WO2012100525A1 - 变径弯管和包括该变径弯管的泵送设备 - Google Patents

变径弯管和包括该变径弯管的泵送设备 Download PDF

Info

Publication number
WO2012100525A1
WO2012100525A1 PCT/CN2011/078648 CN2011078648W WO2012100525A1 WO 2012100525 A1 WO2012100525 A1 WO 2012100525A1 CN 2011078648 W CN2011078648 W CN 2011078648W WO 2012100525 A1 WO2012100525 A1 WO 2012100525A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducer
elbow
curvature
radius
output end
Prior art date
Application number
PCT/CN2011/078648
Other languages
English (en)
French (fr)
Inventor
朱捷
刘昆吾
Original Assignee
长沙中联重工科技发展股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙中联重工科技发展股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 长沙中联重工科技发展股份有限公司
Publication of WO2012100525A1 publication Critical patent/WO2012100525A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/0091Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using a special shape of fluid pass, e.g. throttles, ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L43/00Bends; Siphons

Definitions

  • the present invention relates to the field of material transportation, and in particular to a variable diameter elbow for conveying material and a pumping apparatus including the reduced diameter elbow.
  • BACKGROUND OF THE INVENTION With the rapid development of the concrete industry, especially the widespread use of high-grade high-performance concrete, this puts higher demands on the vulnerable components and key components of concrete pumping equipment, for example, the present invention relates to Concrete conveying variable diameter elbow.
  • the conveying pipeline is mainly composed of a straight pipe and a bent pipe. At present, most of the commonly used conveying elbows are variable diameter elbows.
  • the resistance of the curved elbows is large, and the inner diameter of the variable diameter elbows is large and small.
  • the service life of the variable diameter elbow is not only much lower than that of the straight pipe, but also much lower than the ordinary non-reducing pipe.
  • the situation of plugging the pipe is generally also found in the position of the variable diameter elbow in the conveying pipeline, which often causes the construction to be interrupted, and the construction delay is delayed, and the fire burst causes a safety accident. Therefore, how to effectively reduce the internal resistance of the variable diameter elbow at such a critical position, and at the same time improve the service life of the variable diameter elbow is a major problem encountered in the industry.
  • An object of the present invention is to provide a reduced-diameter elbow with improved structure and a pumping device including the variable-diameter elbow.
  • the bending reduction of the variable-diameter elbow is optimized, and the transmission material can be effectively reduced.
  • the impact of the curved elbow provides the service life of the variable diameter elbow.
  • a variable diameter elbow is provided for use in a fluid delivery line, the variable diameter elbow comprising an input end and an output end, wherein the radius of curvature of the variable diameter elbow is There is an increasing trend from the input to the output.
  • the taper of the inner diameter of the reducer has a tendency to decrease from the input end to the output end.
  • the radius of curvature of the reduced diameter elbow from the input end to the output end continuously increases.
  • the taper of the inner diameter from the input end to the output end of the reducer is continuously decreased.
  • the reducer according to the first aspect of the present invention wherein the radius of curvature of the reducer with respect to the bending center thereof includes: the outer wall of the reducer is closer to the curved center of the reducer The radius of curvature of the side, the radius of curvature of the distal wall of the outer tube wall relative to the center of curvature, the radius of curvature of the proximal wall of the reduced diameter elbow relative to the center of curvature, and the curvature of the distal side of the inner tube wall relative to the center of curvature Radius and radius of curvature of the centerline of the reducer elbow.
  • the thickness of the tube wall of the reduced diameter elbow which is far from the bending center is larger than the thickness of the tube wall which is closer to the bending center.
  • the thickness of the tube wall far from the bending center at the middle portion of the variable diameter elbow is larger than the thickness at both ends of the variable diameter elbow.
  • the reducer according to the first aspect of the invention wherein the reducer has a circular, elliptical, square or rectangular cross section.
  • the reducer according to the first aspect of the present invention wherein the reducer is composed of a plurality of arc segments having different curvature radii, and the arc segment is selected from a circular arc segment, an elliptical arc segment, One or more of the group consisting of a hyperbolic section, a parabolic section, and an involute section.
  • a pumping apparatus the fluid delivery line of the pumping apparatus comprising a reducer according to the first aspect of the invention.
  • variable diameter elbow of the invention the curvature change of the entire turning radius of the elbow itself is optimized according to the actual fluid state of the concrete, and the constant curvature is changed to the variable curvature, so that the variable diameter
  • the elbow generally satisfies the tendency of the radius of curvature to increase from the input end to the output end, that is, the position of the flow point where the flow velocity is small (i.e., the position with a larger inner diameter) is smaller, and the flow velocity is larger. (ie, the position with a smaller inner diameter) has a larger radius of curvature.
  • variable diameter elbow of the invention makes the turning portion of the flow velocity faster, thereby reducing the impact of the fluid on the pipe wall, so that the wear of the pipe wall is relatively uniform, and will not It is too concentrated to avoid the phenomenon of excessive local wear; at the same time, the reducer of the present invention reduces the pressure loss of the fluid by reducing the bending degree of the portion where the original flow velocity is faster, and avoids the blockage of the accumulated material.
  • the variable diameter elbow of the invention is also optimized according to the actual fluid state of the concrete, and the taper change mode of the inner diameter of the elbow is changed from constant taper to variable taper.
  • variable diameter elbow generally satisfies the tendency of the inner diameter taper to decrease from the input end to the output end, that is, the inner diameter taper (reducing amplitude) of the position where the flow velocity is large in the variable diameter elbow (ie, the position with a smaller inner diameter) Small, the position of the small flow velocity (that is, the position with a larger inner diameter) has a larger inner diameter taper, thereby reducing the fluid pressure loss, reducing the erosion wear of the concrete on the inner position of the inner wall of the pipe, and avoiding excessive local wear or blockage of the material.
  • variable diameter elbow of the invention follows the design concept of the overall equal life, so that all the wear parts of the elbow can be kept substantially the same, ensuring that each section of the elbow has the same life, and does not appear in the prior art. Reducing bends are often partially worn through scrap.
  • FIG. 2 is a schematic structural view of a reduced diameter elbow according to an embodiment of the present invention
  • FIG. 4(a) to FIG. 4(e) respectively show the five cross sections of the reducer elbow according to an embodiment of the present invention in FIG.
  • the schematic diagram specifically includes an AA cross-sectional view, a BB cross-sectional view, a CC cross-sectional view, a DD cross-sectional view, and an EE cross-sectional view.
  • the prior art variable diameter elbow 1 has the following structure:
  • the elbow 1 has a large inner diameter input end la (having an inner diameter ⁇ 1, for example, 175 mm) and a small inner diameter output end lb.
  • the radius of curvature R1 of the outer tube wall of the outer side of the elbow 1 and the radius of curvature R2 of the inner tube wall of the outer side have a common center 01
  • the radius of curvature R5 has a common center 02
  • the radius of curvature R3 of the curved center line of the elbow 1 has a center 03.
  • the elbow 1 of the prior art biases the center 01 and the center 02 of the reducing elbow 1 to each other, so that the wall thickness difference between the outer tube wall and the inner tube wall member of the elbow 1 can be generated.
  • the above-mentioned curvature radii R1, R2, R3, R4, R5 of the reducing pipe 1 are fixed.
  • the taper of the internal diameter of the elbow 1 is also fixed.
  • the inner diameter taper referred to herein can be calculated in such a manner that any one of the curved tubes 1 is intercepted, and is regarded as an imaginary circular table, and the radius of the top surface of the circular table is subtracted from the radius of the top surface of the circular table, and then the circular table is placed.
  • the variable diameter elbow 1 in Fig. 1 has a constant radius of curvature in the entire turning structure (from the input end la to the output end lb), so that the material (for example, concrete) flows through the elbow 1 During the process, the flow rate of the material at the position of the larger inner diameter and the position of the inner diameter is different, and the flow rate of the material at the position of the smaller inner diameter is faster, which results in a larger inner diameter portion and a smaller inner diameter portion.
  • the present invention redesigns the variable diameter elbow, changes the design mode of the radius of the variable diameter elbow, and further advantageously changes the design of the inner diameter taper of the variable diameter elbow in this technique.
  • the design principle is to change the radius of curvature of the elbow from the big end to the small end and the taper of the inner diameter of the elbow from the big end to the small end.
  • the diameter bend pipe is used to eliminate the problem of uneven force of the variable diameter bend pipe, and at the same time reduce the pressure loss of the material in the reducer bend pipe.
  • the "radius of curvature" of the elbow refers to the radius of curvature of the entire elbow, that is, the radius of curvature of a curved structural member, which can generally be expressed by the radius of curvature of the center line of the elbow, that is, the elbow The radius of the centerline from its center of curvature, such as the radius R3 shown in Figure 1.
  • the radius of curvature of the elbow may include the radius of the outer wall of the elbow (including the outer side and the inner side) from the center of its curvature (such as the radius R1, R2 in FIG.
  • the inner wall of the elbow including The outer and inner sides are the radius from the center of their curvature (such as the radius R4, R5 in Figure 1).
  • the center of curvature of the above radius of curvature may be different, such as shown in FIG. Elbow
  • the center line, the outer wall, and the inner wall have different centers of curvature, respectively.
  • the term "inner diameter taper” as used herein refers to the speed at which the radius of curvature changes (similar to the curvature of an arc) in the case where the radius of curvature of the elbow varies, and the specific calculation method will be described in detail below with reference to specific examples.
  • the term "big end” in the specification means the end portion of the reduced diameter elbow of the present invention having the largest radius of curvature (as shown in FIG. 2a), and the "small end” is the end having the smallest radius of curvature of the variable diameter elbow.
  • Department (10b in Figure 2). 2 is a schematic view showing the structure of a reduction bend 10 according to a preferred embodiment of the present invention.
  • FIG. 3 shows a schematic view of the center line of the reducer 10.
  • Figure 4 is a cross-sectional view showing five cut planes of the reducer 10 of Figure 2 .
  • the reducer 10 shown in Figure 2 can be used in a material delivery line of a pumping device to deliver, for example, concrete fluid.
  • the reducing elbow 10 includes an input end 10a (having an inner diameter ⁇ 1, for example, 179 mm) and an output end 10b (having an inner diameter ⁇ 2, for example, 150 mm), wherein the radius of curvature of the reducing elbow 10 is from the input end 10a to the output end 10b.
  • Increased trend That is, the radius of curvature of the reducer 10 of the present invention is small at a position where the inner diameter of the bent pipe is large, and is large at a position where the inner diameter of the bent pipe is small. According to the principle of fluid pressure distribution, the flow velocity of the larger inner diameter is slower, and the flow velocity of the smaller inner diameter is faster.
  • the radius of curvature of the variable diameter elbow 10 is increased at a position where the flow velocity is slow.
  • the radius of curvature is reduced at a position where the flow rate is fast to reduce the impact, thereby ensuring a uniform flow velocity of the fluid throughout the reducer and avoiding uneven impact on the local position of the pipe wall.
  • the radius of curvature described above may be one or more of the radii of curvature listed below: the outer wall of the reducer elbow 10 is distal to the center of the bend 0 (eg, 10p as shown in FIG.
  • the outer pipe wall refers to the pipe wall of the variable diameter elbow 10 which is in contact with the external environment
  • the inner pipe wall refers to the pipe wall which is in contact with the fluid inside the variable diameter elbow 10.
  • the inner diameter taper is designed to have a decreasing tendency from the input end 10a to the output end 10b.
  • the inner diameter taper is calculated in the same manner as described above for the prior art.
  • the reducer elbow 10 is exemplarily divided into five sections 10c, 10d, 10e, 10f, 10g, 10h in FIG. 2 with five section planes AA, BB, CC, DD, EE.
  • the radius of curvature of the sections 10c, 10d, 10e, 10f, 10g, lOh of the reducing elbow 10 from the input end 10a to the output end 10b is sequentially increased, and the sections 10c, 10d, 10e, 10f, 10g, The inner diameter taper of lOh continuously decreases.
  • the five sections 10c, 10d, 10e, 10f, 10g, and 10h are only for explaining the variation trend of the bending diameter and the inner diameter taper of the reducing elbow 10, and do not indicate the reducing path of the present invention.
  • the elbow 10 can only be varied in the manner shown in the figures. In fact, for the variable diameter elbow 10 shown in FIG. 2, the variable diameter can be divided by any angular interval.
  • the elbow 10, the divided section can be arbitrarily small, no matter how small the section, when calculating the inner diameter taper in the above manner, it will satisfy the input end 10a from the variable diameter elbow 10 to the output end 10b, the elbow 10
  • the radius of curvature is increasing, and the taper of the inner diameter is decreasing. That is, the radius of the bend of the reducer 10 of the present invention is smaller at a position closer to the input end 10a, at a position closer to the output end 10b.
  • the inner diameter taper of the reducing elbow 10 is more rapidly deformed at a position closer to the input end 10a (i.e., the inner diameter taper is larger), and the closer to the output end 10b, the slower the degree of the taper is.
  • variable radius of curvature combined with the variable taper of the inner diameter, it is possible to further ensure that the variable diameter elbow 10 of the present invention has a uniform fluid impact force over the entire curved structure, and further reduces the fluid in the variable diameter elbow 10 Internal pressure loss due to excessive impact.
  • the curvature of the radius of the bend of the center line 10i of the reducer 10 is also gradual, and the center line 10i is not a normal arc, but the radius of curvature is from the input end 10a to the output end. 10b is increasing. This corresponds to the tendency of the radius of curvature of the reducer 10 to change. Specifically, in FIG.
  • variable diameter elbow 10 is sequentially divided into a plurality of sections in units of 15°, 30°, 45°, 60°, 75°, and 90°, and the sections are sequentially occupied.
  • the horizontal distances L1, L2, L3, L4, L5, L6 and the vertical distances H1, H2, H3, H4, H5, H6, the specific dimensions refer to the following table.
  • the center line 10i in the horizontal direction is shortened faster, and the distance in the vertical direction is shortened more slowly. That is, the center line 10i is approximately in the shape of an elliptical arc whose horizontal axis is the long axis and the vertical axis is the short axis. It can be seen that the radius of curvature of the center line 10i is increased from the input end 10a to the output end 10b.
  • the reducing elbow 10 is configured such that the radius of curvature from the input end 10a to the output end 10b continuously increases; the inner diameter taper from the input end 10a to the output end 10b continuously decreases. Accordingly, the radius of curvature of the center line 10i also continuously increases from the input end 10a to the output end 10b of the reducer elbow 10.
  • This approach facilitates the construction of a smoother inner tube wall to further reduce fluid shock and avoid fluid pressure loss.
  • the reducer 10 is subjected to a larger fluid impact from the outer wall away from the center of the bend.
  • the reducer 10 according to the present invention is designed such that the thickness of the outer tube wall 10j which is farther from the center of the bending bend 10 (as shown in Fig. 2) is larger than the distance from the center of the bend 0
  • the thickness of the inner tube wall 10k This design allows the reducer 10 to wear in a more uniform manner, improving the overall The service life.
  • the outer tube wall 10j away from the bending center 0 may be designed to be 15 18 mm thick
  • the inner tube wall 10k near the bending center 0 may be designed to be 10 mm thick.
  • This design can be achieved by eccentrically arranging the inner tube wall 10n of the reducing elbow 10 with respect to the outer tube wall 10p.
  • the cutting plane AA is substantially in the middle of the variable diameter elbow 10
  • the cutting planes BB, CC and P DD, EE are respectively distributed on both sides of the cutting plane AA, wherein the cutting planes AA, BB, DD are in a change In the middle section of the radial bend 10, the cut planes CC and EE are respectively close to the both ends.
  • the reducer bend 10 has five cut planes AA, BB
  • the inner tube walls Dal, Dbl, Dcl, Ddl, Del at CC, DD, and EE are all designed to be 10 mm thick
  • the outer tube walls Da2, Db2, and Dd2 at the three section planes AA, BB, and DD of the middle section are designed to be 18mm thick (correspondingly, the eccentricity Ca, Cb, Cd are 4mm)
  • the outer tube walls Dc2 and De2 at the two cutting planes CC and EE near the two ends are designed to be 15mm thick (correspondingly, the eccentricity Cc, Ce Both are 2.5 mm.
  • the reducer 10 of the present invention can be designed to have the dimensions in the following table, wherein ⁇ Dal, ⁇ Da2 respectively represent the inner and outer diameters of the elbow 10 at the AA section, Similarly, ⁇ and ⁇ Db2 respectively represent the inner and outer diameters of the elbow 10 at the ⁇ - ⁇ section, and ⁇ Dcl and Oc2 respectively represent the elbow 10 at the CC section.
  • the inner and outer diameters, ⁇ Ddl, ⁇ 2 respectively represent the inner and outer diameters of the elbow 10 at the DD section, and ⁇ Del, Oe2 represent the inner and outer diameters of the elbow 10 at the ⁇ - ⁇ section, respectively, and the unit is mm.
  • the reducer 10 of the present invention is not limited to the dimensions described in the above embodiments, and any of the above dimensions may be appropriately changed in accordance with the principles of the present invention in accordance with the needs of the present application.
  • the variable diameter elbow 10 has a circular cross section in the embodiment shown in the drawings, it will be understood that in other embodiments, the cross section of the variable diameter elbow 10 may also be elliptical. , square or rectangular, etc.
  • the reducer 10 can be formed by any suitable curved arc.
  • the reducer 10 in the illustrated embodiment is composed of a plurality of different radii of curvature. The arc segments are formed (in fact, these arc segments can be infinitely small).
  • the reducer of the present invention can be any A suitable curved section is formed, for example, the curved section may be one selected from the group consisting of a circular arc segment, an elliptical arc segment, a hyperbolic segment, a parabolic segment, and an involute segment. A variety. Through digital modeling, it is possible to accurately design a variety of flexible bends and ensure accurate design dimensions.
  • a pumping apparatus is provided in accordance with the principles of the present invention, the transfer line of which includes the above-described reducer according to the present invention.
  • the pumping device can be a concrete pumping device.
  • the reducer of the present invention can also be applied to pumping equipment for transporting other types of fluids as needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

变径弯管和包括该变径弯管的泵送设备 技术领域 本发明涉及物料输送领域, 具体涉及一种用于输送物料的变径弯管和包括该变径 弯管的泵送设备。 背景技术 随着混凝土行业的飞速发展, 尤其是高标号高性能混凝土的大范围推广使用, 这 对于混凝土泵送设备的易损构件、 关键构件也提出了更高的要求, 例如本发明涉及到 的混凝土输送变径弯管。 对于泵车、 拖泵等泵送设备来说, 其输送管路主要由直管和弯管组成。 目前常用 的输送弯管多为变径弯管, 变径弯管的拐弯处阻力较大, 且其内径由大变小, 混凝土 流过时会不断挤压和冲刷变径弯管的弯曲管壁, 从而使得变径弯管的使用寿命不仅比 直管要低很多, 而且比普通的非变径弯管也要低不少。 另一方面, 堵管的情况一般也 出现在输送管路中变径弯管的位置处, 这常造成施工中断, 小则耽误施工进度, 大则 出现爆管引发安全事故。 因此, 如何有效降低此类关键位置的变径弯管的内部阻力, 同时提升变径弯管的使用寿命是目前行业内遇到的一大难题。 发明内容 本发明的目的在于提供一种结构改进的变径弯管及包括该变径弯管的泵送设备, 变径弯管的弯曲变径进行了优化设计, 能够有效地降低传输物料对变径弯管的冲击, 提供变径弯管的使用寿命。 针对上述目的, 根据本发明的第一方面提供了一种变径弯管, 用于流体输送管路 中, 变径弯管包括输入端和输出端, 其特征在于, 变径弯管的曲率半径从输入端至输 出端呈增大的趋势。 进一步地, 根据本发明第一方面的变径弯管, 其中, 变径弯管的内径锥度从输入 端至输出端呈减小的趋势。 进一步地, 根据本发明第一方面的变径弯管, 其中, 变径弯管从输入端至输出端 的曲率半径连续增大。 进一步地, 根据本发明第一方面的变径弯管, 其中, 变径弯管从输入端至输出端 的内径锥度连续减小。 进一步地, 根据本发明第一方面的变径弯管, 其中, 变径弯管相对于其弯曲中心 的曲率半径包括: 变径弯管的外管壁相对于变径弯管的弯曲中心的近侧的曲率半径、 外管壁相对于弯曲中心的远侧的曲率半径、 变径弯管的内管壁相对于弯曲中心的近侧 的曲率半径、 内管壁相对于弯曲中心的远侧的曲率半径以及变径弯管的中心线的曲率 半径。 进一步地, 根据本发明第一方面的变径弯管, 其中, 变径弯管的距离弯曲中心远 的管壁的厚度大于距离弯曲中心近的管壁的厚度。 进一步地, 根据本发明第一方面的变径弯管, 其中, 距离弯曲中心远的管壁在变 径弯管中段处的厚度大于变径弯管的两端处的厚度。 进一步地, 根据本发明第一方面的变径弯管, 其中, 变径弯管的横截面为圆形、 椭圆形、 方形或矩形。 进一步地, 根据本发明第一方面的变径弯管, 其中, 变径弯管由多个曲率半径不 同的弧形区段构成, 弧形区段选自由圆弧区段、 椭圆弧区段、 双曲线区段、 抛物线区 段、 渐开线区段构成的组中的一种或多种。 根据本发明的第二方面提供了一种泵送设备, 该泵送设备的流体输送管路中包括 根据本发明第一方面的变径弯管。 本发明具有以下技术效果: 根据本发明的变径弯管, 其根据混凝土的实际流体状态对弯管本身的整个转弯半 径的曲率变化进行了优化设计, 由恒定曲率改为变曲率, 使得变径弯管总体上满足曲 率半径从输入端到输出端呈增大的趋势, 即, 使得变径弯管中流速小的位置 (即内径 较大的位置) 的曲率半径也较小, 流速大的位置 (即内径较小的位置) 的曲率半径也 较大。 由此, 相比现有技术变径弯管, 本发明变径弯管使得流速较快的部位转弯较缓, 从而减小流体对管壁的冲击, 使管壁的磨损相对均与, 不会过于集中, 从而避免局部 磨损过快的现象; 同时本发明的变径弯管通过将原流速较快部位的弯曲程度减缓, 从 而减少了流体的压力损失, 避免积料堵管。 其次, 同相比现有技术的变径弯管相比, 本发明的变径弯管根据混凝土的实际流 体状态对弯管内径的锥度变化方式也进行了优化设计, 由恒定锥度改为变锥度, 使得 变径弯管总体上满足内径锥度从输入端到输出端呈减小的趋势, 即, 使得变径弯管中 流速大的位置(即内径较小的位置)的内径锥度(变径幅度)较小, 流速小的位置(即 内径较大的位置) 的内径锥度较大, 从而减小流体压力损失, 减轻混凝土对管内壁局 部位置的冲刷磨损, 避免局部磨损过快或积料堵管。 总体来说, 本发明的变径弯管遵循了整体等寿命的设计理念, 使得弯管所有磨损 部位都能基本保持相同, 保证弯管各个区段具有同等的寿命, 不会出现现有技术中变 径弯管经常局部磨穿报废的情况。 应该理解, 以上的一般性描述和以下的详细描述都是列举和说明性质的, 目的是 为了对要求保护的本发明提供进一步的说明。 附图说明 附图构成本说明书的一部分, 用于帮助进一步理解本发明。 这些附图图解了本发 明的一些实施例, 并与说明书一起用来说明本发明的原理。 在附图中相同的部件用相 同的标号表示。 附图中: 图 1示出了现有技术中的变径弯管的结构示意图; 图 2示出了根据本发明一个实施方式的变径弯管的结构示意图; 图 3示出了根据本发明一个实施方式的变径弯管的中心线的设计方式; 图 4(a)至图 4(e)分别示出了图 2中的根据本发明一个实施方式的变径弯管的五个 剖面的示意图, 具体包括 A-A剖视图、 B-B剖视图、 C-C剖视图、 D-D剖视图和 E-E 剖视图。 具体实施方式 下面将对比现有技术中的变径弯管, 同时参照附图并结合具体实例来对本发明的 实施方式进行说明。 首先, 对图 1中所示的现有技术中使用的一种变径弯管的结构进行说明。 如图 1所示, 现有技术中的变径弯管 1的结构如下: 弯管 1具有大内径的输入端 la (具有内径 Φ1, 例如 175mm)和小内经输出端 lb
(具有内径 Φ2, 例如 150mm), 且弯管 1从输入端 la到输出端 lb的内径是连续减小 的。弯管 1靠外侧的外管壁的曲率半径 R1和靠外侧的内管壁的曲率半径 R2具有共同 的圆心 01, 弯管 1靠外侧的内管壁的曲率半径 R4和靠内侧的外管壁的曲率半径 R5 具有共同的圆心 02, 弯管 1的弯曲中心线的曲率半径 R3具有圆心 03。 现有技术中 的弯管 1将变径弯管 1的上述圆心 01和圆心 02彼此偏置,可以使弯管 1的外侧管壁 与内侧管壁件产生壁厚差。 如图 1中所示, 变径弯管 1的上述曲率半径 Rl、 R2、 R3、 R4、 R5中都是固定不 变的。 并且由此, 弯管 1的内部变径的锥度也是固定不变的。 具体地, 这里所指的内 径锥度可以以这种方式计算, 即截取弯管 1中的任意一段,将其看做一个假想的圆台, 以圆台底面半径减去圆台顶面半径, 进而处以圆台的高度 (以此段弯管中的弯管中心 线的弧长作为圆台高度), 由此即可计算出内径锥度。通过上面的描述可知, 现有技术 中的变径弯管 1的内径锥度是不变的。 图 1中的变径弯管 1, 由于其在整个转弯结构(从输入端 la至输出端 lb)中曲率 半径都是固定不变的, 因此在物料 (例如, 混凝土) 流过弯管 1的过程中, 物料在内 径较大的位置处和内径较小的位置处的流速是不同的, 内径较小的位置处物料的流速 较快, 这样就会造成内径较大部分和内径较小部分的磨损不均匀。 同时, 由于弯管 1 内径的锥度也是固定不变的, 同样地, 弯管 1内物料流速较大的位置 (内径较小处) 的磨损也会比物料流速较小的位置 (内径较大处) 要快。 这就造成了现有技术中的变 径弯管 1整体磨损不均匀, 并且局部承受冲击过大, 由此降低了弯管 1的整体使用寿
针对上述问题, 本发明对变径弯管进行了重新优化设计, 改变了变径弯管的半径 的设计方式, 进而在此技术上, 更有利地, 改变了变径弯管的内径锥度的设计方式, 以"弯管从大端至小端的曲率半径呈增大趋势"、 "弯管从大端至小端的内径锥度成减小 的趋势"为设计原则, 设计全新的变曲率变锥度的变径弯管, 以消除变径弯管受力不均 的问题, 同时降低物料在变径弯管内的压力损失。 下面将结合具体实例来对上述设计 方式进行说明。 为了便于更好地理解本发明, 下面首先对以下技术术语进行说明。在本说明书中, 弯管的 "曲率半径"是指弯管整体的曲率半径, 即作为一个弯曲结构件的弯曲半径, 该 曲率半径一般可以用弯管中心线的曲率半径来表示, 即弯管中心线距离其弯曲中心的 半径, 例如图 1中所示的半径 R3。 当然事实上, 如果作进一步的精细划分, 弯管的曲 率半径可以包括弯管外壁 (包括外侧和内侧) 距离其弯曲中心的半径 (如图 1中的半 径 Rl、 R2), 弯管内壁 (包括外侧和内侧) 距离其弯曲中心的半径 (如图 1中的半径 R4、 R5 )。 上述曲率半径的曲率中心可以是不同的, 例如图 1 中所示的那样。 弯管的 中心线、 外壁和内壁分别具有不同的曲率中心。 本文中的术语 "内径锥度"是指在弯管 的曲率半径变化的情况下, 曲率半径变化的速度(类似于弧线的曲率), 其具体的计算 方式将在下文中结合具体实例详细说明。 说明书中的术语"大端"是指本发明的变径弯 管的曲率半径最大的端部 (如图 2中的 10a), 而"小端"是指变径弯管的曲率半径最小 的端部 (如图 2中的 10b)。 图 2示出了根据本发明一个优选实施方式的变径弯管 10的结构示意图。图 3示出 了该变径弯管 10的中心线的示意图。 图 4示出了图 2中的变径弯管 10的五个剖切面 的剖面图。 图 2中所示的变径弯管 10可以用于泵送设备的物料输送管路中,以输送例如混凝 土流体。 该变径弯管 10包括输入端 10a (具有内径 Φ1, 例如 179mm) 和输出端 10b (具有内径 Φ2, 例如 150mm), 其中, 变径弯管 10的曲率半径从输入端 10a至输出 端 10b呈增大的趋势。也就是说,本发明的变径弯管 10的曲率半径在弯管内径较大的 位置较小, 而在弯管内径较小的位置较大。 由流体压力分布原理可知, 内径较大的位 置流速较慢, 而内径较小的位置流速较快, 按照弯管等寿命设计思路, 在流速慢的位 置加大变径弯管 10的曲率半径, 以提高流速, 在流速快的位置减小曲率半径, 以减小 冲击, 从而可以保证流体在整个变径弯管中流速均匀, 避免对管壁局部位置的不均匀 冲击。 具体地, 上述的曲率半径可以是下面列出的曲率半径中的一个或多个: 变径弯 管 10的外管壁相对于弯曲中心 0的远侧(例如图 2中所示的 10p)的曲率半径、 上述 外管壁相对于弯曲中心 0的近侧的曲率半径、变径弯管 10的内管壁相对于弯曲中心 0 的远侧的曲率半径(例如图 2中所示的 10n)、上述内管壁相对于弯曲中心 0的近侧的 曲率半径以及变径弯管 10的中心线 10i的曲率半径。 在优选地实施方式中, 将上述的 曲率半径都按照上述原则设计。需要说明的是,这里的外管壁是指变径弯管 10与外部 环境接触的管壁, 内管壁是指变径弯管 10内部的与流体接触的管壁。 进一步地, 根据本发明的变径弯管 10, 其内径锥度设计成从输入端 10a至输出端 10b 呈减小的趋势。 这里, 内径锥度的计算方式如上面针对现有技术描述的计算方式 一样。 为了说明的目的, 在图 2中以五个剖切面 A-A、 B-B、 C-C、 D-D、 E-E将变径 弯管 10示例性地分成了五个区段 10c、 10d、 10e、 10f、 10g、 10h, 变径弯管 10的从 输入端 10a至输出端 10b中这些区段 10c、 10d、 10e、 10f、 10g、 lOh的曲率半径依次 增大, 且这些区段 10c、 10d、 10e、 10f、 10g、 lOh的内径锥度连续减小。 需要说明的 是, 划分这五个区段 10c、 10d、 10e、 10f、 10g、 lOh仅仅是为了说明变径弯管 10的 弯曲变径和内径锥度的变化趋势,而并非表示本发明的变径弯管 10只能以图中所示的 方式变化。 事实上, 对于图 2中所示的变径弯管 10, 可以以任一角度区间来划分变径 弯管 10,划分的区段可以任意小,无论是多小的区段,通过上述方式计算内径锥度时, 都将满足从变径弯管 10的输入端 10a至输出端 10b, 弯管 10的曲率半径呈增大趋势, 内径锥度都呈减小趋势, 即, 本发明的变径弯管 10 的弯管半径在越靠近输入端 10a 的位置处越小, 在越靠近输出端 10b的位置处越大; 同时, 变径弯管 10的内径锥度在 越靠近输入端 10a的位置处变径程度越快 (即内径锥度较大), 而在越靠近输出端 10b 的位置处变径程度越慢(即内径锥度较小)。通过这种变曲率半径并结合变内径锥度的 设计方式,能够进一步保证本发明的变径弯管 10在整个弯曲结构上都具有均匀的流体 冲击力, 且进一步减小流体在变径弯管 10内部由于过度冲击而带来的压力损失。 进一步地, 如图 3中所示, 本变径弯管 10的中心线 10i的弯区半径的曲率也是渐 变的, 其中心线 10i不是普通圆弧, 而是曲率半径从输入端 10a至输出端 10b呈增大 趋势。 这与变径弯管 10的曲率半径变化趋势是对应的。 具体地, 图 3中以 15°、 30°、 45°、 60°、 75°、 90°为单位将变径弯管 10依次划分 为多个区段, 同时依次标出了这些区段占据的水平距离 Ll、 L2、 L3、 L4、 L5、 L6和 竖直距离 Hl、 H2、 H3、 H4、 H5、 H6, 具体尺寸参考下表。
Figure imgf000008_0001
由上表中的数据可以看到,从变径弯管 10的输入端 10a至输出端 10b,中心线 10i 在水平方向上的距离缩短较快, 在竖直方向上的距离缩短较慢, 也就是, 中心线 10i 近似成一个椭圆弧的形状, 该椭圆弧的水平轴线为长轴, 竖直轴线为短轴。 由此可以 看出, 中心线 10i的曲率半径从输入端 10a至输出端 10b是增大的。 并且, 在本发明的优选实施方式中, 将变径弯管 10构造成, 从输入端 10a至输出 端 10b的曲率半径连续增大; 从输入端 10a至输出端 10b的内径锥度连续减小。 相应 地, 中心线 10i的曲率半径从变径弯管 10的输入端 10a至输出端 10b也连续增大。 这 种方式有利于构造出更加光滑的内部管壁, 从而进一步减小流体冲击, 避免流体压力 损失。 进一步地, 由于实际使用中,变径弯管 10都是远离弯曲中心的外壁受到更大的流 体冲击。 因此, 根据本发明的变径弯管 10进行如下设计: 使变径弯管 10的距离弯曲 中心 0 (如图 2中所示) 较远的外侧管壁 10j的厚度大于距离弯曲中心 0较近的内侧 管壁 10k的厚度。这种设计方式可以使变径弯管 10以更加均匀的方式磨损,提高整体 的使用寿命。 例如, 可以将远离弯曲中心 0的外侧管壁 10j设计成 15 18 mm厚, 将 靠近弯曲中心 0的内侧管壁 10k设计成 10 mm厚。这种设计方式可以通过将变径弯管 10的内管壁 10η相对于外管壁 10p偏心地设置来实现。 图 4(a)至图 4(e)中清楚地示出 了这种偏心设置。 图 4(a)至图 4(e)中以 Ca、 Cb、 Cc、 Cd、 Ce来表示剖切面 A-A、 B-B、 C-C、 D-D、 E-E处内管壁 10n相对于外管壁 10p偏心距。 进一步地,在实际应用中还发现,变径弯管 10在中段部位处的磨损要大于两端处 的磨损, 因此, 本发明的变径弯管进一步进行了如下优化设计: 将外侧管壁 10j在变 径弯管 10中段处的厚度大于变径弯管 10的两端处的厚度。 图 4(a)至图 4(e)中清楚地 示出了这种变化。 结合图 2可以看出, 剖切面 A-A基本在变径弯管 10的中部, 剖切 面 B-B、 C-C禾 P D-D、 E-E分别分布在剖切面 A-A两侧, 其中, 剖切面 A-A、 B-B、 D-D处于变径弯管 10的中段, 相对而言, 剖切面 C-C和 E-E分别靠近两端, 在图 4(a) 至图 4(^所示的实例中, 变径弯管 10五个剖切面 A-A、 B-B、 C-C、 D-D、 E-E处的内 侧管壁 Dal、 Dbl、 Dcl、 Ddl、 Del都设计成 10mm厚, 将中段的三个剖切面 A-A、 B-B、 D-D处的外侧管壁 Da2、 Db2、 Dd2设计成 18mm厚 (对应地, 偏心距 Ca、 Cb、 Cd均为 4mm), 将靠近两端的两个剖切面 C-C、 E-E处的外侧管壁 Dc2、 De2设计成 15mm厚 (对应地, 偏心距 Cc、 Ce均为 2.5mm)。 依照上述的尺寸, 本发明的变径弯 管 10可以设计成具有下表中的尺寸, 其中, <Dal、 <Da2分别表示 A-A剖面处弯管 10 的内径和外径, 类似地, ΦΜ、 <Db2分别表示 Β-Β剖面处弯管 10的内径和外径, <Dcl、 Oc2分别表示 C-C剖面处弯管 10的内径和外径, <Ddl、 Φά2分别表示 D-D剖面处弯管 10的内径和外径, <Del、 Oe2分别表示 Ε-Ε剖面处弯管 10的内径和外径, 表中单位为 mm。
Figure imgf000009_0001
当然,本发明的变径弯管 10不限于上述实施例中的尺寸,可以根据本发明的原理, 依照具体的应用需要, 对上述尺寸进行任何适当地改变。 进一步地, 尽管图中所示的实施例中, 变径弯管 10具有圆形的横截面, 但是, 可 以理解,在其他的实施方式中,变径弯管 10的横截面也可以为椭圆形、方形或矩形等。 并且, 在设计本发明的变径弯管 10时, 变径弯管 10可以用任意合适的弯曲弧段 构成,例如,在图示实施方式中的变径弯管 10由多个曲率半径不同的圆弧区段构成(事 实上, 这些圆弧区段可以无限小)。在其他实施方式中, 本发明的变径弯管可以由任何 合适的弧形区段构成, 例如, 弧形区段可以是选自由圆弧区段、 椭圆弧区段、 双曲线 区段、 抛物线区段、 渐开线区段构成的组中的一种或多种。 通过数字建模, 可以精确 地设计出多种构造形式的变径弯管, 并可以保证精确的设计尺寸。 此外, 根据本发明的原理还提供了一种泵送设备, 其输送管路中包括上述根据本 发明的变径弯管。 该泵送设备可以是混凝土泵送设备。 当然, 根据需要, 本发明的变 径弯管也可以应用于用于输送其他类型流体的泵送设备。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内所作的任何修 改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种变径弯管, 用于流体输送管路中, 所述变径弯管 (10) 包括输入端 (10a) 和输出端 (10b), 其特征在于,
所述变径弯管(10) 的曲率半径从所述输入端(10a)至所述输出端(10b) 呈增大的趋势。
2. 根据权利要求 1所述的变径弯管, 其特征在于,
所述变径弯管(10) 的内径锥度从所述输入端(10a)至所述输出端(10b) 呈减小的趋势。
3. 根据权利要求 1或 2所述的变径弯管, 其特征在于,
所述变径弯管 (10) 从所述输入端 (10a) 至所述输出端 (10b) 的曲率半 径连续增大。
4. 根据权利要求 1或 2所述的变径弯管, 其特征在于,
所述变径弯管 (10) 从所述输入端 (10a) 至所述输出端 (10b) 的内径锥 度连续减小。
5. 根据权利要求 1或 2所述的变径弯管, 其特征在于, 所述变径弯管 (10) 相对 于其弯曲中心 (0) 的所述曲率半径包括: 所述变径弯管 (10 ) 的外管壁相对 于所述变径弯管 (10 ) 的弯曲中心 (0 ) 的近侧的曲率半径、 所述外管壁相对 于所述弯曲中心 (0 ) 的远侧的曲率半径、 所述变径弯管 (10 ) 的内管壁相对 于所述弯曲中心(0)的近侧的曲率半径、所述内管壁相对于所述弯曲中心(0) 的远侧的曲率半径以及所述变径弯管 (10) 的中心线 (10i) 的曲率半径。
6. 根据权利要求 1或 2所述的变径弯管, 其特征在于, 所述变径弯管 (10) 的距 离所述弯曲中心 (0 ) 远的管壁 (10j ) 的厚度大于距离所述弯曲中心 (0) 近 的管壁 (10k) 的厚度。
7. 根据权利要求 6所述的变径弯管, 其特征在于, 距离所述弯曲中心 (0) 远的 管壁 (10j )在所述变径弯管 (10) 中段处的厚度大于所述变径弯管 (10) 的两 端处的厚度。 根据权利要求 1所述的变径弯管, 其特征在于, 所述变径弯管 (10) 的横截面 为圆形、 椭圆形、 方形或矩形。 根据权利要求 1所述的变径弯管, 其特征在于, 所述变径弯管 (10) 由多个曲 率半径不同的弧形区段构成, 所述弧形区段选自由圆弧区段、 椭圆弧区段、 双 曲线区段、 抛物线区段、 渐开线区段构成的组中的一种或多种。
10. 一种泵送设备, 其特征在于, 所述泵送设备的流体输送管路中包括根据权利要 求 1至 9中任一项所述的变径弯管 (10)。
PCT/CN2011/078648 2011-01-25 2011-08-19 变径弯管和包括该变径弯管的泵送设备 WO2012100525A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110028097 CN102109077B (zh) 2011-01-25 2011-01-25 变径弯管和包括该变径弯管的泵送设备
CN201110028097.3 2011-01-25

Publications (1)

Publication Number Publication Date
WO2012100525A1 true WO2012100525A1 (zh) 2012-08-02

Family

ID=44173316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078648 WO2012100525A1 (zh) 2011-01-25 2011-08-19 变径弯管和包括该变径弯管的泵送设备

Country Status (2)

Country Link
CN (1) CN102109077B (zh)
WO (1) WO2012100525A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109077B (zh) * 2011-01-25 2013-04-03 中联重科股份有限公司 变径弯管和包括该变径弯管的泵送设备
CN102410421A (zh) * 2011-09-23 2012-04-11 扬州大学 新型90°变曲率弯管
JP2013217346A (ja) * 2012-04-12 2013-10-24 Hitachi Ltd ポンプ吸込管
AT520617B8 (de) * 2016-07-07 2022-09-15 Nelson Irrigation Corp Kreisberegnungsbewässerungs-Schwanenhals mit veränderlichen Querschnittsdurchmessern
CN106513582B (zh) * 2016-12-31 2018-01-12 马鞍山市海天重工科技发展有限公司 一种半弯管的浇注系统
CN108458194A (zh) * 2018-05-11 2018-08-28 江苏太平橡胶股份有限公司 变径橡胶弯管
CN108644514A (zh) * 2018-06-28 2018-10-12 三汽车制造有限公司 一种混凝土输送弯管及其制造方法
CN109248997A (zh) * 2018-11-23 2019-01-22 芜湖新兴铸管有限责任公司 渐开线弯头流槽
CN110259656A (zh) * 2019-06-17 2019-09-20 重庆大学 泵送混凝土非定常流泵送压力动态分析方法
CN114738224B (zh) * 2022-03-29 2023-06-06 中联重科股份有限公司 S管分配阀及混凝土泵送装置
CN115163957A (zh) * 2022-05-26 2022-10-11 中国航空工业集团公司沈阳飞机设计研究所 一种低阻航空管路转向器
CN115163954A (zh) * 2022-05-26 2022-10-11 中国航空工业集团公司沈阳飞机设计研究所 一种低阻航空管路分配器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718461A (en) * 1995-01-14 1998-02-17 Esser-Werke Gmbh & Co. Kg Pipe bend
CN1178879A (zh) * 1996-10-07 1998-04-15 Abb.碳有限公司 弯曲半径减小的弯管
US5984374A (en) * 1997-08-20 1999-11-16 Esser-Werke Gmbh Pipe bend
JP2001004088A (ja) * 1999-06-21 2001-01-09 Ishikawajima Harima Heavy Ind Co Ltd 異径マイターベンドの製作方法
WO2009127192A1 (de) * 2008-04-17 2009-10-22 Naber Holding Gmbh & Co. Kg Strömungsoptimierter rohrbogen
WO2010130243A1 (de) * 2009-05-11 2010-11-18 Esser-Werke Gmbh & Co. Kg Rohrbogen
CN102109077A (zh) * 2011-01-25 2011-06-29 长沙中联重工科技发展股份有限公司 变径弯管和包括该变径弯管的泵送设备
CN201992249U (zh) * 2011-01-25 2011-09-28 长沙中联重工科技发展股份有限公司 变径弯管和包括该变径弯管的泵送设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718461A (en) * 1995-01-14 1998-02-17 Esser-Werke Gmbh & Co. Kg Pipe bend
CN1178879A (zh) * 1996-10-07 1998-04-15 Abb.碳有限公司 弯曲半径减小的弯管
US5984374A (en) * 1997-08-20 1999-11-16 Esser-Werke Gmbh Pipe bend
JP2001004088A (ja) * 1999-06-21 2001-01-09 Ishikawajima Harima Heavy Ind Co Ltd 異径マイターベンドの製作方法
WO2009127192A1 (de) * 2008-04-17 2009-10-22 Naber Holding Gmbh & Co. Kg Strömungsoptimierter rohrbogen
WO2010130243A1 (de) * 2009-05-11 2010-11-18 Esser-Werke Gmbh & Co. Kg Rohrbogen
CN102109077A (zh) * 2011-01-25 2011-06-29 长沙中联重工科技发展股份有限公司 变径弯管和包括该变径弯管的泵送设备
CN201992249U (zh) * 2011-01-25 2011-09-28 长沙中联重工科技发展股份有限公司 变径弯管和包括该变径弯管的泵送设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUO, YAODONG.: "Novel Bending Pipe instead of Right Angle Round Bending Pipe.", WATER & ASTEWATER ENGINEERING., no. 3, June 1982 (1982-06-01), pages 6 - 8 *

Also Published As

Publication number Publication date
CN102109077A (zh) 2011-06-29
CN102109077B (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
WO2012100525A1 (zh) 变径弯管和包括该变径弯管的泵送设备
CN204156061U (zh) 带有极化扭转功能的微波波导管道90度转弯机构
CN104201439A (zh) 带有极化扭转功能的微波波导管道90度转弯机构
CN104607512B (zh) 一种高精度大管径小弯径比的大角度管道的弯曲成形方法
CN103277587B (zh) 耐磨锥管、混凝土输送管路和混凝土泵送设备
CN201992249U (zh) 变径弯管和包括该变径弯管的泵送设备
CN203215173U (zh) 钢质90°弯角接管
CN215488255U (zh) Y字管
CN102610875B (zh) 微波波导管道90度转弯机构
CN204592676U (zh) 耐磨弯头
CN202791098U (zh) 高流通性连接弯管
CN112325028A (zh) Y字管
CN201047478Y (zh) 双缓冲弯管结构
CN207018709U (zh) 一种内装整体陶瓷管的耐磨弯头
CN204942883U (zh) 一种结构紧凑的波纹膨胀节
CN205401965U (zh) 一种高压厚壁大口径无缝同心异径管
CN205401025U (zh) 外侧加厚的混凝土输送泵弯头
CN211035704U (zh) 一种蒙砂液刀及蒙砂装置
CN110030401B (zh) 一种带补偿功能全通径焊接球阀
CN217209573U (zh) 一种空调器降噪管路及空调器
CN217463666U (zh) 混凝土输送弯管及混凝土泵车
CN204785120U (zh) 碟状双头波纹连接管
CN215831376U (zh) 用于污泥输送管道的接头装置以及污泥输送管路
CN108458194A (zh) 变径橡胶弯管
CN212298073U (zh) 一种顺水大弯头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857280

Country of ref document: EP

Kind code of ref document: A1