WO2012102184A1 - Radiograph display apparatus and method - Google Patents

Radiograph display apparatus and method Download PDF

Info

Publication number
WO2012102184A1
WO2012102184A1 PCT/JP2012/051145 JP2012051145W WO2012102184A1 WO 2012102184 A1 WO2012102184 A1 WO 2012102184A1 JP 2012051145 W JP2012051145 W JP 2012051145W WO 2012102184 A1 WO2012102184 A1 WO 2012102184A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
imaging
region
radiation
unit
Prior art date
Application number
PCT/JP2012/051145
Other languages
French (fr)
Japanese (ja)
Inventor
毅久 荒井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012102184A1 publication Critical patent/WO2012102184A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/502Clinical applications involving diagnosis of breast, i.e. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/022Stereoscopic imaging

Definitions

  • the present invention relates to a radiation image display apparatus and method for displaying a stereoscopic image of a subject.
  • stereoscopic viewing can be performed using parallax by displaying a combination of a plurality of images.
  • a stereoscopically viewable image hereinafter referred to as a stereoscopic image or a stereo image
  • a stereoscopic image or a stereo image is generated from a plurality of images acquired by photographing the same subject from different directions.
  • stereoscopic images are used not only in the fields of digital cameras and televisions but also in the field of radiographic imaging.
  • a subject is irradiated with radiation from different imaging directions, the radiation transmitted through the subject is detected by a radiation detector to obtain a plurality of radiation images, and a stereoscopic image is obtained using these radiation images. It has been done to display.
  • a stereoscopic image it is possible to observe a radiographic image with a sense of depth, so that diagnosis can be performed more easily.
  • a tissue piece around a lesion may be collected.
  • a hollow tissue collecting needle hereinafter referred to as a living tissue
  • a biopsy that punctures a patient referred to as a meter reading
  • the stereo biopsy apparatus is proposed as an apparatus for performing such a biopsy (refer patent document 2).
  • This stereo biopsy device can specify a three-dimensional position of a lesion while observing a stereoscopic image of a subject, and controls the tip of a biopsy needle to reach the specific position from a desired position. A tissue piece can be collected.
  • the breast when performing a stereo biopsy of the breast, the breast is pressed with a compression plate and photographed, and in the compressed state, a biopsy needle is inserted into the breast to collect a tissue piece. For this reason, the compression plate is provided with an opening necessary to pierce the breast with the biopsy needle.
  • a luminance difference is generated between the region corresponding to the opening in the compression plate and the other portion of the displayed stereoscopic image.
  • the image flickers at the luminance boundary portion when performing stereoscopic viewing, and the eyes of the observer are greatly fatigued. This is a problem that occurs not only in the stereo biopsy of the breast, but also in the case where, for example, when acquiring a stereoscopic image of a finger, there is an imaging aid such as a jig for fixing the finger during imaging.
  • the present invention has been made in view of the above circumstances, and an object thereof is to reduce the fatigue of an observer when displaying a stereoscopic image of a radiographic image.
  • a radiographic image display apparatus includes a display unit that displays a stereoscopic image based on two radiographic images acquired by imaging a subject from two directions, together with an imaging auxiliary tool that transmits radiation, and two In each of the radiographic images, a boundary detection unit that detects a boundary between the first area where the imaging assistance tool does not exist and the second area where the imaging assistance tool exists, and the luminance of the first area and the second area A correction processing unit that applies correction processing to equalize at least one of the two radiation images; And a display control unit that displays a stereoscopic image based on the two radiographic images subjected to the correction process on the display unit.
  • the display control unit may be a part that displays a boundary when displaying a stereoscopic image.
  • the subject may be a breast
  • the imaging aid may be a compression plate having an opening formed at a predetermined position for performing a biopsy that compresses the breast.
  • the stereoscopic image displayed on the display unit may further include a warning unit that issues a warning when a region other than the region corresponding to the opening is designated.
  • the radiographic image display device may further include an image processing unit that performs image processing on the two radiographic images subjected to the correction processing.
  • the correction processing unit may be a portion that performs correction processing based on the statistical values of the first and second regions in the two radiographic images.
  • the radiographic image display method provides radiographic assistance for each of two radiographic images for displaying a stereoscopic image acquired by imaging a subject from two directions together with an imaging auxiliary tool that transmits radiation. Detecting a boundary between the first region where the tool does not exist and the second region where the photographing auxiliary tool exists, A correction process for equalizing the brightness of the first region and the second region is performed on at least one of the two radiation images, A stereoscopic image based on two radiographic images subjected to correction processing is displayed on a display unit.
  • the boundary between the first region where the imaging aid is not present and the second region where the imaging aid is present is detected, and the first region and the second region are detected.
  • Correction processing for equalizing the brightness of the region is performed on at least one of the two radiographic images. For this reason, in the displayed stereoscopic image, the boundary between the first and second regions becomes inconspicuous, and as a result, it becomes difficult to see the flicker caused by the boundary when the observer performs stereoscopic viewing. Therefore, it is possible to reduce fatigue of the eyes of the observer who observes the stereoscopic image.
  • the boundary in the first and second regions that should have been originally visible can be recognized. For this reason, when performing a biopsy especially, it can prevent mistaking the position which stabs a biopsy needle.
  • a warning is given when a region other than the region corresponding to the opening of the compression plate is designated in the stereoscopic image, thereby preventing the biopsy needle from being misplaced. be able to.
  • FIG. 1 Schematic configuration diagram of a stereo breast image radiographing display system using an embodiment of the radiation image display apparatus of the present invention
  • FIG. 1 is a diagram showing a schematic configuration of a mammography display system with a biopsy unit attached.
  • a breast image capturing and displaying system 1 includes a breast image capturing apparatus 10, a computer 8 connected to the breast image capturing apparatus 10, and a monitor (display unit) connected to the computer 8. 9 and an input unit 7.
  • the mammography apparatus 10 includes a base 11, a rotary shaft 12 that can move in the vertical direction (Z direction) with respect to the base 11, and can rotate.
  • the arm part 13 connected with the base 11 is provided.
  • FIG. 2 shows the arm 13 viewed from the right direction in FIG.
  • the arm section 13 has an alphabet C shape, and a radiation table 16 is attached to one end of the arm section 13 so as to face the imaging table 14 at the other end.
  • the rotation and vertical movement of the arm unit 13 are controlled by an arm controller 31 incorporated in the base 11.
  • the imaging table 14 includes a charge amplifier that converts a charge signal read from the radiation detector 15 into a voltage signal, a correlated double sampling circuit that samples a voltage signal output from the charge amplifier, a voltage A circuit board or the like provided with an AD conversion unit or the like for converting a signal into a digital signal is also installed.
  • the photographing table 14 is configured to be rotatable with respect to the arm unit 13, and even when the arm unit 13 rotates with respect to the base 11, the direction of the photographing table 14 is fixed to the base 11. can do.
  • the radiation detector 15 can repeatedly perform recording and reading of a radiation image, and may use a so-called direct type radiation detector that directly receives radiation to generate charges, or radiation. May be used as a so-called indirect radiation detector that converts the light into visible light and converts the visible light into a charge signal.
  • a radiation image signal readout method a radiation image signal is read out by turning on and off a TFT (thin film transistor) switch, or a radiation image signal by irradiating reading light.
  • TFT thin film transistor
  • a radiation source 17 and a radiation source controller 32 are accommodated in the radiation irradiation unit 16.
  • the radiation source controller 32 controls the timing of irradiating radiation from the radiation source 17 and the radiation generation conditions (tube current, time, tube current time product, etc.) in the radiation source 17.
  • FIG. 3 is a view of the compression plate 18 shown in FIG. 1 as viewed from above. As shown in the drawing, the compression plate 18 can perform biopsy while the breast is fixed by the imaging table 14 and the compression plate 18. Thus, the opening 5 having a size of about 10 ⁇ 10 cm square is provided.
  • the biopsis unit 2 is mechanically and electrically connected to the mammography display system 1 by inserting the base portion of the biopsy unit 2 into the opening of the support portion 20 of the compression plate 18 and attaching the lower end of the base portion to the arm portion 13. To be connected.
  • the biopsy unit 2 includes a biopsy needle 21 that is punctured into the breast.
  • the biopsy needle unit 22 is configured to be detachable, a needle support portion 23 that supports the biopsy needle unit 22, and the needle support portion 23 as a rail.
  • a moving mechanism 24 that moves the biopsy needle unit 22 in the X, Y, and Z directions shown in FIGS. 1 to 3 by moving the needle support part 23 in and out.
  • the position of the tip of the biopsy needle 21 of the biopsy needle unit 22 is recognized and controlled as position coordinates (x, y, z) in a three-dimensional space by a needle position controller 35 provided in the moving mechanism 24.
  • 1 is the X direction
  • the paper vertical direction in FIG. 2 is the Y direction
  • the paper vertical direction in FIG. 3 is the Z direction.
  • the computer 8 includes a central processing unit (CPU) and a storage device such as a semiconductor memory, a hard disk, and an SSD, and the control unit 8a, the radiation image storage unit 8b, the boundary as shown in FIG.
  • a detection unit 8c, a correction processing unit 8d, an image processing unit 8e, and a display control unit 8f are configured.
  • the control unit 8a outputs predetermined control signals to the various controllers 31 to 35 to control the entire system. A specific control method will be described later.
  • the radiation image storage unit 8b stores a radiation image signal for each imaging angle acquired by the radiation detector 15.
  • the boundary detection unit 8c includes a first region corresponding to the opening 5 of the compression plate 18 and a second region other than the first region in each of the two radiation images based on the two radiation image signals acquired by imaging. Detect boundaries. Specific boundary detection processing will be described later.
  • the correction processing unit 8d corrects the luminance of at least one of the two radiographic images so that the luminance of the first region and the second region is substantially the same. Specific correction processing will be described later.
  • the image processing unit 8e generates a processed radiographic image by performing processing for improving the image quality such as processing for making the luminance the same, gradation processing, and the like for the two radiographic images whose luminance has been corrected.
  • the display control unit 8f displays a stereo image using two radiographic images subjected to image processing on the monitor 9, or changes the stereoscopic effect of the stereo image.
  • the input unit 7 is configured by a pointing device such as a keyboard and a mouse, for example, and is configured such that the position of an abnormal shadow or the like in the stereo image displayed on the monitor 9 can be specified by a cursor.
  • the input unit 7 receives an input of shooting conditions and an operation instruction by the operator.
  • the monitor 9 displays a stereo image using two radiographic image signals output from the computer 8 in accordance with an instruction from the display control unit 8f.
  • the configuration of the monitor 9 is, for example, two using two screens. Each radiographic image based on one radiographic image signal is displayed, and by using a half mirror or polarizing glass, one radiographic image is incident on the operator's right eye, and the other radiographic image is incident on the operator's left eye. By doing so, it is possible to adopt a configuration for displaying a stereo image.
  • two radiographic images may be shifted and displayed by being shifted by a predetermined shift amount, and a stereo image may be generated by observing this with a polarizing glass, or a parallax barrier method and a lenticular method
  • a stereo image may be generated by displaying two radiation images on a stereoscopically viewable 3D liquid crystal.
  • the breast M is installed on the imaging table 14, and the breast is compressed with a predetermined pressure by the compression plate 18 (step ST1).
  • step ST2 scout imaging is performed prior to imaging of the stereo image of the breast M (step ST2).
  • the control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform radiation irradiation and readout of a radiographic image signal in order to perform biopsy scout imaging.
  • the arm unit 13 is in a position where the arm unit 13 is perpendicular to the imaging table 14 in the initial position, radiation is emitted from the radiation source 17 in accordance with this control signal, and the breast is vertically aligned.
  • the scout image GS acquired by scout shooting is displayed on the monitor 9. While observing the scout image, the operator positions the breast M so that the abnormal shadow visually recognized in the scout image is positioned at the position of the opening 5 of the compression plate 18. At this time, anesthesia of the breast M is performed. In addition, after the positioning, when the installation position of the breast M is different from that at the time of the scout photographing, the scout photographing is performed again. On the other hand, after positioning, when the installation position of the breast M becomes substantially the same as that during scout imaging, scout imaging is not performed again in order to reduce the exposure dose to the subject.
  • the control unit 8 a reads a convergence angle ⁇ for photographing a preset stereo image, and outputs information of the read convergence angle ⁇ to the arm controller 31.
  • 30 degrees ( ⁇ 15 degrees with respect to the vertical direction) is stored in advance as information on the convergence angle ⁇ at this time.
  • An arbitrary angle of 4 degrees or more and 10 degrees or less ( ⁇ 2 degrees or more and ⁇ 5 degrees or less with respect to the vertical direction) may be used.
  • a stereo image of the breast M is photographed (step ST3).
  • the arm controller 31 receives the information on the convergence angle ⁇ output from the control unit 8a.
  • the arm controller 31 captures the image of the arm unit 13 based on the information on the convergence angle ⁇ as shown in FIG.
  • a control signal is output so as to rotate + ⁇ degrees with respect to a direction perpendicular to the table 14. That is, in the present embodiment, a control signal is output so that the arm unit 13 is rotated +15 degrees with respect to a direction perpendicular to the imaging table 14.
  • the control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform radiation irradiation and readout of the radiation image signal.
  • the control signal radiation is emitted from the radiation source 17, a radiation image obtained by photographing the breast from the +15 degree direction is detected by the radiation detector 15, and a radiation image signal is read out by the detector controller 33.
  • the image signal is stored in the radiation image storage unit 8 b of the computer 8.
  • the radiographic image signal stored in the radiographic image storage unit 8b by this imaging represents the radiographic image GR for the right eye.
  • the arm controller 31 once returns the arm unit to the initial position, and then outputs a control signal so as to rotate by ⁇ degrees with respect to the direction perpendicular to the imaging table 14. That is, in the present embodiment, the control signal is output so that the arm unit 13 is rotated by ⁇ 15 degrees with respect to the direction perpendicular to the imaging table 14.
  • the arm 13 rotates by -15 degrees in accordance with the control signal output from the arm controller 31.
  • the control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform radiation irradiation and radiation image reading.
  • radiation is emitted from the radiation source 17
  • a radiation image obtained by photographing the breast from the ⁇ 15 degree direction is detected by the radiation detector 15, and a radiation image signal is read out by the detector controller 33.
  • the signal processing is performed, it is stored in the radiation image storage unit 8b of the computer 8.
  • the radiographic image signal stored in the radiographic image storage unit 8b by this imaging represents the radiographic image GL for the left eye.
  • FIG. 6 is a diagram for explaining boundary detection. 6 shows only the right-eye radiographic image GR, the left-eye radiographic image GL is also detected in the same manner as the right-eye radiographic image GR. As shown in FIG.
  • the radiographic image GR includes an image of the breast M, but the breast M is compressed by the compression plate 18 at the time of imaging, and further, the compression plate 18 is formed with the opening 5.
  • the brightness is different between the first region A1 corresponding to the opening 5 where the plate 18 does not exist and the second region A2 corresponding to the compression plate 18 other than the opening 5.
  • the boundary detection unit 8c performs a differentiation process on the radiographic image GR using a differential filter or the like, and determines the pixel positions in which the differential value is equal to or greater than a predetermined threshold value and arranged in a straight line as the first and second regions. It is detected as a boundary between A1 and A2. Since the position of the opening 5 in the compression plate 18 is determined in advance, as shown in the hatched portion in FIG. 7, if the differentiation process is performed only in the region corresponding to the boundary in the radiation image GR, the calculation is performed. Time can be shortened.
  • the correction processing unit 8d performs correction processing for making the luminances of the first and second regions A1 and A2 substantially the same for the radiographic images GL and GR (step ST5). Specifically, the correction processing unit 8d first calculates the statistical values T1 and T2 of the pixel values of the first and second regions A1 and A2. Note that an average value, a median value, or the like can be used as the statistical value. Then, the correction processing unit 8d adds and subtracts the offset value to / from at least one pixel value of the first and second regions A1 and A2 so that the statistical values T1 and T2 are equal to each other. The luminances of the areas A1 and A2 are made substantially the same.
  • step ST5 a correction process may be performed on either one of the radiation images GL and GR so that the luminances of the first and second regions A1 and A2 are substantially the same.
  • the image processing unit 8e performs image processing for improving the image quality such as processing for making the luminance the same, gradation processing, and the like on the radiation images GL and GR (step ST6). Thereafter, the radiographic image signals of the two radiographic images GL and GR that have been subjected to image processing are output to the monitor 9 by the display control unit 8f, and a stereo image of the breast is displayed on the monitor 9 (step ST7).
  • FIG. 8 is a diagram schematically showing a stereo image displayed on the monitor 9. As shown in FIG. 8, the stereo image includes an image of the breast M having a depth.
  • the operator After the stereo image of the breast is displayed, the operator discovers abnormal shadows such as calcification and tumor in the breast and subsequently wants to collect those tissues by the biopsy unit 2. On the stereo image displayed on the screen, the operator designates the target of the abnormal shadow (step ST8).
  • the designation of the target may be performed by a pointing device such as a mouse in the input unit 7, for example.
  • a pointing device such as a mouse in the input unit 7, for example.
  • an indicator for a three-dimensional cursor is displayed in each of two radiographic images constituting a stereo image, and a three-dimensional cursor that is a stereoscopic image composed of the two indicators is displayed by the input unit 7.
  • the target may be specified by moving it.
  • the position of the index in each of the radiographic images GL and GR is assumed to have the coordinate position set according to the shooting direction when the stereo image is shot so as to indicate the same position.
  • the position information (x, y, z) of the designated target is acquired by the control unit 8a.
  • the control unit 8a determines whether or not a position based on the designated position information is present at a position corresponding to the opening 5 of the compression plate 18 (is the designated position appropriate: step ST9).
  • the control part 8a displays a warning on the monitor 9 (step ST10), and step ST.
  • the warning display only needs to prompt the operator to correct the target position.
  • the warning may be given by voice instead of the display, or the warning may be given by both voice and display.
  • step ST9 the control unit 8a outputs the position information to the needle position controller 35 of the biopsy unit 2.
  • a control signal for moving the biopsy needle 21 is output from the control unit 8 a to the needle position controller 35.
  • the needle position controller 35 moves the biopsy needle 21 so that the tip of the biopsy needle 21 is positioned above the position indicated by the coordinates based on the position information value input previously.
  • the position of the tip of the biopsy needle 21 indicated by the coordinates is controlled by the control unit 8 a and the needle position controller 35.
  • the biopsy needle 21 is moved so that the biopsy needle 21 is disposed, and the biopsy needle 21 punctures the breast (step ST11).
  • a correction process for equalizing the brightness of the first region A1 and the second region A2 in the two radiation images GL and GR is performed on each of the radiation images GL and GR.
  • the boundary between the first and second regions A1 and A1 becomes inconspicuous, and as a result, the flicker caused by the boundary becomes difficult to see when the observer performs stereoscopic viewing. . Therefore, it is possible to reduce the fatigue of the eyes of the observer who observes the stereo image.
  • a warning is given when an area other than the area corresponding to the opening 5 of the compression plate 18 is designated as the target position, thereby preventing the position where the biopsy needle is perforated from being mistaken. be able to.
  • the boundary between the first and second regions A1 and A2 may be displayed when displaying a stereo image.
  • FIG. 9 is a diagram schematically showing a stereo image displaying the boundary between the first and second regions A1 and A2. As shown in FIG. 9, the boundary between the first and second regions A1, A2 is indicated by a broken line. In this way, when displaying a stereo image, by displaying the boundary between the first and second regions A1 and A2, the boundary in the first and second regions A1 and A2 that should have been originally visible is recognized. can do. For this reason, when performing biopsy especially, it can prevent making the position which pierces a biopsy needle wrong.
  • one embodiment of the radiographic image display apparatus of the present invention is applied to a stereo mammography imaging display system.
  • the subject of the present invention is not limited to the breast, and for example, a finger other than the breast.
  • the present invention can also be applied to a radiographic imaging display system that performs imaging using an imaging aid for the head or the like.

Abstract

The invention allows the reduction of an observer's fatigue when stereoscopic images of radiographs are displayed. The subject is imaged from two different imaging directions using an imaging assistive device such as a compression plate and two radiographs for displaying a stereoscopic image are acquired. A boundary detection unit (8c) detects a boundary between a first region in which the imaging assistive device is absent and a second region in which the imaging assistive device is present in each of the two radiographs. A correction unit (8d) performs a corrective processing that equalizes the brightness of the first region and the second region in the two radiographs. A display control unit (8f) displays the stereoscopic image, based on the two corrected radiographs, on a monitor (display unit) (9).

Description

放射線画像表示装置および方法Radiation image display apparatus and method
 本発明は、被検体の立体視画像を表示する放射線画像表示装置および方法に関するものである。 The present invention relates to a radiation image display apparatus and method for displaying a stereoscopic image of a subject.
 従来、複数の画像を組み合わせて表示することにより、視差を利用して立体視できることが知られている。このような立体視できる画像(以下、立体視画像またはステレオ画像という)は、同一の被写体を異なる方向から撮影して取得された複数の画像から生成される。 Conventionally, it is known that stereoscopic viewing can be performed using parallax by displaying a combination of a plurality of images. Such a stereoscopically viewable image (hereinafter referred to as a stereoscopic image or a stereo image) is generated from a plurality of images acquired by photographing the same subject from different directions.
 一方、このような立体視画像は、デジタルカメラやテレビ等の分野だけでなく、放射線画像撮影の分野においても利用されている。すなわち、被検体に対して異なる撮影方向から放射線を照射し、その被検体を透過した放射線を放射線検出器によりそれぞれ検出して複数の放射線画像を取得し、これらの放射線画像を用いて立体視画像を表示することが行われている。このような立体視画像を用いることにより、奥行き感のある放射線画像を観察することができるため、診断をより行いやすくすることができる。 On the other hand, such stereoscopic images are used not only in the fields of digital cameras and televisions but also in the field of radiographic imaging. In other words, a subject is irradiated with radiation from different imaging directions, the radiation transmitted through the subject is detected by a radiation detector to obtain a plurality of radiation images, and a stereoscopic image is obtained using these radiation images. It has been done to display. By using such a stereoscopic image, it is possible to observe a radiographic image with a sense of depth, so that diagnosis can be performed more easily.
 また、立体視画像の画質を向上させるために、複数の放射線画像において輝度を決定する領域を設定し、その領域に基づいて複数の放射線画像の輝度を一定にする画像処理を行う手法が提案されている(特許文献1参照)。 In addition, in order to improve the image quality of stereoscopic images, a method has been proposed in which an area for determining luminance in a plurality of radiographic images is set, and image processing is performed to make the luminance of the plurality of radiographic images constant based on the area. (See Patent Document 1).
 ところで、病院の検査では病変周辺の組織片を採取することがあるが、近年、患者に大きな負担をかけずに組織片を採取する方法として、中が空洞の組織採取用の針(以下、生検針と称する)を患者に刺し、針の空洞に埋め込まれた組織を採取するバイオプシが注目されている。そして、このようなバイオプシを行うための装置としてステレオバイオプシ装置が提案されている(特許文献2参照)。 By the way, in a hospital examination, a tissue piece around a lesion may be collected. Recently, as a method of collecting a tissue piece without imposing a heavy burden on a patient, a hollow tissue collecting needle (hereinafter referred to as a living tissue) is used. A biopsy that punctures a patient (referred to as a meter reading) and collects tissue embedded in the needle cavity has attracted attention. And the stereo biopsy apparatus is proposed as an apparatus for performing such a biopsy (refer patent document 2).
 このステレオバイオプシ装置は、被検体の立体視画像を観察しながら病変の3次元的な位置を特定することができ、生検針の先端をその特定位置に到達するよう制御することによって所望の位置から組織片を採取することができるものである。 This stereo biopsy device can specify a three-dimensional position of a lesion while observing a stereoscopic image of a subject, and controls the tip of a biopsy needle to reach the specific position from a desired position. A tissue piece can be collected.
特開平9-313471号公報JP-A-9-31471 特開2010-75317号公報JP 2010-75317 A
 ところで、乳房のステレオバイオプシを行う際には、乳房を圧迫板により圧迫して撮影を行い、圧迫した状態で生検針を乳房に刺して組織片を採取するようにしている。このため、圧迫板には生検針を乳房に刺すために必要な開口部が形成されている。しかしながら、圧迫板に開口部が形成されていると、表示される立体視画像には、圧迫板における開口部に対応する領域とそれ以外の部分とにおいて輝度差が生じてしまう。このように立体視画像において輝度差が生じていると、立体視を行う際に輝度の境界部分において画像のちらつきが生じ、観察者の目が大きく疲労することとなる。これは、乳房のステレオバイオプシのみならず、例えば指の立体視画像を取得する際に、撮影時に指を固定する治具等の撮影補助具が存在する場合にも生じる問題である。 By the way, when performing a stereo biopsy of the breast, the breast is pressed with a compression plate and photographed, and in the compressed state, a biopsy needle is inserted into the breast to collect a tissue piece. For this reason, the compression plate is provided with an opening necessary to pierce the breast with the biopsy needle. However, if an opening is formed in the compression plate, a luminance difference is generated between the region corresponding to the opening in the compression plate and the other portion of the displayed stereoscopic image. When a luminance difference is generated in the stereoscopic image in this way, the image flickers at the luminance boundary portion when performing stereoscopic viewing, and the eyes of the observer are greatly fatigued. This is a problem that occurs not only in the stereo biopsy of the breast, but also in the case where, for example, when acquiring a stereoscopic image of a finger, there is an imaging aid such as a jig for fixing the finger during imaging.
 本発明は上記事情に鑑みなされたものであり、放射線画像の立体視画像を表示するに際し、観察者の疲労を軽減できるようにすることを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to reduce the fatigue of an observer when displaying a stereoscopic image of a radiographic image.
 本発明による放射線画像表示装置は、放射線を透過する撮影補助具とともに、被検体を2方向から撮影することにより取得された、2つの放射線画像に基づく立体視画像を表示する表示部と、2つの放射線画像のそれぞれにおいて、撮影補助具が存在しない第1の領域と、撮影補助具が存在する第2の領域との境界を検出する境界検出部と、第1の領域および第2の領域の輝度を等しくする補正処理を、2つの放射線画像の少なくとも一方に施す補正処理部と、
 補正処理が施された2つの放射線画像に基づく立体視画像を表示部に表示する表示制御部とを備えたことを特徴とするものである。
A radiographic image display apparatus according to the present invention includes a display unit that displays a stereoscopic image based on two radiographic images acquired by imaging a subject from two directions, together with an imaging auxiliary tool that transmits radiation, and two In each of the radiographic images, a boundary detection unit that detects a boundary between the first area where the imaging assistance tool does not exist and the second area where the imaging assistance tool exists, and the luminance of the first area and the second area A correction processing unit that applies correction processing to equalize at least one of the two radiation images;
And a display control unit that displays a stereoscopic image based on the two radiographic images subjected to the correction process on the display unit.
 なお、本発明による放射線画像表示装置においては、表示制御部を、立体視画像を表示する際に、境界を表示する部分としてもよい。 In the radiographic image display device according to the present invention, the display control unit may be a part that displays a boundary when displaying a stereoscopic image.
 また、本発明による放射線画像表示装置においては、被検体を乳房とし、撮影補助具を、前記乳房を圧迫する、バイオプシを行うために所定位置に開口部が形成された圧迫板としてもよい。 In the radiographic image display device according to the present invention, the subject may be a breast, and the imaging aid may be a compression plate having an opening formed at a predetermined position for performing a biopsy that compresses the breast.
 この場合、表示部に表示された立体視画像において、開口部に対応する領域以外の領域が指定された場合に警告を行う警告部をさらに備えるものとしてもよい。 In this case, the stereoscopic image displayed on the display unit may further include a warning unit that issues a warning when a region other than the region corresponding to the opening is designated.
 また、本発明による放射線画像表示装置においては、補正処理が施された前記2つの放射線画像に対して、画像処理を施す画像処理部をさらに備えるものとしてもよい。 The radiographic image display device according to the present invention may further include an image processing unit that performs image processing on the two radiographic images subjected to the correction processing.
 また、本発明による放射線画像表示装置においては、補正処理部を、2つの放射線画像における第1および第2の領域の統計値に基づいて、補正処理を行う部分としてもよい。 In the radiographic image display device according to the present invention, the correction processing unit may be a portion that performs correction processing based on the statistical values of the first and second regions in the two radiographic images.
 本発明による放射線画像表示方法は、放射線を透過する撮影補助具とともに、被検体を2方向から撮影することにより取得された、立体視画像を表示するための2つの放射線画像のそれぞれにおいて、撮影補助具が存在しない第1の領域と、撮影補助具が存在する第2の領域との境界を検出し、
 第1の領域および第2の領域の輝度を等しくする補正処理を、2つの放射線画像の少なくとも一方に施し、
 補正処理が施された2つの放射線画像に基づく立体視画像を表示部に表示することを特徴とするものである。
The radiographic image display method according to the present invention provides radiographic assistance for each of two radiographic images for displaying a stereoscopic image acquired by imaging a subject from two directions together with an imaging auxiliary tool that transmits radiation. Detecting a boundary between the first region where the tool does not exist and the second region where the photographing auxiliary tool exists,
A correction process for equalizing the brightness of the first region and the second region is performed on at least one of the two radiation images,
A stereoscopic image based on two radiographic images subjected to correction processing is displayed on a display unit.
 本発明によれば、2つの放射線画像のそれぞれにおいて、撮影補助具が存在しない第1の領域と、撮影補助具が存在する第2の領域との境界が検出され、第1の領域および第2の領域の輝度を等しくする補正処理が、2つの放射線画像の少なくとも一方に施される。このため、表示された立体視画像においては、第1および第2の領域の境界が目立たなくなり、その結果、観察者が立体視を行った際に、境界に起因するちらつきが見えにくくなる。したがって、立体視画像を観察する観察者の目の疲労を軽減することができる。 According to the present invention, in each of the two radiographic images, the boundary between the first region where the imaging aid is not present and the second region where the imaging aid is present is detected, and the first region and the second region are detected. Correction processing for equalizing the brightness of the region is performed on at least one of the two radiographic images. For this reason, in the displayed stereoscopic image, the boundary between the first and second regions becomes inconspicuous, and as a result, it becomes difficult to see the flicker caused by the boundary when the observer performs stereoscopic viewing. Therefore, it is possible to reduce fatigue of the eyes of the observer who observes the stereoscopic image.
 また、立体視画像を表示する際に、境界を表示することにより、本来見えるはずであった第1および第2の領域における境界を認識することができる。このため、とくにバイオプシを行う際に、生検針を刺す位置を誤ってしまうことを防止することができる。 Also, when displaying a stereoscopic image, by displaying the boundary, the boundary in the first and second regions that should have been originally visible can be recognized. For this reason, when performing a biopsy especially, it can prevent mistaking the position which stabs a biopsy needle.
 また、乳房のバイオプシを行うに際し、立体視画像において、圧迫板の開口に対応する領域以外の領域が指定された場合に警告を行うことにより、生検針を刺す位置を誤ってしまうことを防止することができる。 In addition, when performing biopsy of the breast, a warning is given when a region other than the region corresponding to the opening of the compression plate is designated in the stereoscopic image, thereby preventing the biopsy needle from being misplaced. be able to.
本発明の放射線画像表示装置の一実施形態を用いたステレオ乳房画像撮影表示システムの概略構成図Schematic configuration diagram of a stereo breast image radiographing display system using an embodiment of the radiation image display apparatus of the present invention 図1に示すステレオ乳房画像撮影表示システムのアーム部を図1の右方向から見た図The figure which looked at the arm part of the stereo breast image radiographing display system shown in FIG. 1 from the right direction of FIG. 図1に示すステレオ乳房画像撮影表示システムの撮影台を上方から見た図The figure which looked at the imaging stand of the stereo breast image radiographing display system shown in Drawing 1 from the upper part 図1に示すステレオ乳房画像撮影表示システムのコンピュータ内部の概略構成を示すブロック図The block diagram which shows schematic structure inside the computer of the stereo breast image radiographing display system shown in FIG. 本実施形態において行われる処理を示すフローチャートA flowchart showing processing performed in the present embodiment 境界の検出を説明するための図(その1)Diagram for explaining boundary detection (part 1) 境界の検出を説明するための図(その2)Diagram for explaining boundary detection (part 2) モニタ(表示部)に表示されたステレオ画像を模式的に示す図The figure which shows typically the stereo image displayed on the monitor (display part) 第1および第2の領域の境界が表示されたステレオ画像を模式的に示す図The figure which shows typically the stereo image in which the boundary of the 1st and 2nd area | region was displayed.
 以下、図面を参照して本発明の放射線画像表示装置の一実施形態を用いたステレオ乳房画像撮影表示システムについて説明する。本発明の実施形態による乳房画像撮影表示システムは、着脱可能なバイオプシユニットを取り付けることにより乳房用のステレオバイオプシ装置としても動作するシステムである。まず、本実施形態の乳房画像撮影表示システム全体の概略構成について説明する。図1は、バイオプシユニットが取り付けられた状態の乳房画像撮影表示システムの概略構成を示す図である。 Hereinafter, a stereo breast image radiographing display system using an embodiment of the radiation image display apparatus of the present invention will be described with reference to the drawings. The mammography display system according to the embodiment of the present invention is a system that also operates as a stereo biopsy device for breasts by attaching a detachable biopsy unit. First, a schematic configuration of the entire breast image capturing and displaying system according to the present embodiment will be described. FIG. 1 is a diagram showing a schematic configuration of a mammography display system with a biopsy unit attached.
 本実施形態の乳房画像撮影表示システム1は、図1に示すように、乳房画像撮影装置10と、乳房画像撮影装置10に接続されたコンピュータ8と、コンピュータ8に接続されたモニタ(表示部)9および入力部7とを備えている。 As shown in FIG. 1, a breast image capturing and displaying system 1 according to the present embodiment includes a breast image capturing apparatus 10, a computer 8 connected to the breast image capturing apparatus 10, and a monitor (display unit) connected to the computer 8. 9 and an input unit 7.
 そして、乳房画像撮影装置10は、図1に示すように、基台11と、基台11に対し上下方向(Z方向)に移動可能であり、かつ回転可能な回転軸12と、回転軸12により基台11と連結されたアーム部13を備えている。なお、図2には、図1の右方向から見たアーム部13を示している。 As shown in FIG. 1, the mammography apparatus 10 includes a base 11, a rotary shaft 12 that can move in the vertical direction (Z direction) with respect to the base 11, and can rotate. The arm part 13 connected with the base 11 is provided. FIG. 2 shows the arm 13 viewed from the right direction in FIG.
 アーム部13はアルファベットのCの形をしており、その一端には撮影台14が、その他端には撮影台14と対向するように放射線照射部16が取り付けられている。アーム部13の回転および上下方向の移動は、基台11に組み込まれたアームコントローラ31により制御される。 The arm section 13 has an alphabet C shape, and a radiation table 16 is attached to one end of the arm section 13 so as to face the imaging table 14 at the other end. The rotation and vertical movement of the arm unit 13 are controlled by an arm controller 31 incorporated in the base 11.
 撮影台14の内部には、フラットパネルディテクタ等の放射線検出器15と、放射線検出器15からの電荷信号の読み出しを制御する検出器コントローラ33が備えられている。また、撮影台14の内部には、放射線検出器15から読み出された電荷信号を電圧信号に変換するチャージアンプや、チャージアンプから出力された電圧信号をサンプリングする相関2重サンプリング回路や、電圧信号をデジタル信号に変換するAD変換部等が設けられた回路基板等も設置されている。 Inside the imaging table 14 are provided a radiation detector 15 such as a flat panel detector and a detector controller 33 that controls reading of a charge signal from the radiation detector 15. The imaging table 14 includes a charge amplifier that converts a charge signal read from the radiation detector 15 into a voltage signal, a correlated double sampling circuit that samples a voltage signal output from the charge amplifier, a voltage A circuit board or the like provided with an AD conversion unit or the like for converting a signal into a digital signal is also installed.
 また、撮影台14はアーム部13に対し回転可能に構成されており、基台11に対してアーム部13が回転したときでも、撮影台14の向きは基台11に対し固定された向きとすることができる。 In addition, the photographing table 14 is configured to be rotatable with respect to the arm unit 13, and even when the arm unit 13 rotates with respect to the base 11, the direction of the photographing table 14 is fixed to the base 11. can do.
 放射線検出器15は、放射線画像の記録と読み出しを繰り返して行うことができるものであり、放射線の照射を直接受けて電荷を発生する、いわゆる直接型の放射線検出器を用いてもよいし、放射線を一旦可視光に変換し、その可視光を電荷信号に変換する、いわゆる間接型の放射線検出器を用いるようにしてもよい。また、放射線画像信号の読出方式としては、TFT(thin film transistor)スイッチをオン・オフさせることによって放射線画像信号が読み出される、いわゆるTFT読出方式のものや、読取光を照射することによって放射線画像信号が読み出される、いわゆる光読出方式のものを用いることが望ましいが、これに限らずその他のものを用いるようにしてもよい。 The radiation detector 15 can repeatedly perform recording and reading of a radiation image, and may use a so-called direct type radiation detector that directly receives radiation to generate charges, or radiation. May be used as a so-called indirect radiation detector that converts the light into visible light and converts the visible light into a charge signal. As a radiation image signal readout method, a radiation image signal is read out by turning on and off a TFT (thin film transistor) switch, or a radiation image signal by irradiating reading light. Although it is desirable to use a so-called optical readout system in which is read out, the present invention is not limited to this, and other types may be used.
 放射線照射部16の中には放射線源17と、放射線源コントローラ32が収納されている。放射線源コントローラ32は、放射線源17から放射線を照射するタイミングと、放射線源17における放射線発生条件(管電流、時間、管電流時間積等)を制御するものである。 A radiation source 17 and a radiation source controller 32 are accommodated in the radiation irradiation unit 16. The radiation source controller 32 controls the timing of irradiating radiation from the radiation source 17 and the radiation generation conditions (tube current, time, tube current time product, etc.) in the radiation source 17.
 また、アーム部13の中央部には、撮影台14の上方に配置されて乳房を押さえつけて圧迫する圧迫板18と、その圧迫板18を支持する支持部20と、支持部20を上下方向(Z方向)に移動させる移動機構19が設けられている。圧迫板18の位置、圧迫圧は、圧迫板コントローラ34により制御される。図3は、図1に示す圧迫板18を上方から見た図であるが、同図に示すように、圧迫板18は、撮影台14と圧迫板18により乳房を固定した状態でバイオプシを行えるよう、約10×10cm四方の大きさの開口部5を備えている。 Further, in the central portion of the arm portion 13, a compression plate 18 disposed above the imaging table 14 to press and compress the breast, a support portion 20 that supports the compression plate 18, and a support portion 20 in the vertical direction ( A moving mechanism 19 for moving in the Z direction) is provided. The position of the compression plate 18 and the compression pressure are controlled by the compression plate controller 34. FIG. 3 is a view of the compression plate 18 shown in FIG. 1 as viewed from above. As shown in the drawing, the compression plate 18 can perform biopsy while the breast is fixed by the imaging table 14 and the compression plate 18. Thus, the opening 5 having a size of about 10 × 10 cm square is provided.
 バイオプシユニット2は、その基体部分が圧迫板18の支持部20の開口部に差し込まれ、基体部分の下端がアーム部13に取り付けられることによって、乳房画像撮影表示システム1と機械的、電気的に接続されるものである。 The biopsis unit 2 is mechanically and electrically connected to the mammography display system 1 by inserting the base portion of the biopsy unit 2 into the opening of the support portion 20 of the compression plate 18 and attaching the lower end of the base portion to the arm portion 13. To be connected.
 そして、バイオプシユニット2は、乳房に穿刺される生検針21を有し、着脱可能に構成された生検針ユニット22と、生検針ユニット22を支持する針支持部23と、針支持部23をレールに沿って移動させ、あるいは針支持部23を出し入れさせることにより、生検針ユニット22を図1から図3に示すX、YおよびZ方向に移動させる移動機構24とを備える。生検針ユニット22の生検針21の先端の位置は、移動機構24が備える針位置コントローラ35により、3次元空間における位置座標(x,y,z)として認識され、制御される。なお、図1における紙面垂直方向がX方向、図2における紙面垂直方向がY方向、図3における紙面垂直方向がZ方向である。 The biopsy unit 2 includes a biopsy needle 21 that is punctured into the breast. The biopsy needle unit 22 is configured to be detachable, a needle support portion 23 that supports the biopsy needle unit 22, and the needle support portion 23 as a rail. And a moving mechanism 24 that moves the biopsy needle unit 22 in the X, Y, and Z directions shown in FIGS. 1 to 3 by moving the needle support part 23 in and out. The position of the tip of the biopsy needle 21 of the biopsy needle unit 22 is recognized and controlled as position coordinates (x, y, z) in a three-dimensional space by a needle position controller 35 provided in the moving mechanism 24. 1 is the X direction, the paper vertical direction in FIG. 2 is the Y direction, and the paper vertical direction in FIG. 3 is the Z direction.
 コンピュータ8は、中央処理装置(CPU)および半導体メモリやハードディスクやSSD等のストレージデバイス等を備えており、これらのハードウェアによって、図4に示すような制御部8a、放射線画像記憶部8b、境界検出部8c、補正処理部8d、画像処理部8e、および表示制御部8fが構成されている。 The computer 8 includes a central processing unit (CPU) and a storage device such as a semiconductor memory, a hard disk, and an SSD, and the control unit 8a, the radiation image storage unit 8b, the boundary as shown in FIG. A detection unit 8c, a correction processing unit 8d, an image processing unit 8e, and a display control unit 8f are configured.
 制御部8aは、各種のコントローラ31~35に対して所定の制御信号を出力し、システム全体の制御を行うものである。具体的な制御方法については後述する。 The control unit 8a outputs predetermined control signals to the various controllers 31 to 35 to control the entire system. A specific control method will be described later.
 放射線画像記憶部8bは、放射線検出器15によって取得された撮影角度毎の放射線画像信号を記憶するものである。 The radiation image storage unit 8b stores a radiation image signal for each imaging angle acquired by the radiation detector 15.
 境界検出部8cは、撮影により取得された2つの放射線画像信号に基づく2つの放射線画像のそれぞれにおいて、圧迫板18の開口部5に対応する第1の領域とそれ以外の第2の領域との境界を検出する。具体的な境界検出の処理については後述する。 The boundary detection unit 8c includes a first region corresponding to the opening 5 of the compression plate 18 and a second region other than the first region in each of the two radiation images based on the two radiation image signals acquired by imaging. Detect boundaries. Specific boundary detection processing will be described later.
 補正処理部8dは、第1の領域と第2の領域との輝度が略同一となるように、2つの放射線画像の少なくとも一方の輝度を補正する。具体的な補正処理については後述する。 The correction processing unit 8d corrects the luminance of at least one of the two radiographic images so that the luminance of the first region and the second region is substantially the same. Specific correction processing will be described later.
 画像処理部8eは、輝度が補正された2つの放射線画像に対して、輝度を同一とする処理、階調処理等の画質を向上させる処理を施して処理済みの放射線画像を生成する。 The image processing unit 8e generates a processed radiographic image by performing processing for improving the image quality such as processing for making the luminance the same, gradation processing, and the like for the two radiographic images whose luminance has been corrected.
 表示制御部8fは、画像処理済みの2つの放射線画像を用いたステレオ画像をモニタ9に表示したり、ステレオ画像の立体感を変更したりするものである。 The display control unit 8f displays a stereo image using two radiographic images subjected to image processing on the monitor 9, or changes the stereoscopic effect of the stereo image.
 入力部7は、例えば、キーボードやマウス等のポインティングデバイスから構成されるものであり、モニタ9に表示されたステレオ画像内の異常陰影等の位置をカーソルにより指定可能に構成されたものである。また、入力部7は、操作者による撮影条件等の入力や操作指示の入力等を受け付けるものである。 The input unit 7 is configured by a pointing device such as a keyboard and a mouse, for example, and is configured such that the position of an abnormal shadow or the like in the stereo image displayed on the monitor 9 can be specified by a cursor. The input unit 7 receives an input of shooting conditions and an operation instruction by the operator.
 モニタ9は、表示制御部8fの指示により、コンピュータ8から出力された2つの放射線画像信号を用いてステレオ画像を表示するものであるが、その構成としては、例えば、2つの画面を用いて2つの放射線画像信号に基づく放射線画像をそれぞれ表示させて、これらをハーフミラーや偏光グラス等を用いることで一方の放射線画像は操作者の右目に入射させ、他方の放射線画像は操作者の左目に入射させることによってステレオ画像を表示する構成を採用することができる。または、例えば、2つの放射線画像を所定のずれ量だけずらして重ね合わせて表示し、これを偏光グラスで観察することでステレオ画像を生成する構成としてもよいし、もしくはパララックスバリア方式およびレンチキュラー方式のように、2つの放射線画像を立体視可能な3D液晶に表示することによってステレオ画像を生成する構成としてもよい。 The monitor 9 displays a stereo image using two radiographic image signals output from the computer 8 in accordance with an instruction from the display control unit 8f. The configuration of the monitor 9 is, for example, two using two screens. Each radiographic image based on one radiographic image signal is displayed, and by using a half mirror or polarizing glass, one radiographic image is incident on the operator's right eye, and the other radiographic image is incident on the operator's left eye. By doing so, it is possible to adopt a configuration for displaying a stereo image. Or, for example, two radiographic images may be shifted and displayed by being shifted by a predetermined shift amount, and a stereo image may be generated by observing this with a polarizing glass, or a parallax barrier method and a lenticular method As described above, a stereo image may be generated by displaying two radiation images on a stereoscopically viewable 3D liquid crystal.
 次に、本実施形態の乳房画像撮影表示システムの作用について、図5に示すフローチャートを参照しながら説明する。 Next, the operation of the breast image radiographing display system of this embodiment will be described with reference to the flowchart shown in FIG.
 まず、撮影台14の上に乳房Mが設置され、圧迫板18により乳房が所定の圧力によって圧迫される(ステップST1)。 First, the breast M is installed on the imaging table 14, and the breast is compressed with a predetermined pressure by the compression plate 18 (step ST1).
 次に、入力部7おいて、操作者によって種々の撮影条件が入力された後、撮影開始の指示が入力される。なお、このとき生検針ユニット22は上方に待避しており、まだ乳房には穿刺されていないものとする。 Next, in the input unit 7, after various shooting conditions are input by the operator, an instruction to start shooting is input. At this time, it is assumed that the biopsy needle unit 22 is retracted upward and has not yet been punctured into the breast.
 そして、入力部7において撮影開始の指示があると、乳房Mのステレオ画像の撮影に先だって、スカウト撮影が行われる(ステップST2)。具体的には、まず制御部8aが、バイオプシのスカウト撮影を行うべく、放射線源コントローラ32および検出器コントローラ33に対して放射線の照射と放射線画像信号の読み出しを行うよう制御信号を出力する。ここで、アーム部13は初期位置においては、アーム部13が撮影台14に対して垂直となる位置にあることから、この制御信号に応じて、放射線源17から放射線が射出され、乳房を垂直方向(θ=0度)方向から撮影した放射線画像が放射線検出器15によって検出され、検出器コントローラ33によって放射線画像信号が読み出され、その放射線画像信号に対して所定の信号処理が施された後、コンピュータ8の放射線画像記憶部8bに、スカウト画像GSの放射線画像信号として記憶される。 Then, when there is an instruction to start imaging at the input unit 7, scout imaging is performed prior to imaging of the stereo image of the breast M (step ST2). Specifically, first, the control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform radiation irradiation and readout of a radiographic image signal in order to perform biopsy scout imaging. Here, since the arm unit 13 is in a position where the arm unit 13 is perpendicular to the imaging table 14 in the initial position, radiation is emitted from the radiation source 17 in accordance with this control signal, and the breast is vertically aligned. A radiation image taken from the direction (θ = 0 degree) is detected by the radiation detector 15, the radiation image signal is read out by the detector controller 33, and predetermined signal processing is performed on the radiation image signal. Then, it is memorize | stored in the radiographic image storage part 8b of the computer 8 as a radiographic image signal of the scout image GS.
 スカウト撮影により取得されたスカウト画像GSはモニタ9に表示される。操作者はスカウト画像を観察しながら、スカウト画像において視認される異常陰影が圧迫板18の開口部5の位置に位置するように、乳房Mの位置決めを行う。また、この際に乳房Mへの麻酔が行われる。なお、位置決め後、スカウト撮影時と乳房Mの設置位置が異なるものとなった場合には、再度のスカウト撮影を行う。一方、位置決め後、スカウト撮影時と乳房Mの設置位置が略同一となった場合には、被検体への被曝量低減のために、再度のスカウト撮影は行わない。 The scout image GS acquired by scout shooting is displayed on the monitor 9. While observing the scout image, the operator positions the breast M so that the abnormal shadow visually recognized in the scout image is positioned at the position of the opening 5 of the compression plate 18. At this time, anesthesia of the breast M is performed. In addition, after the positioning, when the installation position of the breast M is different from that at the time of the scout photographing, the scout photographing is performed again. On the other hand, after positioning, when the installation position of the breast M becomes substantially the same as that during scout imaging, scout imaging is not performed again in order to reduce the exposure dose to the subject.
 次いで制御部8aは、予め設定されたステレオ画像の撮影のための輻輳角θを読み出し、その読み出した輻輳角θの情報をアームコントローラ31に出力する。なお、本実施形態においては、バイオプシを行うものであることから、このときの輻輳角θの情報としてθ=30度(垂直方向に対して±15度)が予め記憶されているものとするが、これに限らず、例えば、θ=20度(垂直方向に対して±10度)の角度を用いてもよく、バイオプシを行わない場合には、立体視を良好に行うことが可能なθ=4度以上10度以下(垂直方向に対して±2度以上±5度以下)の任意の角度を用いてもよい。 Next, the control unit 8 a reads a convergence angle θ for photographing a preset stereo image, and outputs information of the read convergence angle θ to the arm controller 31. In this embodiment, since biopsy is performed, θ = 30 degrees (± 15 degrees with respect to the vertical direction) is stored in advance as information on the convergence angle θ at this time. For example, an angle of θ = 20 degrees (± 10 degrees with respect to the vertical direction) may be used. If no biopsy is performed, θ = An arbitrary angle of 4 degrees or more and 10 degrees or less (± 2 degrees or more and ± 5 degrees or less with respect to the vertical direction) may be used.
 次に、入力部7において撮影開始の指示があると、乳房Mのステレオ画像の撮影が行われる(ステップST3)。そして、アームコントローラ31において、制御部8aから出力された輻輳角θの情報が受け付けられ、アームコントローラ31は、この輻輳角θの情報に基づいて、図2に示すように、アーム部13が撮影台14に垂直な方向に対して+θ度回転するよう制御信号を出力する。すなわち、本実施形態においては、アーム部13を撮影台14に垂直な方向に対して+15度回転するよう制御信号を出力する。 Next, when there is an instruction to start photographing at the input unit 7, a stereo image of the breast M is photographed (step ST3). Then, the arm controller 31 receives the information on the convergence angle θ output from the control unit 8a. The arm controller 31 captures the image of the arm unit 13 based on the information on the convergence angle θ as shown in FIG. A control signal is output so as to rotate + θ degrees with respect to a direction perpendicular to the table 14. That is, in the present embodiment, a control signal is output so that the arm unit 13 is rotated +15 degrees with respect to a direction perpendicular to the imaging table 14.
 そして、このアームコントローラ31から出力された制御信号に応じてアーム部13が+15度回転する。続いて制御部8aは、放射線源コントローラ32および検出器コントローラ33に対して放射線の照射と放射線画像信号の読み出しを行うよう制御信号を出力する。この制御信号に応じて、放射線源17から放射線が射出され、乳房を+15度方向から撮影した放射線画像が放射線検出器15によって検出され、検出器コントローラ33によって放射線画像信号が読み出され、その放射線画像信号に対して所定の信号処理が施された後、コンピュータ8の放射線画像記憶部8bに記憶される。なお、この撮影により放射線画像記憶部8bに記憶される放射線画像信号は、右目用の放射線画像GRを表すものとなる。 Then, according to the control signal output from the arm controller 31, the arm unit 13 rotates by +15 degrees. Subsequently, the control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform radiation irradiation and readout of the radiation image signal. In response to this control signal, radiation is emitted from the radiation source 17, a radiation image obtained by photographing the breast from the +15 degree direction is detected by the radiation detector 15, and a radiation image signal is read out by the detector controller 33. After predetermined signal processing is performed on the image signal, the image signal is stored in the radiation image storage unit 8 b of the computer 8. The radiographic image signal stored in the radiographic image storage unit 8b by this imaging represents the radiographic image GR for the right eye.
 次に、アームコントローラ31は、図2に示すように、アーム部を初期位置に一旦戻した後、撮影台14に垂直な方向に対して-θ度回転するよう制御信号を出力する。すなわち、本実施形態においては、アーム部13を撮影台14に垂直な方向に対して-15度回転するよう制御信号を出力する。 Next, as shown in FIG. 2, the arm controller 31 once returns the arm unit to the initial position, and then outputs a control signal so as to rotate by −θ degrees with respect to the direction perpendicular to the imaging table 14. That is, in the present embodiment, the control signal is output so that the arm unit 13 is rotated by −15 degrees with respect to the direction perpendicular to the imaging table 14.
 そして、このアームコントローラ31から出力された制御信号に応じてアーム部13が-15度回転する。続いて制御部8aは、放射線源コントローラ32および検出器コントローラ33に対して放射線の照射と放射線画像の読み出しを行うよう制御信号を出力する。この制御信号に応じて、放射線源17から放射線が射出され、乳房を-15度方向から撮影した放射線画像が放射線検出器15によって検出され、検出器コントローラ33によって放射線画像信号が読み出され、所定の信号処理が施された後、コンピュータ8の放射線画像記憶部8bに記憶される。なお、この撮影により放射線画像記憶部8bに記憶される放射線画像信号は、左目用の放射線画像GLを表すものとなる。 Then, the arm 13 rotates by -15 degrees in accordance with the control signal output from the arm controller 31. Subsequently, the control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform radiation irradiation and radiation image reading. In response to this control signal, radiation is emitted from the radiation source 17, a radiation image obtained by photographing the breast from the −15 degree direction is detected by the radiation detector 15, and a radiation image signal is read out by the detector controller 33. After the signal processing is performed, it is stored in the radiation image storage unit 8b of the computer 8. The radiographic image signal stored in the radiographic image storage unit 8b by this imaging represents the radiographic image GL for the left eye.
 そして、コンピュータ8の放射線画像記憶部8bに記憶された2つの放射線画像信号は、放射線画像記憶部8bから読み出され、境界検出部8cにより、2つの放射線画像信号に基づく放射線画像GL,GRのそれぞれにおいて、圧迫板18の開口部5に対応する第1の領域とそれ以外の第2の領域との境界が検出される(ステップST4)。図6は境界の検出を説明するための図である。なお、図6においては右目用の放射線画像GRのみを示すが、左目用の放射線画像GLについても右目用の放射線画像GRと同様に境界が検出される。図6に示すように、放射線画像GRは乳房Mの像を含むが、撮影時に乳房Mは圧迫板18により圧迫されており、さらに圧迫板18には開口部5が形成されているため、圧迫板18が存在しない開口部5に対応する第1の領域A1と、開口部5以外の圧迫板18に対応する第2の領域A2とにおいて、輝度が異なるものとなっている。 Then, the two radiographic image signals stored in the radiographic image storage unit 8b of the computer 8 are read from the radiographic image storage unit 8b, and the boundary detection unit 8c generates radiographic images GL and GR based on the two radiographic image signals. In each case, the boundary between the first region corresponding to the opening 5 of the compression plate 18 and the other second region is detected (step ST4). FIG. 6 is a diagram for explaining boundary detection. 6 shows only the right-eye radiographic image GR, the left-eye radiographic image GL is also detected in the same manner as the right-eye radiographic image GR. As shown in FIG. 6, the radiographic image GR includes an image of the breast M, but the breast M is compressed by the compression plate 18 at the time of imaging, and further, the compression plate 18 is formed with the opening 5. The brightness is different between the first region A1 corresponding to the opening 5 where the plate 18 does not exist and the second region A2 corresponding to the compression plate 18 other than the opening 5.
 境界検出部8cは、放射線画像GRに対して微分フィルタ等を用いて微分処理を行い、微分値が所定のしきい値以上となり、かつ直線状に並ぶ画素位置を、第1および第2の領域A1,A2の境界として検出する。なお、圧迫板18における開口部5の位置は予め定められているため、図7の斜線部分に示すように、放射線画像GRにおける境界に対応する領域のみにおいて微分処理を行うようにすれば、演算時間を短縮することができる。 The boundary detection unit 8c performs a differentiation process on the radiographic image GR using a differential filter or the like, and determines the pixel positions in which the differential value is equal to or greater than a predetermined threshold value and arranged in a straight line as the first and second regions. It is detected as a boundary between A1 and A2. Since the position of the opening 5 in the compression plate 18 is determined in advance, as shown in the hatched portion in FIG. 7, if the differentiation process is performed only in the region corresponding to the boundary in the radiation image GR, the calculation is performed. Time can be shortened.
 次いで、補正処理部8dにより、放射線画像GL,GRのそれぞれに対して、第1および第2の領域A1,A2の輝度を略同一にする補正処理が行われる(ステップST5)。具体的には、補正処理部8dは、まず第1および第2の領域A1,A2の画素値の統計値T1,T2を算出する。なお、統計値としては、平均値またはメディアン値等を用いることができる。そして、補正処理部8dは、統計値T1,T2が等しくなるように、第1および第2の領域A1,A2の少なくとも一方の画素値にオフセット値を加減算することにより、第1および第2の領域A1,A2の輝度を略同一にする。ここで、第2の領域A2は、圧迫板18が存在するため、第1の領域A1と比較して輝度が高い(濃度が低い)。このため、T2-T1をオフセット値として算出し、第1の領域A1の各画素の画素値にオフセット値を加算する、または第2の領域A2の各画素の画素値からオフセット値を減算することにより、第1および第2の領域A1,A2の輝度を略同一にする補正処理を行う。なお、統計値T1,T2の平均値を算出し、統計値T1,T2と算出した平均値との差をオフセット値として算出し、第1および第2の領域A1,A2の双方の画素値を補正するようにしてもよい。また、ステップST5において、放射線画像GL,GRのいずれか一方に対して、第1および第2の領域A1,A2の輝度を略同一にする補正処理を行うようにしてもよい。 Next, the correction processing unit 8d performs correction processing for making the luminances of the first and second regions A1 and A2 substantially the same for the radiographic images GL and GR (step ST5). Specifically, the correction processing unit 8d first calculates the statistical values T1 and T2 of the pixel values of the first and second regions A1 and A2. Note that an average value, a median value, or the like can be used as the statistical value. Then, the correction processing unit 8d adds and subtracts the offset value to / from at least one pixel value of the first and second regions A1 and A2 so that the statistical values T1 and T2 are equal to each other. The luminances of the areas A1 and A2 are made substantially the same. Here, since the compression plate 18 exists in the second area A2, the luminance is higher (density is lower) than that in the first area A1. For this reason, T2-T1 is calculated as an offset value, and the offset value is added to the pixel value of each pixel in the first area A1, or the offset value is subtracted from the pixel value of each pixel in the second area A2. Thus, a correction process is performed to make the luminances of the first and second regions A1, A2 substantially the same. The average value of the statistical values T1 and T2 is calculated, the difference between the statistical values T1 and T2 and the calculated average value is calculated as an offset value, and the pixel values of both the first and second areas A1 and A2 are calculated. You may make it correct | amend. In step ST5, a correction process may be performed on either one of the radiation images GL and GR so that the luminances of the first and second regions A1 and A2 are substantially the same.
 そして、画像処理部8eにより、放射線画像GL,GRに対して、輝度を同一とする処理、階調処理等の画質を向上させる画像処理が施される(ステップST6)。その後、表示制御部8fにより、画像処理済みの2つの放射線画像GL,GRの放射線画像信号がモニタ9に出力され、モニタ9において乳房のステレオ画像が表示される(ステップST7)。図8はモニタ9に表示されたステレオ画像を模式的に示す図である。図8に示すように、ステレオ画像には、奥行きを持つ乳房Mの像が含まれている。 Then, the image processing unit 8e performs image processing for improving the image quality such as processing for making the luminance the same, gradation processing, and the like on the radiation images GL and GR (step ST6). Thereafter, the radiographic image signals of the two radiographic images GL and GR that have been subjected to image processing are output to the monitor 9 by the display control unit 8f, and a stereo image of the breast is displayed on the monitor 9 (step ST7). FIG. 8 is a diagram schematically showing a stereo image displayed on the monitor 9. As shown in FIG. 8, the stereo image includes an image of the breast M having a depth.
 次に、乳房のステレオ画像が表示された後、操作者によって、乳房における石灰化や腫瘤等の異常陰影が発見され、引き続いてバイオプシユニット2によってそれらの組織を採取したい場合等には、モニタ9に表示されたステレオ画像上において、操作者によって異常陰影のターゲットが指定される(ステップST8)。 Next, after the stereo image of the breast is displayed, the operator discovers abnormal shadows such as calcification and tumor in the breast and subsequently wants to collect those tissues by the biopsy unit 2. On the stereo image displayed on the screen, the operator designates the target of the abnormal shadow (step ST8).
 ターゲットの指定については、例えば、入力部7におけるマウス等のポインティングデバイスによって行うようにすればよい。具体的には、例えば、ステレオ画像を構成する2つの放射線画像内にそれぞれ3次元カーソル用の指標を表示させ、この2つの指標から構成される立体視画像である3次元カーソルを入力部7によって動かすことによってターゲットを指定するようにすればよい。なお、各放射線画像GL,GR内における指標の位置は、それぞれ同じ位置を示すように、ステレオ画像を撮影した際の撮影方向に応じてその座標位置が設定されているものとする。 The designation of the target may be performed by a pointing device such as a mouse in the input unit 7, for example. Specifically, for example, an indicator for a three-dimensional cursor is displayed in each of two radiographic images constituting a stereo image, and a three-dimensional cursor that is a stereoscopic image composed of the two indicators is displayed by the input unit 7. The target may be specified by moving it. In addition, the position of the index in each of the radiographic images GL and GR is assumed to have the coordinate position set according to the shooting direction when the stereo image is shot so as to indicate the same position.
 このように、バイオプシのターゲットとする異常陰影が指定されると、指定されたターゲットの位置情報(x,y,z)が制御部8aによって取得される。制御部8aは、指定された位置情報に基づく位置が、圧迫板18の開口部5に対応する位置に存在するか否かを判定する(指定された位置が適切か:ステップST9)。ここで、指定された位置が開口部5に位置しないと、生検針21を乳房に穿孔することができない。このため、ステップST9が否定されると、制御部8aはモニタ9に警告表示を行い(ステップST10)、ステップST。警告表示としては、操作者にターゲットの位置の修正を促す内容であればよい。なお、表示に代えて音声により警告を行ってもよく、音声と表示との双方により警告を行ってもよい。 As described above, when an abnormal shadow as a biopsy target is designated, the position information (x, y, z) of the designated target is acquired by the control unit 8a. The control unit 8a determines whether or not a position based on the designated position information is present at a position corresponding to the opening 5 of the compression plate 18 (is the designated position appropriate: step ST9). Here, if the designated position is not located in the opening 5, the biopsy needle 21 cannot be perforated in the breast. For this reason, when step ST9 is denied, the control part 8a displays a warning on the monitor 9 (step ST10), and step ST. The warning display only needs to prompt the operator to correct the target position. The warning may be given by voice instead of the display, or the warning may be given by both voice and display.
 ステップST9が肯定されると、制御部8aはその位置情報をバイオプシユニット2の針位置コントローラ35に出力する。この状態で、入力部7において所定の操作ボタンが押されると、制御部8aから針位置コントローラ35に対し、生検針21を移動させる制御信号が出力される。針位置コントローラ35は、先に入力された位置情報の値に基づき、生検針21の先端が、その座標が示す位置の上方に配置されるように、生検針21を移動する。 When step ST9 is affirmed, the control unit 8a outputs the position information to the needle position controller 35 of the biopsy unit 2. In this state, when a predetermined operation button is pressed in the input unit 7, a control signal for moving the biopsy needle 21 is output from the control unit 8 a to the needle position controller 35. The needle position controller 35 moves the biopsy needle 21 so that the tip of the biopsy needle 21 is positioned above the position indicated by the coordinates based on the position information value input previously.
 その後、操作者により、生検針21の穿刺を指示する所定の操作が入力部7において行われると、制御部8aと針位置コントローラ35の制御の下で、生検針21の先端が座標の示す位置に配置されるように生検針21が移動させられて、生検針21による乳房の穿刺が行われる(ステップST11)。 Thereafter, when a predetermined operation for instructing the puncture of the biopsy needle 21 is performed by the operator in the input unit 7, the position of the tip of the biopsy needle 21 indicated by the coordinates is controlled by the control unit 8 a and the needle position controller 35. The biopsy needle 21 is moved so that the biopsy needle 21 is disposed, and the biopsy needle 21 punctures the breast (step ST11).
 このように、本実施形態によれば、2つの放射線画像における圧迫板18の開口部5に対応する第1の領域A1と、開口部5以外の領域に対応する第2の領域A2との境界を検出し、2つの放射線画像GL,GRにおける第1の領域A1および第2の領域A2の輝度を等しくする補正処理を放射線画像GL,GRのそれぞれに施すようにしたものである。このため、表示されたステレオ画像においては、第1および第2の領域A1,A1の境界が目立たなくなり、その結果、観察者が立体視を行った際に、境界に起因するちらつきが見えにくくなる。したがって、ステレオ画像を観察する観察者の目の疲労を軽減することができる。 Thus, according to the present embodiment, the boundary between the first region A1 corresponding to the opening 5 of the compression plate 18 and the second region A2 corresponding to the region other than the opening 5 in the two radiographic images. , And a correction process for equalizing the brightness of the first region A1 and the second region A2 in the two radiation images GL and GR is performed on each of the radiation images GL and GR. For this reason, in the displayed stereo image, the boundary between the first and second regions A1 and A1 becomes inconspicuous, and as a result, the flicker caused by the boundary becomes difficult to see when the observer performs stereoscopic viewing. . Therefore, it is possible to reduce the fatigue of the eyes of the observer who observes the stereo image.
 また、ステレオ画像において、圧迫板18の開口部5に対応する領域以外の領域がターゲットの位置と指定された場合に警告を行うことにより、生検針を穿孔する位置を誤ってしまうことを防止することができる。 Further, in a stereo image, a warning is given when an area other than the area corresponding to the opening 5 of the compression plate 18 is designated as the target position, thereby preventing the position where the biopsy needle is perforated from being mistaken. be able to.
 なお、上記実施形態においては、ステレオ画像を表示する際に、第1および第2の領域A1,A2の境界を表示してもよい。図9は第1および第2の領域A1,A2の境界を表示したステレオ画像を模式的に示す図である。図9に示すように、第1および第2の領域A1,A2の境界が破線により示されている。このように、ステレオ画像を表示する際に、第1および第2の領域A1,A2の境界を表示することにより、本来見えるはずであった第1および第2の領域A1,A2における境界を認識することができる。このため、とくにバイオプシを行う際に、生検針を穿孔する位置を誤ってしまうことを防止することができる。 In the above embodiment, the boundary between the first and second regions A1 and A2 may be displayed when displaying a stereo image. FIG. 9 is a diagram schematically showing a stereo image displaying the boundary between the first and second regions A1 and A2. As shown in FIG. 9, the boundary between the first and second regions A1, A2 is indicated by a broken line. In this way, when displaying a stereo image, by displaying the boundary between the first and second regions A1 and A2, the boundary in the first and second regions A1 and A2 that should have been originally visible is recognized. can do. For this reason, when performing biopsy especially, it can prevent making the position which pierces a biopsy needle wrong.
 また、上記実施形態は、本発明の放射線画像表示装置の一実施形態をステレオ乳房画像撮影表示システムに適用したものであるが、本発明の被写体としては乳房に限らず、例えば、乳房以外の指、頭部等を対象として、撮影補助具を使用して撮影を行う放射線画像撮影表示システムにも本発明を適用することができる。 In the above embodiment, one embodiment of the radiographic image display apparatus of the present invention is applied to a stereo mammography imaging display system. However, the subject of the present invention is not limited to the breast, and for example, a finger other than the breast. The present invention can also be applied to a radiographic imaging display system that performs imaging using an imaging aid for the head or the like.
   1  乳房画像撮影表示システム
   2  バイオプシユニット
   7  入力部
   8  コンピュータ
   8a  制御部
   8b  放射線画像記憶部
   8c  境界検出部
   8d  補正処理部
   8e  画像処理部
   8f  表示制御部
   9  モニタ(表示部)
   10  乳房画像撮影装置
   13  アーム部
   14  撮影台
   15  放射線検出器
   17  放射線源
   18  圧迫板
   21  生検針
   22  生検針ユニット
   31  アームコントローラ
   32  放射線源コントローラ
   33  検出器コントローラ
   34  圧迫板コントローラ
   35  針位置コントローラ
DESCRIPTION OF SYMBOLS 1 Breast imaging photographing display system 2 Biooptic unit 7 Input part 8 Computer 8a Control part 8b Radiation image storage part 8c Boundary detection part 8d Correction processing part 8e Image processing part 8f Display control part 9 Monitor (display part)
DESCRIPTION OF SYMBOLS 10 Mammography apparatus 13 Arm part 14 Imaging stand 15 Radiation detector 17 Radiation source 18 Compression plate 21 Biopsy needle 22 Biopsy needle unit 31 Arm controller 32 Radiation source controller 33 Detector controller 34 Compression plate controller 35 Needle position controller

Claims (7)

  1.  放射線を透過する撮影補助具とともに、被検体を2方向から撮影することにより取得された2つの放射線画像に基づく立体視画像を表示する表示部と、
     前記2つの放射線画像のそれぞれにおいて、前記撮影補助具が存在しない第1の領域と、前記撮影補助具が存在する第2の領域との境界を検出する境界検出部と、
     前記第1の領域および前記第2の領域の輝度を等しくする補正処理を、前記2つの放射線画像の少なくとも一方に施す補正処理部と、
     前記補正処理が施された前記2つの放射線画像に基づく前記立体視画像を前記表示部に表示する表示制御部とを備えたことを特徴とする放射線画像表示装置。
    A display unit that displays a stereoscopic image based on two radiographic images acquired by imaging the subject from two directions, together with an imaging aid that transmits radiation,
    In each of the two radiographic images, a boundary detection unit that detects a boundary between a first region where the imaging assistance tool does not exist and a second region where the imaging assistance tool exists;
    A correction processing unit that applies correction processing to equalize the luminance of the first region and the second region to at least one of the two radiation images;
    A radiographic image display apparatus comprising: a display control unit configured to display the stereoscopic image based on the two radiographic images subjected to the correction process on the display unit.
  2.  前記表示制御部は、前記立体視画像を表示する際に、前記境界を表示する部分であることを特徴とする請求項1記載の放射線画像表示装置。 The radiographic image display device according to claim 1, wherein the display control unit is a part that displays the boundary when the stereoscopic image is displayed.
  3.  前記被検体が乳房であり、前記撮影補助具が、前記乳房を圧迫する、バイオプシを行うために所定位置に開口部が形成された圧迫板であることを特徴とする請求項1または2記載の放射線画像表示装置。 3. The object according to claim 1, wherein the subject is a breast, and the imaging assisting tool is a compression plate having an opening formed at a predetermined position for performing a biopsy to compress the breast. Radiation image display device.
  4.  前記表示部に表示された前記立体視画像において、前記開口部に対応する領域以外の領域が指定された場合に警告を行う警告部をさらに備えたことを特徴とする請求項3記載の放射線画像表示装置。 The radiographic image according to claim 3, further comprising a warning unit that issues a warning when a region other than the region corresponding to the opening is specified in the stereoscopic image displayed on the display unit. Display device.
  5.  前記補正処理が施された前記2つの放射線画像に対して、画像処理を施す画像処理部をさらに備えたことを特徴とする請求項1から4のいずれか1項記載の放射線画像表示装置。 5. The radiographic image display device according to claim 1, further comprising an image processing unit that performs image processing on the two radiographic images subjected to the correction processing.
  6.  前記補正処理部は、前記2つの放射線画像における前記第1および前記第2の領域の統計値に基づいて、前記補正処理を行う部分であることを特徴とする請求項1から5のいずれか1項記載の放射線画像表示装置。 The correction processing unit is a portion that performs the correction processing based on statistical values of the first and second regions in the two radiographic images. The radiation image display device according to item.
  7.  放射線を透過する撮影補助具とともに、被検体を2方向から撮影することにより取得された、立体視画像を表示するための2つの放射線画像のそれぞれにおいて、前記撮影補助具が存在しない第1の領域と、前記撮影補助具が存在する第2の領域との境界を検出し、
     前記第1の領域および前記第2の領域の輝度を等しくする補正処理を、前記2つの放射線画像の少なくとも一方に施し、
     前記補正処理が施された前記2つの放射線画像に基づく前記立体視画像を表示部に表示することを特徴とする放射線画像表示方法。
    In each of two radiographic images for displaying a stereoscopic image acquired by imaging the subject from two directions together with an imaging auxiliary tool that transmits radiation, the first area in which the imaging auxiliary tool does not exist And a boundary with the second region where the photographing auxiliary tool exists,
    A correction process for equalizing the brightness of the first region and the second region is performed on at least one of the two radiation images,
    A radiographic image display method, wherein the stereoscopic image based on the two radiographic images subjected to the correction process is displayed on a display unit.
PCT/JP2012/051145 2011-01-28 2012-01-20 Radiograph display apparatus and method WO2012102184A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011015998A JP2012152480A (en) 2011-01-28 2011-01-28 Radiation image display device and method
JP2011-015998 2011-01-28

Publications (1)

Publication Number Publication Date
WO2012102184A1 true WO2012102184A1 (en) 2012-08-02

Family

ID=46580753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051145 WO2012102184A1 (en) 2011-01-28 2012-01-20 Radiograph display apparatus and method

Country Status (2)

Country Link
JP (1) JP2012152480A (en)
WO (1) WO2012102184A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220031276A1 (en) * 2020-07-31 2022-02-03 Ricoh Company, Ltd. Image processing apparatus, imaging system, image processing method, and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313471A (en) * 1996-05-31 1997-12-09 Toshiba Corp X-ray fluoroscopic diagnosing device
JPH1094539A (en) * 1996-09-24 1998-04-14 Takashi Oe Stereo perspective corresponding x-ray imaging apparatus
JP2010075317A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Stereo biopsy apparatus, method for controlling the same and phantom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313471A (en) * 1996-05-31 1997-12-09 Toshiba Corp X-ray fluoroscopic diagnosing device
JPH1094539A (en) * 1996-09-24 1998-04-14 Takashi Oe Stereo perspective corresponding x-ray imaging apparatus
JP2010075317A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Stereo biopsy apparatus, method for controlling the same and phantom

Also Published As

Publication number Publication date
JP2012152480A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5654787B2 (en) Radiographic imaging display method and system
JP5948275B2 (en) Radiographic apparatus, radiographic method, and radiographic control program
JP5486437B2 (en) Stereoscopic image display method and apparatus
JP5815038B2 (en) Radiation image display method and apparatus
US20120051501A1 (en) Radiation image radiographing apparatus and radiation image radiographing and displaying method
WO2012105347A1 (en) Radiography apparatus and method
JP5514127B2 (en) Radiation image display apparatus and method
WO2012102184A1 (en) Radiograph display apparatus and method
US20120051613A1 (en) Mammography displaying method and system
WO2012132323A1 (en) Method and device for imaging radiological image of breast
WO2012096221A1 (en) Radiograph display apparatus and method
WO2012102127A1 (en) Radiation image display device and method
WO2012039121A1 (en) Radiation image capturing device and radiation image capturing method
WO2012043547A1 (en) Stereoscopic image display method and stereoscopic image display device
WO2012117721A1 (en) Three-dimensional image display device and three-dimensional image display method
WO2012132321A1 (en) Radiological-image imaging system and control method for same
JP2012245192A (en) Apparatus and method for displaying radiographic image
WO2012132298A1 (en) 3d image display device and 3d image display method
JP2012005728A (en) Radiological imaging method and stereo-biopsy device
WO2012132466A1 (en) Method and system for capturing and displaying radiographic image
JP2013070727A (en) Stereoscopic image display method and device
JP2012170669A (en) Device and method for displaying radiation image
WO2011161972A1 (en) Radiological imaging display method and system
WO2012102022A1 (en) Stereoscopic image display method, and stereoscopic image display control apparatus and program
JP2012045024A (en) Stereo biopsy device and its method of acquiring position of three-dimensional target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12738911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12738911

Country of ref document: EP

Kind code of ref document: A1