐磨耗性に劣るナノ粒子層14が露出しているため、ナノ粒子層14を構成するナノ粒子13がナノ粒子層14から流出してしまう虞がある。しかしながら、第2の実施の形態に係る濾過用フィルタ20によれば、ナノ粒子層14を2つの第1のセラミック層12で挟むため、ナノ粒子層14が露出することがなく、これにより、ナノ粒子層14からナノ粒子13が流出する虞はない。 By the way, in the filter 10 for filtration which concerns on 1st Embodiment, since the nanoparticle layer 14 inferior to abrasion resistance compared with the 1st ceramic layer 12 is exposed, the nanostructure which comprises the nanoparticle layer 14 is exposed. The particles 13 may flow out of the nanoparticle layer 14. However, according to the filter 20 for filtration according to the second embodiment, the nanoparticle layer 14 is sandwiched between the two first ceramic layers 12, so that the nanoparticle layer 14 is not exposed. There is no possibility that the nanoparticles 13 will flow out of the particle layer 14.
 本実施の形態に係る濾過用フィルタ20によれば、多数のセラミック粒子11を焼結させて生成された2つの第1のセラミック層12にナノ粒子層14が挟まれるので、濾過用フィルタ20の剛性を確保することができる。 According to the filter 20 for filtration according to the present embodiment, the nanoparticle layer 14 is sandwiched between the two first ceramic layers 12 generated by sintering a large number of ceramic particles 11. Rigidity can be ensured.
 また、濾過用フィルタ20において、ナノ粒子13の大きさは3nm~5nmなので、2つの第1のセラミック層12の隙間16、特に表面に存在する隙間16に進入する。その結果、ナノ粒子層14の一部が2つの第1のセラミック層12のそれぞれに浸透する。 Further, in the filter 20 for filtration, since the size of the nanoparticles 13 is 3 nm to 5 nm, it enters the gap 16 between the two first ceramic layers 12, particularly the gap 16 existing on the surface. As a result, a part of the nanoparticle layer 14 penetrates into each of the two first ceramic layers 12.
 図4A~図4Cは、本実施の形態に係る濾過用フィルタの製造方法を示す工程図である。 4A to 4C are process diagrams showing a method for manufacturing a filter for filtration according to the present embodiment.
 まず、第1の実施の形態に係る濾過用フィルタ10と同様に、第1のセラミック層12を形成し(セラミック層生成ステップ)、さらに、多数のナノ粒子13を第1のセラミック層12の表面を覆うように吹き付けて隙間無く分布させる。本実施の形態に係る濾過用フィルタの製造方法では、第1のセラミック層12に多数のナノ粒子13が吹き付けられた状態のものを、濾過フィルタ前駆体19とし、該濾過フィルタ前駆体19を2つ準備する(図4A)(濾過フィルタ前駆体形成ステップ)。 First, similarly to the filter 10 for filtration according to the first embodiment, a first ceramic layer 12 is formed (ceramic layer generation step), and a large number of nanoparticles 13 are formed on the surface of the first ceramic layer 12. Spray to cover and distribute without gaps. In the method for manufacturing a filter for filtration according to the present embodiment, a filter filter precursor 19 is used in which a large number of nanoparticles 13 are sprayed on the first ceramic layer 12, and the filter filter precursor 19 is divided into two. (FIG. 4A) (filtration filter precursor forming step).
 次いで、2つの濾過フィルタ前駆体19を、互いの吹き付けられた多数のナノ粒子13同士が接触するように貼り合わせ(図4B)、その後、張り合わされた2つの濾過フィルタ前駆体19を400℃乃至1000℃の高温で熱処理することにより、互いに接触する多数のナノ粒子13を熔融接合させてナノ粒子層14を得る(ナノ粒子層生成ステップ)。 Next, the two filter filter precursors 19 are bonded together so that the numerous sprayed nanoparticles 13 are in contact with each other (FIG. 4B), and then the two filter filter precursors 19 bonded together are 400 ° C. to 400 ° C. By performing heat treatment at a high temperature of 1000 ° C., a large number of nanoparticles 13 in contact with each other are melt-bonded to obtain a nanoparticle layer 14 (nanoparticle layer generation step).
 次いで、2つの第1のセラミック層12及びナノ粒子層14が積層された積層体から所定の形状の濾過用フィルタ20を切り出して本処理を終了する。 Next, the filter 20 for filtration having a predetermined shape is cut out from the laminated body in which the two first ceramic layers 12 and the nanoparticle layer 14 are laminated, and this processing is finished.
 本実施の形態に係る濾過用フィルタの製造方法によれば、多数のナノ粒子13を熱処理によって互いに熔融結合させてナノ粒子層14を生成するので、第1の実施の形態と同様に、各ナノ粒子13の間の隙間17の大きさの制御が容易であり、直径が2nmの貫通孔を備える濾過用フィルタ20を簡便に得ることができる。 According to the method for manufacturing a filter for filtration according to the present embodiment, since a large number of nanoparticles 13 are melt-bonded to each other by heat treatment to form a nanoparticle layer 14, each nanoparticle 13 is formed in the same manner as in the first embodiment. Control of the size of the gaps 17 between the particles 13 is easy, and the filter 20 for filtration having a through hole having a diameter of 2 nm can be easily obtained.
 なお、図4A~図4Cの製造方法では、2つの濾過フィルタ前駆体19を、互いの吹き付けられた多数のナノ粒子13同士が接触するように貼り合わせたが、一方の濾過フィルタ前駆体19のナノ粒子13が吹き付けられた面に他方の濾過フィルタ前駆体19のナノ粒子13が吹き付けられていない面を貼り合わせ、その後、熱処理を行うことによって第1のセラミック層12及びナノ粒子層14が積層された積層体を得てもよい。この方法によれば、濾過フィルタ前駆体19の貼り付けを繰り返すことより、第1のセラミック層12及びナノ粒子層14の積層数に制限を設けることなく、第1のセラミック層12及びナノ粒子層14を交互に積層することができ、もって、3層以上の第1のセラミック層12及び2層以上のナノ粒子層14を備える濾過用フィルタを容易に得ることができる。 4A to 4C, the two filter filter precursors 19 are bonded to each other so that a large number of the sprayed nanoparticles 13 are in contact with each other. The first ceramic layer 12 and the nanoparticle layer 14 are laminated by bonding the surface of the other filtration filter precursor 19 on which the nanoparticles 13 are not sprayed to the surface on which the nanoparticles 13 are sprayed, and then performing heat treatment. You may obtain the laminated body made. According to this method, the first ceramic layer 12 and the nanoparticle layer can be formed without limiting the number of stacked layers of the first ceramic layer 12 and the nanoparticle layer 14 by repeating the pasting of the filter filter precursor 19. 14 can be laminated alternately, so that a filter for filtration comprising three or more first ceramic layers 12 and two or more nanoparticle layers 14 can be easily obtained.
 次に、本発明の第3の実施の形態に係る濾過用フィルタ及びその製造方法について説明する。 Next, a filter for filtration and a method for manufacturing the same according to a third embodiment of the present invention will be described.
 本発明の第3の実施の形態に係る濾過用フィルタは、第2の実施の形態に係る濾過用フィルタ20と同様の構成を有するが、2つのセラミック層及びナノ粒子層が順次積層されて形成されていく点で第2の実施の形態に係る濾過用フィルタ20と異なる。したがって、重複した構成、作用については説明を省略し、以下に異なる構成、作用についての説明を行う。 The filtration filter according to the third embodiment of the present invention has the same configuration as the filtration filter 20 according to the second embodiment, but is formed by sequentially laminating two ceramic layers and a nanoparticle layer. This is different from the filtering filter 20 according to the second embodiment in that it is done. Therefore, the description of the duplicated configuration and operation is omitted, and the description of the different configuration and operation is given below.
 図5は、本実施の形態に係る濾過用フィルタの構成を概略的に示す部分拡大断面図である。 FIG. 5 is a partial enlarged cross-sectional view schematically showing the configuration of the filter for filtration according to the present embodiment.
 図5において、濾過用フィルタ21は、第1のセラミック層12と、該第1のセラミック層12の上に形成されたナノ粒子層14と、該ナノ粒子層14を挟んで第1のセラミック層12と対向する第2のセラミック層15とを備える。 In FIG. 5, the filtering filter 21 includes a first ceramic layer 12, a nanoparticle layer 14 formed on the first ceramic layer 12, and a first ceramic layer sandwiching the nanoparticle layer 14. 12 and a second ceramic layer 15 facing each other.
 本実施の形態に係る濾過用フィルタ21によれば、第1のセラミック層12及び第2のセラミック層15にナノ粒子層14が挟まれるので、濾過用フィルタ21の剛性を確保することができるとともに、ナノ粒子層14からナノ粒子13が流出する虞をなくすことができる。 According to the filter for filtration 21 according to the present embodiment, since the nanoparticle layer 14 is sandwiched between the first ceramic layer 12 and the second ceramic layer 15, the rigidity of the filter for filtration 21 can be ensured. The risk of the nanoparticles 13 flowing out from the nanoparticle layer 14 can be eliminated.
 また、濾過用フィルタ21において、ナノ粒子13の大きさは3nm~5nmなので、第1のセラミック層12や第2のセラミック層15の隙間16、特に表面に存在する隙間16に進入する。その結果、ナノ粒子層14の一部が第1のセラミック層12や第2のセラミック層15のそれぞれに浸透する。これにより、第1のセラミック層12及びナノ粒子層14、並びに第2のセラミック層15及びナノ粒子層14の結合力を高めることができ、もって、濾過用フィルタ10における層間剥離の発生を防止することができるとともに、濾過用フィルタ10全体の剛性を向上することができる。 Further, in the filter 21 for filtration, since the size of the nanoparticles 13 is 3 nm to 5 nm, it enters the gap 16 between the first ceramic layer 12 and the second ceramic layer 15, particularly the gap 16 existing on the surface. As a result, a part of the nanoparticle layer 14 penetrates into each of the first ceramic layer 12 and the second ceramic layer 15. As a result, the bonding strength of the first ceramic layer 12 and the nanoparticle layer 14 and the second ceramic layer 15 and the nanoparticle layer 14 can be increased, thereby preventing delamination in the filter 10 for filtration. In addition, the rigidity of the entire filter 10 for filtration can be improved.
 図6A~図6Cは、本実施の形態に係る濾過用フィルタの製造方法を示す工程図である。 6A to 6C are process diagrams showing a method for manufacturing a filter for filtration according to the present embodiment.
 まず、多数のセラミック粒子11を所定の型に封入して高温の下、所定の圧力を負荷することにより、焼結を行って第1のセラミック層12を得る(図6A)(第1のセラミック層生成ステップ)。次いで、多数のナノ粒子13を第1のセラミック層12の表面を覆うように噴霧して隙間無く分布させた(ナノ粒子分布ステップ)後、各ナノ粒子13を熱処理によって互いに熔融接合させてナノ粒子層14を得る(図6B)(ナノ粒子層生成ステップ)。 First, a large number of ceramic particles 11 are sealed in a predetermined mold, and a predetermined pressure is applied under a high temperature, whereby sintering is performed to obtain a first ceramic layer 12 (FIG. 6A) (first ceramic Layer generation step). Next, after a large number of nanoparticles 13 are sprayed so as to cover the surface of the first ceramic layer 12 and distributed without gaps (nanoparticle distribution step), the nanoparticles 13 are melt-bonded to each other by heat treatment to form nanoparticles. The layer 14 is obtained (FIG. 6B) (nanoparticle layer generation step).
 次いで、多数のセラミック粒子11をナノ粒子層14の表面を覆うように満遍なく分布させた後、高温の下、所定の圧力を負荷することにより、焼結を行って第2のセラミック層15を得る(図6C)。但し、このとき、上記所定の圧力はナノ粒子層14を構成するナノ粒子13を破砕しない値に設定する必要があり、例えば、第1のセラミック層12の形成時における値よりも低い値であるのが好ましい。 Next, a large number of ceramic particles 11 are evenly distributed so as to cover the surface of the nanoparticle layer 14, and then subjected to sintering by applying a predetermined pressure at a high temperature to obtain the second ceramic layer 15. (FIG. 6C). However, at this time, the predetermined pressure needs to be set to a value that does not crush the nanoparticles 13 constituting the nanoparticle layer 14, and is, for example, a value lower than the value at the time of forming the first ceramic layer 12. Is preferred.
 次いで、第1のセラミック層12、ナノ粒子層14及び第2のセラミック層15が積層された積層体から所定の形状の濾過用フィルタ21を切り出して本処理を終了する。 Next, the filter for filtration 21 having a predetermined shape is cut out from the laminated body in which the first ceramic layer 12, the nanoparticle layer 14, and the second ceramic layer 15 are laminated, and this processing is completed.
 本実施の形態に係る濾過用フィルタの製造方法によれば、粒径が3nm~5nmの多数のナノ粒子13を熱処理によって互いに熔融結合させてナノ粒子層14を生成するので、各ナノ粒子13間の隙間17の代表長さを2nm以下に設定することができ、これにより、直径が2nmの貫通孔を濾過用フィルタ21に生成することができる。その結果、濾過用フィルタ21を用いれば、上水や淡水の精製に蒸留法等を併用する必要を無くすことができ、もって、上水や淡水を手軽に得ることができる。 According to the method for manufacturing a filter for filtration according to the present embodiment, a large number of nanoparticles 13 having a particle size of 3 nm to 5 nm are melt-bonded to each other by heat treatment to generate a nanoparticle layer 14. The representative length of the gap 17 can be set to 2 nm or less, whereby a through hole having a diameter of 2 nm can be generated in the filter 21 for filtration. As a result, if the filter 21 for filtration is used, it is possible to eliminate the necessity of using a distillation method or the like for purification of clean water or fresh water, so that clean water or fresh water can be easily obtained.
 次に、本発明の第4の実施の形態に係る濾過用フィルタ及びその製造方法について説明する。 Next, a filter for filtration and a method for manufacturing the same according to the fourth embodiment of the present invention will be described.
 本実施の形態は、ナノ粒子層14や第2のセラミック層15を複数備える点で第3の実施の形態と異なるのみであり、その構成、作用が上述した第3の実施の形態と基本的に同じであるので、重複した構成、作用については説明を省略し、以下に異なる構成、作用についての説明を行う。 This embodiment is different from the third embodiment only in that it includes a plurality of nanoparticle layers 14 and second ceramic layers 15, and its configuration and operation are basically the same as those of the third embodiment described above. Therefore, the description of the duplicated configuration and operation will be omitted, and different configurations and operations will be described below.
 図7は、本実施の形態に係る濾過用フィルタの構成を概略的に示す部分拡大断面図である。 FIG. 7 is a partially enlarged sectional view schematically showing the configuration of the filter for filtration according to the present embodiment.
 図7において、濾過用フィルタ30では、図中最下層に配された第1のセラミック層12上においてナノ粒子層14及び第2のセラミック層15が交互に繰り返して積層される(図中では2つのナノ粒子層14及び2つの第2のセラミック層15が積層されている。)。すなわち、下方のナノ粒子層14は第1のセラミック層12及び下方の第2のセラミック層15に挟まれ、上方のナノ粒子層14は下方の第2のセラミック層15及び上方の第2のセラミック層15に挟まれている。また、下方のナノ粒子層14の一部が第1のセラミック層12や第2のセラミック層15に浸透し、上方のナノ粒子層14の一部が下方の第2のセラミック層15や上方の第2のセラミック層15に浸透している。 In FIG. 7, in the filter 30 for filtration, the nanoparticle layer 14 and the second ceramic layer 15 are alternately and repeatedly stacked on the first ceramic layer 12 disposed in the lowermost layer in the drawing (2 in the drawing). Two nanoparticle layers 14 and two second ceramic layers 15 are laminated). That is, the lower nanoparticle layer 14 is sandwiched between the first ceramic layer 12 and the lower second ceramic layer 15, and the upper nanoparticle layer 14 is the lower second ceramic layer 15 and the upper second ceramic layer. It is sandwiched between layers 15. Further, a part of the lower nanoparticle layer 14 penetrates the first ceramic layer 12 and the second ceramic layer 15, and a part of the upper nanoparticle layer 14 extends to the lower second ceramic layer 15 and the upper ceramic layer 15. It penetrates into the second ceramic layer 15.
 図8A~図8Eは、本実施の形態に係る濾過用フィルタの製造方法を示す工程図である。 8A to 8E are process diagrams showing a method for manufacturing a filter for filtration according to the present embodiment.
 図8A~図8Eにおいて、まず、多数のセラミック粒子11を所定の型に封入して高温の下、所定の圧力を負荷することにより、焼結を行って第1のセラミック層12を得る(図8A)(第1のセラミック層生成ステップ)。次いで、多数のナノ粒子13を第1のセラミック層12の表面を覆うように噴霧して隙間無く分布させた(ナノ粒子分布ステップ)後、各ナノ粒子13を熱処理によって互いに熔融接合させて下方のナノ粒子層14を得る(図8B)(ナノ粒子層生成ステップ)。 8A to 8E, first, a large number of ceramic particles 11 are sealed in a predetermined mold, and a predetermined pressure is applied under a high temperature to perform sintering to obtain a first ceramic layer 12 (FIG. 8). 8A) (first ceramic layer generation step). Next, after spraying a large number of nanoparticles 13 so as to cover the surface of the first ceramic layer 12 and distributing them without gaps (nanoparticle distribution step), the nanoparticles 13 are melt-bonded to each other by heat treatment to form a lower part. A nanoparticle layer 14 is obtained (FIG. 8B) (nanoparticle layer generation step).
 次いで、多数のセラミック粒子11を下方のナノ粒子層14の表面を覆うように満遍なく分布させた後、高温の下、所定の圧力を負荷することにより、焼結を行って下方の第2のセラミック層15を得る(図8C)(第2のセラミック層生成ステップ)。 Next, a large number of ceramic particles 11 are evenly distributed so as to cover the surface of the lower nanoparticle layer 14, and then subjected to sintering by applying a predetermined pressure at a high temperature, thereby lowering the second ceramic particles below. A layer 15 is obtained (FIG. 8C) (second ceramic layer generation step).
 次いで、多数のナノ粒子13を下方の第2のセラミック層15の表面を覆うように噴霧して隙間無く分布させた(ナノ粒子分布ステップ)後、各ナノ粒子13を熱処理によって互いに熔融接合させて上方のナノ粒子層14を得(図8D)(ナノ粒子層生成ステップ)、さらに、多数のセラミック粒子11を上方のナノ粒子層14の表面を覆うように満遍なく分布させた後、高温の下、所定の圧力を負荷することにより、焼結を行って上方の第2のセラミック層15を得る(図8E)(第2のセラミック層生成ステップ)。 Next, after a large number of nanoparticles 13 are sprayed so as to cover the surface of the second ceramic layer 15 below and distributed without gaps (nanoparticle distribution step), the nanoparticles 13 are melt-bonded to each other by heat treatment. After obtaining the upper nanoparticle layer 14 (FIG. 8D) (nanoparticle layer generation step), and further distributing a large number of ceramic particles 11 so as to cover the surface of the upper nanoparticle layer 14, under high temperature, By applying a predetermined pressure, sintering is performed to obtain an upper second ceramic layer 15 (FIG. 8E) (second ceramic layer generation step).
 次いで、第1のセラミック層12、各ナノ粒子層14及び各第2のセラミック層15が積層された積層体から所定の形状の濾過用フィルタ10を切り出して本処理を終了する。 Next, the filter 10 having a predetermined shape is cut out from the laminate in which the first ceramic layer 12, each nanoparticle layer 14, and each second ceramic layer 15 are laminated, and this processing is finished.
 本実施の形態に係る濾過用フィルタ30によれば、濾過用フィルタ30は1つの第1のセラミック層12及び2つの第2のセラミック層15、すなわち3つ以上のセラミック層12,15を備えるので、濾過用フィルタ30の剛性をより確実に確保することができる。さらに、3つ以上のセラミック層12,15のうち、隣接する2つのセラミック層の間にはナノ粒子層14が介在するので、結果として濾過用フィルタ30には複数のナノ粒子層14が存在し、その結果、濾過用フィルタ30のフィルタリング能力が高まり、より確実に上水や淡水を得ることができる。 According to the filtering filter 30 according to the present embodiment, the filtering filter 30 includes one first ceramic layer 12 and two second ceramic layers 15, that is, three or more ceramic layers 12 and 15. The rigidity of the filter 30 for filtration can be ensured more reliably. Furthermore, since the nanoparticle layer 14 is interposed between two adjacent ceramic layers among the three or more ceramic layers 12 and 15, the plurality of nanoparticle layers 14 are present in the filter 30 as a result. As a result, the filtering ability of the filter 30 for filtration is enhanced, and water and fresh water can be obtained more reliably.
 また、本実施の形態に係る濾過用フィルタ30の製造方法によれば、第1のセラミック層12を生成した後、ナノ粒子層14の生成及び第2のセラミック層15の生成をこの順に2回ほど繰り返すので、容易に複数のセラミック層12,15及び複数のナノ粒子層14が積層された濾過用フィルタ30を得ることができる。 Moreover, according to the manufacturing method of the filter 30 for filtration which concerns on this Embodiment, after producing | generating the 1st ceramic layer 12, production | generation of the nanoparticle layer 14 and production | generation of the 2nd ceramic layer 15 are performed twice in this order. Therefore, the filter 30 for filtration in which the plurality of ceramic layers 12 and 15 and the plurality of nanoparticle layers 14 are laminated can be easily obtained.
 上述した濾過用フィルタ30では、2つのナノ粒子層14及び2つの第2のセラミック層15が配設されたが、ナノ粒子層14及び第2のセラミック層15の配設数は同数であれば「2」に限られず、濾過用フィルタ30の使用目的に応じてナノ粒子層14及び第2のセラミック層15の配設数を増減してもよい。 In the filtering filter 30 described above, the two nanoparticle layers 14 and the two second ceramic layers 15 are disposed. However, if the nanoparticle layers 14 and the second ceramic layers 15 are disposed in the same number, The number of the nanoparticle layers 14 and the second ceramic layers 15 may be increased or decreased according to the purpose of use of the filter 30 for filtration without being limited to “2”.
 上述した各実施の形態における濾過用フィルタは、一定時間以上、上水や淡水の精製に供されるとトラップされた汚染物質や塩分によって目詰まりを起こして上水や淡水の精製効率が低下する。したがって、加圧された薬液を濾過用フィルタに流すことにより、トラップされた汚染物質や塩分を除去して濾過用フィルタを再生する必要があるが、各実施の形態における濾過用フィルタはシリカ等の比較的硬質な部材によって構成されるため、加圧された薬液を流しても濾過用フィルタが破損、消耗することが殆どない。すなわち、上述した各実施の形態における濾過用フィルタは再生可能である。 The filter for filtration in each of the above-described embodiments causes clogging due to trapped contaminants and salinity when subjected to purification of clean water or fresh water for a certain period of time or more, and the purification efficiency of clean water or fresh water decreases. . Therefore, it is necessary to regenerate the filter for filtration by removing the trapped contaminants and salt by flowing the pressurized chemical solution through the filter for filtration, but the filter for filtration in each embodiment is made of silica or the like. Since it is composed of a relatively hard member, the filter for filtration is hardly damaged or consumed even when a pressurized chemical solution is flowed. That is, the filter for filtration in each embodiment mentioned above is reproducible.
 また、濾過の際に下水や海水を流す方向とは逆の方向から加圧された薬液を流してトラップされた汚染物質等を除去してもよい。この場合も、濾過用フィルタが硬質な材質で構成されているため、濾過用フィルタは比較的高い圧力にも耐え、効率的な汚染物質などの除去を行うことができる。 Also, trapped contaminants may be removed by flowing a pressurized chemical solution from the direction opposite to the direction of flowing sewage or seawater during filtration. Also in this case, since the filter for filtration is comprised with the hard material, the filter for filtration can also endure comparatively high pressure, and can perform removal of a pollutant etc. efficiently.
 また、上述したように、各実施の形態における濾過用フィルタは焼結されたセラミックからなる比較的硬質な層を構成に含むので、PVDやCVDを利用して銀などの殺菌、抗菌作用のある金属でコーティングすることができ、より清浄な上水や淡水の精製に寄与することができる。ここで、濾過用フィルタを酸化チタンでコーティングし、上水や淡水の精製時に紫外線を照射させることによって光触媒作用による強力な滅菌効果を得ることができ、もって、上水や淡水の滅菌を確実に行うことができる。 In addition, as described above, the filter for filtration in each embodiment includes a relatively hard layer made of sintered ceramic, and thus has a sterilization and antibacterial action such as silver using PVD and CVD. It can be coated with metal and can contribute to purifying clean water and fresh water. Here, the filter for filtration is coated with titanium oxide, and a strong sterilization effect by the photocatalytic action can be obtained by irradiating ultraviolet rays at the time of purification of clean water and fresh water, thereby ensuring sterilization of clean water and fresh water. It can be carried out.
 以上、本発明について、上記各実施の形態を用いて説明したが、本発明は上記各実施の形態に限定されるものではない。 As mentioned above, although this invention was demonstrated using said each embodiment, this invention is not limited to said each embodiment.
 10,20,21,30 濾過用フィルタ
 11 セラミック粒子
 12 第1のセラミック層
 13 ナノ粒子
 14 ナノ粒子層
 15 第2のセラミック層
 16,17 隙間
 19 濾過フィルタ前駆体
10, 20, 21, 30 Filtration filter 11 Ceramic particles 12 First ceramic layer 13 Nano particles 14 Nano particle layer 15 Second ceramic layer 16, 17 Gap 19 Filtration filter precursor

Claims (7)

  1.  金属酸化物を主成分とする多数のセラミック粒子を焼結させて生成され、各前記セラミック粒子間の隙間が50nm~500nmに調整された少なくとも2つのセラミック層と、
     粒径が3nm~5nmの多数のナノ粒子を熱処理によって互いに熔融結合させて生成され、隣接する2つの前記セラミック層に挟まれたナノ粒子層とを備えることを特徴とする濾過用フィルタ。
    At least two ceramic layers produced by sintering a large number of ceramic particles mainly composed of a metal oxide, the gap between the ceramic particles being adjusted to 50 nm to 500 nm,
    A filter for filtration, comprising: a nanoparticle layer formed by melt-bonding a large number of nanoparticles having a particle size of 3 nm to 5 nm to each other by heat treatment and sandwiched between two adjacent ceramic layers.
  2.  前記ナノ粒子層の一部が前記セラミックス層に部分的に浸透したことを特徴とする請求項1記載の濾過用フィルタ。 The filter for filtration according to claim 1, wherein a part of the nanoparticle layer partially penetrates the ceramic layer.
  3.  各前記ナノ粒子は長径が5nm以下且つ短径が3nm以上であることを特徴とする請求項1記載の濾過用フィルタ。 The filter for filtration according to claim 1, wherein each of the nanoparticles has a major axis of 5 nm or less and a minor axis of 3 nm or more.
  4.  3つ以上の前記セラミック層を備え、
     前記3つ以上のセラミック層のうち、隣接する2つの前記セラミック層の間には前記ナノ粒子層が介在することを特徴とする請求項1記載の濾過用フィルタ。
    Comprising three or more ceramic layers,
    The filter for filtration according to claim 1, wherein the nanoparticle layer is interposed between two adjacent ceramic layers among the three or more ceramic layers.
  5.  金属酸化物を主成分とする多数のセラミック粒子を互いに接合させ、且つ各前記セラミック粒子間の隙間を50nm~500nmに調整して第1のセラミック層を生成する第1のセラミック層生成ステップと、
     前記生成された第1のセラミック層の表面を覆うように粒径が3nm~5nmの多数のナノ粒子を分布させるナノ粒子分布ステップと、
     前記分布した多数のナノ粒子を熱処理によって互いに熔融結合させてナノ粒子層を生成するナノ粒子層生成ステップと、
     前記生成されたナノ粒子層の表面を覆うように多数の前記セラミック粒子を分布させ、該分布した多数のセラミック粒子を互いに接合させ、且つ各前記セラミック粒子間の隙間を50nm~500nmに調整して第2のセラミック層を生成する第2のセラミック層生成ステップとを有することを特徴とする濾過用フィルタの製造方法。
    A first ceramic layer generating step of bonding a large number of ceramic particles mainly composed of metal oxide to each other and adjusting a gap between the ceramic particles to 50 nm to 500 nm to generate a first ceramic layer;
    A nanoparticle distribution step of distributing a large number of nanoparticles having a particle size of 3 nm to 5 nm so as to cover the surface of the generated first ceramic layer;
    A nanoparticle layer generation step of forming a nanoparticle layer by melt-bonding a large number of the distributed nanoparticles to each other by heat treatment;
    A number of the ceramic particles are distributed so as to cover the surface of the generated nanoparticle layer, the distributed number of ceramic particles are bonded to each other, and a gap between the ceramic particles is adjusted to 50 nm to 500 nm. And a second ceramic layer generation step for generating a second ceramic layer.
  6.  前記ナノ粒子分布ステップでは、前記生成された第2のセラミック層の表面を覆うように粒径が3nm~5nmの多数のナノ粒子を分布させ、
     前記第1のセラミック層生成ステップの後、前記ナノ粒子分布ステップ、前記ナノ粒子層生成ステップ及び第2のセラミック層生成ステップをこの順に所定の回数ほど繰り返すことを特徴とする請求項5記載の濾過用フィルタの製造方法。
    In the nanoparticle distribution step, a large number of nanoparticles having a particle size of 3 nm to 5 nm are distributed so as to cover the surface of the generated second ceramic layer,
    6. The filtration according to claim 5, wherein after the first ceramic layer generation step, the nanoparticle distribution step, the nanoparticle layer generation step, and the second ceramic layer generation step are repeated a predetermined number of times in this order. Method for manufacturing a filter for an automobile.
  7.  金属酸化物を主成分とする多数のセラミック粒子を互いに接合させ、且つ各前記セラミック粒子間の隙間を50nm~500nmに調整してセラミック層を生成するセラミック層生成ステップと、
     前記生成されたセラミック層の表面を覆うように粒径が3nm~5nmの多数のナノ粒子を分布させ濾過フィルタ前駆体を形成する濾過フィルタ前駆体形成ステップと、
     前記濾過フィルタ前駆体形成ステップにおいて形成された2つの前記濾過フィルタ前駆体を、前記多数のナノ粒子が分布する面同士が接触するように貼り合わせ、前記分布した多数のナノ粒子を熱処理によって互いに熔融結合させて1つのナノ粒子層を生成するナノ粒子層生成ステップとを有することを特徴とする濾過用フィルタの製造方法。
    A ceramic layer generating step of joining a large number of ceramic particles mainly composed of a metal oxide to each other and adjusting a gap between the ceramic particles to 50 nm to 500 nm to generate a ceramic layer;
    A filtration filter precursor forming step of forming a filter filter precursor by distributing a large number of nanoparticles having a particle size of 3 nm to 5 nm so as to cover the surface of the generated ceramic layer;
    The two filter filter precursors formed in the filter filter precursor forming step are bonded so that the surfaces on which the plurality of nanoparticles are distributed are in contact with each other, and the distributed many nanoparticles are melted together by heat treatment. A method for producing a filter for filtration, comprising: a nanoparticle layer generation step of forming one nanoparticle layer by bonding.
PCT/JP2012/052191 2011-01-28 2012-01-25 Filtration filter and filtration filter production method WO2012102408A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137019878A KR20140005938A (en) 2011-01-28 2012-01-25 Filtration filter and filtration filter production method
CN2012800037861A CN103228343A (en) 2011-01-28 2012-01-25 Filtration filter and filtration filter production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011016822A JP2012152727A (en) 2011-01-28 2011-01-28 Filtration filter, and method for producing filtration filter
JP2011-016822 2011-01-28

Publications (1)

Publication Number Publication Date
WO2012102408A1 true WO2012102408A1 (en) 2012-08-02

Family

ID=46580971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052191 WO2012102408A1 (en) 2011-01-28 2012-01-25 Filtration filter and filtration filter production method

Country Status (4)

Country Link
JP (1) JP2012152727A (en)
KR (1) KR20140005938A (en)
CN (1) CN103228343A (en)
WO (1) WO2012102408A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592198A (en) * 2020-11-25 2021-04-02 韩露珠(厦门)环保科技有限公司 Multifunctional composite ceramic filter element and preparation method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101526330B1 (en) * 2012-12-20 2015-06-08 주식회사 에스디알앤디 A water circulation apparatus of filtration type
JP6808156B2 (en) * 2016-01-13 2021-01-06 国立研究開発法人産業技術総合研究所 A porous filter, a hydrogen separation membrane using a porous filter as a support, a hydrogen separation method, and a method for manufacturing a porous filter.
CN106139916A (en) * 2016-08-03 2016-11-23 江苏科技大学 A kind of desalination film and its preparation method and application
CN106000122A (en) * 2016-08-03 2016-10-12 镇江市丹徒区硕源材料科技有限公司 Carbon-containing composite film, preparation method and application thereof
CN106215714A (en) * 2016-08-03 2016-12-14 江苏科技大学 A kind of composite membrane and its preparation method and application
CN106178985A (en) * 2016-08-03 2016-12-07 江苏科技大学 A kind of isolating membrane and its preparation method and application
CN106178984A (en) * 2016-08-03 2016-12-07 镇江市丹徒区硕源材料科技有限公司 A kind of carbon containing desalination film and its preparation method and application
CN106000127A (en) * 2016-08-03 2016-10-12 镇江市丹徒区硕源材料科技有限公司 Carbon-containing seawater desalination film, preparation method and application thereof
CN106110905A (en) * 2016-08-03 2016-11-16 镇江市丹徒区硕源材料科技有限公司 A kind of carbon containing isolating membrane and its preparation method and application
CN106237874A (en) * 2016-08-03 2016-12-21 江苏科技大学 A kind of sea water desalination membrane and its preparation method and application
CN110456555B (en) * 2019-08-27 2022-03-15 昆山工研院新型平板显示技术中心有限公司 Color filter and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09502131A (en) * 1994-06-24 1997-03-04 マイクロパイレティックス、ヒーターズ、インターナショナル Porous membrane and method for producing the same
JP2005022929A (en) * 2003-07-04 2005-01-27 Toshiba Ceramics Co Ltd Ceramic porous body and its manufacturing method
JP2006509918A (en) * 2002-12-12 2006-03-23 マイクロリス・コーポレイシヨン Porous sintered composite material
WO2008010452A1 (en) * 2006-07-20 2008-01-24 Ngk Insulators, Ltd. Ceramic filter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066280A (en) * 2000-08-30 2002-03-05 Kyocera Corp Gas separation filter and method for manufacturing the same
JP4024704B2 (en) * 2002-04-19 2007-12-19 日本碍子株式会社 Manufacturing method of multilayer ceramic filter
CN1726127A (en) * 2002-12-12 2006-01-25 密科理股份有限公司 Porous sintered composite materials
DE10303897A1 (en) * 2003-01-30 2004-08-12 Itn-Nanovation Gmbh Multi-layer ceramic composite
DE10305864B4 (en) * 2003-02-13 2007-07-26 Itn Nanovation Gmbh Process for producing a multilayer porous ceramic composite
JP4379684B2 (en) * 2003-07-09 2009-12-09 株式会社豊田中央研究所 Fluid separation filter, manufacturing method thereof, and fuel cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09502131A (en) * 1994-06-24 1997-03-04 マイクロパイレティックス、ヒーターズ、インターナショナル Porous membrane and method for producing the same
JP2006509918A (en) * 2002-12-12 2006-03-23 マイクロリス・コーポレイシヨン Porous sintered composite material
JP2005022929A (en) * 2003-07-04 2005-01-27 Toshiba Ceramics Co Ltd Ceramic porous body and its manufacturing method
WO2008010452A1 (en) * 2006-07-20 2008-01-24 Ngk Insulators, Ltd. Ceramic filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592198A (en) * 2020-11-25 2021-04-02 韩露珠(厦门)环保科技有限公司 Multifunctional composite ceramic filter element and preparation method thereof

Also Published As

Publication number Publication date
KR20140005938A (en) 2014-01-15
CN103228343A (en) 2013-07-31
JP2012152727A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
WO2012102408A1 (en) Filtration filter and filtration filter production method
Pendergast et al. A review of water treatment membrane nanotechnologies
CN107155312B (en) Shape and manufacturing method of a multichannel tubular element incorporating turbulence promoters for tangential flow separation
AU2015303084B2 (en) A tangential flow separator element incorporating flow obstacles, and method of fabrication
CN107155313B (en) Shape and manufacturing method of a single-channel tubular element incorporating turbulence promoters for tangential flow separation
CN107875860A (en) Nanoscale bicylindrical hole filter membrane
AU2017203154A1 (en) Tunable layered graphene membrane configuration for filtration and selective isolation and recovery devices
JP2010520053A5 (en)
Shamsuddin et al. Membrane-based point-of-use water treatment (PoUWT) system in emergency situations
JP2022069483A (en) Non-nesting, non-deforming patterns for spiral-wound elements
Ibrahim et al. The potentials of 3D-printed feed spacers in reducing the environmental footprint of membrane separation processes
CN105612128B (en) Deionizer
Shankara et al. Catalysis interfaced multifunctional membranes for sustainable treatment of water and wastewater
JPH04215825A (en) Manufacture of membrane for micro- filtration, ultra filtration, super evaporation, reverse osmosis, of suspension and emulsion or gas separation
JP6164366B2 (en) Adsorption member
WO2012063953A1 (en) Method for producing filtration filter
KR101744707B1 (en) Dual Structure Membrane Module Combined with Carbon Nano Tube, and Water treatment system using the same
JP4837709B2 (en) Manufacturing method of cylindrical filter member for water purifier
JP2007290012A (en) Manufacturing method of anisotropy porous material
JP4861217B2 (en) Separation column
JP2016087508A (en) Filtration filter and water purifier
WO2013151147A1 (en) Filtration filter
CN207002461U (en) Bamboo charcoal composite fiber
TWI391176B (en) Water filter
CN107983171A (en) Nanoscale double cone hole filter membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137019878

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739109

Country of ref document: EP

Kind code of ref document: A1