WO2012102207A1 - Light irradiation device - Google Patents

Light irradiation device Download PDF

Info

Publication number
WO2012102207A1
WO2012102207A1 PCT/JP2012/051226 JP2012051226W WO2012102207A1 WO 2012102207 A1 WO2012102207 A1 WO 2012102207A1 JP 2012051226 W JP2012051226 W JP 2012051226W WO 2012102207 A1 WO2012102207 A1 WO 2012102207A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
amorphous silicon
source units
prism
Prior art date
Application number
PCT/JP2012/051226
Other languages
French (fr)
Japanese (ja)
Inventor
上原 誠
Original Assignee
株式会社エタンデュ目白
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エタンデュ目白 filed Critical 株式会社エタンデュ目白
Publication of WO2012102207A1 publication Critical patent/WO2012102207A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Definitions

  • the present invention relates to a light irradiation apparatus used for heating amorphous silicon to produce polysilicon (polycrystalline silicon) or single crystal silicon.
  • the liquid crystal panel is manufactured by forming a wiring layer and a TFT element on a silicon film on a glass substrate.
  • amorphous silicon has been used for the silicon film because it can be easily formed on a large glass substrate.
  • polysilicon polycrystalline silicon obtained by crystallizing amorphous silicon is often used. Since polysilicon has low resistance and current easily flows, the wiring layer and the TFT element can be reduced in size, and the resolution of the liquid crystal display can be increased. In addition, the area of the opening for allowing light to pass can be increased, and the brightness of the liquid crystal display can be increased.
  • the amorphous silicon In order to crystallize amorphous silicon to obtain polysilicon, the amorphous silicon must be heated to a temperature close to the melting point (1410 ° C.). However, since the melting point of the glass substrate to which amorphous silicon is applied is lower than the melting point of amorphous silicon, when the amorphous silicon is heated to a temperature close to the melting point, not only the amorphous silicon but also the substrate is melted. Therefore, at present, in order to heat the amorphous silicon, a method of irradiating the excimer laser beam to the amorphous silicon is employed (see Patent Document 1).
  • Amorphous silicon has an absorption wavelength band from 300 nm to 480 nm, while glass used as a substrate material transmits light in a wavelength band longer than 300 nm. Therefore, it is amorphous by irradiating excimer laser light with a wavelength of 300 nm to 450 nm. Silicon can be selectively heated.
  • FIG. 10 shows a conventional method for crystallizing amorphous silicon.
  • the excimer laser beam generated by the excimer laser generator is made into a linear irradiation region of about several microns ⁇ 40 cm by a homogenizing optical system. While irradiating amorphous silicon on the substrate with this linear excimer laser light, the substrate is moved at a constant speed in the X direction in the figure (first scan). Thereby, the band-like region A1 in the drawing can be heated and crystallized.
  • the substrate is moved in the Y direction (direction orthogonal to the X direction) in the drawing by the same distance as the length L of the irradiation region of the excimer laser light. Then, the substrate is moved at a constant speed in the X direction in the drawing while irradiating the excimer laser light again to the amorphous silicon (second scan). Thereby, the region A2 in the figure can be heated and crystallized. Thereafter, excimer laser light can be irradiated to the entire amorphous silicon film by repeating the same scan as many times as necessary. Thereby, the whole amorphous silicon film can be heated and crystallized.
  • the conventional method for crystallizing amorphous silicon has the following problems.
  • the excimer laser generator is expensive and the running cost is high.
  • the present invention has been made in view of the above problems, and provides a light irradiation apparatus capable of crystallizing an amorphous silicon film uniformly and inexpensively without using an excimer laser as a light source. Objective.
  • the light irradiation apparatus of the present invention includes a plurality of light source units, and a plate-like prism for condensing the light emitted from the plurality of light source units and irradiating the irradiated object in a line shape. It is characterized by. Moreover, the light irradiation apparatus of the present invention includes a plurality of light source units, two reflection mirrors for condensing the light emitted from the plurality of light source units and irradiating the irradiated object linearly. It is characterized by providing.
  • the light emitted from the plurality of light source units can be irradiated linearly toward the irradiation object.
  • the amorphous silicon film can be irradiated with light linearly, and the amorphous silicon film can be heated and crystallized without using an excimer laser as a light source.
  • the entire amorphous silicon film formed on the large substrate is irradiated with light by one scan. be able to. For this reason, it is not necessary to repeat a plurality of scans as in the conventional method, and there is no overlap in the light irradiation region, and the entire amorphous silicon film can be crystallized without unevenness.
  • the amorphous silicon film can be crystallized at a low cost.
  • the light irradiation device of the present invention preferably further has the following configuration.
  • Each of the plurality of light source units includes a light emitting unit and an elliptical mirror that reflects light emitted from the light emitting unit.
  • the light emitting unit is disposed at or near the first focal point of the elliptical mirror, and the light incident surface of the prism is disposed at or near the second focal point of the elliptical mirror.
  • the plurality of light source units are arranged at equal intervals along the longitudinal direction of the incident surface.
  • Each of the plurality of light source units includes a light emitting unit and an elliptical mirror that reflects light emitted from the light emitting unit.
  • the light emitting section is disposed at or near the first focal point of the elliptical mirror, and a light incident port for allowing light to enter between the two reflecting mirrors at or near the second focal point of the elliptical mirror. Is arranged. (4) The plurality of light source units are arranged at equal intervals along the longitudinal direction of the incident port. (5) The irradiated object is amorphous silicon. (6) The light emitting unit is an ultrahigh pressure mercury lamp.
  • the present invention it is possible to provide a light irradiation apparatus that can crystallize an amorphous silicon film uniformly and inexpensively without using an excimer laser as a light source.
  • FIG. 3A shows the illuminance distribution of the light emitted from the exit surface of the prism, separated vertically for each light source unit.
  • FIG. 3B shows the illuminance distribution of light actually emitted from the exit surface of the prism.
  • FIG. 1 is a front view of a light irradiation apparatus 100 according to the first embodiment.
  • FIG. 2 is a side view of the light irradiation apparatus 100.
  • the light irradiation device 100 includes a light emitting unit 10, an elliptical mirror 12 that reflects light emitted from the light emitting unit 10, and a plurality of light source units 14.
  • Each of the plurality of light source units 14 includes a light emitting unit 10 and an elliptical mirror 12.
  • the light irradiation apparatus 100 includes a plate-like prism 20 for condensing the light emitted from the plurality of light source units 14 and irradiating the light toward the irradiation object.
  • the light emitting unit 10 is composed of, for example, an ultrahigh pressure mercury lamp capable of emitting ultraviolet light having a wavelength of 300 nm to 480 nm. Inside the ultra high pressure mercury lamp constituting the light emitting unit 10, two electrodes including a cathode and an anode are provided. In addition, mercury of a predetermined mercury vapor pressure, for example, 30 atmospheres or more is enclosed in the ultra high pressure mercury lamp.
  • the elliptical mirror 12 is configured by a glass molded body having a substantially elliptical cross section. On the inner surface of the elliptical mirror 12, a reflective coating film is formed which can transmit and remove light having a specific wavelength such as unnecessary heat rays and reflect necessary ultraviolet light forward.
  • the light emitting unit 10 is disposed at or near the first focal point of the elliptical mirror 12. Specifically, the light emitting unit 10 is arranged such that the midpoint between the cathode and the anode of the ultrahigh pressure mercury lamp constituting the light emitting unit 10 is located at or near the first focal point of the elliptical mirror 12. Accordingly, the light emitted from the light emitting unit 10 is reflected by the inner surface of the elliptical mirror 12 and then condensed toward the second focal point of the elliptical mirror 12.
  • a light incident surface 22 of a plate-like prism 20 described later is disposed at or near the second focal point of the elliptical mirror 12.
  • near means, for example, a range within 1/10 of the focal length of the elliptical mirror 12 around the first focal point or the second focal point of the elliptical mirror 12.
  • a single transparent glass plate 16 is installed on the front side of the plurality of light source units 14, respectively.
  • the glass plate 16 is installed to stabilize the temperature when the light emitting unit 10 is turned on.
  • a plate-like prism 20 is installed on the further front side of the glass plate 16.
  • the prism 20 is a thin plate having a thickness T of 7 mm, a width of 2000 mm, and a height H of 180 mm, and is formed of synthetic quartz.
  • the end surface on the long side of the prism 20 is an incident surface 22 on which light emitted from the plurality of light source units 14 is incident.
  • the incident surface 22 has a size of 7 mm ⁇ 2000 mm and has an elongated linear shape.
  • the end surface of the prism 20 opposite to the incident surface 22 is an exit surface 24 through which light incident on the prism 20 exits.
  • the emission surface 24 has a size of 7 mm ⁇ 2000 mm and has an elongated linear shape.
  • the “linear shape” means that the length of the short side of the emission surface 24 of the prism 20 is 1 ⁇ 2 or less of the length of the long side.
  • the length of the short side of the exit surface 24 of the prism 20 is 1/2 or less of the length of the long side, preferably 1/10 or less, more preferably 1/100 or less, and particularly preferably 1 / 200 or less.
  • the light irradiation apparatus 100 includes 33 light source units 14 (four of the light source units 14 are shown in FIG. 1).
  • the 33 light source units 14 are installed at intervals of 60 mm along the longitudinal direction (2000 mm width direction) of the incident surface 22 of the prism 20.
  • the 33 light source parts 14 are installed so that the direction of the light radiate
  • the light emitted from the 33 light source units 14 enters the incident surface 22 of the prism 20.
  • the light incident on the incident surface 22 is repeatedly reflected in the thickness direction inside the prism 20 a plurality of times, and then exits from the exit surface 24 to the outside.
  • a glass substrate is installed at a position 10 mm below the emission surface 24 of the prism 20.
  • An amorphous silicon film W is formed on the surface of the substrate.
  • the amorphous silicon film W corresponds to the “object to be irradiated” of the present invention.
  • FIG. 3A shows the illuminance distribution of the light emitted from the emission surface 24 of the prism 20 separately for each light source unit 14 in the vertical direction.
  • FIG. 3B shows the illuminance distribution of the light actually emitted from the emission surface 24 of the prism 20.
  • the light emitted from the emission surface 24 of the prism 20 has a uniform illuminance in the thickness direction of the prism 20. This is because the light incident on the inside of the prism 20 is repeatedly reflected a plurality of times in the thickness direction inside the prism 20 to make the illuminance uniform.
  • the illuminance at the center of the light source unit 14 is the highest, and the illuminance gradually decreases as the distance from the center is increased. For this reason, when the amorphous silicon film W is irradiated with such light, only the crystallization of the central portion proceeds rapidly, so that the amorphous silicon film W cannot be uniformly crystallized.
  • the plurality of light source units 14 are arranged at equal intervals along the longitudinal direction of the incident surface 22.
  • the light emitted from the adjacent light source portions 14 overlaps with each other in the longitudinal direction of the prism 20 (direction of 2000 mm width). Illuminance is made uniform. This makes it possible to uniformly irradiate the amorphous silicon film W with light emitted from the plurality of light source units 14.
  • the light emitted from the plurality of light source units 14 can be irradiated linearly onto the amorphous silicon film W.
  • the amorphous silicon film W can be heated and crystallized without using an excimer laser as a light source.
  • the irradiation area of the light irradiated linearly can be lengthened by increasing the number of the light source parts 14 to be used. Further, by increasing the longitudinal dimension of the prism 20 to be used, it is possible to lengthen the irradiation region of the light irradiated linearly. Therefore, since there is no limitation on the length of the light irradiation region, even when an amorphous silicon film is formed on a large substrate, the entire amorphous silicon film is irradiated with a single scan. be able to.
  • the amorphous silicon film formed on the large substrate is irradiated with light, it is not necessary to repeat scanning a plurality of times as in the conventional method.
  • the entire amorphous silicon film can be crystallized without unevenness.
  • the light irradiation apparatus 100 of the present embodiment it is not necessary to use an expensive excimer laser generator in order to crystallize the amorphous silicon film. For this reason, polysilicon (polycrystalline silicon) can be manufactured at low cost.
  • the light irradiation apparatus 200 of the second embodiment has the same configuration as that of the light irradiation apparatus 100 of the first embodiment, except that the prism 20 is replaced with two reflection mirrors 30a and 30b. Therefore, the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • FIG. 4 is a front view of the light irradiation apparatus 200 according to the second embodiment.
  • FIG. 5 is a side view of the light irradiation device 200.
  • the light irradiation device 200 includes a light emitting unit 10, an elliptical mirror 12 that reflects light emitted from the light emitting unit 10, and a plurality of light source units 14.
  • Each of the plurality of light source units 14 includes a light emitting unit 10 and an elliptical mirror 12.
  • the light irradiation device 200 includes two reflection mirrors 30a and 30b for condensing the light emitted from the plurality of light source units 14 and irradiating the light toward the irradiation object in a linear shape.
  • Each of the two reflection mirrors 30a and 30b is composed of a plate-like total reflection mirror having the same shape having a width of 2000 mm and a height H of 180 mm.
  • the two reflection mirrors 30a and 30b are arranged in parallel to each other with their reflection surfaces facing each other.
  • Ends on the long side of the two reflection mirrors 30a and 30b serve as an entrance 32 for allowing light emitted from the plurality of light source units 14 to enter between the two reflection mirrors 30a and 30b.
  • the entrance 32 has a dimension of 7 mm ⁇ 2000 mm and has an elongated linear shape.
  • the end of the two reflecting mirrors 30a and 30b opposite to the entrance 32 is an exit 34 for light incident between the two reflecting mirrors 30a and 30b to be emitted to the outside.
  • the emission port 34 has a size of 7 mm ⁇ 2000 mm and has an elongated linear shape.
  • the light irradiation device 200 includes 33 light source units 14 (four light source units 14 are shown in FIG. 4).
  • the 33 light source units 14 are installed at intervals of 60 mm along the longitudinal direction (2000 mm width direction) of the entrance 32 of the two reflection mirrors 30a and 30b.
  • the 33 light source parts 14 are installed so that the direction of the light radiate
  • the light emitted from the 33 light source sections 14 enters the entrance 32 of the two reflection mirrors 30a and 30b.
  • the light incident on the incident port 32 is repeatedly reflected a plurality of times in the thickness direction between the two reflection mirrors 30a and 30b, and then emitted to the outside from the emission port 34.
  • a glass substrate is installed at a position 10 mm below the exit 34 of the two reflecting mirrors 30a and 30b.
  • An amorphous silicon film W is formed on the surface of the substrate.
  • the amorphous silicon film W corresponds to the “object to be irradiated” of the present invention.
  • the plurality of light source units 14 are arranged at equal intervals along the longitudinal direction of the incident port 32.
  • the light emitted from the adjacent light source units 14 overlaps with each other in the longitudinal direction (2000 mm width direction) of the two reflection mirrors 30a and 30b.
  • the illuminance of light is also made uniform in the longitudinal direction of the reflection mirrors 30a and 30b. This makes it possible to uniformly irradiate the amorphous silicon film W with light emitted from the plurality of light source units 14.
  • the light emitted from the plurality of light source units 14 can be irradiated linearly onto the amorphous silicon film W.
  • the amorphous silicon film W can be heated and crystallized without using an excimer laser as a light source.
  • the irradiation area of the light irradiated linearly can be lengthened by increasing the number of the light source parts 14 to be used. Moreover, the irradiation area of the light irradiated linearly can be lengthened by lengthening the dimension of the longitudinal direction of the two reflection mirrors 30a and 30b to be used. Therefore, since there is no limitation on the length of the light irradiation region, even when an amorphous silicon film is formed on a large substrate, the entire amorphous silicon film is irradiated with a single scan. can do.
  • the amorphous silicon film formed on the large substrate is irradiated with light, it is not necessary to repeat scanning a plurality of times as in the conventional method.
  • the entire amorphous silicon film can be crystallized without unevenness.
  • the light irradiation apparatus 200 of the present embodiment it is not necessary to use an expensive excimer laser generator in order to crystallize the amorphous silicon film. For this reason, polysilicon (polycrystalline silicon) can be manufactured at low cost.
  • the light irradiation apparatus 300 according to the third embodiment has the same configuration as that of the light irradiation apparatus 100 according to the first embodiment except that the number of rows of 33 light source units 14 is increased from one row to three rows. ing. Therefore, the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • FIG. 6 is a side view of the light irradiation apparatus 300 according to the third embodiment.
  • the light irradiation device 300 includes a light emitting unit 10, an elliptical mirror 12 that reflects light emitted from the light emitting unit 10, and a plurality of light source units 14.
  • Each of the plurality of light source units 14 includes a light emitting unit 10 and an elliptical mirror 12.
  • the light irradiation apparatus 100 includes a plate-like prism 20 for condensing the light emitted from the plurality of light source units 14 and irradiating the light toward the irradiation object.
  • the light irradiation device 300 includes three rows of 33 light source units 14. Hereinafter, these three columns are referred to as first to third light source unit 40a to 40c.
  • the first to third light source unit 40a to 40c are arranged so as to be shifted from each other by 1/3 pitch (that is, by 20 mm) in the row direction (direction perpendicular to the paper surface of FIG. 6).
  • the first light source unit 40a has the same configuration as the row of 33 light source units 14 in the first embodiment. Therefore, the light emitted from the first light source unit 40 a is directly incident on the incident surface 22 of the prism 20.
  • the second light source unit 40b is disposed at a position where the first light source unit 40a is rotated 90 degrees to the left.
  • a reflection mirror 40b1 is provided on the front side of the second light source unit 40b.
  • the reflection mirror 40b1 can rotate the traveling direction of light emitted from the second light source unit 40b (the traveling direction of the principal ray) by 90 degrees downward. Has been. Therefore, the light emitted from the second light source unit 40b is incident on the incident surface 22 of the prism 20 via the reflection mirror 40b1.
  • the third light source unit 40c is arranged at a position obtained by rotating the first light source unit 40a 90 degrees to the right.
  • a reflection mirror 40c1 is provided on the front side of the third light source unit 40c.
  • the reflection mirror 40c1 can rotate 90 degrees downward in the traveling direction of light emitted from the third light source unit 40c (the traveling direction of the principal ray). Has been. Therefore, the light emitted from the third light source unit 40c is incident on the incident surface 22 of the prism 20 via the reflection mirror 40c1.
  • the light beams emitted from the first to third light source unit 40a to 40c are condensed toward the front side and gradually become thinner as the distance from the light source unit 14 increases. For this reason, the reflection mirror 40b1 does not interfere with the light emitted from the first light source unit 40a or the third light source unit 40c. The reflection mirror 40c1 does not interfere with the light emitted from the first light source unit 40a or the second light source unit 40b.
  • the light irradiation apparatus 300 of the present embodiment three times (99) light source units 14 can be used as compared with the light irradiation apparatus 100 of the first embodiment. For this reason, it is possible to increase the illuminance of the irradiated light by a factor of 3, and the amorphous silicon film W formed on the substrate can be crystallized at a higher speed.
  • the light irradiation device 300 of the present embodiment it is possible to install a larger number of the light source units 14 along the longitudinal direction (2000 mm width direction) of the prism 20. For this reason, the illuminance of light in the longitudinal direction of the prism 20 can be made more uniform, and the amorphous silicon film W can be irradiated more uniformly with linear light.
  • the light irradiation device 400 of the fourth embodiment has the same configuration as the light irradiation device 100 of the first embodiment, except that the number of rows of 33 light source units 14 is increased from one row to three rows. ing. Therefore, the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • FIG. 7 is a side view of the light irradiation apparatus 400 according to the fourth embodiment.
  • the light irradiation device 400 includes a light emitting unit 10, an elliptical mirror 12 that reflects light emitted from the light emitting unit 10, and a plurality of light source units 14.
  • Each of the plurality of light source units 14 includes a light emitting unit 10 and an elliptical mirror 12.
  • the light irradiation device 400 includes a plate-like prism 20 for condensing the light emitted from the plurality of light source units 14 and irradiating the light toward the irradiated object in a linear shape.
  • the light irradiation device 400 includes three rows of 33 light source units 14. Hereinafter, these three columns are referred to as first to third light source unit 50a to 50c.
  • the first to third light source unit 50a to 50c are arranged so as to be shifted from each other by 1/3 pitch (that is, by 20 mm) in the row direction (the direction perpendicular to the paper surface of FIG. 7).
  • the first light source unit 50a has the same configuration as the row of 33 light source units 14 in the first embodiment. Therefore, the light emitted from the first light source unit 50 a is directly incident on the incident surface 22 of the prism 20.
  • the second light source unit 50b is arranged at a position obtained by rotating the first light source unit 50a to the left by 70 degrees.
  • a reflection mirror 50b1 is provided on the front side of the second light source unit 50b.
  • the reflection mirror 50b1 can rotate the traveling direction of light emitted from the second light source unit 50b (the traveling direction of the principal ray) downward by 70 degrees. Has been. Therefore, the light emitted from the second light source unit 50b is incident on the incident surface 22 of the prism 20 via the reflection mirror 50b1.
  • the third light source unit 50c is arranged at a position obtained by rotating the first light source unit 50a to the left by 130 degrees.
  • a reflection mirror 50c1 is provided on the front side of the third light source unit 50c.
  • the reflecting mirror 50c1 can rotate the traveling direction of light emitted from the third light source unit 50c (the traveling direction of the principal ray) downward by 130 degrees. Has been. Therefore, the light emitted from the third light source unit 50c is incident on the incident surface 22 of the prism 20 via the reflection mirror 50c1.
  • the light beams emitted from the first to third light source unit units 50a to 50c are condensed toward the front side and gradually become thinner as the distance from the light source unit 14 increases. For this reason, the reflection mirror 50b1 does not interfere with the light emitted from the first light source unit 50a or the third light source unit 50c. Further, the reflection mirror 50c1 does not interfere with the light emitted from the first light source unit 50a or the second light source unit 50b.
  • the light irradiation device 400 of the present embodiment three times as many (99) light source units 14 as the light irradiation device 100 of the first embodiment can be used. For this reason, it is possible to increase the illuminance of the irradiated light by a factor of 3, and the amorphous silicon film W formed on the substrate can be crystallized at a higher speed.
  • the light irradiation device 400 of the present embodiment it is possible to install a larger number of the light source units 14 along the longitudinal direction (2000 mm width direction) of the prism 20. For this reason, the illuminance of light in the longitudinal direction of the prism 20 can be made more uniform. Thereby, the amorphous silicon film W can be more uniformly irradiated with linear light.
  • the light irradiation apparatus 500 of the fifth embodiment includes two light irradiation apparatuses 400 of the fourth embodiment.
  • FIG. 8 is a side view of the light irradiation apparatus 500 according to the fifth embodiment.
  • the light irradiation device 500 includes two light irradiation devices 400a and 400b.
  • the two light irradiation devices 400a and 400b are arranged so as to be symmetrical with respect to the center line Z.
  • the light irradiation device 400a disposed on the left side is installed such that the surface of the prism 20 is inclined 8 degrees to the left with respect to the center line Z.
  • the light irradiation device 400b disposed on the right side is installed such that the surface of the prism 20 is inclined to the right by 8 degrees with respect to the center line Z.
  • the emission surfaces 24 of the prisms 20 of the two light irradiation devices 400a and 400b are arranged so as not to interfere with each other. Further, the prisms 20 of the two light irradiation devices 400a and 400b are arranged so that the irradiation regions of the light emitted from the emission surface 24 overlap each other.
  • the light irradiation apparatus 500 of the present embodiment six times as many (198) light source units 14 as the light irradiation apparatus 100 of the first embodiment can be used. For this reason, it is possible to increase the illuminance of the irradiated light by six times, and the amorphous silicon film formed on the substrate can be crystallized at a higher speed.
  • the light irradiation device 500 of the present embodiment it is possible to install a larger number of light source units 14 along the longitudinal direction (2000 mm width direction) of the prism 20. For this reason, the illuminance of light in the longitudinal direction of the prism 20 can be made more uniform. As a result, the amorphous silicon film can be irradiated more uniformly with linear light.
  • the amorphous silicon film W can be irradiated with light obliquely from above. That is, it is possible to irradiate the film W from the upper left obliquely from the light irradiation device 400a arranged on the left side. From the light irradiation device 400b arranged on the right side, it is possible to irradiate light on the film W from diagonally upward to the right. In this way, the irradiation angle of light to the amorphous silicon film W can be changed variously. Thereby, in FIG. 8, the degree of crystallization of the amorphous silicon film W in the left-right direction can be changed. For example, the degree of crystallization of the amorphous silicon film W can be freely controlled in accordance with the crystallization conditions of polysilicon to be obtained.
  • FIG. 9 is a side view of a light irradiation apparatus 600 according to the sixth embodiment of the present invention.
  • the length of the short side of the emission surface 24 of the prism 20 may be 1 ⁇ 2 of the length of the short side of the incident surface 22.
  • the irradiation density of light emitted from the emission surface 24 is approximately doubled.
  • the emission angle of the light emitted from the emission surface 24 spreads about twice in the left-right direction in the figure.
  • the length of the short side of the exit surface 24 of the prism 20 may be twice the length of the short side of the entrance surface 22.
  • the irradiation density of the light emitted from the emission surface 24 is about 1 ⁇ 2 times.
  • the emission angle of the light emitted from the emission surface 24 narrows to about 1 ⁇ 2 in the left-right direction in the figure.
  • the angle can be adjusted. Accordingly, for example, the degree of crystallization of the amorphous silicon film W can be freely controlled in accordance with the crystallization conditions of polysilicon to be obtained.

Abstract

Provided is a light irradiation device for crystallizing an amorphous silicon film inexpensively with no unevenness without using an eximer laser as an optical source. The light irradiation device (100) comprises a plurality of optical sources (14) and a plate-shaped prism (20) for condensing light emitted from the optical sources (14) and casting the light toward an irradiation target object in the form of light rays. Each of the optical sources (14) comprises a light emitting unit (10) and an elliptical mirror (12) for reflecting light emitted from the light emitting unit (10). The light emitting unit (10) is disposed at or close to the first focal point of the elliptical mirror (12). An incident surface (22) of the prism (20) is placed at or close to the second focal point of the elliptical mirror (12).

Description

光照射装置Light irradiation device
 本発明は、アモルファスシリコンを加熱してポリシリコン(多結晶シリコン)や単結晶シリコンを作製するために使用される光照射装置に関する。 The present invention relates to a light irradiation apparatus used for heating amorphous silicon to produce polysilicon (polycrystalline silicon) or single crystal silicon.
 液晶パネルは、ガラス基板上のシリコン膜に配線層とTFT素子を形成して作製される。従来、このシリコン膜には、大型のガラス基板に対する成膜が容易であることから、アモルファスシリコンが使われていた。しかし、アモルファスシリコンは結晶になっていないために構造にバラツキがあり、電気抵抗が大きいという難点があった。そこで、最近では、アモルファスシリコンを結晶化させたポリシリコン(多結晶シリコン)が多く使用されている。ポリシリコンは抵抗が小さく電流が流れやすいために、配線層とTFT素子を小型化することが可能であり、液晶ディスプレイの解像度を高くすることができる。また、光を通すための開口の面積を大きくすることが可能であり、液晶ディスプレイを高輝度化することが可能となる。さらに、次世代ディスプレイとして注目されている有機ELディスプレイでは、発光のためのエネルギーとして画素毎に例えば10μA以上の電流を流す必要があるが、アモルファスシリコンでは0.1μA程度の電流しか流すことができないため、ポリシリコンを使用することが必須であると考えられている。 The liquid crystal panel is manufactured by forming a wiring layer and a TFT element on a silicon film on a glass substrate. Conventionally, amorphous silicon has been used for the silicon film because it can be easily formed on a large glass substrate. However, since amorphous silicon is not crystallized, there are variations in structure and there is a problem that electric resistance is large. Therefore, recently, polysilicon (polycrystalline silicon) obtained by crystallizing amorphous silicon is often used. Since polysilicon has low resistance and current easily flows, the wiring layer and the TFT element can be reduced in size, and the resolution of the liquid crystal display can be increased. In addition, the area of the opening for allowing light to pass can be increased, and the brightness of the liquid crystal display can be increased. Furthermore, in an organic EL display that is attracting attention as a next-generation display, it is necessary to pass a current of, for example, 10 μA or more for each pixel as energy for light emission, but in an amorphous silicon, only a current of about 0.1 μA can be passed. Therefore, it is considered essential to use polysilicon.
 アモルファスシリコンを結晶化してポリシリコンを得るためには、アモルファスシリコンを融点(1410℃)に近い温度にまで加熱しなければならない。しかし、アモルファスシリコンが塗布されるガラス基板の融点はアモルファスシリコンの融点よりも低いため、アモルファスシリコンを融点に近い温度に加熱した場合、アモルファスシリコンだけでなく基板までもが溶融してしまう。そこで、現在では、アモルファスシリコンを加熱するために、アモルファスシリコンにエキシマレーザ光を照射する方法が採られている(特許文献1を参照)。アモルファスシリコンは300nmから480nmに吸収波長帯がある一方、基板の材料として用いられるガラスは300nmよりも長い波長帯の光を透過するため、波長が300nmから450nmのエキシマレーザ光を照射することでアモルファスシリコンを選択的に加熱することができる。 In order to crystallize amorphous silicon to obtain polysilicon, the amorphous silicon must be heated to a temperature close to the melting point (1410 ° C.). However, since the melting point of the glass substrate to which amorphous silicon is applied is lower than the melting point of amorphous silicon, when the amorphous silicon is heated to a temperature close to the melting point, not only the amorphous silicon but also the substrate is melted. Therefore, at present, in order to heat the amorphous silicon, a method of irradiating the excimer laser beam to the amorphous silicon is employed (see Patent Document 1). Amorphous silicon has an absorption wavelength band from 300 nm to 480 nm, while glass used as a substrate material transmits light in a wavelength band longer than 300 nm. Therefore, it is amorphous by irradiating excimer laser light with a wavelength of 300 nm to 450 nm. Silicon can be selectively heated.
 以下に、エキシマレーザ光を照射することによる従来のアモルファスシリコンの結晶化方法について説明する。
 図10は、従来のアモルファスシリコンの結晶化方法を示している。エキシマレーザ発生装置によって発生したエキシマレーザ光は、ホモジナイズ光学系によって数ミクロン×40cmほどの線状の照射領域とされる。この線状のエキシマレーザ光を基板上のアモルファスシリコンに照射しつつ、基板を図中のX方向に一定の速度で移動させる(1回目のスキャン)。これにより、図中の帯状の領域A1を加熱して結晶化させることができる。
A conventional method for crystallizing amorphous silicon by irradiating excimer laser light will be described below.
FIG. 10 shows a conventional method for crystallizing amorphous silicon. The excimer laser beam generated by the excimer laser generator is made into a linear irradiation region of about several microns × 40 cm by a homogenizing optical system. While irradiating amorphous silicon on the substrate with this linear excimer laser light, the substrate is moved at a constant speed in the X direction in the figure (first scan). Thereby, the band-like region A1 in the drawing can be heated and crystallized.
 領域A1を結晶化させた後、基板を図中のY方向(X方向に直交する方向)に、エキシマレーザ光の照射領域の長さLと同じ距離だけ移動させる。そして、再びエキシマレーザ光をアモルファスシリコンに照射しつつ、基板を図中のX方向に一定の速度で移動させる(2回目のスキャン)。これにより、図中の領域A2を加熱して結晶化させることができる。
 以降、同様なスキャンを必要な回数だけ繰り返すことによって、アモルファスシリコンの膜全体にエキシマレーザ光を照射することができる。これにより、アモルファスシリコンの膜全体を加熱して結晶化させることができる。
After the region A1 is crystallized, the substrate is moved in the Y direction (direction orthogonal to the X direction) in the drawing by the same distance as the length L of the irradiation region of the excimer laser light. Then, the substrate is moved at a constant speed in the X direction in the drawing while irradiating the excimer laser light again to the amorphous silicon (second scan). Thereby, the region A2 in the figure can be heated and crystallized.
Thereafter, excimer laser light can be irradiated to the entire amorphous silicon film by repeating the same scan as many times as necessary. Thereby, the whole amorphous silicon film can be heated and crystallized.
特開平11-16836号公報JP-A-11-16836
 従来のアモルファスシリコンの結晶化方法には、以下のような問題があった。
 (1)エキシマレーザ光の照射領域の長さLに限界があり、1回のスキャンによってアモルファスシリコンの膜にエキシマレーザ光を照射することのできる面積に限界がある。このため、大型の基板上に形成されたアモルファスシリコンの膜を結晶化させるのに非常に時間がかかる。
 (2)隣接する領域A1と領域A2との間に重複した領域A3が生じてしまう。この重複した領域A3では、アモルファスシリコンの膜に対してエキシマレーザ光が2回照射されるために、アモルファスシリコンの結晶化の程度にバラツキが生じてしまう。
 (3)エキシマレーザ光の波形のコントロールが難しい。このため、アモルファスシリコンを結晶化させたときに線状のムラが発生しやすい。
 (4)エキシマレーザ発生装置が高価であり、ランニングコストが高い。
The conventional method for crystallizing amorphous silicon has the following problems.
(1) The length L of the irradiation region of the excimer laser light is limited, and the area in which the excimer laser light can be irradiated to the amorphous silicon film by one scan is limited. For this reason, it takes a very long time to crystallize the amorphous silicon film formed on the large substrate.
(2) An overlapping area A3 occurs between the adjacent areas A1 and A2. In the overlapping region A3, the excimer laser light is irradiated twice to the amorphous silicon film, so that the degree of crystallization of the amorphous silicon varies.
(3) It is difficult to control the waveform of the excimer laser beam. For this reason, linear irregularities are likely to occur when amorphous silicon is crystallized.
(4) The excimer laser generator is expensive and the running cost is high.
 本発明は、上記の問題点に鑑みてなされたものであり、エキシマレーザを光源として用いることなく、アモルファスシリコンの膜をムラ無くかつ安価に結晶化させることのできる光照射装置を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a light irradiation apparatus capable of crystallizing an amorphous silicon film uniformly and inexpensively without using an excimer laser as a light source. Objective.
 本発明の光照射装置は、複数の光源部と、前記複数の光源部から出射された光を集光して被照射物に向けて線状に照射するための板状のプリズムとを備えることを特徴とする。
 また、本発明の光照射装置は、複数の光源部と、前記複数の光源部から出射された光を集光して被照射物に向けて線状に照射するための2枚の反射ミラーとを備えることを特徴とする。
The light irradiation apparatus of the present invention includes a plurality of light source units, and a plate-like prism for condensing the light emitted from the plurality of light source units and irradiating the irradiated object in a line shape. It is characterized by.
Moreover, the light irradiation apparatus of the present invention includes a plurality of light source units, two reflection mirrors for condensing the light emitted from the plurality of light source units and irradiating the irradiated object linearly. It is characterized by providing.
 本発明によれば、複数の光源部から出射された光を被照射物に向けて線状に照射することができる。これにより、アモルファスシリコンの膜に線状に光を照射することが可能であり、エキシマレーザを光源として用いることなく、アモルファスシリコンの膜を加熱して結晶化させることができる。 According to the present invention, the light emitted from the plurality of light source units can be irradiated linearly toward the irradiation object. Thus, the amorphous silicon film can be irradiated with light linearly, and the amorphous silicon film can be heated and crystallized without using an excimer laser as a light source.
 また、本発明によれば、線状に照射する光の照射領域の長さに制限がないために、大型の基板上に形成されたアモルファスシリコンの膜全体に1回のスキャンによって光を照射することができる。このため、従来の方法のように複数回のスキャンを繰り返すことが不要であり、光を照射する領域に重複が生じることがなく、アモルファスシリコンの膜全体をムラ無く結晶化させることができる。 In addition, according to the present invention, since there is no limitation on the length of the irradiation region of the linearly irradiated light, the entire amorphous silicon film formed on the large substrate is irradiated with light by one scan. be able to. For this reason, it is not necessary to repeat a plurality of scans as in the conventional method, and there is no overlap in the light irradiation region, and the entire amorphous silicon film can be crystallized without unevenness.
 さらに、本発明によれば、高価なエキシマレーザ発生装置を用いる必要がなくなる。このため、アモルファスシリコンの膜を安価に結晶化させることができる。 Furthermore, according to the present invention, it is not necessary to use an expensive excimer laser generator. Therefore, the amorphous silicon film can be crystallized at a low cost.
 本発明の光照射装置は、さらに以下の構成を有していることが好ましい。
(1)前記複数の光源部は、それぞれ、発光部及び前記発光部から発せられる光を反射する楕円鏡によって構成されており、
 前記楕円鏡の第1焦点もしくはその近傍に前記発光部が配置されており、前記楕円鏡の第2焦点もしくはその近傍に前記プリズムの光の入射面が配置されている。
(2)前記複数の光源部は、前記入射面の長手方向に沿って等間隔に配置されている。
(3)前記複数の光源部は、それぞれ、発光部及び前記発光部から発せられる光を反射する楕円鏡によって構成されており、
 前記楕円鏡の第1焦点もしくはその近傍に前記発光部が配置されており、前記楕円鏡の第2焦点もしくはその近傍に前記2枚の反射ミラーの間に光を入射させるための光の入射口が配置されている。
(4)前記複数の光源部は、前記入射口の長手方向に沿って等間隔に配置されている。
(5)前記被照射物がアモルファスシリコンである。
(6)前記発光部が超高圧水銀ランプである。
The light irradiation device of the present invention preferably further has the following configuration.
(1) Each of the plurality of light source units includes a light emitting unit and an elliptical mirror that reflects light emitted from the light emitting unit.
The light emitting unit is disposed at or near the first focal point of the elliptical mirror, and the light incident surface of the prism is disposed at or near the second focal point of the elliptical mirror.
(2) The plurality of light source units are arranged at equal intervals along the longitudinal direction of the incident surface.
(3) Each of the plurality of light source units includes a light emitting unit and an elliptical mirror that reflects light emitted from the light emitting unit.
The light emitting section is disposed at or near the first focal point of the elliptical mirror, and a light incident port for allowing light to enter between the two reflecting mirrors at or near the second focal point of the elliptical mirror. Is arranged.
(4) The plurality of light source units are arranged at equal intervals along the longitudinal direction of the incident port.
(5) The irradiated object is amorphous silicon.
(6) The light emitting unit is an ultrahigh pressure mercury lamp.
 本発明によれば、エキシマレーザを光源として用いることなく、アモルファスシリコンの膜をムラ無くかつ安価に結晶化させることのできる光照射装置を提供することができる。 According to the present invention, it is possible to provide a light irradiation apparatus that can crystallize an amorphous silicon film uniformly and inexpensively without using an excimer laser as a light source.
第1実施形態に係る光照射装置の正面図である。It is a front view of the light irradiation apparatus which concerns on 1st Embodiment. 第1実施形態に係る光照射装置の側面図である。It is a side view of the light irradiation apparatus which concerns on 1st Embodiment. 図3(a)は、プリズムの出射面から出射される光の照度分布を1個の光源部毎に上下方向に分離して示したものである。図3(b)は、実際にプリズムの出射面から出射される光の照度分布を示したものである。FIG. 3A shows the illuminance distribution of the light emitted from the exit surface of the prism, separated vertically for each light source unit. FIG. 3B shows the illuminance distribution of light actually emitted from the exit surface of the prism. 第2実施形態に係る光照射装置の正面図である。It is a front view of the light irradiation apparatus which concerns on 2nd Embodiment. 第2実施形態に係る光照射装置の側面図である。It is a side view of the light irradiation apparatus which concerns on 2nd Embodiment. 第3実施形態に係る光照射装置の側面図である。It is a side view of the light irradiation apparatus which concerns on 3rd Embodiment. 第4実施形態に係る光照射装置の側面図である。It is a side view of the light irradiation apparatus which concerns on 4th Embodiment. 第5実施形態に係る光照射装置の側面図である。It is a side view of the light irradiation apparatus which concerns on 5th Embodiment. 第6実施形態に係る光照射装置の側面図である。It is a side view of the light irradiation apparatus which concerns on 6th Embodiment. 従来のアモルファスシリコンの結晶化方法を示す説明図である。It is explanatory drawing which shows the crystallization method of the conventional amorphous silicon.
<第1実施形態>
 以下、本発明の第1実施形態について図面を参照しながら詳細に説明する。
 図1は、第1実施形態に係る光照射装置100の正面図である。図2は、光照射装置100の側面図である。
 図1、図2に示すように、光照射装置100は、発光部10と、発光部10から発せられた光を反射する楕円鏡12と、複数の光源部14とを備えている。複数の光源部14は、それぞれ、発光部10及び楕円鏡12によって構成されている。また、光照射装置100は、複数の光源部14から出射された光を集光して被照射物に向けて線状に照射するための板状のプリズム20を備えている。
<First Embodiment>
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a front view of a light irradiation apparatus 100 according to the first embodiment. FIG. 2 is a side view of the light irradiation apparatus 100.
As illustrated in FIGS. 1 and 2, the light irradiation device 100 includes a light emitting unit 10, an elliptical mirror 12 that reflects light emitted from the light emitting unit 10, and a plurality of light source units 14. Each of the plurality of light source units 14 includes a light emitting unit 10 and an elliptical mirror 12. Moreover, the light irradiation apparatus 100 includes a plate-like prism 20 for condensing the light emitted from the plurality of light source units 14 and irradiating the light toward the irradiation object.
 発光部10は、例えば波長が300nm~480nmの紫外光を発することのできる超高圧水銀ランプによって構成されている。発光部10を構成する超高圧水銀ランプの内部には、陰極及び陽極からなる2つの電極が設けられている。また、この超高圧水銀ランプの内部には、所定の水銀蒸気圧、例えば30気圧以上の水銀が封入されている。 The light emitting unit 10 is composed of, for example, an ultrahigh pressure mercury lamp capable of emitting ultraviolet light having a wavelength of 300 nm to 480 nm. Inside the ultra high pressure mercury lamp constituting the light emitting unit 10, two electrodes including a cathode and an anode are provided. In addition, mercury of a predetermined mercury vapor pressure, for example, 30 atmospheres or more is enclosed in the ultra high pressure mercury lamp.
 楕円鏡12は、その断面が略楕円形状をなすガラスの成形体によって構成されている。この楕円鏡12の内面には、不要な熱線等の特定波長を持つ光を透過して除去するとともに、必要な紫外光を前方に向かって反射することのできる反射コーティング膜が形成されている。 The elliptical mirror 12 is configured by a glass molded body having a substantially elliptical cross section. On the inner surface of the elliptical mirror 12, a reflective coating film is formed which can transmit and remove light having a specific wavelength such as unnecessary heat rays and reflect necessary ultraviolet light forward.
 発光部10は、楕円鏡12の第1焦点もしくはその近傍に配置されている。具体的には、発光部10は、発光部10を構成する超高圧水銀ランプの陰極と陽極の中点が、楕円鏡12の第1焦点もしくはその近傍に位置するように配置されている。したがって、発光部10から発せられた光は、楕円鏡12の内面によって反射された後、楕円鏡12の第2焦点に向かって集光するようになっている。 The light emitting unit 10 is disposed at or near the first focal point of the elliptical mirror 12. Specifically, the light emitting unit 10 is arranged such that the midpoint between the cathode and the anode of the ultrahigh pressure mercury lamp constituting the light emitting unit 10 is located at or near the first focal point of the elliptical mirror 12. Accordingly, the light emitted from the light emitting unit 10 is reflected by the inner surface of the elliptical mirror 12 and then condensed toward the second focal point of the elliptical mirror 12.
 また、楕円鏡12の第2焦点もしくはその近傍には、後述する板状のプリズム20の光の入射面22が配置されている。 Further, a light incident surface 22 of a plate-like prism 20 described later is disposed at or near the second focal point of the elliptical mirror 12.
 なお、本明細書において「近傍」とは、例えば、楕円鏡12の第1焦点または第2焦点を中心に、楕円鏡12の焦点距離の1/10以内の範囲を意味する。 In the present specification, “near” means, for example, a range within 1/10 of the focal length of the elliptical mirror 12 around the first focal point or the second focal point of the elliptical mirror 12.
 複数の光源部14の前方側には、それぞれ、一枚の透明なガラス板16が設置されている。このガラス板16は、発光部10の点灯時の温度を安定させるために設置されるものである。 A single transparent glass plate 16 is installed on the front side of the plurality of light source units 14, respectively. The glass plate 16 is installed to stabilize the temperature when the light emitting unit 10 is turned on.
 ガラス板16のさらに前方側には、板状のプリズム20が設置されている。プリズム20は、厚みTが7mm、幅が2000mm、高さHが180mmの薄い板状であり、合成石英によって形成されている。 A plate-like prism 20 is installed on the further front side of the glass plate 16. The prism 20 is a thin plate having a thickness T of 7 mm, a width of 2000 mm, and a height H of 180 mm, and is formed of synthetic quartz.
 プリズム20の長辺側の端面は、複数の光源部14から出射された光が入射する入射面22となっている。この入射面22は、7mm×2000mmの寸法を有しており、細長い線状の形状を有している。 The end surface on the long side of the prism 20 is an incident surface 22 on which light emitted from the plurality of light source units 14 is incident. The incident surface 22 has a size of 7 mm × 2000 mm and has an elongated linear shape.
 プリズム20の入射面22とは反対側の端面は、プリズム20の内部に入射した光が外部に出射するための出射面24となっている。この出射面24は、7mm×2000mmの寸法を有しており、細長い線状の形状を有している。
 なお、ここでいう「線状の形状」とは、プリズム20の出射面24の短辺の長さが、長辺の長さの1/2以下であることを意味している。プリズム20の出射面24の短辺の長さは、長辺の長さの1/2以下であり、好ましくは1/10以下であり、より好ましくは1/100以下であり、特に好ましくは1/200以下である。
The end surface of the prism 20 opposite to the incident surface 22 is an exit surface 24 through which light incident on the prism 20 exits. The emission surface 24 has a size of 7 mm × 2000 mm and has an elongated linear shape.
Here, the “linear shape” means that the length of the short side of the emission surface 24 of the prism 20 is ½ or less of the length of the long side. The length of the short side of the exit surface 24 of the prism 20 is 1/2 or less of the length of the long side, preferably 1/10 or less, more preferably 1/100 or less, and particularly preferably 1 / 200 or less.
 本実施形態では、光照射装置100は、33個の光源部14を備えている(図1に示されているのは、そのうち4個の光源部14である)。33個の光源部14は、プリズム20の入射面22の長手方向(2000mm幅の方向)に沿って、60mm毎の間隔で設置されている。また、33個の光源部14は、光源部14から出射される光の方向が互いに平行になるように設置されている。 In the present embodiment, the light irradiation apparatus 100 includes 33 light source units 14 (four of the light source units 14 are shown in FIG. 1). The 33 light source units 14 are installed at intervals of 60 mm along the longitudinal direction (2000 mm width direction) of the incident surface 22 of the prism 20. Moreover, the 33 light source parts 14 are installed so that the direction of the light radiate | emitted from the light source part 14 may become mutually parallel.
 33個の光源部14から出射された光は、プリズム20の入射面22に入射する。入射面22に入射した光は、プリズム20の内部においてその厚み方向に複数回反射を繰り返した後、出射面24から外部に出射する。 The light emitted from the 33 light source units 14 enters the incident surface 22 of the prism 20. The light incident on the incident surface 22 is repeatedly reflected in the thickness direction inside the prism 20 a plurality of times, and then exits from the exit surface 24 to the outside.
 プリズム20の出射面24から10mm下方に離れた位置には、ガラス製の基板が設置されている。基板の表面には、アモルファスシリコンの膜Wが形成されている。アモルファスシリコンの膜Wが、本発明の「被照射物」に対応している。 A glass substrate is installed at a position 10 mm below the emission surface 24 of the prism 20. An amorphous silicon film W is formed on the surface of the substrate. The amorphous silicon film W corresponds to the “object to be irradiated” of the present invention.
 次に、上記のように構成された光照射装置100の作用効果について図面を参照しながら説明する。
 図3(a)は、プリズム20の出射面24から出射される光の照度分布を1個の光源部14毎に上下方向に分離して示したものである。図3(b)は、実際にプリズム20の出射面24から出射される光の照度分布を示したものである。
Next, the effect of the light irradiation apparatus 100 configured as described above will be described with reference to the drawings.
FIG. 3A shows the illuminance distribution of the light emitted from the emission surface 24 of the prism 20 separately for each light source unit 14 in the vertical direction. FIG. 3B shows the illuminance distribution of the light actually emitted from the emission surface 24 of the prism 20.
 図3(a)に示すように、プリズム20の出射面24から出射される光は、プリズム20の厚み方向では照度が均一化されている。なぜなら、プリズム20の内部に入射した光は、プリズム20の内部において厚み方向に複数回反射を繰り返すことで照度が均一化されるからである。しかし、プリズム20の長手方向(2000mm幅の方向)では、光源部14の中心部の照度が最も高く、中心部から離れるにつれて照度が徐々に低くなっている。このため、このような光をアモルファスシリコンの膜Wに照射した場合には、中心部の結晶化のみが早く進行するために、アモルファスシリコンの膜Wを均一に結晶化させることができない。 As shown in FIG. 3A, the light emitted from the emission surface 24 of the prism 20 has a uniform illuminance in the thickness direction of the prism 20. This is because the light incident on the inside of the prism 20 is repeatedly reflected a plurality of times in the thickness direction inside the prism 20 to make the illuminance uniform. However, in the longitudinal direction of the prism 20 (2000 mm width direction), the illuminance at the center of the light source unit 14 is the highest, and the illuminance gradually decreases as the distance from the center is increased. For this reason, when the amorphous silicon film W is irradiated with such light, only the crystallization of the central portion proceeds rapidly, so that the amorphous silicon film W cannot be uniformly crystallized.
 そこで、本実施形態の光照射装置100においては、複数個の光源部14を入射面22の長手方向に沿って等間隔に配置している。これにより、図3(b)に示すように、隣り合う光源部14から出射される光が、プリズム20の長手方向(2000mm幅の方向)において互いに重なり合うため、プリズム20の長手方向においても光の照度が均一化される。これにより、複数の光源部14から出射される光をアモルファスシリコンの膜Wに均一に照射することが可能となっている。 Therefore, in the light irradiation apparatus 100 of the present embodiment, the plurality of light source units 14 are arranged at equal intervals along the longitudinal direction of the incident surface 22. As a result, as shown in FIG. 3B, the light emitted from the adjacent light source portions 14 overlaps with each other in the longitudinal direction of the prism 20 (direction of 2000 mm width). Illuminance is made uniform. This makes it possible to uniformly irradiate the amorphous silicon film W with light emitted from the plurality of light source units 14.
 本実施形態の光照射装置100によれば、複数の光源部14から出射された光をアモルファスシリコンの膜Wに線状に照射することができる。これにより、エキシマレーザを光源として用いることなく、アモルファスシリコンの膜Wを加熱して結晶化させることができる。 According to the light irradiation apparatus 100 of the present embodiment, the light emitted from the plurality of light source units 14 can be irradiated linearly onto the amorphous silicon film W. Thus, the amorphous silicon film W can be heated and crystallized without using an excimer laser as a light source.
 また、本実施形態の光照射装置100によれば、使用する光源部14の個数を増やすことによって、線状に照射される光の照射領域を長くすることができる。また、使用するプリズム20の長手方向の寸法を大きくすることによって、線状に照射される光の照射領域を長くすることができる。したがって、光の照射領域の長さに制限がないために、大型の基板にアモルファスシリコンの膜が形成されている場合であっても、アモルファスシリコンの膜全体に1回のスキャンによって光を照射することができる。 Moreover, according to the light irradiation apparatus 100 of this embodiment, the irradiation area of the light irradiated linearly can be lengthened by increasing the number of the light source parts 14 to be used. Further, by increasing the longitudinal dimension of the prism 20 to be used, it is possible to lengthen the irradiation region of the light irradiated linearly. Therefore, since there is no limitation on the length of the light irradiation region, even when an amorphous silicon film is formed on a large substrate, the entire amorphous silicon film is irradiated with a single scan. be able to.
 本発明によれば、大型の基板に形成されたアモルファスシリコンの膜に光を照射する場合であっても、従来の方法のように複数回のスキャンを繰り返すことが不要になる。また、光を照射する領域に重複を生じることがなくなるために、アモルファスシリコンの膜全体をムラ無く結晶化させることができる。 According to the present invention, even when the amorphous silicon film formed on the large substrate is irradiated with light, it is not necessary to repeat scanning a plurality of times as in the conventional method. In addition, since no overlap occurs in the light irradiation region, the entire amorphous silicon film can be crystallized without unevenness.
 本実施形態の光照射装置100によれば、アモルファスシリコンの膜を結晶化するために高価なエキシマレーザ発生装置を用いる必要がなくなる。このため、ポリシリコン(多結晶シリコン)を安価に製造することができる。 According to the light irradiation apparatus 100 of the present embodiment, it is not necessary to use an expensive excimer laser generator in order to crystallize the amorphous silicon film. For this reason, polysilicon (polycrystalline silicon) can be manufactured at low cost.
<第2実施形態>
 以下、本発明の第2実施形態について図面を参照しながら詳細に説明する。第2実施形態の光照射装置200は、プリズム20が2枚の反射ミラー30a、30bに置き換わっている以外は、第1実施形態の光照射装置100と同様な構成を有している。したがって、第1実施形態と同様の部分については同一の符号を付して説明を省略する。
Second Embodiment
Hereinafter, a second embodiment of the present invention will be described in detail with reference to the drawings. The light irradiation apparatus 200 of the second embodiment has the same configuration as that of the light irradiation apparatus 100 of the first embodiment, except that the prism 20 is replaced with two reflection mirrors 30a and 30b. Therefore, the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
 図4は、第2実施形態に係る光照射装置200の正面図である。図5は、光照射装置200の側面図である。
 図4、図5に示すように、光照射装置200は、発光部10と、発光部10から発せられた光を反射する楕円鏡12と、複数の光源部14とを備えている。複数の光源部14は、それぞれ、発光部10及び楕円鏡12によって構成されている。また、光照射装置200は、複数の光源部14から出射された光を集光して被照射物に向けて線状に照射するための2枚の反射ミラー30a、30bを備えている。
FIG. 4 is a front view of the light irradiation apparatus 200 according to the second embodiment. FIG. 5 is a side view of the light irradiation device 200.
As shown in FIGS. 4 and 5, the light irradiation device 200 includes a light emitting unit 10, an elliptical mirror 12 that reflects light emitted from the light emitting unit 10, and a plurality of light source units 14. Each of the plurality of light source units 14 includes a light emitting unit 10 and an elliptical mirror 12. The light irradiation device 200 includes two reflection mirrors 30a and 30b for condensing the light emitted from the plurality of light source units 14 and irradiating the light toward the irradiation object in a linear shape.
 2枚の反射ミラー30a、30bは、ぞれぞれ、幅が2000mm、高さHが180mmの同一形状を有する板状の全反射ミラーによって構成されている。2枚の反射ミラー30a、30bは、その反射面が向かい合うようにして互いに平行に配置されている。 Each of the two reflection mirrors 30a and 30b is composed of a plate-like total reflection mirror having the same shape having a width of 2000 mm and a height H of 180 mm. The two reflection mirrors 30a and 30b are arranged in parallel to each other with their reflection surfaces facing each other.
 2枚の反射ミラー30a、30bの長辺側の端部は、複数の光源部14から出射された光が2枚の反射ミラー30a、30bの間に入射するための入射口32となっている。この入射口32は、7mm×2000mmの寸法を有しており、細長い線状の形状を有している。 Ends on the long side of the two reflection mirrors 30a and 30b serve as an entrance 32 for allowing light emitted from the plurality of light source units 14 to enter between the two reflection mirrors 30a and 30b. . The entrance 32 has a dimension of 7 mm × 2000 mm and has an elongated linear shape.
 2枚の反射ミラー30a、30bの入射口32とは反対側の端部は、2枚の反射ミラー30a、30bの間に入射した光が外部に出射するための出射口34となっている。この出射口34は、7mm×2000mmの寸法を有しており、細長い線状の形状を有している。 The end of the two reflecting mirrors 30a and 30b opposite to the entrance 32 is an exit 34 for light incident between the two reflecting mirrors 30a and 30b to be emitted to the outside. The emission port 34 has a size of 7 mm × 2000 mm and has an elongated linear shape.
 本実施形態では、光照射装置200は、33個の光源部14を備えている(図4に示されているのは、そのうち4個の光源部14である)。33個の光源部14は、2枚の反射ミラー30a、30bの入射口32の長手方向(2000mm幅の方向)に沿って、60mm毎の間隔で設置されている。また、33個の光源部14は、光源部14から出射される光の方向が互いに平行になるように設置されている。 In the present embodiment, the light irradiation device 200 includes 33 light source units 14 (four light source units 14 are shown in FIG. 4). The 33 light source units 14 are installed at intervals of 60 mm along the longitudinal direction (2000 mm width direction) of the entrance 32 of the two reflection mirrors 30a and 30b. Moreover, the 33 light source parts 14 are installed so that the direction of the light radiate | emitted from the light source part 14 may become mutually parallel.
 33個の光源部14から出射された光は、2枚の反射ミラー30a、30bの入射口32に入射する。入射口32に入射した光は、2枚の反射ミラー30a、30bの間においてその厚み方向に複数回反射を繰り返した後、出射口34から外部に出射する。 The light emitted from the 33 light source sections 14 enters the entrance 32 of the two reflection mirrors 30a and 30b. The light incident on the incident port 32 is repeatedly reflected a plurality of times in the thickness direction between the two reflection mirrors 30a and 30b, and then emitted to the outside from the emission port 34.
 2枚の反射ミラー30a、30bの出射口34から下方に10mm離れた位置には、ガラス製の基板が設置されている。基板の表面には、アモルファスシリコンの膜Wが形成されている。アモルファスシリコンの膜Wが、本発明の「被照射物」に対応している。 A glass substrate is installed at a position 10 mm below the exit 34 of the two reflecting mirrors 30a and 30b. An amorphous silicon film W is formed on the surface of the substrate. The amorphous silicon film W corresponds to the “object to be irradiated” of the present invention.
 次に、上記のように構成された光照射装置200の作用効果について図面を参照しながら説明する。
 本実施形態の光照射装置200においては、複数個の光源部14を入射口32の長手方向に沿って等間隔に配置している。これにより、図3(b)に示すように、隣り合う光源部14から出射される光が、2枚の反射ミラー30a、30bの長手方向(2000mm幅の方向)において互いに重なり合うため、2枚の反射ミラー30a、30bの長手方向においても光の照度が均一化される。これにより、複数の光源部14から出射される光をアモルファスシリコンの膜Wに均一に照射することが可能となっている。
Next, the effect of the light irradiation apparatus 200 configured as described above will be described with reference to the drawings.
In the light irradiation apparatus 200 of the present embodiment, the plurality of light source units 14 are arranged at equal intervals along the longitudinal direction of the incident port 32. As a result, as shown in FIG. 3B, the light emitted from the adjacent light source units 14 overlaps with each other in the longitudinal direction (2000 mm width direction) of the two reflection mirrors 30a and 30b. The illuminance of light is also made uniform in the longitudinal direction of the reflection mirrors 30a and 30b. This makes it possible to uniformly irradiate the amorphous silicon film W with light emitted from the plurality of light source units 14.
 本実施形態の光照射装置200によれば、複数の光源部14から出射された光をアモルファスシリコンの膜Wに線状に照射することができる。これにより、エキシマレーザを光源として用いることなく、アモルファスシリコンの膜Wを加熱して結晶化させることができる。 According to the light irradiation apparatus 200 of the present embodiment, the light emitted from the plurality of light source units 14 can be irradiated linearly onto the amorphous silicon film W. Thus, the amorphous silicon film W can be heated and crystallized without using an excimer laser as a light source.
 また、本実施形態の光照射装置200によれば、使用する光源部14の個数を増やすことによって、線状に照射する光の照射領域を長くすることができる。また、使用する2枚の反射ミラー30a、30bの長手方向の寸法を長くすることによって、線状に照射する光の照射領域を長くすることができる。したがって、光の照射領域の長さに制限がないために、大型の基板上にアモルファスシリコンの膜が形成されている場合であっても、アモルファスシリコンの膜全体に1回のスキャンによって光を照射することができる。 Moreover, according to the light irradiation apparatus 200 of this embodiment, the irradiation area of the light irradiated linearly can be lengthened by increasing the number of the light source parts 14 to be used. Moreover, the irradiation area of the light irradiated linearly can be lengthened by lengthening the dimension of the longitudinal direction of the two reflection mirrors 30a and 30b to be used. Therefore, since there is no limitation on the length of the light irradiation region, even when an amorphous silicon film is formed on a large substrate, the entire amorphous silicon film is irradiated with a single scan. can do.
 本発明によれば、大型の基板に形成されたアモルファスシリコンの膜に光を照射する場合であっても、従来の方法のように複数回のスキャンを繰り返すことが不要になる。また、光を照射する領域に重複を生じることがなくなるために、アモルファスシリコンの膜全体をムラ無く結晶化させることができる。 According to the present invention, even when the amorphous silicon film formed on the large substrate is irradiated with light, it is not necessary to repeat scanning a plurality of times as in the conventional method. In addition, since no overlap occurs in the light irradiation region, the entire amorphous silicon film can be crystallized without unevenness.
 本実施形態の光照射装置200によれば、アモルファスシリコンの膜を結晶化するために高価なエキシマレーザ発生装置を用いる必要がなくなる。このため、ポリシリコン(多結晶シリコン)を安価に製造することができる。 According to the light irradiation apparatus 200 of the present embodiment, it is not necessary to use an expensive excimer laser generator in order to crystallize the amorphous silicon film. For this reason, polysilicon (polycrystalline silicon) can be manufactured at low cost.
<第3実施形態>
 以下、本発明の第3実施形態について図面を参照しながら詳細に説明する。第3実施形態の光照射装置300は、33個の光源部14からなる列が1列から3列に増加している以外は、第1実施形態の光照射装置100と同様な構成を有している。したがって、第1実施形態と同様の部分については同一の符号を付して説明を省略する。
<Third Embodiment>
Hereinafter, a third embodiment of the present invention will be described in detail with reference to the drawings. The light irradiation apparatus 300 according to the third embodiment has the same configuration as that of the light irradiation apparatus 100 according to the first embodiment except that the number of rows of 33 light source units 14 is increased from one row to three rows. ing. Therefore, the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
 図6は、第3実施形態に係る光照射装置300の側面図である。
 図6に示すように、光照射装置300は、発光部10と、発光部10から発せられた光を反射する楕円鏡12と、複数の光源部14とを備えている。複数の光源部14は、それぞれ、発光部10及び楕円鏡12によって構成されている。また、光照射装置100は、複数の光源部14から出射された光を集光して被照射物に向けて線状に照射するための板状のプリズム20を備えている。
FIG. 6 is a side view of the light irradiation apparatus 300 according to the third embodiment.
As illustrated in FIG. 6, the light irradiation device 300 includes a light emitting unit 10, an elliptical mirror 12 that reflects light emitted from the light emitting unit 10, and a plurality of light source units 14. Each of the plurality of light source units 14 includes a light emitting unit 10 and an elliptical mirror 12. Moreover, the light irradiation apparatus 100 includes a plate-like prism 20 for condensing the light emitted from the plurality of light source units 14 and irradiating the light toward the irradiation object.
 本実施形態では、光照射装置300は、33個の光源部14からなる列を3列備えている。以下では、この3つの列のことを、第1~第3の光源部ユニット40a~40cと呼ぶ。第1~第3の光源部ユニット40a~40cは、その列方向(図6の紙面を垂直に貫く方向)に互いに1/3ピッチずつ(つまり20mmずつ)ずらして配置されている。 In the present embodiment, the light irradiation device 300 includes three rows of 33 light source units 14. Hereinafter, these three columns are referred to as first to third light source unit 40a to 40c. The first to third light source unit 40a to 40c are arranged so as to be shifted from each other by 1/3 pitch (that is, by 20 mm) in the row direction (direction perpendicular to the paper surface of FIG. 6).
 第1の光源部ユニット40aは、上記した第1実施形態における33個の光源部14からなる列と同一の構成を有している。したがって、第1の光源部ユニット40aから出射された光は、プリズム20の入射面22に直接的に入射する。 The first light source unit 40a has the same configuration as the row of 33 light source units 14 in the first embodiment. Therefore, the light emitted from the first light source unit 40 a is directly incident on the incident surface 22 of the prism 20.
 第2の光源部ユニット40bは、第1の光源部ユニット40aを90度左方向に回転させた位置に配置されている。第2の光源部ユニット40bの前方側には、第2の光源部ユニット40bから出射される光の進行方向(主光線の進行方向)を下方に90度回転させることのできる反射ミラー40b1が設置されている。したがって、第2の光源部ユニット40bから出射された光は、反射ミラー40b1を介してプリズム20の入射面22に入射する。 The second light source unit 40b is disposed at a position where the first light source unit 40a is rotated 90 degrees to the left. A reflection mirror 40b1 is provided on the front side of the second light source unit 40b. The reflection mirror 40b1 can rotate the traveling direction of light emitted from the second light source unit 40b (the traveling direction of the principal ray) by 90 degrees downward. Has been. Therefore, the light emitted from the second light source unit 40b is incident on the incident surface 22 of the prism 20 via the reflection mirror 40b1.
 第3の光源部ユニット40cは、第1の光源部ユニット40aを90度右方向に回転させた位置に配置されている。第3の光源部ユニット40cの前方側には、第3の光源部ユニット40cから出射される光の進行方向(主光線の進行方向)を下方に90度回転させることのできる反射ミラー40c1が設置されている。したがって、第3の光源部ユニット40cから出射された光は、反射ミラー40c1を介してプリズム20の入射面22に入射する。 The third light source unit 40c is arranged at a position obtained by rotating the first light source unit 40a 90 degrees to the right. A reflection mirror 40c1 is provided on the front side of the third light source unit 40c. The reflection mirror 40c1 can rotate 90 degrees downward in the traveling direction of light emitted from the third light source unit 40c (the traveling direction of the principal ray). Has been. Therefore, the light emitted from the third light source unit 40c is incident on the incident surface 22 of the prism 20 via the reflection mirror 40c1.
 図6に示すように、第1~第3の光源部ユニット40a~40cから出射される光束は、前方側に向かうにつれて集光するとともに、光源部14から離れるにつれて徐々に細くなる。このため、反射ミラー40b1は、第1の光源部ユニット40aまたは第3の光源部ユニット40cから出射される光と干渉しない。また、反射ミラー40c1は、第1の光源部ユニット40aまたは第2の光源部ユニット40bから出射される光と干渉しない。 As shown in FIG. 6, the light beams emitted from the first to third light source unit 40a to 40c are condensed toward the front side and gradually become thinner as the distance from the light source unit 14 increases. For this reason, the reflection mirror 40b1 does not interfere with the light emitted from the first light source unit 40a or the third light source unit 40c. The reflection mirror 40c1 does not interfere with the light emitted from the first light source unit 40a or the second light source unit 40b.
 本実施形態の光照射装置300によれば、第1実施形態の光照射装置100と比較して3倍の個数(99個)の光源部14を使用することができる。このため、照射する光の照度を3倍に高めることが可能であり、基板上に形成されたアモルファスシリコンの膜Wをより高速に結晶化させることができる。 According to the light irradiation apparatus 300 of the present embodiment, three times (99) light source units 14 can be used as compared with the light irradiation apparatus 100 of the first embodiment. For this reason, it is possible to increase the illuminance of the irradiated light by a factor of 3, and the amorphous silicon film W formed on the substrate can be crystallized at a higher speed.
 また、本実施形態の光照射装置300によれば、より多くの個数の光源部14をプリズム20の長手方向(2000mm幅の方向)に沿って設置することが可能である。このため、プリズム20の長手方向における光の照度をより均一化することが可能であり、アモルファスシリコンの膜Wに線状の光をより均一に照射することができる。 Further, according to the light irradiation device 300 of the present embodiment, it is possible to install a larger number of the light source units 14 along the longitudinal direction (2000 mm width direction) of the prism 20. For this reason, the illuminance of light in the longitudinal direction of the prism 20 can be made more uniform, and the amorphous silicon film W can be irradiated more uniformly with linear light.
<第4実施形態>
 以下、本発明の第4実施形態について図面を参照しながら詳細に説明する。第4実施形態の光照射装置400は、33個の光源部14からなる列が1列から3列に増加している以外は、第1実施形態の光照射装置100と同様の構成を有している。したがって、第1実施形態と同様の部分については同一の符号を付して説明を省略する。
<Fourth embodiment>
Hereinafter, the fourth embodiment of the present invention will be described in detail with reference to the drawings. The light irradiation device 400 of the fourth embodiment has the same configuration as the light irradiation device 100 of the first embodiment, except that the number of rows of 33 light source units 14 is increased from one row to three rows. ing. Therefore, the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
 図7は、第4実施形態に係る光照射装置400の側面図である。
 図7に示すように、光照射装置400は、発光部10と、発光部10から発せられた光を反射する楕円鏡12と、複数の光源部14とを備えている。複数の光源部14は、それぞれ、発光部10及び楕円鏡12によって構成されている。また、光照射装置400は、複数の光源部14から出射された光を集光して被照射物に向けて線状に照射するための板状のプリズム20を備えている。
FIG. 7 is a side view of the light irradiation apparatus 400 according to the fourth embodiment.
As shown in FIG. 7, the light irradiation device 400 includes a light emitting unit 10, an elliptical mirror 12 that reflects light emitted from the light emitting unit 10, and a plurality of light source units 14. Each of the plurality of light source units 14 includes a light emitting unit 10 and an elliptical mirror 12. The light irradiation device 400 includes a plate-like prism 20 for condensing the light emitted from the plurality of light source units 14 and irradiating the light toward the irradiated object in a linear shape.
 本実施形態では、光照射装置400は、33個の光源部14からなる列を3列備えている。以下では、この3つの列のことを、第1~第3の光源部ユニット50a~50cと呼ぶ。第1~第3の光源部ユニット50a~50cは、その列方向(図7の紙面を垂直に貫く方向)に互いに1/3ピッチずつ(つまり20mmずつ)ずらして配置されている。 In this embodiment, the light irradiation device 400 includes three rows of 33 light source units 14. Hereinafter, these three columns are referred to as first to third light source unit 50a to 50c. The first to third light source unit 50a to 50c are arranged so as to be shifted from each other by 1/3 pitch (that is, by 20 mm) in the row direction (the direction perpendicular to the paper surface of FIG. 7).
 第1の光源部ユニット50aは、上記した第1実施形態における33個の光源部14からなる列と同一の構成を有している。したがって、第1の光源部ユニット50aから出射された光は、プリズム20の入射面22に直接的に入射する。 The first light source unit 50a has the same configuration as the row of 33 light source units 14 in the first embodiment. Therefore, the light emitted from the first light source unit 50 a is directly incident on the incident surface 22 of the prism 20.
 第2の光源部ユニット50bは、第1の光源部ユニット50aを70度左方向に回転させた位置に配置されている。第2の光源部ユニット50bの前方側には、第2の光源部ユニット50bから出射される光の進行方向(主光線の進行方向)を下方に70度回転させることのできる反射ミラー50b1が設置されている。したがって、第2の光源部ユニット50bから出射された光は、反射ミラー50b1を介してプリズム20の入射面22に入射する。 The second light source unit 50b is arranged at a position obtained by rotating the first light source unit 50a to the left by 70 degrees. A reflection mirror 50b1 is provided on the front side of the second light source unit 50b. The reflection mirror 50b1 can rotate the traveling direction of light emitted from the second light source unit 50b (the traveling direction of the principal ray) downward by 70 degrees. Has been. Therefore, the light emitted from the second light source unit 50b is incident on the incident surface 22 of the prism 20 via the reflection mirror 50b1.
 第3の光源部ユニット50cは、第1の光源部ユニット50aを130度左方向に回転させた位置に配置されている。第3の光源部ユニット50cの前方側には、第3の光源部ユニット50cから出射される光の進行方向(主光線の進行方向)を下方に130度回転させることのできる反射ミラー50c1が設置されている。したがって、第3の光源部ユニット50cから出射された光は、反射ミラー50c1を介してプリズム20の入射面22に入射する。 The third light source unit 50c is arranged at a position obtained by rotating the first light source unit 50a to the left by 130 degrees. A reflection mirror 50c1 is provided on the front side of the third light source unit 50c. The reflecting mirror 50c1 can rotate the traveling direction of light emitted from the third light source unit 50c (the traveling direction of the principal ray) downward by 130 degrees. Has been. Therefore, the light emitted from the third light source unit 50c is incident on the incident surface 22 of the prism 20 via the reflection mirror 50c1.
 図7に示すように、第1~第3の光源部ユニット50a~50cから出射される光束は前方側に向かうにつれて集光するとともに、光源部14から離れるにつれて徐々に細くなる。このため、反射ミラー50b1は、第1の光源部ユニット50aまたは第3の光源部ユニット50cから出射される光と干渉しない。また、反射ミラー50c1は、第1の光源部ユニット50aまたは第2の光源部ユニット50bから出射される光と干渉しない。 As shown in FIG. 7, the light beams emitted from the first to third light source unit units 50a to 50c are condensed toward the front side and gradually become thinner as the distance from the light source unit 14 increases. For this reason, the reflection mirror 50b1 does not interfere with the light emitted from the first light source unit 50a or the third light source unit 50c. Further, the reflection mirror 50c1 does not interfere with the light emitted from the first light source unit 50a or the second light source unit 50b.
 本実施形態の光照射装置400によれば、第1実施形態の光照射装置100と比較して3倍の個数(99個)の光源部14を使用することができる。このため、照射する光の照度を3倍に高めることが可能であり、基板上に形成されたアモルファスシリコンの膜Wをより高速に結晶化させることができる。 According to the light irradiation device 400 of the present embodiment, three times as many (99) light source units 14 as the light irradiation device 100 of the first embodiment can be used. For this reason, it is possible to increase the illuminance of the irradiated light by a factor of 3, and the amorphous silicon film W formed on the substrate can be crystallized at a higher speed.
 また、本実施形態の光照射装置400によれば、より多くの個数の光源部14をプリズム20の長手方向(2000mm幅の方向)に沿って設置することが可能である。このため、プリズム20の長手方向における光の照度をより均一化することができる。これにより、アモルファスシリコンの膜Wに線状の光をより均一に照射することができる。 Further, according to the light irradiation device 400 of the present embodiment, it is possible to install a larger number of the light source units 14 along the longitudinal direction (2000 mm width direction) of the prism 20. For this reason, the illuminance of light in the longitudinal direction of the prism 20 can be made more uniform. Thereby, the amorphous silicon film W can be more uniformly irradiated with linear light.
<第5実施形態>
 以下、本発明の第5実施形態について図面を参照しながら詳細に説明する。第5実施形態の光照射装置500は、第4実施形態の光照射装置400を2つ備えている。
<Fifth Embodiment>
Hereinafter, a fifth embodiment of the present invention will be described in detail with reference to the drawings. The light irradiation apparatus 500 of the fifth embodiment includes two light irradiation apparatuses 400 of the fourth embodiment.
 図8は、第5実施形態に係る光照射装置500の側面図である。図8に示すように、光照射装置500は、2つの光照射装置400a、400bによって構成されている。この2つの光照射装置400a、400bは、中心線Zを境に左右線対称となるように配置されている。 FIG. 8 is a side view of the light irradiation apparatus 500 according to the fifth embodiment. As shown in FIG. 8, the light irradiation device 500 includes two light irradiation devices 400a and 400b. The two light irradiation devices 400a and 400b are arranged so as to be symmetrical with respect to the center line Z.
 左側に配置された光照射装置400aは、プリズム20の表面が中心線Zに対して左方向に8度傾斜するようにして設置されている。
 右側に配置された光照射装置400bは、プリズム20の表面が中心線Zに対して右方向に8度傾斜するようにして設置されている。
The light irradiation device 400a disposed on the left side is installed such that the surface of the prism 20 is inclined 8 degrees to the left with respect to the center line Z.
The light irradiation device 400b disposed on the right side is installed such that the surface of the prism 20 is inclined to the right by 8 degrees with respect to the center line Z.
 2つの光照射装置400a、400bの各プリズム20の出射面24は、互いに干渉しないように配置されている。
 また、2つの光照射装置400a、400bの各プリズム20は、出射面24から出射される光の照射領域が互いに重なり合うように配置されている。
The emission surfaces 24 of the prisms 20 of the two light irradiation devices 400a and 400b are arranged so as not to interfere with each other.
Further, the prisms 20 of the two light irradiation devices 400a and 400b are arranged so that the irradiation regions of the light emitted from the emission surface 24 overlap each other.
 本実施形態の光照射装置500によれば、第1実施形態の光照射装置100と比較して6倍の個数(198個)の光源部14を使用することができる。このため、照射する光の照度を6倍に高めることが可能であり、基板上に形成されたアモルファスシリコンの膜をより高速に結晶化させることができる。 According to the light irradiation apparatus 500 of the present embodiment, six times as many (198) light source units 14 as the light irradiation apparatus 100 of the first embodiment can be used. For this reason, it is possible to increase the illuminance of the irradiated light by six times, and the amorphous silicon film formed on the substrate can be crystallized at a higher speed.
 また、本実施形態の光照射装置500によれば、より多くの個数の光源部14をプリズム20の長手方向(2000mm幅の方向)に沿って設置することが可能である。このため、プリズム20の長手方向における光の照度をより均一化することができる。これにより、アモルファスシリコンの膜に線状の光をより均一に照射することができる。 Further, according to the light irradiation device 500 of the present embodiment, it is possible to install a larger number of light source units 14 along the longitudinal direction (2000 mm width direction) of the prism 20. For this reason, the illuminance of light in the longitudinal direction of the prism 20 can be made more uniform. As a result, the amorphous silicon film can be irradiated more uniformly with linear light.
 さらに、本実施形態の光照射装置500によれば、アモルファスシリコンの膜Wに対して斜め上方から光を照射することができる。すなわち、左側に配置された光照射装置400aからは、膜Wに対して左斜め上方から光を照射することが可能である。右側に配置された光照射装置400bからは、膜Wに対して右斜め上方から光を照射することが可能である。このように、アモルファスシリコンの膜Wに対する光の照射角度を様々に変化させることができる。これにより、図8中において、左右方向におけるアモルファスシリコンの膜Wの結晶化の程度を変化させることができる。例えば、得ようとするポリシリコンの結晶化条件等に合わせて、アモルファスシリコンの膜Wの結晶化の程度を自在にコントロールすることが可能である。 Furthermore, according to the light irradiation apparatus 500 of the present embodiment, the amorphous silicon film W can be irradiated with light obliquely from above. That is, it is possible to irradiate the film W from the upper left obliquely from the light irradiation device 400a arranged on the left side. From the light irradiation device 400b arranged on the right side, it is possible to irradiate light on the film W from diagonally upward to the right. In this way, the irradiation angle of light to the amorphous silicon film W can be changed variously. Thereby, in FIG. 8, the degree of crystallization of the amorphous silicon film W in the left-right direction can be changed. For example, the degree of crystallization of the amorphous silicon film W can be freely controlled in accordance with the crystallization conditions of polysilicon to be obtained.
<第6実施形態>
 図9は、本発明の第6実施形態に係る光照射装置600の側面図である。
 図9(a)に示すように、プリズム20の出射面24の短辺の長さを、入射面22の短辺の長さの1/2としてもよい。この場合、出射面24から出射される光の照射密度が約2倍になる。しかし、出射面24から出射される光の出射角度は、図中の左右方向において約2倍に広がる。
 図9(b)に示すように、プリズム20の出射面24の短辺の長さを、入射面22の短辺の長さの2倍としてもよい。この場合、出射面24から出射される光の照射密度が約1/2倍になる。しかし、出射面24から出射される光の出射角度は、図中の左右方向において約1/2に狭まる。
 このように、板状のプリズム20の入射面22及び出射面24の大きさをそれぞれ変化させることによって、出射面24から出射される光の照射密度や、出射面24から出射される光の出射角度を調整することが可能になる。これにより、例えば、得ようとするポリシリコンの結晶化条件等に合わせて、アモルファスシリコンの膜Wの結晶化の程度を自在にコントロールすることが可能である。
<Sixth Embodiment>
FIG. 9 is a side view of a light irradiation apparatus 600 according to the sixth embodiment of the present invention.
As shown in FIG. 9A, the length of the short side of the emission surface 24 of the prism 20 may be ½ of the length of the short side of the incident surface 22. In this case, the irradiation density of light emitted from the emission surface 24 is approximately doubled. However, the emission angle of the light emitted from the emission surface 24 spreads about twice in the left-right direction in the figure.
As shown in FIG. 9B, the length of the short side of the exit surface 24 of the prism 20 may be twice the length of the short side of the entrance surface 22. In this case, the irradiation density of the light emitted from the emission surface 24 is about ½ times. However, the emission angle of the light emitted from the emission surface 24 narrows to about ½ in the left-right direction in the figure.
In this way, by changing the sizes of the incident surface 22 and the exit surface 24 of the plate-like prism 20, the irradiation density of the light emitted from the exit surface 24 and the emission of the light emitted from the exit surface 24. The angle can be adjusted. Accordingly, for example, the degree of crystallization of the amorphous silicon film W can be freely controlled in accordance with the crystallization conditions of polysilicon to be obtained.
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記実施形態では、発光部10として超高圧水銀ランプを用いた例を示したが、これ以外のランプを用いることもできる。
(2)上記実施形態では、アモルファスシリコンの膜Wを結晶化させてポリシリコンを得る例を示したが、アモルファスシリコンの膜Wを結晶化させて単結晶シリコンを得ることもできる。例えば、アモルファスシリコンの膜Wを結晶化させて太陽電池パネル用の単結晶シリコンを得ることもできる。
(3)上記実施形態では、プリズム20もしくは2枚の反射ミラー30a、30bの長手方向に沿って33個の光源部14を設置した例を示したが、光源部14の個数は特に制限されない。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.
(1) In the above embodiment, an example in which an ultrahigh pressure mercury lamp is used as the light emitting unit 10 has been described, but other lamps may be used.
(2) In the above embodiment, the amorphous silicon film W is crystallized to obtain polysilicon. However, the amorphous silicon film W can be crystallized to obtain single crystal silicon. For example, the amorphous silicon film W can be crystallized to obtain single crystal silicon for a solar cell panel.
(3) In the above embodiment, an example in which 33 light source units 14 are installed along the longitudinal direction of the prism 20 or the two reflection mirrors 30a and 30b is shown, but the number of the light source units 14 is not particularly limited.
10 発光部
12 楕円鏡
14 光源部
16 ガラス板
20 プリズム
22 入射面
24 出射面
30a、30b 反射ミラー
32 入射口
34 出射口
40a 第1の光源部ユニット
40b 第2の光源部ユニット
40c 第3の光源部ユニット
50a 第1の光源部ユニット
50b 第2の光源部ユニット
50c 第3の光源部ユニット
100、200、300、400、500、600 光照射装置
DESCRIPTION OF SYMBOLS 10 Light emission part 12 Elliptic mirror 14 Light source part 16 Glass plate 20 Prism 22 Incident surface 24 Output surface 30a, 30b Reflection mirror 32 Incident port 34 Output port 40a 1st light source part unit 40b 2nd light source part unit 40c 3rd light source Unit 50a first light source unit 50b second light source unit 50c third light source unit 100, 200, 300, 400, 500, 600 light irradiation device

Claims (8)

  1.  複数の光源部と、前記複数の光源部から出射された光を集光して被照射物に向けて線状に照射するための板状のプリズムとを備えることを特徴とする光照射装置。 A light irradiation apparatus comprising: a plurality of light source units; and a plate-like prism for condensing the light emitted from the plurality of light source units and irradiating the irradiated object linearly.
  2.  前記複数の光源部は、それぞれ、発光部及び前記発光部から発せられる光を反射する楕円鏡によって構成されており、
     前記楕円鏡の第1焦点もしくはその近傍に前記発光部が配置されており、前記楕円鏡の第2焦点もしくはその近傍に前記プリズムの光の入射面が配置されていることを特徴とする請求項1に記載の光照射装置。
    Each of the plurality of light source units includes a light emitting unit and an elliptical mirror that reflects light emitted from the light emitting unit.
    The light emitting section is disposed at or near the first focal point of the elliptical mirror, and the light incident surface of the prism is disposed at or near the second focal point of the elliptical mirror. The light irradiation apparatus according to 1.
  3.  前記複数の光源部は、前記入射面の長手方向に沿って等間隔に配置されていることを特徴とする請求項1または請求項2に記載の光照射装置。 The light irradiation device according to claim 1 or 2, wherein the plurality of light source units are arranged at equal intervals along a longitudinal direction of the incident surface.
  4.  複数の光源部と、前記複数の光源部から出射された光を集光して被照射物に向けて線状に照射するための2枚の反射ミラーとを備えることを特徴とする光照射装置。 A light irradiation apparatus comprising: a plurality of light source units; and two reflection mirrors for condensing the light emitted from the plurality of light source units and irradiating the irradiated object in a line shape .
  5.  前記複数の光源部は、それぞれ、発光部及び前記発光部から発せられる光を反射する楕円鏡によって構成されており、
     前記楕円鏡の第1焦点もしくはその近傍に前記発光部が配置されており、前記楕円鏡の第2焦点もしくはその近傍に前記2枚の反射ミラーの間に光を入射させるための光の入射口が配置されていることを特徴とする請求項4に記載の光照射装置。
    Each of the plurality of light source units includes a light emitting unit and an elliptical mirror that reflects light emitted from the light emitting unit.
    The light emitting section is disposed at or near the first focal point of the elliptical mirror, and a light incident port for allowing light to enter between the two reflecting mirrors at or near the second focal point of the elliptical mirror. Is arranged, The light irradiation apparatus of Claim 4 characterized by the above-mentioned.
  6.  前記複数の光源部は、前記入射口の長手方向に沿って等間隔に配置されていることを特徴とする請求項5に記載の光照射装置。 The light irradiation apparatus according to claim 5, wherein the plurality of light source units are arranged at equal intervals along a longitudinal direction of the entrance.
  7.  前記被照射物がアモルファスシリコンであることを特徴とする請求項1から請求項6のうちいずれか1項に記載の光照射装置。 The light irradiation apparatus according to claim 1, wherein the irradiation object is amorphous silicon.
  8.  前記発光部が超高圧水銀ランプであることを特徴とする請求項1から請求項7のうちいずれか1項に記載の光照射装置。 The light emitting device according to any one of claims 1 to 7, wherein the light emitting unit is an ultrahigh pressure mercury lamp.
PCT/JP2012/051226 2011-01-25 2012-01-20 Light irradiation device WO2012102207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-013346 2011-01-25
JP2011013346A JP4834790B1 (en) 2011-01-25 2011-01-25 Light irradiation device

Publications (1)

Publication Number Publication Date
WO2012102207A1 true WO2012102207A1 (en) 2012-08-02

Family

ID=45418192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051226 WO2012102207A1 (en) 2011-01-25 2012-01-20 Light irradiation device

Country Status (2)

Country Link
JP (1) JP4834790B1 (en)
WO (1) WO2012102207A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297058A (en) * 2003-03-11 2004-10-21 Semiconductor Energy Lab Co Ltd Beam homogenizer, laser irradiating device, and method of manufacturing semiconductor device
JP2006310802A (en) * 2005-03-31 2006-11-09 Semiconductor Energy Lab Co Ltd Optical element and light irradiating apparatus
JP2007115729A (en) * 2005-10-18 2007-05-10 Sumitomo Heavy Ind Ltd Laser irradiation equipment
JP2010027873A (en) * 2008-07-18 2010-02-04 Ushio Inc Optical heating device and method of manufacturing polycrystal silicon

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11212021A (en) * 1998-01-27 1999-08-06 Toshiba Corp Laser light radiating device
JP2000091257A (en) * 1998-09-07 2000-03-31 Kokusai Electric Co Ltd Heat treatment device
JP2001297994A (en) * 2000-04-18 2001-10-26 Dainippon Screen Mfg Co Ltd Heat treater
JP2002151427A (en) * 2000-11-13 2002-05-24 Dainippon Screen Mfg Co Ltd Heat treatment apparatus
JP2002289548A (en) * 2001-03-28 2002-10-04 Dainippon Screen Mfg Co Ltd Heat treatment device
JP4847046B2 (en) * 2005-05-26 2011-12-28 東京エレクトロン株式会社 Heat treatment equipment
JP2006344726A (en) * 2005-06-08 2006-12-21 Mejiro Precision:Kk Light fixture
JP4698460B2 (en) * 2006-03-27 2011-06-08 オムロンレーザーフロント株式会社 Laser annealing equipment
JP2008112953A (en) * 2006-10-06 2008-05-15 Sei Tsunezo Laser beam uniformizing system
US8237085B2 (en) * 2006-11-17 2012-08-07 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer, laser irradiation apparatus, and laser irradiation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297058A (en) * 2003-03-11 2004-10-21 Semiconductor Energy Lab Co Ltd Beam homogenizer, laser irradiating device, and method of manufacturing semiconductor device
JP2006310802A (en) * 2005-03-31 2006-11-09 Semiconductor Energy Lab Co Ltd Optical element and light irradiating apparatus
JP2007115729A (en) * 2005-10-18 2007-05-10 Sumitomo Heavy Ind Ltd Laser irradiation equipment
JP2010027873A (en) * 2008-07-18 2010-02-04 Ushio Inc Optical heating device and method of manufacturing polycrystal silicon

Also Published As

Publication number Publication date
JP4834790B1 (en) 2011-12-14
JP2012156260A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP4748836B2 (en) Laser irradiation device
KR101017848B1 (en) Beam homogenizer and laser irradiation apparatus and method of manufacturing semiconductor device
US7953310B2 (en) Beam homogenizer, laser irradiation apparatus, and method for manufacturing semiconductor device
US7978412B2 (en) Beam homogenizer, laser irradiation apparatus, and method for manufacturing semiconductor device
CN101312117B (en) Crystallization device and method
CN102554459B (en) Crystallization apparatus, crystallization method, and method of manufacturing organic light-emitting display device
TW200401346A (en) Method and apparatus for crystallizing semiconductor with laser beams
KR20130082449A (en) Single-scan line-scan crystallization using superimposed scanning elements
TW200830384A (en) Laser irradiation apparatus, laser irradiation method, fabrication method for thin film semiconductor device and fabrication method for display apparatus
CN102791328A (en) Systems and methods for non-periodic pulse sequential lateral solidification
KR20100028008A (en) Process and apparatus for changing the structure of a semiconductor layer
JP5385289B2 (en) Method for producing high uniformity in thin film transistor devices fabricated on laterally crystallized thin films
KR102589766B1 (en) Laser Apparatus
TW201248691A (en) Laser processing device
JP4834790B1 (en) Light irradiation device
US20090134394A1 (en) Crystal silicon array, and manufacturing method of thin film transistor
US11335561B2 (en) Apparatus for laser irradiation and method for laser irradiation
JP2013004532A (en) Semiconductor thin film crystallization method and semiconductor thin film crystallization apparatus
TW201834024A (en) Laser irradiation device, thin film transistor, and manufacturing method of thin film transistor
JP2010027873A (en) Optical heating device and method of manufacturing polycrystal silicon
JP2008130713A5 (en)
CN105118773A (en) Quasi-molecule laser annealing apparatus and method
KR100924280B1 (en) A wide-area laser patterning system
KR101335639B1 (en) Laser crystallization apparatus and silicon crystallization method using the same
TWI556284B (en) Systems and methods for non-periodic pulse sequential lateral solidification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739842

Country of ref document: EP

Kind code of ref document: A1