WO2012099240A1 - White organic electroluminescent element - Google Patents

White organic electroluminescent element Download PDF

Info

Publication number
WO2012099240A1
WO2012099240A1 PCT/JP2012/051192 JP2012051192W WO2012099240A1 WO 2012099240 A1 WO2012099240 A1 WO 2012099240A1 JP 2012051192 W JP2012051192 W JP 2012051192W WO 2012099240 A1 WO2012099240 A1 WO 2012099240A1
Authority
WO
WIPO (PCT)
Prior art keywords
och
light emitting
light
white light
electric field
Prior art date
Application number
PCT/JP2012/051192
Other languages
French (fr)
Japanese (ja)
Inventor
安達 千波矢
正幸 八尋
憲一 合志
修造 平田
ヒョ ジョン ホ
是史 久保田
平田 修
佑紀 柴野
Original Assignee
国立大学法人九州大学
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 日産化学工業株式会社 filed Critical 国立大学法人九州大学
Priority to JP2012553782A priority Critical patent/JP5888748B2/en
Publication of WO2012099240A1 publication Critical patent/WO2012099240A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to an organic electric field white light emitting element, and more particularly, to an organic electric field white light emitting element provided with a light emitting layer that is liquid at room temperature.
  • An organic electroluminescence element (organic light emitting element) (hereinafter referred to as an organic EL element) has a configuration in which a thin film organic layer (light emitting layer) containing at least one light emitting organic compound is sandwiched between a cathode and an anode.
  • this organic EL element is a light-emitting element using a light-emitting organic compound in a light-emitting layer, it is expected to be applied as a display that is lightweight, flexible, inexpensive, and capable of large-area full-color display.
  • the organic EL element is more suitable as a diffused light source by surface emission than a light emitting diode (LED), development of illumination using an organic EL element that emits white light is being promoted.
  • the light-emitting layer used in these organic EL devices is driven by three processes: transport of both holes and electrons (charge), formation of excitons by recombination of these carriers, and light emission.
  • a material satisfying these three functions is indispensable for the light emitting layer.
  • the material includes a carrier-transporting light emitting material that exhibits these three functions, and a plurality of types to supplement these three functions.
  • a carrier transport material / light-emitting material in which organic substances are mixed is used.
  • the light emitting material is diluted with the carrier transporting material, so that concentration quenching is suppressed and an organic EL device having high luminous efficiency is expected to be obtained. .
  • intensive research has been conducted on a wide variety of combinations of light-emitting materials and carrier transport materials. By the way, it is not necessary to simply use a light emitting material for a light emitting layer having a target fluorescence wavelength and a high quantum yield, and it is necessary to select a carrier transport material suitable for a specific fluorescent dye. is there.
  • baking One of the important problems of organic EL elements used in conventional displays and lighting is deterioration called baking. This phenomenon is considered to be caused by the fact that impurities are decomposed or modified by applying impurities to the organic EL element for a long time. In order to prevent this deterioration, it is necessary to remove moisture and oxygen on the electrode surface and slight impurities contained in the organic thin film.
  • a method of sealing a desiccant or the like is used in order to improve the purity and stability of the organic substance constituting the organic EL element and to prevent the entry of oxygen and moisture from the outside.
  • the lifetime of the organic EL element is required to be at least 100 cd / m 2 and 100,000 hours, and it can be said that decomposition of the organic matter during the period and deterioration of the element due to the generated impurities are inevitable.
  • the baking of each of these organic layers causes deterioration of the elements, and if one of the plurality of organic layers constituting the organic EL elements deteriorates, the lifetime of the entire element is greatly increased. Affect. If this deteriorated organic layer has a replaceable structure, for example, by a cartridge or the like, it can be considered that a new organic layer can be continuously supplied, so that the organic EL element can be driven semipermanently.
  • most of the existing organic EL elements described above use a solid organic thin film, and it is very difficult to replace only the deteriorated organic layer.
  • Non-Patent Document 1 reports an organic EL element in which a light emitting layer is liquefied.
  • the organic EL element in which the light emitting layer is liquefied which is disclosed in Non-Patent Document 1, is hardly an organic EL element exhibiting such high characteristics that it can be replaced with existing lighting or a display. And the device structure needed to be optimized.
  • Non-Patent Document 2 As disclosed in Non-Patent Document 2, as a means for improving the characteristics of an organic EL device having a liquid light-emitting layer, it has been reported that the same characteristics can be improved by adding an organic salt to the liquid light-emitting layer. Thus, it can be said that the light emission characteristics of the organic EL element using the liquid light emitting layer are approaching the light emission characteristics of the conventional solid organic EL element.
  • there have been no reports of white light emission for lighting applications of organic EL elements while reports have been made on deterioration-free elements and improvement of element characteristics using replaceable liquid light-emitting layers.
  • a conventional organic EL element made of a solid thin film has been produced by a vapor deposition process of each functional low molecule and a coating process of each functional polymer.
  • the coating process is excellent in productivity in that a thin film can be easily produced over a wide range on the substrate as compared with the vapor deposition process.
  • white organic EL elements that require a large area such as illumination are being vigorously developed by a coating process.
  • some problems still remain in the coating process, and in particular, improvement of device characteristics and further simplification of the element manufacturing process are required. Further, there remain problems such as development of a technique for producing a uniform thin film over a larger area, and the produced thin film is easily peeled off at the interface.
  • ECL electrochemiluminescence
  • a light-emitting element having a liquid and white light-emitting layer solves the above-described problems of simplification of the manufacturing process, avoidance of interfacial peeling, and large area, and can be replaced even if the light-emitting layer deteriorates By doing so, it can be made deterioration-free.
  • the present invention has been made in view of such circumstances, and provides an organic electric field white light-emitting element that includes a liquid light-emitting layer that emits white light and that can maintain a liquid state when driven and not driven. For the purpose.
  • the present inventors have found a light emitting layer that is liquid at room temperature and can maintain a liquid state at both driving and non-driving, and emits white light. was completed.
  • An organic electric field white light emitting device comprising an anode, a cathode, and a light emitting layer that emits white light at room temperature and is interposed between these electrodes, 2.
  • organic electric field white light emitting elements wherein the light emitting material comprises a light emitting material that is liquid at room temperature; 5).
  • Two organic electric field white light emitting elements that emit light white as a whole, wherein the material having the carrier transporting ability and the light emitting ability and the light emitting material are in a complementary color relationship, 7).
  • the organic light-emitting white light-emitting element according to any one of 2 to 4, wherein the light-emitting material includes red, green, and blue light-emitting materials and emits white as a whole. 8).
  • the material having a carrier transporting ability and a light emitting ability includes a material that emits light of at least one color of red, green, and blue, and the light emitting material emits light of at least one color of red, green, and blue
  • Two organic electric field white light-emitting elements that emit a white light as a whole, including a material that emits light of each color of red, green, and blue as a whole. 9.
  • the light emitting material is one or more red light emitting materials selected from a pyran compound, a tetracene compound, a naphthacene compound, a styryl compound, a europium complex, an iridium complex, an osmium complex, and a ruthenium complex.
  • Any organic electric field white light emitting element 10.
  • the light emitting material is one or more blue light emitting materials selected from diphenylanthracene compounds, perylene compounds, carbazole compounds, styryl compounds, fluorene compounds, and iridium complexes.
  • Organic electric field white light emitting element, 12 The organic light-emitting white light-emitting element according to any one of 2 to 4, wherein the light-emitting material emits white light alone, 13.
  • X is a carrier transport and light-emitting moiety, and is a carbazole derivative, thianthrene derivative, phenothiazine derivative, azepine derivative, triazole derivative, imidazole derivative, oxadiazole derivative, arylcycloalkane derivative, triarylamine derivative, phenylenediamine.
  • A is, an ether bond, a thioether bond, an ester bond, an alkyl group of carbonic acid ester bond or amide 1 carbon atoms which may contain a binding and 30.
  • the light emitting layer can be maintained in a liquid state both when driven and when not driven. For this reason, when the light emitting layer deteriorates, only the light emitting layer may be replaced (for example, cartridge, extraction / reinjection by circulation).
  • the liquid light-emitting layer exhibiting white light emission according to the present invention is characterized in that the carrier transport material and / or the light-emitting material is a liquid, and the other functional material with respect to one liquid functional material. Are constantly dissolved or dispersed. Therefore, a precise molecular design and synthesis process of a functional polymer such as incorporating a plurality of functional sites, and a technique for dispersing functional materials in a solid thin film are not so necessary.
  • the element of this invention uses the liquid light emitting layer, while being able to produce the uniform and single-layer light emitting layer in a large area, peeling of an electrode and a light emitting layer interface can be avoided. Furthermore, it is possible to manufacture a display element having higher flexibility than an organic EL element made of an existing solid organic thin film.
  • FIG. 3 is a diagram showing current-voltage-external quantum efficiency (EQE) of the organic EL device produced in Example 1.
  • EQE current-voltage-external quantum efficiency
  • the organic electric field white light emitting device includes an anode, a cathode, and a light emitting layer that emits white light and is liquid at room temperature and is interposed between these electrodes.
  • the normal temperature means a range of 20 ° C. ⁇ 15 ° C. (5 to 35 ° C.) defined by JIS Z 8703.
  • the liquid light-emitting layer may be any liquid-emitting layer as long as it exhibits liquid properties, and at least one of the carrier transport material and the light-emitting material, which are constituent materials of the light-emitting layer, is a liquid, and the composition that constitutes the light-emitting layer A liquid thing can be used as the whole thing.
  • both functions of carrier transport ability and light emission ability cannot be clearly separated.
  • some carbon condensed ring dyes such as carbazole, triarylamine and pyrene have both functions. Exists.
  • the carrier transport material and / or light emitting material which emit visible light of all the wavelengths are desirable, and it is not limited to the light emitting material which emits white light.
  • the entire light emitting layer exhibits liquid properties a substance having both of these functions can be used, and it is a material that has both functions of carrier transporting ability and light emitting ability and emits white light. If present, it can be used alone.
  • the light-emitting layer of the present invention is not particularly limited as long as it emits white light as a whole, but in the present invention, a material having a carrier transporting ability and a light-emitting ability of liquid at room temperature. And a light emitting layer that emits white light as a whole, or a carrier transport material that is liquid at room temperature and a light emitting material, and a light emitting layer that emits white light as a whole. It is preferable that the material having both functions or the carrier transporting material is liquid at room temperature. In this case, the light emitting material may be liquid at room temperature.
  • the method (2) or (3) is preferable in the present invention.
  • the complementary color relationship is, for example, a color relationship between two wavelengths with a pure white point in the CIE chromaticity coordinates as a target point, and representative examples include combinations of pure blue and yellow, light blue and red, and the like. .
  • a light emitting material containing two types of light emitting materials having a complementary color relationship and emitting white light as a whole (A) a light emitting material containing two types of light emitting materials having a complementary color relationship and emitting white light as a whole, (B) carrier transport Either a material having a function and a light emitting ability and a material having a complementary color relationship as a light emitting material, and a method of emitting white light as a whole may be adopted.
  • a material that emits red, green, and blue light is used
  • C a method that emits white light as a whole using a material that includes red, green, and blue light emission as a light-emitting material.
  • a material having a carrier transporting ability and a light emitting ability a material containing at least a material emitting light in any one color of red, green and blue is used, and as a light emitting material, at least any one color of red, green and blue is used.
  • a material containing a material that emits light is used, and a material that emits light of three colors of red, green, and blue is adopted as the whole of these materials, and either of the methods of emitting white light as a whole may be adopted.
  • the red light emitting material can be appropriately selected from conventionally known materials, such as pyran compounds, tetracene compounds, naphthacene compounds, styryl compounds, europium complexes, iridium complexes, osmium complexes, ruthenium complexes, etc. These may be used alone or in combination of two or more.
  • red light emitting material 4- (Dicyanomethylene) -2-methyl-6-julolidyl-9-enyl-4H-pyran (4- (Dicyanomethylene) -2-methyl-6-julolidyl-9-enyl-4H-pyran) 4- (Dicyanomethylene) -2-methyl-6- (1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (4- (Dicyanomethylene) -2-methyl-6- ( 1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran) 4- (Dicyanomethylene) -2-tert-butyl-6- (1,1,7,7-tetramethyljulolidin-4-yl-vinyl) -4H-pyran (4- (Dicyanomethylene) -2-tert- butyl-6- (1,1,7,7-tetramethyljulolidin-4-yl-vinyl) -4H-pyran
  • the green light emitting material can be appropriately selected from conventionally known materials, and examples thereof include a coumarin compound, a quinacridone compound, an anthracene compound, an iridium complex, a zinc complex, and the like. May also be used in combination of two or more.
  • the blue light-emitting material can be appropriately selected from conventionally known materials, and examples thereof include diphenylanthracene compounds, perylene compounds, carbazole compounds, styryl compounds, fluorene compounds, iridium complexes, and the like. These may be used alone or in combination of two or more.
  • a light emitting material that emits white light alone can be appropriately selected from conventionally known materials.
  • the following chemical structure described in the literature can be used.
  • a white luminescent material may be used independently or may be used in combination of 2 or more types.
  • the light emitting material is not limited to a low molecular weight material, and a high molecular light emitting material may be used.
  • a polyvinyl carbazole derivative, a polyfluorene derivative, a polyphenylene vinylene derivative, a polythiophene derivative, or the like may be used.
  • the compound represented by the formula (1) can be suitably used as the liquid carrier transporting material and the light emitting material or carrier transporting material.
  • X is a charge transport part, and is a carbazole derivative, a thianthrene derivative, a phenothiazine derivative, an azepine derivative, a triazole derivative, an imidazole derivative, an oxadiazole derivative, an arylcycloalkane derivative, a triarylamine derivative, a phenylenediamine derivative, Stilbene derivatives, oxazole derivatives, triphenylmethane derivatives, pyrazoline derivatives, fluorenone derivatives, polyaniline derivatives, silane derivatives, pyrrole derivatives, fluorene derivatives, porphyrin derivatives, quinacridone derivatives, triphenylphosphine oxide derivatives, anthracene derivatives, tetracene derivatives, pyrene derivatives, Carbon condensed ring dyes such as rubrene derivatives, decacyclene derivatives, perylene derivatives, metal or metal-free phthalocyanines, gold
  • Y is at least one substituent linked to the charge transport part X, and may contain an ether bond, a thioether bond, an ester bond, a carbonate bond or an amide bond.
  • These ether bonds, thioether bonds, ester bonds, carbonate ester bonds, and amide bonds may be present at the connecting portion between X and Y.
  • the alkyl group may be linear, branched, or cyclic. However, when a linear alkyl group is used, the crystallinity is improved and the viscosity is increased by intermolecular interaction such as packing of alkyl chains. Since an increase is considered, a branched alkyl group is more preferable.
  • alkyl group having 1 to 30 carbon atoms examples include methyl, ethyl, n-propyl, i-propyl, c-propyl, n-butyl, i-butyl, s-butyl, t-butyl, c -Butyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n-butyl, 1,1-dimethyl-n-propyl, c-pentyl, 2-methyl-c -Butyl, n-hexyl, 1-methyl-n-pentyl, 2-methyl-n-pentyl, 1,1-dimethyl-n-butyl, 1-ethyl-n-butyl, 1,1,2-trimethyl-n -Propyl, c-hexyl, 1-methyl-c-pentyl, 1-ethyl-c-butyl, 1,2-dimethyl-c-
  • the alkyl group having 1 to 30 carbon atoms containing an ether bond, a thioether bond, an ester bond, a carbonate ester bond or an amide bond includes those having these bonds at any position of the alkyl group as described above. Specific examples include the following substituents.
  • alkyl group containing an ether bond examples include CH 2 OCH 3 , CH 2 OCH 2 CH 3 , CH 2 O (CH 2 ) 2 CH 3 , CH 2 OCH (CH 3 ) 2 , and CH 2 O.
  • alkyl group containing a thioether bond examples include a group in which the oxygen atom (O) of the alkyl group containing the ether bond is replaced with a sulfur atom (S).
  • alkyl group containing an ester bond examples include groups in which the oxygen atom (O) of the alkyl group containing an ether bond is replaced with C (O) O or OC (O).
  • alkyl group containing a carbonate bond include a group in which the oxygen atom (O) of the alkyl group containing an ether bond is replaced with OC (O) O.
  • alkyl group having 1 to 30 carbon atoms containing an amide bond examples include a group in which the oxygen atom (O) of the alkyl group containing an ether bond is replaced with C (O) NH or NHC (O). Can be mentioned.
  • a substituent having 6 to 30 carbon atoms is preferable from the viewpoint of easily becoming a liquid.
  • an alkyl group having 1 to 30 carbon atoms (oxyalkylene group) having an ether bond is more preferable, and CH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2
  • Suitable carrier transporting materials include, for example, the following carbazole (X1), N, N-disubstituted or N, N, N-trisubstituted arylamine (X2).
  • Y 1 to Y 6 each independently represent a hydrogen atom or an alkyl group having 1 to 30 carbon atoms which may contain an ether bond, a thioether bond, an ester bond, a carbonate bond or an amide bond.
  • a 1 and A 2 are a single bond or a substituted or unsubstituted aromatic ring Represents.
  • alkyl group includes linear, branched, and cyclic alkyl such as methyl, ethyl, isopropyl, t-butyl, 2-ethylhexyl, and cyclohexyl, which has a melting point of the above general formula (1).
  • Y functional group for lowering
  • specific examples and preferred examples thereof are as described above.
  • the aromatic ring include a benzene ring and a naphthalene ring.
  • Y 1 , Y 2 , Y 4 and Y 5 are hydrogen atoms
  • Y 3 and Y 6 are alkyl groups (oxyalkylene groups) having an ether bond.
  • a 1 and A 2 are preferably benzene rings or single bonds.
  • the following compound (X3) is preferable, the compound (3) is more preferable, the compound (4) or the compound (5) is still more preferable, and further, it has an alkyl group (oxyalkylene group) having an ether bond.
  • a compound (5) is suitable, it is not limited to these.
  • Y 4 to Y 11 each independently represents a hydrogen atom or an alkyl group having 1 to 30 carbon atoms which may contain an ether bond, a thioether bond, an ester bond, a carbonate ester bond, an amide bond, etc.
  • at least one of Y 4 to Y 6 , at least one of Y 7 and Y 8 , and at least one of Y 9 to Y 11 are the above alkyl groups.
  • R 1 to R 4 each independently represent an alkyl group having 1 to 30 carbon atoms.
  • pyrene derivative (Z1) can be preferably used.
  • W 1 to W 4 each independently represents a hydrogen atom or an alkyl group having 1 to 30 carbon atoms which may contain an ether bond, a thioether bond, an ester bond, a carbonate bond or an amide bond.
  • a 1 to A 4 represent a single bond or a substituted or unsubstituted aromatic ring.
  • specific examples of the alkyl group include those similar to the above Y, and specific examples of the aromatic ring include those similar to the above.
  • a compound in which A 1 to A 4 are single bonds that is, a compound (Z2) in which W 1 to W 4 are directly bonded to a carbon condensed ring is preferable. Further, it is more preferable that at least one of W 1 to W 4 is a hydrogen atom, and particularly, three is a hydrogen atom. From these points, the following compound (Z3) is preferable, but is not limited thereto.
  • the carrier transport material described above may use a dimer in consideration of the light emission lifetime of the organic EL element.
  • the dimer the following compound (V1) is preferable, and the compound (12) having an alkyl group (oxyalkylene group) containing an ether bond is preferable, but the dimer is not limited thereto.
  • the blending ratio of the above-described carrier transporting material (material having carrier transporting ability and light emitting ability) and the light emitting material is not particularly limited as long as the entire composition is in a liquid and emits white light as a whole.
  • carrier transport material material having carrier transport ability and light emission ability
  • luminescent material 99.99: 0.01 to 50:50 or so.
  • their blending ratio is a mass ratio, and the carrier transporting material (material having carrier transporting ability and light emitting ability).
  • Luminescent material preferably about 99.99: 0.01 to 50:50.
  • the blending ratio thereof is preferably about 99.99: 0.01 to 50:50 in terms of mass ratio, for example.
  • red: blue 0.01: 99.98 to 99.98 to 0.01
  • red: blue 0.01: 99.98 to 99.98: 0.01.
  • an organic salt or an inorganic salt may be added to the light emitting layer in order to improve device characteristics.
  • the organic electroluminescent element of the present invention since the above-described liquid light emitting layer is characterized, there are no particular limitations on the constituent members of the other elements, and conventionally known elements can be appropriately employed.
  • a transparent electrode typified by indium tin oxide (ITO) or indium zinc oxide (IZO), a polythiophene derivative having high charge transportability, a polyaniline derivative, or the like can be used.
  • the cathode material aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium, cesium-added ITO, or the like can be used.
  • the organic electroluminescent element of this invention may be equipped with the various functional layers generally used for an organic electroluminescent element other than an anode, a cathode, and a light emitting layer.
  • a functional layer include a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a carrier block layer, and the like.
  • the hole transport layer is a layer that is provided between the anode and the light emitting layer and has a function of transporting holes injected from the anode to the light emitting layer.
  • the material include (triphenylamine) dimer. Derivatives (TPD), ( ⁇ -naphthyldiphenylamine) dimer ( ⁇ -NPD), [(triphenylamine) dimer] spirodimer (Spiro-TAD) and other triarylamines, 4,4 ′, 4 ′′ -tris [ Starburst amines such as 3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA), 4,4 ′, 4 ′′ -tris [1-naphthyl (phenyl) amino] triphenylamine (1-TNATA) 5,5 ′′ -bis- ⁇ 4- [bis (4-methylphenyl) amino] phenyl ⁇ -2,2 ′: 5 ′, 2 ′′ terthioph
  • the hole injection layer is a layer that is provided between the hole transport layer and the anode and has a function of increasing the hole injection efficiency from the anode.
  • Examples of the material for forming the hole injection layer include copper phthalocyanine, 4,4 ′, 4 ′′ -tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA), and the like.
  • the electron transport layer is a layer provided between the cathode and the light-emitting layer and having a function of transporting electrons injected from the cathode to the light-emitting layer, and includes Alq 3 , BAlq, DPVBi, (2- (4-biphenyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole) (PBD), triazole derivative (TAZ), bathocuproine (BCP), silole derivative and the like.
  • the electron injection layer is a layer that is provided between the electron transport layer and the cathode and has a function of increasing the efficiency of electron injection from the cathode.
  • lithium oxide Li 2 O
  • magnesium oxide MgO
  • alumina Al 2 O 3
  • lithium fluoride LiF
  • magnesium fluoride MgF 2
  • strontium fluoride SrF 2
  • Li (acac) Li (acac)
  • lithium acetate lithium benzoate
  • the carrier block layer is a layer for controlling the light emitting region, and can be formed between any of the above-described layers.
  • Examples of the material for forming such a carrier block layer include PBD, TAZ, and BCP.
  • FIG. 1 shows an organic EL element 1 which is an electroluminescent element according to an embodiment of the present invention.
  • the organic EL element 1 includes an anode 10, a cathode 20, and a light emitting layer 30 (hereinafter referred to as a liquid light emitting layer 30) that is interposed between the electrodes 10 and 20 and is liquid at room temperature.
  • the anode 10 is composed of a glass substrate 11 and an ITO substrate 12 formed thereon.
  • the cathode 20 is composed of a glass substrate 13 and an ITO substrate 14 formed thereon.
  • the liquid light-emitting layer 30 includes a carrier transport material and red, green, and blue light-emitting materials.
  • the carbazole represented by the above formula (5) is used as the liquid carrier transport material.
  • a derivative (TEGCz) is included.
  • the following methods can be used. First, a liquid luminescent material prepared by dissolving red, green, and blue luminescent materials in the liquid carrier transporting material is dropped onto the cathode 20, and the anode 10 is pressed on the cathode 20 with an appropriate pressure to form a liquid. The organic EL element 1 having the light emitting layer 30 is obtained.
  • each layer is not limited to the material used by the said embodiment, As long as the function of each layer is exhibited, it can select from the various materials illustrated previously suitably and can be used.
  • the method for forming each layer is not limited to the method of the above embodiment, and a known method such as an evaporation method, a spray method, an ink jet method, or a sputtering method can be appropriately employed depending on the material to be used. .
  • a hole blocking layer, a hole injection layer, or the like may be formed as necessary.
  • Example 1 To host compound TEGCz 89.9 parts by mass represented by the following structure, 10.0 parts by mass of EH 4 DPA (blue light-emitting material) prepared in Synthesis Example 1, and DCJTB (red light-emitting material, Luminescent Technology Co., Ltd.) represented by the following structure 0.05 parts by mass) and 0.05 parts by mass of Coumarin 7 (green luminescent material, manufactured by Aldrich) were added, and they were completely dissolved in TEGCz to produce a liquid light emitter.
  • EH 4 DPA blue light-emitting material
  • DCJTB red light-emitting material, Luminescent Technology Co., Ltd.
  • Coumarin 7 green luminescent material, manufactured by Aldrich
  • the EL element was produced as follows. A glass substrate 11 with ITO 12 (anode 10) and a glass substrate 13 with ITO 14 (cathode), which were subjected to ultrasonic cleaning in the order of surfactant, pure water and isopropanol, and subjected to UV / ozone treatment (manufactured by Philgen, UV253S) for 12 minutes. 20) was prepared. In the glove box, a small amount of the previously prepared liquid light emitter is dropped onto the cathode 20 (ITO 14) and sandwiched between the anodes 10 and fixed with clips (not shown) from the outside. As shown in FIG. 1, an EL element 1 composed of glass substrate / ITO (anode) / liquid light emitter layer / ITO (cathode) / glass substrate was produced. The element area is 2 mm ⁇ 2 mm.
  • the current density-voltage-external emission efficiency (EQE) and emission spectrum of the produced EL device were measured. The results are shown in FIG. 3 and FIG. When the film thickness of the liquid light emitting layer of this device was calculated from the result of dielectric constant measurement, it was 1.57 ( ⁇ 0.08) ⁇ m. As shown in FIG. 4, luminescence of three colors derived from EH 4 DPA, DCJTB, and Coumarin 7 was observed at the same time, and white electroluminescence was confirmed.
  • FIG. 3 shows the device characteristics of the obtained element. When 98.8 V was applied, a current density of 5.57 mA / cm 2 and an external luminous efficiency of 0.037% were obtained.
  • Organic EL device electroactive device
  • Anode 10
  • Cathode 30

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This white organic electroluminescent element (1) is provided with a positive electrode (10), a negative electrode (20), and a light-emitting layer (30), which emits white light as a whole, disposed between these electrodes (10, 20). Said light-emitting layer (30) contains a carbazole derivative that is liquid at room temperature, such as that represented by formula (5), and red, green and blue light-emitting materials etc. Thus, white organic electroluminescent elements, which are provided with a liquid light-emitting layer that emits white light and that can maintain a liquid state both when being driven and when not being driven, can be provided.

Description

有機電界白色発光素子Organic electric field white light emitting device
 本発明は、有機電界白色発光素子に関し、さらに詳述すると、常温で液体の発光層を備えた有機電界白色発光素子に関する。 The present invention relates to an organic electric field white light emitting element, and more particularly, to an organic electric field white light emitting element provided with a light emitting layer that is liquid at room temperature.
 有機エレクトロルミネッセンス素子(有機発光素子)(以下、有機EL素子という)は、陰極と陽極との間に、少なくとも1種の発光性有機化合物を含む薄膜の有機層(発光層)を挟んだ構成を有しており、この薄膜に電子および正孔(ホール)を注入・輸送して再結合させて励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光させる素子である。
 この有機EL素子は、発光性有機化合物を発光層に用いた発光素子であるため、軽量かつフレキシブル、そして安価で大面積のフルカラー表示が可能なディスプレイとして応用が期待されている。また、有機EL素子では発光ダイオード(LED)と比較して面発光による拡散光源に適していることから、白色発光する有機EL素子を用いた照明の開発が進められている。
An organic electroluminescence element (organic light emitting element) (hereinafter referred to as an organic EL element) has a configuration in which a thin film organic layer (light emitting layer) containing at least one light emitting organic compound is sandwiched between a cathode and an anode. Injecting and transporting electrons and holes (holes) to this thin film and recombining them to generate excitons (excitons), light emission when these excitons are deactivated (fluorescence / phosphorescence) This is an element that emits light using
Since this organic EL element is a light-emitting element using a light-emitting organic compound in a light-emitting layer, it is expected to be applied as a display that is lightweight, flexible, inexpensive, and capable of large-area full-color display. In addition, since the organic EL element is more suitable as a diffused light source by surface emission than a light emitting diode (LED), development of illumination using an organic EL element that emits white light is being promoted.
 これら有機EL素子で用いられる発光層では、正孔および電子両方のキャリア(電荷)の輸送、それらキャリアの再結合による励起子の形成、そして光放出の3つの過程によって駆動する。
 そのため、発光層には、これら3つの機能を満たす材料が必要不可欠であり、通常、その材料としては、これら3つの機能を発揮するキャリア輸送性発光材料や、3つの機能を補うために複数種の有機物を混合させたキャリア輸送材料/発光材料が用いられている。
The light-emitting layer used in these organic EL devices is driven by three processes: transport of both holes and electrons (charge), formation of excitons by recombination of these carriers, and light emission.
For this reason, a material satisfying these three functions is indispensable for the light emitting layer. Usually, the material includes a carrier-transporting light emitting material that exhibits these three functions, and a plurality of types to supplement these three functions. A carrier transport material / light-emitting material in which organic substances are mixed is used.
 上記キャリア輸送材料/発光材料を発光層に用いた場合、発光材料がキャリア輸送材料で希釈されることから、濃度消光が抑えられ、高い発光効率を有する有機EL素子が得られると期待されている。このため、発光材料とキャリア輸送材との多種多様な組み合わせについて精力的に研究がなされている。
 ところで、発光層用の発光材料には、単純に目的の蛍光波長および高い量子収率を持つものを用いればよいというわけではなく、特定の蛍光色素に適したキャリア輸送材料の選定を行う必要がある。この理由は、キャリア輸送材料中に輸送されたキャリアが再結合し、そこで生じる励起エネルギーが、キャリア輸送材料中にドープされている蛍光色素の発光を誘起するためである。
 そのため、発光材料/キャリア輸送材料の各成分のHOMO/LUMOのエネルギー準位の相互関係、あるいは、それらの効率的なエネルギー移動の組み合せの選定が必要不可欠となってくる。
When the above carrier transporting material / luminescent material is used for the light emitting layer, the light emitting material is diluted with the carrier transporting material, so that concentration quenching is suppressed and an organic EL device having high luminous efficiency is expected to be obtained. . For this reason, intensive research has been conducted on a wide variety of combinations of light-emitting materials and carrier transport materials.
By the way, it is not necessary to simply use a light emitting material for a light emitting layer having a target fluorescence wavelength and a high quantum yield, and it is necessary to select a carrier transport material suitable for a specific fluorescent dye. is there. This is because the carriers transported into the carrier transport material recombine, and the excitation energy generated there induces the emission of the fluorescent dye doped in the carrier transport material.
Therefore, it is indispensable to select the mutual relationship between the HOMO / LUMO energy levels of each component of the light emitting material / carrier transport material or a combination of their efficient energy transfer.
 また、白色発光の有機EL素子を作製する場合、複数種の発光材料を混合してスペクトル幅の広い白色発光を得ることが多いが、発光層に含まれる複数種の発光材料を適切な比率で同時に励起させる必要があるため、その電荷のバランスはより精密さが要求される。
 この場合、上記の発光材料/キャリア輸送材料の組み合わせに加え、発光材料同士間のHOMO/LUMOのエネルギー準位の相互関係、あるいはそれらの効率的なエネルギー移動の組み合わせも重要な選定条件となる。
In the case of producing an organic EL element that emits white light, a plurality of types of light emitting materials are often mixed to obtain white light emission having a wide spectral width. However, a plurality of types of light emitting materials included in the light emitting layer are mixed at an appropriate ratio. Since it is necessary to excite them simultaneously, the charge balance needs to be more precise.
In this case, in addition to the above-described combination of the light emitting material / carrier transport material, the mutual relationship between HOMO / LUMO energy levels between the light emitting materials or a combination of their efficient energy transfer is also an important selection condition.
 従来のディスプレイや照明で用いられる有機EL素子の重要な問題の1つに、焼付けと呼ばれる劣化がある。この現象は、有機EL素子に長時間電圧を印加することで、不純物が有機EL素子を構成する材料を分解または変性することに起因するものと考えられている。
 この劣化を防ぐためには、電極表面の水分および酸素や、構成する有機薄膜に含まれる僅かな不純物等の除去が必要となる。
 その具体的な手法としては、有機EL素子を構成する有機物の純度および安定性の向上や、外部からの酸素および水分の混入を防ぐために乾燥剤等を封止する方法が利用されている。
One of the important problems of organic EL elements used in conventional displays and lighting is deterioration called baking. This phenomenon is considered to be caused by the fact that impurities are decomposed or modified by applying impurities to the organic EL element for a long time.
In order to prevent this deterioration, it is necessary to remove moisture and oxygen on the electrode surface and slight impurities contained in the organic thin film.
As a specific technique, a method of sealing a desiccant or the like is used in order to improve the purity and stability of the organic substance constituting the organic EL element and to prevent the entry of oxygen and moisture from the outside.
 しかし、実用的な面から、有機EL素子の寿命は少なくとも100cd/m2で10万時間は必要とされており、その間の有機物の分解や、発生した不純物による素子の劣化は不可避といえる。
 上述した既存の有機EL素子は、これら各有機層の焼付けが素子の劣化の原因になっており、有機EL素子を構成する複数の有機層のうち一層でも劣化すれば、素子全体の寿命に大きく影響する。
 仮に、この劣化した有機層を、例えばカートリッジ等により、交換可能な構造とすれば、新たな有機層を供給し続けることができる結果、有機EL素子を半永久的に駆動できると考えられる。
 しかし、上述した既存の有機EL素子のほとんどは、固体の有機薄膜が用いられており、劣化した有機層のみを交換することは非常に困難である。
However, from the practical aspect, the lifetime of the organic EL element is required to be at least 100 cd / m 2 and 100,000 hours, and it can be said that decomposition of the organic matter during the period and deterioration of the element due to the generated impurities are inevitable.
In the above-described existing organic EL elements, the baking of each of these organic layers causes deterioration of the elements, and if one of the plurality of organic layers constituting the organic EL elements deteriorates, the lifetime of the entire element is greatly increased. Affect.
If this deteriorated organic layer has a replaceable structure, for example, by a cartridge or the like, it can be considered that a new organic layer can be continuously supplied, so that the organic EL element can be driven semipermanently.
However, most of the existing organic EL elements described above use a solid organic thin film, and it is very difficult to replace only the deteriorated organic layer.
 近年、上記問題点の解決につながるような技術が開発されつつあり、例えば、非特許文献1では、発光層を液状化した有機EL素子が報告されている。発光層を液状あるいは半固形状にすることにより、劣化した液状の発光層は固体薄膜層と比較して交換し易いといえ、少なくとも発光層については、交換可能な発光素子となり得ると考えられる。
 しかし、非特許文献1に開示されている、発光層を液状化した有機EL素子は、既存の照明やディスプレイに置き換え可能なほどの高い特性を示す有機EL素子とは言い難く、その液体発光層やデバイス構造は、最適化が必要であった。
In recent years, technologies that lead to the solution of the above problems are being developed. For example, Non-Patent Document 1 reports an organic EL element in which a light emitting layer is liquefied. By making the light emitting layer liquid or semi-solid, it can be said that the deteriorated liquid light emitting layer is easier to replace than the solid thin film layer, and at least the light emitting layer can be a replaceable light emitting element.
However, the organic EL element in which the light emitting layer is liquefied, which is disclosed in Non-Patent Document 1, is hardly an organic EL element exhibiting such high characteristics that it can be replaced with existing lighting or a display. And the device structure needed to be optimized.
 液状発光層を有する有機EL素子の特性向上の手段として、非特許文献2に開示されているように、液状発光層に有機塩を添加することで、同様の特性向上が見られることが報告されており、液状発光層を用いた有機EL素子の発光特性は、従来の固体有機EL素子の発光特性に近づいてきているといえる。
 しかし、交換可能な液体の発光層を用いて劣化フリー素子や素子特性の向上に向けて報告がなされている中、有機EL素子の照明用途に向けた白色発光の報告例は皆無である。
As disclosed in Non-Patent Document 2, as a means for improving the characteristics of an organic EL device having a liquid light-emitting layer, it has been reported that the same characteristics can be improved by adding an organic salt to the liquid light-emitting layer. Thus, it can be said that the light emission characteristics of the organic EL element using the liquid light emitting layer are approaching the light emission characteristics of the conventional solid organic EL element.
However, there have been no reports of white light emission for lighting applications of organic EL elements, while reports have been made on deterioration-free elements and improvement of element characteristics using replaceable liquid light-emitting layers.
特開2009-54952号公報JP 2009-54952 A
 従来の固体薄膜からなる有機EL素子は、各機能性低分子の蒸着プロセスや各機能性高分子の塗布プロセスによって作製されてきた。特に塗布プロセスは、蒸着プロセスと比較して、簡便に、かつ、基板上の広範囲に薄膜を作製できる点で生産性に優れるといえる。そのため、現在、照明等の大面積を必要とする白色有機EL素子は塗布プロセスにより精力的に開発が進められている。
 しかし、その塗布プロセスにおいても未だ幾つかの課題が残されており、特に、デバイス特性の向上や素子作製プロセスのさらなる簡易化が要求されている。
 また、より大面積に均一な薄膜を作製する技術の開発や、作製された薄膜が界面剥離し易い等の課題も残されている。
 一方、類似技術としてエレクトロケミルミネッセンス(ECL)と呼ばれる発光素子が報告され、このECLから白色発光を取り出す研究も進められている。
 例えば、特許文献1では、二つの異なる発光層を積層することによって白色発光を達成している。
 しかし、上述のように、素子の構造やプロセスの簡易化が求められている現在、単層で液状の発光層から白色発光に成功した例は、発明者らの知る限り未だ報告されていない。
 この点、液状かつ白色の発光層を有する発光素子は、上記の作製プロセスの簡易化、界面剥離の回避、大面積化の課題を解決するとともに、たとえ発光層が劣化したとしてもこれを交換可能とすることにより、劣化フリーなものとすることができる。
 本発明は、このような事情に鑑みてなされたものであり、白色に発光する液体発光層を備え、駆動時および非駆動時ともに発光層が液状を維持し得る有機電界白色発光素子を提供することを目的とする。
A conventional organic EL element made of a solid thin film has been produced by a vapor deposition process of each functional low molecule and a coating process of each functional polymer. In particular, it can be said that the coating process is excellent in productivity in that a thin film can be easily produced over a wide range on the substrate as compared with the vapor deposition process. For this reason, at present, white organic EL elements that require a large area such as illumination are being vigorously developed by a coating process.
However, some problems still remain in the coating process, and in particular, improvement of device characteristics and further simplification of the element manufacturing process are required.
Further, there remain problems such as development of a technique for producing a uniform thin film over a larger area, and the produced thin film is easily peeled off at the interface.
On the other hand, a light-emitting element called electrochemiluminescence (ECL) has been reported as a similar technique, and research on extracting white light emission from this ECL is also underway.
For example, in Patent Document 1, white light emission is achieved by stacking two different light emitting layers.
However, as described above, at present, there is a demand for simplification of the structure and process of the element, and as far as the inventors know, no examples of successful white light emission from a single-layer liquid light-emitting layer have been reported.
In this respect, a light-emitting element having a liquid and white light-emitting layer solves the above-described problems of simplification of the manufacturing process, avoidance of interfacial peeling, and large area, and can be replaced even if the light-emitting layer deteriorates By doing so, it can be made deterioration-free.
The present invention has been made in view of such circumstances, and provides an organic electric field white light-emitting element that includes a liquid light-emitting layer that emits white light and that can maintain a liquid state when driven and not driven. For the purpose.
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、常温で液体、かつ、駆動時および非駆動時ともに液状を維持し得、白色に発光する発光層を見出し、本発明を完成した。 As a result of intensive investigations to achieve the above object, the present inventors have found a light emitting layer that is liquid at room temperature and can maintain a liquid state at both driving and non-driving, and emits white light. Was completed.
 すなわち、本発明は、
1. 陽極と、陰極と、これら各極間に介在する、常温で液体、かつ、白色発光する発光層とを備えることを特徴とする有機電界白色発光素子、
2. 前記発光層が、常温で液体のキャリア輸送能および発光能を有する材料と、発光材料とを含み、全体として白色発光する1の有機電界白色発光素子、
3. 前記発光層が、常温で液体のキャリア輸送材料と、発光材料とを含み、全体として白色発光する1の有機電界白色発光素子、
4. 前記発光材料が、常温で液体の発光材料を含む2または3の有機電界白色発光素子、
5. 前記発光材料が、補色関係にある2種類の発光材料を含み、全体として白色発光する2~4のいずれかの有機電界白色発光素子、
6. 前記キャリア輸送能および発光能を有する材料と発光材料とが、補色関係にあり、全体として白色発光する2の有機電界白色発光素子、
7. 前記発光材料が、赤、緑、青の各発光材料を含み、全体として白色発光する2~4のいずれかの有機電界白色発光素子、
8. 前記キャリア輸送能および発光能を有する材料が、少なくとも赤、緑および青のいずれか1つの色に発光する材料を含み、前記発光材料が、少なくとも赤、緑および青のいずれか1つの色に発光する材料を含み、前記両材料全体として赤、緑および青の各色に発光する材料を含み、全体として白色発光する2の有機電界白色発光素子、
9. 前記発光材料が、ピラン系化合物、テトラセン系化合物、ナフタセン系化合物、スチリル系化合物、ユーロピウム錯体、イリジウム錯体、オスミウム錯体およびルテニウム錯体から選ばれる1種または2種以上の赤色発光材料である2~8のいずれかの有機電界白色発光素子、
10. 前記発光材料が、クマリン系化合物、キナクリドン系化合物、アントラセン系化合物、イリジウム錯体および亜鉛錯体から選ばれる1種または2種以上の緑色発光材料である2~8のいずれかの有機電界白色発光素子、
11. 前記発光材料が、ジフェニルアントラセン系化合物、ペリレン系化合物、カルバゾール系化合物、スチリル系化合物、フルオレン系化合物およびイリジウム錯体から選ばれる1種または2種以上の青色発光材料である2~8のいずれかの有機電界白色発光素子、
12. 前記発光材料が、単独で白色発光する2~4のいずれかの有機電界白色発光素子、
13. 前記キャリア輸送能および発光能を有する材料またはキャリア輸送材料が、式(1)で示される化合物である2または3の有機電界白色発光素子、
Figure JPOXMLDOC01-appb-C000005
(式中、Xはキャリア輸送および発光部であって、カルバゾール誘導体、チアントレン誘導体、フェノチアジン誘導体、アゼピン誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサジアゾール誘導体、アリールシクロアルカン誘導体、トリアリールアミン誘導体、フェニレンジアミン誘導体、スチルベン誘導体、オキサゾール誘導体、トリフェニルメタン誘導体、ピラゾリン誘導体、フルオレノン誘導体、ポリアニリン誘導体、シラン誘導体、ピロール誘導体、フルオレン誘導体、ポルフィリン誘導体、キナクリドン誘導体、トリアリールホスフィンオキシド誘導体、炭素縮合環系色素、金属もしくは無金属のフタロシアニン誘導体、またはベンジジンを表し、Yは、前記キャリア輸送および発光部に連結する少なくとも1つの置換基であって、エーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合またはアミド結合を含んでいてもよい炭素数1~30のアルキル基を表す。)
14. 前記電荷輸送部Xが、カルバゾールである13の有機電界白色発光素子、
15. 前記置換基Yが、エーテル結合を含んでいてもよい炭素数1~30のアルキル基である13または14の有機電界白色発光素子、
16. 前記キャリア輸送材料が、式(3)で示される15の有機電界白色発光素子、
Figure JPOXMLDOC01-appb-C000006
(式中、Yは、前記と同じ意味を表す。)
17. 前記キャリア輸送材料が、式(4)で示される16の有機電界白色発光素子、
Figure JPOXMLDOC01-appb-C000007
18. 前記キャリア輸送材料が、式(5)で示される16の有機電界白色発光素子
Figure JPOXMLDOC01-appb-C000008
を提供する。
That is, the present invention
1. An organic electric field white light emitting device comprising an anode, a cathode, and a light emitting layer that emits white light at room temperature and is interposed between these electrodes,
2. The organic light-emitting white light-emitting element that emits white light as a whole, wherein the light-emitting layer includes a material having a carrier transporting ability and a light-emitting ability that are liquid at room temperature, and a light-emitting material.
3. The organic light-emitting white light-emitting element that emits white as a whole, wherein the light-emitting layer includes a carrier transport material that is liquid at room temperature and a light-emitting material.
4). 2 or 3 organic electric field white light emitting elements, wherein the light emitting material comprises a light emitting material that is liquid at room temperature;
5). The organic light-emitting white light-emitting element according to any one of 2 to 4, wherein the light-emitting material includes two kinds of light-emitting materials having complementary colors, and emits white light as a whole.
6). Two organic electric field white light emitting elements that emit light white as a whole, wherein the material having the carrier transporting ability and the light emitting ability and the light emitting material are in a complementary color relationship,
7). The organic light-emitting white light-emitting element according to any one of 2 to 4, wherein the light-emitting material includes red, green, and blue light-emitting materials and emits white as a whole.
8). The material having a carrier transporting ability and a light emitting ability includes a material that emits light of at least one color of red, green, and blue, and the light emitting material emits light of at least one color of red, green, and blue Two organic electric field white light-emitting elements that emit a white light as a whole, including a material that emits light of each color of red, green, and blue as a whole.
9. The light emitting material is one or more red light emitting materials selected from a pyran compound, a tetracene compound, a naphthacene compound, a styryl compound, a europium complex, an iridium complex, an osmium complex, and a ruthenium complex. Any organic electric field white light emitting element,
10. The organic light-emitting white light-emitting element according to any one of 2 to 8, wherein the light-emitting material is one or more green light-emitting materials selected from a coumarin compound, a quinacridone compound, an anthracene compound, an iridium complex, and a zinc complex,
11. Any of 2 to 8, wherein the light emitting material is one or more blue light emitting materials selected from diphenylanthracene compounds, perylene compounds, carbazole compounds, styryl compounds, fluorene compounds, and iridium complexes. Organic electric field white light emitting element,
12 The organic light-emitting white light-emitting element according to any one of 2 to 4, wherein the light-emitting material emits white light alone,
13. The organic electric field white light emitting element of 2 or 3, wherein the material having carrier transporting ability and light emitting ability or the carrier transporting material is a compound represented by the formula (1):
Figure JPOXMLDOC01-appb-C000005
(Wherein X is a carrier transport and light-emitting moiety, and is a carbazole derivative, thianthrene derivative, phenothiazine derivative, azepine derivative, triazole derivative, imidazole derivative, oxadiazole derivative, arylcycloalkane derivative, triarylamine derivative, phenylenediamine. Derivatives, stilbene derivatives, oxazole derivatives, triphenylmethane derivatives, pyrazoline derivatives, fluorenone derivatives, polyaniline derivatives, silane derivatives, pyrrole derivatives, fluorene derivatives, porphyrin derivatives, quinacridone derivatives, triarylphosphine oxide derivatives, carbon condensed ring dyes, metals Or represents a metal-free phthalocyanine derivative or benzidine, and Y represents at least one substituent linked to the carrier transport and light-emitting moiety. A is, an ether bond, a thioether bond, an ester bond, an alkyl group of carbonic acid ester bond or amide 1 carbon atoms which may contain a binding and 30.)
14 13 organic electric field white light-emitting elements, wherein the charge transport part X is carbazole;
15. 13 or 14 organic electric field white light-emitting element, wherein the substituent Y is an alkyl group having 1 to 30 carbon atoms which may contain an ether bond,
16. 15 organic electric field white light emitting elements represented by the formula (3), wherein the carrier transport material is:
Figure JPOXMLDOC01-appb-C000006
(Wherein Y represents the same meaning as described above.)
17. 16 organic electric field white light emitting elements represented by formula (4), wherein the carrier transport material is:
Figure JPOXMLDOC01-appb-C000007
18. 16 organic electric field white light emitting elements in which the carrier transport material is represented by the formula (5)
Figure JPOXMLDOC01-appb-C000008
I will provide a.
 本発明の有機電界白色発光素子は、駆動時および非駆動時ともに発光層が液状を維持し得る。このため、発光層が劣化した場合に、発光層のみを交換する構成(例えば、カートリッジ、循環による抜き出し・再注入)とすることも可能である。
 本発明の白色発光を示す液状の発光層は、キャリア輸送材料および/または発光材料が液体であることが最大の特徴であり、ある一方の液状の機能性材料に対してもう一方の機能性材料が均一に溶解または分散した状態を常時維持している。そのため、複数の機能性部位を組み込むといった機能性高分子の緻密な分子設計や合成プロセス、また、固体薄膜内での機能性材料同士の分散化技術はそれほど必要ではない。
 特に、白色照明用途といった複数種の発光体を導入する際には、より複雑な分子設計や、デバイス構造を必要としない点において生産性に富むといえる。
 そして、本発明の素子は、液状の発光層を用いているため、大面積に均一かつ単層の発光層を作製できるともに、電極と発光層界面の剥離を回避し得る。
 さらに、既存の固体の有機薄膜からなる有機EL素子よりも、フレキシビリティーの高い表示素子の作製も可能になる。
In the organic electric field white light emitting device of the present invention, the light emitting layer can be maintained in a liquid state both when driven and when not driven. For this reason, when the light emitting layer deteriorates, only the light emitting layer may be replaced (for example, cartridge, extraction / reinjection by circulation).
The liquid light-emitting layer exhibiting white light emission according to the present invention is characterized in that the carrier transport material and / or the light-emitting material is a liquid, and the other functional material with respect to one liquid functional material. Are constantly dissolved or dispersed. Therefore, a precise molecular design and synthesis process of a functional polymer such as incorporating a plurality of functional sites, and a technique for dispersing functional materials in a solid thin film are not so necessary.
In particular, when a plurality of types of light emitters such as white illumination are introduced, it can be said that productivity is high in that a more complicated molecular design and a device structure are not required.
And since the element of this invention uses the liquid light emitting layer, while being able to produce the uniform and single-layer light emitting layer in a large area, peeling of an electrode and a light emitting layer interface can be avoided.
Furthermore, it is possible to manufacture a display element having higher flexibility than an organic EL element made of an existing solid organic thin film.
本発明の第1の実施形態に係る有機EL素子を示す概略断面図である。It is a schematic sectional drawing which shows the organic EL element which concerns on the 1st Embodiment of this invention. 合成例1で得られたEH4DPAの1H-NMRスペクトル図である。2 is a 1 H-NMR spectrum of EH 4 DPA obtained in Synthesis Example 1. FIG. 実施例1で作製した有機EL素子の電流-電圧-外部量子効率(EQE)を示す図である。FIG. 3 is a diagram showing current-voltage-external quantum efficiency (EQE) of the organic EL device produced in Example 1. 実施例1で作製した有機EL素子の電界発光スペクトル図である。2 is an electroluminescence spectrum diagram of an organic EL device produced in Example 1. FIG.
 以下、本発明についてさらに詳しく説明する。
 本発明に係る有機電界白色発光素子は、陽極と、陰極と、これら各極間に介在する、常温で液体、かつ、白色発光する発光層とを備えるものである。
 ここで、常温とは、JIS Z 8703で規定されている、20℃±15℃(5~35℃)の範囲を意味する。
Hereinafter, the present invention will be described in more detail.
The organic electric field white light emitting device according to the present invention includes an anode, a cathode, and a light emitting layer that emits white light and is liquid at room temperature and is interposed between these electrodes.
Here, the normal temperature means a range of 20 ° C. ± 15 ° C. (5 to 35 ° C.) defined by JIS Z 8703.
 液体の発光層としては、発光層全体として液体の性状を示すものであればよく、発光層の構成材料であるキャリア輸送材料および発光材料の少なくとも一方が液体であるとともに、発光層を構成する組成物全体として液状のものを用いることができる。
 なお、物質によっては、キャリア輸送能および発光能の両機能を明確に分離できず、例えば、カルバゾール、トリアリールアミン、ピレン等の炭素縮合環系色素等の中には、両機能を併せ持つものも存在する。
 また、白色発光に必要な材料としては、全波長の可視光を放出するキャリア輸送材料および/または発光材料が望ましく、白色に発光する発光材料に限定されるものではない。
 本発明では、発光層全体として液体の性状を示す限りにおいて、このような両機能を併せ持つ物質を用いることができ、また、キャリア輸送能および発光能の両機能を有し、白色発光する材料であれば、それ単独で用いることもできる。
The liquid light-emitting layer may be any liquid-emitting layer as long as it exhibits liquid properties, and at least one of the carrier transport material and the light-emitting material, which are constituent materials of the light-emitting layer, is a liquid, and the composition that constitutes the light-emitting layer A liquid thing can be used as the whole thing.
Depending on the substance, both functions of carrier transport ability and light emission ability cannot be clearly separated. For example, some carbon condensed ring dyes such as carbazole, triarylamine and pyrene have both functions. Exists.
Moreover, as a material required for white light emission, the carrier transport material and / or light emitting material which emit visible light of all the wavelengths are desirable, and it is not limited to the light emitting material which emits white light.
In the present invention, as long as the entire light emitting layer exhibits liquid properties, a substance having both of these functions can be used, and it is a material that has both functions of carrier transporting ability and light emitting ability and emits white light. If present, it can be used alone.
 以上のように、本発明の発光層は、液状かつ全体として白色発光するものであれば特に限定されるものではないが、本発明においては、常温で液体のキャリア輸送能および発光能を有する材料と、発光材料とを含み、全体として白色発光する発光層、または常温で液体のキャリア輸送材料と、発光材料とを含み、全体として白色発光する発光層のように、少なくともキャリア輸送能および発光能の両機能を有する材料かキャリア輸送材料が、常温で液体のものであることが好ましい。
 なお、この際、発光材料が、常温で液体のものであってももちろん構わない。
As described above, the light-emitting layer of the present invention is not particularly limited as long as it emits white light as a whole, but in the present invention, a material having a carrier transporting ability and a light-emitting ability of liquid at room temperature. And a light emitting layer that emits white light as a whole, or a carrier transport material that is liquid at room temperature and a light emitting material, and a light emitting layer that emits white light as a whole. It is preferable that the material having both functions or the carrier transporting material is liquid at room temperature.
In this case, the light emitting material may be liquid at room temperature.
 発光層全体として白色発光させるためには、(1)単独で白色発光する発光材料を用いる手法、(2)補色関係にある2種類の材料を用いる手法、(3)赤、緑、青の各色の発光を示す材料を用いる手法が知られているが、本発明においては、上記(2)または(3)の手法が好適である。
 なお、補色関係とは、例えば、CIE色度座標における純白色点を対象点とした2つの波長の色関係をいい、代表例としては、純青と黄色、薄青と赤などの組み合わせがある。
In order to emit white light as a whole of the light emitting layer, (1) a method using a light emitting material that emits white light alone, (2) a method using two types of materials having complementary colors, and (3) each color of red, green, and blue Although a method using a material exhibiting the above light emission is known, the method (2) or (3) is preferable in the present invention.
The complementary color relationship is, for example, a color relationship between two wavelengths with a pure white point in the CIE chromaticity coordinates as a target point, and representative examples include combinations of pure blue and yellow, light blue and red, and the like. .
 本発明において、補色関係にある2種類の材料を用いる場合、(A)発光材料として、補色関係にある2種類の発光材料を含むものを用い、全体として白色発光させる手法、(B)キャリア輸送能および発光能を有する材料および発光材料として補色関係にあるものを用い、全体として白色発光させる手法のどちらを採用してもよい。
 また、赤、緑、青の各発光を示す材料を用いる場合、(C)発光材料として、赤、緑、青の各色の発光を示す材料を含むものを用い、全体として白色発光させる手法、(D)キャリア輸送能および発光能を有する材料として、少なくとも赤、緑および青のいずれか1色に発光する材料を含むものを用いるとともに、発光材料として、少なくとも赤、緑および青のいずれか1色に発光する材料を含むものを用い、これら両材料全体として赤、緑および青の3色に発光する材料を採用し、全体として白色発光させる手法のどちらを採用してもよい。
In the present invention, when two types of materials having a complementary color relationship are used, (A) a light emitting material containing two types of light emitting materials having a complementary color relationship and emitting white light as a whole, (B) carrier transport Either a material having a function and a light emitting ability and a material having a complementary color relationship as a light emitting material, and a method of emitting white light as a whole may be adopted.
In addition, when a material that emits red, green, and blue light is used, (C) a method that emits white light as a whole using a material that includes red, green, and blue light emission as a light-emitting material. D) As a material having a carrier transporting ability and a light emitting ability, a material containing at least a material emitting light in any one color of red, green and blue is used, and as a light emitting material, at least any one color of red, green and blue is used. A material containing a material that emits light is used, and a material that emits light of three colors of red, green, and blue is adopted as the whole of these materials, and either of the methods of emitting white light as a whole may be adopted.
 赤色発光材料としては、従来公知のものから適宜選択して用いることができ、例えば、ピラン系化合物、テトラセン系化合物、ナフタセン系化合物、スチリル系化合物、ユーロピウム錯体、イリジウム錯体、オスミウム錯体、ルテニウム錯体等が挙げられ、これらは単独で用いても2種以上組み合わせて用いてもよい。 The red light emitting material can be appropriately selected from conventionally known materials, such as pyran compounds, tetracene compounds, naphthacene compounds, styryl compounds, europium complexes, iridium complexes, osmium complexes, ruthenium complexes, etc. These may be used alone or in combination of two or more.
 赤色発光材料の具体例としては、
4-(ジシアノメチレン)-2-メチル-6-ジュロリジル-9-エニル-4H-ピラン(4-(Dicyanomethylene)-2-methyl-6-julolidyl-9-enyl-4H-pyran)
4-(ジシアノメチレン)-2-メチル-6-(1,1,7,7-テトラメチルジュロリジル-9-エニル)-4H-ピラン(4-(Dicyanomethylene)-2-methyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran)
4-(ジシアノメチレン)-2-tert-ブチル-6-(1,1,7,7-テトラメチルジュロリジン-4-イル-ビニル)-4H-ピラン(4-(Dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran)、
トリス(ジベンゾイルメタン)フェナントロリンユーロピウム(III)(Tris(dibenzoylmethane)phenanthroline europium(III))、
(5,6,11,12)-テトラフェニルナフタセン((5,6,11,12)-Tetraphenylnaphthacene)、
ビス(2-ベンゾ[b]チオフェン-2-イル-ピリジン)(アセチルアセトナート)イリジウム(III)(Bis(2-benzo[b]thiophen-2-yl-pyridine)(acetylacetonate)iridium(III))
ビス[1-(9,9-ジメチル-9H-フルオレン-2-イル)イソキノリン](アセチルアセトナート)イリジウム(III)(Bis[1-(9,9-dimethyl-9H-fluoren-2-yl)-isoquinoline](acetylacetonate)iridium(III))
ビス[2-(9,9-ジメチル-9H-フルオレン-2-イル)キノリン](アセチルアセトナート)イリジウム(III)(Bis[2-(9,9-dimethyl-9H-fluoren-2-yl)quinoline](acetylacetonate)iridium(III))
トリス(2-フェニルキノリン)イリジウム(III)(Tris(2-phenylquinoline)iridium(III))
2,8-ジ-tert-ブチル-5,11-ビス(4-tert-ブチルフェニル)-6,12-ジフェニルテトラセン(2,8-Di-tert-butyl-5,11-bis(4-tert-butylphenyl)-6,12-diphenyltetracene)
ビス(2-フェニルベンゾチアゾレート)(アセチルアセトナート)イリジウム(III)(Bis(2-phenylbenzothiazolato)(acetylacetonate)iridium(III))
2,6-ビス(4-(dip-トリルアミノ)スチリル)ナフタレン-1,5-ジカルボニトリル(2,6-bis(4-(dip-tolylamino)styryl)naphthalene-1,5-dicarbonitrile)
オスミウム(II)ビス(3-トリフルオロメチル-5-(2-ピリジル)-ピラゾレート)ジメチルフェニルホスフィン(Osmium(II)bis(3-trifluoromethyl-5-(2-pyridyl)-pyrazolate)dimethylphenylphosphine)
オスミウム(II)ビス(3-トリフルオロメチル)-5-(4-tert-ブチルピリジル)-1,2,4-トリアゾレート)ジフェニルメチルホスフィン(Osmium(II)bis(3-(trifluoromethyl)-5-(4-tert-butylpyridyl)-1,2,4-triazolate)diphenylmethylphosphine)
オスミウム(II)ビス(3-トリフルオロメチル)-5-(2-ピリジル)-1,2,4-トリアゾール)ジメチルフェニルホスフィン(Osmium(II)bis(3-(trifluoromethyl)-5-(2-pyridyl)-1,2,4-triazole)dimethylphenylphosphine)
オスミウム(II)ビス(3-(トリフルオロメチル)-5-(4-tert-ブチルピリジル)-1,2,4-トリアゾレート)ジメチルフェニルホスフィン(Osmium(II)bis(3-(trifluoromethyl)-5-(4-tert-butylpyridyl)-1,2,4-triazolate)dimethylphenylphosphine)
ビス[2-(4-n-ヘキシルフェニル)キノリン](アセチルアセトナート)イリジウム(III)(Bis[2-(4-n-hexylphenyl)quinoline](acetylacetonate)iridium(III))
トリス[2-(4-n-ヘキシルフェニル)キノリン]イリジウム(III)(Tris[2-(4-n-hexylphenyl)quinoline]iridium(III))
トリス[2-フェニル-4-メチルキノリン]イリジウム(III)(Tris[2-phenyl-4-methylquinoline]iridium(III))
ビス(2-フェニルキノリン)(2-(3-メチルフェニル)ピリジネート)イリジウム(III)(Bis(2-phenylquinoline)(2-(3-methylphenyl)pyridinate)iridium(III))
ビス(2-(9,9-ジメチル-フルオレン-2-イル)-1-フェニル-1H-ベンゾ[d]イミダゾレート)(アセチルアセトナート)イリジウム(III)(Bis(2-(9,9-diethyl-fluoren-2-yl)-1-phenyl-1H-benzo[d]imidazolato)(actylacetonate)iridium(III))
ビス(2-フェニルピリジン)(3-(ピリジン-2-イル)-2H-クロメン-2-オネート)イリジウム(III)(Bis(2-phenylpyridine)(3-(pyridin-2-yl)-2H-chromen-2-onate)iridium(III))
ビス(2-フェニルキノリン)(2,2,6,6-テトラメチルヘプタン-3,5-ジオネート)イリジウム(III)(Bis(2-phenylquinoline)(2,2,6,6-tetramethylheptane-3,5-dionate)iridium(III))
ビス(フェニルイソキノリン)(2,2,6,6-テトラメチルヘプタン-3,5-ジオネート)イリジウム(III)(Bis(phenylisoquinoline)(2,2,6,6-tetramethylheptane-3,5-dionate)iridium(III))
イリジウム(III)ビス(4-フェニルチエノ[3,2-c]ピリジネート-N,C2’)アセチルアセトナート(Iridium(III) bis(4-phenylthieno[3,2-c]pyridinato-N,C2’)acetylacetonate)
(E)-2-(2-tert-ブチル-6-(2-(2,6,6-トリメチル-2,4,5,6-テトラヒドロ-1H-ピロロ[3,2,1-ij]キノリン-8-イル)ビニル)-4H-ピラン-4-イリデン)マロノニトリル((E)-2-(2-tert-butyl-6-(2-(2,6,6-trimethyl-2,4,5,6-tetrahydro-1H-pyrrolo[3,2,1-ij]quinolin-8-yl)vinyl)-4H-pyran-4-ylidene)malononitrile)
ビス(2-フェニルキノリン)(アセチルアセトナート)イリジウム(III)(Bis(2-phenylquinoline)(acetylacetonate)iridium(III))
トリス[4,4’-ジ-tert-ブチル-(2,2’)-ビピリジン]ルテニウム(III)コンプレックス(Tris[4,4'-di-tert-butyl-(2,2')-bipyridine]ruthenium(III) complex)
(E)-2-(2-(4-(ジメチルアミノ)スチリル)-6-メチル-4H-ピラン-4-イリデン)マロノニトリル((E)-2-(2-(4-(dimethylamino)styryl)-6-methyl-4H-pyran-4-ylidene)malononitrile)
などが挙げられる。
As a specific example of the red light emitting material,
4- (Dicyanomethylene) -2-methyl-6-julolidyl-9-enyl-4H-pyran (4- (Dicyanomethylene) -2-methyl-6-julolidyl-9-enyl-4H-pyran)
4- (Dicyanomethylene) -2-methyl-6- (1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (4- (Dicyanomethylene) -2-methyl-6- ( 1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran)
4- (Dicyanomethylene) -2-tert-butyl-6- (1,1,7,7-tetramethyljulolidin-4-yl-vinyl) -4H-pyran (4- (Dicyanomethylene) -2-tert- butyl-6- (1,1,7,7-tetramethyljulolidin-4-yl-vinyl) -4H-pyran),
Tris (dibenzoylmethane) phenanthroline europium (III),
(5,6,11,12) -tetraphenylnaphthacene ((5,6,11,12) -Tetraphenylnaphthacene),
Bis (2-benzo [b] thiophen-2-yl-pyridine) (acetylacetonato) iridium (III) (Bis (2-benzo [b] thiophen-2-yl-pyridine) (acetylacetonate) iridium (III))
Bis [1- (9,9-dimethyl-9H-fluoren-2-yl) isoquinoline] (acetylacetonato) iridium (III) (Bis [1- (9,9-dimethyl-9H-fluoren-2-yl) -isoquinoline] (acetylacetonate) iridium (III))
Bis [2- (9,9-dimethyl-9H-fluoren-2-yl) quinoline] (acetylacetonato) iridium (III) (Bis [2- (9,9-dimethyl-9H-fluoren-2-yl) quinoline] (acetylacetonate) iridium (III))
Tris (2-phenylquinoline) iridium (III)
2,8-Di-tert-butyl-5,11-bis (4-tert-butylphenyl) -6,12-diphenyltetracene (2,8-Di-tert-butyl-5,11-bis (4-tert -butylphenyl) -6,12-diphenyltetracene)
Bis (2-phenylbenzothiazolato) (acetylacetonate) iridium (III))
2,6-bis (4- (dip-tolylamino) styryl) naphthalene-1,5-dicarbonitrile (2,6-bis (4- (dip-tolylamino) styryl) naphthalene-1,5-dicarbonitrile)
Osmium (II) bis (3-trifluoromethyl-5- (2-pyridyl) -pyrazolate) dimethylphenylphosphine (3-trifluoromethyl-5- (2-pyridyl) -pyrazolate) dimethylphenylphosphine
Osmium (II) bis (3-trifluoromethyl) -5- (4-tert-butylpyridyl) -1,2,4-triazolate) diphenylmethylphosphine (Osmium (II) bis (3- (trifluoromethyl) -5- (4-tert-butylpyridyl) -1,2,4-triazolate) diphenylmethylphosphine)
Osmium (II) bis (3-trifluoromethyl) -5- (2-pyridyl) -1,2,4-triazole) dimethylphenylphosphine (Osmium (II) bis (3- (trifluoromethyl) -5- (2- pyridyl) -1,2,4-triazole) dimethylphenylphosphine)
Osmium (II) bis (3- (trifluoromethyl) -5- (4-tert-butylpyridyl) -1,2,4-triazolate) dimethylphenylphosphine (Osmium (II) bis (3- (trifluoromethyl) -5 -(4-tert-butylpyridyl) -1,2,4-triazolate) dimethylphenylphosphine)
Bis [2- (4-n-hexylphenyl) quinoline] (acetylacetonato) iridium (III) (Bis [2- (4-n-hexylphenyl) quinoline] (acetylacetonate) iridium (III))
Tris [2- (4-n-hexylphenyl) quinoline] iridium (III) (Tris [2- (4-n-hexylphenyl) quinoline] iridium (III))
Tris [2-phenyl-4-methylquinoline] iridium (III)
Bis (2-phenylquinoline) (2- (3-methylphenyl) pyridinate) iridium (III)
Bis (2- (9,9-dimethyl-fluoren-2-yl) -1-phenyl-1H-benzo [d] imidazolate) (acetylacetonato) iridium (III) (Bis (2- (9,9- diethyl-fluoren-2-yl) -1-phenyl-1H-benzo [d] imidazolato) (actylacetonate) iridium (III))
Bis (2-phenylpyridine) (3- (pyridin-2-yl) -2H-chromen-2-onate) iridium (III) (Bis (2-phenylpyridine) (3- (pyridin-2-yl) -2H- chromen-2-onate) iridium (III))
Bis (2-phenylquinoline) (2,2,6,6-tetramethylheptane-3,5-dionate) iridium (III) (Bis (2-phenylquinoline) (2,2,6,6-tetramethylheptane-3, 5-dionate) iridium (III))
Bis (phenylisoquinoline) (2,2,6,6-tetramethylheptane-3,5-dionate) Iridium (III) (Bis (phenylisoquinoline) (2,2,6,6-tetramethylheptane-3,5-dionate) iridium (III))
Iridium (III) bis (4-phenylthieno [3,2-c] pyridinate-N, C2 ') acetylacetonate (Iridium (III) bis (4-phenylthieno [3,2-c] pyridinato-N, C2' ) acetylacetonate)
(E) -2- (2-tert-butyl-6- (2- (2,6,6-trimethyl-2,4,5,6-tetrahydro-1H-pyrrolo [3,2,1-ij] quinoline) -8-yl) vinyl) -4H-pyran-4-ylidene) malononitrile ((E) -2- (2-tert-butyl-6- (2- (2,6,6-trimethyl-2,4,5) , 6-tetrahydro-1H-pyrrolo [3,2,1-ij] quinolin-8-yl) vinyl) -4H-pyran-4-ylidene) malononitrile)
Bis (2-phenylquinoline) (acetylacetonate) iridium (III) (Bis (2-phenylquinoline) (acetylacetonate) iridium (III))
Tris [4,4′-di-tert-butyl- (2,2 ′)-bipyridine] ruthenium (III) complex (Tris [4,4′-di-tert-butyl- (2,2 ′)-bipyridine] ruthenium (III) complex)
(E) -2- (2- (4- (dimethylamino) styryl) -6-methyl-4H-pyran-4-ylidene) malononitrile ((E) -2- (2- (4- (dimethylamino) styryl) -6-methyl-4H-pyran-4-ylidene) malononitrile)
Etc.
 緑色発光材料としては、従来公知のものから適宜選択して用いることができ、例えば、クマリン系化合物、キナクリドン系化合物、アントラセン系化合物、イリジウム錯体、亜鉛錯体等が挙げられ、これらは単独で用いても2種以上組み合わせて用いてもよい。 The green light emitting material can be appropriately selected from conventionally known materials, and examples thereof include a coumarin compound, a quinacridone compound, an anthracene compound, an iridium complex, a zinc complex, and the like. May also be used in combination of two or more.
 緑色発光材料の具体例としては、
3-(2-ベンズイミダゾリル)-7-(ジエチルアミノ)クマリン(クマリン7)(3-(2-Benzimidazolyl)-7-(diethylamino)coumarin)
3-(2-ベンゾチアゾリル)-7-(ジエチルアミノ)クマリン(3-(2-Benzothiazolyl)-7-(diethylamino)coumarin)
2,3,6,7-テトラヒドロ-1,1,7,7-テトラメチル-1H,5H,11H-10-(2-ベンゾチアゾリル)キノリジノ[9,9a,1gh]クマリン(2,3,6,7-Tetrahydro-1,1,7,7,-tetramethyl-1H,5H,11H-10-(2-benzothiazolyl)quinolizino[9,9a,1gh]coumarin)
N,N’-ジメチルキナクリドン(N,N'-Dimethyl-quinacridone)
トリス(2-フェニルピリジン)イリジウム(III)(Tris(2-phenylpyridine)iridium(III))
ビス(2-フェニルピリジン)(アセチルアセトナート)イリジウム(III)(Bis(2-phenylpyridine)(acetylacetonate)iridium(III))
トリス[2-(p-トリル)ピリジン]イリジウム(III)(Tris[2-(p-tolyl)pyridine]iridium(III))
9,10-ビス[N,N-ジ-(p-トリル)アミノ]アントラセン(9,10-Bis[N,N-di-(p-tolyl)amino]anthracene)
9,10-ビス[フェニル(m-トリル)アミノ]アントラセン(9,10-Bis[phenyl(m-tolyl)amino]anthracene)
ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾレート]亜鉛(II)(Bis[2-(-2hydroxyphenyl)benzothiazolato]zinc(II))
10,N10,N10',N10'-テトラトリル-9,9’-ビアントラセン-10,10’-ジアミン(N10,N10,N10',N10'-tetratolyl-9,9'-bianthracene-10,10'-diamine)
10,N10,N10',N10'-テトラフェニル-9,9’-ビアントラセン-10,10’-ジアミン(N10,N10,N10',N10'-tetraphenyl-9,9'-bianthracene-10,10'-diamine)
などが挙げられる。
As a specific example of the green light emitting material,
3- (2-Benzimidazolyl) -7- (diethylamino) coumarin (coumarin 7) (3- (2-Benzimidazolyl) -7- (diethylamino) coumarin)
3- (2-Benzothiazolyl) -7- (diethylamino) coumarin (3- (2-Benzothiazolyl) -7- (diethylamino) coumarin)
2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H, 11H-10- (2-benzothiazolyl) quinolidino [9,9a, 1gh] coumarin (2,3,6, 7-Tetrahydro-1,1,7,7, -tetramethyl-1H, 5H, 11H-10- (2-benzothiazolyl) quinolizino [9,9a, 1gh] coumarin)
N, N'-Dimethyl-quinacridone
Tris (2-phenylpyridine) iridium (III)
Bis (2-phenylpyridine) (acetylacetonate) iridium (III) (Bis (2-phenylpyridine) (acetylacetonate) iridium (III))
Tris [2- (p-tolyl) pyridine] iridium (III) (Tris [2- (p-tolyl) pyridine] iridium (III))
9,10-bis [N, N-di- (p-tolyl) amino] anthracene (9,10-Bis [N, N-di- (p-tolyl) amino] anthracene)
9,10-bis [phenyl (m-tolyl) amino] anthracene (9,10-Bis [phenyl (m-tolyl) amino] anthracene)
Bis [2- (2-hydroxyphenyl) benzothiazolate] zinc (II) (Bis [2-(-2hydroxyphenyl) benzothiazolato] zinc (II))
N 10 , N 10 , N 10 ′ , N 10 ′ -tetratolyl-9,9′-bianthracene-10,10′-diamine (N 10 , N 10 , N 10 ′ , N 10 ′ -tetratolyl-9,9 '-bianthracene-10,10'-diamine)
N 10, N 10, N 10 ', N 10' - tetraphenyl-9,9'-bi anthracene -10,10'- diamine (N 10, N 10, N 10 ', N 10' -tetraphenyl-9, 9'-bianthracene-10,10'-diamine)
Etc.
 青色発光材料としては、従来公知のものから適宜選択して用いることができ、例えば、ジフェニルアントラセン系化合物、ペリレン系化合物、カルバゾール系化合物、スチリル系化合物、フルオレン系化合物、イリジウム錯体等が挙げられ、これらは単独で用いても2種以上組み合わせて用いてもよい。 The blue light-emitting material can be appropriately selected from conventionally known materials, and examples thereof include diphenylanthracene compounds, perylene compounds, carbazole compounds, styryl compounds, fluorene compounds, iridium complexes, and the like. These may be used alone or in combination of two or more.
 青色発光材料の具体例としては、
4,4’-ビス(9-エチル-3-カルバゾビニレン)-1,1’-ビフェニル(4,4'-Bis(9-ethyl-3-carbazovinylene)-1,1'-biphenyl)
ペリレン(Perylene)
2,5,8,11-テトラ-tert-ブチルペリレン(2,5,8,11-Tetra-tert-butylperylene)
1,4-ビス[2-(3-N-エチルカルバゾリル)ビニル]ベンゼン(1,4-Bis[2-(3-N-ethylcarbazoryl)vinyl]benzene)
4,4’-ビス[4-(ジ-p-トリルアミノ)スチリル]ビフェニル(4,4' -Bis[4-(di-p-tolylamino)styryl]biphenyl)
4-(ジ-p-トリルアミノ)-4’-[(ジ-p-トリルアミノ)スチリル]スチルベン(4-(Di-p-tolylamino)-4'-[(di-p-tolylamino)styryl]stilbene)
ビス(3,5-ジフルオロ-2-(2-ピリジル)フェニル-(2-カルボキシピリジル)イリジウム(III)(Bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium(III))
4,4’-ビス[4-(ジフェニルアミノ)スチリル]ビフェニル(4,4'-Bis[4-(diphenylamino)styryl]biphenyl)
ビス(2,4-ジフルオロフェニルピリジネート)テトラキス(1-ピラゾリル)ボレートイリジウム(III)(Bis(2,4-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate iridium(III))
N,N’-ビス(ナフタレン-2-イル)-N,N’-ビス(フェニル)-トリス-(9,9-ジメチルフルオレニレン)(N, N'-Bis(naphthalen-2-yl)-N,N'-bis(phenyl)-tris-(9,9-dimethylfluorenylene))
2,7-ビス{2-[フェニル(m-トリル)アミノ]-9,9-ジメチル-フルオレン-7-イル}-9,9-ジメチル-フルオレン(2,7-Bis{2-[phenyl(m-tolyl)amino]-9,9-dimethyl-fluorene-7-yl}-9,9-dimethyl-fluorene)
N-(4-((E)-2-(6-((E)-4-(ジフェニルアミノ)スチリル)ナフタレン-2-イル)ビニル)フェニル)-N-フェニルベンゼンアミン(N-(4-((E)-2-(6-((E)-4-(diphenylamino)styryl)naphthalen-2-yl)vinyl)phenyl)-N-phenylbenzenamine)
fac-イリジウム(III)トリス(1-フェニル-3-メチルベンズイミダゾリン-2-イリデン-C,C2’)(fac-Iridium(III) Tris(1-phenyl-3-methylbenzimidazolin-2-ylidene-C,C2'))
mer-イリジウム(III)トリス(1-フェニル-3-メチルベンズイミダゾリン-2-イリデン-C,C2’)(mer-Iridium(III) Tris(1-phenyl-3-methylbenzimidazolin-2-ylidene-C,C2'))
1,4-ジ-[4-(N,N-ジ-フェニル)アミノ]スチリル-ベンゼン(1,4-di-[4-(N,N-di-phenyl)amino]styryl-benzene)
1,4-ビス(4-(9H-カルバゾール-9-イル)スチリル)ベンゼン(1,4-bis(4-(9H-carbazol-9-yl)styryl)benzene)
(E)-6-(4-(ジフェニルアミノ)スチリル)-N,N-ジフェニルナフタレン-2-アミン((E)-6-(4-(diphenylamino)styryl)-N,N-diphenylnaphthalen-2-amine)
ビス(2,4-ジフルオロフェニルピリジネート)(5-(ピリジン-2-イル)-1H-テトラゾレート)イリジウム(III)(Bis(2,4-difluorophenylpyridinato)(5-(pyridin-2-yl)-1H-tetrazolate) iridium(III))
などが挙げられる。
As a specific example of the blue light emitting material,
4,4'-bis (9-ethyl-3-carbazovinylene) -1,1'-biphenyl (4,4'-Bis (9-ethyl-3-carbazovinylene) -1,1'-biphenyl)
Perylene
2,5,8,11-Tetra-tert-butylperylene (2,5,8,11-Tetra-tert-butylperylene)
1,4-Bis [2- (3-N-ethylcarbazoryl) vinyl] benzene
4,4'-bis [4- (di-p-tolylamino) styryl] biphenyl (4,4'-Bis [4- (di-p-tolylamino) styryl] biphenyl)
4- (Di-p-tolylamino) -4 '-[(di-p-tolylamino) styryl] stilbene (4- (Di-p-tolylamino) -4'-[(di-p-tolylamino) styryl] stilbene)
Bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III) (Bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III))
4,4'-bis [4- (diphenylamino) styryl] biphenyl (4,4'-Bis [4- (diphenylamino) styryl] biphenyl)
Bis (2,4-difluorophenylpyridinate) tetrakis (1-pyrazolyl) borateiridium (III) (Bis (2,4-difluorophenylpyridinato) tetrakis (1-pyrazolyl) borate iridium (III))
N, N'-bis (naphthalen-2-yl) -N, N'-bis (phenyl) -tris- (9,9-dimethylfluorenylene) (N, N'-Bis (naphthalen-2-yl) -N, N'-bis (phenyl) -tris- (9,9-dimethylfluorenylene))
2,7-bis {2- [phenyl (m-tolyl) amino] -9,9-dimethyl-fluoren-7-yl} -9,9-dimethyl-fluorene (2,7-Bis {2- [phenyl ( m-tolyl) amino] -9,9-dimethyl-fluorene-7-yl} -9,9-dimethyl-fluorene)
N- (4-((E) -2- (6-((E) -4- (diphenylamino) styryl) naphthalen-2-yl) vinyl) phenyl) -N-phenylbenzenamine (N- (4- ((E) -2- (6-((E) -4- (diphenylamino) styryl) naphthalen-2-yl) vinyl) phenyl) -N-phenylbenzenamine)
fac-iridium (III) Tris (1-phenyl-3-methylbenzimidazolin-2-ylidene-C, C2 ′) (fac-Iridium (III) Tris (1-phenyl-3-methylbenzimidazolin-2-ylidene-C, C2 '))
mer-Iridium (III) Tris (1-phenyl-3-methylbenzimidazolin-2-ylidene-C, mer-Iridium (III) Tris (1-phenyl-3-methylbenzimidazolin-2-ylidene-C, C2 '))
1,4-di- [4- (N, N-di-phenyl) amino] styryl-benzene (1,4-di- [4- (N, N-di-phenyl) amino] styryl-benzene)
1,4-bis (4- (9H-carbazol-9-yl) styryl) benzene
(E) -6- (4- (diphenylamino) styryl) -N, N-diphenylnaphthalen-2-amine ((E) -6- (4- (diphenylamino) styryl) -N, N-diphenylnaphthalen-2- amine)
Bis (2,4-difluorophenylpyridinate) (5- (pyridin-2-yl) -1H-tetrazolate) iridium (III) (Bis (2,4-difluorophenylpyridinato) (5- (pyridin-2-yl) -1H-tetrazolate) iridium (III))
Etc.
 また、単独で白色発光する発光材料としても、従来公知のものから適宜選択して用いることができ、例えば、文献(Adv.Mater.,16,1358(2004))に挙げられる、下記の化学構造式を有する発光材料等が挙げられる。
 なお、白色発光材料は、単独で用いても2種以上組み合わせて用いてもよい。
In addition, a light emitting material that emits white light alone can be appropriately selected from conventionally known materials. For example, the following chemical structure described in the literature (Adv. Mater., 16, 1358 (2004)) can be used. And a light emitting material having the formula.
In addition, a white luminescent material may be used independently or may be used in combination of 2 or more types.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 また、発光材料は低分子材料に限定されるものではなく、高分子の発光材料を用いてもよく、例えば、ポリビニルカルバゾール誘導体、ポリフルオレン誘導体、ポリフェニレンビニレン誘導体、ポリチオフェン誘導体等を用いることもできる。 Further, the light emitting material is not limited to a low molecular weight material, and a high molecular light emitting material may be used. For example, a polyvinyl carbazole derivative, a polyfluorene derivative, a polyphenylene vinylene derivative, a polythiophene derivative, or the like may be used.
 本発明において、液体のキャリア輸送能および発光能を有する材料またはキャリア輸送材料としては、式(1)で示される化合物を好適に用いることができる。
Figure JPOXMLDOC01-appb-C000010
In the present invention, the compound represented by the formula (1) can be suitably used as the liquid carrier transporting material and the light emitting material or carrier transporting material.
Figure JPOXMLDOC01-appb-C000010
 ここで、Xは、電荷輸送部であって、カルバゾール誘導体、チアントレン誘導体、フェノチアジン誘導体、アゼピン誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサジアゾール誘導体、アリールシクロアルカン誘導体、トリアリールアミン誘導体、フェニレンジアミン誘導体、スチルベン誘導体、オキサゾール誘導体、トリフェニルメタン誘導体、ピラゾリン誘導体、フルオレノン誘導体、ポリアニリン誘導体、シラン誘導体、ピロール誘導体、フルオレン誘導体、ポルフィリン誘導体、キナクリドン誘導体、トリフェニルホスフィンオキシド誘導体、アントラセン誘導体,テトラセン誘導体,ピレン誘導体,ルブレン誘導体,デカシクレン誘導体,ペリレン誘導体等の炭素縮合環系色素、金属または無金属のフタロシアニン、金属または無金属のナフタロシアニン、ベンジジンを表す。
 これらの中でも、優れた正孔輸送性能を有するという点から、カルバゾール誘導体、ピレン誘導体が好ましい。
Here, X is a charge transport part, and is a carbazole derivative, a thianthrene derivative, a phenothiazine derivative, an azepine derivative, a triazole derivative, an imidazole derivative, an oxadiazole derivative, an arylcycloalkane derivative, a triarylamine derivative, a phenylenediamine derivative, Stilbene derivatives, oxazole derivatives, triphenylmethane derivatives, pyrazoline derivatives, fluorenone derivatives, polyaniline derivatives, silane derivatives, pyrrole derivatives, fluorene derivatives, porphyrin derivatives, quinacridone derivatives, triphenylphosphine oxide derivatives, anthracene derivatives, tetracene derivatives, pyrene derivatives, Carbon condensed ring dyes such as rubrene derivatives, decacyclene derivatives, perylene derivatives, metal or metal-free phthalocyanines, gold Or representing metal-free naphthalocyanine, benzidine.
Among these, carbazole derivatives and pyrene derivatives are preferable from the viewpoint of excellent hole transport performance.
 一方、Yは、上記電荷輸送部Xに連結する少なくとも1つの置換基であって、エーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合またはアミド結合を含んでいてもよい炭素数1~30のアルキル基を表す。なお、これらエーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合、アミド結合は、XとYとの連結部に存在していてもよい。
 この場合、アルキル基は、直鎖、分岐、環状のいずれでもよいが、直鎖状のアルキル基を用いた場合、アルキル鎖同士のパッキング等の分子間相互作用により、結晶性の向上や粘度の増加が考えられるため、分岐状のアルキル基がより好ましい。
 このような炭素数1~30のアルキル基の具体例としては、メチル、エチル、n-プロピル、i-プロピル、c-プロピル、n-ブチル、i-ブチル、s-ブチル、t-ブチル、c-ブチル、n-ペンチル、1-メチル-n-ブチル、2-メチル-n-ブチル、3-メチル-n-ブチル、1,1-ジメチル-n-プロピル、c-ペンチル、2-メチル-c-ブチル、n-ヘキシル、1-メチル-n-ペンチル、2-メチル-n-ペンチル、1,1-ジメチル-n-ブチル、1-エチル-n-ブチル、1,1,2-トリメチル-n-プロピル、c-ヘキシル、1-メチル-c-ペンチル、1-エチル-c-ブチル、1,2-ジメチル-c-ブチル、n-ヘプチル、n-オクチル、2-エチルヘキシル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-ノナデシル、n-エイコシル基等が挙げられる。
On the other hand, Y is at least one substituent linked to the charge transport part X, and may contain an ether bond, a thioether bond, an ester bond, a carbonate bond or an amide bond. Represents a group. These ether bonds, thioether bonds, ester bonds, carbonate ester bonds, and amide bonds may be present at the connecting portion between X and Y.
In this case, the alkyl group may be linear, branched, or cyclic. However, when a linear alkyl group is used, the crystallinity is improved and the viscosity is increased by intermolecular interaction such as packing of alkyl chains. Since an increase is considered, a branched alkyl group is more preferable.
Specific examples of such an alkyl group having 1 to 30 carbon atoms include methyl, ethyl, n-propyl, i-propyl, c-propyl, n-butyl, i-butyl, s-butyl, t-butyl, c -Butyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n-butyl, 1,1-dimethyl-n-propyl, c-pentyl, 2-methyl-c -Butyl, n-hexyl, 1-methyl-n-pentyl, 2-methyl-n-pentyl, 1,1-dimethyl-n-butyl, 1-ethyl-n-butyl, 1,1,2-trimethyl-n -Propyl, c-hexyl, 1-methyl-c-pentyl, 1-ethyl-c-butyl, 1,2-dimethyl-c-butyl, n-heptyl, n-octyl, 2-ethylhexyl, n-nonyl, n -Decyl, n-undecyl n- dodecyl, n- tridecyl, n- tetradecyl, n- pentadecyl, n- hexadecyl, n- heptadecyl, n- octadecyl, n- nonadecyl, n- eicosyl group.
 エーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合またはアミド結合を含んでいる炭素数1~30のアルキル基とは、上述したようなアルキル基の任意の位置にこれらの結合を有するものが挙げられ、具体的に下記のような置換基が挙げられる。 The alkyl group having 1 to 30 carbon atoms containing an ether bond, a thioether bond, an ester bond, a carbonate ester bond or an amide bond includes those having these bonds at any position of the alkyl group as described above. Specific examples include the following substituents.
 エーテル結合を含んでいる上記アルキル基の具体例としては、CH2OCH3、CH2OCH2CH3、CH2O(CH22CH3、CH2OCH(CH32、CH2O(CH23CH3、CH2OCH2CH(CH32、CH2OC(CH33、CH2O(CH24CH3、CH2OCH(CH3)(CH22CH3、CH2O(CH22CH(CH3)CH3、CH2OCH(CH3)(CH23CH3、CH2O(CH25CH3、CH2OCH2CH(CH3)(CH22CH3、CH2O(CH22CH(CH3)CH2CH3、CH2O(CH23CH(CH3)CH3、CH2OC(CH32(CH22CH3、CH2OCH(CH2CH3)(CH22CH3、CH2OC(CH32CH(CH3)CH3、CH2O(CH26CH3、CH2O(CH27CH3、CH2OCH2CH(CH2CH3)(CH23CH3、CH2O(CH28CH3、CH2O(CH29CH3、CH2O(CH210CH3、CH2O(CH211CH3、CH2O(CH212CH3、CH2O(CH213CH3、CH2O(CH214CH3、CH2O(CH215CH3、CH2O(CH216CH3、CH2O(CH217CH3、CH2O(CH218CH3、CH2O(CH219CH3、CH2CH2OCH3、CH2CH2OCH2CH3、CH2CH2O(CH22CH3、CH2CH2OCH(CH32、CH2CH2O(CH23CH3、CH2CH2OCH2CH(CH32、CH2CH2OC(CH33、CH2CH2O(CH24CH3、CH2CH2OCH(CH3)(CH22CH3、CH2CH2O(CH22CH(CH3)CH3、CH2CH2OCH(CH3)(CH23CH3、CH2CH2O(CH25CH3、CH2CH2OCH2CH(CH3)(CH22CH3、CH2CH2O(CH22CH(CH3)CH2CH3、CH2CH2O(CH23CH(CH3)CH3、CH2CH2OC(CH32(CH22CH3、CH2CH2OCH(CH2CH3)(CH22CH3、CH2CH2OC(CH32CH(CH3)CH3、CH2CH2O(CH26CH3、CH2CH2O(CH27CH3、CH2CH2OCH2CH(CH2CH3)(CH23CH3、CH2CH2O(CH28CH3、CH2CH2O(CH29CH3、CH2CH2O(CH210CH3、CH2CH2O(CH211CH3、CH2CH2O(CH212CH3、CH2CH2O(CH213CH3、CH2CH2O(CH214CH3、CH2CH2O(CH215CH3
CH2CH2O(CH216CH3、CH2CH2O(CH217CH3、CH2CH2O(CH218CH3、CH2CH2O(CH219CH3、CH2CH2CH2OCH3、CH2CH2CH2OCH2CH3、CH2CH2CH2O(CH22CH3、CH2CH2CH2OCH(CH32、CH2CH2CH2O(CH23CH3、CH2CH2CH2OCH2CH(CH32、CH2CH2CH2OC(CH33、CH2CH2CH2O(CH24CH3、CH2CH2CH2OCH(CH3)(CH22CH3、CH2CH2CH2O(CH22CH(CH3)CH3、CH2CH2CH2OCH(CH3)(CH23CH3
CH2CH2CH2O(CH25CH3、CH2CH2CH2OCH2CH(CH3)(CH22CH3、CH2CH2CH2O(CH22CH(CH3)CH2CH3、CH2CH2CH2O(CH23CH(CH3)CH3、CH2CH2CH2OC(CH32(CH22CH3、CH2CH2CH2OCH(CH2CH3)(CH22CH3、CH2CH2CH2OC(CH32CH(CH3)CH3、CH2CH2CH2O(CH26CH3、CH2CH2CH2O(CH27CH3、CH2CH2CH2OCH2CH(CH2CH3)(CH23CH3、CH2CH2CH2O(CH28CH3、CH2CH2CH2O(CH29CH3、CH2CH2CH2O(CH210CH3、CH2CH2CH2O(CH211CH3
、CH2CH2CH2O(CH212CH3、CH2CH2CH2O(CH213CH3、CH2CH2CH2O(CH214CH3、CH2CH2CH2O(CH215CH3、CH2CH2CH2O(CH216CH3、CH2CH2CH2O(CH217CH3、CH2CH2CH2O(CH218CH3、CH2CH2CH2O(CH219CH3、CH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2CH2OCH2CH2CH2CH2OCH3、CH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH3、CH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH3、CH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH3、CH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH3、CH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH3、CH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3基等や、下記式で示される基などが挙げられる。
Specific examples of the alkyl group containing an ether bond include CH 2 OCH 3 , CH 2 OCH 2 CH 3 , CH 2 O (CH 2 ) 2 CH 3 , CH 2 OCH (CH 3 ) 2 , and CH 2 O. (CH 2 ) 3 CH 3 , CH 2 OCH 2 CH (CH 3 ) 2 , CH 2 OC (CH 3 ) 3 , CH 2 O (CH 2 ) 4 CH 3 , CH 2 OCH (CH 3 ) (CH 2 ) 2 CH 3 , CH 2 O (CH 2 ) 2 CH (CH 3 ) CH 3 , CH 2 OCH (CH 3 ) (CH 2 ) 3 CH 3 , CH 2 O (CH 2 ) 5 CH 3 , CH 2 OCH 2 CH (CH 3) (CH 2 ) 2 CH 3, CH 2 O (CH 2) 2 CH (CH 3) CH 2 CH 3, CH 2 O (CH 2) 3 CH (CH 3) CH 3, CH 2 OC (CH 3) 2 (CH 2 ) 2 CH 3, CH 2 OCH (CH 2 CH 3) (CH 2) 2 CH 3, CH 2 OC (CH 3) 2 C (CH 3) CH 3, CH 2 O (CH 2) 6 CH 3, CH 2 O (CH 2) 7 CH 3, CH 2 OCH 2 CH (CH 2 CH 3) (CH 2) 3 CH 3, CH 2 O (CH 2 ) 8 CH 3 , CH 2 O (CH 2 ) 9 CH 3 , CH 2 O (CH 2 ) 10 CH 3 , CH 2 O (CH 2 ) 11 CH 3 , CH 2 O (CH 2 ) 12 CH 3 , CH 2 O (CH 2 ) 13 CH 3 , CH 2 O (CH 2 ) 14 CH 3 , CH 2 O (CH 2 ) 15 CH 3 , CH 2 O (CH 2 ) 16 CH 3 , CH 2 O (CH 2 ) 17 CH 3 , CH 2 O (CH 2 ) 18 CH 3 , CH 2 O (CH 2 ) 19 CH 3 , CH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 3 , CH 2 CH 2 O (CH 2) 2 CH 3 , CH 2 CH 2 OCH (CH 3) 2, CH 2 CH 2 O (CH 2) 3 CH 3, CH 2 CH 2 OCH 2 CH (CH 3) 2, CH 2 H 2 OC (CH 3) 3 , CH 2 CH 2 O (CH 2) 4 CH 3, CH 2 CH 2 OCH (CH 3) (CH 2) 2 CH 3, CH 2 CH 2 O (CH 2) 2 CH (CH 3) CH 3, CH 2 CH 2 OCH (CH 3) (CH 2) 3 CH 3, CH 2 CH 2 O (CH 2) 5 CH 3, CH 2 CH 2 OCH 2 CH (CH 3) (CH 2) 2 CH 3, CH 2 CH 2 O (CH 2) 2 CH (CH 3) CH 2 CH 3, CH 2 CH 2 O (CH 2) 3 CH (CH 3) CH 3, CH 2 CH 2 OC ( CH 3) 2 (CH 2) 2 CH 3, CH 2 CH 2 OCH (CH 2 CH 3) (CH 2) 2 CH 3, CH 2 CH 2 OC (CH 3) 2 CH (CH 3) CH 3, CH 2 CH 2 O (CH 2) 6 CH 3, CH 2 CH 2 O (CH 2) 7 CH 3, CH 2 CH 2 OCH 2 CH (CH 2 CH 3) (CH 2) 3 C 3, CH 2 CH 2 O ( CH 2) 8 CH 3, CH 2 CH 2 O (CH 2) 9 CH 3, CH 2 CH 2 O (CH 2) 10 CH 3, CH 2 CH 2 O (CH 2) 11 CH 3 , CH 2 CH 2 O (CH 2 ) 12 CH 3 , CH 2 CH 2 O (CH 2 ) 13 CH 3 , CH 2 CH 2 O (CH 2 ) 14 CH 3 , CH 2 CH 2 O (CH 2) 15 CH 3,
CH 2 CH 2 O (CH 2 ) 16 CH 3, CH 2 CH 2 O (CH 2) 17 CH 3, CH 2 CH 2 O (CH 2) 18 CH 3, CH 2 CH 2 O (CH 2) 19 CH 3 , CH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 3 , CH 2 CH 2 CH 2 O (CH 2 ) 2 CH 3 , CH 2 CH 2 CH 2 OCH (CH 3 ) 2 , CH 2 CH 2 CH 2 O ( CH 2) 3 CH 3, CH 2 CH 2 CH 2 OCH 2 CH (CH 3) 2, CH 2 CH 2 CH 2 OC (CH 3) 3, CH 2 CH 2 CH 2 O (CH 2 ) 4 CH 3 , CH 2 CH 2 CH 2 OCH (CH 3 ) (CH 2 ) 2 CH 3 , CH 2 CH 2 CH 2 O (CH 2 ) 2 CH (CH 3 ) CH 3 , CH 2 CH 2 CH 2 OCH (CH 3 ) (CH 2 ) 3 CH 3 ,
CH 2 CH 2 CH 2 O ( CH 2) 5 CH 3, CH 2 CH 2 CH 2 OCH 2 CH (CH 3) (CH 2) 2 CH 3, CH 2 CH 2 CH 2 O (CH 2) 2 CH ( CH 3) CH 2 CH 3, CH 2 CH 2 CH 2 O (CH 2) 3 CH (CH 3) CH 3, CH 2 CH 2 CH 2 OC (CH 3) 2 (CH 2) 2 CH 3, CH 2 CH 2 CH 2 OCH (CH 2 CH 3) (CH 2) 2 CH 3, CH 2 CH 2 CH 2 OC (CH 3) 2 CH (CH 3) CH 3, CH 2 CH 2 CH 2 O (CH 2) 6 CH 3 , CH 2 CH 2 CH 2 O (CH 2 ) 7 CH 3 , CH 2 CH 2 CH 2 OCH 2 CH (CH 2 CH 3 ) (CH 2 ) 3 CH 3 , CH 2 CH 2 CH 2 O ( CH 2 ) 8 CH 3 , CH 2 CH 2 CH 2 O (CH 2 ) 9 CH 3 , CH 2 CH 2 CH 2 O (CH 2 ) 10 CH 3 , CH 2 CH 2 CH 2 O (CH 2 ) 11 CH 3
, CH 2 CH 2 CH 2 O (CH 2) 12 CH 3, CH 2 CH 2 CH 2 O (CH 2) 13 CH 3, CH 2 CH 2 CH 2 O (CH 2) 14 CH 3, CH 2 CH 2 CH 2 O (CH 2 ) 15 CH 3 , CH 2 CH 2 CH 2 O (CH 2 ) 16 CH 3 , CH 2 CH 2 CH 2 O (CH 2 ) 17 CH 3 , CH 2 CH 2 CH 2 O (CH 2 ) 18 CH 3 , CH 2 CH 2 CH 2 O (CH 2 ) 19 CH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 O CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 C 2 CH 2 CH 2 OCH 3, CH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 H 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3, CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 groups, groups represented by the following formula, etc. Can be mentioned.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 チオエーテル結合を含んでいる上記アルキル基の具体例としては、上記エーテル結合を含んでいるアルキル基の酸素原子(O)を、硫黄原子(S)に代えた基等が挙げられる。
 エステル結合を含んでいる上記アルキル基の具体例としては、上記エーテル結合を含んでいるアルキル基の酸素原子(O)を、C(O)OまたはOC(O)に代えた基等が挙げられる。
 炭酸エステル結合を含んでいる上記アルキル基の具体例としては、上記エーテル結合を含んでいるアルキル基の酸素原子(O)を、OC(O)Oに代えた基等が挙げられる。
 アミド結合を含んでいる炭素数1~30のアルキル基としては、上記エーテル結合を含んでいるアルキル基の酸素原子(O)を、C(O)NHまたはNHC(O)に代えた基等が挙げられる。
Specific examples of the alkyl group containing a thioether bond include a group in which the oxygen atom (O) of the alkyl group containing the ether bond is replaced with a sulfur atom (S).
Specific examples of the alkyl group containing an ester bond include groups in which the oxygen atom (O) of the alkyl group containing an ether bond is replaced with C (O) O or OC (O). .
Specific examples of the alkyl group containing a carbonate bond include a group in which the oxygen atom (O) of the alkyl group containing an ether bond is replaced with OC (O) O.
Examples of the alkyl group having 1 to 30 carbon atoms containing an amide bond include a group in which the oxygen atom (O) of the alkyl group containing an ether bond is replaced with C (O) NH or NHC (O). Can be mentioned.
 これらの中でも、液体になり易いという点から、炭素数6~30の置換基が好ましく、具体的には、c-ヘキシル、1-メチル-c-ペンチル、1-エチル-c-ブチル、1,2-ジメチル-c-ブチル、n-ヘプチル、n-オクチル、2-エチルヘキシル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-ノナデシル、n-エイコシル、CH2O(CH25CH3、CH2OCH(CH3)(CH23CH3、CH2OCH2CH(CH3)(CH22CH3、CH2O(CH22CH(CH3)CH2CH3、CH2O(CH23CH(CH3)CH3、CH2OC(CH32(CH22CH3、CH2OCH(CH2CH3)(CH22CH3、CH2OC(CH32CH(CH3)CH3、CH2O(CH26CH3、CH2O(CH27CH3、CH2OCH2CH(CH2CH3)(CH23CH3、CH2O(CH28CH3、CH2O(CH29CH3、CH2O(CH210CH3、CH2O(CH211CH3、CH2O(CH212CH3、CH2O(CH213CH3、CH2O(CH214CH3、CH2O(CH215CH3、CH2O(CH216CH3、CH2O(CH217CH3、CH2O(CH218CH3、CH2O(CH219CH3、CH2CH2O(CH25CH3、CH2CH2OCH(CH3)(CH23CH3、CH2CH2OCH2CH(CH3)(CH22CH3、CH2CH2O(CH22CH(CH3)CH2CH3、CH2CH2O(CH23CH(CH3)CH3、CH2CH2OC(CH32(CH22CH3、CH2CH2OCH(CH2CH3)(CH22CH3、CH2CH2OC(CH32CH(CH3)CH3、CH2CH2O(CH26CH3、CH2CH2O(CH27CH3、CH2CH2OCH2CH(CH2CH3)(CH23CH3、CH2CH2O(CH28CH3、CH2CH2O(CH29CH3、CH2CH2O(CH210CH3、CH2CH2O(CH211CH3、CH2CH2O(CH212CH3、CH2CH2O(CH213CH3、CH2CH2O(CH214CH3、CH2CH2O(CH215CH3、CH2CH2O(CH216CH3、CH2CH2O(CH217CH3、CH2CH2O(CH218CH3、CH2CH2O(CH219CH3、CH2CH2CH2O(CH25CH3、CH2CH2CH2OCH(CH3)(CH23CH3、CH2CH2CH2OCH2CH(CH3)(CH22CH3、CH2CH2CH2O(CH22CH(CH3)CH2CH3、CH2CH2CH2O(CH23CH(CH3)CH3、CH2CH2CH2OC(CH32(CH22CH3、CH2CH2CH2OCH(CH2CH3)(CH22CH3、CH2CH2CH2OC(CH32CH(CH3)CH3、CH2CH2CH2O(CH26CH3、CH2CH2CH2O(CH27CH3、CH2CH2CH2OCH2CH(CH2CH3)(CH23CH3、CH2CH2CH2O(CH28CH3、CH2CH2CH2O(CH29CH3、CH2CH2CH2O(CH210CH3、CH2CH2CH2O(CH211CH3、CH2CH2CH2O(CH212CH3、CH2CH2CH2O(CH213CH3、CH2CH2CH2O(CH214CH3、CH2CH2CH2O(CH215CH3
CH2CH2CH2O(CH216CH3、CH2CH2CH2O(CH217CH3、CH2CH2CH2O(CH218CH3、CH2CH2CH2O(CH219CH3、CH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3基等、並びにこれらの基の酸素原子(O)を、硫黄原子(S)に代えた基、C(O)OまたはOC(O)に代えた基、OC(O)Oに代えた基、およびC(O)NHまたはNHC(O)に代えた基等が好適である。
Among these, a substituent having 6 to 30 carbon atoms is preferable from the viewpoint of easily becoming a liquid. Specifically, c-hexyl, 1-methyl-c-pentyl, 1-ethyl-c-butyl, 1, 2-dimethyl-c-butyl, n-heptyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n- Hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl, n-eicosyl, CH 2 O (CH 2 ) 5 CH 3 , CH 2 OCH (CH 3 ) (CH 2 ) 3 CH 3 , CH 2 OCH 2 CH ( CH 3) (CH 2) 2 CH 3, CH 2 O (CH 2) 2 CH (CH 3) CH 2 CH 3, CH 2 O (CH 2) 3 CH (CH 3) CH 3, CH 2 OC (CH 3) 2 (CH 2) 2 H 3, CH 2 OCH (CH 2 CH 3) (CH 2) 2 CH 3, CH 2 OC (CH 3) 2 CH (CH 3) CH 3, CH 2 O (CH 2) 6 CH 3, CH 2 O (CH 2 ) 7 CH 3 , CH 2 OCH 2 CH (CH 2 CH 3 ) (CH 2 ) 3 CH 3 , CH 2 O (CH 2 ) 8 CH 3 , CH 2 O (CH 2 ) 9 CH 3 , CH 2 O (CH 2 ) 10 CH 3 , CH 2 O (CH 2 ) 11 CH 3 , CH 2 O (CH 2 ) 12 CH 3 , CH 2 O (CH 2 ) 13 CH 3 , CH 2 O (CH 2 ) 14 CH 3 , CH 2 O (CH 2 ) 15 CH 3 , CH 2 O (CH 2 ) 16 CH 3 , CH 2 O (CH 2 ) 17 CH 3 , CH 2 O (CH 2 ) 18 CH 3 , CH 2 O (CH 2) 19 CH 3 , CH 2 CH 2 O (CH 2) 5 CH 3, CH 2 CH 2 OCH (CH 3) (CH 2) 3 CH 3, CH 2 CH 2 OCH 2 CH (CH 3 (CH 2) 2 CH 3, CH 2 CH 2 O (CH 2) 2 CH (CH 3) CH 2 CH 3, CH 2 CH 2 O (CH 2) 3 CH (CH 3) CH 3, CH 2 CH 2 OC (CH 3 ) 2 (CH 2 ) 2 CH 3 , CH 2 CH 2 OCH (CH 2 CH 3 ) (CH 2 ) 2 CH 3 , CH 2 CH 2 OC (CH 3 ) 2 CH (CH 3 ) CH 3 , CH 2 CH 2 O (CH 2) 6 CH 3, CH 2 CH 2 O (CH 2) 7 CH 3, CH 2 CH 2 OCH 2 CH (CH 2 CH 3) (CH 2) 3 CH 3, CH 2 CH 2 O (CH 2 ) 8 CH 3 , CH 2 CH 2 O (CH 2 ) 9 CH 3 , CH 2 CH 2 O (CH 2 ) 10 CH 3 , CH 2 CH 2 O (CH 2 ) 11 CH 3 , CH 2 CH 2 O (CH 2 ) 12 CH 3, CH 2 CH 2 O (CH 2) 13 CH 3, CH 2 CH 2 O (CH 2) 14 CH 3, CH 2 CH 2 O (CH 2 15 CH 3 , CH 2 CH 2 O (CH 2 ) 16 CH 3 , CH 2 CH 2 O (CH 2 ) 17 CH 3 , CH 2 CH 2 O (CH 2 ) 18 CH 3 , CH 2 CH 2 O ( CH 2) 19 CH 3, CH 2 CH 2 CH 2 O (CH 2) 5 CH 3, CH 2 CH 2 CH 2 OCH (CH 3) (CH 2) 3 CH 3, CH 2 CH 2 CH 2 OCH 2 CH (CH 3) (CH 2) 2 CH 3, CH 2 CH 2 CH 2 O (CH 2) 2 CH (CH 3) CH 2 CH 3, CH 2 CH 2 CH 2 O (CH 2) 3 CH (CH 3 ) CH 3, CH 2 CH 2 CH 2 OC (CH 3) 2 (CH 2) 2 CH 3, CH 2 CH 2 CH 2 OCH (CH 2 CH 3) (CH 2) 2 CH 3, CH 2 CH 2 CH 2 OC (CH 3) 2 CH (CH 3) CH 3, CH 2 CH 2 CH 2 O (CH 2) 6 CH 3, CH 2 CH 2 CH 2 O (CH 2) 7 CH 3 , CH 2 CH 2 CH 2 OCH 2 CH (CH 2 CH 3) (CH 2) 3 CH 3, CH 2 CH 2 CH 2 O (CH 2) 8 CH 3, CH 2 CH 2 CH 2 O (CH 2) 9 CH 3 , CH 2 CH 2 CH 2 O (CH 2 ) 10 CH 3 , CH 2 CH 2 CH 2 O (CH 2 ) 11 CH 3 , CH 2 CH 2 CH 2 O (CH 2 ) 12 CH 3 , CH 2 CH 2 CH 2 O (CH 2 ) 13 CH 3 , CH 2 CH 2 CH 2 O (CH 2 ) 14 CH 3 , CH 2 CH 2 CH 2 O (CH 2 ) 15 CH 3 ,
CH 2 CH 2 CH 2 O ( CH 2) 16 CH 3, CH 2 CH 2 CH 2 O (CH 2) 17 CH 3, CH 2 CH 2 CH 2 O (CH 2) 18 CH 3, CH 2 CH 2 CH 2 O (CH 2 ) 19 CH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 C H 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3, CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OC 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 group and the like, as well as a group oxygen atom (O), was replaced by a sulfur atom (S) of these groups, C (O) O or OC (O) A group substituted for, a group substituted for OC (O) O, a group substituted for C (O) NH or NHC (O), and the like are preferable.
 特に、エーテル結合を有する炭素数1~30のアルキル基(オキシアルキレン基)がより好ましく、CH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3基等が好適である。 Particularly, an alkyl group having 1 to 30 carbon atoms (oxyalkylene group) having an ether bond is more preferable, and CH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 C 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 group and the like.
 好適なキャリア輸送材料としては、例えば下記のカルバゾール(X1)、N,N-二置換またはN,N,N-三置換のアリールアミン(X2)等が挙げられる。 Suitable carrier transporting materials include, for example, the following carbazole (X1), N, N-disubstituted or N, N, N-trisubstituted arylamine (X2).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記式中、Y1~Y6は、それぞれ独立して、水素原子、またはエーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合もしくはアミド結合等を含んでもよい炭素数1~30のアルキル基を表し(ただし、Y1~Y3の少なくとも1つ、およびY4~Y6の少なくとも1つは上記アルキル基である)、A1およびA2は、単結合、または置換もしくは非置換の芳香族環を表す。
 ここで、‘アルキル基’という用語は、メチル、エチル、イソプロピル、t-ブチル、2-エチルヘキシル、シクロヘキシルのような線状、分岐型、環状アルキルを含み、これは上記一般式(1)の融点を降下させる官能基(Y)に相当し、その具体例および好適例は上述のとおりである。
 芳香族環としては、ベンゼン環、ナフタレン環等が挙げられる。
In the above formulas, Y 1 to Y 6 each independently represent a hydrogen atom or an alkyl group having 1 to 30 carbon atoms which may contain an ether bond, a thioether bond, an ester bond, a carbonate bond or an amide bond. (However, at least one of Y 1 to Y 3 and at least one of Y 4 to Y 6 is the above alkyl group), A 1 and A 2 are a single bond or a substituted or unsubstituted aromatic ring Represents.
Here, the term “alkyl group” includes linear, branched, and cyclic alkyl such as methyl, ethyl, isopropyl, t-butyl, 2-ethylhexyl, and cyclohexyl, which has a melting point of the above general formula (1). Is equivalent to the functional group (Y) for lowering, and specific examples and preferred examples thereof are as described above.
Examples of the aromatic ring include a benzene ring and a naphthalene ring.
 本発明では、分子量の増加による粘度の増加を防ぐべく、Y1、Y2、Y4およびY5が水素原子、Y3およびY6がエーテル結合を有するアルキル基(オキシアルキレン基)のものがより好ましく、さらには、A1,A2がベンゼン環または単結合のものが好ましい。
 これらの点から、下記化合物(X3)が好ましく、化合物(3)がより好ましく、化合物(4)または化合物(5)がより一層好ましく、さらにはエーテル結合を有するアルキル基(オキシアルキレン基)を有する化合物(5)が好適であるが、これらに限定されるものではない。
In the present invention, in order to prevent an increase in viscosity due to an increase in molecular weight, Y 1 , Y 2 , Y 4 and Y 5 are hydrogen atoms, and Y 3 and Y 6 are alkyl groups (oxyalkylene groups) having an ether bond. More preferably, A 1 and A 2 are preferably benzene rings or single bonds.
From these points, the following compound (X3) is preferable, the compound (3) is more preferable, the compound (4) or the compound (5) is still more preferable, and further, it has an alkyl group (oxyalkylene group) having an ether bond. Although a compound (5) is suitable, it is not limited to these.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(式中、Y3は上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000015
(In the formula, Y 3 represents the same meaning as described above.)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 また、下記で示される化合物も好適に用いることができる。
Figure JPOXMLDOC01-appb-C000017
(式中Y4~Y11は、それぞれ独立して、水素原子、またはエーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合もしくはアミド結合等を含んでもよい炭素数1~30のアルキル基を表し(ただし、Y4~Y6の少なくとも1つ、Y7およびY8の少なくとも1つ、Y9~Y11の少なくとも1つは上記アルキル基である。)
Moreover, the compound shown below can also be used suitably.
Figure JPOXMLDOC01-appb-C000017
(Wherein Y 4 to Y 11 each independently represents a hydrogen atom or an alkyl group having 1 to 30 carbon atoms which may contain an ether bond, a thioether bond, an ester bond, a carbonate ester bond, an amide bond, etc.) However, at least one of Y 4 to Y 6 , at least one of Y 7 and Y 8 , and at least one of Y 9 to Y 11 are the above alkyl groups.)
Figure JPOXMLDOC01-appb-C000018
(式中、R1~R4は互いに独立して、炭素数1~30のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000018
(In the formula, R 1 to R 4 each independently represent an alkyl group having 1 to 30 carbon atoms.)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 また、下記ピレン誘導体(Z1)も好適に用いることができる。 Also, the following pyrene derivative (Z1) can be preferably used.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記式中、W1~W4は、それぞれ独立して、水素原子、またはエーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合もしくはアミド結合等を含んでもよい炭素数1~30のアルキル基を表し(ただし、W1~W4の少なくとも1つは上記アルキル基である)、A1~A4は、単結合、または置換もしくは非置換の芳香族環を表す。ここで、アルキル基の具体例としては、上記Yと同様のものが挙げられ、芳香族環の具体例としては、上記と同様のものが挙げられる。 In the above formulas, W 1 to W 4 each independently represents a hydrogen atom or an alkyl group having 1 to 30 carbon atoms which may contain an ether bond, a thioether bond, an ester bond, a carbonate bond or an amide bond. (However, at least one of W 1 to W 4 is the above alkyl group), A 1 to A 4 represent a single bond or a substituted or unsubstituted aromatic ring. Here, specific examples of the alkyl group include those similar to the above Y, and specific examples of the aromatic ring include those similar to the above.
 この場合も、分子量の増加に伴う粘度上昇を防止すべく、A1~A4が単結合のもの、すなわち、W1~W4が、炭素縮合環に直接結合した化合物(Z2)が好ましく、さらには、W1~W4の少なくとも1つが水素原子のもの、特に、3つが水素原子のものがより好ましい。
 これらの点から、下記化合物(Z3)が好ましいが、これに限定されるものではない。
Also in this case, in order to prevent an increase in viscosity accompanying an increase in molecular weight, a compound in which A 1 to A 4 are single bonds, that is, a compound (Z2) in which W 1 to W 4 are directly bonded to a carbon condensed ring is preferable. Further, it is more preferable that at least one of W 1 to W 4 is a hydrogen atom, and particularly, three is a hydrogen atom.
From these points, the following compound (Z3) is preferable, but is not limited thereto.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上述したキャリア輸送材料は、有機EL素子の発光寿命という点を考慮すると2量体を用いてもよい。
 2量体としては、下記化合物(V1)が好ましく、さらにはエーテル結合を含むアルキル基(オキシアルキレン基)を有する化合物(12)が好適であるが、これらに限定されるものではない。
The carrier transport material described above may use a dimer in consideration of the light emission lifetime of the organic EL element.
As the dimer, the following compound (V1) is preferable, and the compound (12) having an alkyl group (oxyalkylene group) containing an ether bond is preferable, but the dimer is not limited thereto.
Figure JPOXMLDOC01-appb-C000023
(式中、Y3は上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000023
(In the formula, Y 3 represents the same meaning as described above.)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 上述したキャリア輸送材料(キャリア輸送能および発光能を有する材料)および発光材料の配合比率は、組成物全体が液体となり、かつ、全体として白色に発光する範囲であれば特に限定されるものではなく、質量比で、キャリア輸送材料(キャリア輸送能および発光能を有する材料):発光材料=99.99:0.01~50:50程度とすることができる。
 ただし、補色関係にあるキャリア輸送材料(キャリア輸送能および発光能を有する材料)および発光材料の場合、それらの配合比率は、質量比で、キャリア輸送材料(キャリア輸送能および発光能を有する材料):発光材料=99.99:0.01~50:50程度とすることが好ましい。
 また、例えば、補色関係にある2種類の発光材料を用いる場合、それらの配合比は、例えば、質量比で、99.99:0.01~50:50程度とすることが好ましい。
 さらに、赤、緑、青の各材料を用いる場合、それらの配合比は、例えば、質量比で、赤の配合比が0.01のとき、緑:青=0.01:99.98~99.98:0.01程度とし、緑の配合比が0.01のとき、赤:青=0.01:99.98~99.98~0.01程度とし、青の配合比が0.01のとき、赤:緑=0.01:99.98~99.98:0.01とすることが好ましい。
 なお、非特許文献2に開示されているように、素子特性を向上させるために発光層に有機塩あるいは無機塩を添加してもよい。
The blending ratio of the above-described carrier transporting material (material having carrier transporting ability and light emitting ability) and the light emitting material is not particularly limited as long as the entire composition is in a liquid and emits white light as a whole. In terms of mass ratio, carrier transport material (material having carrier transport ability and light emission ability): luminescent material = 99.99: 0.01 to 50:50 or so.
However, in the case of a carrier transporting material (material having carrier transporting ability and light emitting ability) and a light emitting material having a complementary color relationship, their blending ratio is a mass ratio, and the carrier transporting material (material having carrier transporting ability and light emitting ability). : Luminescent material = preferably about 99.99: 0.01 to 50:50.
For example, when two types of light emitting materials having a complementary color relationship are used, the blending ratio thereof is preferably about 99.99: 0.01 to 50:50 in terms of mass ratio, for example.
Further, when red, green, and blue materials are used, the mixing ratio thereof is, for example, when the red mixing ratio is 0.01 by mass ratio, and green: blue = 0.01: 99.98 to 99. When the blending ratio of green is 0.01, red: blue = 0.01: 99.98 to 99.98 to 0.01, and the blending ratio of blue is 0.01 In this case, it is preferable that red: green = 0.01: 99.98 to 99.98: 0.01.
As disclosed in Non-Patent Document 2, an organic salt or an inorganic salt may be added to the light emitting layer in order to improve device characteristics.
 本発明の有機電界発光素子では、上述の液体発光層に特徴があるため、その他の素子の構成部材には特に制限はなく、従来公知のものを適宜採用することができる。
 例えば、陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、高電荷輸送性を有するポリチオフェン誘導体、ポリアニリン誘導体などを用いることができる。
 陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金、リチウム、ナトリウム、カリウム、セシウム、セシウム添加ITOなどを用いることができる。
In the organic electroluminescent element of the present invention, since the above-described liquid light emitting layer is characterized, there are no particular limitations on the constituent members of the other elements, and conventionally known elements can be appropriately employed.
For example, as the anode material, a transparent electrode typified by indium tin oxide (ITO) or indium zinc oxide (IZO), a polythiophene derivative having high charge transportability, a polyaniline derivative, or the like can be used.
As the cathode material, aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium, cesium-added ITO, or the like can be used.
 また、本発明の有機電界発光素子は、陽極、陰極および発光層の他に、有機電界発光素子に一般的に用いられる各種機能層を備えていてもよい。
 このような機能層としては、正孔輸送層、正孔注入層、電子輸送層、電子注入層、キャリアブロック層などが挙げられる。
Moreover, the organic electroluminescent element of this invention may be equipped with the various functional layers generally used for an organic electroluminescent element other than an anode, a cathode, and a light emitting layer.
Examples of such a functional layer include a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a carrier block layer, and the like.
 正孔輸送層は、陽極と発光層との間に設けられ、陽極から注入された正孔を発光層へ輸送する機能を有する層であり、その材料としては、例えば、(トリフェニルアミン)ダイマー誘導体(TPD)、(α-ナフチルジフェニルアミン)ダイマー(α-NPD)、[(トリフェニルアミン)ダイマー]スピロダイマー(Spiro-TAD)等のトリアリールアミン類、4,4’,4”-トリス[3-メチルフェニル(フェニル)アミノ]トリフェニルアミン(m-MTDATA)、4,4’,4”-トリス[1-ナフチル(フェニル)アミノ]トリフェニルアミン(1-TNATA)等のスターバーストアミン類;5,5”-ビス-{4-[ビス(4-メチルフェニル)アミノ]フェニル}-2,2’:5’,2”ターチオフェン(BMA-3T)等のオリゴチオフェン類、ポリビニルカルバゾール類などが挙げられる。
 また、正孔注入層は、正孔輸送層と陽極との間に設けられ、陽極からの正孔注入効率を高める機能を有する層である。
 正孔注入層を形成する材料としては、銅フタロシアニン、4,4’,4”-トリス[3-メチルフェニル(フェニル)アミノ]トリフェニルアミン(m-MTDATA)等が挙げられる。
The hole transport layer is a layer that is provided between the anode and the light emitting layer and has a function of transporting holes injected from the anode to the light emitting layer. Examples of the material include (triphenylamine) dimer. Derivatives (TPD), (α-naphthyldiphenylamine) dimer (α-NPD), [(triphenylamine) dimer] spirodimer (Spiro-TAD) and other triarylamines, 4,4 ′, 4 ″ -tris [ Starburst amines such as 3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA), 4,4 ′, 4 ″ -tris [1-naphthyl (phenyl) amino] triphenylamine (1-TNATA) 5,5 ″ -bis- {4- [bis (4-methylphenyl) amino] phenyl} -2,2 ′: 5 ′, 2 ″ terthiophene (BMA-3T Oligothiophenes etc., polyvinyl carbazoles, and the like.
The hole injection layer is a layer that is provided between the hole transport layer and the anode and has a function of increasing the hole injection efficiency from the anode.
Examples of the material for forming the hole injection layer include copper phthalocyanine, 4,4 ′, 4 ″ -tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA), and the like.
 電子輸送層は、陰極と発光層との間に設けられ、陰極から注入された電子を発光層へ輸送する機能を有する層であり、その材料としては、Alq3、BAlq、DPVBi、(2-(4-ビフェニル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール)(PBD)、トリアゾール誘導体(TAZ)、バソクプロイン(BCP)、シロール誘導体などが挙げられる。
 電子注入層は、電子輸送層と陰極との間に設けられ、陰極からの電子注入効率を高める機能を有する層である。
 このような電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)、フッ化リチウム(LiF)、フッ化マグネシウム(MgF2)、フッ化ストロンチウム(SrF2)、Li(acac)、酢酸リチウム、安息香酸リチウム等が挙げられる。
The electron transport layer is a layer provided between the cathode and the light-emitting layer and having a function of transporting electrons injected from the cathode to the light-emitting layer, and includes Alq 3 , BAlq, DPVBi, (2- (4-biphenyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole) (PBD), triazole derivative (TAZ), bathocuproine (BCP), silole derivative and the like.
The electron injection layer is a layer that is provided between the electron transport layer and the cathode and has a function of increasing the efficiency of electron injection from the cathode.
As a material for forming such an electron injection layer, lithium oxide (Li 2 O), magnesium oxide (MgO), alumina (Al 2 O 3 ), lithium fluoride (LiF), magnesium fluoride (MgF 2 ), Examples thereof include strontium fluoride (SrF 2 ), Li (acac), lithium acetate, and lithium benzoate.
 キャリアブロック層は、発光領域をコントロールするための層であり、上述した任意の層間に形成し得る層である。
 このようなキャリアブロック層を形成する材料としては、PBD、TAZ、BCP等が挙げられる。
The carrier block layer is a layer for controlling the light emitting region, and can be formed between any of the above-described layers.
Examples of the material for forming such a carrier block layer include PBD, TAZ, and BCP.
 次に、本発明の電界発光素子の実施の一形態を、図面を参照しつつ説明する。
 図1には、本発明の一実施形態に係る電界発光素子である、有機EL素子1が示されている。
 この有機EL素子1は、陽極10と、陰極20と、これら各極10,20間に介在する、常温で液体の発光層30(以下、液体発光層30という)とを備えている。
 本実施形態において、陽極10は、ガラス基板11と、この上に成膜されたITO基板12とから構成されている。
 一方、陰極20は、ガラス基板13と、この上に成膜されたITO基板14とから構成されている。
Next, an embodiment of the electroluminescent element of the present invention will be described with reference to the drawings.
FIG. 1 shows an organic EL element 1 which is an electroluminescent element according to an embodiment of the present invention.
The organic EL element 1 includes an anode 10, a cathode 20, and a light emitting layer 30 (hereinafter referred to as a liquid light emitting layer 30) that is interposed between the electrodes 10 and 20 and is liquid at room temperature.
In the present embodiment, the anode 10 is composed of a glass substrate 11 and an ITO substrate 12 formed thereon.
On the other hand, the cathode 20 is composed of a glass substrate 13 and an ITO substrate 14 formed thereon.
 液体発光層30は、キャリア輸送材料と、赤、緑、青の各発光材料を含んで構成されるものであり、本実施形態では、液体キャリア輸送材料として、上記式(5)で示されるカルバゾール誘導体(TEGCz)を含んで構成されている。 The liquid light-emitting layer 30 includes a carrier transport material and red, green, and blue light-emitting materials. In this embodiment, the carbazole represented by the above formula (5) is used as the liquid carrier transport material. A derivative (TEGCz) is included.
 以上のように構成される有機EL素子の作製方法としては特に制限はないが、例えば、下記のような手法を用いることができる。
 まず、陰極20上に、上記液体キャリア輸送材料中に、赤、緑、青の各発光材料を溶かして調製した液体発光体を滴下し、その上に陽極10を適切な圧力で押しつけて、液体発光層30を有する有機EL素子1を得る。
Although there is no restriction | limiting in particular as a preparation method of the organic EL element comprised as mentioned above, For example, the following methods can be used.
First, a liquid luminescent material prepared by dissolving red, green, and blue luminescent materials in the liquid carrier transporting material is dropped onto the cathode 20, and the anode 10 is pressed on the cathode 20 with an appropriate pressure to form a liquid. The organic EL element 1 having the light emitting layer 30 is obtained.
 なお、各層を構成する材料は、上記実施形態で用いた材料に限定されるものではなく、各層の機能を発揮する限りにおいて、先に例示した各種材料から適宜選択して用いることができる。
 また、各層の成膜方法も上記実施形態の手法に限定されるものではなく、用いる材料に応じて、蒸着法、スプレー法、インクジェット法、スパッタリング法等の公知の手法を適宜採用することができる。
 さらに、必要に応じて、ホールブロック層や正孔注入層等を形成してもよい。
In addition, the material which comprises each layer is not limited to the material used by the said embodiment, As long as the function of each layer is exhibited, it can select from the various materials illustrated previously suitably and can be used.
Further, the method for forming each layer is not limited to the method of the above embodiment, and a known method such as an evaporation method, a spray method, an ink jet method, or a sputtering method can be appropriately employed depending on the material to be used. .
Furthermore, a hole blocking layer, a hole injection layer, or the like may be formed as necessary.
 以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、実施例で用いた測定装置は以下のとおりである。
(1)電流-電圧-外部発光効率(EQE)特性
 フォトディテクター付き半導体パラメーターアナライザー(アジレント社製、B1500A)と光パワー-メーター(ニューポート、1930C)によって計測した。
(2)EL発光スペクトル
 マルチチャンネル分光器(PMA-11,浜松ホトニクス(株)製)によって計測した。
(3)1H-NMR
装置:JNM-LA400、日本電子データム(株)製
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example. In addition, the measuring apparatuses used in the examples are as follows.
(1) Current-Voltage-External Luminous Efficiency (EQE) Characteristics Measurement was performed with a semiconductor parameter analyzer with a photo detector (B1500A manufactured by Agilent) and an optical power meter (Newport, 1930C).
(2) EL emission spectrum Measured with a multichannel spectrometer (PMA-11, manufactured by Hamamatsu Photonics).
(3) 1 H-NMR
Equipment: JNM-LA400, manufactured by JEOL Datum Co., Ltd.
[合成例1]EH4DPAの合成
Figure JPOXMLDOC01-appb-C000025
[Synthesis Example 1] Synthesis of EH 4 DPA
Figure JPOXMLDOC01-appb-C000025
 9,10-ビス(3,5-ジヒドロキシフェニル)アントラセン(1.0g,2.54mmol)、1-ブロモ-2-エチルヘキサン(3.9g,20.3mmol)および炭酸カリウム(7.0g,50.7mmol)をDMF(30mL)に加え、80℃で5時間撹拌した。溶媒を減圧留去した後、クロロホルム(300mL)を加えて水洗(150mL×3)した。硫酸マグネシウムを加えて乾燥後、カラムクロマトグラフィー(シリカゲル,n-ヘキサン/酢酸エチル=95/5(v/v))にて精製し、白色粉末状のEH4DPA(2.03g)を得た。同定は1H-NMRスペクトルにて行った。NMRスペクトルを図2に示す。 9,10-bis (3,5-dihydroxyphenyl) anthracene (1.0 g, 2.54 mmol), 1-bromo-2-ethylhexane (3.9 g, 20.3 mmol) and potassium carbonate (7.0 g, 50 0.7 mmol) was added to DMF (30 mL), and the mixture was stirred at 80 ° C. for 5 hours. After the solvent was distilled off under reduced pressure, chloroform (300 mL) was added and washed with water (150 mL × 3). Magnesium sulfate was added and dried, followed by purification by column chromatography (silica gel, n-hexane / ethyl acetate = 95/5 (v / v)) to obtain EH 4 DPA (2.03 g) as a white powder. . Identification was performed by 1 H-NMR spectrum. The NMR spectrum is shown in FIG.
[実施例1]
 下記構造で示されるホスト化合物TEGCz89.9質量部に、合成例1で調製したEH4DPA(青色発光材料)10.0質量部、下記構造で示されるDCJTB(赤色発光材料、ルミネッセントテクノロジー社製)0.05質量部およびCoumarin7(緑色発光材料、アルドリッチ社製)0.05質量部を加え、それらを完全にTEGCzに溶解させることで液体発光体を作製した。
 なお、TEGCzは、Synthetic Metals,89(3),171(1997)に記載の方法を参考に合成した。
[Example 1]
To host compound TEGCz 89.9 parts by mass represented by the following structure, 10.0 parts by mass of EH 4 DPA (blue light-emitting material) prepared in Synthesis Example 1, and DCJTB (red light-emitting material, Luminescent Technology Co., Ltd.) represented by the following structure 0.05 parts by mass) and 0.05 parts by mass of Coumarin 7 (green luminescent material, manufactured by Aldrich) were added, and they were completely dissolved in TEGCz to produce a liquid light emitter.
TEGCz was synthesized with reference to the method described in Synthetic Metals, 89 (3), 171 (1997).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 EL素子の作製は以下にようにして行った。
 界面活性剤、純水、イソプロパノールの順で超音波洗浄し、UV/オゾン処理(フィルジェン社製、UV253S)を12分間施したITO12付きガラス基板11(陽極10)およびITO14付きガラス基板13(陰極20)を用意した。
 グローブボックス中で、先に調製した液体発光体を陰極20上(ITO14上)に少量滴下し、陽極10で挟み込んで得られた積層体の外側からクリップ(図示省略)で挟んで固定し、図1に示されるような、ガラス基板/ITO(陽極)/液体発光体層/ITO(陰極)/ガラス基板からなるEL素子1を作製した。素子面積は2mm×2mmである。
The EL element was produced as follows.
A glass substrate 11 with ITO 12 (anode 10) and a glass substrate 13 with ITO 14 (cathode), which were subjected to ultrasonic cleaning in the order of surfactant, pure water and isopropanol, and subjected to UV / ozone treatment (manufactured by Philgen, UV253S) for 12 minutes. 20) was prepared.
In the glove box, a small amount of the previously prepared liquid light emitter is dropped onto the cathode 20 (ITO 14) and sandwiched between the anodes 10 and fixed with clips (not shown) from the outside. As shown in FIG. 1, an EL element 1 composed of glass substrate / ITO (anode) / liquid light emitter layer / ITO (cathode) / glass substrate was produced. The element area is 2 mm × 2 mm.
 作製したEL素子の電流密度-電圧-外部発光効率(EQE)および発光スペクトルを測定した。結果を図3および図4に示す。このデバイスの液体発光層の膜厚を誘電率測定の結果から算出したところ、1.57(±0.08)μmであった。
 図4に示されるように、EH4DPA、DCJTBおよびCoumarin7に由来する三色の発光が同時に観測され、白色の電界発光を確認した。図3は得られた素子のデバイス特性を示しており、98.8V印加時に5.57mA/cm2の電流密度と0.037%の外部発光効率が得られた。
The current density-voltage-external emission efficiency (EQE) and emission spectrum of the produced EL device were measured. The results are shown in FIG. 3 and FIG. When the film thickness of the liquid light emitting layer of this device was calculated from the result of dielectric constant measurement, it was 1.57 (± 0.08) μm.
As shown in FIG. 4, luminescence of three colors derived from EH 4 DPA, DCJTB, and Coumarin 7 was observed at the same time, and white electroluminescence was confirmed. FIG. 3 shows the device characteristics of the obtained element. When 98.8 V was applied, a current density of 5.57 mA / cm 2 and an external luminous efficiency of 0.037% were obtained.
1 有機EL素子(電界発光素子)
10 陽極
20 陰極
30 液体発光層
1 Organic EL device (electroluminescent device)
10 Anode 20 Cathode 30 Liquid Emission Layer

Claims (18)

  1.  陽極と、陰極と、これら各極間に介在する、常温で液体、かつ、白色発光する発光層とを備えることを特徴とする有機電界白色発光素子。 An organic electric field white light emitting device comprising an anode, a cathode, and a light emitting layer that emits white light at room temperature and is interposed between these electrodes.
  2.  前記発光層が、常温で液体のキャリア輸送能および発光能を有する材料と、発光材料とを含み、全体として白色発光する請求項1記載の有機電界白色発光素子。 2. The organic electric field white light emitting device according to claim 1, wherein the light emitting layer contains a material having a carrier transporting ability and a light emitting ability which are liquid at room temperature and a light emitting material, and emits white light as a whole.
  3.  前記発光層が、常温で液体のキャリア輸送材料と、発光材料とを含み、全体として白色発光する請求項1記載の有機電界白色発光素子。 The organic light-emitting white light-emitting element according to claim 1, wherein the light-emitting layer contains a carrier transport material that is liquid at room temperature and a light-emitting material, and emits white light as a whole.
  4.  前記発光材料が、常温で液体の発光材料を含む請求項2または3記載の有機電界白色発光素子。 4. The organic electric field white light-emitting element according to claim 2, wherein the light-emitting material includes a light-emitting material that is liquid at room temperature.
  5.  前記発光材料が、補色関係にある2種類の発光材料を含み、全体として白色発光する請求項2~4のいずれか1項記載の有機電界白色発光素子。 The organic electric field white light-emitting element according to any one of claims 2 to 4, wherein the light-emitting material includes two kinds of light-emitting materials having a complementary color relationship and emits white light as a whole.
  6.  前記キャリア輸送能および発光能を有する材料と発光材料とが、補色関係にあり、全体として白色発光する請求項2記載の有機電界白色発光素子。 The organic electric field white light emitting element according to claim 2, wherein the material having the carrier transporting ability and the light emitting ability and the light emitting material are in a complementary color relationship and emit white light as a whole.
  7.  前記発光材料が、赤、緑、青の各発光材料を含み、全体として白色発光する請求項2~4のいずれか1項記載の有機電界白色発光素子。 The organic electric field white light emitting device according to any one of claims 2 to 4, wherein the light emitting material includes light emitting materials of red, green, and blue, and emits white light as a whole.
  8.  前記キャリア輸送能および発光能を有する材料が、少なくとも赤、緑および青のいずれか1つの色に発光する材料を含み、前記発光材料が、少なくとも赤、緑および青のいずれか1つの色に発光する材料を含み、前記両材料全体として赤、緑および青の各色に発光する材料を含み、全体として白色発光する請求項2記載の有機電界白色発光素子。 The material having a carrier transporting ability and a light emitting ability includes a material that emits light of at least one color of red, green, and blue, and the light emitting material emits light of at least one color of red, green, and blue The organic electric field white light emitting element according to claim 2, wherein the entire material includes a material that emits light in red, green, and blue colors, and emits white light as a whole.
  9.  前記発光材料が、ピラン系化合物、テトラセン系化合物、ナフタセン系化合物、スチリル系化合物、ユーロピウム錯体、イリジウム錯体、オスミウム錯体およびルテニウム錯体から選ばれる1種または2種以上の赤色発光材料である請求項2~8のいずれか1項記載の有機電界白色発光素子。 3. The light emitting material is one or more red light emitting materials selected from pyran compounds, tetracene compounds, naphthacene compounds, styryl compounds, europium complexes, iridium complexes, osmium complexes, and ruthenium complexes. 9. The organic electric field white light-emitting element according to any one of 1 to 8.
  10.  前記発光材料が、クマリン系化合物、キナクリドン系化合物、アントラセン系化合物、イリジウム錯体および亜鉛錯体から選ばれる1種または2種以上の緑色発光材料である請求項2~8のいずれか1項記載の有機電界白色発光素子。 9. The organic material according to claim 2, wherein the light emitting material is one or more green light emitting materials selected from a coumarin compound, a quinacridone compound, an anthracene compound, an iridium complex and a zinc complex. Electric field white light emitting element.
  11.  前記発光材料が、ジフェニルアントラセン系化合物、ペリレン系化合物、カルバゾール系化合物、スチリル系化合物、フルオレン系化合物およびイリジウム錯体から選ばれる1種または2種以上の青色発光材料である請求項2~8のいずれか1項記載の有機電界白色発光素子。 The light emitting material is one or more blue light emitting materials selected from diphenylanthracene compounds, perylene compounds, carbazole compounds, styryl compounds, fluorene compounds and iridium complexes. The organic electric field white light emitting element of Claim 1.
  12.  前記発光材料が、単独で白色発光する請求項2~4のいずれか1項記載の有機電界白色発光素子。 The organic light-emitting white light-emitting element according to any one of claims 2 to 4, wherein the light-emitting material emits white light alone.
  13.  前記キャリア輸送能および発光能を有する材料またはキャリア輸送材料が、式(1)で示される化合物である請求項2または3記載の有機電界白色発光素子。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xはキャリア輸送および発光部であって、カルバゾール誘導体、チアントレン誘導体、フェノチアジン誘導体、アゼピン誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサジアゾール誘導体、アリールシクロアルカン誘導体、トリアリールアミン誘導体、フェニレンジアミン誘導体、スチルベン誘導体、オキサゾール誘導体、トリフェニルメタン誘導体、ピラゾリン誘導体、フルオレノン誘導体、ポリアニリン誘導体、シラン誘導体、ピロール誘導体、フルオレン誘導体、ポルフィリン誘導体、キナクリドン誘導体、トリアリールホスフィンオキシド誘導体、炭素縮合環系色素、金属もしくは無金属のフタロシアニン誘導体、またはベンジジンを表し、
     Yは、前記キャリア輸送および発光部に連結する少なくとも1つの置換基であって、エーテル結合、チオエーテル結合、エステル結合、炭酸エステル結合またはアミド結合を含んでいてもよい炭素数1~30のアルキル基を表す。)
    The organic electric field white light emitting element according to claim 2 or 3, wherein the material having carrier transporting ability and light emitting ability or the carrier transporting material is a compound represented by the formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein X is a carrier transport and light-emitting moiety, and is a carbazole derivative, thianthrene derivative, phenothiazine derivative, azepine derivative, triazole derivative, imidazole derivative, oxadiazole derivative, arylcycloalkane derivative, triarylamine derivative, phenylenediamine. Derivatives, stilbene derivatives, oxazole derivatives, triphenylmethane derivatives, pyrazoline derivatives, fluorenone derivatives, polyaniline derivatives, silane derivatives, pyrrole derivatives, fluorene derivatives, porphyrin derivatives, quinacridone derivatives, triarylphosphine oxide derivatives, carbon condensed ring dyes, metals Or a metal-free phthalocyanine derivative or benzidine,
    Y is at least one substituent linked to the carrier transport and light emitting moiety, and may contain an ether bond, a thioether bond, an ester bond, a carbonate bond or an amide bond. Represents. )
  14.  前記電荷輸送部Xが、カルバゾールである請求項13記載の有機電界白色発光素子。 The organic electric field white light-emitting element according to claim 13, wherein the charge transport portion X is carbazole.
  15.  前記置換基Yが、エーテル結合を含んでいてもよい炭素数1~30のアルキル基である請求項13または14記載の有機電界白色発光素子。 The organic electric field white light-emitting element according to claim 13 or 14, wherein the substituent Y is an alkyl group having 1 to 30 carbon atoms which may contain an ether bond.
  16.  前記キャリア輸送材料が、式(3)で示される請求項15記載の有機電界白色発光素子。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Yは、前記と同じ意味を表す。)
    The organic electric field white light emitting element according to claim 15, wherein the carrier transporting material is represented by the formula (3).
    Figure JPOXMLDOC01-appb-C000002
    (Wherein Y represents the same meaning as described above.)
  17.  前記キャリア輸送材料が、式(4)で示される請求項16記載の有機電界白色発光素子。
    Figure JPOXMLDOC01-appb-C000003
    The organic electric field white light emitting element according to claim 16, wherein the carrier transporting material is represented by the formula (4).
    Figure JPOXMLDOC01-appb-C000003
  18.  前記キャリア輸送材料が、式(5)で示される請求項16記載の有機電界白色発光素子。
    Figure JPOXMLDOC01-appb-C000004
    The organic electric field white light emitting element according to claim 16, wherein the carrier transporting material is represented by the formula (5).
    Figure JPOXMLDOC01-appb-C000004
PCT/JP2012/051192 2011-01-20 2012-01-20 White organic electroluminescent element WO2012099240A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012553782A JP5888748B2 (en) 2011-01-20 2012-01-20 Organic electric field white light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-009560 2011-01-20
JP2011009560 2011-01-20

Publications (1)

Publication Number Publication Date
WO2012099240A1 true WO2012099240A1 (en) 2012-07-26

Family

ID=46515857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051192 WO2012099240A1 (en) 2011-01-20 2012-01-20 White organic electroluminescent element

Country Status (3)

Country Link
JP (1) JP5888748B2 (en)
TW (1) TW201248961A (en)
WO (1) WO2012099240A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945916A (en) * 2021-01-25 2021-06-11 河南师范大学 Method for constructing pure white light through dual fluorescence emission of organic single molecules

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303365A (en) * 2007-06-11 2008-12-18 Toppan Printing Co Ltd Fluorescent material, light emitting ink composition, and organic el element
JP2009054952A (en) * 2007-08-29 2009-03-12 Toshiba Corp Light-emitting device
JP2009191232A (en) * 2008-02-18 2009-08-27 Toppan Printing Co Ltd Fluorescent compound, light-emitting ink composition and organic el device
WO2011010656A1 (en) * 2009-07-21 2011-01-27 国立大学法人九州大学 Organic electroluminescent element
WO2012014976A1 (en) * 2010-07-30 2012-02-02 国立大学法人九州大学 Organic electroluminescent element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303365A (en) * 2007-06-11 2008-12-18 Toppan Printing Co Ltd Fluorescent material, light emitting ink composition, and organic el element
JP2009054952A (en) * 2007-08-29 2009-03-12 Toshiba Corp Light-emitting device
JP2009191232A (en) * 2008-02-18 2009-08-27 Toppan Printing Co Ltd Fluorescent compound, light-emitting ink composition and organic el device
WO2011010656A1 (en) * 2009-07-21 2011-01-27 国立大学法人九州大学 Organic electroluminescent element
WO2012014976A1 (en) * 2010-07-30 2012-02-02 国立大学法人九州大学 Organic electroluminescent element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945916A (en) * 2021-01-25 2021-06-11 河南师范大学 Method for constructing pure white light through dual fluorescence emission of organic single molecules

Also Published As

Publication number Publication date
JP5888748B2 (en) 2016-03-22
JPWO2012099240A1 (en) 2014-06-30
TW201248961A (en) 2012-12-01

Similar Documents

Publication Publication Date Title
JP5294872B2 (en) Organic electroluminescence device
JP5355962B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE
TWI284009B (en) Organic EL device
JP5970811B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE
TWI395358B (en) Material for organic electro-optical device having fluorene derivative compound and organic electro-optical device including the same
JP2018138560A (en) Amine derivative, organic light-emitting material, and organic electroluminescence element using same
JP5686379B2 (en) Organic electroluminescence device
EP2013313A1 (en) Electroluminescent device including an anthracene derivative
JP7299020B2 (en) Organic electroluminescence device and manufacturing method thereof
TW200908777A (en) Organic el device
TW200537980A (en) Organic electroluminescent element and display device
TWI512078B (en) Organic light emitting material and organic light emitting device using the same
JP5875119B2 (en) Organic electroluminescence device
TWI394483B (en) Oled device with stabilized green light-emitting layer
KR20130121516A (en) Using new alylamine as hole transporting mateial and organic electroluminescent device using the same
KR101311840B1 (en) Novel tetiary aryl amine and organic electroluminescent device using the same
JP2014031371A (en) Phosphorescent compound and organic light-emitting diode using the same
KR101327301B1 (en) Amine derivative as hole transporting material and organic electroluminescent device using the same
US8941099B2 (en) Organic light emitting device and materials for use in same
JP5888748B2 (en) Organic electric field white light emitting device
JP6206477B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE
WO2012099236A1 (en) Organic electroluminescent element
CN112279844A (en) Green light main body material, organic electroluminescent device and electronic display equipment
WO2012099237A1 (en) Organic electroluminescent element
KR20230028333A (en) Spirobifluorene-based Compound, Hole Transport Layer made therefrom and Organic light emitting device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553782

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736278

Country of ref document: EP

Kind code of ref document: A1