WO2012100438A1 - 以流沙为工作介质的太阳能储热及高温气体产生系统 - Google Patents

以流沙为工作介质的太阳能储热及高温气体产生系统 Download PDF

Info

Publication number
WO2012100438A1
WO2012100438A1 PCT/CN2011/070822 CN2011070822W WO2012100438A1 WO 2012100438 A1 WO2012100438 A1 WO 2012100438A1 CN 2011070822 W CN2011070822 W CN 2011070822W WO 2012100438 A1 WO2012100438 A1 WO 2012100438A1
Authority
WO
WIPO (PCT)
Prior art keywords
quicksand
high temperature
heat
heat storage
sand
Prior art date
Application number
PCT/CN2011/070822
Other languages
English (en)
French (fr)
Inventor
陈裕启
Original Assignee
Chen Yuqi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen Yuqi filed Critical Chen Yuqi
Priority to CN201180066409.8A priority Critical patent/CN103392068B/zh
Priority to US13/982,500 priority patent/US20140026883A1/en
Priority to EP20110857190 priority patent/EP2669514A4/en
Priority to PCT/CN2011/070822 priority patent/WO2012100438A1/zh
Publication of WO2012100438A1 publication Critical patent/WO2012100438A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/90Solar heat collectors using working fluids using internal thermosiphonic circulation
    • F24S10/95Solar heat collectors using working fluids using internal thermosiphonic circulation having evaporator sections and condenser sections, e.g. heat pipes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • F03G6/067Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/72Arrangements for concentrating solar-rays for solar heat collectors with reflectors with hemispherical reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/20Working fluids specially adapted for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D13/00Heat-exchange apparatus using a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
    • F28C3/14Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid the particulate material moving by gravity, e.g. down a tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a system and method for storing solar energy.
  • the present invention also relates to a system and method for generating high temperature gas using stored solar energy.
  • the present invention relates to a solar heat storage and high temperature gas generating system using quicksand as a working medium. Background technique
  • the energy stored in solar thermal systems is stored in the form of heat and is the best known way to solve solar energy storage.
  • the key is to use a heat storage medium that is inexpensive, high temperature resistant, and easy to exchange heat.
  • the liquid has a molten metal salt, a heat transfer oil, a metallic sodium or the like.
  • the advantage of using a liquid as an energy storage medium is that it has a good fluidity.
  • the disadvantage is that when the volume is large, the container is subjected to a large pressure at a high temperature in the lateral direction, resulting in a high cost.
  • molten metal salts have problems with wall corrosion, heat transfer oil and sodium metal are expensive. And the heat transfer oil is prone to aging, and the metal sodium should be considered to prevent leakage safety. All of this makes the cost of a heat storage system using a liquid as a heat storage medium high.
  • the solid heat storage medium has rocks, soil, concrete, etc., and has the advantages of low price, but the disadvantage is that the fluidity is poor, which makes heat transfer and transfer difficult.
  • the collector does not consider the situation of solar concentrating. As a result, the exposed area is large, resulting in large convection and radiation loss. Therefore, the maximum temperature of the heated particulate matter cannot be too high, so it cannot be directly applied to the high-temperature photothermal system. Therefore, it cannot be used to effectively generate electricity or as an industrial power.
  • the surface of the quicksand is usually light-colored. When it is used directly to absorb sunlight, it has a high reflectivity to sunlight, so that the energy lost by reflection is large and the efficiency is low.
  • the object of the present invention is to provide a solar heat storage and high temperature gas generating system using quicksand as a working medium, which has good heat storage effect, large heat storage, high heat exchange efficiency and low running cost.
  • a solar heat storage and high temperature gas generating system comprising: a solar tracking concentrating device, a heat storage tank, and a heat exchange device, wherein the working medium is Flowing sand; heat exchange device performs heat exchange between working fluid and sand or gas or liquid; heats the working fluid through the sunglasses concentrating device, and the heated working fluid is transported to the heat storage tank, and the heat of the working fluid is stored in the storage The hot tank; the working fluid is stably discharged from the heat storage tank, and the heat is transferred to the high-pressure gas or liquid to be heated through the heat exchange device to generate high-temperature and high-pressure gas.
  • a solar energy storage and high temperature gas generating system for a high temperature and high pressure air generating system
  • the system comprising: a solar tracking concentrating device, a heat storage tank, and a heat exchange device
  • the working medium adopts quicksand; the direct or indirect heating of the working fluid through the sunglasses concentrating device to 800 ° C - 1500 ° C, the heated working fluid is transported to the heat storage tank to store heat; the normal temperature air is compressed by air First- and second-stage compression and heat exchange of the machine, the pressure air pressure is continuously increased; then, the compressed air is compressed by the air compressor and output to the heat exchange device and the high-temperature working fluid drifting sand discharged from the heat storage tank.
  • the pressurized air is heated to 700 ° C - 1400 ° C, the high temperature and high pressure air is led to the turbine of the vortex machine to generate power, the hot air after the turbine is transferred from the heat exchange chamber to the residual heat of the air
  • the working fluid is discharged, and the working fluid is transported to another small heat storage tank through the conveying system, and then sent back to the concentrating solar concentrating device for circulation heating.
  • a solar heat storage and high temperature gas generating system for a high temperature and high pressure steam generating system
  • the system comprising: a solar tracking concentrating device, a heat storage tank, and a superheater,
  • the working fluid adopts quicksand; the working fluid is directly or indirectly heated by the concentrating device of the sunglasses to 400 ° C - 650 ° C, and the heated working fluid is transported to the heat storage tank to store heat, the steam turbine
  • the machine quality water is treated by the water processor, and the water is preheated to 90 ° C through a sand-water heat exchanger, pressurized to 3-5 MPa by a pressure water pump, and the heat transfer by the steam generator output, superheater
  • the residual temperature of the output drift sand is exchanged by the steam generator to convert the water into saturated steam.
  • the saturated steam is separated into steam and steam in the steam drum, the water is returned to the steam generator, and the saturated steam is superheated in the latter stage.
  • the high-temperature quicksand output from the heat storage tank is further heated to produce supersaturated steam of 350-550 ° C and 2-10 MPa. Then, the supersaturated steam enters the turbine turbine of the turbine, and the output steam is condensed into water through a condenser to enter The water processor is recycled.
  • a heat storage tank characterized in that: a side wall of the heat storage tank is composed of a refractory layer, a heat insulation layer and an outer wall sealing layer from the inside to the outside; the refractory layer is made of special bricks
  • the surface of each special brick facing the protruding portion of the inner side of the heat storage tank is a horizontal plane, and the lower part is a slope or a curved surface between the horizontal plane and the inclined surface, and the angle between the inclined surface and the horizontal plane is smaller than the angle of repose of the sand
  • a method for surface blackening modification by a carbonization treatment of a surface of a sand directly receiving sunlight characterized in that sand and a carbon-rich substance are uniformly mixed, and air is isolated. Heat to 600 or more under the conditions.
  • a heat exchange device characterized in that: a cyclone heat exchanger is used, the cyclone heat exchanger has an annular structure, and the outer edge of the annular structure is provided with a uniform hole with an inclination angle of 10° Pipes of equal length and inclination of -20° are circumferentially inserted into each of the channels, and the other end of these pipes is rotated and collected on the tube sheet, and connected to the gas inlet through the tube box; high-speed gas enters the cyclone heat exchange through the inlet
  • the annular structure of the device performs a precession motion, and flows out from the middle through the built-in air deflector; a plurality of holes are axially symmetrically opened at an intermediate position of the upper portion of the cyclone heat exchanger, and the flowing sand flows through the holes;
  • the gas is swirled from the outside to the inside in the radial direction.
  • the flowing sand is spun out from the inside to the outside under the action of centrifugal force, and the gas and the quicksand move in a countercurrent flow in the radial direction, thereby realizing the countercurrent heat exchange between the gas and the quicksand;
  • a collection nozzle is set up at the center to collect the quicksand.
  • a heat exchange device characterized in that: a cyclone heat exchanger is adopted, the inlet portion of the cyclone heat exchanger is composed of a volute-shaped air inlet, and after the air enters the cyclone heat exchanger, For high-speed rotation, it flows out from the upward-facing outlet at the center; the high-temperature sand flows from the annularly-connected inlet pipe to the cyclone heat exchanger, on the one hand, rotating with the air, and on the other hand, under the action of centrifugal force, along the diameter Moving outward, flowing out through the outlet below the central portion, the gas and the quicksand move in a countercurrent flow in the radial direction, thereby achieving countercurrent heat exchange between the gas and the quicksand.
  • a heat exchange device characterized in that: a cyclone heat exchanger is used, the cyclone heat exchanger is composed of a cyclone tube, and a high-speed gas enters the cyclone through the inlet through the inlet.
  • the spiral motion also moves axially downward and radially inward, exiting through the outlet;
  • the upper part of the center of the cyclone tube is provided with a circular pipe with a bell mouth at the lower end, and a cone at the lower end of the bell mouth, with a cone
  • the gap of the tube, the quicksand flows through the pipe through the pipe into the conical tube gap ⁇ in the main body of the cyclone heat exchanger, followed by the rotary motion of the gas, while the quicksand is rotated out from the inside out by the centrifugal force, moving downward, through the bottom annular exit
  • the outflow, gas and quicksand move in a countercurrent flow in the radial direction, thereby achieving countercurrent heat exchange between the gas and the quicksand.
  • a solar tracking concentrating device comprising: a condensing mirror, a triangular bracket, a slewing bearing with a gear, a speed reducer for controlling horizontal rotation, a control portion, and a front and rear direction rotation.
  • the speed reducer and the control part, the slewing bearing is horizontally placed on the fixed triangular bracket; two coaxial ball bearings are arranged above the rotating disk of the slewing bearing, and rotate with the rotation of the slewing bearing in the horizontal direction; the rotating shaft of the slewing bearing and The rotating shaft of the ball bearing is perpendicular to each other and intersects with a fixed point; the collecting mirror is symmetrically fixed on the rotating shaft of the two ball bearings, and the height of the collecting mirror is away from the two ball bearings, so that the center of gravity of the collecting mirror overlaps with the fixed point.
  • a heat exchange chamber characterized in that: a settling chamber heat exchanger is used, the lower part of the settling chamber heat exchanger is a barrel structure, the upper part is a cone structure, and the inside of the barrel is lightly laid. Insulating refractory material, the outer part is welded by metal or made of brick, the bottom is laid by the bottom layer and the light heat insulating material, and the bottom of the tube structure is provided with a layer of high temperature resistant material with a uniform venting hole.
  • the material layer is 3. -15.
  • the outlet has a cylindrical shape; the gas is led from the higher end of the layer of high temperature resistant material to the outer inlet of the settling chamber; the taper angle of the upper cone cap is greater than the angle of repose of the quicksand; the center of the cone has a cylindrical container for the quicksand
  • the entrance, the bottom of the cone structure is a grid of crossbars and vertical bars, a funnel-shaped container is placed on each grid point, and connected to the top cylinder container by pipes; these pipes make the quicksand from the top cylinder container on the one hand Flowing into each funnel-shaped container, on the other hand, supporting the cone structure together with the metal or non-metal mesh; the sand flows out uniformly from each funnel-shaped container, and the air flows evenly upward; the sand and air are in a uniform reverse flow Achieve heat exchange.
  • the high-temperature working medium is stably outputted from the heat storage tank, and heat is transferred to the high-pressure fluid to be heated by heat exchange to generate high-temperature and high-pressure gas.
  • the working fluid thermal cycle system includes a quicksand thermal fluid cycle and a fluid thermal fluid cycle.
  • the quicksand thermal fluid cycle is a closed loop, and the fluid working fluid cycle can be open circuit or closed circuit.
  • the two cycles undergo heat exchange through the heat exchanger. Since the invention can realize high-temperature and high-pressure gas all-weather, continuously and stably, and promote turbine turbine power generation, it can be operated at a constant temperature, so that the utilization efficiency and service life of the system are greatly improved.
  • the quicksand itself can be heated by solar energy to a very high temperature (e.g., 1500); the refractory brick of the heat storage tank can withstand a very high temperature (e.g., 2000 or more), and therefore, the heat storage effect is good.
  • a very high temperature e.g. 1500
  • a very high temperature e.g. 2000 or more
  • the heat storage tank according to the present invention can have a diameter and a height of ⁇ 50 meters, a volume of ⁇ 10 5 cubic meters, and an energy storage capacity of (1-2) xl0 14 J, which can provide a turbine engine of 30 MW or more. ⁇ 10 days of energy storage.
  • the heat storage tank allows intermittent input and continuous stable output of a high temperature working fluid (sand) which is heated by sunlight.
  • sand high temperature working fluid
  • the quicksand when the quicksand is placed in the heat storage tank, it is not in direct contact with the body on the side of the container, so that the lateral pressure on the wall is negligibly small, so that the heat storage tank can have a larger volume, so Large heat storage.
  • the room temperature air is sucked in, and is pressurized in series via the multistage compressor. Except for the last stage, after the previous stage is pressurized, the cyclone heat exchanger proposed by the present invention transfers heat to the cooling air. The quicksand cools the pressurized air, making the entire pressurization process approximately an isothermal process, thereby reducing the mechanical energy loss during air pressurization to improve system efficiency.
  • the air after the final stage of pressurization is sent to the cyclone heat exchanger provided by the present invention, and the high temperature working fluid flow discharged from the heat storage tank is exchanged for heat, so that the pressure gas becomes a high temperature and high pressure gas. This high temperature and high pressure gas is sent to the turbomachine turbine.
  • the hot air after the turbine is transferred from the settling heat exchange chamber provided by the present invention to the working fluid.
  • Working fluid quicksand
  • the conveyor system is transported to another small heat storage tank, which is sent to the concentrating sunglasses for circulation heating.
  • the efficiency of the system is greatly improved compared with the gas turbine using the single cycle.
  • the quicksand is directly and reversely exchanged with the hot gas, and therefore, the heat exchange efficiency is high.
  • a typical gas heat exchanger is a heat exchange material that is separated by a tube sheet.
  • the heat transfer coefficient and heat exchange area are small, resulting in low heat exchange efficiency and large volume of the heat exchanger.
  • the air and the quicksand are mixed, reversely flowed, and finally separated by a centrifugal force of rotation or inertial gravity. Through such a process, direct reverse heat exchange between air and quicksand is achieved.
  • the heat exchange area per unit volume and the heat transfer coefficient are increased by more than one order, so that the heat exchange efficiency is greatly improved, the heat exchanger structure is more compact and the cost is lower.
  • the cost per unit area is not increased, whereby a storage container having a large volume and a low cost can be obtained, and therefore, the running cost is minimized.
  • the cyclone heat exchanger of the present invention direct heat exchange between the gas and the quicksand, the mixing, heat exchange, and separation of the quicksand and the air are realized in a compact form at a time.
  • This can greatly increase the heat exchange area, reduce the volume of the heat exchanger, greatly improve the heat exchange efficiency and reduce the cost.
  • the gas and quicksand move in the same direction in the radial direction and move in the countercurrent form in the radial direction. Because the angular velocity is much larger than the radial velocity, the gas and the quicksand move through the radial reverse motion to realize the countercurrent heat transfer.
  • water and water vapor and quicksand are separated by a metal pipe, water and water vapor flow upward in the metal pipe, and high-temperature quicksand outside the metal pipe flows downward by gravity.
  • the quicksand and the water exchange heat in the countercurrent, and the water in the heating pipe produces saturated water vapor.
  • some inserts such as twisted belts may be placed vertically downward to increase the mixing between the different temperature layers of the sand during the downward flow of the sand to improve the heat exchange efficiency.
  • the quicksand is used to cool the hot water output from the condenser, so that the cooling water of the condenser can be used cyclically.
  • quicksand cooling it can be used to save a lot of water while maintaining high efficiency. This is important for the use of steam turbines to generate electricity in places where the sun is abundant but lacks water.
  • the air cooling efficiency is low and the energy consumption is large.
  • the present invention also provides a concentrating sunglasses for a dish or tower type sun tracking concentrating system.
  • the concentrating heating tube requires a vacuum glass tube and a metal package, which is technically difficult and costly.
  • the duct of the heating pipe of the trough solar concentrating system is composed of high temperature resistant metal or non-metal, and the quicksand is continuously well mixed during the rotating process, which greatly increases the heat transfer effect.
  • the quicksand in the pipeline is pressurized under atmospheric pressure, enabling low-cost manufacturing.
  • Figure 1 is a flow chart of solar concentrating to produce high temperature and high pressure gas.
  • Figure 2 is a schematic diagram of solar concentrating to produce high temperature and high pressure air.
  • Figure 3 is a schematic diagram of solar concentrating to produce high temperature and high pressure steam.
  • Figure 4 is an outline view of a quicksand heat storage tank, partially enlarged view of a refractory brick including a side wall refractory layer.
  • 5a to 5c are schematic views showing the structure of a cyclone heat exchanger.
  • Figure 5d is a schematic view of the structure of another cyclone heat exchanger.
  • Figure 5e and Figure 5f are schematic views of the structure of another cyclone heat exchanger.
  • Figures 6a and 6b are schematic views of the structure of a sand-water heat exchanger/steam generator.
  • FIG. 7a to 7c are schematic views showing the structure of another quicksink superheater.
  • Figures 8a and 8b are top side, cross-sectional views of the steam heat exchanger, respectively.
  • Figures 9a and 9b are schematic diagrams of the structure of a dish sun concentrator or tower sunglasses.
  • Figure 9c is a structural schematic diagram of a disc-type solar concentrator or tower sunglasses rotating forward and backward.
  • Figure 9d is a structural schematic diagram of another type of dish sun concentrating mirror or tower sunglasses rotating forward and backward.
  • Fig. 10 is a structural schematic view of a heating tube of a trough solar concentrating mirror. detailed description
  • the invention utilizes sand solidity, fluidity, high temperature resistance, non-corrosion, low cost, especially sand stackability, and sand as an energy storage material to build a heat storage tank with a large storage capacity and long-term storage of solar energy.
  • the heat storage tank allows intermittent input and continuous stable output of high temperature flowing sand heated by sunlight.
  • the invention is equally applicable to all particulate materials and their mixtures which have similar solidity, fluidity, high temperature resistance, non-corrosion, low cost, especially sand stackability.
  • a method and system for generating high temperature and high pressure gas in an all-weather, continuous, and stable manner using solar energy is provided to drive turbine turbine 4 power generation or industrial use.
  • the system includes a solar tracking concentrating device 1, a heat storage tank 2, a working fluid quicksing 5, and a heat exchange device between the gas or liquid 6, and a working fluid.
  • the sunlight collecting device 1 is directly or indirectly heated to the high temperature, and the heated working fluid is discharged to the heat storage tank 2, and the energy is stored in the form of heat.
  • the high-temperature working fluid quicksing 5 is stably outputted from the heat storage tank 2, and heat is transferred to the high-pressure gas or liquid 6 to be heated through the heat exchange device 3 to generate high-temperature high-pressure gas.
  • the atmospheric pressure gas or liquid 6 is pressurized by the pressurizing device 7 and the pressure is increased.
  • a method and system for generating high temperature, high pressure air all-weather, continuously, and stably using solar energy is provided to drive turbine turbine 4 power generation or industrial use.
  • the heated glazing device 1 directly or indirectly heats the working fluid to the high temperature of 5 to 800 ° C to 1500 ° C, and transports the heated working fluid to the thermal storage tank 2 to store the energy in the form of heat.
  • the ambient temperature air is increased after being pressurized by the air compressor 7-stage, and the cyclone heat exchanger 8 proposed by the present invention is used to realize the flow of sand for cooling air (unlike the working fluid quicksing 5, not shown) and the pressurized air.
  • the air is cooled.
  • the secondary cyclone heat exchanger 8 is used to re-heat the air between the separated sand and the pressurized air with another portion of the cooling air to cool the air again.
  • the heat is output to the cyclone heat exchanger 8 and the high temperature working fluid discharged from the heat storage tank 2, and the compressed air is converted into high temperature and high pressure air, and the pressurized air is heated to 700°. C - 1400 ° C, this high temperature and high pressure air is directed to the turbine 4 to generate power.
  • the hot air after the turbine is transferred to the working fluid drift sand 5 by the settling heat exchange chamber 9 provided by the present invention.
  • the working fluid quicksing 5 is transported to another small heat storage tank 10 through the transport system, and then sent to the solar concentrating device 1 for circulation heating.
  • the cooling air to reduce the temperature of the output air of the air compressor 7 and the residual heat of the exhaust of the vortex machine by the working fluid, the efficiency of the system and the single cycle of the cylinder are adopted. Compared with gas turbines, the gas turbines are greatly improved.
  • a method and system for stably generating high temperature and high pressure steam all the time using solar energy to drive turbine turbine 4 power generation or industrial use Through the sunglasses concentrating device 1 directly or indirectly heat the working fluid drifting sand 5 to 400 ° C - 650 ° C high temperature, the heated working fluid quicksing 5 is transported to the heat storage tank 2, the energy is stored in the form of heat.
  • the turbine working fluid 11 is treated by the water processor 12, and the water is preheated to 90 ° C by the sand-water heat exchanger 13 , pressurized to 2-10 MPa by the pressure water pump 15 , and the quicksand output by the steam generator 14
  • the heat exchange, the residual temperature of the output sand of the superheater 16 is converted into saturated steam by the heat exchange of the steam generator 14 to convert the saturated steam into the steam in the steam drum 17, and the water is returned to the front stage, (the steam generator) Before 14), the saturated steam is further heated in the latter stage by the superheater 16 and the high-temperature quicksand 5 output from the heat storage tank 2, generating high-temperature (350-600 ° C), 2-10 MPa supersaturated steam.
  • the output water vapor is condensed into water via the condenser 19.
  • the condensed water is re-entered into the water processor 12 for recycling.
  • a steam reheater can be connected to the intermediate steam outlet of the turbine turbine 18 to reheat the steam before entering the next stage turbine.
  • the reheater structure is the same as the superheater 16 proposed by the present invention.
  • the present invention provides a heat storage tank 2 which, as shown in Fig. 4, has a cylindrical body structure or other suitable structure (preferably a cylinder).
  • the side wall of the heat storage tank 2 is composed of a refractory layer 22, a heat insulating layer 20 and an outer wall sealing layer 21 from the inside to the outside.
  • the refractory layer 22 is formed of a special brick 23 having a right-angled trapezoidal side with the water level facing upward and the slope facing downward. The angle between the slope and the horizontal plane is less than the angle of repose of sand, such as 30 degrees.
  • the cone When the quicksand 5 is naturally falling down and accumulated in the heat storage tank 2 under the action of gravity, at the side wall near the heat storage tank 1, the cone is stacked on the upper horizontal plane of the protruding portion of the special brick 23 with a cone angle as a cone angle.
  • the lower part of the special brick 23 has direct contact with the quicksand 5 except for the most prominent one, and the rest is separated from the quicksand 5.
  • the slope of the special brick 23 can also be replaced by other shapes, as long as it is within the slope limited by the angle of repose.
  • the special brick 23 is composed of refractory bricks.
  • the heat insulating layer 20 is composed of a material that is lightweight, high temperature resistant, and excellent in thermal insulation properties (e.g., nano silica super insulating material).
  • the outer wall sealing layer 21 can be cast from reinforced concrete.
  • the refractory layer 22 of the heat storage tank 1 is provided with a circumferential expansion joint (not shown). Long bricks are placed on the refractory layer 22 and the sealing layer 21 every several layers to ensure structural stability and firmness.
  • the bottom of the heat storage tank 2 is laid with refractory bricks, a heat insulating layer, and a reinforced concrete foundation from top to bottom.
  • the top 24 of the heat storage tank 2 is a cone 25 composed of a light truss steel structure, and the middle top is a platform.
  • the input port 26 provided on the platform is connected to the output port 28 of the sand input device of the pneumatic input device 27, and the pipe of the pneumatic input device 27 Laying lightweight insulation mats, peripheral waterproof protection and sealing materials.
  • the working fluid flow sand 5 flows from top to bottom in the direction indicated by the arrow D, flows out into the horizontal annular passage at an outward outflow channel 29 at an inclination angle (preferably 45 degrees) larger than the friction angle, and passes through the annular passage
  • An internal air chute or conveyor belt (not shown) is conveyed to other conveyors via a horizontal bottom outlet (not shown).
  • the above-described pneumatic input device 27 can be omitted, and the quicksand 5 can be directly injected into the input port 26 of the heat storage tank 2.
  • the quicksand 5 heated by the solar concentrating mirror 1 is transported from the bottom to the top 24 by the pneumatic conveying device 27, and is input to the heat storage tank 2 via the input port 26 of the top platform, and the quicksand 5 is inside the heat storage tank 1.
  • the overall downward slow flow after a few days of storage, flows out from the bottom outlet to comply with the first in first out rule, thus ensuring the uniformity of the temperature of the sand 5 in the heat storage tank 2.
  • a plurality of outflow channels 29 which are outwardly inclined at an angle greater than the friction angle are uniformly formed on the circumference of the bottom portion so that the flow sand 5 flows out from the holes 29.
  • An annular wall 32 having a rectangular cross section is formed on the periphery of the bottom circumference, and is composed of a refractory layer, a heat insulating layer and an outer wall sealing layer from the inside to the outside, and the flowing sand 5 flowing out from each hole is collected by an air tank or a conveyor belt, and conveyed. Go to the bottom of the horizontal exit.
  • the present invention provides a method for realizing the surface blackening modification by carbonizing the surface of the sand directly receiving the sunlight, thereby greatly increasing the absorption of sunlight.
  • the specific process is to mix sand and carbon-rich substances (natural gas, gas, asphalt, oil, flour, etc.) and then heat it to a temperature higher than 600 under air-insulated conditions.
  • the surface can be turned into a carbon black structure. At higher temperatures, it becomes a more stable graphite structure and silicon carbide structure.
  • the sand after surface blackening can greatly increase the absorption of sunlight and increase the thermal conductivity.
  • the particle size of the quicksand is 0.1-1.0 mm.
  • Sand particles with a particle size in this range are very advantageous for achieving flow and heat transfer.
  • the specific implementation method is: vacuuming the quicksand heated by the concentrated solar energy to a high temperature, and mixing and mixing the coal powder in a certain ratio (for example, 100:1-10:1, preferably 30:1), and placing the surface until the surface becomes black. This process can also be carried out in the solar thermal storage tank 2.
  • a cyclone heat exchanger 8 for achieving direct heat exchange between air and quicksand, which realizes mixing and heat exchange of sand and air at a time in a compact form. And separation.
  • the main body of the cyclone heat exchanger 8 is an annular structure 31, and the outer edge of the ring is provided with a uniform tunnel, and the equal-length, inclined-angled pipe 33 having an inclination angle ⁇ of 10°-20° is uniformly inserted therein circumferentially, and the other of these pipes 33
  • One end 34 is rotatably collected onto the tube sheet 35 and connected to the gas inlet through the tube box.
  • the high velocity gas enters the annular body structure 31 of the cyclone heat exchanger 8 through the inlet, and is rotated in the direction of the arrow R, and flows out from the middle through the built-in air deflector.
  • Four or eight holes 36 are axially symmetrically opened at an intermediate position of the upper portion of the cyclone heat exchanger 8, through which the quicksand 5 flows in through the pipes 36.
  • the gas is swirled from the outside to the inside in the radial direction, and the quicksand 5 is spun out from the inside to the outside by the centrifugal force.
  • the gas and the quicksand 5 move in a countercurrent flow in the radial direction, thereby achieving countercurrent heat exchange between the gas and the quicksand 5.
  • a collection nozzle 37 is provided at the center of the bottom to collect the output of the quicksand 5 .
  • the inlet portion of the cyclone heat exchanger 8 is formed by a volute-shaped air inlet 100 for direct heat exchange between air and quicksand.
  • the inlet 100 has a rectangular cross section.
  • the high-temperature quicksand 5 enters the cyclone heat exchanger 8 from the annularly-connected inlet duct 102, on the one hand rotating with the air, and on the other hand, under the action of the centrifugal force, moving radially outward, below the central portion
  • the outlet 103 flows out.
  • the gas and quicksand 5 move countercurrently in the radial direction, thereby achieving countercurrent heat exchange between the gas and the quicksand 5.
  • the cyclone heat exchanger 8 is constructed of a cyclone.
  • the high velocity gas enters the cyclone through the inlet 104 through the inlet 104, spirals in the direction of the arrow T, and also moves axially downward and radially inward, and exits through the outlet 107.
  • the upper part of the center of the cyclone tube is provided with a circular duct 106 whose lower end is a bell mouth, and the lower end of the bell mouth is provided with a cone 109 with a conical cylinder gap therebetween, and the quicksand 5 flows through the duct 106 through the duct 106 into the conical cylinder slot cyclone heat exchanger 8
  • the following gas rotates in the direction of the arrow T.
  • the quicksand 5 is spun out from the inside to the outside under the action of centrifugal force, moves downward, and flows out through the bottom annular outlet 108.
  • the gas and the quicksand 5 move in a countercurrent flow in the radial direction, thereby achieving countercurrent heat exchange between the gas and the quicksand 5.
  • a settling chamber heat exchanger 9 for achieving direct heat exchange between air and quicksand is provided.
  • the lower part of the settling chamber is a cylinder or other cylindrical structure 40, and the upper part is a conical structure or other cone 41.
  • the inside of the cylinder is covered with a lightweight insulating refractory material, and the outside is welded by metal or made of brick.
  • the bottom is laid by a bottom layer, a lightweight insulating material, and a layer of high temperature resistant material having a uniform venting opening is provided at a position close to the bottom of the cylindrical structure 40.
  • the layer 40 of the high temperature resistant material is 3. -15. It is inclined and its outlet is cylindrical.
  • the gas passes from the higher end of the layer 420 of refractory material to the outer inlet 43 of the settling chamber.
  • the taper angle of the upper conical cap 41 is greater than the angle of repose of the quicksand 5 .
  • the bottom of the conical structure 41 is a grid 45 of the crossbar 46 and the vertical rod 47, and a funnel-shaped container 48 is placed on each grid point through the pipeline. 49 is connected to the top cylindrical container 44.
  • These ducts 49 on the one hand, cause the quicksand 5 to flow from the top cylindrical container 44 into the respective funnel-shaped containers 48, and on the other hand support the conical structure 41 together with the metal or non-metal mesh 45.
  • the quicksand 5 flows out uniformly from the respective funnel-shaped containers 48, and the air flows uniformly upward.
  • the present invention provides a sand-water heat exchanger 13 (steam generator 14) which can be used to achieve heat exchange between high temperature drift sand and water to produce hot water or saturated water vapor.
  • the basic structure is that the steel pipe 50 is evenly arranged in a vertical cross section, the upper nozzle of the steel pipe 50 is welded to the pipe plate 51, the pipe plate 51 is connected to the steam drum 52, and the lower pipe of the steel pipe 50 is welded to the pipe plate. On the 53rd, the tube sheet 53 is connected to the water tank 54.
  • the outer periphery of all the steel pipes 50 has a cylindrical pipe 55, and the upper portion of the cylindrical pipe 55 is connected to the funnel 56 below the upper pipe plate 51, and the steam pipe 55 is passed through the funnel 56.
  • the lower portion of the cylindrical pipe 55 is connected to a lower sloping plate 57 about the lower tube plate 53.
  • An outflow port 58 is provided at the intersection of the cylindrical pipe 55 and the swash plate 57.
  • the quicksand flows in from the upper funnel 56, flows from the gap of the steel pipe 50 to the swash plate 57 in the cylindrical pipe 55, and flows out through the outflow port 58.
  • the flow rate of sand is controlled by the size of the outflow port 58.
  • the high temperature quicksand 5 flows downward outside the metal pipe 50 under the action of gravity.
  • the quicksand and the water exchange heat in the countercurrent, and the water in the pipeline is heated or produces water vapor.
  • the present invention provides a quicksand superheater 16, which can be used to heat saturated steam at a high temperature flow 5 to become superheated steam 80.
  • the quicksand superheater 16 is formed by juxtaposition of a plurality of rows of serpentine steel tubes 60.
  • Each row of serpentine tubes 60 may be composed of a plurality of tubes, each of which is bent a plurality of times according to a certain length.
  • the outlet and inlet of each row of serpentine tubes are welded to the inlet port 62 and the outlet port 63, respectively, through a tube sheet.
  • the pipe 60 of the superheater 16 is wrapped in a container 68 of a positive cube.
  • the upper part of the superheater 16 has an inverted funnel shape, and the lower part has an upright funnel shape.
  • the high temperature quicksand 5 is injected in the direction indicated by the arrow K, and the lower flow sand 5
  • the funnel-shaped outlet flows out in the direction indicated by the arrow K, and the flow rate of the quicksand can be controlled by the size of the outlet.
  • the concentrating sunglasses system 1 proposed by the present invention may be a dish concentrating sunglasses system, a tower type solar concentrating system, or a trough type concentrating system.
  • the present invention also provides a concentrating sunglasses system for use in a dish or tower type solar tracking concentrating system, which comprises a concentrating mirror 75, a triangular bracket 71, a slewing bearing with a gear 72, and a control
  • the speed reducer and the control portion 74 that rotate in the horizontal direction are combined with the speed reducer that controls the rotation in the front-rear direction and the control portion 81, and the slewing bearing 72 is horizontally placed on the fixed triangular bracket 71.
  • Two coaxial ball bearings 73 are disposed above the rotating disk of the slewing bearing 72, and rotate with the rotation of the slewing bearing 72 in the horizontal direction.
  • the rotating shaft of the slewing bearing 72 and the rotating shaft of the ball bearing 73 are perpendicular to each other and intersect at a fixed point.
  • the condensing mirror 75 is symmetrically fixed to the rotating shafts of the two ball bearings 73, and the height of the condensing mirror 75 from the two ball bearings 73 is set so that the center of gravity of the condensing mirror 75 overlaps as much as possible with the fixed point. In this way, the torque applied to each axis of the two shafts by the sunglasses load is approximately zero. Therefore, the sunglasses 1 can withstand a larger load including the wind load, which is advantageous for the rotation, control, and tracking of the sunglasses, which is advantageous for the sunglasses. The weight of the sunglasses 1 is reduced and the manufacturing cost of the sunglasses 1 is reduced.
  • the triangular bracket 71 can also be replaced by a vertically placed hollow cylindrical pipe made of reinforced concrete.
  • the concentrating mirror 75 is formed by splicing the same mirror surface with a plurality of squares on the truss steel structure, and the space between the middle and the 1/20-1/8 is vacant.
  • the condensing mirror 75 is rotatable in the horizontal direction with the slewing bearing 72 and in the front-rear direction with the rotation of the bead bearing 73, so that the condensing mirror 75 is rotated in any direction around the fixed point.
  • the direction of the sun's rays at a given location on the earth and at a given moment is calculated, and the rotation in the horizontal direction and the rotation in the front-rear direction are respectively adjusted to achieve the tracking of the sunlight.
  • the horizontal direction of the condensing mirror 75 is controlled by the rotation of the motor to control the speed reducer 74 to drive the gear on the slewing bearing 72 to rotate.
  • the control of the rotation in the front-rear direction is proposed by the following three devices.
  • the speed reducer for controlling the front-rear direction and the output shaft of the control portion 81 are directly connected to the shaft of the ball bearing 73 via the coupling.
  • the input shaft of the speed reducer 81 is rotated by the control motor to drive the output shaft, thereby driving the rotation of the ball bearing 73 to realize the control of the front and rear rotation angle of the condensing mirror 75.
  • one end of the rod member 76 having a length smaller than the radius of the slewing bearing 72 is fixed to the rotating shaft of the ball bearing 73, and the other end is hinged to one end (fixed end) of the self-locking lead screw 77.
  • the other end (moving end) of the screw 77 is hinged to the rotating disk of the slewing bearing 72.
  • the plane formed by the rod member 76 and the lead screw 77 is perpendicular to the rotating shaft of the ball bearing 73, and they rotate synchronously as the slewing bearing 72 rotates horizontally.
  • the motor adjusts the position of the contact point of the lead screw 77 at the rotating disc of the slewing bearing 72 to adjust the length of the fixed end of the lead screw 77 to the movable end to change the elevation angle of the rod member 76, and to rotate the rotating shaft of the ball bearing 73, thereby realizing The control of the elevation angle of the front and rear of the condenser.
  • a gear 78 having a radius smaller than the inner diameter of the slewing bearing 72 is mounted on the rotating shaft of the ball bearing 73.
  • a pinion gear is coupled to the output shaft of the single-head worm reducer 79 via a coupling to drive the gear 78.
  • Worm Reducer 79 The lead angle on the worm indexing circle is less than 3.5° to allow the worm reducer to self-lock.
  • the input shaft of the worm reducer 79 is rotated by the control motor to drive the gear 78, thereby rotating the shaft of the ball bearing 73, thereby controlling the elevation angle of the condensing mirror 75.
  • the gear 78 can also be replaced by a 1/4 - 1/2 circumference sector gear.
  • the condensing mirror 75 is a rectangular spherical mirror 75 which is formed by a square spherical mirror with the same focal length and is spliced by a truss steel structure.
  • the outer boundary of the focal length is a rectangular spherical mirror 75, and the ratio of the side length to the focal length is better. The choice is 8/12.
  • the middle of the mirror is vacant on a rectangular area of about 1/20-1/8.
  • the concentration of sunlight is up to 2000 times, which is enough to meet the requirements of the solar high-temperature photothermal system proposed by the present invention for collecting light.
  • a fixed spherical mirror 80 is disposed at a focal length of about 2/3, and by controlling the rotation of the condensing mirror 75, the sunlight can be reflected to a fixed point near the slewing support base.
  • the concentrating magnification of the sunglasses can still reach 800-1000 times, which is sufficient to meet the requirements of the solar thermal system of the present invention for collecting light.
  • the heat sink 110 is placed at the focus of the spherical mirror 80 at about 45 from the horizontal. angle.
  • the heat radiator 110 is made of silicon carbide or other material that is low-reflecting to visible light, and the outer layer of the bottom of the heat-receiver 110 is covered with a light-weight heat insulating material. According to the high intensity of the light in the spotlight of the spherical mirror 80, the heat radiator 110 is selected.
  • the shape is made into a concave circular groove in the middle, and the top is covered by a material resistant to high temperature and transparent to infrared light (such as nanoporous SiQ 2 superinsulating material).
  • the quicksand is heated and flows out through the gap between the transparent top of the heat sink 110 and the silicon carbide body under the action of gravity.
  • the concentrating mirror 75 can be spliced by a square mirror of the same size through a truss steel structure to form a flat mirror or other curved mirror.
  • the rectangular area of the 1/20-1/8 in the middle of the mirror is vacant.
  • the use of a flat mirror helps to reduce the cost of the tower concentrating system.
  • Use the solar tracking system shown in Figures 9a, 9c, and 9d to adjust the solar light so that up to 10,000-sided tower mirrors converge the heaters placed on the same tower top of the tower system.
  • the quicksand is transported from the bottom by pneumatic force to the top of the tower, flows through the heat sink under gravity, and is heated by the focused sunlight during the downward flow.
  • the lower part enters the insulated pipe through the funnel and then flows directly into the heat storage tank 2.
  • the present invention provides a heating tube for a trough solar concentrating system.
  • the pipe 89 of the heating pipe is composed of a material resistant to high temperature, and the outer layer of the pipe 89 is provided with a material which is insulated and transmits visible light but is reflected by infrared light (such as lightweight nano-silica super-insulating material), so that the sunlight It can be transmitted into the particles of the heated quicksand 5.
  • a spiral groove 90 is provided in the duct 89.
  • One end of the pipe 89 is provided with a funnel-shaped inlet 91, the particles of the quicksand 5 enter the spiral groove 90 through the inlet 91, and the other end of the pipe 89 is "outlet 92", and the particles of the quicksand 5 are discharged through the outlet 92 to be collected in the heat storage tank 2.
  • the line is focused onto the heating tube.
  • the spiral groove 90 rotates, the particles of the flowing sand 5 move from the inlet 91 of the spiral groove 90 to the outlet 92, while moving, the particles of the flowing sand 5: 4
  • the mixture is smoothly mixed, and the particles of the quicksand 5 are gradually heated to a high temperature along the pipe 89.
  • the quicksand 5 in the pipe 89 is heated under atmospheric pressure, so that the pipe 89 can be manufactured at low cost.
  • the invention provides a trough sunglasses concentrating system which is constructed in combination with the characteristics of a tower.
  • the sunlight consisting of a plurality of trough mirrors consisting of a flat mirror is focused on a pipe.
  • Each trough mirror is composed of a plane mirror, and a single-axis tracking system is used to track the sunlight.
  • the inner wall of the pipe is made of a lightweight material that is transparent to visible light, good for infrared light reflection, and good in thermal insulation properties (such as nanoporous SiQ 2 superinsulation material), and the outside of the pipe is covered by glass.
  • a fan blows the atmospheric air to be heated directly through the pipe.
  • the heated atmospheric high temperature air enters the settling chamber heat exchanger 9 provided by the present invention to transfer heat to the working fluid sand 5, and then the flowing sand is input to the heat storage tank 2 for storage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

以流沙为工作介质的太阳能储热及高温气体产生系统 技术领域
本发明涉及一种储存太阳能的系统和方法, 另外, 本发明还涉及一种利用 储存的太阳能产生高温气体的系统与方法。 特别是, 本发明涉及以流沙为工作 介质的太阳能储热及高温气体产生系统。 背景技术
要实现太阳能的大规模应用, 两个关键问题是太阳能储能和降低运行成 本。 通过太阳能聚光加热工质, 可产生高温高压气体(如蒸汽或空气), 推动 涡轮机透平发电或在工业上使用。
太阳能光热系统中的能量以热量的形式储存, 是已知的解决太阳能储能的 最好途径。 然而, 要实现低成本、 长时间、 大规模的热量储存, 其关键是要选 用廉价、 耐高温又易于实现热量交换的储热介质。
目前, 所采用的储热介质很多, 大体上可分为液体和固体两类。 液体有熔 融金属盐、导热油、金属钠等。采用液体作为储能介质的优点是其流动性很好, 缺点是当容积很大时, 容器侧向要在高温下承受很大的压力, 致使造价很高。 此外, 熔融金属盐有器壁腐蚀的问题、 导热油和金属钠价格昂贵。 并且导热油 易于老化、 金属钠要考虑防止泄露的安全性问题。 所有这些都使得以液体为储 热介质的储热系统成本很高。 固体储热介质有岩石、 土壤、 混凝土等, 其优点 是价格低廉, 但缺点是流动性很差, 致使热量转入和转出困难。
流沙是同时具备固体和液体优点的储能介质。 利用沙的固体性、 流动性、 堆积性、 耐高温、 无腐蚀、 廉价等优点, 以沙作为工质和储能材料可以建成非 常廉价的、 储存能量很大的、 容易实现热量交换的太阳能储热-换热系统。 美 国专利 No. 4,338,919提出了用颗粒物质(包括流沙)来接收太阳能的筒单的装 置, 其中包括收集器、 存储器、 换热器、 和运输回路, 然而, 其存在如下问题:
( 1 ) 收集器没有考虑太阳能聚光的情形, 其结果是暴露面积大而导致对 流和辐射损失大, 这样加热的颗粒物质其最高温度不可能太高, 因而无法直接 应用到高温光热系统, 从而也不能用来有效地发电或作为工业动力。
( 2 ) 流沙表面通常是浅颜色的, 直接用来吸收太阳光时, 对太阳光反射 率高, 以至于因反射损失的能量大, 效率低。
( 3 )仅给出筒单的圆筒状储热罐, 当容积增大时, 器壁周向承受的压强 艮大, 解决的办法只能是增加器壁厚度。 由此导致及热应力增大、 成本增加, 以至无法低成本地制造出大的储热罐。 对通常的流体, 容器侧壁内的切向压强 正比例于容器的直径与厚度的比值。 这样, 当高度不变而直径增加时, 为保持 容器的承受力, 势必要增加容器的厚度。 从而使得单位面积的造价增加。 此外 当容器的高度增加时, 容器底部下方承受到流体的径向的压强增加, 使得单位 面积的造价进一步增加。 因此, 对于通常流体, 当容器体积增加时, 单位体积 的造价不但没减少, 反而要增加。 这就是对通常的气体或液体的流体, 一方面 容器不可能做大, 另一方面做大以后, 单位容积的成本反而更大。 对于储存流 沙等粉体物质的容器, 如果器壁的内部沿轴向是平直的圆筒体, 结论也是类似 的。
( 4 )所提出的换热器为流化床颗粒物质和管道内流体交换热量, 因管道 和空气直接接触, 其换热效率低下。 因以上这些原因, 依照美国专利 No. 4,338,919提出的方法和设备无法制成有效的产生高温高压气体以推动涡轮机 的系统。
利用太阳能产生高温工质通常要借助于太阳艮踪聚光系统。 目前的槽式、 塔式、 及碟式太阳能聚光镜造价都很昂贵。 槽式聚光系统采用单轴跟踪, 支撑 和跟踪驱动系统价 氏, 但所用到的真空玻璃吸热管造价很贵; 塔式和碟式太 阳聚光镜采用双轴跟踪, 支撑和跟踪驱动部分很昂贵。 基于这些原理的太阳能 聚光镜造价很高, 限制了太阳能聚光镜的广泛使用。 因此, 需要建造新式的太 阳能聚光镜, 以低成本地实现太阳能的跟踪聚光。
要将流沙的热量传递给气体以产生高温高压气体依赖于换热设备来实现。 目前已有的换热设备是在气体和气体、 气体和液体, 及液体和液体之间交换热 量, 无法直接用来实现流沙和气体及流沙和液体之间的换热。 发明内容
本发明的目的是提供一种以流沙为工作介质的太阳能储热及高温气体产 生系统, 其储热效果好、 储热量大、 换热效率高、 运行成本低。
为此, 根据本发明的第一方面, 提供了一种太阳能储热及高温气体产生系 统, 其特征在于: 该系统包括太阳跟踪聚光装置、 储热罐、 以及换热装置, 其 工质采用流沙; 换热装置在工质流沙和气体或液体之间实施换热; 通过太阳镜 聚光装置加热工质流沙, 加热后的工质流沙被输送到储热罐, 工质流沙的热量 存储于储热罐; 工质流沙从储热罐稳定地输出, 将热量通过换热装置传递给待 加热的高压气体或液体, 以产生高温高压气体。
根据本发明的第二方面, 提供了一种太阳能储热及高温气体产生系统, 用 于高温高压空气产生系统, 其特征在于: 该系统包括太阳跟踪聚光装置、 储热 罐、 以及换热装置, 其工质采用流沙; 通过太阳镜聚光装置直接或间接加热工 质流沙到 800°C - 1500°C, 加热后的工质流沙被输送到储热罐, 以存储热量; 常温空气经空气压缩机的一级和二级压缩、 换热, 实现压力空气压力的持续升 高; 然后, 压缩空气经空气压缩机三 ^口压, 输出到换热装置和由储热罐输出 的高温工质流沙换热, 将压力空气加热到 700°C - 1400°C, 此高温高压空气被 引向涡沦机透平, 以产生动力, 透平后的热空气由换热室将其空气剩余热量传 递给工质流沙, 工质流沙通过输送系统输送给另一个小型储热罐, 再送回聚光 太阳聚光装置循环加热。
根据本发明的第三方面, 提供了一种太阳能储热及高温气体产生系统, 用 于高温高压蒸汽产生系统, 其特征在于: 该系统包括太阳跟踪聚光装置、 储热 罐、 以及过热器, 其工质采用流沙; 通过太阳镜聚光装置直接或间接加热工质 流沙到 400°C - 650°C, 加热后的工质流沙被输送到储热罐, 以存储热量, 汽轮 机工质水经水处理器处理, 经沙-水换热器将水预热到 90°C、 通入压力水泵加 压至 3-5MPa、 和经蒸汽发生器输出的流沙换热, 过热器输出流沙的余温通过 蒸汽发生器换热, 将水转化成饱和蒸汽, 饱和蒸汽在汽包中做汽水分离, 水被 返回到蒸汽发生器之前, 而饱和蒸汽则在后一级由过热器和储热罐输出的高温 流沙进一步加热, 产生 350-550°C、 2-10MPa的过饱和蒸汽, 然后, 过饱和蒸 汽进入汽轮机涡轮机透平, 输出的水蒸气经由凝汽器冷凝成水, 以进入水处理 器循环使用。
根据本发明的第四方面, 提供了一种储热罐, 其特征在于: 储热罐的侧墙 壁从内到外由耐火层、 隔热层及外墙密封层组成; 耐火层由特型砖砌成, 每块 特型砖面向储热罐内侧突出部分的表面其上部呈水平面, 下部呈斜面或介于该 水平面和该斜面之间的曲面, 该斜面与水平面的夹角小于沙的安息角, 使得流 沙在储热罐内自然下落堆积时, 呈锥形堆积在特型砖突出部分上部水平面上, 特型砖下部除最突出的一条线和流沙有接触外, 其余部分与流沙保持分离。
根据本发明的第五面, 提供了一种将直接接收太阳光的流沙表面通过碳化 处理实现表面增黑改性的方法,其特征在于:将沙和含炭丰富的物质混合均匀, 在隔绝空气的条件下加热到 600 以上。
根据本发明的第六方面, 提供了一种换热装置, 其特征在于: 采用旋风换 热器, 该旋风换热器呈环形结构, 该环形结构的外边缘设有均匀孔道, 倾角为 10°-20°的等长、 同倾角的管道沿圆周均布地插入各孔道中, 这些管道的另一端 旋转汇集到管板上, 经管箱连接到气体的入口; 高速气体通过该入口进入到旋 风换热器的环形结构, 进行旋进运动, 经内设的引风板从中间向上流出; 在旋 风换热器的上部的中间位置上轴对称地开设若干个孔道, 流沙经这些孔道流 入; 在旋风换热器内, 气体沿径向由外向内旋进, 流沙在离心力的作用下由内 向外旋出, 气体和流沙沿径向成逆流运动, 由此实现气体和流沙的逆流换热; 在底部的中心位置设立收集嘴, 以将流沙收集输出。
根据本发明的第七方面, 提供了一种换热装置, 其特征在于: 采用旋风换 热器, 该旋风换热器的入口部分由蜗壳形空气入口构成, 空气进入旋风换热器 后, 作高速旋转, 由位于中心部位的朝上的出口流出; 高温流沙从环形均布的 入口管道 ^旋风换热器内, 一方面随空气作旋转运动, 另一方面在离心力的 作用下, 沿径向向外运动, 经位于中心部分的下方的出口流出, 气体和流沙沿 径向成逆流运动, 由此实现气体和流沙的逆流换热。
根据本发明的第八方面, 提供了一种换热装置, 其特征在于: 采用旋风换 热器, 该旋风换热器由旋风管构成, 高速气体通过入口由引风板进入到旋风管 内, 作螺旋运动, 同时也沿轴向向下和沿径向向内运动, 经出口流出; 旋风管 中央的上部设置下端为喇叭口的圆形管道, 喇叭口的下端设有圆锥体, 其间^" 圆锥筒缝隙, 流沙通过管口经管道流入圆锥筒缝隙 ^旋风换热器的主体内, 后随气体作旋转运动, 同时流沙在离心力的作用下由内向外旋出, 向下运动, 经底部环形出口流出, 气体和流沙沿径向成逆流运动, 由此实现气体和流沙的 逆流换热。 根据本发明的第九方面, 提供了一种太阳跟踪聚光装置, 其特征在于: 包 括聚光镜、 三角支架、 带齿轮的回转支承、 控制水平方向转动的减速器及控制 部分、 和控制前后方向转动的减速器及控制部分, 回转支承水平放置在固定的 三角支架上; 在回转支承的转动盘上方设置两个同轴的滚珠轴承, 随回转支承 在水平方向的转动而转动; 回转支承的转轴和滚珠轴承的转轴相互垂直并交于 一不动点; 聚光镜对称地固定在两滚珠轴承的转轴上, 聚光镜距离两滚珠轴承 的高度, 使聚光镜的重心与所述不动点重叠。
根据本发明的第十方面, 提供了一种换热室, 其特征在于: 采用沉降室换 热器, 该沉降室换热器的下部为筒结构, 上部为锥结构, 筒的内部铺设有轻质 绝热耐火材料,外部由金属焊接或由砖砌成,底部由底层、轻质绝热材料铺设, 筒结构接近底部的位置设有由一层有均勾透气孔的耐高温材料层, 该耐高温材 料层以 3。-15。倾斜, 其出口呈圆筒形状; 气体由耐高温材料层较高的一端通向 沉降室的外部入口; 上部锥顶盖的锥角大于流沙的安息角; 锥顶部中央有一筒 体容器, 为流沙的入口, 锥结构的底部为横杆和竖杆搭成的网格, 每个格点上 放置一漏斗形容器, 通过管道连接到顶部筒体容器; 这些管道一方面使流沙从 顶部筒体容器流入各个漏斗状容器, 另一方面和金属或非金属网格一起对锥结 构起到支撑作用; 流沙从各个漏斗状容器均匀向下流出, 空气均匀向上流动; 流沙和空气在均匀的逆向流动中实现热量交换。
根据本发明, 高温工质从储热罐稳定地输出, 将热量通过换热传递给待加 热的高压流体, 产生高温高压气体。 工质热循环系统包括流沙热工质循环和流 体热工质循环。 其中, 流沙热工质循环是一个闭路循环, 流体工质循环可为开 路, 也可为闭路。 两个循环经过换热器发生热量交换。 由于本发明可实现全天 候地、 连续地、 稳定地产生高温高压气体, 推动涡轮机透平发电, 可在恒定温 度下运行, 使得系统的利用效率和使用寿命大大提高。 根据本发明, 流沙本身 可以被太阳能加热到很高的温度(例如 1500 ); 储热罐的耐火砖可以承受很 高的温度(例如 2000 以上), 因此, 储热效果好。
根据本发明的所述储热罐, 直径和高度均可≥50米, 容积可≥105立方米, 储能可达到( 1-2 ) xl014J, 能为 30兆瓦以上的涡轮发动机提供≥10天的能量储 存。 该储热罐允许对经过太阳光聚光加热后的高温工质(流沙) 间歇性地输入 和连续稳定地输出。 根据本发明, 流沙被放置在储热罐中时, 与容器侧面的主 体不直接接触, 从而, 对墙壁的侧向压力小到可忽略不计, 因此, 储热罐可以 具有更大的容积, 所以储热量大。
根据本发明, 常温空气被吸入,经由多级压气机串联加压, 除最后一级外, 在前面的每一级加压后 , 由本发明提出的旋风换热器将热量传给用来冷却空气 的流沙, 给加压后的空气降温, 使得整个加压过程近似为等温过程, 由此降低 空气加压过程中的机械能损耗, 以提高系统效率。 经最后一级加压后的空气被 送到本发明提供的旋风换热器, 和储热罐输出的高温工质流沙实现热量交换, 使压力气体变成为高温高压气体。 此高温高压气体被送至涡沦机透平。 透平后 的热空气由本发明提供的沉降换热室将其热量传递给工质流沙。 工质流沙通过 输送系统输送给另一个小型储热罐, 待送到聚光太阳镜循环加热。 通过用来冷 却空气的流沙降低压气机输出空气温度和用工质流沙吸收涡沦机排气余热, 使 得系统的效率与采用筒单循环的燃气轮机相比大大提高。 根据本发明, 流沙与 热的气体直接、 逆向换热, 因此, 换热效率高。
通常的气体换热器是换热物质被管板分割开。 其换热系数和换热面积小, 致使换热效率低和换热器体积庞大。 为克服气体换热系数小, 换热效率低的问 题, 根据本发明, 空气和流沙经过混合、 逆向流动、 最后利用旋转的离心力或 惯性重力分离。 通过这样的过程, 实现空气和流沙的直接逆向换热。 直接换热 时单位体积的换热面积和换热系数均提高一个量级以上, 使得换热效率大大提 高, 换热器结构更紧凑和造价更低。
根据本发明, 当储热罐容器的尺寸增加时, 单位面积的造价不随之增加, 由此可制成容积量很大, 成本很低的储存容器, 因此, 运行成本最小。
根据本发明的旋风换热器, 气体和流沙之间直接换热, 以紧凑的形式一次 实现流沙和空气的混合、 换热、 和分离。 这样可以大大提高换热面积, 减少换 热器体积, 大大提高换热效率和降低成本。 气体和流沙在角向是同向运动, 沿 径向成逆流形式运动, 因角向速度远大于径向速度, 气体和流沙通过径向的逆 向运动, 实现逆流换热。
根据本发明的流沙蒸汽发生器, 水及水蒸气和流沙被金属管隔开, 水及水 蒸气在金属管内上流, 金属管外的高温流沙在重力作用下向下流。 流沙和水在 逆流中实现热量交换,加热管道中的水产生饱和水蒸气。在沙体流过的区域内, 可垂直向下放置一些扭带等插入物, 以使沙粒在向下流动的过程中, 增加沙粒 的不同温度层间的混合, 以提高换热效率。
根据本发明, 利用流沙来冷却凝汽器输出的热水, 使凝汽器的冷却水可循 环使用。 采用流沙冷却, 可用来在保持高效率的前提下, 大量节约用水。 这对 于太阳充足但缺少水源的地方, 利用汽轮机发电有重要意义。 而空气冷却效率 低, 耗能大。
为筒化太阳跟踪的方法, 降低太阳镜的支撑和跟踪成本, 本发明还提供了 一种聚光太阳镜供碟式或塔式太阳跟踪聚光系统。 根据通常的槽式太阳光聚光 系统, 其聚光加热管要求真空玻璃管和金属封装, 技术难度大、 成本高。 根据 本发明, 槽式太阳光聚光系统的加热管的管道由耐高温的金属或非金属构成, 流沙在转动的过程中, 不断地得到很好的混合, 很大地增加了传热效果。 管道 内的流沙在大气压力下加压, 可以实现低成本制造。 附图说明
图 1是太阳能聚光产生高温高压气体的流程图。
图 2是太阳能聚光产生高温高压空气的原理图。
图 3是太阳能聚光产生高温高压蒸汽的原理图。
图 4是流沙储热罐的外形图, 包括侧墙耐火层的耐火砖的局部放大图。 图 5a至图 5c是一种旋风换热器的结构示意图。 图 5d是另外一种旋风换热器的结构示意图。
图 5e和图 5f是另外一种旋风换热器的结构示意图。
图 6a和图 6b是一种沙-水换热器 /蒸汽发生器的结构示意图。
图 7a至图 7c是另外一种流沙过热器的结构示意图。
图 8a和 8b分别是蒸汽换热器的顶部侧面、 剖面图。
图 9a和图 9b是碟式太阳聚光镜或塔式太阳镜的结构原理图。
图 9c是一种碟式太阳聚光镜或塔式太阳镜前后转动的结构原理图。
图 9d是另外一种碟式太阳聚光镜或塔式太阳镜前后转动的结构原理图。 图 10是槽式太阳聚光镜的加热管的结构原理图。 具体实施方式
本发明利用沙的固体性、 流动性、 耐高温、 无腐蚀、 廉价、 尤其是沙的可 堆积性, 以沙作为储能材料建成储存容量很大的、 能够长期储存太阳能的储热 罐。 储热罐允许对经太阳光加热后的高温流沙间歇性地输入和连续稳定地输 出。 除流沙外, 本发明也同样适合于所有和流沙有类似的固体性、 流动性、 耐 高温、 无腐蚀、 廉价、 尤其是沙的可堆积性的颗粒物质及它们的混合体。
根据本发明的一个方面, 如图 1所示, 提供了一种利用太阳能全天候地、 连续地、 稳定地产生高温高压气体的方法和系统, 以推动涡轮机透平 4发电或 工业使用。 该系统包括太阳跟踪聚光装置 1、 储热罐 2、 工质流沙 5和气体或 液体 6之间的换热装置 3、 和工质流沙 5。 通过太阳镜聚光装置 1直接或间接 加热工质流沙 5到高温, 将加热后的工质流沙 5输送到储热罐 2, 将能量以热 量的形式存储。 高温工质流沙 5从储热罐 2稳定地输出, 将热量通过换热装置 3传递给待加热的高压气体或液体 6, 以产生高温高压气体。 常压气体或液体 6 经增压设备 7加压后压力升高。
根据本发明的另一个方面,如图 2所示,提供了一种利用太阳能全天候地、 连续地、 稳定地产生高温高压空气的方法和系统, 以推动涡轮机透平 4发电或 工业使用。通过太阳镜聚光装置 1直接或间接加热工质流沙 5到 800°C - 1500°C 的高温, 将加热后的工质流沙 5输送到储热罐 2, 将能量以热量的形式存储。 常温空气经空气压缩机 7—级加压后温度升高, 利用本发明提出的旋风换热器 8 实现冷却空气用流沙(不同于工质流沙 5, 图中未示出)和压力空气之间在 一级旋风换热器 8的换热, 将空气冷却。 空气经空气压缩机 7二级加压后, 利 用二级旋风换热器 8实现和另一部分冷却空气用流沙和压力空气之间的再次换 热, 将空气再次冷却。 后经空气压缩机 7三级加压, 输出到旋风换热器 8和由 储热罐 2输出的高温工质流沙 5换热, 将压缩空气转换成高温高压空气, 将压 力空气加热到 700°C - 1400°C, 此高温高压空气被引向涡沦机透平 4, 以产生 动力。 透平后的热空气由本发明提供的沉降换热室 9将其空气剩余热量传递给 工质流沙 5。 工质流沙 5通过输送系统输送给另一个小型储热罐 10, 再送到太 阳聚光装置 1循环加热。 通过用冷却空气用流沙降低空气压缩机 7输出空气的 温度和用工质流沙 5吸收涡沦机的排气余热, 使得系统的效率与采用筒单循环 的燃气轮机相比大为提高。
根据本发明的另一个方面, 如图 3所示, 提供了一种利用太阳能全天候地 稳定地产生高温高压蒸汽的方法和系统, 推动涡轮机透平 4发电或工业使用。 通过太阳镜聚光装置 1直接或间接加热工质流沙 5到 400°C - 650°C的高温,将 加热后的工质流沙 5输送到储热罐 2, 将能量以热量的形式存储。 汽轮机工质 水 11经水处理器 12处理, 经沙-水换热器 13将水预热到 90°C、 通入压力水泵 15加压至 2-10MPa、和经蒸汽发生器 14输出的流沙换热,过热器 16输出流沙 的余温通过蒸汽发生器 14换热将水加温转化成饱和蒸汽, 将饱和蒸汽在汽包 17中做汽水分离, 水被返回到前级, (蒸汽发生器 14之前), 而饱和蒸汽则在 后一级由过热器 16 和储热罐 2 输出的高温流沙 5 进一步加热, 产生高温 ( 350-600°C )、 2-10MPa的过饱和蒸汽。 后进入汽轮机涡轮机 18透平, 输出 的水蒸气经由凝汽器 19冷凝成水。 冷凝水再进入水处理器 12循环使用。
为进一步提高效率, 可在涡轮机透平 18的中间级蒸汽输出口连接蒸汽再 热器对蒸汽再加热, 后进入下一级透平。 所述再热器结构和本发明提出的过热 器 16相同。
另外, 本发明提供了一种储热罐 2, 如图 4所示, 其外形主体为筒体结构 或其他适当的结构(优选为圆筒)。 储热罐 2的侧墙壁从内到外由耐火层 22、 隔热层 20及外墙密封层 21组成。 耐火层 22由侧面为直角梯形的特型砖 23砌 成, 水平面朝上、 斜面朝下。 斜面和水平面的夹角以小于沙的安息角, 如可选 为 30度。 流沙 5在重力作用下, 在储热罐 2内自然下落堆积时, 在靠近储热 罐 1的侧墙壁处, 按层堆积在特型砖 23突出部分上部水平面上以安息角为锥 角的锥形内, 特型砖 23下部除最突出的一条线和流沙 5有直接接触外, 其余 部分与流沙 5保持分离。 特型砖 23的斜面也可由其它形状代替, 只要在安息 角所限制的斜面以内即可满足要求。 特型砖 23由耐火砖构成。 隔热层 20由轻 质、 耐高温、 绝热性能好的材料(如纳米二氧化硅超级绝热材料)构成。 外墙 密封层 21可由钢筋混凝土浇筑而成。 储热罐 1的耐火层 22设有周向的膨胀缝 (未示出)。 每隔若干层有长型砖搭在耐火层 22和密封层 21上, 以保证结构 的稳定性、 牢固性。 储热罐 2的底部从上到下铺设耐火砖、 绝热层、 和钢筋混 凝土地基。 储热罐 2的顶部 24为由轻型桁架钢结构构成的锥体 25, 中间顶部 为平台, 该平台设置的输入口 26连接到气力输入设备 27流沙的输出口 28, 气 力输入设备 27的管道内铺设轻质绝热垫, 外设防水保护及密封材料。 工质流 沙 5沿箭头 D所示的方向由上至下流动, 在以大于摩擦角的倾角 (优选为 45 度角) 向外的流出孔道 29处流出至水平的环形通道内, 并且通过环形通道内 的空气槽或输送带(未示出)经由一水平底部输出口 (未示出)被输送至其它 传送设备上。
对于塔式聚光系统, 可以省略上述气力输入设备 27, 而直接向储热罐 2的 输入口 26内注入流沙 5。
根据本发明, 由太阳能聚光镜 1加热的流沙 5用气力输送设备 27从底部 输送到顶部 24, 经顶部平台的输入口 26输入储热罐 2, 流沙 5在储热罐 1内 整体向下慢速流动, 停留储存若干天之后, 从底部输出口流出, 以符合先进先 出的规则, 这样保证了储热罐 2内流沙 5的温度的均匀性。 在底部的圆周上均 匀地设立了若干以大于摩擦角的倾角向外的流出孔道 29, 以便流沙 5从孔道 29流出。 在底部圆周的外围设立截面为矩形的环形围墙 32, 从内到外也由耐 火层、 隔热层及外墙密封层组成, 利用空气槽或输送带收集由各孔道流出的流 沙 5, 并且输送到水平底部出口。
为增加流沙对太阳光的吸收, 本发明提供了一种将直接接收太阳光的流沙 表面通过碳化处理实现表面增黑改性的方法, 从而可大幅增加对太阳光的吸 收。 具体工艺是, 将沙和含炭丰富的物质(天然气、 煤气、 沥青、 油、 面粉等) 混合均匀后, 在隔绝空气的条件下加热到 600 以上的高温, 表面可以变为炭 黑结构, 在更高的温度下可变成更稳定的石墨结构及碳化硅结构。 表面增黑改 性后的沙粒可大大增加对太阳光的吸收, 同时可增加导热率。 流沙的粒径为 0.1-1.0mm。 粒径在这一范围的沙粒对实现流动和换热非常有利。 具体实施方 法为, 将经聚光太阳能加热到高温的流沙抽真空, 和煤粉按一定比例 (如 100:1-10:1, 优选 30:1 ) 混合搅拌, 放置到表面变黑为止。 这一工艺也可在太 阳能储热罐 2内实施。
图 5a至图 5c所示, 根据本发明, 提供了一种用于实现空气和流沙之间直 接换热的旋风换热器 8, 其以紧凑的形式一次实现流沙和空气的混合、 换热、 和分离。 旋风换热器 8的主体为环形结构 31, 环形的外边缘设有均匀孔道, 倾 角 α为 10°-20°的等长、 同倾角的管道 33沿圆周均布地插入其中, 这些管道 33 的另一端 34旋转汇集到管板 35上, 经管箱连接到气体的入口。 高速气体通过 入口进入到旋风换热器 8的环形主体结构 31, 沿箭头 R进行旋进运动, 经内 设的引风板从中间向上流出。 在旋风换热器 8的上部的中间位置上轴对称地开 设 4个或 8个孔道 36, 流沙 5通过管道经这些孔道 36流入。 在旋风换热器 8 内, 气体沿径向由外向内旋进, 流沙 5在离心力的作用下由内向外旋出。 气体 和流沙 5沿径向成逆流运动, 由此实现气体和流沙 5的逆流换热。 在底部的中 心位置设立收集嘴 37, 以将流沙 5收集输出。
在图 5d所示的另外一个实施例中, 旋风换热器 8的入口部分由蜗壳形空 气入口 100构成, 用于实现空气和流沙之间直接换热。 优选地, 该入口 100的 横截面呈矩形。 空气进入旋风换热器 8后, 沿箭头 K所示的方向作高速旋转, 由位于中心部位的朝上的出口 101流出。高温流沙 5从环形均布的入口管道 102 进入旋风换热器 8内,一方面随空气作旋转运动,另一方面在离心力的作用下, 沿径向向外运动, 经位于中心部分的下方的出口 103流出。 气体和流沙 5沿径 向成逆流运动, 由此实现气体和流沙 5的逆流换热。
在图 5e和图 5f所示的另外一个实施例中, 旋风换热器 8由旋风管构成。 高速气体通过入口 104由引风板 105进入到旋风管内,沿箭头 T方向作螺旋运 动, 同时也沿轴向向下和沿径向向内运动, 经出口 107流出。 旋风管中央的上 部设置下端为喇叭口的圆形管道 106, 喇叭口的下端设有圆锥体 109, 其间有 圆锥筒缝隙, 流沙 5通过管口经管道 106流入圆锥筒缝隙 旋风换热器 8的 主体内, 后随气体沿箭头 T方向作旋转运动。 同时流沙 5在离心力的作用下由 内向外旋出, 向下运动, 经底部环形出口 108流出。 气体和流沙 5沿径向成逆 流运动, 由此实现气体和流沙 5的逆流换热。
如图 6a和图 6b所示, 根据本发明, 提供了一种用于实现空气和流沙之间 直接换热的沉降室换热器 9。 沉降室的下部为圆筒或其它筒体结构 40, 上部为 圆锥结构或其它锥体 41, 圆筒的内部铺设有轻质绝热耐火材料, 外部由金属焊 接或由砖砌成。 底部由底层、 轻质绝热材料铺设, 圆筒结构 40接近底部的位 置设置一层有均匀透气孔的耐高温材料层 42, 该耐高温材料层 42以 3。-15。倾 斜, 其出口呈圆筒形状。 气体由耐高温材料层 42较高的一端通向沉降室的外 部入口 43。 上部圆锥顶盖 41的锥角大于流沙 5的安息角。 圆锥顶部中央有一 圆筒体容器 44, 为流沙 5的入口, 圆锥结构 41的底部为横杆 46和竖杆 47搭 成的网格 45, 每个格点上放置一漏斗形容器 48, 通过管道 49连接到顶部圆筒 体容器 44。这些管道 49一方面使流沙 5从顶部圆筒体容器 44流入各个漏斗状 容器 48, 另一方面和金属或非金属网格 45—起对圆锥结构 41起到支撑作用。 流沙 5从各个漏斗状容器 48均匀向下流出, 空气均匀向上流动。 流沙 5和空 气在均匀的逆向流动中实现热量交换。
如图 7所示, 本发明提供了一种沙-水换热器 13 (蒸汽发生器 14 ), 可用来 实现高温流沙和水之间的换热, 以产生热水或饱和水蒸气。 基本结构为, 在横 截面上均匀、 竖向平行地排列钢管 50, 钢管 50的上部管口焊接到管板 51上, 管板 51和汽包 52相连, 钢管 50的下部管口焊接到管板 53上, 管板 53和水 箱 54相连。 所有钢管 50的外围有一圆筒体管道 55, 圆筒体管道 55的上部在 上管板 51的下方接漏斗 56, 蒸汽管道 55从漏斗 56中穿出。 圆筒体管道 55的 下部在下管板 53的上方接一约为 45°斜板 57。在圆筒体管道 55和斜板 57相交 处设有流出口 58。 流沙从上方漏斗 56流入, 在圆筒体管道 55内从钢管 50的 缝隙间流到斜板 57上, 经流出口 58流出。 沙的流量由流出口 58的大小控制。 高温流沙 5在重力的作用下在金属管 50外向下流。 流沙和水在逆流中实现热 量交换, 管道中的水被加热或产生水蒸气。
如图 8a和 8b所示,本发明提供了一种流沙过热器 16, 它可用来实现以高 温流沙 5加热饱和水蒸气, 使之成为过热水蒸气 80。 流沙过热器 16由多排蛇 形钢管 60并列而成, 每一排蛇形管 60可由多根管道构成, 每根管道按一定长 度经多次弯曲而成。每排蛇形管的出口和入口分别通过管板焊接在入汽管口 62 和出汽管口 63上。 过热器 16的管道 60被包覆在正立方体的容器 68内, 过热 器 16的上部呈倒置的漏斗形状, 下部呈正立的漏斗形状, 高温流沙 5按照箭 头 K所示的方向注入, 下部流沙 5在漏斗形状的出口按照箭头 K所示的方向 流出, 通过出口的大小可控制流沙的流量。
本发明提出的聚光太阳镜系统 1可以是碟式聚光太阳镜系统、塔式太阳能 聚光系统、 或是槽式太阳镜聚光系统。
如图 9a所示, 本发明还提供了一种聚光太阳镜系统, 供碟式或塔式太阳 跟踪聚光系统使用, 其由聚光镜 75、 三角支架 71、 带齿轮的回转支承 72、 控 制水平方向转动的减速器及控制部分 74、和控制前后方向转动的减速器及控制 部分 81组成, 回转支承 72水平放置在固定的三角支架 71上。 在回转支承 72 的转动盘上方设置两个同轴的滚珠轴承 73, 随回转支承 72在水平方向的转动 而转动。 回转支承 72的转轴和滚珠轴承 73的转轴相互垂直并交于一不动点。 聚光镜 75对称地固定在两滚珠轴承 73的转轴上, 设置聚光镜 75距离两滚珠 轴承 73的高度, 使聚光镜 75的重心尽可能和不动点重叠。 这样, 太阳镜荷载 加载到两转轴的每个轴上的力矩近似为零, 因此, 太阳镜 1可承受包括风载在 内的更大的荷载, 有利于实现太阳镜的转动、 控制、 和跟踪, 有利于减低太阳 镜 1的重量及降低太阳镜 1的制造成本。
三角支架 71也可由钢筋混凝土制成的、 竖直放置的空心圆筒管道代替。 聚光镜 75 由多块边界为正方形的相同镜面在桁架钢结构上拼接而成, 中 间约 1/20-1/8的矩形面积上空置。 聚光镜 75可在水平方向随回转支承 72和在 前后方向随珠轴承 73的转动而转动, 从而使聚光镜 75实现以不动点为中心, 到空间任意方向的转动。 根据地球自转和公转的运动规律计算出太阳光线在地 球上给定地点、 给定时刻的指向, 分别调节控制水平方向的转动和前后方向的 转动, 以实现对太阳光的跟踪。 聚光镜 75对水平方向的跟踪是通过电机转动 控制减速器 74, 带动回转支承 72上的齿轮而转动。 对前后方向转动的控制则 分别提出以下三种装置实现。
其一如图 9a所示, 让控制前后方向转动的减速器及控制部分 81的输出轴 通过联轴器直接和滚珠轴承 73的转轴相连。 减速器 81的输入轴在控制电机带 动下转动, 带动输出轴, 从而带动滚珠轴承 73的转轴转动, 实现对聚光镜 75 前后转动仰角的控制。
其二如图 9c所示, 将长度小于回转支承 72半径的杆件 76的一端固定在 滚珠轴承 73的转轴上, 另一端和可自锁的丝杠 77的一端(固定端)铰接。 丝 杠 77的另一端(活动端)铰接到回转支承 72的转动盘上, 杆件 76和丝杠 77 构成的平面和滚珠轴承 73的转轴垂直, 它们随回转支承 72水平转动而同步转 动。 用电机调节丝杠 77在回转支承 72的转动盘的接触点的位置, 以调节丝杠 77固定端到活动端的长度, 以改变杆件 76的仰角, 带动滚珠轴承 73的转轴转 动, 从而实现对聚光镜的前后转动仰角的控制。
其三如图 9d所示, 将半径小于回转支承 72内径的齿轮 78安装在滚珠轴 承 73的转轴上。 在单头蜗杆减速器 79的输出转轴上通过联轴器连接小齿轮, 以驱动齿轮 78。蜗杆减速器 79蜗杆分度圆上的导程角小于 3.5° , 以便使蜗杆 减速器实现自锁。 蜗杆减速器 79的输入轴在控制电机的带动下转动, 带动齿 轮 78,从而带动滚珠轴承 73的转轴转动, 实现对聚光镜 75前后转动仰角的控 制。 为节约原材料, 齿轮 78也可采用 1/4 - 1/2圆周的扇形齿轮代替。
对于碟式聚光太阳镜 1,其聚光镜 75是由小的焦距相同的正方形球面镜通 过桁架钢结构拼接而成同焦距的大的外边界为矩形球面镜 75,其边长和焦距之 比的一个较好的选择为 8/12。 镜的中间约 1/20-1/8的矩形面积上空置。 当球面 镜实现跟踪时, 太阳光被聚焦到以聚光镜 75焦点为中心的焦斑上。 采用球面 镜的优点在于易于在工业上实现大规模生产, 从而降低制造成本。 太阳光聚光 倍数最高可达 2000倍, 足以满足本发明提出的太阳能高温光热系统对聚光的 要求。 进一步地, 在聚光镜 75的中轴线上, 在长度约 2/3焦距处设置一固定的 球面反射镜 80, 通过控制聚光镜 75的转动, 可将太阳光反射到回转支承基座 的附近的固定点的焦斑上,这时太阳镜的聚光倍数仍然可达 800-1000倍,足以 满足本发明提出的太阳能光热系统对聚光的要求。
如图 9b,接热器 110被放置在球面反射镜 80的焦点上,与水平面成约 45。 角。 接热器 110用碳化硅或其它对可见光低反射的材料制成, 接热器 110的底 部外层用轻质绝热材料包覆, 根据球面镜 80聚焦光斑中间光线强度高的特点, 接热器 110的形状做成中间下凹的圆槽状, 顶部由耐高温、 并对可见光透明、 对红外光反射好的材料 (如纳米孔 SiQ2超绝热材料 )覆盖。 流沙在重力的作用 下, 经接热器 110的透明顶部和碳化硅本体之间的空隙加热流出。
对于塔式聚光太阳镜 1,其聚光镜 75可由大小相同的正方形平面镜通过桁 架钢结构拼接而成整体为平面镜或其它曲面镜。 镜的中间约 1/20-1/8的矩形面 积上空置。 采用平面镜有助于降低塔式聚光系统的成本。 利用图 9a、 9c、 9d 给出的太阳光跟踪系统调整太阳光线使多达 10000面的塔式镜对塔式系统放置 在同一塔顶上的接热器聚光。 流沙从底部由气力输送至塔的顶部, 在重力作用 下流经接热器, 向下流出的过程中被聚焦的太阳光加热。 下部经漏斗进入保温 管道, 后直接流入储热罐 2中。
如图 10所示, 本发明提供了一种槽式太阳聚光系统的加热管。 该加热管 的管道 89由耐高温的材料构成, 管道 89的外层设有一条绝热、 透可见光、 但 对红外光反射好的材料(如轻质纳米二氧化硅超绝热材料), 使得太阳光可以 透射进入加热流沙 5的颗粒。 管道 89内设有螺旋槽 90。 管道 89的一端设有漏 斗形入口 91, 流沙 5的颗粒经入口 91进入螺旋槽 90, 管道 89的另一端^"出 口 92, 流沙 5的颗粒经出口 92流出收集到储热罐 2。 太阳光由槽式太阳镜跟 踪后, 被线聚焦到加热管上。 当螺旋槽 90转动时, 流沙 5的颗粒从螺旋槽 90 的入口 91移动滑向出口 92, 在移动的同时, 流沙 5的颗粒 :4艮好地混合, 流 沙 5的颗粒沿管道 89被逐渐加热到高温。 管道 89内的流沙 5在大气压力下加 热, 因此可以低成本地制造管道 89。
本发明提供了一种槽式太阳镜聚光系统, 其结合塔式的特点建成。 由平面 镜组成的多条槽式镜构成的太阳光聚焦到一条管道上, 每条槽式镜由平面镜构 成, 采用单轴跟踪系统对太阳光进行跟踪。 管道内壁由对可见光透明、 对红外 光反射好、 绝热性能好的轻质材料(如纳米孔 SiQ2超绝热材料)制成, 管道外 由玻璃覆盖。 管道的一端有风机将待加温的常压空气流经管道直接加热。 在管 道的终点, 被加热的常压高温空气进入本发明所提供的沉降室换热器 9将热量 传递给工质流沙 5, 后将流沙输入到储热罐 2储存。

Claims

权利要求书
1. 一种太阳能储热及高温气体产生系统, 其特征在于:
该系统包括太阳跟踪聚光装置 (1)、 储热罐 (2)、 以及换热装置 (3), 其工质 采用流沙 (5);
换热装置 (3)在工质流沙 (5)和气体或液体 (6)之间实施换热;
通过太阳镜聚光装置 (1)加热工质流沙 (5), 加热后的工质流沙 (5)被输送到 储热罐 (2), 工质流沙 (5)的热量存储于储热罐 (2); 工质流沙 (5)从储热罐 (2)稳定 地输出,将热量通过换热装置 (3)传递给待加热的高压气体或液体 (6), 以产生高 温高压气体。
2. 一种太阳能储热及高温气体产生系统, 用于高温高压空气产生系统, 其 特征在于:
该系统包括太阳跟踪聚光装置 (1)、 储热罐 (2)、 以及换热装置 (8), 其工质 采用流沙 (5);
通过太阳镜聚光装置 (1)直接或间接加热工质流沙 (5)到 800°C - 1500 °C ,加 热后的工质流沙 (5)被输送到储热罐 (2), 以存储热量;
常温空气经空气压缩机 (7)的一级和二级压缩、换热, 实现压力空气压力的 持续升高; 然后,
压缩空气经空气压缩机 (7)三级加压, 输出到换热装置 (8)和由储热罐 (2)输 出的高温工质流沙 (5)换热, 将压力空气加热到 700°C - 1400°C, 此高温高压空 气被引向涡沦机透平 (4), 以产生动力,
透平后的热空气由换热室 (9)将其空气剩余热量传递给工质流沙 (5),工质流 沙 (5)通过输送系统输送给另一个小型储热罐 (10), 再送回聚光太阳聚光装置 (1) 循环力口热。
3. 一种太阳能储热及高温气体产生系统, 用于高温高压蒸汽产生系统, 其 特征在于:
该系统包括太阳跟踪聚光装置 (1)、 储热罐 (2)、 以及过热器 (16), 其工质采 用流沙 (5);
通过太阳镜聚光装置 (1)直接或间接加热工质流沙 (5)到 400°C - 650°C, 加 热后的工质流沙 (5)被输送到储热罐 (2), 以存储热量,
汽轮机工质水 (11)经水处理器 (12)处理, 经沙-水换热器 (13)将水预热到 90°C、通入压力水泵 (15)加压至 3-5MPa、和经蒸汽发生器 (14)输出的流沙换热, 过热器 (16)输出流沙的余温通过蒸汽发生器 (14)换热, 将水转化成饱和蒸汽, 饱和蒸汽在汽包 (17)中做汽水分离,水被返回到蒸汽发生器 (14)之前, 而饱 和蒸汽则在后一级由过热器 (16)和储热罐 (2)输出的高温流沙 (5)进一步加热, 产 生 350-550°C、 2-10MPa的过饱和蒸汽, 然后,
过饱和蒸汽进入汽轮机涡轮机 (18)透平,输出的水蒸气经由凝汽器 (19)冷凝 成水, 以进入水处理器 (12)循环使用。
4.根据权利要求 1、 2、 或 3所述的太阳能储热及高温气体产生系统, 其特 征在于:储热罐 (2)的侧墙壁从内到外由耐火层 (22)、隔热层 (20)及外墙密封层 (21) 组成; 耐火层 (22)由特型砖 (23)砌成, 每块特型砖(23 ) 面向储热罐 ( 2 ) 内侧 突出部分的表面其上部呈水平面, 下部呈斜面或介于该水平面和该斜面之间的 曲面, 该斜面与水平面的夹角小于沙的安息角, 使得流沙在储热罐内自然下落 堆积时, 呈锥形堆积在特型砖(23 ) 突出部分上部水平面上, 特型砖(23 )下 部除最突出的一条线和流沙(5 )有接触外, 其余部分与流沙(5 )保持分离。
5.根据权利要求 4所述的太阳能储热及高温气体产生系统, 其特征在于: 特型砖(23 ) 由耐火砖构成; 隔热层 (20)由轻质、 耐高温、 绝热性能好的材料 构成; 外墙密封层 (21)由钢筋混凝土浇筑而成; 耐火层 (22)设有周向的膨胀缝; 每隔若干层有长型砖搭在耐火层 (22)和密封层 21上;储热罐 (2)的底部从上到下 铺设耐火砖、 绝热层、 和钢筋混凝土地基; 储热罐 (2)的顶部 (24)为由轻型桁架 钢结构构成的锥体 (25), 中间顶部为平台, 该平台设置流沙 (5)的输入口(26); 工质流沙 (5)由上至下流动, 在以大于摩擦角的倾角向外倾斜的流出孔道 (29)处 流出至水平的环形通道内, 并且通过环形通道内的空气槽或输送带经由一水平 底部输出口被输送至其它传送设备上。
6.根据权利要求 5所述的太阳能储热及高温气体产生系统, 其特征在于: 该平台设置的输入口 (26)连接到气力输入设备 (27)流沙的输出口 (28), 气力输入 设备 (27)的管道内铺设轻质绝热垫, 外设防水保护及密封材料。
7.根据权利要求 4所述的太阳能储热及高温气体产生系统, 其特征在于: 该储热罐 (2)的本体呈圆筒形, 锥体 (25)为圆锥体, 在储热罐 (2)的底部圆周的外 围设立截面为矩形的环形围墙 (32), 从内到外也由耐火层、 隔热层及外墙密封 层组成, 利用空气槽或输送带收集由各孔道流出的流沙 (5), 并且输送到水平底 部出口。
8.根据权利要求 4所述的太阳能储热及高温气体产生系统, 其特征在于: 隔热层 (20)由纳米二氧化硅超级绝热材料构成。
9.根据权利要求 1、 2、 或 3所述的太阳能储热及高温气体产生系统, 其 特征在于: 将直接接收太阳光的流沙表面通过碳化处理实现表面增黑改性。
10.根据权利要求 9所述的太阳能储热及高温气体产生系统,其特征在于: 将沙和含炭丰富的物质混合均匀, 在隔绝空气的条件下加热到 600 以上。
11.根据权利要求 10所述的太阳能储热及高温气体产生系统, 其特征在 于: 将经聚光太阳能加热到高温的流沙抽真空, 和煤粉按比例混合搅拌, 放置 到表面变黑为止。
12.根据权利要求 11 所述的太阳能储热及高温气体产生系统, 其特征在 于: 流沙和煤粉的混合比例 100:1至 10:1。
13.根据权利要求 12所述的太阳能储热及高温气体产生系统, 其特征在 于: 流沙和煤粉的混合比例为 30:1。
14.根据权利要求 10所述的太阳能储热及高温气体产生系统, 其特征在 于: 所述含炭丰富的物质包括天然气、 煤气、 沥青、 油、 面粉。
15.根据权利要求 1或 2所述的太阳能储热及高温气体产生系统, 其特征 在于: 换热装置 (3)采用旋风换热器 (8), 该旋风换热器 (8)呈环形结构 (31), 该环 形结构 (31)的外边缘设有均匀孔道, 倾角为 10°-20°的等长、 同倾角的管道 (33) 沿圆周均布地插入各孔道中, 这些管道 (33)的另一端 (34)旋转汇集到管板 (35) 上, 经管箱连接到气体的入口; 高速气体通过该入口进入到旋风换热器 (8)的环 形结构 (31), 进行旋进运动, 经内设的引风板从中间向上流出; 在旋风换热器 (8)的上部的中间位置上轴对称地开设若干个孔道 (36), 流沙 (5)经这些孔道 (36) 流入; 在旋风换热器 (8)内, 气体沿径向由外向内旋进, 流沙 (5)在离心力的作用 下由内向外旋出, 气体和流沙 (5)沿径向成逆流运动, 由此实现气体和流沙 (5) 的逆流换热; 在底部的中心位置设立收集嘴 (37), 以将流沙 (5)收集输出。
16.根据权利要求 1或 2所述的太阳能储热及高温气体产生系统, 其特征 在于: 换热装置 (3)采用旋风换热器 (8), 该旋风换热器 (8)的入口部分由蜗壳形 空气入口(100)构成, 空气进入旋风换热器 (8)后, 作高速旋转, 由位于中心部位 的朝上的出口(101)流出; 高温流沙 (5)从环形均布的入口管道 (102)进入旋风换 热器 (8)内, 一方面随空气作旋转运动, 另一方面在离心力的作用下, 沿径向向 外运动,经位于中心部分的下方的出口(103)流出, 气体和流沙 (5)沿径向成逆流 运动, 由此实现气体和流沙 (5)的逆流换热。
17.根据权利要求 1或 2所述的太阳能储热及高温气体产生系统, 其特征 在于: 换热装置 (3)采用旋风换热器 (8), 该旋风换热器 (8)由旋风管构成, 高速 气体通过入口(104)由引风板 (105)进入到旋风管内,作螺旋运动, 同时也沿轴向 向下和沿径向向内运动, 经出口(107)流出; 旋风管中央的上部设置下端为喇叭 口的圆形管道(106 ), 喇叭口的下端设有园锥体(109 ), 其间有圆锥筒缝隙, 流沙(5 )通过管口经管道(106 ) 流入圆锥筒缝隙进入旋风换热器(8 ) 的主 体内, 后随气体作旋转运动, 同时流沙 (5)在离心力的作用下由内向外旋出, 向 下运动, 经底部环形出口(108)流出, 气体和流沙 (5)沿径向成逆流运动, 由此实 现气体和流沙 (5)的逆流换热。
18.根据权利要求 1、 2、 或 3所述的太阳能储热及高温气体产生系统, 其 特征在于: 太阳跟踪聚光装置 (1)包括聚光镜 (75)、 三角支架 (71)、 带齿轮的回 转支承 (72)、控制水平方向转动的减速器及控制部分 (74)、和控制前后方向转动 的减速器及控制部分 (81), 回转支承 (72)水平放置在固定的三角支架 (71)上; 在 回转支承 (72)的转动盘上方设置两个同轴的滚珠轴承 (73), 随回转支承 (72)在水 平方向的转动而转动;回转支承 (72)的转轴和滚珠轴承 (73)的转轴相互垂直并交 于一不动点; 聚光镜 (75)对称地固定在两滚珠轴承 (73)的转轴上, 聚光镜 (75)距 离两滚珠轴承 (73)的高度, 使聚光镜 (75)的重心与所述不动点重叠。
19.根据权利要求 18所述的太阳能储热及高温气体产生系统, 其特征在 于: 聚光镜 (75)由多块边界为正方形的相同镜面在桁架钢结构上拼接而成, 中 间 1/20-1/8的矩形面积上空置。
20.根据权利要求 19所述的太阳能储热及高温气体产生系统, 其特征在 于: 控制前后方向转动的减速器及控制部分 (81)的输出轴通过联轴器直接和滚 珠轴承 (73)的转轴相连。
21.根据权利要求 19 所述的太阳能储热及高温气体产生系统, 其特征在 于: 长度小于回转支承 (72)半径的杆件 (76)的一端固定在滚珠轴承 (73)的转轴 上, 另一端和可自锁的丝杠 (77)的固定端铰接;丝杠 (77)的活动端铰接到回转支 承 (72)的转动盘上,杆件 (76)和丝杠 (77)构成的平面和滚珠轴承 (73)的转轴垂直, 它们随回转支承 (72)水平转动而同步转动; 用电机调节丝杠 (77)在回转支承 (72) 的转动盘的接触点的位置, 以调节丝杠 (77)固定端到活动端的长度, 以改变杆 件 (76)的仰角, 带动滚珠轴承 (73)的转轴转动。
22.根据权利要求 19所述的太阳能储热及高温气体产生系统, 其特征在 于: 半径小于回转支承 (72)内径的齿轮 (78)安装在滚珠轴承 (73)的转轴上; 在单 头蜗杆减速器 (79)的输出转轴上通过联轴器连接小齿轮, 以驱动齿轮 (78);蜗杆 减速器 (79)蜗杆分度圆上的导程角小于 3.5° , 以使蜗杆减速器实现自锁。蜗杆 减速器 (79)的输入轴在控制电机的带动下转动,带动齿轮 (78),从而带动滚珠轴 承 (73)的转轴转动, 实现对聚光镜 (75)前后转动仰角的控制。
23.根据权利要求 11所述的太阳能储热及高温气体产生系统, 其特征在 于: 轮 (78)包括 1/4 -- 1/2圆周的扇形齿轮。
24.根据权利要求 19所述的太阳能储热及高温气体产生系统, 其特征在 于: 对于碟式聚光太阳镜, 由若干焦距相同的正方形球面镜通过桁架钢结构拼 接成同焦距的外边界为矩形的球面聚光镜 (75), 其边长和焦距之比为 8/12, 在 聚光镜 (75)的中轴线上, 在长度为 2/3焦距处设置一固定的球面反射镜 (80)。
25.根据权利要求 19所述的太阳能储热及高温气体产生系统, 其特征在 于: 对于塔式聚光太阳镜, 其聚光镜 (75)由大小相同的正方形平面镜通过桁架 钢结构拼接而成, 整体为平面镜或曲面镜。
26.根据权利要求 1、 1、 或 3所述的太阳能储热及高温气体产生系统, 其 特征在于: 对于槽式太阳镜聚光系统, 由平面镜组成的多条槽式镜构成的太阳 光聚焦到一条管道上, 每条槽式镜由平面镜构成, 采用单轴跟踪系统对太阳光 进行跟踪; 管道内壁由对可见光透明、 对红外光反射好、 绝热性能好的轻质材 料制成, 管道外由玻璃覆盖; 管道的一端有风机将待加温的常压空气流经管道 直接力口热。
27.根据权利要求 1、 1、 或 3所述的太阳能储热及高温气体产生系统, 其 特征在于: 槽式太阳聚光系统的加热管的管道 (89)由耐高温的材料构成, 管道 (89)的外层设有一条绝热、 透可见光、 但对红外光反射好的材料, 使得太阳光 可以透射进入加热流沙 (5)的颗粒; 管道 (89)内设有螺旋槽 (90); 管道 (89)的一端 设有漏斗形入口(91), 流沙 (5)的颗粒经入口(91)进入螺旋槽 (90), 管道 (89)的另 一端有出口 (92), 流沙 (5)的颗粒经出口 (92)流出收集到储热罐 2; 太阳光由槽式 太阳镜跟踪后, 被线聚焦到加热管上; 当螺旋槽 (90)转动时, 流沙 (5)的颗粒从 螺旋槽 (90)的入口 (91)移动滑向出口 (92),在移动的同时,流沙 (5)的颗粒被搅拌、 混合, 沿管道 (89)被逐渐加热。
28. 一种储热罐 (2), 其特征在于: 储热罐 (2)的侧墙壁从内到外由耐火层 (22)、 隔热层 (20)及外墙密封层 (21)组成; 耐火层 (22)由特型砖 (23)砌成, 每块特 型砖(23 ) 面向储热罐 ( 2 ) 内侧突出部分的表面其上部呈水平面, 下部呈斜 面或介于该水平面和该斜面之间的曲面, 该斜面与水平面的夹角小于沙的安息 角, 使得流沙在储热罐内自然下落堆积时, 呈锥形堆积在特型砖(23 ) 突出部 分上部水平面上, 特型砖(23 )下部除最突出的一条线和流沙(5 )有接触外, 其余部分与流沙(5 )保持分离。
29.根据权利要求 28所述的太阳能储热及高温气体产生系统, 其特征在 于: 特型砖(23 ) 由耐火砖构成; 隔热层 (20)由轻质、 耐高温、 绝热性能好的 材料构成;外墙密封层 (21)由钢筋混凝土浇筑而成;耐火层 (22)设有周向的膨胀 缝;每隔若干层有长型砖搭在耐火层 (22)和密封层 21上;储热罐 (2)的底部从上 到下铺设耐火砖、 绝热层、 和钢筋混凝土地基; 储热罐 (2)的顶部 (24)为由轻型 桁架钢结构构成的锥体 (25), 中间顶部为平台, 该平台设置流沙 (5)的输入口 (26); 工质流沙 (5)由上至下流动, 在以大于摩擦角的倾角向外倾斜的流出孔道 (29)处流出至水平的环形通道内, 并且通过环形通道内的空气槽或输送带经由 一水平底部输出口被输送至其它传送设备上。
30.根据权利要求 29所述的储热罐 (2), 其特征在于: 该平台设置的输入 口(26)连接到气力输入设备 (27)流沙的输出口(28), 气力输入设备 (27)的管道内 铺设轻质绝热垫, 外设防水保护及密封材料。
31.根据权利要求 28所述的储热罐 (2), 其特征在于: 该储热罐 (2)的本体 呈圆筒形, 锥体 (25)为圆锥体, 在储热罐 (2)的底部圆周的外围设立截面为矩形 的环形围墙 (32), 从内到外也由耐火层、 隔热层及外墙密封层组成, 利用空气 槽或输送带收集由各孔道流出的流沙 (5), 并且输送到水平底部出口。
32.根据权利要求 28所述的储热罐 (2), 其特征在于: 隔热层 (20)由纳米二 氧化硅超级绝热材料构成。
33. 一种将直接接收太阳光的流沙表面通过碳化处理实现表面增黑改性的 方法, 其特征在于: 将沙和含炭丰富的物质混合均匀, 在隔绝空气的条件下加 热到 600 以上。
34.根据权利要求 33所述的方法, 其特征在于: 所述含炭丰富的物质包括 天然气、 煤气、 沥青、 油、 面粉。
35. 一种将直接接收太阳光的流沙表面通过碳化处理实现表面增黑改性的 方法, 其特征在于: 将经聚光太阳能加热到高温的流沙抽真空, 和煤粉按比例 混合搅拌, 放置到表面变黑为止。
36.根据权利要求 35所述的方法, 其特征在于: 流沙和煤粉的混合比例为 30:1。
37. 一种换热装置 (3), 其特征在于: 采用旋风换热器 (8), 该旋风换热器 (8) 呈环形结构 (31), 该环形结构 (31)的外边缘设有均匀孔道, 倾角为 10°-20°的等 长、 同倾角的管道 (33)沿圆周均布地插入各孔道中, 这些管道 (33)的另一端 (34) 旋转汇集到管板 (35)上, 经管箱连接到气体的入口; 高速气体通过该入口进入 到旋风换热器 (8)的环形结构 (31), 进行旋进运动, 经内设的引风板从中间向上 流出; 在旋风换热器 (8)的上部的中间位置上轴对称地开设若干个孔道 (36), 流 沙 (5)经这些孔道 (36)流入; 在旋风换热器 (8)内, 气体沿径向由外向内旋进, 流 沙 (5)在离心力的作用下由内向外旋出, 气体和流沙 (5)沿径向成逆流运动, 由此 实现气体和流沙 (5)的逆流换热; 在底部的中心位置设立收集嘴 (37), 以将流沙 (5)收集输出。
38. 一种换热装置 (3), 其特征在于: 采用旋风换热器 (8), 该旋风换热器 (8) 的入口部分由蜗壳形空气入口(100)构成, 空气进入旋风换热器 (8)后,作高速旋 转, 由位于中心部位的朝上的出口(101)流出; 高温流沙 (5)从环形均布的入口管 道 (102)i^旋风换热器 (8)内,一方面随空气作旋转运动, 另一方面在离心力的 作用下, 沿径向向外运动, 经位于中心部分的下方的出口(103)流出, 气体和流 沙 (5)沿径向成逆流运动 , 由此实现气体和流沙 (5)的逆流换热。
39. 一种换热装置 (3), 其特征在于: 采用旋风换热器 (8), 该旋风换热器 (8) 由旋风管构成, 高速气体通过入口(104)由引风板 (105)进入到旋风管内,作螺旋 运动, 同时也沿轴向向下和沿径向向内运动, 经出口(107)流出; 旋风管中央的 上部设置下端为喇叭口的圆形管道(106 ), 喇叭口的下端设有园锥体(109 ), 其间有圆锥筒缝隙, 流沙 5通过管口经管道(106 )流入圆锥筒缝隙进入旋风 换热器(8 ) 的主体内, 后随气体作旋转运动, 同时流沙 (5)在离心力的作用下 由内向外旋出, 向下运动, 经底部环形出口(108)流出, 气体和流沙 (5)沿径向成 逆流运动, 由此实现气体和流沙 (5)的逆流换热。
40. —种太阳跟踪聚光装置 (1), 其特征在于: 包括聚光镜 (75)、 三角支架 (71)、 带齿轮的回转支承 (72)、 控制水平方向转动的减速器及控制部分 (74)、 和 控制前后方向转动的减速器及控制部分 (81),回转支承 (72)水平放置在固定的三 角支架 (71)上; 在回转支承 (72)的转动盘上方设置两个同轴的滚珠轴承 (73), 随 回转支承 (72)在水平方向的转动而转动; 回转支承 (72)的转轴和滚珠轴承 (73)的 转轴相互垂直并交于一不动点;聚光镜 (75)对称地固定在两滚珠轴承 (73)的转轴 上, 聚光镜 (75)距离两滚珠轴承 (73)的高度, 使聚光镜 (75)的重心与所述不动点 重叠。
41.根据权利要求 40所述的太阳跟踪聚光装置 (1),其特征在于:聚光镜 (75) 由多块边界为正方形的相同镜面在桁架钢结构上拼接而成, 中间 1/20-1/8的矩 形面积上空置。
42.根据权利要求 40所述的太阳跟踪聚光装置 (1), 其特征在于: 控制前 后方向转动的减速器及控制部分 (81)的输出轴通过联轴器直接和滚珠轴承 (73) 的转轴相连。
43.根据权利要求 40所述的太阳跟踪聚光装置 (1), 其特征在于: 长度小 于回转支承 (72)半径的杆件 (76)的一端固定在滚珠轴承 (73)的转轴上, 另一端和 丝杠 (77)的固定端铰接; 丝杠 (77)的活动端铰接到回转支承 (72)的转动盘上, 杆 件 (76)和丝杠 (77)构成的平面和滚珠轴承 (73)的转轴垂直, 它们随回转支承 (72) 水平转动而同步转动;用电机调节丝杠 (77)在回转支承 (72)的转动盘的接触点的 位置, 以调节丝杠 (77)固定端到活动端的长度, 以改变杆件 (76)的仰角, 带动滚 珠轴承 (73)的转轴转动。
44.根据权利要求 40所述的太阳跟踪聚光装置 (1), 其特征在于: 半径小 于回转支承 (72)内径的齿轮 (78)安装在滚珠轴承 (73)的转轴上; 在单头蜗杆减速 器 (79)的输出转轴上通过联轴器连接小齿轮, 以驱动齿轮 (78); 蜗杆减速器 (79) 蜗杆分度圆上的导程角小于 3.5° , 以使蜗杆减速器实现自锁。 蜗杆减速器 (79) 的输入轴在控制电机的带动下转动,带动齿轮 (78),从而带动滚珠轴承 (73)的转 轴转动 , 实现对聚光镜 (75)前后转动仰角的控制。
45.根据权利要求 44 所述的太阳跟踪聚光装置 (1), 其特征在于: 轮 (78) 包括 1/4 -- 1/2圆周的扇形齿轮。
46.根据权利要求 40所述的太阳跟踪聚光装置 (1), 其特征在于: 对于碟 式聚光太阳镜, 由若干焦距相同的正方形球面镜通过桁架钢结构拼接成同焦距 的外边界为矩形的球面聚光镜 (75), 其边长和焦距之比为 8/12, 在聚光镜 (75) 的中轴线上, 在长度 2/3焦距处设置一固定的球面反射镜 (80)。
47.根据权利要求 40所述的太阳能储热及高温气体产生系统, 其特征在 于: 对于塔式聚光太阳镜, 其聚光镜 (75)由大小相同的正方形平面镜通过桁架 钢结构拼接而成, 整体为平面镜或曲面镜。
48.根据权利要求 2所述的太阳能储热及高温高压空气产生系统, 其特征 在于: 所述换热室 (9)采用沉降室换热器 (9), 该沉降室换热器 (9)的下部为筒结 构 (40), 上部为锥结构 (41), 筒的内部铺设有轻质绝热耐火材料, 外部由金属焊 接或由砖砌成, 底部由底层、 轻质绝热材料铺设, 筒结构 (40)接近底部的位置 设有由一层有均勾透气孔的耐高温材料层 (42), 该耐高温材料层 (42)以 3。-15。 倾斜, 其出口呈圆筒形状; 气体由耐高温材料层 (42)较高的一端通向沉降室的 外部入口 (43); 上部锥顶盖 (41)的锥角大于流沙 (5)的安息角; 锥顶部中央有一 筒体容器 (44), 为流沙 (5)的入口, 锥结构 (41)的底部为横杆 (46)和竖杆 (47)搭成 的网格 (45), 每个格点上放置一漏斗形容器 (48), 通过管道 (49)连接到顶部筒体 容器 (44);这些管道 (49)一方面使流沙 (5)从顶部筒体容器 (44)流入各个漏斗状容 器 (48), 另一方面和金属或非金属网格 (45)—起对锥结构 (41)起到支撑作用; 流 沙 (5)从各个漏斗状容器 (48)均匀向下流出, 空气均匀向上流动; 流沙 (5)和空气 在均匀的逆向流动中实现热量交换。
49. 一种换热室 (9), 其特征在于: 采用沉降室换热器 (9), 该沉降室换热器 (9)的下部为筒结构 (40), 上部为锥结构 (41), 筒的内部铺设有轻质绝热耐火材 料,外部由金属焊接或由砖砌成,底部由底层、轻质绝热材料铺设, 筒结构 (40) 接近底部的位置设有由一层有均匀透气孔的耐高温材料层 (42), 该耐高温材料 层 (42)以 3。-15。倾斜, 其出口呈圆筒形状; 气体由耐高温材料层 (42)较高的一端 通向沉降室的外部入口(43); 上部锥顶盖 (41)的锥角大于流沙 (5)的安息角; 锥 顶部中央有一筒体容器 (44), 为流沙 (5)的入口, 锥结构 (41)的底部为横杆 (46) 和竖杆 (47)搭成的网格 (45), 每个格点上放置一漏斗形容器 (48), 通过管道 (49) 连接到顶部筒体容器 (44); 这些管道 (49)一方面使流沙 (5)从顶部筒体容器 (44) 流入各个漏斗状容器 (48), 另一方面和金属或非金属网格 (45)—起对锥结构 (41) 起到支撑作用; 流沙 (5)从各个漏斗状容器 (48)均匀向下流出, 空气均匀向上流 动; 流沙 (5)和空气在均匀的逆向流动中实现热量交换。
50.根据权利要求 3所述的太阳能储热及高温高压蒸汽产生系统, 其特征 在于: 在沙-水换热器 (13)或蒸汽发生器 (14)中, 在横截面上均匀、 竖向平行地 排列钢管 (50),钢管 (50)的上部管口焊接到管板 (51)上,管板 (51)和汽包 (52)相连, 钢管 (50)的下部管口焊接到管板 (53)上,管板 (53)和水箱 (54)相连; 所有钢管 (50) 的外围有一筒体管道 (55),筒体管道 (55)的上部在上管板 (51)的下方接漏斗 (56), 蒸汽管道 (55)从漏斗 (56)中穿出; 筒体管道 (55)的下部在下管板 (53)的上方接一 斜板 (57); 在筒体管道 (55)和斜板 (57)相交处设有流出口(58); 流沙从上方漏斗 (56)流入,在筒体管道 (55)内从钢管 (50)的缝隙间流到斜板 (57)上,经流出口 (58) 流出; 沙的流量由流出口 (58)的大小控制; 高温流沙 (5)在重力的作用下在金属 管 (50)外向下流; 流沙和水在逆流中实现热量交换, 管道中的水被加热或产生 水蒸气。
51.根据权利要求 50所述的太阳能储热及高温高压蒸汽产生系统,其特征 在于: 所述斜板 (57)呈 45度角。
52.根据权利要求 3所述的太阳能储热及高温高压蒸汽产生系统, 其特征 在于: 流沙过热器 (16)由多排蛇形钢管 (60)并列而成, 每一排蛇形管 (60)由多根 管道构成, 每根管道经多次弯曲而成; 每排蛇形管的出口和入口分别通过管板 焊接在入汽管口(62)和出汽管口(63)上; 过热器 (16)的管道 (60)被包覆在正立方 体的容器 (68)内,过热器 (16)的上部呈倒置的漏斗形状,下部呈正立的漏斗形状, 高温流沙 (5)在上方注入, 在漏斗形状的出口流出, 通过出口的大小可控制流沙 的流量。
PCT/CN2011/070822 2011-01-30 2011-01-30 以流沙为工作介质的太阳能储热及高温气体产生系统 WO2012100438A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180066409.8A CN103392068B (zh) 2011-01-30 2011-01-30 以流沙为工作介质的太阳能储热及高温气体产生系统
US13/982,500 US20140026883A1 (en) 2011-01-30 2011-01-30 Solar heat storage and high temperature gas generating system with working medium being flowing sand
EP20110857190 EP2669514A4 (en) 2011-01-30 2011-01-30 SYSTEM FOR SOLAR HEAT ACCUMULATION AND GENERATION OF GAS AT HIGH TEMPERATURE, THE WORKING ENVIRONMENT BEING FLUID SAND
PCT/CN2011/070822 WO2012100438A1 (zh) 2011-01-30 2011-01-30 以流沙为工作介质的太阳能储热及高温气体产生系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/070822 WO2012100438A1 (zh) 2011-01-30 2011-01-30 以流沙为工作介质的太阳能储热及高温气体产生系统

Publications (1)

Publication Number Publication Date
WO2012100438A1 true WO2012100438A1 (zh) 2012-08-02

Family

ID=46580212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070822 WO2012100438A1 (zh) 2011-01-30 2011-01-30 以流沙为工作介质的太阳能储热及高温气体产生系统

Country Status (4)

Country Link
US (1) US20140026883A1 (zh)
EP (1) EP2669514A4 (zh)
CN (1) CN103392068B (zh)
WO (1) WO2012100438A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014149261A1 (en) * 2013-03-15 2014-09-25 Abengoa Solar Llc Optically transparent receiver tubes for concentrated solar power generation
CN104579122A (zh) * 2014-12-15 2015-04-29 王庆军 提斗式流沙储能光伏发电系统
CN110057215A (zh) * 2019-05-24 2019-07-26 哈尔滨汽轮机厂辅机工程有限公司 一种高温高压沙子换热装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101120906B1 (ko) * 2011-11-15 2012-02-29 이종은 태양열 열에너지를 이용한 전기 발전 시스템
US20130255667A1 (en) * 2012-04-02 2013-10-03 Colorado School Of Mines Solid particle thermal energy storage design for a fluidized-bed concentrating solar power plant
US9702348B2 (en) 2013-04-03 2017-07-11 Alliance For Sustainable Energy, Llc Chemical looping fluidized-bed concentrating solar power system and method
US20150345480A1 (en) * 2014-05-28 2015-12-03 Lawrence Livermore National Security, Llc Thermally integrated concentrating solar power system with a fluidized solid particle receiver
CN104990292B (zh) * 2015-06-17 2017-03-29 郭凯 供热井口余热回收器
US11560880B2 (en) 2016-07-29 2023-01-24 Arizona Board Of Regents On Behalf Of The University Of Arizona Heat recover apparatus, system and method of using the same
US10234173B2 (en) * 2016-09-15 2019-03-19 Rodluvan Inc. Method for conveying concentrated solar power
DE102016225338A1 (de) * 2016-12-16 2018-06-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wärmeübertrager zur Wärmeübertragung zwischen einem partikelförmigen Wärmeträgermedium und einem zweiten Medium
KR101916725B1 (ko) * 2016-12-27 2018-11-08 엘지전자 주식회사 차량용 램프 및 그것의 제어방법
CN106832392B (zh) * 2016-12-29 2019-10-22 青海大学 一种采用两步法回收碳纤维的太阳能系统及方法
CN107989758A (zh) * 2017-12-06 2018-05-04 四川双绿科技有限公司 一种以沙粒为集热工质的光热发电方法
CN108050028A (zh) * 2017-12-06 2018-05-18 四川双绿科技有限公司 一种基于多阶温度层的沙粒储热光热发电方法
CN110608426B (zh) * 2018-07-05 2020-08-28 湖南楠木树服饰有限公司 一种方形结构的太阳能蒸汽发生器
CN109682096A (zh) * 2018-11-29 2019-04-26 中国科学院理化技术研究所 基于固体颗粒的太阳能储热系统
CN111397417A (zh) * 2020-04-16 2020-07-10 哈尔滨汽轮机厂辅机工程有限公司 一种用于850℃高温沙子的储热罐
AT524791B1 (de) * 2021-12-09 2022-09-15 Andritz Tech & Asset Man Gmbh Waermeuebertragerelement und dessen verwendung

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4338919A (en) 1980-07-21 1982-07-13 University Of Pittsburgh Solar collector system employing particulate energy collecting media
CN1035885A (zh) * 1988-03-08 1989-09-27 弗·尔·斯米德思公司 热交换器
WO2001090660A1 (en) * 2000-05-26 2001-11-29 Smid Antonin Method of use of solar energy and appliance for implementation of this method
CN1387004A (zh) * 2002-07-04 2002-12-25 谭洪源 阳光入室装置
DE10149806A1 (de) * 2001-10-09 2003-04-30 Deutsch Zentr Luft & Raumfahrt Solarturmkraftwerk
CN1439860A (zh) * 2003-03-28 2003-09-03 蒋锡奇 叠片隙风道逆流式冷却器
CN2906462Y (zh) * 2006-05-10 2007-05-30 靳广智 太阳能热发电装置
CN201069278Y (zh) * 2007-04-13 2008-06-04 丁建东 高能阳光收集导向器
CN201327218Y (zh) * 2008-11-20 2009-10-14 深圳市三诺电子有限公司 一种中高温热蓄能容器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055948A (en) * 1975-12-08 1977-11-01 Kraus Robert A Solar thermal-radiation, absorption and conversion system
US4099517A (en) * 1977-06-21 1978-07-11 Mcrae Duncan Ross Solar energy collector
US4221210A (en) * 1977-08-01 1980-09-09 Heliotherme, Inc. System and method for collecting energy from the sun
DE10208487B4 (de) * 2002-02-27 2004-02-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Nutzung der Wärme hocherhitzter Heißluft
US20090229598A1 (en) * 2006-05-25 2009-09-17 Shuliang Cao method for making large-sized hollow ceramic plate
CN201068278Y (zh) * 2007-07-06 2008-06-04 余杰 抽真空食品保鲜盒
ITSA20080028A1 (it) * 2008-09-12 2008-12-12 Green Earth S R L Tubo collettore per concentratori solari lineari avente micropolveri ad alta temperatura come vettore.
US9377246B2 (en) * 2010-01-18 2016-06-28 King Saud University High temperature solar thermal systems and methods

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4338919A (en) 1980-07-21 1982-07-13 University Of Pittsburgh Solar collector system employing particulate energy collecting media
CN1035885A (zh) * 1988-03-08 1989-09-27 弗·尔·斯米德思公司 热交换器
WO2001090660A1 (en) * 2000-05-26 2001-11-29 Smid Antonin Method of use of solar energy and appliance for implementation of this method
DE10149806A1 (de) * 2001-10-09 2003-04-30 Deutsch Zentr Luft & Raumfahrt Solarturmkraftwerk
CN1387004A (zh) * 2002-07-04 2002-12-25 谭洪源 阳光入室装置
CN1439860A (zh) * 2003-03-28 2003-09-03 蒋锡奇 叠片隙风道逆流式冷却器
CN2906462Y (zh) * 2006-05-10 2007-05-30 靳广智 太阳能热发电装置
CN201069278Y (zh) * 2007-04-13 2008-06-04 丁建东 高能阳光收集导向器
CN201327218Y (zh) * 2008-11-20 2009-10-14 深圳市三诺电子有限公司 一种中高温热蓄能容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2669514A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014149261A1 (en) * 2013-03-15 2014-09-25 Abengoa Solar Llc Optically transparent receiver tubes for concentrated solar power generation
CN104579122A (zh) * 2014-12-15 2015-04-29 王庆军 提斗式流沙储能光伏发电系统
CN110057215A (zh) * 2019-05-24 2019-07-26 哈尔滨汽轮机厂辅机工程有限公司 一种高温高压沙子换热装置

Also Published As

Publication number Publication date
CN103392068A (zh) 2013-11-13
US20140026883A1 (en) 2014-01-30
CN103392068B (zh) 2016-12-14
EP2669514A1 (en) 2013-12-04
EP2669514A4 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2012100438A1 (zh) 以流沙为工作介质的太阳能储热及高温气体产生系统
US11440814B2 (en) Solid state solar thermal energy collector
US10012216B2 (en) Heater of heat storage agent and brayton solar thermal power unit with heat storage
US20130257056A1 (en) Methods and systems for concentrated solar power
CN102606430A (zh) 分体运行太阳能碟式聚光发电系统
CN101027524A (zh) 太阳集热器、阳光聚集反射器、阳光聚集系统和太阳能利用系统
CN112797649A (zh) 太阳能接收器、发电系统和流体流动控制装置
US11473851B2 (en) Solar concentrator, solar receiver and thermal storage
CN102400868B (zh) 单塔多碟式太阳能发电系统
CN102818379B (zh) 用于太阳能热发电站的固体粒子空气吸热器
CN102679578A (zh) 带有旋风分离器的太阳能颗粒吸热器
CN102466329A (zh) 太阳能收集装置
JP3218262U (ja) 熱媒体加熱装置
RU2377473C2 (ru) Гелиоаэробарическая теплоэлектростанция
CN111247336B (zh) 用非成像太阳能集中器收集辐射能的系统
CN103148602A (zh) 太阳能热发电站用固体颗粒堆积床式空气吸热器
CN102072091A (zh) 节水型太阳能热发电装置
CN101581507B (zh) 一种合体工作管及太阳能蒸汽发生装置
CN220338727U (zh) 基于二次反射聚光技术的固体颗粒吸热、储热、换热装置
CN201535584U (zh) 一种合体工作管及太阳能蒸汽发生装置
CN205373093U (zh) 固体粒块槽式太阳能流态化驱动换热传热系统
CN115959810B (zh) 一种间接空冷自然通风逆流冷却塔干燥城市污泥装置
CN101307749A (zh) 一种太阳能热成旋风发电方法及其装置
CN116717918A (zh) 基于二次反射聚光技术的固体颗粒吸热、储热、换热装置
CN114608208A (zh) 一种二次反射式陶瓷颗粒吸热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011857190

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13982500

Country of ref document: US