WO2012100364A1 - Dispositivo compacto y portátil para la toma de muestras representativas de aire en equipos de bajo volumen, para determinar cualitativa y cuantitativamente la presencia de compuestos químicos orgánicos e inorgánicos en el aire, y método operativo del dispositivo - Google Patents

Dispositivo compacto y portátil para la toma de muestras representativas de aire en equipos de bajo volumen, para determinar cualitativa y cuantitativamente la presencia de compuestos químicos orgánicos e inorgánicos en el aire, y método operativo del dispositivo Download PDF

Info

Publication number
WO2012100364A1
WO2012100364A1 PCT/CL2011/000008 CL2011000008W WO2012100364A1 WO 2012100364 A1 WO2012100364 A1 WO 2012100364A1 CL 2011000008 W CL2011000008 W CL 2011000008W WO 2012100364 A1 WO2012100364 A1 WO 2012100364A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
filters
air
samples
cutting head
Prior art date
Application number
PCT/CL2011/000008
Other languages
English (en)
French (fr)
Inventor
Francisco Javier Cereceda Balic
Original Assignee
Universidad Técnica Federico Santa María
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Técnica Federico Santa María filed Critical Universidad Técnica Federico Santa María
Priority to PCT/CL2011/000008 priority Critical patent/WO2012100364A1/es
Publication of WO2012100364A1 publication Critical patent/WO2012100364A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2205Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with filters

Definitions

  • Compact and portable device for taking representative air samples in low volume equipment, to determine qualitatively and quantitatively the presence of organic and inorganic chemical compounds in the air, and operating method of the device.
  • the present invention consists of a device for taking representative air samples, in order to determine qualitatively and / or quantitatively the presence of compounds, organic or inorganic chemicals in the air. Specifically in a compact and portable device for taking representative air samples in low volume equipment, to quantitatively determine the presence of organic and inorganic chemical compounds in the air, and an operating method of the device. BACKGROUND OF THE INVENTION
  • COs Organic compounds
  • PAHs polycyclic aromatic hydrocarbons
  • PCBs polychlorinated biphenyls
  • the invention consists of a device for taking representative air samples, and associated sampling procedures for the analysis of COs especially in the case of COSVs.
  • Positive artifacts (overestimation of the concentrations of COSVs in the MP): These occur when COSVs that are in the gaseous phase of ambient air are adsorbed on the filter material or on the MP collected in it.
  • Negative artifacts (underestimations of the concentrations of COSVs in the MP): They are caused by the volatilization of the COSVs from the MP that was collected in the filter, product of the vacuum generated by the suction pump of the collecting equipment. These volatilized COSVs are captured by the PUF adsorbent.
  • Low-Vol low-volume equipment
  • S. Samp.de equipment of the Thermo firm operates with flows of 10 L / min, which also emulates the average volume of air a person breathes in a 24-hour period of continuous monitoring, which is very convenient for toxicological studies.
  • Low-Vol equipment does not completely eliminate artifact and other sampling considerations are necessary.
  • An alternative to reduce the positive and negative artifacts is to collect the COSVs in the gas phase before passing through the filter. This process strips the gaseous stream of its COSVs, by adsorption in a denuder (D), defined as a gas capture device. Because the particle gas distribution is disturbed during sampling, for example in the case of PAHs and / or PCBs associated with the MP that have a greater tendency to volatilize and where to solve this problem a post-filter adsorbent (PUF) is placed that captures volatilized species.
  • PAF post-filter adsorbent
  • the device consists of a cylinder of 35 mm in length and 40 mm in diameter, which has been divided into a large number of small capillary channels parallel to the air flow, coated with some adsorbent material (activated carbon, graphite or resins such as XAD)
  • adsorbent material activated carbon, graphite or resins such as XAD
  • the main feature of HCDs is that they offer a large adsorption surface without representing an obstacle to air flow (including MP); that is, there are no losses of MP and the gas phase compounds are completely adsorbed on the inner lining of the denuder capillary channels.
  • COSVs adsorbed on the MP decompose when reacting with ozone, S0 2 and N0 2 that reach the particle filter.
  • the present invention provides a compact and portable device for taking representative air samples, in low volume equipment, to determine qualitatively and quantitatively the presence of organic and inorganic chemical compounds in the air.
  • the device or cartridge consists of a container composed of assembled, compact and portable compartments, made of a material with minimal adsorbent and absorbent capacity (Duralumin, for example), in which different configurations of filters and adsorbents can be installed depending on the case.
  • a main objective of the invention is a compact and portable device for taking representative air samples in low volume equipment, to determine qualitatively and quantitatively the presence of organic and inorganic chemical compounds in the air, which operates with smaller or equal flows.
  • a cutting head which defines the maximum size of particles to be collected
  • a main body connected to the cutting head, in which optionally as many denuders can be installed as necessary to retain by adsorption / absorption the chemical compounds in the gas phase without interfering with the passage of the particulate material
  • a filter compartment in which filter holders with their filters are accommodated
  • an adsorbent compartment with polyurethane foam filters (PUFs) connected to the filter compartment, to install as many PUFs as necessary
  • an outlet head which directs the remaining gases from the sampling towards a suction pump;
  • the cutting head has a nozzle consisting of a Venturi tube, whose geometry is
  • the compartments that make up the device are connected to each other under pressure, and the tightness is achieved with the help of clips and o-rings.
  • the cutting head has a cavity inside, which is formed from two concentric cylinders of different diameters. Between the diameters of said concentric cylindrics, an edge perpendicular to the direction of the flow is generated, where an impactor rests, designed with symmetrical holes to allow air flow containing particles smaller than the size defined in the cutting head and to retain them in its center by impact particles larger than the size defined by the cutting head, due to the jet generated by the Venturi in the inlet nozzle of the cutting head. Said impactor defines the maximum particle size that will be collected by the filters in the filter compartment.
  • the filter holders consist of two flat grids that fit each other, so that the filter is retained between the two grilles.
  • This device was designed to be used with any pumping system that has mass flow control.
  • Another main objective of the invention is to provide a method for taking representative air samples in low volume equipment, to determine qualitatively and quantitatively the presence of organic and inorganic chemical compounds in the air, which comprises the steps of: cleaning and preparing , a device as defined in claims 1 to 7; take samples with the device; transport the device to and from the sampling site; store the device; and extract the filters and denuders from the device for analysis.
  • the step of cleaning and preparing the device, before the sampling stage comprises: washing the device with HPLC acetone a clean room under a static eliminator; wash each of the polyurethane foam filters (PUFs) sequentially with solvents of different polarity; and certify the final extract obtained from washing, chromatographically for each of the PUFs, in order to ensure its cleanliness.
  • the step of taking samples with the device includes: installing the device to a sampling device, in the place of sampling; and program the sampling sequences for each device installed in the sampling equipment, according to the purpose of the sampling to be performed.
  • the step of transporting the device to and from the sampling site comprises: wrapping the device, clean and prepared, in pre-washed aluminum foil with organic solvent and covering the entrance of the cutting head with its respective lid, to take it to the place of sampling; and wrap the device, once removed from the sampling equipment, in pre-washed aluminum foil with organic solvent and cover the entrance of the cutting head with its respective lid, to take it to the place of analysis.
  • the step of storing the device comprises: wrapping the closed device and storing it in the dark with refrigeration at less than 4 ° C until the moment of analysis; or stabilize, filters, denuders and PUFs, introducing them in their respective extraction vessels, with the appropriate organic solvents and with the dosage of the standards that will be used for quantification and quality control of the analysis and finally store them in the dark with refrigeration unless from 4 ° C until the time of analysis when the wait must exceed 24 hours.
  • the step of extracting the filters and denuders from the device for analysis comprises: extracting the compounds of interest from the filters and denouncing by chemical procedures with analytical equipment and appropriate organic solvents; vacuum filter the extract obtained from the filters and denounce to eliminate possible particles that have come off; bring the filtered extract to a process of volume reduction and subsequent purification; subject to extraction, filtration and volume reduction procedures in the same way, extracts of particulate material (MP) and gas phase separately; purify the samples, separating the families of compounds of interest from the rest of the chemical compounds present in the sample; and determine the concentrations of the compounds of interest present in the purified samples, by an analysis by capillary gas chromatography and adequate detection of each compound, for each sample.
  • MP particulate material
  • Fig. 1 is an isometric view of the armed device, as it is used in the sampling of ambient air.
  • Figure 2a shows a main view of the armed device of Figure 1.
  • Figure 2b shows a top view of the armed device of Figure 1.
  • Figure 2c shows a bottom view of the armed device of Figure 1.
  • Fig. 3 is a side view of the disassembled device, in which all its parts and pieces can be seen.
  • Fig. 4 is an isometric sectional view of the disassembled device, showing all its parts and pieces.
  • Figs. 5 to 12 correspond to isometric views in section of the device, showing step by step the assembly sequence of the device.
  • the device of the invention consists of a cylindrical container with compartments (cartridge), inside which filters and adsorbents are installed for the collection of organic or inorganic chemical compounds present in the air.
  • the filter collects the compounds associated with the particulate material, and the adsorbent, those present in the gas phase.
  • Figures 1, 2a, 2b and 2c correspond to different views of the armed device, and they show some details of the compartments that compose it. It should be noted that Fig. 2a also shows the correct use position of the invention.
  • the device consists basically of five compartments. From the bottom to the top in Fig. 2a, there are distinguished: inlet head 120, central compartment 210, filter compartment 310, adsorbent compartment 410 and outlet head 510. These parts adjust each other under pressure.
  • Two clips of the head 212 (which are clearly seen in the bottom view of Fig. 2c) hold the input head 110 together with the central compartment 210; two clips 211 hold the central compartment 210 together with the filter compartment 310; and two clips 31 1 (which are clearly seen in the top view of Fig. 2b) hold together the filter compartment 310 with the adsorbent compartment 410.
  • An coupling 520 consisting of a tube with external thread at both ends ( male thread), allows the outlet head 510 to be connected to the adsorbent compartment 410.
  • a collar 440 which hugs adsorbent compartment 410, is installed when the device is to be used in the Partisol® 2300 Sapeciation Sampler equipment of the Thermo company, USA.
  • a nozzle 120 is located at the lower end of the inlet head 110, through which ambient air enters the interior of the device.
  • An o-ring 121 is distinguished on the outer wall of the nozzle, whose function is to ensure a tight seal by means of a cap.
  • Fig. 3 is a side view of the disassembled device, which shows not only the five main compartments, but also the various separation elements contained therein.
  • An impactor 130 is inserted in the input head 110, and its function is to define the maximum particle size that will be collected by the filter 230.
  • a filter 330 is supported with a filter holder 320. Both the filter 330 and the filter holder 320 belong to standard separation elements, and can be purchased from the usual suppliers of laboratory items for chemical analysis.
  • the adsorbents 420 made of polyurethane foam (PUFs), are inserted into the adsorbent compartment 410, and are retained there by a screw cap 430 that fits the thread 41 1, drawn on the outer wall of the lower end of this compartment 410.
  • the function of the adsorbents is to retain the substances present in the gas phase of the air that is passed through the device.
  • PUFs can also be purchased from regular suppliers of laboratory items for chemical analysis.
  • an o-ring 213 contributes to the tightness of the joint between the input head 110 and the central compartment 210
  • another o-ring 214 contributes to the tightness of the joint between the central compartment 210 and the compartment of filters 310.
  • Fig. 4 is an isometric sectional view of the disassembled device, in which details of both the internal structure of the compartments and the structure of the separation elements can be seen.
  • the inlet head 1 10 starts at a nozzle 120, which consists of a Venturi tube.
  • This nozzle together with the impactor 130, defines the maximum size of the particles that will be collected by the filter 330, corresponding to particles with an aerodynamic diameter of 2.5 ⁇ . If the head is designed to measure particles with aerodynamic diameter less than 2.5 ⁇ , then all particles with sizes that exceed this limit are driven directly by the Venturi tube 120 towards the central plate of the impactor 130, where they are retained. The smaller particles continue their way through the device in the direction of the filter 330.
  • the cavity of the inlet head 1 10 is formed from two concentric cylinders of different diameter. The transition between one diameter and another generates an edge (perpendicular to the direction of the flow) in which the impactor 130 rests, as shown in Fig. 5. O-rings 1 11 contribute to the tightness of the connection between the inlet head 110 and the central body 210.
  • the input head 110 and the nozzle 120 were developed by the Harvard University School of Public Health and its operation has been characterized and well documented in numerous scientific publications.
  • the assembly sequence of the device is shown step by step in Figures 5 to 13.
  • the impactor 130 is inserted into the inlet head 110.
  • the impactor 130 rests on the inner edge that is generated by the differences in diameter between the cylindrical cavities of the head 110.
  • the internal diameter of the inlet head 1 10 practically coincides with the external diameter of the lower end of the main body 210.
  • the impactor 130 is fixed in position, because the main body 210 imprisons it against the edge on which it rests.
  • Figures 6 and 7 show the way in which the Teflon 330 filter, of standard dimensions, is installed inside the device.
  • the filter holder 320 (standard), consists of two flat grids that fit into each other, so that the filter 330 is trapped between them.
  • Figure 8 shows that the upper end of the main body 210 (in which the mouth with smaller diameter is located) is inserted tightly into the filter holder 320, so that the latter rests on the first.
  • FIG. 9 The next step is shown in Fig. 9.
  • the upper end of the main body 210, with the filter holder 320 arranged on it, is inserted tightly into the lower mouth of the filter compartment 310.
  • the o-ring 214 and the clips 211 They contribute to the tightness of the joint.
  • Figures 9, 10 and 11 show that the flat bottom of the screw cap 430 is a removable grid 431.
  • Adsorbents (PUFs) 420 are inserted into the adsorbent compartment 410, as shown in Fig. 10.
  • Figures 11 and 12 show how the PUFs 420 are held inside the adsorbent compartment 410.
  • a screw cap 430 is screwed to the wire 411, which has been drawn on the outer walls of the lower end of the adsorbent compartment 410.
  • the lower part of the adsorbent compartment 410 is inserted into the upper mouth of the filter compartment 310.
  • the external diameter of the first practically coincides with the internal diameter of the second.
  • the o-ring 312 and the clips 311 favor the tight connection between the parts.
  • the function of the outlet head 510 is to conduct the remaining air to the vacuum pump that is sucking air, by passing it through a device.
  • the device, and especially the input head 120, are designed to work with flows as low as 10 L / min
  • the clean and prepared device for sampling is wrapped in pre-washed aluminum foil (with organic solvent) and the sample inlet head is covered with its respective lid.
  • the device thus prepared is transported to the sampling site and placed in the sampling equipment called Partisol® 2300 Sequential Speciation Sampler.
  • the sampling time and sequence are programmed in the sampling equipment, according to the purpose of the sampling.
  • the S.Samp. It has 3 different channels, with the ability to install up to 4 devices simultaneously (in parallel), each with its own mass flow regulator. In this way it is possible to program sequences of up to 4 devices in parallel, which can be taken as repetitions of the same sample.
  • the equipment allows you to use the twelve total channels of the S.Samp. individually, programming the equipment in a sequence of 24 continuous hours or 12 hours of sampling, where each device represents 1 hour; or 12 days of sampling, where each device represents 1 day, to name the simplest.
  • the device is removed from the sampling site, it is wrapped again in pre-washed aluminum foil and the sample inlet head is covered with its respective cover. In this way it is transported back to the laboratory, where filters, denuders and PUFs will be processed. Ideally the components where the air sample has been retained (filters, denuders and PUFs) should be processed as quickly as possible, to avoid unnecessary suffering to the collected sample. If it is not feasible to do so immediately, the device wrapped and closed as described should be stored in darkness and refrigeration at less than 4 ° C until the moment of analysis.
  • the filters, denuders and PUFs must at least be stabilized by placing them in their respective and future extraction vessels, with the appropriate organic solvents and with the dosing of the internal standards that will be used for quantification and control Quality of the analytical procedure.
  • these containers should be stored in darkness and refrigeration at less than 4 ° C until the moment of analysis. This ensures the integrity of the sample to be analyzed.
  • Teflon Filters Teflon membrane filters with impacted MP (0.45 ⁇ ⁇ MP ⁇ 2.5 ⁇ ) are carefully removed from the sampling device and placed in a distillation balloon with ultra pure Toluene (Fisher grade Optima), The internal HAP standards necessary for quantitative analysis are added to this solution. Subsequently, the distillation balloon is transferred to a heating blanket where it is connected to a double-jacket cooling system and the adsorbed / absorbed compounds of the MP are removed by boiling (110 ° C) and solvent reflux for one hour. Once this process is finished, the extract obtained is filtered using a new 0.45 ⁇ pore diameter Teflon membrane filter with the support of an oil-free vacuum pump to prevent contamination of the sample. Subsequently the filtered extract is taken to a process of volume reduction and subsequent purification.
  • PUF The polyurethane foam (PUF) filters in which the gas phase of HAPs were collected, are removed from the sampling devices and are placed in a pneumatic, automatic and programmable extraction system called AutoExtract PUF® (patent application of invention CL 588-06).
  • PUFs are immersed in solvents organic using a sweep of solvents of different polarity, all supra pure grade and then programmed electronically to extract the compounds of interest adsorbed in the PUF, through a careful combination of compression and decompression intervals lasting 15 minutes in total.
  • the internal standards of HAPs Prior to the extraction of the PUFs, the internal standards of HAPs are added to the container of the AutoExtact PUF® (apparatus described in patent application CL588-06), directly on the extraction solvent.
  • the extract is collected in a distillation balloon and the equipment is loaded with a new solvent portion, this operation is repeated a certain number of times (with the same PUF) and all solvent fractions are collected in the same ball. Subsequently, the extracts are taken to the common process of volume reduction in rotary evaporator and in nitrogen stream using automatic equipment as described in the patent application for invention CL 590-06. Subsequently, the final extract of the PUF is purified as in the case of extracts obtained from the MP.
  • volume reduction of extracts From this stage, the extracts of Particulate Material and Gas Phase are treated in the same way, but separately.
  • the volume reduction is first performed on a rotary evaporator (30 ° C - 90 rpm) assisted by a Teflon membrane vacuum pump, where samples are evaporated to approximately 1 mL. Subsequently, the extract is transferred to a 5 mL conical vial with a graduated pipette with frosted glass plunger to avoid possible contamination from a propipette. Final washes of the distillation balloon are performed with HPLC grade acetonitrile.
  • Extracts already purified are analyzed by capillary gas chromatography using the internal standard method, using 3 internal PAH standards, for each sample analysis.
  • a Perkin Elmer AutoSystem XL chromatograph equipped with automatic sample injection system with refrigerated tray, Split / Splitless injector with temperature and pressure ramp and Pre Vent system, a 30 mx 0.25 mm capillary column is used. x 0.25 ⁇ and a flame ionization detector (FID).
  • FID flame ionization detector
  • chromatographic quantification is carried out using the Turbochrom-PE program and a computer application called GC-PLUG® was built, which is a software for chromatographic data processing that hangs from Turbochrom-PE and allows to optimize the qualitative and quantitative chromatographic analysis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Dispositivo compacto y portátil, y método operativo del dispositivo, para la toma de muestras representativas de aire, en equipos de bajo volumen, para determinar cualitativa y cuantitativamente la presencia de compuestos químicos orgánicos e inorgánicos en el aire. El dispositivo consiste en un contenedor compuesto de compartimentos ensamblables, compacto y portátil, fabricado en un material con mínima capacidad absorbente y absorbente en el que pueden instalarse diferentes configuraciones de filtros y absorbentes según sea el caso. El dispositivo comprende un cabezal de corte, un cuerpo principal que está conectado con el cabezal de corte, un compartimiento de filtros, un compartimiento de absorbentes con filtros de espuma de poliuretano (PUFs) que está conectado con el compartimiento de filtros y un cabezal de salida, que dirige los gases remanentes del muestreo hacia una bomba de succión.

Description

Dispositivo compacto y portátil para la toma de muestras representativas de aire en equipos de bajo volumen, para determinar cualitativa y cuantitativamente la presencia de compuestos químicos orgánicos e inorgánicos en el aire, y método operativo del dispositivo.
MEMORIA DESCRIPTIVA
La presente invención consiste en un dispositivo para la toma de muestras representativas de aire, con el fin de determinar cualitativamente y/o cuantitativamente la presencia de compuestos, químicos orgánicos o inorgánicos en el aire. Específicamente en un dispositivo compacto y portátil para la toma de muestras representativas de aire en equipos de bajo volumen, para determinar cuantitativamente la presencia de compuestos químicos orgánicos e inorgánicos en el aire, y un método operativo del dispositivo. ANTECEDENTES DE LA INVENCION
El aire que respiramos es un aerosol: pequeñas partículas sólidas y líquidas o material particulado (MP), se hallan suspendidas y dispersas en una fase gaseosa. En ambas fases pueden encontrarse compuestos inorgánicos como iones, metales y metaloides, así como compuestos orgánicos (COs), donde una de las familias más numerosas son los Compuestos Orgánicos Semivolátiles (COSVs), como por ejemplo los hidrocarburos aromáticos policíclicos (HAPs, primeros contaminantes a los que se les pudo comprobar propiedades carcinogénicas y mutagénicas), los bifenilos policlorados (PCBs, moduladores del sistema endocrino), dioxinas, furanos, entre otros. Para determinar la calidad química del aire y, así, evaluar el nivel de exposición de la población a los contaminantes atmosféricos, se deben tomar muestras representativas de aire, tanto del MP, como de la fase gaseosa. La invención consiste en un dispositivo para la toma de muestras representativas de aire, y los procedimientos de toma de muestras asociados para el análisis de COs en especial para el caso de los COSVs.
Uno de los grandes desafíos que enfrenta la investigación en contaminación atmosférica, especialmente aquella que se centra en el estudio de los COs en especial en el caso de los COSVs, es el desarrollo de sistemas y procedimientos de muestreo que permitan obtener información confiable y fidedigna sobre las características, comportamiento y evolución de estos contaminantes en el aire.
En general, para tomar muestras del aerosol atmosférico se debe utilizar instrumentos equipados con bombas de succión (muestreo activo). En el método convencional (EPA 1999), la bomba de vacío aspira el aire ambiente, haciéndolo pasar a través de un sistema de separación constituido por un filtro, para colectar el MP, y adsorbentes, para capturar los compuestos en fase gaseosa. A la entrada de algunos equipos, un cabezal "de corte" determina el tamaño máximo de partícula que será colectado. El método EPA recomienda el uso de un equipo "High-volume", los que operan con flujos entre 200 - 800L/ min. Se recomienda un volumen tan grande para garantizar que los COSVs colectados en el filtro y en el adsorbente alcancen concentraciones adecuadas para ser cuantificados apropiadamente en el laboratorio. Comúnmente, se usa un filtro de Teflón (FT) para colectar el MP, y como adsorbente, espuma de poliuretano (PUF), resina XAD o un sándwich constituido por PUF/XAD/PUF.
Aún cuando se alcance el equilibrio termodinámico, los COSVs se adsorben y desorben de las partículas. Dos tipos de artifacts afectan la configuración antes mencionada (Volckens & Leith 2003a):
Artifacts positivos (sobreestimación de las concentraciones de COSVs en el MP): Estos ocurren cuando los COSVs que están en la fase gaseosa del aire ambiente se adsorben sobre el material del filtro o sobre el MP colectado en él. Artifacts negativos (subestimaciones de las concentraciones de COSVs en el MP): Se originan por la volatilización de los COSVs desde el MP que fue colectado en el filtro, producto del vacío generado por la bomba de succión del equipo colector. Estos COSVs volatilizados son capturados por el adsorbente PUF.
En los equipos "High-vol", dado el alto flujo con el que operan, los artifacts descritos se ven acentuados, especialmente el causado por la volatilización de los compuestos desde el MP. La primera forma de disminuir los artifact antes nombrados es trabajar con equipos de bajo volumen denominados Low-Vol, que operan con flujos menores a 200 L/min, en particular el equipo S. Samp.de la firma Thermo, opera con flujos de 10 L/min, que además emula el volumen de aire promedio que respira una persona en un período de 24 horas de monitoreo continuo, lo cual es muy conveniente para los estudios toxicológicos. La utilización de equipos Low-Vol no elimina totalmente los artifact y son necesarias otras consideraciones de muestreo. Una alternativa para disminuir los artifacts positivos y negativos, es colectar los COSVs en fase gaseosa antes de pasar por el filtro. Este proceso despoja a la corriente gaseosa de sus COSVs, mediante su adsorción en un denuder (D), definido como un dispositivo de captación de gases. Debido a que el reparto gas partícula es perturbado durante el muestreo, por ejemplo en el caso de los HAPs y/o PCBs asociados al MP que tienen una mayor tendencia a volatilizarse y en donde para solucionar este problema se coloca un adsorbente postfiltro (PUF) que captura las especies volatilizadas. En los primeros trabajos con esta configuración, se usó Tenax soportado en denuders anulares de vidrio (Lañe y col. 1988), y tiras de papel impregnadas en carbono activo, dispuestas en paralelo a la dirección del flujo (Eatough y col. 1993).
Recientemente, en el muestreo de MP para la especiación de PCBs, se han utilizado denuders de carbono activo (Mandalakis & Stephanou 2002). Si se desea determinar la concentración en la fase gaseosa, estos sistemas deben usarse en paralelo con una configuración convencional (FT-PUF), debido a que no se pueden medir los HAPs captados por estos denuders. Para solucionar esta dificultad Gundel y col. (1995), desarrollaron denuders recubiertos con XAD extraíble para la determinación directa de las concentraciones en fase gaseosa y MP. Recientemente, el equipo del Prof. Dr. Petros Koutrakis, de la Escuela de Salud Pública de la Universidad de Harvard diseñó, desarrolló y patentó el sistema de extracción "honeycomb denuder" (HCD). El dispositivo consiste en un cilindro de 35 mm de longitud y 40 mm de diámetro, que se ha dividido en un gran número de pequeños canales capilares paralelos al flujo de aire, recubiertos con algún material adsorbente (carbón activado, grafito o resinas como la de XAD). La principal característica de los HCD es que ofrecen una gran superficie de adsorción sin representar un obstáculo para el flujo de aire (incluyendo el MP); es decir, no existen pérdidas de MP y los compuestos en fase gaseosa son completamente adsorbidos en el recubrimiento interior de los canales capilares del denuder. Por otra parte, diversas investigaciones han demostrado que los COSVs adsorbidos en el MP se descomponen al reaccionar con el ozono, el S02 y el N02 que llegan al filtro de partículas. Este fenómeno conduce a una subestimación de las concentraciones de COSVs (Pitts y col. 1978 y 1980). Para algunos compuestos (xEj.: Benzo(a)pireno: BAP), dicha subestimación puede alcanzar un 50%. Estos artifacts pueden minimizarse con el uso de denuders capaces de capturar estos gases por adsorción o absorción (Tsapakis & Stephanou 2003). Tanto para gases oxidantes y ácidos, como para ozono, ya existen denuders comerciales que se pueden usar en el dispositivo objeto de esta invención, eliminando de esta forma este tipo de artifact. La combinación del S.Samp. y el cartridge producto de esta invención, en el que además de utilizar la combinación de FT y PUF, permite utilizar diferentes denuders, minimizará hasta casi eliminar totalmente los artifact antes descritos, permitiendo con esta metodología de muestreo cuantificar en forma eficiente y fidedigna la concentración de los COSVs en ambas fases (MP y gas), posibilitando evaluar apropiadamente los riesgos sobre la salud de la población por exposición a por ejemplo contaminantes orgánicos tóxicos con propiedades carcinogénicas y mutagénicas como los descritos previamente.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
La presente invención provee un dispositivo compacto y portátil para la toma de muestras representativas de aire, en equipos de bajo volumen, para determinar cualitativa y cuantitativamente la presencia de compuestos químicos orgánicos e inorgánicos en el aire. El dispositivo (o cartridge) consiste en un contenedor compuesto de compartimentos ensamblables, compacto y portátil, fabricado en un material con mínima capacidad adsorbente y absorbente (Duraluminio, por ejemplo), en el que pueden instalarse diferentes configuraciones de filtros y adsorbentes según sea el caso.
Un objetivo principal de la invención es un dispositivo compacto y portátil para la toma de muestras representativas de aire en equipos de bajo volumen, para determinar cualitativa y cuantitativamente la presencia de compuestos químicos orgánicos e inorgánicos en el aire, que opera con flujos menores o iguales a 30L/min y está constituido por compartimientos ensamblables, fabricado en un material con mínima capacidad adsorbente y absorbente, que comprende: un cabezal de corte, que define el tamaño máximo de partículas a ser colectadas; un cuerpo principal, conectado con el cabezal de corte, en el que opcionalmente se pueden instalar tantos denuders como sean necesarios para retener por adsorción/absorción los compuestos químicos en fase gaseosa sin interferir el paso del material particulado; un compartimiento de filtros, en el que se acomodan portafiltros con sus filtros; un compartimiento de adsorbentes con filtros de espuma de poliuretano (PUFs), conectado con el compartimiento de filtros, para instalar tantos PUFs como sean necesarios; y un cabezal de salida, que dirige los gases remanentes del muestreo hacia una bomba de succión; en donde, el cabezal de corte posee una boquilla que consiste en un tubo Venturi, cuya geometría está diseñada para la selección de material particulado atmosférico de 2,5 μηι de tamaño aerodinámico de partículas, cuando el volumen de muestreo del equipo en donde se instala el dispositivo opera con flujos menores o iguales a 30L/min, que corresponde al volumen de aire inhalado por una persona promedio en un período de muestreo de 24 horas nominales y continuas. Los compartimentos que conforman el dispositivo se conectan entre sí a presión, y la hermeticidad se consigue con la ayuda de presillas y o-rings. El cabezal de corte posee una cavidad en su interior, que está formada a partir de dos cilindros concéntricos de diferentes diámetros. Entre los diámetros de dichos cilindricos concéntricos, se genera un borde perpendicular a la dirección del flujo, donde descansa un impactador, diseñado con orificios simétricos para dejar pasar un flujo de aire conteniendo partículas menores al tamaño definido en el cabezal de corte y dejar retenidas en su centro por impactación las partículas mayores al tamaño definido por el cabezal de corte, debido al jet que se genera por el Venturi en la boquilla de entrada del cabezal de corte. Dicho impactador define el tamaño máximo de partícula que será colectado por los filtros en el compartimiento de filtros. Los portafiltros consisten en dos rejillas planas que calzan la una con la otra, de modo que el filtro queda retenido entre ambas rejillas.
Este dispositivo fue diseñado para ser usado con cualquier sistema de bombeo que cuente con control de flujo másico.
Otro objetivo principal de la invención es proveer un método para la toma de muestras representativas de aire en equipos de bajo volumen, para determinar cualitativa y cuantitativamente la presencia de compuestos químicos orgánicos e inorgánicos en el aire, que comprende las etapas de: limpiar y preparar, un dispositivo como el que se define en las reivindicaciones 1 a 7; tomar muestras con el dispositivo; transportar el dispositivo hacia y desde el lugar de la toma de muestras; almacenar el dispositivo; y extraer los filtros y denuders desde el dispositivo para su análisis. La etapa de limpiar y preparar el dispositivo, antes de la etapa de tomar muestras, comprende: lavar con acetona HPLC el dispositivo en una sala limpia bajo un eliminador de estática; lavar secuencialmente con solventes de distinta polaridad cada uno de los filtros de espuma de poliuretano (PUFs); y certificar el extracto final obtenido de lavado, cromatográficamente para cada uno de los PUFs, de forma de asegurar su limpieza. La etapa de tomar muestras con el dispositivo, comprende: instalar el dispositivo a un equipo de muestreo, en el lugar de toma de muestras; y programar las secuencias de tomas de muestras para cada dispositivos instalado en el equipo de muestreo, según el objetivo del muestreo a realizar. La etapa de transportar el dispositivo hacia y desde el lugar de la toma de muestras, comprende: envolver el dispositivo, limpio y preparado, en papel aluminio prelavado con solvente orgánico y tapar la entrada del cabezal de corte con su respectiva tapa, para llevarlo al lugar de toma de muestras; y envolver el dispositivo, una vez retirado del equipo de muestreo, en papel aluminio prelavado con solvente orgánico y tapar la entrada del cabezal de corte con su respectiva tapa, para llevarlo al lugar de análisis. La etapa de almacenar el dispositivo, comprende: envolver el dispositivo cerrado y almacenarlo en oscuridad con refrigeración a menos de 4°C hasta el momento del análisis; o estabilizar, los filtros, denuders y PUFs, introduciéndolos en sus respectivos recipientes de extracción, con los solventes orgánicos apropiados y con la dosificación de los estándares que servirán para la cuantificación y control de calidad del análisis y finalmente almacenarlos en oscuridad con refrigeración a menos de 4°C hasta el momento del análisis cuando la espera debe superar las 24 horas. La etapa de extraer los filtros y denuders desde el dispositivo para su análisis, comprende: extraer los compuestos de interés desde los filtros y denuder mediante procedimientos químicos con equipamiento analítico y solventes orgánicos apropiados; filtrar a vacío el extracto obtenido de los filtros y denuder para eliminar posibles partículas que se hayan desprendido; llevar el extracto filtrado a un proceso de reducción de volumen y posterior purificación; someter a procedimientos de extracción, filtración y reducción de volumen de igual manera, los extractos de material particulado (MP) y de fase gaseosa por separado; purificar las muestras, separando las familias de compuestos de interés del resto de los compuestos químicos presentes en la muestra; y determinar las concentraciones de los compuestos de interés presentes en las muestras purificadas, mediante un análisis por cromatografía gaseosa capilar y detección adecuada a cada compuesto, para cada muestra. BREVE DESCRIPCIÓN DE LAS FIGURAS
La Fig. 1 es una vista isométrica del dispositivo armado, tal como es usado en el muestreo de aire ambiente.
La figura 2a muestra una vista principal del dispositivo armado de la figura 1.
La figura 2b muestra una vista superior del dispositivo armado de la figura 1.
La figura 2c muestra una vista inferior del dispositivo armado de la figura 1.
La Fig. 3 es una vista lateral del dispositivo desarmado, en la que pueden apreciarse todas sus partes y piezas.
La Fig. 4 es una vista isométrica en corte del dispositivo desarmado, mostrando todas sus partes y piezas.
Las Fig. 5 a 12 corresponden a vistas isométricas en corte del dispositivo, que muestran paso a paso la secuencia de armado del dispositivo.
DESCRIPCIÓN DE UNA REALIZACIÓN PREFERIDA
El dispositivo de la invención consiste en un contenedor cilindrico con compartimientos (cartridge), en cuyo interior se instalan filtros y adsorbentes para la recolección de compuestos químicos orgánicos o inorgánicos presentes en el aire. El filtro colecta los compuestos asociados al material particulado, y el adsorbente, aquellos presentes en la fase gaseosa. Las Figuras 1 , 2a, 2b y 2c corresponden a diferentes vistas del dispositivo armado, y en ellas se aprecian algunos detalles de los compartimentos que lo componen. Cabe destacar que la Fig. 2a también muestra la posición de uso correcta de la invención.
El dispositivo está constituido, básicamente, por cinco compartimentos. Desde la parte inferior a la superior en la Fig. 2a, se distinguen: cabezal de entrada 120, compartimento central 210, compartimento de filtros 310, compartimento de adsorbentes 410 y cabezal de salida 510. Estas partes ajustan entre sí a presión. Dos presillas del cabezal 212 (que se observan claramente en la vista inferior de la Fig. 2c) mantienen unidos el cabezal de entrada 110 con el compartimento central 210; dos presillas 211 mantienen unidos el compartimento central 210 con el compartimento de filtros 310; y dos presillas 31 1 (que se observan claramente en la vista superior de la Fig. 2b) mantienen unidos el compartimento de filtros 310 con el compartimento de adsorbentes 410. Un acople 520, que consiste en un tubo con hilo externo en ambos extremos (hilo macho), permite conectar el cabezal de salida 510 al compartimento de adsorbentes 410.
Un collarín 440, que abraza al compartimento de adsorbentes 410, se instala cuando el dispositivo va a ser usado en el equipo Partisol® 2300 Sapeciation Sampler de la compañía Thermo, USA.
En el extremo inferior del cabezal de entrada 110 se ubica una boquilla 120, por la que ingresa el aire ambiente al interior del dispositivo. En la pared externa de la boquilla se distingue un o-ring 121, cuya función es la de garantizar un cierre hermético mediante una tapa.
La Fig. 3 es una vista lateral del dispositivo desarmado, en la que se aprecian no sólo los cinco compartimentos principales, sino también los diversos elementos de separación que van contenidos en ellos. Un impactador 130 va inserto en el cabezal de entrada 110, y su función es definir el tamaño máximo de partícula que será colectado por el filtro 230. Un filtro 330 se soporta con un porta filtro 320. Tanto el filtro 330 como el porta filtro 320 corresponden a elementos estándar de separación, y pueden ser adquiridos a los proveedores habituales de artículos de laboratorio para análisis químico. Los adsorbentes 420, hechos de espuma de poliuretano (PUFs), van insertos en el compartimento de adsorbentes 410, y son retenidos allí por una tapa rosca 430 que se ajusta al hilo 41 1 , dibujado en la pared externa del extremo inferior de este compartimento 410. La función de los adsorbentes es retener las sustancias presentes en la fase gaseosa del aire que se hace pasar a través del dispositivo. Los PUFs también pueden ser adquiridos a los proveedores habituales de artículos de laboratorio para análisis químico.
Al ensamblar los compartimentos, un o-ring 213 contribuye a la hermeticidad de la unión entre el cabezal de entrada 110 y el compartimento central 210, y otro o-ring 214 contribuye a la hermeticidad de la unión entre el compartimento central 210 y el compartimento de filtros 310.
La Fig. 4 es una vista isométrica en corte del dispositivo desarmado, en la que se pueden apreciar detalles tanto de la estructura interna de los compartimentos como de la estructura de los elementos de separación. El cabezal de entrada 1 10 se inicia en una boquilla 120, que consiste en un tubo Venturi. Esta boquilla, en conjunto con el impactador 130, define el tamaño máximo de las partículas que serán colectadas por el filtro 330, correspondientes a partículas con un diámetro aerodinámico de 2,5 μπι. Si el cabezal está diseñado para medir partículas con diámetro aerodinámico inferior a 2,5 μπι, entonces todas las partículas con tamaños que superan este límite son conducidas directamente por el tubo Venturi 120 hacia el plato central del impactador 130, donde son retenidas. Las partículas más pequeñas siguen su camino a través del dispositivo en dirección del filtro 330.
La cavidad del cabezal de entrada 1 10 está formada a partir de dos cilindros concéntricos de diferente diámetro. La transición entre un diámetro y otro genera un borde (perpendicular a la dirección del flujo) en el que se hace descansar el impactador 130, tal como muestra la Fig. 5. Unos o-rings 1 11 contribuyen a la hermeticidad de la unión entre el cabezal de entrada 110 y el cuerpo central 210.
El cabezal de entrada 110 y la boquilla 120 fueron desarrollados por la Escuela de Salud Pública de la Universidad de Harvard y su funcionamiento ha sido caracterizado y bien documentado en numerosas publicaciones científicas.
En las Figuras 5 a 13 se muestra paso por paso la secuencia de armado del dispositivo. En la Fig. 5 se observa al impactador 130 inserto en el cabezal de entrada 110. El impactador 130 descansa en el borde interno que se genera por las diferencias de diámetro entre las cavidades cilindricas del cabezal 110.
En las Figuras 5 y 6 se muestra el ensamble entre el cabezal de entrada 110 y el cuerpo principal 210. El extremo inferior de este último se inserta en el primero. El extremo inferior del cuerpo principal 210 es aquel cuya boca tiene mayor diámetro.
El diámetro interno del cabezal de entrada 1 10 prácticamente coincide con el diámetro externo del extremo inferior del cuerpo principal 210. El impactador 130 queda fijo en su posición, debido a que el cuerpo principal 210 lo aprisiona contra el borde en el que descansa. Las Figuras 6 y 7 muestran la forma en la que se instala el filtro de Teflón 330, de dimensiones estándar, en el interior del dispositivo. El porta filtro 320 (estándar), consiste en dos rejillas planas que calzan la una en la otra, de modo que el filtro 330 queda aprisionado entre ambas.
La Figura 8 muestra que el extremo superior del cuerpo principal 210 (en el que se encuentra la boca con menor diámetro) se inserta ajustadamente en el porta filtro 320, de manera que este último descansa sobre el primero.
El siguiente paso es mostrado en la Fig. 9. El extremo superior del cuerpo principal 210, con el porta filtro 320 acomodado sobre él, se inserta ajustadamente en la boca inferior del compartimento de filtros 310. El o-ring 214 y las presillas 211 contribuyen a la hermeticidad de la unión. Las Figuras 9, 10 y 11 muestran que el fondo plano de la tapa rosca 430 es una rejilla desmontable 431. Los adsorbentes (PUFs) 420 se insertan en el compartimento de adsorbentes 410, tal como se representa en la Fig. 10.
Las Figuras 11 y 12 muestran cómo se sostienen los PUFs 420 en el interior del compartimento de adsorbentes 410. Una tapa rosca 430 se atornilla al hilo 411, el que ha sido dibujado en las paredes externas del extremo inferior del compartimento de adsorbentes 410. Finalmente, tal como muestra la Fig. 13, la parte inferior del compartimento de adsorbentes 410 se inserta en la boca superior del compartimento de filtros 310. El diámetro externo del primero prácticamente coincide con el diámetro interno del segundo. El o-ring 312 y las presillas 311 favorecen la unión hermética entre las partes.
La función del cabezal de salida 510 es la de conducir el aire remanente hacia la bomba de vacío que está aspirando aire, haciéndolo pasar a través de dispositivo.
El dispositivo, y especialmente el cabezal de entrada 120, están diseñados para trabajar con flujos tan bajos como 10 L/min
El uso de este dispositivo tipo cartridge para la toma de muestras, requiere de un procedimiento de manipulación y uso, el que considera las siguientes etapas:
Limpieza y preparación del dispositivo antes de la etapa de muestreo;
Utilización del dispositivo en la etapa de muestreo;
Transporte y almacenamiento del dispositivo al lugar y desde el lugar de muestreo;
Extracción de los filtros y denuders desde el dispositivo para su procesamiento analítico en el laboratorio.
Limpieza y Preparación del material de muestreo
Todo el material que se utiliza en la toma de muestras pasa por un riguroso procedimiento de limpieza y control de calidad. Los dispositivos son rigurosamente lavados con acetona HPLC y preparados para muestreo en sala limpia con eliminador de estática. Por otra parte, los filtros de espuma de poliuretano (PUF), son sometidos a un lavado secuencial con solventes de distinta polaridad para asegurar su limpieza, el extracto final obtenido del lavado se certifica cromatográficamente por cada PUF, este actúa como control de calidad.
Utilización del dispositivo en la etapa de muestreo
El dispositivo limpio y preparado para el muestreo se envuelve en papel de aluminio prelavado (con solvente orgánico) y se tapa la entrada del cabezal de toma muestra con su respectiva tapa. El dispositivo así preparado se transporta hasta el lugar de muestreo y se coloca en el equipo de muestreo denominado Partisol® 2300 Sequential Speciation Sampler. En el equipo de muestreo se programa el tiempo y la secuencia de muestreo, según el objetivo del muestreo. El S.Samp. posee 3 canales diferentes, con capacidad de instalar hasta 4 dispositivos en forma simultánea (en paralelo), cada uno con su propio regulador de flujo másico. De esta forma es posible programar secuencias de hasta 4 dispositivos en paralelo, pudiéndose tomar éstas como repeticiones de una misma muestra. Alternativamente el equipo permite utilizar los doce canales totales del S.Samp. en forma individual, programando el equipo en una secuencia de 24 horas continuas o de 12 horas de muestreo, donde cada dispositivo representa 1 hora; o 12 días de muestreo, donde cada dispositivo representa 1 día, por nombrar las más sencillas.
Transporte y almacenamiento del dispositivo al lugar y desde el lugar de muestreo
Una vez que el S.Samp. ha terminado su programa de muestreo correspondiente, el dispositivo es retirado del lugar de muestreo es envuelto nuevamente en papel de aluminio prelavado y se tapa la entrada del cabezal de toma muestra con su respectiva tapa. De esta forma es transportado nuevamente al laboratorio, donde los filtros, denuders y PUFs serán procesados. Idealmente los componentes donde se ha retenido la muestra de aire (filtros, denuders y PUFs) deben ser procesados lo más rápidamente posible, para evitar sufrimientos innecesarios a la muestra recolectada. En el caso de no ser factible hacerlo de inmediato, el dispositivo envuelto y cerrado como se describió se deberá almacenar en oscuridad y refrigeración a menos de 4 °C hasta el momento de su análisis. Si la espera supera las 24 horas los filtros, denuders y PUFs, deben al menos ser estabilizados colocándolos en sus respectivos y futuros recipientes de extracción, con los solventes orgánicos apropiados y con la dosificación de los estándares internos que servirán para la cuantificación y el control de calidad del procedimiento analítico. Así mismo, estos recipientes deberán ser almacenados en oscuridad y refrigeración a menos de 4 °C hasta el momento de su análisis. De esta forma se asegura la integridad de la muestra a analizar.
Extracción de muestras de los filtros y denuders desde el dispositivo para su procesamiento analítico en el laboratorio
Extracción de filtros y adsorbentes
Filtros de Teflón: Los filtros de membrana de teflón con MP impactado (0,45 μιιι <MP <2,5 μηι) son cuidadosamente extraídos del dispositivo de muestreo y puestos en un balón de destilación con Tolueno ultra puro (Fisher grado Optima), sobre esta solución se agregan los estándares internos de HAPs necesarios para el análisis cuantitativo. Posteriormente, el balón de destilación es trasladado a una manta calefactora donde se conecta a un sistema refrigerante de doble camisa y se extraen los compuestos adsorbidos/absorbidos del MP por medio de ebullición (110 °C) y reflujo de solvente durante una hora. Una vez finalizado este proceso, el extracto obtenido es filtrado utilizando un nuevo filtro de membrana de teflón de 0,45 μηι de diámetro de poro con el apoyo de una bomba de vacío libre de aceite para evitar la contaminación de la muestra. Posteriormente el extracto filtrado es llevado a un proceso de reducción de volumen y posterior purificación.
PUF: Los filtros de espuma de poliuretano (PUF) en los cuales fue recolectada las fase gaseosa de HAPs, se sacan de los dispositivos de muestreo y son puestos en un sistema de extracción neumático, automático y programable denominado AutoExtract PUF® (solicitud de patente de invención CL 588-06). En este equipo los PUF se sumergen en solventes orgánicos utilizando un barrido de solventes de diferente polaridad, todos grado supra puro y luego se programa electrónicamente para que extraiga los compuestos de interés adsorbidos en el PUF, a través de una cuidadosa combinación de intervalos de compresión y descompresión que dura 15 minutos en total. Previa a la extracción de los PUF, se agregan los estándares internos de HAPs en el recipiente del AutoExtact PUF® (aparato descrito en la solicitud de patente CL588-06), directamente sobre el solvente de extracción. Transcurrido este tiempo, se recolecta el extracto en un balón de destilación y se carga el equipo con una nueva porción de solvente, esta operación se repite un determinado número de veces (con el mismo PUF) y todas las fracciones de solvente se recolectan en el mismo balón. Posteriormente los extractos son llevados al proceso común de reducción de volumen en rotavapor y en corriente de nitrógeno utilizando un equipo automático como el descrito en la solicitud de patente de invención CL 590-06. Posteriormente se purifica el extracto final del PUF como en el caso de los extractos obtenidos del MP.
Reducción de volumen de extractos: A partir de esta etapa, los extractos de Material Particulado y de Fase Gaseosa se tratan de igual manera, pero por separado. La reducción de volumen se realiza primero en un rotavapor (30°C - 90 rpm) asistido por una bomba de vacío de membranas de teflón, donde se evaporan las muestras hasta aproximadamente 1 mL. Posteriormente el extracto se traslada a un vial cónico de 5 mL con una pipeta graduada con embolo de vidrio esmerilado para así evitar posibles contaminaciones provenientes de alguna propipeta. Los lavados finales del balón de destilación se realizan con acetonitrilo calidad HPLC. Ya en los viales, los extractos son trasladados al sistema de evaporación automático como el descrito en la solicitud de patente CL 590-06, con corriente controlada de N2 extra puro y sistema de enfriamiento, reduciéndose su volumen hasta prácticamente sequedad y se redisuelven en 50 \iL de Tolueno.
Purificación de muestras: Una vez evaporadas, las muestras son llevadas a un proceso de purificación (clean up) a través de elusión en columnas de silica gel de 2 granulometrías distintas, previamente preparadas y acondicionadas con distintos solventes para este fin. En esta etapa se purifica la muestra atmosférica, separando las familias de compuestos de interés, en este caso HAPs, de esta forma se obtienen dos extractos diferentes mediante elusión con solventes de distinta polaridad, cada fracción de elusión se recoge por separado en un vial cónico de 5 mL. Una vez eluidas las fracciones de HAPs, éstas se evaporan en corriente de N2 y se redisuelven en un volumen conocido de solvente, para su posterior análisis cromatográfico.
Determinación de concentración de HAPs: Los extractos ya purificados son analizados por cromatografía gaseosa capilar utilizando el método de estándar interno, empleando 3 estándares internos de HAPs, para cada análisis de muestras. Para el análisis de HAPs se utiliza un cromatografo Perkin Elmer AutoSystem XL equipado con sistema de inyección automática de muestras con bandeja refrigerada, Inyector Split/Splitless con rampa de temperatura y presión y sistema Pre Vent, una columna capilar de 30 m x 0,25 mm x 0,25 μιη y un detector de ionización de llama (FID). La identificación y cuantificación de los compuestos será confirmada por GC-MS, (Clarus 500-PE) de última generación. La cuantificación cromatográfica se realiza mediante el programa Turbochrom-PE y se construyó una aplicación informática denominada GC-PLUG® que es un software para procesamiento de datos cromatográficos que se cuelga de Turbochrom-PE y permite optimizar el análisis cromatográfico cualitativo y cuantitativo.

Claims

REIVINDICACIONES
1. - Dispositivo compacto y portátil para la toma de muestras representativas de aire en equipos de bajo volumen, para determinar cualitativa y cuantitativamente la presencia de compuestos químicos orgánicos e inorgánicos en el aire, CARACTERIZADO porque opera con flujos menores o iguales a 30L/min y está constituido por compartimientos ensamblables, fabricado en un material con mínima capacidad adsorbente y absorbente, que comprende:
- un cabezal de corte, que define el tamaño máximo de partículas a ser colectadas;
- un cuerpo principal, conectado con el cabezal de corte, en el que opcionalmente se pueden instalar tantos denuders como sean necesarios para retener por adsorción/absorción los compuestos químicos en fase gaseosa sin interferir el paso del material particulado;
- un compartimiento de filtros, en el que se acomodan portafiltros con sus filtros;
- un compartimiento de adsorbentes con filtros de espuma de poliuretano (PUFs), conectado con el compartimiento de filtros, para instalar tantos PUFs como sean necesarios; y
- un cabezal de salida, que dirige los gases remanentes del muestreo hacia una bomba de succión;
en donde, el cabezal de corte posee una boquilla que consiste en un tubo Venturi, cuya geometría está diseñada para la selección de material particulado atmosférico de 2,5 μιη de tamaño aerodinámico de partículas, cuando el volumen de muestreo del equipo en donde se instala el dispositivo opera con flujos menores o iguales a 30L/min, que corresponde al volumen de aire inhalado por una persona promedio en un período de muestreo de 24 horas nominales y continuas.
2. - Dispositivo compacto y portátil para la toma de muestras representativas de aire ambiente según la reivindicación 1 , CARACTERIZADO porque los compartimentos que conforman el dispositivo se conectan entre sí a presión, y la hermeticidad se consigue con la ayuda de presillas y o-rings.
3. - Dispositivo compacto y portátil para la toma de muestras representativas de aire según la reivindicación 1, CARACTERIZADO porque el cabezal de corte posee una cavidad en su interior, que está formada a partir de dos cilindros concéntricos de diferentes diámetros.
4. - Dispositivo compacto y portátil para la toma de muestras representativas de aire ambiente según la reivindicación 3, CARACTERIZADO porque en la transición entre los diámetros de dichos cilindricos concéntricos, se genera un borde perpendicular a la dirección del flujo, donde descansa un impactador, diseñado con orificios simétricos para dejar pasar un flujo de aire conteniendo partículas menores al tamaño definido en el cabezal de corte y dejar retenidas en su centro por impactación las partículas mayores al tamaño definido por el cabezal de corte, debido al jet que se genera por el Venturi en la boquilla dé entrada del cabezal de corte.
5. - Dispositivo compacto y portátil para la toma de muestras representativas de aire ambiente según la reivindicación 4, CARACTERIZADO porque dicho impactador define el tamaño máximo de partícula que será colectado por los filtros en el compartimiento de filtros.
6.- Dispositivo compacto y portátil para la toma de muestras representativas de aire ambiente según la reivindicación 1, CARACTERIZADO porque dichos portafiltros consisten en dos rejillas planas que calzan la una con la otra, de modo que el filtro queda retenido entre ambas rejillas.
7.- Método para la toma de muestras representativas de aire en equipos de bajo volumen, para determinar cualitativa y cuantitativamente la presencia de compuestos químicos orgánicos e inorgánicos en el aire, CARACTERIZADO porque comprende las etapas de:
- limpiar y preparar, un dispositivo como el que se define en las reivindicaciones 1 a 7;
- tomar muestras con el dispositivo;
- transportar el dispositivo hacia y desde el lugar de la toma de muestras;
- almacenar el dispositivo; y extraer los filtros y denuders desde el dispositivo para su análisis.
8. - El método para la toma de muestras representativas según la reivindicación 7, CARACTERIZADO porque la etapa de limpiar y preparar el dispositivo, antes de la etapa de tomar muestras, comprende:
lavar con acetona grado HPLC el dispositivo en una sala limpia bajo un eliminador de estática;
lavar secuencialmente con solventes de distinta polaridad cada uno de los filtros de espuma de poliuretano (PUFs); y
certificar el extracto final obtenido de lavado, cromatográficamente para cada uno de los PUFs, de forma de asegurar su limpieza.
9. - El método para la toma de muestras representativas según la reivindicación 7, CARACTERIZADO porque la etapa de tomar muestras con el dispositivo, comprende:
Instalar el dispositivo a un equipo de muestreo, en el lugar de toma de muestras; y
Programar las secuencias de tomas de muestras para cada dispositivos instalado en el equipo de muestreo, según el objetivo del muestreo a realizar.
10. - El método para la toma de muestras representativas según la reivindicación 7, CARACTERIZADO porque la etapa de transportar el dispositivo hacia y desde el lugar de la toma de muestras, comprende:
envolver el dispositivo, limpio y preparado, en papel aluminio prelavado con solvente orgánico y tapar la entrada del cabezal de corte con su respectiva tapa, para llevarlo al lugar de toma de muestras; y
envolver el dispositivo, una vez retirado del equipo de muestreo, en papel aluminio prelavado con solvente orgánico y tapar la entrada del cabezal de corte con su respectiva tapa, para llevarlo al lugar de análisis.
11.- El método para la toma de muestras representativas según la reivindicación 7, CARACTERIZADO porque la etapa de almacenar el dispositivo, comprende: envolver el dispositivo cerrado y almacenarlo en oscuridad con refrigeración a menos de 4°C hasta el momento del análisis; o
estabilizar, los filtros, denuders y PUFs, introduciéndolos en sus respectivos recipientes de extracción, con los solventes orgánicos apropiados y con la dosificación de los estándares que servirán para la cuantificación y control de calidad del análisis y finalmente almacenarlos en oscuridad con refrigeración a menos de 4°C hasta el momento del análisis cuando la espera debe superar las 24 horas.
12.- El método para la toma de muestras representativas según la reivindicación 7,
CARACTERIZADO porque la etapa de extraer los filtros y denuders desde el dispositivo para su análisis, comprende:
extraer los compuestos de interés desde los filtros y denuder mediante procedimientos químicos con equipamiento analítico para extracción y solventes orgánicos apropiados;
filtrar a vacío el extracto obtenido de los filtros y denuder para eliminar posibles partículas que se hayan desprendido;
llevar el extracto filtrado a un proceso de reducción de volumen y posterior purificación; someter a procedimientos de extracción, filtración. y reducción de volumen de igual manera, los extractos de material particulado (MP) y de fase gaseosa por separado;
purificar las muestras, separando las familias de compuestos de interés del resto de los compuestos químicos presentes en la muestra; y
Determinar las concentraciones de los compuestos de interés presentes en las muestras purificadas, mediante un análisis por cromatografía gaseosa capilar y detección adecuada a cada compuesto, para cada muestra.
PCT/CL2011/000008 2011-01-26 2011-01-26 Dispositivo compacto y portátil para la toma de muestras representativas de aire en equipos de bajo volumen, para determinar cualitativa y cuantitativamente la presencia de compuestos químicos orgánicos e inorgánicos en el aire, y método operativo del dispositivo WO2012100364A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2011/000008 WO2012100364A1 (es) 2011-01-26 2011-01-26 Dispositivo compacto y portátil para la toma de muestras representativas de aire en equipos de bajo volumen, para determinar cualitativa y cuantitativamente la presencia de compuestos químicos orgánicos e inorgánicos en el aire, y método operativo del dispositivo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2011/000008 WO2012100364A1 (es) 2011-01-26 2011-01-26 Dispositivo compacto y portátil para la toma de muestras representativas de aire en equipos de bajo volumen, para determinar cualitativa y cuantitativamente la presencia de compuestos químicos orgánicos e inorgánicos en el aire, y método operativo del dispositivo

Publications (1)

Publication Number Publication Date
WO2012100364A1 true WO2012100364A1 (es) 2012-08-02

Family

ID=46580163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2011/000008 WO2012100364A1 (es) 2011-01-26 2011-01-26 Dispositivo compacto y portátil para la toma de muestras representativas de aire en equipos de bajo volumen, para determinar cualitativa y cuantitativamente la presencia de compuestos químicos orgánicos e inorgánicos en el aire, y método operativo del dispositivo

Country Status (1)

Country Link
WO (1) WO2012100364A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266872A (zh) * 2014-09-19 2015-01-07 国家烟草质量监督检验中心 带吸附管的转盘型吸烟机捕集装置及其分析测试方法
WO2019161058A1 (en) 2018-02-16 2019-08-22 Zefon International, Inc. Improved device for collecting particulate matter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933431A (en) * 1974-07-23 1976-01-20 The United States Of America As Represented By The United States Energy Research And Development Administration Method and apparatus for sampling atmospheric mercury
US4170901A (en) * 1978-06-15 1979-10-16 The United States Of America As Represented By The Secretary Of The Air Force Sorption tube atmospheric sampling system
WO1994001753A1 (en) * 1992-07-13 1994-01-20 The Broken Hill Proprietary Company Limited Sampling device for airborne particulate or vapour emissions
US5333511A (en) * 1990-09-07 1994-08-02 The United States Of America As Represented By The United States Environmental Protection Agency Portable controlled air sampler
US5702506A (en) * 1996-10-16 1997-12-30 Institute Of Occupational Safety And Health, Council Of Labor Affairs, Executive Yuan Method and device for aerosol size-selective sampling
US20010045000A1 (en) * 1994-02-02 2001-11-29 Gundel Lara A. Quantitative organic vapor-particle sampler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933431A (en) * 1974-07-23 1976-01-20 The United States Of America As Represented By The United States Energy Research And Development Administration Method and apparatus for sampling atmospheric mercury
US4170901A (en) * 1978-06-15 1979-10-16 The United States Of America As Represented By The Secretary Of The Air Force Sorption tube atmospheric sampling system
US5333511A (en) * 1990-09-07 1994-08-02 The United States Of America As Represented By The United States Environmental Protection Agency Portable controlled air sampler
WO1994001753A1 (en) * 1992-07-13 1994-01-20 The Broken Hill Proprietary Company Limited Sampling device for airborne particulate or vapour emissions
US20010045000A1 (en) * 1994-02-02 2001-11-29 Gundel Lara A. Quantitative organic vapor-particle sampler
US5702506A (en) * 1996-10-16 1997-12-30 Institute Of Occupational Safety And Health, Council Of Labor Affairs, Executive Yuan Method and device for aerosol size-selective sampling

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266872A (zh) * 2014-09-19 2015-01-07 国家烟草质量监督检验中心 带吸附管的转盘型吸烟机捕集装置及其分析测试方法
WO2019161058A1 (en) 2018-02-16 2019-08-22 Zefon International, Inc. Improved device for collecting particulate matter
EP3752019A4 (en) * 2018-02-16 2021-11-17 Zefon International, Inc. IMPROVED DEVICE FOR COLLECTING PARTICLES
US11426689B2 (en) 2018-02-16 2022-08-30 Cole-Parmer Instrument Company Llc Device for collecting particulate matter

Similar Documents

Publication Publication Date Title
US8578796B2 (en) High volume sampling front end collection device
US7600439B1 (en) Apparatus and method for storage of atmospheric sample for eventual chemical analysis
US7559980B2 (en) Absorbent transfer for passive sampling badge
ES2717926T3 (es) Sistema de filtración
ES2484515T3 (es) Detección de drogas en aliento exhalado
US10317320B2 (en) Automatic re-loading air-sampling and pneumatic transport system
US10835155B2 (en) Ultra-clean bag or balloon for collection of volatile organic compounds in breath or air
US20080229805A1 (en) Apparatus and Method for Mobile Collection of Atmospheric Sample for Chemical Analysis
EP3298378B1 (fr) Procede de prelevement et d&#39;extraction de polluants dans un fluide, cartouche de prelevement, dispositifs de prelevement et d&#39;extraction mettant en oeuvre ledit procede
RU2018139275A (ru) Система, устройство и способ для мониторинга органических соединений в газовой среде
CN104956200B (zh) 扩散采样装置
US11237083B1 (en) High volume sampling trap thermal extraction device
ES2651719T3 (es) Aparato y procedimiento de preconcentración para un dispositivo de detección por espectrometría de movilidad iónica
WO2012100364A1 (es) Dispositivo compacto y portátil para la toma de muestras representativas de aire en equipos de bajo volumen, para determinar cualitativa y cuantitativamente la presencia de compuestos químicos orgánicos e inorgánicos en el aire, y método operativo del dispositivo
US20170328815A1 (en) Automatic air-sampling and pneumatic transport system with ball-filter hopper and integrated sampling manifold
JP6110116B2 (ja) 気体成分吸着管、気体成分採取装置及び気体成分採取方法。
US20210393163A1 (en) Device and methods for collecting and processing analytes in air/breath
KR100719156B1 (ko) 복합 필터가 내장된 고효율 흡착트랩
JP2004301566A (ja) 排ガス中の半揮発性有機化合物の迅速計測装置及びその迅速計測方法
WO2007104822A1 (es) Sistema y método de extracción automático de contaminantes atmosféricos gaseosos con propiedades tóxicas, los cuales están retenidos en filtros de espuma de poliuretano (puf).
ES2393213T3 (es) Dispositivo de muestreo para sustancias volátiles
ES2308898B1 (es) Dispositivo de muestreo dinamico de aire.
Scheepers et al. Determination of the filter capture efficiency for safe use of fixative solutions in the biological glove box of the International Space Station
US9296540B1 (en) Sorbent holder system for storage or transport having a cleansing element
Pena-Pereira et al. Sample Preparation Methods for Determination of Pollutants in Air Samples

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857026

Country of ref document: EP

Kind code of ref document: A1