WO2012101338A1 - Installation de chauffage/climatisation à architecture simplifiée et à puissance de réfrigération accrue - Google Patents

Installation de chauffage/climatisation à architecture simplifiée et à puissance de réfrigération accrue Download PDF

Info

Publication number
WO2012101338A1
WO2012101338A1 PCT/FR2011/053090 FR2011053090W WO2012101338A1 WO 2012101338 A1 WO2012101338 A1 WO 2012101338A1 FR 2011053090 W FR2011053090 W FR 2011053090W WO 2012101338 A1 WO2012101338 A1 WO 2012101338A1
Authority
WO
WIPO (PCT)
Prior art keywords
external
internal
refrigerant
heating
condenser
Prior art date
Application number
PCT/FR2011/053090
Other languages
English (en)
Inventor
Patrick Bach
Original Assignee
Peugeot Citroen Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles Sa filed Critical Peugeot Citroen Automobiles Sa
Publication of WO2012101338A1 publication Critical patent/WO2012101338A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3211Control means therefor for increasing the efficiency of a vehicle refrigeration cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3213Control means therefor for increasing the efficiency in a vehicle heat pump

Definitions

  • the invention relates to heating / air conditioning systems that equip some vehicles, possibly automotive type, and some buildings.
  • a compressor which is suitable for heating and pressurizing a refrigerant
  • an external heat exchanger which is clean, in heating mode, for heating the refrigerant, which comes from the external expansion valve, by exchange with an air outside said, to supply the compressor, and
  • an internal evaporator which is clean, in refrigeration mode, of cooling the internal air by exchange with the refrigerant.
  • external is understood to mean equipment which is involved in the process of exchanging calories with the outside air (such as for example an external exchanger or an external expander supplying an external exchanger), and by "internal” equipment that intervenes. in the process of exchanging calories with the indoor air (such as an internal condenser or an internal evaporator or an internal regulator supplying an internal evaporator).
  • the heating and cooling powers of the installation are generally low. This is for example the case in a vehicle of all-electric or hybrid type. Therefore, when the outside temperature is very low the installation is not able to sufficiently heat the indoor air, and when the outside temperature is very high the installation is not able to cool the air sufficiently inside. This results from the inadequately optimized architecture of the installation which prevents the internal condenser from optimally contributing to the heating of the indoor air, and the internal evaporator from contributing optimally to the cooling of the indoor air.
  • these latter facilities are usually unable to provide a mixed mode of operation, adapted to a relatively temperate climate. Therefore, when these installations are used in a temperate climate, the refrigerated indoor air may be too cold while the heated indoor air may be too hot, which is detrimental to aerothermal comfort.
  • the invention therefore aims to improve the situation.
  • a heating / air conditioning system comprising: - a clean compressor to heat and pressurize a refrigerant,
  • a clean external exchanger in heating mode, to heat the refrigerant which is from the external expander by exchange with an air said outside to supply the compressor
  • a clean external condenser whatever the mode, to finish condensing the refrigerant which is derived from the internal condenser by exchange with the outside air to supply refrigerant refrigerated and completely in a liquid phase is the external expander in the heating mode, to allow an increase in the refrigerant heating capacity of the external exchanger, the internal evaporator at least in the refrigeration mode, to allow an increase in the cooling capacity of the internal evaporator.
  • the installation according to the invention may comprise other features that can be taken separately or in combination, and in particular:
  • its internal condenser is supplied with refrigerant so as to contribute to the heating of the indoor air, its external exchanger is not used and its internal evaporator is supplied with cooled refrigerant and integrally in a liquid phase by its external condenser so as to lower the temperature of the indoor air which is heated by the contribution of the internal condenser;
  • its external condenser can be contiguous with its external exchanger in order to constitute, for the latter, in the heating mode, a heat source suitable for reducing the probability that it will frost in the presence of an air outside having a low temperature;
  • its external condenser and its external exchanger can constitute two contiguous sub-parts of the same heat exchanger.
  • its external condenser and its external exchanger may constitute two independent and contiguous heat exchangers;
  • it may comprise a dewatering tank downstream of the outlet of its external condenser which delivers said refrigerant cooled and completely in a liquid phase;
  • the inlet which feeds its internal refrigerant evaporator, an internal expansion valve which is adapted to depressurize the refrigerant and completely in a liquid phase at least in the refrigeration mode, before it reaches in the internal evaporator;
  • Its internal condenser can be clean, in the heating mode, to heat the indoor air by exchange with the refrigerant which is from its compressor;
  • its internal condenser can be clean, in heating mode, to heat, by exchange with the refrigerant from its compressor, a heat transfer fluid for supplying a heater that is adapted to heat the indoor air by heat exchange .
  • the heater in the cooling mode the heater is not supplied with heat transfer fluid so as not to heat the indoor air;
  • first three-way type valve and comprising an input coupled to the output of its external condenser, a first output coupled to the input of its external exchanger, and a second output coupled to the input of its internal exchanger ;
  • it may comprise a second three-way type valve and comprising an output coupled to the input of its compressor, a first input coupled to the output of its external exchanger, and a second input coupled to the output of its internal exchanger.
  • the invention also proposes a vehicle, possibly of a automobile, including a heating / air-conditioning system of the type presented above.
  • FIG. 1 diagrammatically and functionally illustrates a first embodiment of a heating / air-conditioning installation according to the invention, in the heating mode
  • FIG. 2 diagrammatically and functionally illustrates the heating / air-conditioning system of FIG. 1 in the refrigeration mode
  • FIG. 3 diagrammatically and functionally illustrates the heating / air-conditioning system of FIG. 1 in the mixed mode (adapted to a temperate climate),
  • FIG. 4 diagrammatically and functionally illustrates a second embodiment of a heating / cooling installation according to the invention, in heating mode
  • FIG. 5 diagrammatically and functionally illustrates the heating / air-conditioning system of FIG. 4 in the refrigeration mode
  • FIG. 6 schematically and functionally illustrates the heating / air conditioning system of Figure 4 in the mixed mode (adapted to a temperate climate).
  • the invention aims to provide a heating / air conditioning (IC).
  • the heating / air conditioning (IC) system is part of a motor vehicle, such as a car type "all-electric” or “hybrid” .
  • the invention is not limited to this application. It concerns indeed any heating / air conditioning system, whether it is intended to be installed in a vehicle or in a building.
  • FIGS. 1 to 3 Schematically represented in FIGS. 1 to 3, on the one hand, and 4 to 6, on the other hand, first and second embodiments of heating / air conditioning IC, according to the invention.
  • the first embodiment, illustrated in Figures 1 to 3, is for example intended to be implanted in an electric motor vehicle or a building.
  • the second exemplary embodiment, illustrated in FIGS. 4 to 6, is for example intended to be implanted in a hybrid motor vehicle.
  • An IC heating / cooling system is intended to operate according to at least one heating mode and a refrigeration mode as required, as well as possibly in a mixed mode (adapted to a relatively temperate climate), as is will see it later.
  • it comprises at least one compressor CP, an internal condenser CDI, an external regulator DTE, an external exchanger EE, and an external condenser CDE, all of which are involved at least in the heating mode, as well as an internal evaporator El which intervenes at least in the refrigeration mode.
  • the internal evaporator El and the internal condenser CDI are generally part of the air conditioning unit, and the external heat exchanger EE and the external condenser CDE are generally located at the front face.
  • the compressor CP is responsible for heating and pressurizing a refrigerant that comes from the external heat exchanger EE in the heating mode (illustrated in FIGS. 1 and 4), and the internal evaporator El in the refrigeration mode (illustrated in FIG. Figures 2 and 5) and the possible mixed mode (shown in Figures 3 and 6).
  • the CDI internal condenser is used in all modes (heating, refrigeration and mixed). It is responsible for contributing to the heating of a so-called interior air (which comes here from inside the passenger compartment of the vehicle) by exchange with the refrigerant converted into hot gas and pressurized by the compressor CP. It partially condenses the refrigerant that comes from the compressor CP during the direct or indirect heat exchange with the indoor air, so that the refrigerant is at its outlet at least partially in a liquid phase and partially cooled.
  • the internal condenser CDI is of the gas / air type. It is therefore responsible for heating the indoor air that passes through it by exchange with the refrigerant (hot and pressurized gas) flowing in its ducts or between its stacked plates.
  • the internal condenser CDI is of gas / liquid type. It is therefore responsible for heating a heat transfer fluid, which circulates in some of its conduits or between parts of its stacked plates and which is derived from a cooling circuit, by exchange with the refrigerant (hot and pressurized gas) circulating in some others of its ducts or between certain other parts of its stacked plates.
  • This heated heat transfer fluid feeds, via a pump PE, an AR heater that is charged, at least in the heating mode, to heat the indoor air that passes through it by exchange with the heat transfer fluid.
  • the heat transfer fluid leaving the heater unit AR feeds the portion of the cooling circuit that passes through the engine MR and feeds the internal condenser CDI.
  • cooler here means an air / liquid type heat exchanger.
  • the heater AR may possibly be part of the IC installation. Otherwise, it is part of the engine cooling circuit MR.
  • the external expansion valve DTE only intervenes in the heating mode. It is responsible for cooling and depressurizing the refrigerant which is derived from the external condenser CDE, before it feeds the external heat exchanger EE. It delivers a liquid (even more) cooled and depressurized.
  • the external heat exchanger EE only intervenes in the heating mode. It is for example an evaporator. In the heating mode (illustrated in FIGS. 1 and 4), it (EE) is responsible for heating the refrigerant (cooled and depressurized liquid), which comes from the external expansion valve DTE, by exchange with the outside air (cold) that is, absorption of calories contained in the outside air. It then delivers a refrigerant, gas phase and slightly heated, which is intended to supply the compressor CP.
  • the external condenser CDE intervenes in all modes of operation of the IC installation. It is cooled by heat exchange with the outside air that passes through it.
  • it is of the liquid / air type.
  • it may, for example, comprise ducts or plates stacked in or between which the refrigerant circulates (at least partially in liquid phase) which is derived from the internal condenser CDI and that it must cool and complete the liquid phase completely by exchange with the outside air passing through it.
  • the external condenser CDE supplies the external expansion valve DTE with cooled refrigerant and fully in the liquid phase, to allow an increase in the heating capacity of the refrigerant of the refrigerant.
  • the external exchanger EE can optimally absorb the calories that are contained in the outside air (cold) and thus heat efficiently. the refrigerant flowing through it before it reaches the CP compressor.
  • the external condenser CDE supplies the internal evaporator El (preferably via an internal expansion valve DTI) with fluid cooled refrigerant and integrally in the liquid phase, to allow an increase in the cooling capacity of the internal air of the internal evaporator El.
  • the internal evaporator El can optimally absorb the calories that are contained in the indoor air. Therefore, the IC installation has in the refrigeration mode and the optional mixed mode a maximum cooling power which is particularly well suited to high temperatures.
  • the external condenser CDE may advantageously be contiguous with the external exchanger EE.
  • the term "contiguous” means the fact of being in contact with the external exchanger EE, or in the immediate vicinity of the latter (EE), typically a few centimeters, or else nested in the external exchanger EE.
  • the external condenser CDE additionally constitutes a heat source for the adjacent external heat exchanger EE. It will be understood that this heat source (which constitutes the external condenser CDE) is likely to reduce the probability that the external exchanger EE frost in the presence of an outside air whose temperature is low.
  • frost will only appear in the presence of a low outside temperature, a high hygrometry and a low outdoor air speed.
  • the heating of the external heat exchanger EE can be done by thermal conduction, in case of nesting or mechanical contact with the external condenser CDE, and / or through the outside air which has been heated during its passage through the external condenser CDE (which requires that the latter (CDE) is placed upstream of the external exchanger EE vis-à-vis the outside air flow, as shown).
  • the external condenser CDE and the external heat exchanger EE are contiguous, they can form two contiguous (possibly nested) sub-parts of the same heat exchanger or two independent and contiguous heat exchangers.
  • dewatering tank RD is intended to ensure that the refrigerant flowing out of the external condenser CDE is exclusively in the liquid phase.
  • dewatering tank RD can also provide a filtration function and / or a reservoir function and / or a gas and liquid phase separation function.
  • the internal evaporator E1 intervenes in the refrigeration mode and in the eventual mixed mode, but not in the heating mode. As illustrated in Figures 1 to 6, it is preferable to provide upstream of the inlet of this internal evaporator El an internal expansion valve DTI. The latter is then responsible for depressurizing the refrigerant (liquid phase and cooled), which is derived from the external condenser CDE.
  • the internal evaporator El is responsible for cooling the internal air that passes through it by heat exchange with the fluid. refrigerant (very) cooled and depressurized (in liquid phase) which is (here) from the internal regulator DTI.
  • the internal expansion valve DTI can act even more efficiently and thus cool the refrigerant (in the liquid phase) it receives even more efficiently. Therefore, the internal evaporator El can optimally absorb the calories that are present in the hot indoor air that passes through it, and thus cool it optimally. In other words, in the refrigeration mode, the IC installation has a maximum cooling power which is particularly well suited to high temperatures.
  • the IC facility may include at least one of the two V1 valves. and V2, three-way type, presented below, and preferably all.
  • a first valve V1 may comprise an input coupled to the output of the external condenser CDE, a first output coupled to the input of the external heat exchanger EE, and a second output coupled to the input of the internal heat exchanger El.
  • a second valve V2 may comprise an output coupled to the input of the compressor CP, a first input coupled to the output of the external heat exchanger EE, and a second input coupled to the output of the internal heat exchanger El.
  • each three-way valve can be replaced by two two-way valves.
  • the installation IC can offer the mixed, optional operating mode, mentioned previously several times, and illustrated in FIGS. 3 and 6.
  • This mixed operating mode imposes the same configuration of the installation IC as the cooling mode, but a different control of the operation of the installation IC.
  • This mixed mode is well adapted (although in a non-limiting way) to relatively temperate climates in that it allows to obtain a mixed indoor air.
  • the internal condenser CDI is supplied with refrigerant (by the compressor CP) in order to contribute to the heating of the indoor air, the external heat exchanger EE is not used, and the internal evaporator El is supplied with refrigerant fluid cooled and integrally in a liquid phase by the external condenser CDE, in order to lower the temperature of the indoor air that is warmed by the contribution of the internal condenser CDI.
  • the internal condenser CDI contributes to strongly heat the indoor air, while at the same time the internal evaporator El cools the indoor air heated by the contribution of the internal condenser CDI, which allows to obtain mixed indoor air.
  • the refrigerant flows from the compressor CP to the internal condenser CDI where it is used (FIG. 1) or contributes only (FIG. 4) to heating the indoor air by heat exchange. Then, the refrigerant, partially cooled and at least partially in the liquid phase, goes from the internal condenser CDI to the external condenser CDE. The refrigerant is then cooled and placed entirely in the liquid phase, then passes through the dewatering tank RD, then is directed by the first valve V1 (configured for this purpose) to the external expander DTE, where it is further cooled and depressurized. Then, the refrigerant goes from the external expander DTE to the external exchanger EE.
  • the refrigerant flows from the compressor CP to the internal condenser CDI.
  • the refrigerant does not heat the indoor air by heat exchange, because the CDI internal condenser is not supplied with indoor air through the control of at least one component of the IC installation which controls, for example, access to a circuit "bypass" (not shown), as materialized by the cross placed on the internal condenser CDI. All internal air supplies the internal evaporator El.
  • the refrigerant does not contribute to heating the internal air by heat exchange at the level of the fan heater AR, since it prevents ( by control) the circulation of the coolant in the internal condenser CDI and in the unit heater AR. For this purpose, it is possible, for example, to prevent the pump PE from operating and / or to return the coolant in the cooling circuit of the engine MR, before it reaches the internal condenser CDI.
  • the refrigerant very partially cooled and placed at least partially in the liquid phase by the internal condenser CDI, then goes to the external condenser CDE.
  • the refrigerant is then cooled and placed entirely in the liquid phase, then passes through the dewatering tank RD, then is directed by the first valve V1 (configured for this purpose) to the DTI internal expansion valve, where it is depressurized.
  • the refrigerant goes from the internal expansion valve DTI to the internal evaporator El where it is further cooled by heat exchange with the indoor air that passes through the latter (El).
  • the indoor air is then strongly cooled by this heat exchange.
  • the refrigerant goes from the internal evaporator El to the compressor CP where it is converted into heated gas and pressurized via the second valve V2 which is configured for this purpose.
  • the refrigerant flows from the compressor CP to the internal condenser CDI where it serves (FIG. 3) or only contributes (FIG. 6) to heating the internal air by heat exchange. Then, the refrigerant, partially cooled and at least partially in the liquid phase, goes from the internal condenser CDI to the external condenser CDE. The refrigerant is then cooled and placed entirely in the liquid phase, then passes through the dewatering tank RD, then is directed by the first valve V1 (configured for this purpose) to the internal expansion valve DTI, where it is further cooled and depressurized.
  • the refrigerant goes from the internal expansion valve DTI to the internal evaporator El where it is further cooled by heat exchange with the indoor air that passes through the latter (El).
  • the indoor air is then strongly cooled by this heat exchange.
  • This indoor air is also warmed by the CDI internal condenser, so it is mixed.
  • the refrigerant goes from the internal evaporator El to the compressor CP where it is converted into heated gas and pressurized via the second valve V2 which is configured for this purpose.
  • This mixed mode appears as a mixture of heating and refrigeration modes to obtain a mixed indoor air.
  • the invention offers a number of advantages, among which:

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Une installation de chauffage/climatisation (IC) comprend i) un compresseur (CP) propre à chauffer et pressuriser un fluide frigorigène, ii) un condenseur interne (CDI) propre, en mode chauffage, à contribuer au chauffage de l'air intérieur par échange avec le fluide frigorigène issu du compresseur (CP), iii) un détendeur externe (DTE) propre, en mode chauffage, à refroidir le fluide frigorigène, iv) un évaporateur externe (EE) propre, en mode chauffage, à réchauffer le fluide frigorigène issu du détendeur externe (DTE) par échange avec l'air extérieur pour alimenter le compresseur (CP), v) un évaporateur interne (EI) propre, en mode réfrigération, à refroidir l'air intérieur par échange avec le fluide frigorigène, et vi) un condenseur externe (CDE) propre, en tout mode, à terminer de condenser le fluide frigorigène issu du condenseur interne (CDI) par échange avec l'air extérieur pour alimenter en fluide frigorigène refroidi et intégralement dans une phase liquide soit le détendeur externe (DTE) dans le mode chauffage, soit l'évaporateur interne (EI) au moins dans le mode réfrigération, afin de permettre un accroissement de la capacité de refroidissement de l'évaporateur interne (EI).

Description

INSTALLATION DE CHAUFFAGE/CLIMATISATION À ARCHITECTURE SIMPLIFIÉE ET À PUISSANCE DE RÉFRIGÉRATION ACCRUE
L'invention concerne les installations de chauffage/climatisation qui équipent certains véhicules, éventuellement de type automobile, et certains bâtiments.
Comme le sait l'homme de l'art, certaines des installations de chauffage/climatisation précitées comportent notamment:
- un compresseur qui est propre à chauffer et pressuriser un fluide frigorigène,
- un condenseur interne qui est propre, en mode chauffage, à contribuer au chauffage d'un air dit intérieur par échange avec le fluide frigorigène qui est issu du compresseur,
- un détendeur externe qui est propre, en mode chauffage, à refroidir et dépressuriser le fluide frigorigène,
- un échangeur externe qui est propre, en mode chauffage, à réchauffer le fluide frigorigène, qui est issu du détendeur externe, par échange avec un air dit extérieur, pour alimenter le compresseur, et
- un évaporateur interne qui est propre, en mode réfrigération, à refroidir l'air intérieur par échange avec le fluide frigorigène.
On entend ici par "externe" un équipement qui intervient dans le processus d'échange de calories avec l'air extérieur (comme par exemple un échangeur externe ou un détendeur externe alimentant un échangeur externe), et par "interne" un équipement qui intervient dans le processus d'échange de calories avec l'air intérieur (comme par exemple un condenseur interne ou un évaporateur interne ou encore un détendeur interne alimentant un évaporateur interne).
Dans certaines applications où l'énergie dont dispose un système qui comprend une installation du type précité n'est pas très importante ou ne peut être renouvelée que lors d'un rechargement de batterie, les puissances de chauffage et de réfrigération de l'installation sont généralement peu élevées. C'est par exemple le cas dans un véhicule de type tout électrique ou hybride. Par conséquent, lorsque la température extérieure est très basse l'installation n'est pas en mesure de réchauffer suffisamment l'air intérieur, et lorsque la température extérieure est très élevée l'installation n'est pas en mesure de refroidir suffisamment l'air intérieur. Cela résulte de l'architecture insuffisamment optimisée de l'installation qui empêche le condenseur interne de contribuer de façon optimale au chauffage de l'air intérieur, et l'évaporateur interne de contribuer de façon optimale au refroidissement de l'air intérieur.
Par ailleurs, ces dernières installations sont habituellement incapables d'offrir un mode de fonctionnement mixte, adapté à un climat relativement tempéré. Par conséquent, lorsque ces installations sont utilisées dans un climat tempéré, l'air intérieur réfrigéré peut être trop froid alors que l'air intérieur réchauffé peut être trop chaud, ce qui nuit au confort aérothermique.
D'autre part, dans les installations précitées, lorsque la température de l'air extérieur est négative ou située au voisinage de zéro degré centigrade (0°C), le contact entre l'air extérieur et le fluide frigorigène partiellement refroidi, qui est issu du condenseur interne et qui circule dans l'évaporateur externe, provoque fréquemment le givrage de ce dernier, ce qui nuit à son fonctionnement et donc rend l'installation moins performante. Certes, plusieurs solutions ont été proposées pour améliorer la situation, notamment dans les documents brevet FR 2525330, GB 988874 et US 5,586,448. Mais aucune d'entre elles ne s'avère réellement satisfaisante en raison de la nécessité de modifier fortement l'évaporateur externe et éventuellement d'adjoindre un dispositif de chauffage électrique additionnel et/ou d'une inadaptation aux situations dans lesquelles le fluide caloporteur est inexistant ou énergétiquement indisponible en mode chauffage, comme c'est notamment le cas dans les véhicules dits "tout électrique" ou "hybride" ou dans les bâtiments et/ou d'une mise en œuvre très difficile dans un véhicule automobile.
L'invention a donc pour but d'améliorer la situation.
Elle propose plus précisément à cet effet une installation de chauffage/climatisation, comprenant : - un compresseur propre à chauffer et pressuriser un fluide frigorigène,
- un condenseur interne propre, en mode chauffage, à contribuer au chauffage d'un air dit intérieur par échange avec le fluide frigorigène qui est issu du compresseur,
- un détendeur externe propre, en mode chauffage, à refroidir le fluide frigorigène (avant qu'il n'alimente l'évaporateur externe),
- un échangeur externe propre, en mode chauffage, à réchauffer le fluide frigorigène qui est issu du détendeur externe par échange avec un air dit extérieur pour alimenter le compresseur,
- un évaporateur interne propre, en mode réfrigération, à refroidir l'air intérieur par échange avec le fluide frigorigène, et
- un condenseur externe propre, quel que soit le mode, à terminer de condenser le fluide frigorigène qui est issu du condenseur interne par échange avec l'air extérieur pour alimenter en fluide frigorigène refroidi et intégralement dans une phase liquide soit le détendeur externe dans le mode chauffage, afin de permettre un accroissement de la capacité de réchauffage du fluide frigorigène de l'échangeur externe, soit l'évaporateur interne au moins dans le mode réfrigération, afin de permettre un accroissement de la capacité de refroidissement de cet évaporateur interne.
L'installation selon l'invention peut comporter d'autres caractéristiques qui peuvent être prises séparément ou en combinaison, et notamment :
- elle peut être agencée pour offrir un mode mixte dans lequel son condenseur interne est alimenté en fluide frigorigène de manière à contribuer au chauffage de l'air intérieur, son échangeur externe n'est pas utilisé et son évaporateur interne est alimenté en fluide frigorigène refroidi et intégralement dans une phase liquide par son condenseur externe de manière à abaisser la température de l'air intérieur qui est réchauffé par la contribution du condenseur interne;
- son condenseur externe peut être contigu avec son échangeur externe afin de constituer pour ce dernier, dans le mode chauffage, une source de chaleur propre à réduire la probabilité qu'il givre en présence d'un air extérieur présentant une température basse;
son condenseur externe et son échangeur externe peuvent constituer deux sous-parties contiguës d'un même échangeur de chaleur. Dans une variante, son condenseur externe et son échangeur externe peuvent constituer deux échangeurs de chaleur indépendants et contigus;
- elle peut comprendre un réservoir de déshydratation en aval de la sortie de son condenseur externe qui délivre ledit fluide frigorigène refroidi et intégralement dans une phase liquide;
- elle peut comprendre, en amont de l'entrée qui alimente son évaporateur interne en fluide frigorigène, un détendeur interne qui est propre à dépressuriser le fluide frigorigène et intégralement dans une phase liquide au moins dans le mode réfrigération, avant qu'il ne parvienne dans l'évaporateur interne;
- son condenseur interne peut être propre, dans le mode chauffage, à chauffer l'air intérieur par échange avec le fluide frigorigène qui est issu de son compresseur;
- dans une variante, son condenseur interne peut être propre, en mode chauffage, à réchauffer, par échange avec le fluide frigorigène issu de son compresseur, un fluide caloporteur destiné à alimenter un aérotherme qui est propre à chauffer l'air intérieur par échange thermique. Dans ce cas, dans le mode réfrigération l'aérotherme n'est pas alimenté en fluide caloporteur afin de ne pas réchauffer l'air intérieur;
- elle peut comprendre une première vanne de type trois voies et comprenant une entrée couplée à la sortie de son condenseur externe, une première sortie couplée à l'entrée de son échangeur externe, et une seconde sortie couplée à l'entrée de son échangeur interne;
- elle peut comprendre une seconde vanne de type trois voies et comprenant une sortie couplée à l'entrée de son compresseur, une première entrée couplée à la sortie de son échangeur externe, et une seconde entrée couplée à la sortie de son échangeur interne.
L'invention propose également un véhicule, éventuellement de type automobile, comprenant une installation de chauffage/climatisation du type de celle présentée ci-avant.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés, sur lesquels:
- la figure 1 illustre schématiquement et fonctionnellement un premier exemple de réalisation d'une installation de chauffage/climatisation selon l'invention, dans le mode chauffage,
- la figure 2 illustre schématiquement et fonctionnellement l'installation de chauffage/climatisation de la figure 1 dans le mode réfrigération,
- la figure 3 illustre schématiquement et fonctionnellement l'installation de chauffage/climatisation de la figure 1 dans le mode mixte (adapté à un climat tempéré),
- la figure 4 illustre schématiquement et fonctionnellement un second exemple de réalisation d'une installation de chauffage/climatisation selon l'invention, en mode chauffage,
- la figure 5 illustre schématiquement et fonctionnellement l'installation de chauffage/climatisation de la figure 4 dans le mode réfrigération, et
- la figure 6 illustre schématiquement et fonctionnellement l'installation de chauffage/climatisation de la figure 4 dans le mode mixte (adapté à un climat tempéré).
Les dessins annexés pourront non seulement servir à compléter l'invention, mais aussi contribuer à sa définition, le cas échéant.
L'invention a pour but de proposer une installation de chauffage/ climatisation (IC).
Dans ce qui suit, on considère, à titre d'exemple non limitatif, que l'installation de chauffage/climatisation (IC) fait partie d'un véhicule automobile, comme par exemple une voiture de type "tout électrique" ou "hybride". Mais, l'invention n'est pas limitée à cette application. Elle concerne en effet toute installation de chauffage/climatisation, qu'elle soit destinée à être installée dans un véhicule ou dans un bâtiment.
On a schématiquement représenté sur les figures 1 à 3, d'une part, et 4 à 6, d'autre part, des premier et second exemples de réalisation d'installation de chauffage/climatisation IC, selon l'invention. Le premier exemple de réalisation, illustré sur les figures 1 à 3, est par exemple destiné à être implanté dans un véhicule automobile électrique ou un bâtiment. Le second exemple de réalisation, illustré sur les figures 4 à 6, est par exemple destiné à être implanté dans un véhicule automobile hybride.
Une installation de chauffage/climatisation IC, selon l'invention, est destinée à fonctionner selon au moins un mode chauffage et un mode réfrigération selon les besoins, ainsi qu'éventuellement selon un mode mixte (adapté à un climat relativement tempéré), comme on le verra plus loin. Elle comprend à cet effet au moins un compresseur CP, un condenseur interne CDI, un détendeur externe DTE, un échangeur externe EE, et un condenseur externe CDE qui interviennent tous au moins dans le mode chauffage, ainsi qu'un évaporateur interne El qui intervient au moins dans le mode réfrigération.
Dans une voiture, l'évaporateur interne El et le condenseur interne CDI font généralement partie du groupe de climatisation, et l'échangeur externe EE et le condenseur externe CDE sont généralement situés au niveau de la face avant.
Le compresseur CP est chargé de chauffer et de pressuriser un fluide frigorigène qui est issu de l'échangeur externe EE dans le mode chauffage (illustré sur les figures 1 et 4), et de l'évaporateur interne El dans le mode réfrigération (illustré sur les figures 2 et 5) et l'éventuel mode mixte (illustré sur les figures 3 et 6).
Le condenseur interne CDI intervient dans tous les modes (chauffage, réfrigération et mixte). Il est chargé de contribuer au chauffage d'un air dit intérieur (qui provient ici de l'intérieur de l'habitacle du véhicule) par échange avec le fluide frigorigène transformé en gaz chaud et pressurisé par le compresseur CP. Il condense partiellement le fluide frigorigène qui est issu du compresseur CP lors de l'échange thermique direct ou indirect avec l'air intérieur, de sorte que ce fluide frigorigène soit au niveau de sa sortie au moins partiellement dans une phase liquide et partiellement refroidi.
Dans l'exemple illustré sur les figures 1 à 3, le condenseur interne CDI est de type gaz/air. Il est donc chargé de chauffer l'air intérieur qui le traverse par échange avec le fluide frigorigène (gaz chaud et pressurisé) qui circule dans ses conduits ou entre ses plaques empilées.
Dans l'exemple illustré sur les figures 4 à 6, le condenseur interne CDI est de type gaz/liquide. Il est donc chargé de réchauffer un fluide caloporteur, qui circule dans certains de ses conduits ou entre certaines parties de ses plaques empilées et qui est issu d'un circuit de refroidissement, par échange avec le fluide frigorigène (gaz chaud et pressurisé) qui circule dans certains autres de ses conduits ou entre certaines autres parties de ses plaques empilées. Ce fluide caloporteur réchauffé alimente, via une pompe PE, un aérotherme AR qui est chargé, au moins dans le mode chauffage, de chauffer l'air intérieur qui le traverse par échange avec le fluide caloporteur réchauffé. Le fluide caloporteur qui sort de l'aérotherme AR alimente la portion du circuit de refroidissement qui traverse le moteur MR et qui alimente le condenseur interne CDI.
On entend ici par « aérotherme » un échangeur de chaleur de type air/liquide.
On notera que l'aérotherme AR peut éventuellement faire partie de l'installation IC. Dans le cas contraire, il fait partie du circuit de refroidissement du moteur MR.
Le détendeur externe DTE n'intervient que dans le mode chauffage. Il est chargé de refroidir et dépressuriser le fluide frigorigène qui est issu du condenseur externe CDE, avant qu'il n'alimente l'échangeur externe EE. Il délivre un liquide (encore plus) refroidi et dépressurisé.
L'échangeur externe EE n'intervient que dans le mode chauffage. Il s'agit par exemple d'un évaporateur. Dans le mode chauffage (illustré sur les figures 1 et 4), il (EE) est chargé de réchauffer le fluide frigorigène (liquide refroidi et dépressurisé), qui est issu du détendeur externe DTE, par échange avec l'air extérieur (froid), c'est-à-dire absorption de calories contenues dans l'air extérieur. Il délivre alors en sortie un fluide frigorigène, en phase gazeuse et légèrement réchauffé, qui est destiné à alimenter le compresseur CP.
Le condenseur externe CDE intervient dans tous les modes de fonctionnement de l'installation IC. Il est refroidi par échange thermique avec l'air extérieur qui le traverse. Par exemple, il est de type liquide/air. Par ailleurs, il peut, par exemple, comporter des conduits ou des plaques empilées dans ou entre lesquel(le)s circule le fluide frigorigène (au moins partiellement en phase liquide) qui est issu du condenseur interne CDI et qu'il doit refroidir et achever de faire passer intégralement en phase liquide par échange avec l'air extérieur qui le traverse.
On comprendra que refroidissement résulte d'un échange thermique important entre le fluide frigorigène et l'air extérieur (froid) dans le condenseur externe CDE.
Par ailleurs, dans le mode chauffage (illustré sur les figures 1 et 4), le condenseur externe CDE alimente le détendeur externe DTE en fluide frigorigène refroidi et intégralement en phase liquide, afin de permettre un accroissement de la capacité de réchauffage du fluide frigorigène de l'échangeur externe EE. On comprendra en effet que grâce au refroidissement, qui est encore accentué par le refroidissement induit par le détendeur externe DTE, l'échangeur externe EE peut absorber de façon optimale les calories qui sont contenues dans l'air extérieur (froid) et ainsi réchauffer efficacement le fluide frigorigène qui le traverse avant qu'il ne parvienne au compresseur CP.
Dans le mode réfrigération (illustré sur les figures 2 et 5) et l'éventuel mode mixte (illustré sur les figures 3 et 6), le condenseur externe CDE alimente l'évaporateur interne El (de préférence via un détendeur interne DTI) en fluide frigorigène refroidi et intégralement en phase liquide, afin de permettre un accroissement de la capacité de refroidissement de l'air intérieur de cet évaporateur interne El.
On comprendra en effet que grâce au refroidissement, qui est encore accentué par le refroidissement induit par le détendeur interne DTI, l'évaporateur interne El peut absorber de façon optimale les calories qui sont contenues dans l'air intérieur. Par conséquent, l'installation IC dispose dans le mode réfrigération et l'éventuel mode mixte d'une puissance maximale de refroidissement qui est particulièrement bien adaptée aux températures élevées.
On notera que dans le mode réfrigération soit on n'utilise pas la portion d'air intérieur qui est réchauffée directement par le condenseur interne CDI (figure 2), soit on ne fait pas circuler de fluide caloporteur dans le circuit qui alimente l'aérotherme AR (figure 5), afin de ne pas réchauffer inutilement l'air intérieur qui doit être refroidi de façon maximale par l'évaporateur interne El.
On notera, comme illustré non limitativement sur les figures 1 à 6, que le condenseur externe CDE peut être avantageusement contigu avec l'échangeur externe EE.
On entend ici par "contigu" le fait d'être au contact de l'échangeur externe EE, ou bien dans le voisinage immédiat de ce dernier (EE), typiquement à quelques centimètres, ou encore imbriqué dans l'échangeur externe EE.
Dans ce cas, le condenseur externe CDE constitue en complément une source de chaleur pour l'échangeur externe EE contigu. On comprendra alors que cette source de chaleur (que constitue le condenseur externe CDE) est de nature à réduire la probabilité que l'échangeur externe EE givre en présence d'un air extérieur dont la température est basse.
On entend ici par "réduire la probabilité de givrer" le fait de limiter autant que possible la création de givre au niveau de l'échangeur externe EE. Typiquement, du givre ne pourra apparaître qu'en présence d'une température extérieure basse, d'une hygrométrie importante et d'une faible vitesse d'air extérieur.
Il est important de noter que le réchauffement de l'échangeur externe EE peut se faire par conduction thermique, en cas d'imbrication ou de contact mécanique avec le condenseur externe CDE, et/ou par le biais de l'air extérieur qui a été réchauffé lors de son passage au travers du condenseur externe CDE (ce qui nécessite que ce dernier (CDE) soit placé en amont de l'échangeur externe EE vis-à-vis du flux d'air extérieur, comme illustré).
On notera que lorsque le condenseur externe CDE et l'échangeur externe EE sont contigus, ils peuvent constituer deux sous-parties contiguës (éventuellement imbriquées) d'un même échangeur de chaleur ou bien deux échangeurs de chaleur indépendants et contigus.
On notera également, comme illustré sur les figures 1 à 6, qu'il est préférable de prévoir en aval de la sortie du condenseur externe CDE un réservoir de déshydratation RD. Ce réservoir de déshydratation RD est destiné à garantir que le fluide frigorigène qui sort du condenseur externe CDE est exclusivement en phase liquide. En outre, il peut également assurer une fonction de filtration et/ou une fonction de réservoir et/ou une fonction de séparation des phases gazeuse et liquide.
On notera également, comme illustré sur les figures 1 à 10, qu'il est préférable de prévoir en amont de l'entrée du sous-refroidisseur SR un réservoir de déshydratation RD.
L'évaporateur interne El intervient dans le mode réfrigération et dans l'éventuel mode mixte, mais pas dans le mode chauffage. Comme illustré sur les figures 1 à 6, il est préférable de prévoir en amont de l'entrée de cet évaporateur interne El un détendeur interne DTI. Ce dernier est alors chargé de dépressuriser le fluide frigorigène (en phase liquide et refroidi), qui est issu du condenseur externe CDE.
Dans le mode réfrigération (illustré sur les figures 2 et 5) et l'éventuel mode mixte (illustré sur les figures 3 et 6) l'évaporateur interne El est chargé de refroidir l'air intérieur qui le traverse par échange thermique avec le fluide frigorigène (très) refroidi et dépressurisé (en phase liquide) qui est (ici) issu du détendeur interne DTI.
On comprendra que grâce au fonctionnement permanent des condenseurs interne CDI et externe CDE, le détendeur interne DTI peut agir encore plus efficacement et donc refroidir encore plus efficacement le fluide frigorigène (en phase liquide) qu'il reçoit. Par conséquent, l'évaporateur interne El peut absorber de façon optimale les calories qui sont présentes dans l'air intérieur chaud qui le traverse, et ainsi refroidir ce dernier de façon optimale. En d'autres termes, dans le mode réfrigération, l'installation IC dispose d'une puissance maximale de refroidissement qui est particulièrement bien adaptée aux fortes températures.
Pour que l'installation IC soit aussi simple que possible, et donc pour que son fonctionnement puisse être contrôlé facilement, et qu'elle puisse offrir un mode de fonctionnement mixte, l'installation IC peut comprendre l'une au moins des deux vannes V1 et V2, de type trois voies, présentées ci-après, et de préférence toutes.
Une première vanne V1 peut comprendre une entrée couplée à la sortie du condenseur externe CDE, une première sortie couplée à l'entrée de l'échangeur externe EE, et une seconde sortie couplée à l'entrée de l'échangeur interne El.
Une seconde vanne V2 peut comprendre une sortie couplée à l'entrée du compresseur CP, une première entrée couplée à la sortie de l'échangeur externe EE, et une seconde entrée couplée à la sortie de l'échangeur interne El.
Il est important de noter que chaque vanne de type trois voies peut être remplacée par deux vannes de type deux voies.
On notera qu'avec les vannes V1 et V2 présentées ci-avant (ou bien avec des paires équivalentes de vannes de type deux voies), l'installation IC peut offrir le mode de fonctionnement mixte, optionnel, mentionné précédemment à plusieurs reprises, et illustré sur les figures 3 et 6. Ce mode de fonctionnement mixte impose la même configuration de l'installation IC que le mode réfrigération, mais un contrôle différent du fonctionnement de l'installation IC. Ce mode mixte est bien adapté (bien que de façon non limitative) aux climats relativement tempérés dans la mesure où il permet d'obtenir un air intérieur mitigé.
Dans ce mode mixte, le condenseur interne CDI est alimenté en fluide frigorigène (par le compresseur CP) afin de contribuer au chauffage de l'air intérieur, l'échangeur externe EE n'est pas utilisé, et l'évaporateur interne El est alimenté en fluide frigorigène refroidi et intégralement dans une phase liquide par le condenseur externe CDE, afin d'abaisser la température de l'air intérieur qui est réchauffé par la contribution du condenseur interne CDI. En d'autres termes, le condenseur interne CDI contribue à réchauffer fortement l'air intérieur, alors que dans le même temps l'évaporateur interne El refroidit l'air intérieur réchauffé par la contribution du condenseur interne CDI, ce qui permet d'obtenir de l'air intérieur mitigé.
Dans le mode chauffage illustré sur les figures 1 et 4, le fluide frigorigène circule du compresseur CP vers le condenseur interne CDI où il sert (figure 1 ) ou contribue seulement (figure 4) à réchauffer l'air intérieur par échange thermique. Puis, le fluide frigorigène, partiellement refroidi et au moins partiellement en phase liquide, va du condenseur interne CDI vers le condenseur externe CDE. Le fluide frigorigène est alors refroidi et placé intégralement en phase liquide, puis traverse le réservoir de déshydratation RD, puis est dirigé par la première vanne V1 (configurée à cet effet) vers le détendeur externe DTE, où il est encore plus refroidi et dépressurisé. Ensuite, le fluide frigorigène va du détendeur externe DTE vers l'échangeur externe EE. Il est alors encore plus refroidi par échange thermique avec l'air extérieur froid. Enfin, le fluide frigorigène va de l'échangeur externe EE vers le compresseur CP où il est transformé en gaz chauffé et pressurisé, via la seconde vanne V2 qui est configurée à cet effet. La partie de réfrigération (évaporateur interne El) est ainsi bien isolée de la partie de chauffage (condenseur interne CDI et/ou aérotherme AR).
Dans le mode réfrigération illustré sur les figures 2 et 5, le fluide frigorigène circule du compresseur CP vers le condenseur interne CDI. Dans l'exemple de la figure 2, le fluide frigorigène ne réchauffe pas l'air intérieur par échange thermique, car le condenseur interne CDI n'est pas alimenté en air intérieur grâce au contrôle d'au moins un volet de l'installation IC qui contrôle, par exemple, l'accès à un circuit "bypass" (non représenté), comme matérialisé par la croix placée sur le condenseur interne CDI. Tout l'air intérieur alimente l'évaporateur interne El. Dans l'exemple de la figure 5, le fluide frigorigène ne contribue pas non plus à réchauffer l'air intérieur par échange thermique au niveau de l'aérotherme AR, car on empêche (par contrôle) la circulation du fluide caloporteur dans le condenseur interne CDI et dans l'aérotherme AR. Pour ce faire, on peut, par exemple, empêcher la pompe PE de fonctionner et/ou faire retourner le fluide caloporteur dans le circuit de refroidissement du moteur MR, avant qu'il ne parvienne dans le condenseur interne CDI.
Le fluide frigorigène, très partiellement refroidi et placé au moins partiellement en phase liquide par le condenseur interne CDI, va ensuite vers le condenseur externe CDE. Le fluide frigorigène est alors refroidi et placé intégralement en phase liquide, puis traverse le réservoir de déshydratation RD, puis est dirigé par la première vanne V1 (configurée à cet effet) vers le détendeur interne DTI, où il est dépressurisé. Ensuite, le fluide frigorigène va du détendeur interne DTI vers l'évaporateur interne El où il est encore plus refroidi par échange thermique avec l'air intérieur qui traverse ce dernier (El). L'air intérieur est alors fortement refroidi par cet échange thermique. Puis, le fluide frigorigène va de l'évaporateur interne El vers le compresseur CP où il est transformé en gaz chauffé et pressurisé, via la seconde vanne V2 qui est configurée à cet effet.
Dans le mode mixte illustré sur les figures 3 et 6, le fluide frigorigène circule du compresseur CP vers le condenseur interne CDI où il sert (figure 3) ou contribue seulement (figure 6) à réchauffer l'air intérieur par échange thermique. Puis, le fluide frigorigène, partiellement refroidi et au moins partiellement en phase liquide, va du condenseur interne CDI vers le condenseur externe CDE. Le fluide frigorigène est alors refroidi et placé intégralement en phase liquide, puis traverse le réservoir de déshydratation RD, puis est dirigé par la première vanne V1 (configurée à cet effet) vers le détendeur interne DTI, où il est encore plus refroidi et dépressurisé. Ensuite, le fluide frigorigène va du détendeur interne DTI vers l'évaporateur interne El où il est encore plus refroidi par échange thermique avec l'air intérieur qui traverse ce dernier (El). L'air intérieur est alors fortement refroidi par cet échange thermique. Cet air intérieur étant par ailleurs réchauffé par le condenseur interne CDI, il se retrouve donc mitigé. Puis, le fluide frigorigène va de l'évaporateur interne El vers le compresseur CP où il est transformé en gaz chauffé et pressurisé, via la seconde vanne V2 qui est configurée à cet effet.
Ce mode mixte apparaît donc comme un mélange des modes de chauffage et de réfrigération permettant d'obtenir un air intérieur mitigé.
L'invention offre un certain nombre d'avantages, parmi lesquels:
- elle présente une architecture simplifiée,
- elle permet d'augmenter au moins la puissance de réfrigération sans que cela ne consomme plus d'énergie,
- elle permet d'avoir un mode mixte,
- elle ne nécessite pas de dispositif de chauffage additionnel, ce qui est particulièrement avantageux en cas d'implantation dans un système de type tout électrique ou hybride,
- elle nécessite un nombre très réduit de vannes trois voies,
- elle permet de limiter le nombre de composants volumineux, et notamment le nombre de réservoirs de déshydratation.
L'invention ne se limite pas aux modes de réalisation d'installation de chauffage/climatisation et de véhicule décrits ci-avant, seulement à titre d'exemple, mais elle englobe toutes les variantes que pourra envisager l'homme de l'art dans le cadre des revendications ci-après.

Claims

REVENDICATIONS
1 . Installation de chauffage/climatisation (IC) comprenant un compresseur (CP) propre à chauffer et pressuriser un fluide frigorigène, un condenseur interne (CDI) propre, en mode chauffage, à contribuer au chauffage d'un air dit intérieur par échange avec ledit fluide frigorigène issu dudit compresseur (CP), un détendeur externe (DTE) propre, en mode chauffage, à refroidir ledit fluide frigorigène, un échangeur externe (EE) propre, en mode chauffage, à réchauffer ledit fluide frigorigène issu dudit détendeur externe (DTE) par échange avec un air dit extérieur pour alimenter ledit compresseur (CP), et un évaporateur interne (El) propre, en mode réfrigération, à refroidir ledit air intérieur par échange avec ledit fluide frigorigène, caractérisée en ce qu'elle comprend en outre un condenseur externe (CDE) propre, en tout mode, à terminer de condenser ledit fluide frigorigène issu dudit condenseur interne (CDI) par échange avec ledit air extérieur pour alimenter en fluide frigorigène refroidi et intégralement dans une phase liquide soit ledit détendeur externe (DTE) dans ledit mode chauffage, soit ledit évaporateur interne (El) au moins dans ledit mode réfrigération, afin de permettre un accroissement de la capacité de refroidissement dudit évaporateur interne (El).
2. Installation selon la revendication 1 , caractérisée en ce qu'elle est agencée pour offrir un mode mixte dans lequel ledit condenseur interne (CDI) est alimenté en fluide frigorigène de manière à contribuer au chauffage dudit air intérieur, ledit échangeur externe (EE) n'est pas utilisé et ledit évaporateur interne (El) est alimenté en fluide frigorigène refroidi et intégralement dans une phase liquide par ledit condenseur externe (CDE) de manière à refroidir la température dudit air intérieur réchauffé par la contribution dudit condenseur interne (CDI).
3. Installation selon l'une des revendications 1 et 2, caractérisée en ce que ledit condenseur externe (CDE) est contigu avec ledit échangeur externe (EE) afin de constituer pour ce dernier (EE), dans ledit mode chauffage, une source de chaleur propre à réduire la probabilité qu'il givre en présence d'un air extérieur présentant une température basse.
4. Installation selon la revendication 3, caractérisée en ce que ledit condenseur externe (CDE) et ledit échangeur externe (EE) constituent deux sous-parties contiguës d'un même échangeur de chaleur.
5. Installation selon la revendication 3, caractérisée en ce que ledit condenseur externe (CDE) et ledit échangeur externe (EE) constituent deux échangeurs de chaleur indépendants et contigus.
6. Installation selon l'une des revendications 1 à 5, caractérisée en ce qu'elle comprend un réservoir de déshydratation (RD) en aval d'une sortie dudit condenseur externe (CDE) qui délivre ledit fluide frigorigène refroidi et intégralement dans une phase liquide.
7. Installation selon l'une des revendications 1 à 6, caractérisée en ce qu'elle comprend, en amont d'une entrée qui alimente ledit évaporateur interne (El) en fluide frigorigène, un détendeur interne (DTI) propre à dépressuriser ledit fluide frigorigène refroidi et intégralement dans une phase liquide au moins dans ledit mode réfrigération, avant qu'il ne parvienne dans ledit évaporateur interne (El).
8. Installation selon l'une des revendications 1 à 7, caractérisée en ce que ledit condenseur interne (CDI) est propre, dans ledit mode chauffage, à chauffer ledit air intérieur par échange avec ledit fluide frigorigène issu dudit compresseur (CP).
9. Installation selon l'une des revendications 1 à 7, caractérisée en ce que ledit condenseur interne (CDI) est propre, en mode chauffage, à réchauffer, par échange avec ledit fluide frigorigène issu dudit compresseur (CP), un fluide caloporteur destiné à alimenter un aérotherme (AR) propre à chauffer ledit air intérieur par échange thermique, et en ce que dans ledit mode réfrigération ledit aérotherme (AR) n'est pas alimenté en fluide caloporteur.
10. Installation selon l'une des revendications 1 à 9, caractérisée en ce qu'elle comprend une première vanne (V1 ) de type trois voies et comprenant une entrée couplée à la sortie dudit condenseur externe (CDE), une première sortie couplée à l'entrée dudit échangeur externe (EE) et une seconde sortie couplée à l'entrée dudit échangeur interne (El).
1 1 . Installation selon l'une des revendications 1 à 10, caractérisée en ce qu'elle comprend une seconde vanne (V2) de type trois voies et comprenant une sortie couplée à l'entrée dudit compresseur (CP), une première entrée couplée à la sortie dudit échangeur externe (EE) et une seconde entrée couplée à la sortie dudit échangeur interne (El).
12. Véhicule, caractérisé en ce qu'il comprend une installation de chauffage/climatisation (IC) selon l'une des revendications précédentes.
PCT/FR2011/053090 2011-01-28 2011-12-20 Installation de chauffage/climatisation à architecture simplifiée et à puissance de réfrigération accrue WO2012101338A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1150665 2011-01-28
FR1150665A FR2971041B1 (fr) 2011-01-28 2011-01-28 Installation de chauffage/climatisation a architecture simplifiee et a puissance de refrigeration accrue

Publications (1)

Publication Number Publication Date
WO2012101338A1 true WO2012101338A1 (fr) 2012-08-02

Family

ID=44201235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/053090 WO2012101338A1 (fr) 2011-01-28 2011-12-20 Installation de chauffage/climatisation à architecture simplifiée et à puissance de réfrigération accrue

Country Status (2)

Country Link
FR (1) FR2971041B1 (fr)
WO (1) WO2012101338A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082671B1 (fr) * 2018-06-18 2020-06-19 Schneider Electric Industries Sas Procede de commande d'une installation de refroidissement associee a une armoire electrique
CN112303762A (zh) * 2020-10-30 2021-02-02 东莞骏科空调制造有限公司 一种利用冷却水的热回收空调系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020043413A1 (en) * 2000-10-13 2002-04-18 Honda Giken Kogyo Kabushiki Kaisha Vehicle battery cooling apparatus
DE102007043161A1 (de) * 2006-09-14 2008-03-27 Konvekta Ag Klimaanlage für ein Fahrzeug
US20090113913A1 (en) * 2007-11-06 2009-05-07 Honda Motor Co., Ltd. Vehicle air-conditioning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020043413A1 (en) * 2000-10-13 2002-04-18 Honda Giken Kogyo Kabushiki Kaisha Vehicle battery cooling apparatus
DE102007043161A1 (de) * 2006-09-14 2008-03-27 Konvekta Ag Klimaanlage für ein Fahrzeug
US20090113913A1 (en) * 2007-11-06 2009-05-07 Honda Motor Co., Ltd. Vehicle air-conditioning system

Also Published As

Publication number Publication date
FR2971041A1 (fr) 2012-08-03
FR2971041B1 (fr) 2013-01-11

Similar Documents

Publication Publication Date Title
EP2643643B1 (fr) Dispositif de conditionnement thermique d'un habitacle de véhicule
EP2576255B1 (fr) Installation de chauffage/climatisation à condenseur et évaporateur externes et contigus pour le chauffage de l'évaporateur externe
EP2895806B1 (fr) Dispositif de conditionnement thermique d'un habitacle d'un vehicule electrique
FR2936445A1 (fr) Systeme de chauffage et climatisation ameliore pour vehicule automobile
WO2012101342A1 (fr) Installation de chauffage/climatisation à échangeur de chaleur et sous-refroidisseur externes pour augmenter les puissances de chauffage et de réfrigération
EP3019364B1 (fr) Système de conditionnement thermique pour véhicule automobile, installation de chauffage, ventilation et/ou climatisation correspondante et procédé de pilotage correspondant
FR3053447A1 (fr) Systeme et procede de conditionnement d'air pour un compartiment, notamment un habitacle de vehicule automobile
FR2974327A1 (fr) Dispositif de conditionnement thermique d'un vehicule automobile
WO2012101338A1 (fr) Installation de chauffage/climatisation à architecture simplifiée et à puissance de réfrigération accrue
FR3051546A1 (fr) Circuit de fluide refrigerant agence pour controler thermiquement une source d'energie
WO2014183972A1 (fr) Systeme de climatisation auto-degivrant
FR3013268A1 (fr) Systeme de conditionnement thermique pour vehicule automobile et installation de chauffage, ventilation et/ou climatisation correspondante
FR2988467A1 (fr) Installation de chauffage pour un vehicule hybride
WO2015071031A1 (fr) Systeme de conditionnement thermique pour vehicule automobile et installation de chauffage, ventilation et/ou climatisation correspondante
FR3013265A1 (fr) Systeme de conditionnement thermique d'un flux d'air pour vehicule automobile et installation de chauffage, ventilation et/ou climatisation correspondante
FR3078389A1 (fr) Installation thermique pour moteurs thermique et electrique avec transmission automatique electrique et condenseur fluide/fluide
FR2974886A1 (fr) Installation de chauffage et de climatisation
FR3112994A1 (fr) Véhicule à installation thermique à performances de refroidissement optimisées
FR3001413A1 (fr) Dispositif de conditionnement thermique pour vehicule automobile et installation de chauffage, ventilation et/ou climatisation correspondante
FR3111850A1 (fr) Véhicule à hautes performances de refroidissement
FR2987887A1 (fr) Reservoir de deshydratation a quatre voies pour une installation de chauffage/climatisation a echangeur de chaleur et sous-refroidisseur externes
WO2021058891A1 (fr) Systeme de traitement thermique destine a un vehicule automobile
FR2987888A1 (fr) Reservoir de deshydratation a cinq voies pour une installation de chauffage/climatisation a echangeur de chaleur et sous-refroidisseur externes
FR3013264A1 (fr) Systeme de conditionnement thermique pour vehicule automobile et installation de chauffage, ventilation et/ou climatisation correspondante
FR3080572A1 (fr) Systeme de traitement thermique destine a un vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11815467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11815467

Country of ref document: EP

Kind code of ref document: A1