WO2012099303A1 - Utensil comprising ultra-thin pattern coating layer three-dimensionalized by magnetic nano-materials, and preparation method thereof - Google Patents

Utensil comprising ultra-thin pattern coating layer three-dimensionalized by magnetic nano-materials, and preparation method thereof Download PDF

Info

Publication number
WO2012099303A1
WO2012099303A1 PCT/KR2011/004427 KR2011004427W WO2012099303A1 WO 2012099303 A1 WO2012099303 A1 WO 2012099303A1 KR 2011004427 W KR2011004427 W KR 2011004427W WO 2012099303 A1 WO2012099303 A1 WO 2012099303A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
ultra
thin
pattern
dimensionalized
Prior art date
Application number
PCT/KR2011/004427
Other languages
French (fr)
Korean (ko)
Inventor
이원철
Original Assignee
주식회사 이룸쿡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이룸쿡 filed Critical 주식회사 이룸쿡
Publication of WO2012099303A1 publication Critical patent/WO2012099303A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/02Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/10Frying pans, e.g. frying pans with integrated lids or basting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Definitions

  • the present invention relates to a device having a three-dimensionalized ultra-thin pattern coating layer, and more particularly, to a device provided with a three-dimensional ultra-thin pattern coating layer made of a nanomagnetic material.
  • a flat pattern is formed on the surface of an appliance such as an exterior panel or a cooking vessel of a product through a screen method, a pad method, a spray injection method, or the like.
  • the pattern formed in this way has a relatively large difference in thickness, and even if a coating layer is formed on the upper surface, the curvature has to be formed corresponding to the three-dimensional pattern on the surface, and the flat and smooth surface has a three-dimensional pattern. In order to form, the thickness of the coating layer had to be thickened.
  • the volume of the product is increased due to unnecessary thickness increase, and the formed pattern is only a rough form of general intaglio and embossing, and there is a problem in that it cannot present an advanced aesthetic of the product.
  • the increase in the thickness generated in the process of forming a three-dimensional pattern in the device to be heated amount such as cooking vessels there was a problem that the heat transfer rate is lowered to impair the function of the product.
  • the present invention has been made to solve the above problems to provide a mechanism having a clear ultra-thin pattern coating layer while being three-dimensionally formed by a nano-magnetic material in a thin and compact structure.
  • the present invention has a pattern region formed as a thickness through which the magnetic force is transmitted, the object made of a nonmagnetic material; And a three-dimensional ultra-thin pattern coating layer formed on the upper surface of the object by coating the first resin in which the nano magnetic particles are mixed and formed as the nano magnetic particles are rearranged in a pattern set by the magnetic force of the magnetic generating means.
  • the magnetic force generating means is provided to have a polarization line, and the nanomagnetic particles have a high rearranged distribution density at a point corresponding to the polarization line, and the distribution density decreases as the distance from the polarization line decreases.
  • a mechanism provided with an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material characterized in that the pattern coating layer is formed.
  • the present invention comprises a first step of forming and drying a primer coating layer as a second resin on the surface of the object of the non-magnetic material; Applying a first resin mixed with nano-magnetic material particles having a different color from the first resin on the upper surface of the primer coating layer, by placing a magnetic force generating means having a polarization line to provide a magnetic force of the pattern set in the lower portion of the object.
  • the nanomagnetic particles are rearranged according to the set pattern by magnetic force, but the rearranged distribution density is high at the point where the nanomagnetic particles correspond to the polarization line, and the distribution density is lowered as the distance from the polarization line decreases.
  • the method provides a method of manufacturing a device having an ultra-thin patterned coating layer stereoscopically formed by a nanomagnetic material.
  • the present invention provides the following effects through the above solution.
  • the total thickness of the coating layer is limited to within several tens of micrometers, it shows a three-dimensional shape as the shade of the light is changed depending on the viewing angle, the nanomagnetic particles to the observer in the polarization region where a plurality of magnets abut As rearranged by the amplified magnetic force, a visually distinct and vivid three-dimensional appearance is provided in a concentrated area, thereby providing a new high-quality appearance.
  • the appliance to be heated amount such as cooking vessel can be made high-quality products without affecting the heat transfer function at all.
  • the processing time and expense for the formation of the pattern is not increased, and the overall thickness of the coating layer can be maintained within several tens of ⁇ m, thereby preventing unnecessary waste of materials.
  • FIG. 1 is a cross-sectional view showing a mechanism having an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention.
  • Figure 2 is a flow chart showing a method of manufacturing a device having an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention.
  • 3A and 3B are schematic views showing an apparatus for manufacturing a device having an ultra-thin pattern coating layer stereoscopically formed by a nanomagnetic material according to an embodiment of the present invention.
  • Figure 4 is a cross-sectional view showing a mechanism provided with a multi-layer ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram showing an apparatus for manufacturing a device having an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to another embodiment of the present invention.
  • Figure 6a and 6b is a photograph showing the appearance of the apparatus provided with an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a mechanism having an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention.
  • the apparatus having the ultra-thin pattern coating layer stereoscopically formed by the nanomagnetic material according to the present invention includes the object 10 and the stereoscopic ultra-thin pattern coating layer 30.
  • the apparatus provided with the ultra-thin pattern coating layer three-dimensionally by the nano-magnetic material may be made of a cooking vessel, such as a frying pan, or exterior panels of various devices, and the object 10 is a non-magnetic panel forming such an exterior panel or a cooking vessel. It may be made of an adult metal plate.
  • the object 10 has a pattern region formed as a thickness through which magnetic force is transmitted, and is preferably made of a nonmagnetic material such as aluminum.
  • the upper surface of the object 10 is provided with an ultra-thin pattern coating layer 30 is three-dimensional to a very thin thickness.
  • the three-dimensionalized ultra-thin pattern coating layer 30 is formed by coating the first resin mixed with the nano-magnetic material particles 35, is formed as the nano-magnetic material particles are rearranged in a pattern set by the magnetic force in the viewing direction Therefore, a three-dimensional effect is provided.
  • the first resin is made of a synthetic resin material
  • the object when the object is a cooking vessel is preferably made of a transparent material made of a fluorine resin, ceramic, or heat-resistant paint harmless to the human body.
  • the first resin is preheated and melted to have a value equal to or lower than a set viscosity, and the surface of the object is mixed so that the nanomagnetic particles having an average particle diameter of several tens of nanometers (nm) are uniformly distributed. Is applied to. Thereafter, the nano-magnetic material particles 35 mixed in the first resin by magnetic force generated by magnetic force generating means, such as permanent magnets or electromagnets, in which polarization lines or the like are arranged in a pattern shape set from the lower part of the object 10. It is moved in the direction of forming the set pattern.
  • magnetic force generating means such as permanent magnets or electromagnets
  • the nano-magnetic material particles 35 are moved to form a pattern set together with the first resin to form a three-dimensional pattern.
  • the first resin and the nanomagnetic particles 35 mixed with the first resin may have different colors from those of the surface of the object disposed on the bottom surface of the object or a primer coating layer described below. It is desirable to have.
  • Figure 2 is a flow chart showing a method of manufacturing a device having an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention
  • Figures 3a and 3b is a nano-magnetic material according to an embodiment of the present invention It is a schematic diagram which shows the manufacturing apparatus of the apparatus provided with the three-dimensional ultra-thin pattern coating layer.
  • the magnetic force generating means 100 provides a magnetic force of a pattern set by the polarization line 101 formed at a point where the plurality of magnets 100a abut. At this time, the magnetic force is amplified in the polarization line 101 formed at the point where the plurality of magnets abut.
  • the polarization line 101 is formed at the point where the N pole and the S pole of the independent magnets 100a come in contact with each other. . As described above, in the polarization line 101 formed at the point where the plurality of individual magnets 100a abut, the magnetic forces of the two magnets are combined and amplified, and in the polarization line 101, the magnetic force is significantly stronger than the magnetic force of a single magnet. To provide.
  • the nano-magnetic particles contained in the pattern coating layer 30 is pulled by the magnetic attraction at the point corresponding to the polarization line 101 is moved by the magnetic attraction, the distribution density after rearrangement is high, the magnetic attraction is further away from it The weaker the density, the lower the distribution density.
  • the magnetic force is amplified to draw the nano-magnetic material particles by a strong magnetic force can form a three-dimensional pattern of clearer shape.
  • the continuous difference in the distribution density of the nanomagnetic particles 35 may provide a visually stereoscopic appearance that can be commercialized by providing an embossed to engraved effect in appearance.
  • the configuration disposed on the lower surface of the first resin may be the surface of the object, but a primer coated as a second resin made of a fluorine resin or the like between the surface of the object 10 and the ultra-thin pattern coating layer 30. It is preferable that the coating layer 20 is further provided.
  • the object surface of the metal material increases the surface roughness by sandblasting.
  • the primer coating layer 20 may be firmly attached to the sand blasted surface and, after being dried, its upper surface may function as a base layer to which the ultra-thin pattern coating layer 30 is firmly attached.
  • the movement for rearrangement of the nanomagnetic particles and the first resin by magnetic force in the state where the first resin is preheated and molten can be made smoothly along the smooth and flat upper surface of the primer coating layer 20 disposed on the lower surface thereof.
  • the primer coating layer 20 is made of a fluorine resin, ceramic, or a heat resistant paint, such as ceramic powder is contained in a dark color such as black.
  • the three-dimensionalized ultra-thin pattern coating layer 30 to the color of the nano-magnetic material particles 35 mixed thereto is preferably formed to have a different color from the color of the primer coating layer.
  • the three-dimensionalized ultra-thin pattern coating layer 30 is formed in a color contrasted with the color of the primer coating layer, preferably the nano-magnetic material particles 35 are treated to be formed in a light metal color to increase the stereoscopic effect. Do.
  • the top coating layer 40 of a transparent third resin material is preferably formed on the top surface of the three-dimensionalized ultra-thin pattern coating layer 30.
  • the top coating layer 40 functions as a layer for protecting the nanomagnetic particles 35 of the iron oxide component contained in the three-dimensionalized ultra-thin pattern coating layer 30 from being peeled off. Through this, even if the present invention is applied to a cooking vessel or the like, it is possible to improve the hygiene safety performance by preventing the nanomagnetic particles from peeling off the surface.
  • the three-dimensionalized ultra-thin pattern coating layer 30 may provide an appearance given a three-dimensional appearance in which three-dimensional intaglio and embossment are clearly observed.
  • the overall thickness of the coating layer is formed to be limited to within several tens of micrometers, it shows a three-dimensional shape as if the shade of light to be transmitted is changed according to the viewing angle. Therefore, a visually distinct three-dimensional appearance may be given to the observer in a region where the nanomagnetic particles 35 are concentrated by rearrangement, thereby providing a new high-quality appearance.
  • the method of manufacturing a device provided with an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention.
  • a primer coating layer as a second resin on the surface of the non-magnetic material (10) Form 20) of Figure 1 is preferably dried (S100).
  • the primer coating layer is firmly attached to the surface of the sand blasted object, and after being dried, the upper surface thereof may function as a base layer to which the ultra-thin pattern coating layer 30 is firmly attached. Moreover, the movement for rearrangement of the nanomagnetic particles and the first resin by magnetic force in the state where the first resin is preheated and molten can be smoothly made along the smooth and flat upper surface of the primer coating layer disposed on the lower surface thereof.
  • the first resin is mixed with the nano-magnetic material particles having a different color from the first resin on the upper surface of the primer coating layer (S200).
  • a magnetic force generating means such as permanent magnets or electromagnets to provide a magnetic force of the pattern set in the lower portion of the object
  • the nano-magnetic material particles 35 are rearranged in accordance with the set pattern by the magnetic force is a three-dimensional ultra-thin pattern coating layer 30 is formed (S300).
  • the nanomagnetic particles 35 have a rearranged distribution density at a point corresponding to the polarization line 101 of the magnetic force generating means 100, and the farther therefrom, the lower the distribution density.
  • a continuous difference in the distribution density of the nanomagnetic particles 35 may provide an embossed to engraved effect in appearance, thereby providing a visually three-dimensional appearance.
  • a clear three-dimensional pattern can be formed by the magnetic force amplified by the polarization lines formed at the points where the N poles and the S poles of the plurality of magnets abut each other.
  • the region where the nanomagnetic particles 35 are concentrated is rearranged by magnetic force, and the distribution density thereof is continuous, the reflectivity of the light projected onto the nanomagnetic particles 35 is continuously changed at an angle of view. Thus, a more realistic and natural change in three-dimensional appearance can be observed visually.
  • the rearrangement temperature means a temperature state in which the nanomagnetic particles 35 are moved and rearranged by the magnetic force as the first resin is molten.
  • the order of heating to preheating may be appropriately changed to melt the first resin and lower the viscosity so that the nanomagnetic particles are easily rearranged.
  • the ultra-thin patterned coating layer 30 is dried (S400), and the top coating layer (40 in FIG. 1) is preferably formed on the upper surface of the dried ultra-thin patterned coating layer 30.
  • the primer coating layer, three-dimensionalized ultra-thin pattern coating layer, the top coating layer is made of a synthetic resin material, such as fluorine resin, ceramics, or heat-resistant paint, the overall thickness is limited to within several tens of ⁇ m to prevent unnecessary material cost increase.
  • the resin forming the three-dimensionalized ultra-thin patterned coating layer and the top coating layer is preferably made of a transparent material so that the three-dimensionalized pattern is displayed on the outside.
  • Figure 4 is a cross-sectional view showing a mechanism having a multi-layered ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention.
  • the first glyph coating layer 30a and the second glyph coating layer 30b are formed on the upper side of the primer coating layer. Are formed sequentially.
  • the top coating layer 60 is preferably formed on the upper surface of the second glyph coating layer 30b.
  • the first glyph coating layer 30a and the second glyph coating layer 30b are applied in multiple layers, and the glyph coating layers each include the first nanomagnetic particles 35a and the second nanomagnetic particles 35b.
  • the second nano-magnetic particles contained in the second pattern coating layer After the first nano-magnetic particles contained in the first pattern coating layer to form a three-dimensional pattern corresponding to the polarization line of the magnetic force generating means 100, the second nano-magnetic particles contained in the second pattern coating layer The three-dimensional pattern can be formed in multiple layers corresponding to the polarization lines of other magnetic force generating means.
  • first nanoparticle particles 35a and the second nanomagnetic particles 35b that are patterned on the first glyph coating layer 30a and the second glyph coating layer 30b to form a three-dimensional pattern, respectively can be formed differently to form an innovative and refined multi-dimensional three-dimensional ultra-thin pattern coating layer.
  • the nanomagnetic particles may be formed to have a color distinct from the color of each coating layer.
  • the magnetic force generating means 100 is to be provided in combination of a plurality of independent magnets (100a) to have a polarization line 101 of a set pattern.
  • the nanomagnetic particles 35a and 35b have a high rearranged distribution density at a point corresponding to the polarization line and a low distribution density at a portion away from the polarization line, so that the three-dimensional appearance is clear and the difference in distribution density is clear.
  • the pattern coating layer may be formed.
  • Figure 5 is a schematic diagram showing an apparatus for manufacturing a device having an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to another embodiment of the present invention.
  • the magnetic force generating means is a planar magnet 110 that provides a magnetic force, and is disposed on the upper surface of the magnet 110 to transfer the magnetic force, but the pattern plate 120 having a groove or a hole of a predetermined pattern is formed It may be made, including.
  • the magnetic force is transmitted in a shape corresponding thereto by the pattern plate 120 of the magnetic metal material having the pattern set on the upper surface of the magnet.
  • the nano-magnetic material particles 35 contained in the first resin applied to the object 10 are rearranged so as to be concentrated in a pattern corresponding to the magnetic attraction according to the set pattern, the three-dimensional ultra-thin pattern coating layer 30 ) Can be achieved.
  • Figure 6a and Figure 6b is a photograph showing the appearance of the apparatus provided with a ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention.
  • FIG. 6A is an angle viewed from the front while FIG. 6B is a sample photograph at an angle viewed from a direction inclined to one side.
  • the mechanism in which the three-dimensionalized ultra-thin pattern coating layer 30 is formed provides a clear three-dimensional feeling in which the intaglio and the embossment are distinguished.
  • the silver gray portion 36 is a region where the nanomagnetic particles are distributed by the rearrangement, and the portion 37 that looks so deep as if it is recessed as the inner dark or black color partitioned therein is the above. It is an area where nanomagnetic particles are sparsely arranged so that their lower structure (primer coating layer to object surface) is projected.
  • FIG. 6B shows an area in which the nanomagnetic particles are concentrated by rearrangement.
  • the shadows of the shadows are changed in three dimensions and visually sensed as protruding by a few cm.
  • a region in which the silver-gray portion 36 is concentrated in the nanomagnetic particles by rearrangement is formed at a point corresponding to the polarization line of the magnetic force generating means, and the polarization line 101 is lattice-shaped.
  • the ultra-thin pattern coating layer three-dimensionally formed into a lattice shape as shown in FIGS. 6A and 6B is formed of nanomagnetic particles.
  • the present invention can be applied to the industry by providing a cooking utensil or an outer panel provided with a clear ultra-thin pattern coating layer while being three-dimensionally formed by a nanomagnetic material in a thin and compact structure.

Abstract

Provided is a utensil comprising a thin, compact and clear ultra-thin pattern coating layer three-dimensionalized by magnetic nano-materials. The present invention provides a utensil comprising an ultra-thin pattern coating layer three-dimensionalized by magnetic nano-materials comprising: an object made of a nonmagnetic material and having a pattern region with such a thickness through which magnetic force can pass; and a three-dimensional ultra-thin pattern coating layer formed by coating a first resin mixed with magnetic nanoparticles on the upper surface of the object in which the magnetic nanoparticles are reoriented into a set pattern by the magnetic force of a magnetism generation means, wherein the magnetism generation means comprises a polarized line, the reoriented distribution density of the magnetic nanoparticles is high at the point corresponding to the polarized line and the distribution density becomes low as it becomes more distant from the polarized line, thereby forming the three-dimensional ultra-thin pattern coating layer.

Description

나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구 및 그의 제조방법Instrument equipped with ultra-thin pattern coating layer three-dimensionalized by nano magnetic material and method for manufacturing same
본 발명은 입체화된 초박형 문양코팅층이 구비된 기구에 관한 것으로서, 더욱 상세하게는 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구에 관한 것이다. The present invention relates to a device having a three-dimensionalized ultra-thin pattern coating layer, and more particularly, to a device provided with a three-dimensional ultra-thin pattern coating layer made of a nanomagnetic material.
일반적으로 종래에는 제품의 외장판넬 내지 조리용기 등의 기구의 표면에 스크린 방식, 패드 방식, 스프레이 분사 방식 등을 통하여 평면적인 문양을 형성하였다. In general, a flat pattern is formed on the surface of an appliance such as an exterior panel or a cooking vessel of a product through a screen method, a pad method, a spray injection method, or the like.
한편, 종래와 차별화되어 고급화된 제품에는 입체화된 문양을 형성하기 위한 시도가 이루어지고 있으며, 이러한 입체화된 문양을 형성하기 위해서는 상기 문양에 대응되도록 표면 두께가 조절된 금형을 사용하거나 절삭 내지 가압프레스 방식이 사용되어 왔다. On the other hand, attempts to form a three-dimensional pattern in the advanced product differentiated from the prior art, and to form such a three-dimensional pattern using a mold whose surface thickness is adjusted to correspond to the pattern or cutting or pressing press method This has been used.
따라서, 이러한 방식으로 형성된 문양은 두께 차이가 상대적으로 커서, 그의 상면에 코팅층을 형성하더라도 표면에 입체화된 문양에 대응하여 굴곡이 형성될 수 밖에 없었으며, 입체화된 문양을 가지면서도 평탄하고 매끄러운 표면을 형성하기 위해서는 코팅층의 두께를 두껍게 하여야만 하였다. Therefore, the pattern formed in this way has a relatively large difference in thickness, and even if a coating layer is formed on the upper surface, the curvature has to be formed corresponding to the three-dimensional pattern on the surface, and the flat and smooth surface has a three-dimensional pattern. In order to form, the thickness of the coating layer had to be thickened.
그러나, 이러한 경우 불필요한 두께 증가로 인한 제품의 부피 증가를 초래하고, 형성된 문양이 일반적인 음각 및 양각의 투박한 형태에 불과하여 제품의 고급화된 미감을 제시할 수 없는 문제점이 있었다. 또한, 입체화된 문양을 형성하는 과정에서 발생되는 두께의 증가로 인하여 조리용기 등과 같은 가열량이 전달되어야 하는 기구에서는 열전달 속도가 저하되어 제품의 기능을 손상시키는 문제점이 있었다. However, in this case, the volume of the product is increased due to unnecessary thickness increase, and the formed pattern is only a rough form of general intaglio and embossing, and there is a problem in that it cannot present an advanced aesthetic of the product. In addition, due to the increase in the thickness generated in the process of forming a three-dimensional pattern in the device to be heated amount such as cooking vessels there was a problem that the heat transfer rate is lowered to impair the function of the product.
더욱이, 문양의 형성을 위한 가공공수 내지 경비가 증가되며, 코팅층 재료가 과다하게 소요되는 등의 문제점이 있었다. In addition, the processing time for the formation of the pattern to increase the cost, there was a problem such as excessively takes the coating layer material.
본 발명은 상기의 문제점을 해결하여 얇고 컴팩트한 구조로 나노자성체에 의해 3차원 형상으로 입체화되면서 선명한 초박형 문양코팅층이 구비된 기구를 제공하는 것을 해결과제로 한다. The present invention has been made to solve the above problems to provide a mechanism having a clear ultra-thin pattern coating layer while being three-dimensionally formed by a nano-magnetic material in a thin and compact structure.
상기의 과제를 해결하기 위해서, 본 발명은 자력이 투과되는 두께로서 형성된 문양영역을 가지며, 비자성체 재질로 이루어진 대상체; 및 상기 대상체의 상면에 나노자성체 입자가 혼합된 제1수지가 코팅되어 형성되되, 자력발생수단의 자력에 의해 설정된 패턴으로 상기 나노자성체 입자가 재배열됨에 따라 형성되는 입체화된 초박형 문양코팅층을 포함하여 이루어지되, 상기 자력발생수단은 분극선을 갖도록 구비되며, 상기 나노자성체 입자가 상기 분극선에 대응되는 지점에서는 재배열된 분포 밀도가 높고 상기 분극선에서 멀어질수록 분포 밀도가 낮아짐으로써 입체화된 초박형 문양코팅층이 형성됨을 특징으로 하는 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구를 제공한다.In order to solve the above problems, the present invention has a pattern region formed as a thickness through which the magnetic force is transmitted, the object made of a nonmagnetic material; And a three-dimensional ultra-thin pattern coating layer formed on the upper surface of the object by coating the first resin in which the nano magnetic particles are mixed and formed as the nano magnetic particles are rearranged in a pattern set by the magnetic force of the magnetic generating means. The magnetic force generating means is provided to have a polarization line, and the nanomagnetic particles have a high rearranged distribution density at a point corresponding to the polarization line, and the distribution density decreases as the distance from the polarization line decreases. Provided is a mechanism provided with an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material characterized in that the pattern coating layer is formed.
또한, 본 발명은 비자성체 재질의 대상체 표면에 제2수지로써 프라이머 코팅층을 형성하고 건조시키는 제1단계; 상기 프라이머 코팅층의 상면에 상기 제1수지와 다른 색상을 갖는 나노자성체 입자가 혼합된 제1수지를 도포하고, 상기 대상체의 하부에 설정된 패턴의 자력을 제공하도록 분극선을 갖는 자력발생수단을 배치하여 자력에 의해 상기 설정된 패턴을 따라 상기 나노자성체 입자가 재배열되되, 상기 나노자성체 입자가 상기 분극선에 대응되는 지점에서는 재배열된 분포 밀도가 높고 상기 분극선에서 멀어질수록 분포 밀도가 낮아짐으로써 입체화된 초박형 문양코팅층을 형성하는 제2단계; 및 상기 초박형 문양코팅층을 건조하는 제3단계를 포함하여 이루어지는 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구의 제조방법을 제공한다. In addition, the present invention comprises a first step of forming and drying a primer coating layer as a second resin on the surface of the object of the non-magnetic material; Applying a first resin mixed with nano-magnetic material particles having a different color from the first resin on the upper surface of the primer coating layer, by placing a magnetic force generating means having a polarization line to provide a magnetic force of the pattern set in the lower portion of the object The nanomagnetic particles are rearranged according to the set pattern by magnetic force, but the rearranged distribution density is high at the point where the nanomagnetic particles correspond to the polarization line, and the distribution density is lowered as the distance from the polarization line decreases. A second step of forming the ultra-thin pattern coating layer; And a third step of drying the ultra-thin patterned coating layer. The method provides a method of manufacturing a device having an ultra-thin patterned coating layer stereoscopically formed by a nanomagnetic material.
본 발명은 상기의 해결 수단을 통해서 다음과 같은 효과를 제공한다. The present invention provides the following effects through the above solution.
첫째, 코팅층의 전체 두께가 수십 ㎛ 이내로 제한됨에도 불구하고, 보는 각도에 따라 투시되는 빛의 음영이 변화되는 것처럼 입체화된 형상을 나타내며, 관찰자에게 상기 나노자성체 입자가 복수개의 자석이 맞닿는 분극선 영역에서 증폭된 자력에 의해 재배열됨에 따라 집중 분포되는 영역에서 시각적으로 뚜렷하고 선명한 입체감이 부여되어 고품격의 새로운 외관을 제공할 수 있다. First, although the total thickness of the coating layer is limited to within several tens of micrometers, it shows a three-dimensional shape as the shade of the light is changed depending on the viewing angle, the nanomagnetic particles to the observer in the polarization region where a plurality of magnets abut As rearranged by the amplified magnetic force, a visually distinct and vivid three-dimensional appearance is provided in a concentrated area, thereby providing a new high-quality appearance.
둘째, 상기 나노자성체 입자가 자력에 의해 재배열되므로, 그의 분포밀도 변화가 연속적이므로 보다 사실적이고 자연스러운 입체감이 부여될 수 있다. Second, since the nanomagnetic particles are rearranged by magnetic force, since the distribution density change thereof is continuous, a more realistic and natural three-dimensional feeling can be given.
셋째, 불필요한 두께 증가 없이 음각 및 양각의 입체화되어 고급화된 외관을 제공하므로, 조리용기 등과 같은 가열량이 전달되어야 하는 기구에서는 열전달 기능에 전혀 영향을 주지 않으면서도 제품의 고급화를 이룩할 수 있다. Third, since the intaglio and embossed three-dimensional and high-quality appearance without unnecessary increase in thickness, the appliance to be heated amount such as cooking vessel can be made high-quality products without affecting the heat transfer function at all.
넷째, 문양의 형성을 위한 가공공수 내지 경비가 증가되지 않으며, 코팅층의 전체 두께를 수십 ㎛ 이내로 유지할 수 있으므로 재료의 불필요한 낭비를 방지할 수 있다. Fourth, the processing time and expense for the formation of the pattern is not increased, and the overall thickness of the coating layer can be maintained within several tens of μm, thereby preventing unnecessary waste of materials.
도 1은 본 발명의 일실시예에 따른 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구를 나타낸 단면도.1 is a cross-sectional view showing a mechanism having an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구의 제조방법을 나타낸 흐름도.Figure 2 is a flow chart showing a method of manufacturing a device having an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention.
도 3a 및 도 3b는 본 발명의 일실시예에 따른 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구의 제조장치를 나타낸 개요도.3A and 3B are schematic views showing an apparatus for manufacturing a device having an ultra-thin pattern coating layer stereoscopically formed by a nanomagnetic material according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 나노자성체에 의해 입체화된 초박형 문양코팅층이 다층으로 구비된 기구를 나타낸 단면도. Figure 4 is a cross-sectional view showing a mechanism provided with a multi-layer ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따른 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구의 제조장치를 나타낸 개요도.Figure 5 is a schematic diagram showing an apparatus for manufacturing a device having an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to another embodiment of the present invention.
도 6a 및 도 6b은 본 발명의 일실시예에 따른 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구의 외관을 나타낸 사진. Figure 6a and 6b is a photograph showing the appearance of the apparatus provided with an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention.
본 발명의 최선의 실시 형태는 첨부된 도면을 참조하여 이하에서 보다 상세히 설명될 것이다. Best Modes for Carrying Out the Invention The best embodiments of the invention will be described in more detail below with reference to the accompanying drawings.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구 및 그의 제조방법을 상세히 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail a mechanism and a method of manufacturing the ultra-thin pattern coating layer provided by the nano-magnetic material according to a preferred embodiment of the present invention.
도 1은 본 발명의 일실시예에 따른 나노자성체에 의해 입체화된 초박형(超薄型) 문양코팅층이 구비된 기구를 나타낸 단면도이다. 1 is a cross-sectional view showing a mechanism having an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention.
도 1에서 보는 바와 같이, 본 발명에 따른 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구는 대상체(10) 및 입체화된 초박형 문양코팅층(30)을 포함하여 이루어진다. 여기서, 상기 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비되는 기구는 프라이팬과 같은 조리용기 내지 각종 장치의 외장판넬 등으로 이루어질 수 있으며, 상기 대상체(10)는 이와 같은 외장판넬 내지 조리용기를 이루는 비자성체 금속 재질의 판재로 이루어질 수 있다. As shown in FIG. 1, the apparatus having the ultra-thin pattern coating layer stereoscopically formed by the nanomagnetic material according to the present invention includes the object 10 and the stereoscopic ultra-thin pattern coating layer 30. Here, the apparatus provided with the ultra-thin pattern coating layer three-dimensionally by the nano-magnetic material may be made of a cooking vessel, such as a frying pan, or exterior panels of various devices, and the object 10 is a non-magnetic panel forming such an exterior panel or a cooking vessel. It may be made of an adult metal plate.
상세히, 상기 대상체(10)는 자력이 투과되는 두께로서 형성된 문양영역을 가지며, 알루미늄 등과 같은 비자성체 재질로 이루어짐이 바람직하다. In detail, the object 10 has a pattern region formed as a thickness through which magnetic force is transmitted, and is preferably made of a nonmagnetic material such as aluminum.
한편, 상기 대상체(10)의 상면에는 매우 얇은 두께로 입체화된 초박형(超薄型) 문양코팅층(30)이 구비된다. 여기서, 상기 입체화된 초박형 문양코팅층(30)은 나노자성체 입자(35)가 혼합된 제1수지가 코팅되어 형성되되, 자력에 의해 설정된 패턴으로 상기 나노자성체 입자가 재배열됨에 따라 형성되어 보는 방향에 따라 입체감이 부여된다. On the other hand, the upper surface of the object 10 is provided with an ultra-thin pattern coating layer 30 is three-dimensional to a very thin thickness. Here, the three-dimensionalized ultra-thin pattern coating layer 30 is formed by coating the first resin mixed with the nano-magnetic material particles 35, is formed as the nano-magnetic material particles are rearranged in a pattern set by the magnetic force in the viewing direction Therefore, a three-dimensional effect is provided.
이때, 상기 제1수지는 합성수지 재질로 이루어지되, 상기 대상체가 조리용기 인 경우에는 인체에 무해한 불소 수지, 세라믹, 또는 내열도료 등으로 이루어진 투명성 재질로 이루어짐이 바람직하다. 또한, 상기 나노자성체 입자(35)는 값싸고 독성이 없는 금속·계면활성제 착화합물 등을 서서히 가열한 후 섭씨 300도 이상에서 소정시간 동안 추가로 가열하여, 수시간 만에 12nm(나노미터, 1나노=10억분의 1) 입경으로서 생산되는 균일한 자성체 산화철 나노입자로 이루어짐이 바람직하다. 이와 같은 나노자성체 입자의 생산방법에 관한 기술은 미국 특허 제4,206,094호, 제4,219,411호, 제4,4454,234호, 제4,863,715호 내지 한국등록특허 제967708호 등에 상세히 개시되어 있다. At this time, the first resin is made of a synthetic resin material, when the object is a cooking vessel is preferably made of a transparent material made of a fluorine resin, ceramic, or heat-resistant paint harmless to the human body. In addition, the nanomagnetic particles 35 are heated to a low cost and non-toxic metal, surfactant complex, etc. slowly and then further heated for more than a predetermined time at 300 degrees Celsius or more, 12nm (nanometer, 1 nanometer) in a few hours It is preferable that it consists of uniform magnetic iron oxide nanoparticles produced as a particle size of 1 billion = 1 billion. Techniques for producing such nanomagnetic particles are disclosed in detail in US Pat. Nos. 4,206,094, 4,219,411, 4,4454,234, 4,863,715 and Korean Patent No. 967708.
따라서, 상기 제1수지는 예열되어 설정된 점도 이하의 값을 갖도록 용융된 상태로서, 평균입경이 수십 나노미터(nm) 이내로 형성되는 상기 나노자성체 입자가 균일하게 분포되도록 혼합된 상태로 상기 대상체의 표면에 도포된다. 이후, 상기 대상체(10)의 하부로부터 설정된 패턴 형상으로 분극선 등이 배치된 영구자석 내지 전자석 등의 자력발생수단에 의해 발생되는 자력에 의해 상기 제1수지에 혼합된 나노자성체 입자(35)가 설정된 패턴을 형성하는 방향으로 이동된다. Thus, the first resin is preheated and melted to have a value equal to or lower than a set viscosity, and the surface of the object is mixed so that the nanomagnetic particles having an average particle diameter of several tens of nanometers (nm) are uniformly distributed. Is applied to. Thereafter, the nano-magnetic material particles 35 mixed in the first resin by magnetic force generated by magnetic force generating means, such as permanent magnets or electromagnets, in which polarization lines or the like are arranged in a pattern shape set from the lower part of the object 10. It is moved in the direction of forming the set pattern.
이때, 상기 나노자성체 입자(35)가 이동되면서 상기 제1수지와 함께 설정된 패턴을 형성하도록 이동되어 입체적인 문양을 형성한다. 또한, 이와 같은 입체적인 문양을 선명히 표시하기 위하여, 상기 제1수지 및 그에 혼합되는 나노자성체 입자(35)는 그의 하면에 배치된 대상체의 표면 내지 후술되는 프라이머 코팅층과 같은 구성의 색상과 상호 다른 색상을 가지도록 함이 바람직하다. At this time, the nano-magnetic material particles 35 are moved to form a pattern set together with the first resin to form a three-dimensional pattern. In addition, in order to clearly display such a three-dimensional pattern, the first resin and the nanomagnetic particles 35 mixed with the first resin may have different colors from those of the surface of the object disposed on the bottom surface of the object or a primer coating layer described below. It is desirable to have.
도 2는 본 발명의 일실시예에 따른 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구의 제조방법을 나타낸 흐름도이며, 도 3a 및 도 3b는 본 발명의 일실시예에 따른 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구의 제조장치를 나타낸 개요도이다. Figure 2 is a flow chart showing a method of manufacturing a device having an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention, Figures 3a and 3b is a nano-magnetic material according to an embodiment of the present invention It is a schematic diagram which shows the manufacturing apparatus of the apparatus provided with the three-dimensional ultra-thin pattern coating layer.
세부적으로, 도 3a 및 도 3b를 참조하면, 자력발생수단(100)은 복수개의 자석(100a)이 맞닿는 지점에 형성되는 분극선(101)에 의해 설정된 패턴의 자력을 제공한다. 이때, 복수개의 자석이 맞닿는 지점에 형성되는 분극선(101)에서는 자력이 증폭되어 형성된다. Specifically, referring to FIGS. 3A and 3B, the magnetic force generating means 100 provides a magnetic force of a pattern set by the polarization line 101 formed at a point where the plurality of magnets 100a abut. At this time, the magnetic force is amplified in the polarization line 101 formed at the point where the plurality of magnets abut.
그 중심점에서 자력이 강하여 재배열된 분포 밀도가 높고 그로부터 멀어질수록 분포 밀도가 연속적으로 낮아지는 분극선(101)은 독립적인 자석들(100a)의 N극 및 S극이 맞닿는 지점에 각각 형성된다. 이와 같이, 복수개의 개별 자석(100a)이 맞닿는 지점에 형성되는 분극선(101)에서는 2개의 자석의 자력이 결합되어 증폭되어, 상기 분극선(101)에서는 단일의 자석에 의한 자력보다 현저히 강한 자력을 제공한다. The polarization line 101 is formed at the point where the N pole and the S pole of the independent magnets 100a come in contact with each other. . As described above, in the polarization line 101 formed at the point where the plurality of individual magnets 100a abut, the magnetic forces of the two magnets are combined and amplified, and in the polarization line 101, the magnetic force is significantly stronger than the magnetic force of a single magnet. To provide.
또한, 상기 문양코팅층(30)에 함유된 나노자성체 입자는 상기 분극선(101)에 대응되는 지점에서는 자기적 인력에 의해 당겨져 이동됨으로써 재배열된 후의 분포 밀도가 높아지며, 그로부터 멀어질수록 자기적인 인력이 약하여 지므로 분포밀도가 낮아진다. 특히, 이와 같은 분극선(101)에서는 자력이 증폭되어 나노자성체 입자를 강한 자력에 의해 당김으로써 보다 선명한 형상의 입체화된 문향을 형성할 수 있다. 이를 통하여, 후술되는 바와 같이 상기 나노자성체 입자(35)의 분포 밀도의 연속적인 차이가 외관상 양각 내지 음각효과를 제공하여 상용화하여 사용가능한 시각적으로 입체화된 외관을 제공할 수 있다. In addition, the nano-magnetic particles contained in the pattern coating layer 30 is pulled by the magnetic attraction at the point corresponding to the polarization line 101 is moved by the magnetic attraction, the distribution density after rearrangement is high, the magnetic attraction is further away from it The weaker the density, the lower the distribution density. In particular, in such a polarization line 101, the magnetic force is amplified to draw the nano-magnetic material particles by a strong magnetic force can form a three-dimensional pattern of clearer shape. Through this, as described below, the continuous difference in the distribution density of the nanomagnetic particles 35 may provide a visually stereoscopic appearance that can be commercialized by providing an embossed to engraved effect in appearance.
여기서, 상기 제1수지의 하면에 배치되는 구성은 대상체의 표면이 될 수도 있으나, 상기 대상체(10)의 표면과 상기 초박형 문양코팅층(30) 사이에는 불소 수지 등으로 이루어진 제2수지로서 코팅된 프라이머 코팅층(20)이 더 구비됨이 바람직하다. 통상적으로 수지 재질과 금속 재질의 대상체 표면과의 접착력을 증대시키기 위하여 상기 금속 재질의 대상체 표면은 샌드 블라스트 가공에 의해 표면 거칠기를 증대킨다. 상기 프라이머 코팅층(20)은 상기 샌드 블라스트 가공된 표면에 견고하게 부착됨과 아울러 건조된 후 그 상부면은 상기 초박형 문양코팅층(30)이 견고하게 부착되는 기반층으로 기능할 수 있다. Here, the configuration disposed on the lower surface of the first resin may be the surface of the object, but a primer coated as a second resin made of a fluorine resin or the like between the surface of the object 10 and the ultra-thin pattern coating layer 30. It is preferable that the coating layer 20 is further provided. Typically, in order to increase the adhesion between the resin material and the object surface of the metal material, the object surface of the metal material increases the surface roughness by sandblasting. The primer coating layer 20 may be firmly attached to the sand blasted surface and, after being dried, its upper surface may function as a base layer to which the ultra-thin pattern coating layer 30 is firmly attached.
더욱이, 상기 제1수지가 예열되어 용융된 상태에서 자력에 의한 상기 나노자성체 입자 및 제1수지의 재배열을 위한 이동이 그의 하면에 배치된 프라이머 코팅층(20)의 부드럽고 평탄한 상면을 따라 원활히 이루어질 수 있다. Moreover, the movement for rearrangement of the nanomagnetic particles and the first resin by magnetic force in the state where the first resin is preheated and molten can be made smoothly along the smooth and flat upper surface of the primer coating layer 20 disposed on the lower surface thereof. have.
또한, 상기 프라이머 코팅층(20)은 불소 수지, 세라믹, 또는 내열도료 등에 세라믹 분말이 함유되어 검정색 등과 같은 짙은 색상으로 이루어진다. 또한, 상기 입체화된 초박형 문양코팅층(30) 내지 그에 혼합된 나노자성체 입자(35)의 색상은 상기 프라이머 코팅층의 색상과 상호 다른 색상을 가지도록 형성됨이 바람직하다. 이때, 입체화된 초박형 문양코팅층(30)은 프라이머 코팅층의 색상과 대비되는 색상으로 형성되되, 바람직하게는 입체효과를 증대시킬 수 있도록 상기 나노자성체 입자(35)가 옅은 금속 색상으로 형성되도록 처리됨이 바람직하다. In addition, the primer coating layer 20 is made of a fluorine resin, ceramic, or a heat resistant paint, such as ceramic powder is contained in a dark color such as black. In addition, the three-dimensionalized ultra-thin pattern coating layer 30 to the color of the nano-magnetic material particles 35 mixed thereto is preferably formed to have a different color from the color of the primer coating layer. At this time, the three-dimensionalized ultra-thin pattern coating layer 30 is formed in a color contrasted with the color of the primer coating layer, preferably the nano-magnetic material particles 35 are treated to be formed in a light metal color to increase the stereoscopic effect. Do.
그리고, 상기 입체화된 초박형 문양코팅층(30)의 상면에는 투명한 제3수지 재질의 탑코팅층(40)이 더 형성됨이 바람직하다. 상기 탑코팅층(40)은 입체화된 초박형 문양코팅층(30)에 함유된 산화철 성분의 나노자성체 입자(35)가 박리되지 않도록 보호하기 위한 층으로 기능한다. 이를 통해 조리용기 등에 본 발명이 적용되더라도 나노자성체 입자가 표면에 박리되지 않도록 하여 위생상 안전성능을 개선할 수 있다. In addition, the top coating layer 40 of a transparent third resin material is preferably formed on the top surface of the three-dimensionalized ultra-thin pattern coating layer 30. The top coating layer 40 functions as a layer for protecting the nanomagnetic particles 35 of the iron oxide component contained in the three-dimensionalized ultra-thin pattern coating layer 30 from being peeled off. Through this, even if the present invention is applied to a cooking vessel or the like, it is possible to improve the hygiene safety performance by preventing the nanomagnetic particles from peeling off the surface.
이와 같은 구성을 통하여, 상기 프라이머 코팅층(20), 상기 입체화된 초박형 문양코팅층(30), 및 상기 탑코팅층(40)의 전체 두께가 수십 ㎛ 이내로 제한되어 형성됨에도 불구하고, 상기 입체화된 초박형 문양코팅층(30)은 3차원적인 음각 및 양각이 뚜렷하게 관찰되는 입체감이 부여된 외관을 제공할 수 있다. Through such a configuration, although the total thickness of the primer coating layer 20, the three-dimensionalized ultra-thin pattern coating layer 30, and the top coating layer 40 is limited to within several tens of micrometers, the three-dimensionalized ultra-thin pattern coating layer 30 may provide an appearance given a three-dimensional appearance in which three-dimensional intaglio and embossment are clearly observed.
이와 같이, 상기 코팅층의 전체 두께가 수십 ㎛ 이내로 제한되어 형성됨에도 불구하고 보는 각도에 따라 투시되는 빛의 음영이 변화되는 것처럼 입체화된 형상을 나타낸다. 따라서, 관찰자에게 상기 나노자성체 입자(35)가 재배열에 의해 집중 분포되는 영역이 시각적으로 뚜렷한 입체감이 부여되어 고품격의 새로운 외관을 제공할 수 있다. As such, although the overall thickness of the coating layer is formed to be limited to within several tens of micrometers, it shows a three-dimensional shape as if the shade of light to be transmitted is changed according to the viewing angle. Therefore, a visually distinct three-dimensional appearance may be given to the observer in a region where the nanomagnetic particles 35 are concentrated by rearrangement, thereby providing a new high-quality appearance.
부연하면, 상기 나노자성체 입자(35)가 집중 분포되는 영역이 자력에 의해 재배열되며 그의 분포밀도 변화가 연속적이므로, 상기 나노자성체 입자(35)에 투사된 빛의 반사도가 연속적으로 변화되어 보는 각도에 따라 보다 사실적이고 자연스러운 음각 내지 양각과 같은 입체감이 부여될 수 있다. In other words, since the region where the nanomagnetic particles 35 are concentrated is rearranged by magnetic force and the distribution density change is continuous, the angle of reflectance of light projected onto the nanomagnetic particles 35 is continuously changed. As a result, a more realistic and natural three-dimensional feeling such as intaglio or embossing can be provided.
한편, 본 발명의 일실시예에 따른 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구의 제조방법을 설명하면 다음과 같다. On the other hand, the method of manufacturing a device provided with an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention.
도 2 내지 도 3b에서 보는 바와 같이, 본 발명에 따른 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구를 제조하기 위해서는, 먼저 비자성체 재질의 대상체(10) 표면에 제2수지로써 프라이머 코팅층(도 1의 20)을 형성하고 건조시킴이 바람직하다(S100). As shown in Figure 2 to 3b, in order to manufacture a device equipped with an ultra-thin pattern coating layer three-dimensionally by a nano-magnetic material according to the present invention, first, a primer coating layer as a second resin on the surface of the non-magnetic material (10) Form 20) of Figure 1 is preferably dried (S100).
여기서, 상기 프라이머 코팅층은 상기 샌드 블라스트 가공된 대상체 표면에 견고하게 부착됨과 아울러 건조된 후 그 상부면은 상기 초박형 문양코팅층(30)이 견고하게 부착되는 기반층으로 기능할 수 있다. 더욱이, 상기 제1수지가 예열되어 용융된 상태에서 자력에 의한 상기 나노자성체 입자 및 제1수지의 재배열을 위한 이동이 그의 하면에 배치된 프라이머 코팅층의 부드럽고 평탄한 상면을 따라 원활히 이루어질 수 있다. Here, the primer coating layer is firmly attached to the surface of the sand blasted object, and after being dried, the upper surface thereof may function as a base layer to which the ultra-thin pattern coating layer 30 is firmly attached. Moreover, the movement for rearrangement of the nanomagnetic particles and the first resin by magnetic force in the state where the first resin is preheated and molten can be smoothly made along the smooth and flat upper surface of the primer coating layer disposed on the lower surface thereof.
다음으로, 상기 프라이머 코팅층의 상면에 상기 제1수지와 다른 색상을 갖는 나노자성체 입자가 혼합된 제1수지를 도포한다(S200). 그리고, 상기 대상체의 하부에 설정된 패턴의 자력을 제공하는 영구자석 내지 전자석 등의 자력발생수단을 배치하여 자력에 의해 상기 설정된 패턴을 따라 상기 나노자성체 입자(35)가 재배열되어 입체화된 초박형 문양코팅층(30)을 형성한다(S300). Next, the first resin is mixed with the nano-magnetic material particles having a different color from the first resin on the upper surface of the primer coating layer (S200). And, by placing a magnetic force generating means such as permanent magnets or electromagnets to provide a magnetic force of the pattern set in the lower portion of the object, the nano-magnetic material particles 35 are rearranged in accordance with the set pattern by the magnetic force is a three-dimensional ultra-thin pattern coating layer 30 is formed (S300).
이때, 상기 나노자성체 입자(35)는 자력발생수단(100)의 분극선(101)에 대응되는 지점에서는 재배열된 분포 밀도가 높아지며, 그로부터 멀어질수록 분포밀도가 낮아진다. 이를 통하여, 상기 나노자성체 입자(35)의 분포 밀도의 연속적인 차이가 외관상 양각 내지 음각효과를 제공하여 시각적으로 입체화된 외관을 제공할 수 있다. 이와 같이, 복수개의 자석의 N극과 S극이 상호 맞닿는 지점에 형성되는 분극선에서 증폭된 자력에 의해 선명한 입체화된 문양을 형성할 수 있다. At this point, the nanomagnetic particles 35 have a rearranged distribution density at a point corresponding to the polarization line 101 of the magnetic force generating means 100, and the farther therefrom, the lower the distribution density. Through this, a continuous difference in the distribution density of the nanomagnetic particles 35 may provide an embossed to engraved effect in appearance, thereby providing a visually three-dimensional appearance. In this way, a clear three-dimensional pattern can be formed by the magnetic force amplified by the polarization lines formed at the points where the N poles and the S poles of the plurality of magnets abut each other.
더욱이, 상기 나노자성체 입자(35)가 집중 분포되는 영역이 자력에 의해 재배열되어, 그의 분포밀도 변화가 연속적이므로 상기 나노자성체 입자(35)에 투사된 빛의 반사도가 연속적으로 변화되어 보는 각도에 따라 보다 사실적이고 자연스러운 입체감의 변화가 시각적으로 관찰될 수 있다. Furthermore, since the region where the nanomagnetic particles 35 are concentrated is rearranged by magnetic force, and the distribution density thereof is continuous, the reflectivity of the light projected onto the nanomagnetic particles 35 is continuously changed at an angle of view. Thus, a more realistic and natural change in three-dimensional appearance can be observed visually.
여기서, 상기 설정된 패턴을 따라 상기 나노자성체 입자(35)가 재배열되는 과정에서는 상기 제1수지의 재배열온도를 유지하도록 함이 바람직하다. 여기서, 상기 재배열온도란 상기 제1수지가 용융된 상태로서 상기 자력에 의해 나노자성체 입자(35)가 이동되어 재배열될 수 있는 온도상태를 의미한다. 이를 위한, 가열 내지 예열의 순서는 상기 제1수지를 용융시키고 점도를 낮추어 상기 나노자성체 입자가 재배열하기 용이한 상태로 되기 위하여 적절히 변경될 수 있을 것이다. Here, it is preferable to maintain the rearrangement temperature of the first resin when the nanomagnetic particles 35 are rearranged according to the set pattern. Here, the rearrangement temperature means a temperature state in which the nanomagnetic particles 35 are moved and rearranged by the magnetic force as the first resin is molten. To this end, the order of heating to preheating may be appropriately changed to melt the first resin and lower the viscosity so that the nanomagnetic particles are easily rearranged.
이후, 상기 초박형 문양코팅층(30)을 건조하고(S400), 건조된 초박형 문양코팅층(30)의 상면에는 탑코팅층(도 1의 40)이 형성됨이 바람직하다. 여기서, 상기 프라이머 코팅층, 입체화된 초박형 문양코팅층, 탑코팅층은 불소 수지, 세라믹, 또는 내열도료 등의 합성수지 재질로 이루어지되, 불필요한 재료비 증가를 방지하도록 그 전체적인 두께는 수십 ㎛ 이내로 제한되어 형성된다. 물론, 입체화된 문양이 외부에 표시되도록, 상기 입체화된 초박형 문양코팅층 및 탑코팅층을 이루는 수지는 투명성 재질로 이루어짐이 바람직하다. Thereafter, the ultra-thin patterned coating layer 30 is dried (S400), and the top coating layer (40 in FIG. 1) is preferably formed on the upper surface of the dried ultra-thin patterned coating layer 30. Here, the primer coating layer, three-dimensionalized ultra-thin pattern coating layer, the top coating layer is made of a synthetic resin material, such as fluorine resin, ceramics, or heat-resistant paint, the overall thickness is limited to within several tens of ㎛ to prevent unnecessary material cost increase. Of course, the resin forming the three-dimensionalized ultra-thin patterned coating layer and the top coating layer is preferably made of a transparent material so that the three-dimensionalized pattern is displayed on the outside.
도 4는 본 발명의 일실시예에 따른 나노자성체에 의해 입체화된 초박형 문양코팅층이 다층으로 구비된 기구를 나타낸 단면도이다. Figure 4 is a cross-sectional view showing a mechanism having a multi-layered ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention.
도 4에서 보는 바와 같이, 표면이 샌드 블라스트 가공된 기구(10)의 표면에 프라이머 코팅층이 형성된 후, 상기 프라이머 코팅층의 상측에 제1문양코팅층(30a)과 제2문양코팅층(30b)의 다층으로 순차적으로 형성된다. 또한, 상기 제2문양코팅층(30b) 상면에는 탑코팅층(60)이 형성됨이 바람직하다. As shown in FIG. 4, after the primer coating layer is formed on the surface of the sandblasted device 10, the first glyph coating layer 30a and the second glyph coating layer 30b are formed on the upper side of the primer coating layer. Are formed sequentially. In addition, the top coating layer 60 is preferably formed on the upper surface of the second glyph coating layer 30b.
여기서, 상기 제1문양코팅층(30a)과 제2문양코팅층(30b)이 다층으로 도포되되, 이러한 문양코팅층들은 각각 제1나노자성체 입자(35a) 및 제2나노자성체 입자(35b)를 포함하고 있다. 또한, 상기 제1문양코팅층에 포함된 제1나노자성체 입자를 자력발생수단(100)의 분극선에 대응하여 입체화된 문양을 형성한 후, 상기 제2문양코팅층에 포함된 제2나노자성체 입자를 다른 자력발생수단의 분극선에 대응하여 입체화된 문양을 다층으로 형성할 수 있다. Here, the first glyph coating layer 30a and the second glyph coating layer 30b are applied in multiple layers, and the glyph coating layers each include the first nanomagnetic particles 35a and the second nanomagnetic particles 35b. . In addition, after the first nano-magnetic particles contained in the first pattern coating layer to form a three-dimensional pattern corresponding to the polarization line of the magnetic force generating means 100, the second nano-magnetic particles contained in the second pattern coating layer The three-dimensional pattern can be formed in multiple layers corresponding to the polarization lines of other magnetic force generating means.
더욱이, 상기 제1문양코팅층(30a) 및 제2문양코팅층(30b)에 각각 패턴화되어 입체화된 문양을 형성하는 제1나노자성체 입자(35a) 및 제2나노자성체 입자(35b)의 색상을 상호 다르게 형성하여 혁신적이고 세련된 다층의 입체화된 초박형 문양코팅층을 형성할 수 있다. 또한, 상기 나노자성체 입자는 각 코팅층이 이루는 색상과 구별되는 색상을 갖도록 형성될 수 있다. Furthermore, the first nanoparticle particles 35a and the second nanomagnetic particles 35b that are patterned on the first glyph coating layer 30a and the second glyph coating layer 30b to form a three-dimensional pattern, respectively, It can be formed differently to form an innovative and refined multi-dimensional three-dimensional ultra-thin pattern coating layer. In addition, the nanomagnetic particles may be formed to have a color distinct from the color of each coating layer.
여기서, 상기 자력발생수단(100)은 설정된 패턴의 분극선(101)을 갖도록 복수개의 독립적인 자석(100a)의 조합으로 구비되도록 한다. 이를 통해, 상기 나노자성체 입자(35a,35b)가 상기 분극선에 대응되는 지점에서는 재배열된 분포 밀도가 높고 상기 분극선에서 멀어진 부분에서는 분포 밀도가 낮아짐으로써 입체감이 뚜렷하고 분포밀도의 차이가 선명한 초박형 문양코팅층이 형성할 수 있다. Here, the magnetic force generating means 100 is to be provided in combination of a plurality of independent magnets (100a) to have a polarization line 101 of a set pattern. As a result, the nanomagnetic particles 35a and 35b have a high rearranged distribution density at a point corresponding to the polarization line and a low distribution density at a portion away from the polarization line, so that the three-dimensional appearance is clear and the difference in distribution density is clear. The pattern coating layer may be formed.
한편, 도 5는 본 발명의 다른 실시예에 따른 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구의 제조장치를 나타낸 개요도이다. On the other hand, Figure 5 is a schematic diagram showing an apparatus for manufacturing a device having an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to another embodiment of the present invention.
도 5에서 보는 바와 같이, 상기 자력발생수단은 자력을 제공하는 평면형 자석(110)과, 상기 자석(110)의 상면에 배치되어 자력을 전달하되 설정된 패턴의 홈 내지 홀이 형성된 패턴판(120)을 포함하여 이루어질 수도 있다. As shown in Figure 5, the magnetic force generating means is a planar magnet 110 that provides a magnetic force, and is disposed on the upper surface of the magnet 110 to transfer the magnetic force, but the pattern plate 120 having a groove or a hole of a predetermined pattern is formed It may be made, including.
즉, 자석 자체에 패턴을 형성하기 용이하지 않으므로, 이와 같이 자석의 상면에 설정된 패턴이 형성된 자성체 금속 재질의 패턴판(120)에 의해 그에 대응된 형상으로 자력이 전달되도록 한다. 이를 통하여, 상기 대상체(10)에 도포된 제1수지에 함유된 나노자성체 입자(35)는 상기 설정된 패턴에 따른 자기적 인력에 의해 대응되는 패턴으로 집중되도록 재배열되어 입체화된 초박형 문양코팅층(30)을 이룰 수 있다. That is, since it is not easy to form a pattern on the magnet itself, the magnetic force is transmitted in a shape corresponding thereto by the pattern plate 120 of the magnetic metal material having the pattern set on the upper surface of the magnet. Through this, the nano-magnetic material particles 35 contained in the first resin applied to the object 10 are rearranged so as to be concentrated in a pattern corresponding to the magnetic attraction according to the set pattern, the three-dimensional ultra-thin pattern coating layer 30 ) Can be achieved.
한편, 도 6a 및 도 6b은 본 발명의 일실시예에 따른 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구의 외관을 나타낸 사진이다. 여기서, 도 6a는 정면에서 바라본 각도인 반면에, 도 6b는 일측으로 경사진 방향에서 바라보는 각도에서의 견본 사진이다. On the other hand, Figure 6a and Figure 6b is a photograph showing the appearance of the apparatus provided with a ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material according to an embodiment of the present invention. Here, FIG. 6A is an angle viewed from the front while FIG. 6B is a sample photograph at an angle viewed from a direction inclined to one side.
도 6a 및 도 6b에서 보는 바와 같이, 상기 입체화된 초박형 문양코팅층(30)이 형성된 기구는 음각 및 양각이 구별된 선명한 입체감을 제공한다. 여기서, 은회색빛을 내는 부분(36)이 나노자성체 입자가 재배열에 의해 집중 분포되는 영역이며, 그에 의해 구획된 내측의 짙거나 검은 색상으로서 함몰된 것처럼 깊이감이 느껴지도록 보이는 부분(37)은 상기 나노자성체 입자가 희박하게 배치되어 그의 하부 구성(프라이머 코팅층 내지 대상체 표면)이 투영되어 보이는 영역이다. As shown in FIGS. 6A and 6B, the mechanism in which the three-dimensionalized ultra-thin pattern coating layer 30 is formed provides a clear three-dimensional feeling in which the intaglio and the embossment are distinguished. Here, the silver gray portion 36 is a region where the nanomagnetic particles are distributed by the rearrangement, and the portion 37 that looks so deep as if it is recessed as the inner dark or black color partitioned therein is the above. It is an area where nanomagnetic particles are sparsely arranged so that their lower structure (primer coating layer to object surface) is projected.
즉, 상기 나노자성체 입자(35)가 재배열에 의해 집중 분포되는 영역은 마치 양각으로 돌출된 것으로 시각적으로 감지되며, 도 6a와 비교하여 도 6b는 상기 나노자성체 입자가 재배열에 의해 집중 분포되는 영역이 수 cm 단위로 돌출된 것과 같이 그림자에 의한 음영이 입체적으로 변화되어 시각적으로 감지된다. That is, the area in which the nanomagnetic particles 35 are concentrated by rearrangement is visually sensed as protruding by embossing. Compared to FIG. 6A, FIG. 6B shows an area in which the nanomagnetic particles are concentrated by rearrangement. The shadows of the shadows are changed in three dimensions and visually sensed as protruding by a few cm.
도 6a 및 도 6b에서 은회색빛을 내는 부분(36)이 나노자성체 입자가 재배열에 의해 집중 분포되는 영역은 자력발생수단의 분극선에 대응되는 지점에 형성되며, 이러한 분극선(101)이 격자형과 같이 설정된 패턴으로 형성된 경우에 도 6a 및 도 6b와 같은 격자 형상으로 입체화된 초박형 문양코팅층이 나노자성체 입자에 의해 형성된다. 6A and 6B, a region in which the silver-gray portion 36 is concentrated in the nanomagnetic particles by rearrangement is formed at a point corresponding to the polarization line of the magnetic force generating means, and the polarization line 101 is lattice-shaped. When formed in a pattern set as described above, the ultra-thin pattern coating layer three-dimensionally formed into a lattice shape as shown in FIGS. 6A and 6B is formed of nanomagnetic particles.
이상 설명한 바와 같이, 본 발명은 상술한 각 실시예에 한정되는 것은 아니며, 본 발명의 청구항에서 청구하는 범위를 벗어남 없이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 변형 실시되는 것은 가능하며, 이러한 변형 실시는 본 발명의 범위에 속한다. As described above, the present invention is not limited to the above-described embodiments, but may be modified and implemented by those skilled in the art without departing from the scope of the claims of the present invention. Such modifications are within the scope of the present invention.
본 발명은 얇고 컴팩트한 구조로 나노자성체에 의해 3차원 형상으로 입체화되면서 선명한 초박형 문양코팅층이 구비된 조리기구 내지 외장판넬을 제공함으로써 산업에 적용될 수 있다. The present invention can be applied to the industry by providing a cooking utensil or an outer panel provided with a clear ultra-thin pattern coating layer while being three-dimensionally formed by a nanomagnetic material in a thin and compact structure.

Claims (6)

  1. 자력이 투과되는 두께로서 형성된 문양영역을 가지며, 비자성체 재질로 이루어진 대상체; 및 An object having a pattern region formed as a thickness through which magnetic force is transmitted and made of a nonmagnetic material; And
    상기 대상체의 상면에 나노자성체 입자가 혼합된 제1수지가 코팅되어 형성되되, 자력발생수단의 자력에 의해 설정된 패턴으로 상기 나노자성체 입자가 재배열됨에 따라 형성되는 입체화된 초박형 문양코팅층을 포함하여 이루어지되, A first resin in which nanomagnetic particles are mixed is coated on an upper surface of the object, and includes a three-dimensionalized ultra-thin pattern coating layer formed as the nanomagnetic particles are rearranged in a pattern set by a magnetic force of a magnetic force generating means. Understand,
    상기 자력발생수단은 분극선을 갖도록 구비되며, 상기 나노자성체 입자가 상기 분극선에 대응되는 지점에서는 재배열된 분포 밀도가 높고 상기 분극선에서 멀어질수록 분포 밀도가 낮아짐으로써 입체화된 초박형 문양코팅층이 형성됨을 특징으로 하는 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구.The magnetic force generating means is provided to have a polarization line, at which the nanomagnetic particles correspond to the polarization line, the rearranged distribution density is high, and the farther away from the polarization line, the lower the density of the three-dimensional patterned ultra-thin pattern coating Apparatus provided with an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material, characterized in that formed.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 대상체의 표면과 상기 초박형 문양코팅층 사이에는 제2수지로서 코팅된 프라이머 코팅층과, A primer coating layer coated as a second resin between the surface of the object and the ultra-thin pattern coating layer;
    상기 초박형 문양코팅층의 상면에는 투명한 제3수지 재질의 탑코팅층이 더 형성됨을 특징으로 하는 입체화된 초박형 문양코팅층이 구비된 기구. The upper surface of the ultra-thin pattern coating layer is a mechanism having a three-dimensional ultra-thin pattern coating layer characterized in that the top coating layer of transparent third resin material is further formed.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 나노자성체 입자는 그의 하면에 배치된 구성의 색상과 상호 다른 색상을 가지는 것을 특징으로 하는 입체화된 초박형 문양코팅층이 구비된 기구. The nanomagnetic particles are provided with a three-dimensional ultra-thin pattern coating layer, characterized in that having a color different from the color of the configuration disposed on its lower surface.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 입체화된 초박형 문양코팅층은 다층으로 형성됨을 특징으로 하는 입체화된 초박형 문양코팅층이 구비된 기구. The three-dimensionalized ultra-thin patterned coating layer is a device having a three-dimensionalized ultra-thin patterned coating layer, characterized in that formed in multiple layers.
  5. 비자성체 재질의 대상체 표면에 제2수지로써 프라이머 코팅층을 형성하고 건조시키는 제1단계; A first step of forming and drying a primer coating layer as a second resin on an object surface of a nonmagnetic material;
    상기 프라이머 코팅층의 상면에 상기 제1수지와 다른 색상을 갖는 나노자성체 입자가 혼합된 제1수지를 도포하고, 상기 대상체의 하부에 설정된 패턴의 자력을 제공하도록 분극선을 갖는 자력발생수단을 배치하여 자력에 의해 상기 설정된 패턴을 따라 상기 나노자성체 입자가 재배열되되, 상기 나노자성체 입자가 상기 분극선에 대응되는 지점에서는 재배열된 분포 밀도가 높고 상기 분극선에서 멀어질수록 분포 밀도가 낮아짐으로써 입체화된 초박형 문양코팅층을 형성하는 제2단계; 및Applying a first resin mixed with nano-magnetic material particles having a different color from the first resin on the upper surface of the primer coating layer, by placing a magnetic force generating means having a polarization line to provide a magnetic force of the pattern set in the lower portion of the object The nanomagnetic particles are rearranged according to the set pattern by magnetic force, but the rearranged distribution density is high at the point where the nanomagnetic particles correspond to the polarization line, and the distribution density is lowered as the distance from the polarization line decreases. A second step of forming the ultra-thin pattern coating layer; And
    상기 초박형 문양코팅층을 건조하는 제3단계를 포함하여 이루어지는 나노자성체에 의해 입체화된 초박형 문양코팅층이 구비된 기구의 제조방법. Method of manufacturing a device having an ultra-thin pattern coating layer three-dimensionalized by a nano-magnetic material comprising a third step of drying the ultra-thin pattern coating layer.
  6. 제 5 항에 있어서, The method of claim 5,
    상기 제2단계에서, 상기 설정된 패턴을 따라 상기 나노자성체 입자가 재배열되는 과정에서는 상기 제1수지의 재배열온도를 유지하는 단계를 포함하여 이루어짐을 특징으로 하는 입체화된 초박형 문양코팅층이 구비된 기구의 제조방법. In the second step, in the process of rearranging the nano-magnetic material particles in accordance with the set pattern is a mechanism provided with a three-dimensional ultra-thin pattern coating layer comprising the step of maintaining the rearrangement temperature of the first resin Manufacturing method.
PCT/KR2011/004427 2011-01-20 2011-06-16 Utensil comprising ultra-thin pattern coating layer three-dimensionalized by magnetic nano-materials, and preparation method thereof WO2012099303A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110005739A KR101038416B1 (en) 2011-01-20 2011-01-20 Device with thin coating layer having three-dimensionalized pattern by magnetic nanopaticles and method for manufacturing the same
KR10-2011-0005739 2011-01-20

Publications (1)

Publication Number Publication Date
WO2012099303A1 true WO2012099303A1 (en) 2012-07-26

Family

ID=44404873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004427 WO2012099303A1 (en) 2011-01-20 2011-06-16 Utensil comprising ultra-thin pattern coating layer three-dimensionalized by magnetic nano-materials, and preparation method thereof

Country Status (2)

Country Link
KR (1) KR101038416B1 (en)
WO (1) WO2012099303A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102911537A (en) * 2012-11-12 2013-02-06 上海宜瓷龙新材料科技有限公司 Ceramic coating material with 3D effect and coating method of ceramic coating material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101113133B1 (en) * 2011-06-14 2012-02-15 (주)드림셰프 Method for coating kitchen container
KR101113033B1 (en) 2011-10-26 2012-02-27 백재현 Method for forming surface pattern on a cooking vessel using magnet
KR101139310B1 (en) 2011-10-27 2012-04-26 (주)드림셰프 Method for coating kitchen container
KR101161818B1 (en) 2011-11-15 2012-07-03 (주)드림셰프 Method for coating kitchen container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114028A (en) * 1997-09-08 2000-09-05 E. I. Du Pont De Nemours And Company Cooking vessel with patterned release finish having improved heat transfer
JP2005088967A (en) * 2003-09-19 2005-04-07 Toyo Seikan Kaisha Ltd Container having patterned coating film and manufacturing method for the same
WO2010123294A2 (en) * 2009-04-24 2010-10-28 Ha Sang-Hun Cooking vessel processing method and cooking vessel provided thereby

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101010051B1 (en) 2010-08-26 2011-01-21 주식회사 세신산업 Method for coating cook vessel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114028A (en) * 1997-09-08 2000-09-05 E. I. Du Pont De Nemours And Company Cooking vessel with patterned release finish having improved heat transfer
JP2005088967A (en) * 2003-09-19 2005-04-07 Toyo Seikan Kaisha Ltd Container having patterned coating film and manufacturing method for the same
WO2010123294A2 (en) * 2009-04-24 2010-10-28 Ha Sang-Hun Cooking vessel processing method and cooking vessel provided thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102911537A (en) * 2012-11-12 2013-02-06 上海宜瓷龙新材料科技有限公司 Ceramic coating material with 3D effect and coating method of ceramic coating material
WO2014071701A1 (en) * 2012-11-12 2014-05-15 上海宜瓷龙新材料科技有限公司 Ceramic coating material with 3d effect, and coating method thereof

Also Published As

Publication number Publication date
KR101038416B1 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
WO2012099303A1 (en) Utensil comprising ultra-thin pattern coating layer three-dimensionalized by magnetic nano-materials, and preparation method thereof
CN102712518B (en) Composite and production method thereof
TWI404636B (en) A two-step method of coating an article for security printing
US6808806B2 (en) Methods for producing imaged coated articles by using magnetic pigments
RU2590880C2 (en) Method of forming three-dimensional images in coatings
WO2012026694A2 (en) Method for coating kitchen utensil
CN102616042B (en) Production method of pattern in magnetic pigment fragment-containing coating layer and production device thereof
US6943772B2 (en) Magnetic display device
JP4691371B2 (en) Transfer sheet
KR101190539B1 (en) A Coating film having a pattern and Method for manufacturing thereof
CN205113958U (en) Relief (sculpture) container that discolours
JP2018509311A (en) Method for the generation of a pattern having a three-dimensional appearance in a coating
JP2022519865A (en) Magnetic assembly and process for producing an optical effect layer containing oriented non-spherical, flat magnetic or magnetizable pigment particles.
JPH08323947A (en) Decorative material with pattern film and its manufacture
JPH0478535A (en) Preparation of decorative sheet
JP6198112B2 (en) Decorative synthetic resin molded product and method for producing the same
CN201089327Y (en) Plane plate structure having solid ornamentation
JPH08281897A (en) Production of decorative panel
JP2004330575A (en) Emboss pattern display board of metal gloss excellent in visibility
KR20190046079A (en) Decorative sheet and method for manufacturing the same
CN211237556U (en) Double-sided holographic anti-counterfeiting film and decorative material
CN207758459U (en) A kind of gold-decorated ceramic board pictures
JP6372729B2 (en) Decorative synthetic resin molded product
JP2519643Y2 (en) Plastic products
CN201089326Y (en) Curved plate structure having solid ornamentation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/11/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11856353

Country of ref document: EP

Kind code of ref document: A1