WO2012099074A1 - Salt water desalination apparatus - Google Patents

Salt water desalination apparatus Download PDF

Info

Publication number
WO2012099074A1
WO2012099074A1 PCT/JP2012/050754 JP2012050754W WO2012099074A1 WO 2012099074 A1 WO2012099074 A1 WO 2012099074A1 JP 2012050754 W JP2012050754 W JP 2012050754W WO 2012099074 A1 WO2012099074 A1 WO 2012099074A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
osmosis membrane
water
membrane module
pipe
Prior art date
Application number
PCT/JP2012/050754
Other languages
French (fr)
Japanese (ja)
Inventor
亘 杉浦
錦花 朴
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201280006052.9A priority Critical patent/CN103339069B/en
Priority to JP2012514663A priority patent/JP5880432B2/en
Priority to KR1020137019023A priority patent/KR101837230B1/en
Publication of WO2012099074A1 publication Critical patent/WO2012099074A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/10Specific supply elements
    • B01D2313/105Supply manifolds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/12Specific discharge elements
    • B01D2313/125Discharge manifolds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a salt water desalination apparatus for obtaining fresh water from salt water using a reverse osmosis membrane module, and more specifically, a salt water desalination apparatus characterized by a method of injecting wash water for washing the reverse osmosis membrane module. It is about.
  • Seawater desalination and brine desalination using the reverse osmosis membrane method can separate and remove salinity and harmful substances without phase change, and are easy to manage and energy efficient. It is used in the field.
  • sand filtration, coagulation sedimentation, pressurized flotation, microfiltration membrane and ultrafiltration membrane filtration are usually performed before supplying seawater or brine to the reverse osmosis membrane.
  • the film surface is periodically cleaned after pretreatment using a method such as the above.
  • the desalination apparatus is stopped after a certain period of operation, acid cleaning with citric acid, and Regular cleaning that performs alkali cleaning with caustic soda is included.
  • Patent Document 1 a sterilization method for intermittently supplying an acid such as sulfuric acid has been developed (Patent Document 1) and has been put into practical use in many plants.
  • this intermittent cleaning can remove the microbial layer and metal ion deposits temporarily attached to the membrane surface, but the intermittent cleaning alone cannot completely prevent the accumulation of these contaminants. Eventually, regular cleaning operations will be required with the equipment stopped.
  • a cleaning tank is provided in the desalination apparatus to mix and store cleaning water and cleaning chemicals, a cleaning pump for sending cleaning water in the cleaning tank to the desalination apparatus, and particles in the cleaning water Washing equipment consisting of a filter to remove particulate matter, put citric acid or caustic soda into the washing tank, dissolve, dilute and wash to make citric acid aqueous solution concentration 1-3% or caustic soda aqueous solution pH 10-12 Liquid is sent to the reverse osmosis membrane module using a pump. The washing water that has washed the reverse osmosis membrane is circulated to the washing tank via the washing return pipe.
  • the osmotic pressure is related to the salinity concentration. For example, when seawater is separated by a reverse osmosis membrane, a pressure of at least about 3 MPa or more and at least about 5 MPa is required in consideration of practicality. Even in the case of irrigation, a pressure of at least about 1 MPa is required.
  • the portion through which the high-pressure liquid passes that is, the high-pressure pump, the piping and the related valve from the high-pressure pump to the reverse osmosis membrane module, and the concentrated water piping and valve from the reverse osmosis membrane module, Use pressure resistant stainless steel.
  • stainless steel has a passive film formed on its surface in fresh water, neutral solution, and alkaline solution that do not contain concentrated sulfuric acid, concentrated nitric acid, and chlorine ions, and its properties are stable and resistant to corrosion. However, since a passive film is not formed or becomes unstable in hydrochloric acid, dilute sulfuric acid, and seawater, corrosion occurs. In an environment where the seawater containing chloride ions is acidic, the corrosion of stainless steel is further accelerated.
  • Non-Patent Document 1 Crevice corrosion has occurred even in the case of stainless steel such as 904L, which has been developed for the purpose of enduring dilute sulfuric acid and has stronger corrosion resistance (Non-Patent Document 2).
  • Contact between metals with different potentials also greatly affects corrosion.
  • Patent Document 2 a metal pressure-resistant outer shell having a tubular corrosion-resistant pipe made of a corrosion-resistant material such as super austenite, stainless steel, or titanium material, and a pressure-resistant pipe provided to cover the inner tube body. And a pipe having a composite structure including a sealing material made of plastic, cement, or the like filled between the outer shell tube and the inner tube.
  • Patent Document 3 which pays attention to another pipe corrosion problem, an organic acid such as polycarboxylic acid is added to the liquid to be treated to suppress corrosion of the high-pressure pipe.
  • organic acid such as polycarboxylic acid
  • the cost of using chemicals increases, and the concentration of organic substances in the wastewater increases. In some cases, it is necessary to reprocess the environment.
  • There are weaknesses such as increasing the burden on
  • the cleaning liquid injection point is a valve that switches between supply salt water and cleaning liquid
  • the return branch point of the cleaning liquid is a valve that switches between concentrated salt water and cleaning return liquid. The valve which has the property is adopted.
  • valves such as ball valves, globe valves, butterfly valves can be used as the valves used for connecting the cleaning equipment and reverse osmosis membrane equipment.
  • Internal leakage may occur.
  • the internal leakage means that fluid flows from the high pressure side before and after the valve to the low pressure side through a slight gap between the valve seat and the valve body.
  • the valve that shuts off the cleaning equipment and the reverse osmosis membrane equipment has a large differential pressure before and after that, and a leak component easily adheres to the valve seat and valve body during cleaning.
  • salt water or concentrated water with a pressure of about 1 to 10 MPa flows into the cleaning equipment composed of low-pressure materials, and in the worst case, piping, valve plugs and joints may burst. there were.
  • There are no effective countermeasures to prevent this internal leakage and there were only coping treatments such as making the valve redundant by making it redundant, or providing a relief valve so that the pressure in the cleaning pipe does not increase even if internal leakage occurs. .
  • Japanese Unexamined Patent Publication No. 2000-237555 Japanese Patent Laid-Open No. 2001-137671 International Publication No. 02/080671 Japanese Laid-Open Patent Publication No. 10-464
  • An object of the present invention is to reduce the number of relatively expensive high-pressure resistant shut-off valves in a salt water desalination apparatus that obtains fresh water from salt water such as seawater and brine using a reverse osmosis membrane module, and high-pressure salt water And accidents where concentrated water flows into the cleaning pipe and bursts.
  • the present invention for solving the above problems has the following features (1) to (2).
  • a supply pump for boosting salt water In a salt water desalination apparatus comprising a reverse osmosis membrane module comprising a reverse osmosis membrane that separates pressurized salt water into fresh water and concentrated water, and a washing device for washing the reverse osmosis membrane module, At least a part of the pipe line connecting the supply pump and the reverse osmosis membrane module and / or at least a part of the pipe of the concentrated water discharged from the reverse osmosis membrane module is a detachable pipe, Salt water provided with a mechanism that allows the pipe on the upstream side of the reverse osmosis membrane module and / or the pipe of the concentrated water discharged from the reverse osmosis membrane module to be coupled with the cleaning device by removing the removable pipe Desalination equipment.
  • the detachable pipe since only the detachable pipe can be used instead of the switching valve in the salt water supply pipe or the switching valve in the concentrated water outlet pipe, the cost of the salt water desalination apparatus can be reduced. . Further, since the normal operation pipe and the cleaning pipe can be physically separated, it is possible to prevent an accident in which high-pressure salt water or concentrated water flows into the cleaning pipe and bursts.
  • FIG. 1 is a flow chart showing a salt water desalination apparatus (a case without an energy recovery apparatus) of the present invention.
  • FIG. 2 is a flow diagram showing the saltwater desalination apparatus of the present invention (case using a positive displacement energy recovery apparatus).
  • FIG. 3 is a flow diagram showing the saltwater desalination apparatus of the present invention (case using a turbine energy recovery apparatus).
  • FIG. 4 is a detailed view according to FIGS. 1 to 3 showing the removable pipe of the present invention.
  • FIG. 5 is a detailed view according to FIGS. 1 to 3 showing the removable pipe of the present invention.
  • FIG. 6 is a flowchart showing a conventional salt water desalination apparatus (a case without an energy recovery apparatus).
  • FIG. 7 is a flowchart showing a conventional salt water desalination apparatus (case using a positive displacement energy recovery apparatus).
  • FIG. 8 is a flowchart showing a conventional salt water desalination apparatus (case using a turbine type energy recovery apparatus).
  • the salt water desalination device in the case without an energy recovery device mainly includes a feed pump 1, a reverse osmosis membrane module 2 comprising a reverse osmosis membrane (RO membrane), one end coupled to a pretreatment facility, and the other end
  • the fresh water outlet 19 is connected to the fresh water outlet of the module, the other end is connected to the fresh water recovery facility, one end is connected to the concentrated water outlet of the reverse osmosis membrane module 2, and the other end is connected to the concentrated water
  • Reverse osmosis membrane module concentration The second reverse osmosis membrane module concentrated water outlet conduit 26, one end of which is coupled to the concentrated water throttle valve 25 and one end of which is coupled to the low pressure concentrated water conduit branching section 27, and one end of which is a low pressure concentrated water conduit.
  • Concentrated water discharge line 22 coupled to branch portion 27 and the other end coupled to concentrated water collection facility, cleaning tank 5 storing cleaning water, cleaning pump 6 supplying cleaning water to reverse osmosis membrane facility, cleaning one end
  • the wash water supply line 23 is connected to the wash water lead-out part of the tank 5 and passes through the wash pump 6 and the other end is connected to the reverse osmosis membrane module salt water supply pipe branch part 31, and one end is the low-pressure concentrated water pipe branch part.
  • wash water supply line 23 On valve 32, wash water supply line 23, It is on the washing water supply line shut-off valve 33 and the concentrated water discharge pipe 22 that are shut off during normal water production operation, and on the low-pressure concentrated water shut-off valve 29 that is shut off during washing and on the washing water return line 24. And a low-pressure washing water return shut-off valve 28 that shuts off during normal water production operation.
  • the flow of desalinating salt water using the salt water desalination apparatus in the case where there is no energy recovery device (FIG. 6) is typically as described below.
  • the salt water introduced from the pretreatment facility flows in from the salt water supply line 9 and is pressurized by the supply pump 1, and passes through the reverse osmosis membrane module salt water supply line 17 and the second reverse osmosis membrane module salt water supply line 18. Via, it is supplied to the salt water supply part of the reverse osmosis membrane module 2.
  • the salt water supply pipe cutoff valve 32 is opened and the cleaning water supply pipe cutoff valve 33 is closed so that salt water does not flow into the washing water supply pipe 23.
  • the water is separated into fresh water and concentrated water by the reverse osmosis membrane method, and the fresh water passes through the fresh water take-out pipeline 19 and is discharged to the fresh water recovery facility.
  • the concentrated water passes through the reverse osmosis membrane module concentrated water outlet conduit 20 and is depressurized by the concentrated water throttle valve 25, and then the second reverse osmosis membrane module concentrated water outlet conduit 26 and the concentrated water discharge conduit 22 are passed through. It is paid out to the concentrated water recovery facility.
  • the low-pressure concentrated water shut-off valve 29 is opened and the low-pressure wash water return shut-off valve 28 is closed so that the concentrated water does not flow into the wash water return conduit 24.
  • the flow for cleaning the reverse osmosis membrane module 2 in the case without the energy recovery device (FIG. 6) is typically as described below.
  • the washing water adjusted in the washing tank 5 is boosted to a necessary pressure by the washing pump 6, and passes through the washing water supply line 23 and the second reverse osmosis membrane module salt water supply line 18 to form a reverse osmosis membrane. Supplied to module 2.
  • the salt water supply line shut-off valve 32 is closed and the wash water supply line shut-off valve 33 is opened so that the wash water does not flow back to the reverse osmosis membrane module salt water supply pipe 17.
  • the salt water desalination apparatus in the case using the positive displacement energy recovery device mainly includes a supply pump 1, a reverse osmosis membrane module 2 comprising a reverse osmosis membrane (RO membrane), a positive displacement energy recovery device 3, and a booster pump. 4.
  • a supply pump 1 a reverse osmosis membrane module 2 comprising a reverse osmosis membrane (RO membrane), a positive displacement energy recovery device 3, and a booster pump.
  • One end is connected to the pretreatment facility, the other end is connected to the salt water supply pipe branching section 10, one end is connected to the salt water supply pipe branching section 10, and the other end is connected to the supply pump 1.
  • Combined supply pump suction line 11 one end is connected to supply pump 1, the other end is connected to supply pump discharge line connection part 16, and supply pump discharge line 12 is connected to salt water supply line branch part 10.
  • the other end is coupled to the positive displacement energy recovery device 3, the other end is coupled to the booster pump 4, and the other end is coupled to the booster pump 4.
  • positive displacement d In the rugie recovery device 3, the positive displacement energy recovery device salt water discharge line 14 connected to the positive displacement energy recovery device salt water suction line 13, one end is coupled to the booster pump 4, and the other end is coupled to the supply pump discharge line.
  • a reverse osmosis membrane module salt water having one end coupled to the supply pump discharge line coupling portion 16 and one end coupled to the reverse osmosis membrane module salt water supply pipeline branching portion 31.
  • One end is connected to the fresh water outlet of the reverse osmosis membrane module, the other end is connected to the fresh water recovery equipment 19, and one end is connected to the concentrated water outlet of the reverse osmosis membrane module 2.
  • the reverse osmosis membrane module concentrated water outlet pipe 20 is connected to the high pressure concentrated water pipe branching section 34 at the other end, one end is connected to the high pressure concentrated water pipe branching section 34, and the other end is connected to the positive displacement energy recovery device 3.
  • the concentrated water discharge line 22 connected to the suction line 21, the cleaning tank 5 for storing the cleaning water, the cleaning pump 6 for supplying the cleaning water to the reverse osmosis membrane facility, and one end to the cleaning water outlet of the cleaning tank 5
  • the wash water supply line 23 is connected to the reverse osmosis membrane module salt water supply line branch part 31 through the washing pump 6, the other end is connected to the high-pressure concentrated water line branch part 34, and the other end is connected through the washing pump 6.
  • washing tank 5 On the washing water return line 24 connected to the washing water return part, the reverse osmosis membrane module salt water supply line 17, and on the salt water supply line cutoff valve 32 and the washing water supply line 23 that are shut off during the washing operation. Further, the cleaning water supply pipe shut-off valve 33 that shuts off during normal water production operation, the high-pressure concentrated water shut-off valve 36 that shuts off at the time of washing on the energy recovery device concentrated water suction pipe 21, and the cleaning water return pipe A high pressure flush water return shut-off valve 35 is provided on the path 24 and shuts off during normal water production operation.
  • the flow of desalinating salt water using the salt water desalination apparatus in the case (FIG. 7) using the positive displacement energy recovery apparatus is typically as described below.
  • the salt water introduced from the pretreatment device flows in from the salt water supply line 9 and is branched to the supply pump suction line 11 and the positive displacement energy recovery apparatus salt water suction line 13 via the salt water supply line branching section 10.
  • the pressure of the concentrated water discharged from the reverse osmosis membrane module 2 through the reverse osmosis membrane module concentrated water extraction conduit 20 and the energy recovery device concentrated water suction conduit 21 by the pressure exchange action 3 is recovered, and the positive displacement
  • the booster pump 4 is supplied to the booster pump 4 for pressure increase via the energy recovery device salt water discharge line 14, and is further boosted by the booster pump 4.
  • the supply pump discharge pipe coupling unit 16 joins with the discharge water of the supply pump 1 and the second reverse osmosis membrane module salt water supply pipe 18 passes through the salt water supply unit of the reverse osmosis membrane module 2.
  • the salt water supplied to the reverse osmosis membrane module 2 is separated into fresh water and concentrated water by the reverse osmosis membrane method, and the fresh water is supplied from the fresh water outlet part of the reverse osmosis membrane module 2 to the fresh water recovery facility via the fresh water extraction line 19.
  • the concentrated water is discharged and discharged from the concentrated water outlet portion of the reverse osmosis membrane module 2 through the reverse osmosis membrane module concentrated water extraction conduit 20.
  • the high-pressure concentrated water discharged from the reverse osmosis membrane module concentrated water outlet conduit 20 flows into the positive displacement energy recovery device 3 via the energy recovery device concentrated water suction conduit 21, and the pressure is positive as described above. It is used for boosting the salt water that flows in from the energy recovery device salt water suction pipe 13.
  • the low-pressure concentrated water whose pressure has been recovered flows out to the concentrated water collecting facility via the concentrated water discharge line 22.
  • the flow for cleaning the reverse osmosis membrane module 2 in the case (FIG. 7) using the positive displacement energy recovery device is typically as described below.
  • the washing water adjusted in the washing tank 5 is boosted to a necessary pressure by the washing pump 6, and passes through the washing water supply line 23 and the second reverse osmosis membrane module salt water supply line 18 to form a reverse osmosis membrane. Supplied to module 2.
  • the salt water supply line shut-off valve 32 is closed and the wash water supply line shut-off valve 33 is opened so that the wash water does not flow back to the reverse osmosis membrane module salt water supply pipe 17.
  • the salt water desalination apparatus in the case using the turbine type energy recovery device mainly includes a supply pump 1, a reverse osmosis membrane module 2 including a reverse osmosis membrane (RO membrane), a turbine type energy recovery device 37, and one end thereof.
  • the salt water supply line 9 is connected to the pretreatment facility, the other end is connected to the supply pump 1, one end is connected to the discharge part of the supply pump 1, and the other end is connected to the salt water booster of the turbine energy recovery device 37.
  • the reverse osmosis membrane module salt water supply pipeline branch 17 connected to the reverse osmosis membrane module salt water supply pipeline branch 31, one end coupled to the reverse osmosis membrane module salt water supply pipeline branch 31, and the other end of the reverse osmosis membrane module
  • a second reverse osmosis membrane module salt water supply line 18 coupled to the second salt water supply unit, one end coupled to the fresh water lead-out unit of the reverse osmosis membrane module, and the other end coupled to the fresh water recovery facility 19
  • One end of the reverse osmosis membrane module 2 is coupled to the concentrated water outlet and the other end is coupled to the high pressure concentrated water conduit branching portion 34, and one end is connected to the high pressure concentrated water conduit branching portion 34.
  • the energy recovery device concentrated water suction pipe 21 is connected to the concentrated energy pressure energy recovery unit of the turbine type energy recovery device 37, one end is connected to the turbine type energy recovery device 37, and the other end is concentrated.
  • the concentrated water discharge conduit 22 connected to the energy recovery device concentrated water suction conduit 21, the cleaning tank 5 for storing cleaning water, and the cleaning water Washing pump 6 for supplying to the reverse osmosis membrane equipment, one end is connected to the washing water outlet of the washing tank 5 and the other end is connected to the reverse osmosis membrane module salt water supply line via the washing pump 6 Wash water supply line 23 connected to the branch 31, one end connected to the high-pressure concentrated water pipe branch 34, and the other end connected to the wash water return part 24 of the wash tank 5, the reverse osmosis membrane module A salt water supply line shut-off valve 32 that is on the salt water supply pipe 17 and shuts off during the cleaning operation, and a wash water supply pipe shut-off valve 33 that is on the wash water supply pipe 23 and shuts
  • the flow of desalinating salt water using the salt water desalination apparatus in the case (FIG. 8) using the turbine type energy recovery apparatus is typically as described below.
  • the salt water introduced from the pretreatment device flows in from the salt water supply line 9, is pressurized by the supply pump 1, and is further pressurized by the turbine-type energy recovery device 37 using the power recovered from the pressure energy of the concentrated water,
  • the reverse osmosis membrane module salt water supply pipe 17 and the second reverse osmosis membrane module salt water supply pipe 18 are supplied to the salt water supply unit of the reverse osmosis membrane module 2.
  • the salt water supplied to the reverse osmosis membrane module 2 is separated into fresh water and concentrated water by the reverse osmosis membrane method, and the fresh water is supplied from the fresh water outlet part of the reverse osmosis membrane module 2 to the fresh water recovery facility via the fresh water extraction line 19.
  • the concentrated water is discharged and discharged from the concentrated water outlet portion of the reverse osmosis membrane module 2 through the reverse osmosis membrane module concentrated water extraction conduit 20.
  • the high-pressure concentrated water discharged from the reverse osmosis membrane module concentrated water outlet conduit 20 flows into the turbine type energy recovery device 37 via the energy recovery device concentrated water suction conduit 21, and the pressure is reverse osmosis as described above. It is used for boosting the salt water in the membrane module salt water supply line 17.
  • the low-pressure concentrated water whose pressure has been recovered flows into the concentrated water collection facility via the concentrated water discharge line 22.
  • the flow for cleaning the reverse osmosis membrane module 2 in the case (FIG. 8) using the turbine type energy recovery device is typically as described below.
  • the washing water adjusted in the washing tank 5 is boosted to a necessary pressure by the washing pump 6, and passes through the washing water supply line 23 and the second reverse osmosis membrane module salt water supply line 18 to form a reverse osmosis membrane. Supplied to module 2.
  • the salt water supply line shut-off valve 32 is closed and the wash water supply line shut-off valve 33 is opened so that the wash water does not flow back to the reverse osmosis membrane module salt water supply pipe 17.
  • the salt water introduced from the pre-treatment facility is usually pre-treated before being treated by the reverse osmosis membrane module 2, and can be preferably employed in the salt water desalination apparatus of the present invention.
  • the position where the pretreatment equipment is introduced is usually in the salt water supply pipe 9, and the pretreatment equipment is introduced into the salt water supply pipe 9 in any of FIGS. 1 to 3 and 6 to 8.
  • precision membrane filtration or ultramembrane filtration, activated carbon filtration, a safety filter, etc. are used as pretreatment equipment.
  • medical solution additions such as a disinfectant, a flocculant, a reducing agent, pH adjuster, a scale inhibitor, can be performed as needed.
  • the portions made of the high pressure material in the cases of FIGS. 6 to 8 are the reverse osmosis membrane module salt water supply pipe 17 and the second reverse osmosis membrane module salt water supply pipe in the case without the energy recovery device (FIG. 6).
  • the section from the washing water supply line shut-off valve 33 on the washing water supply line 23 to the reverse osmosis membrane module salt water supply line branch part 31 also needs to be made of a high pressure material.
  • washing water supply pipe cutoff valve 33 on the washing water supply pipe 23 to the reverse osmosis membrane module salt water supply pipe branching section 31, and a high-pressure washing water return cutoff valve 35 on the washing water return pipe 24.
  • To the high pressure concentrated water pipe branching section 34 also needs to be made of a high pressure material.
  • the reverse osmosis membrane module salt water supply line 17 the second reverse osmosis membrane module salt water supply line 18
  • the reverse osmosis membrane module concentrated water extraction line 20 the energy The recovery device concentrated water suction line 21, the salt water supply line cutoff valve 32, the washing water supply line cutoff valve 33, the high pressure washing water return cutoff valve 35, the high pressure concentrated water cutoff valve 36, and related valves not shown in the figure, These are the supply pump 1, the turbine type energy recovery device 37, and the reverse osmosis membrane module 2.
  • washing water supply pipe cutoff valve 33 on the washing water supply pipe 23 to the reverse osmosis membrane module salt water supply pipe branching section 31, and a high-pressure washing water return cutoff valve 35 on the washing water return pipe 24.
  • To the high pressure concentrated water pipe branching section 34 also needs to be made of a high pressure material.
  • the parts made of the low-pressure material in each case of FIGS. 6 to 8 are the salt water supply line 9, the fresh water discharge line 19, and the second reverse osmosis membrane module concentrated water discharge line in the case without the energy recovery device (FIG. 6).
  • the salt water supply line 9 In the case using the positive displacement energy recovery device (FIG. 7), the salt water supply line 9, supply pump suction line 11, positive displacement energy recovery device salt water suction line 13, fresh water discharge line 19, and concentrated water discharge line. 22, a cleaning water supply pipe 23 upstream from the cleaning water supply pipe cutoff valve 33, a cleaning water return pipe 24 downstream from the high pressure washing water return cutoff valve 35, and related valves (not shown).
  • the wash water supply pipe upstream of the salt water supply pipe 9, the fresh water discharge pipe 19, the concentrated water discharge pipe 22, and the wash water supply pipe shut-off valve 33 is provided.
  • Stainless steel is an alloy steel that contains iron, chromium, nickel, molybdenum, nitrogen, copper, etc. in order to improve acid resistance in addition to pressure resistance, and austenitic (for example, 304, 304L, 316, 316L, 317, 317L, 904L) and austenitic ferrite (for example, 254 SMO254, 2205, 2507, Zeron 100, 329), and any of these stainless steel alloys may be used in the present invention.
  • austenitic for example, 304, 304L, 316, 316L, 317, 317L, 904L
  • austenitic ferrite for example, 254 SMO254, 2205, 2507, Zeron 100, 329
  • Plastic materials include fluororesins such as vinyl chloride, polypropylene, polyester, and polyvinylidene fluoride, polytetrafluoroethylene, and tetrafluoroethylene polymers that have saltwater corrosion resistance. Any of these plastic materials is used in the present invention. May be. Moreover, you may use the lining steel pipe which lined or coated the above-mentioned plastic material on the inner surface of a steel pipe so that salt water and a steel pipe may not contact directly. Further, stainless steel described as the above-described high pressure material may be used as the low pressure material.
  • the supply pump 1 is a pump made of the above-described high-pressure material, and there are various types.
  • the type is particularly limited as long as the desired pressure and flow rate can be obtained.
  • a piston type pump such as a plunger pump, a centrifugal pump, a centrifugal pump, a multistage centrifugal pump, or the like can be used according to the purpose.
  • the salt water referred to in the present invention is a generic term for salt-containing water, and a relatively low concentration salt water generally called brine with a chlorine ion concentration of about 300 to 15,000 mg / l, or a chlorine ion concentration of 15,000 or more. It refers to a relatively high concentration of salt water, generally called seawater, of about 40,000 mg / l.
  • the reverse osmosis membrane used in the reverse osmosis membrane module 2 according to the present invention is a semipermeable membrane that allows some components of the supply liquid, for example, salt to permeate and does not allow other components to permeate.
  • the material can be a polymer material such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer.
  • membrane forms include hollow fiber membranes and flat membranes. In this invention, it can utilize regardless of the raw material and membrane form of a reverse osmosis membrane.
  • the reverse osmosis membrane element is a form for practical use of the above reverse osmosis membrane. It is incorporated into a flat membrane, spiral, tubular, plate and frame element, and the hollow fiber membrane is bundled. However, in the present invention, it does not depend on the form of these reverse osmosis membrane elements.
  • a reverse osmosis membrane module is a module in which one to several reverse osmosis membrane elements described above are housed in a pressure vessel arranged in parallel, and the combination, number and arrangement thereof can be arbitrarily determined according to the purpose. .
  • the energy recovery device is a so-called high-pressure pump integrated type in which the liquid discharged from the discharge side of the high-pressure pump directly flows into the energy recovery device, and a part of the supply water flows into the high-pressure pump and the remaining part of the energy recovery device
  • the positive displacement energy recovery device 3 used in the present invention part of the salt water that flows in from the salt water supply line 9 flows into the supply pump 1 and remains. Is the above-described high-pressure pump separation type energy recovery device in which part of the gas flows into the positive displacement energy recovery device 3.
  • the turbine type energy recovery device used in the present invention boosts the total amount of salt water flowing in from the salt water supply line 9 except for a portion that is diverted for supply to a sample or a water quality measuring instrument by the supply pump 1.
  • the high-pressure pump-integrated energy recovery device is further boosted by a turbine type energy recovery device.
  • a turbine type energy recovery apparatus you may use the type of energy recovery apparatus which converts the pressure energy of concentrated water into rotational power with a turbine or a water turbine, and rotates the motor shaft of the direct supply pump 1 auxiliary.
  • the material of the positive displacement energy recovery device 3 and the turbine energy recovery device 37 includes various stainless steel and / or ceramic material parts, and the stainless steel materials are 304, 304L, 316, 316L, 317, Ceramic materials include alumina, aluminum oxide, silicon carbide, silicon nitride, zirconia, aluminum nitride, etc., such as 317L, 904L, 254SMO, 2205, 2507, Zeron 100, 329, etc.
  • the booster pump 4 is a pump made of the above-described high-pressure material, and the reverse flow from the booster pump discharge line 15 and the supply pump discharge line connection part 16 to the salt water supply part of the reverse osmosis membrane module 2 at the design flow rate.
  • a piston type pump such as a plunger pump, a centrifugal pump, a centrifugal pump, a multistage centrifugal pump It can be used in accordance with the appropriate object flop.
  • a filter is installed in any of the washing water return pipe 24 and the washing water supply pipe 23 extending from the washing tank 5 to the reverse osmosis membrane module salt water supply pipe branching section 31. May be.
  • the second reverse osmosis membrane module salt water supply line 18, the reverse osmosis membrane module salt water supply line 17, or the washing water supply line In order to selectively switch 23, a removable pipe 7 having a removable pipe connection joint 8 at both ends is used.
  • the salt water supply line cutoff valve 32 and the washing water supply line cutoff valve 33 using a high pressure material can be dispensed with.
  • a washing water return conduit 24 may be provided.
  • FIG. 4 and 5 are detailed views of the removable pipe 7 having the removable pipe connection joints 8 at both ends.
  • FIG. 4 shows a connection state during normal operation, and shows a state in which the reverse osmosis membrane module salt water supply pipe 17 and the second reverse osmosis membrane module salt water supply pipe 18 are connected.
  • FIG. 5 shows a connection state at the time of cleaning, and shows a state in which the cleaning water supply line 23 and the second reverse osmosis membrane module salt water supply line 18 are connected.
  • the work table 30 can be installed in consideration of workability at the time of switching when the removable pipe 7 is heavy. 4 and 5, it is described that the normal operation and the cleaning operation are switched by changing the direction of the same removable pipe 7, but the removable pipes having different shapes and materials are connected to each connection. 7 may be prepared.
  • detachable pipe connection joint 8 There is no need to stick to the detachable pipe connection joint 8 as long as it is a type that allows the detachable pipe 7 to be easily removed.
  • the groove type joint (victolic joint), union coupling, flange joint, and screw joint Various joints can be used.
  • the wash water supply pipe shut-off valve 33 on the wash water supply pipe 23 or the high-pressure wash water return shut-off valve 35 on the wash water return pipe 24 is in normal operation.
  • high-pressure salt water or concentrated water of about 1 to 10 MPa flows into the washing water supply pipe 23 and the washing water return pipe 24 composed of low-pressure materials.
  • the configured cleaning line may burst.
  • the detachable pipe since only the detachable pipe can be used instead of the switching valve in the salt water supply pipe or the switching valve in the concentrated water outlet pipe, the cost of the salt water desalination apparatus can be reduced. . Further, since the normal operation pipe and the cleaning pipe can be physically separated, it is possible to prevent an accident in which high-pressure salt water or concentrated water flows into the cleaning pipe and bursts.

Abstract

The present invention relates to a salt water desalination apparatus comprising a supply pump for pressurizing salt water, a reverse osmosis membrane module composed of a reverse osmosis membrane for separating the pressurized salt water into fresh water and concentrated water, and a washing device for washing the reverse osmosis membrane; wherein the salt water desalination apparatus further comprises a mechanism in which at least part of a pipeline connecting the supply pump and the reverse osmosis membrane module, and/or at least part of a pipeline for the concentrated water discharged from the reverse osmosis membrane module, is composed of removable piping; and removing the removable piping enables the pipeline upstream of the reverse osmosis membrane module, and/or the pipeline for the concentrated water discharged from the reverse osmosis membrane module, to be connected with the washing device.

Description

塩水淡水化装置Salt water desalination equipment
 本発明は、逆浸透膜モジュールを用いて塩水から淡水を得る塩水淡水化装置に関するものであって、詳しくは、該逆浸透膜モジュールを洗浄する洗浄水の注入方法に特徴を有する塩水淡水化装置に関するものである。 The present invention relates to a salt water desalination apparatus for obtaining fresh water from salt water using a reverse osmosis membrane module, and more specifically, a salt water desalination apparatus characterized by a method of injecting wash water for washing the reverse osmosis membrane module. It is about.
 逆浸透膜法による海水淡水化及びかん水淡水化は、相変化無しに塩分や有害物質を分離除去でき、運転管理が容易でエネルギー的に有利であることから、飲料用或いは工業用の淡水を取得する分野で利用されている。逆浸透膜の透過性、分離性の低下を防ぐために、通常、海水やかん水を逆浸透膜に供給する前に、砂ろ過、凝集沈殿、加圧浮上、精密ろ過膜と限外ろ過膜のろ過などの方法を用いて前処理を行った上で、さらに膜表面を定期的に洗浄する。 Seawater desalination and brine desalination using the reverse osmosis membrane method can separate and remove salinity and harmful substances without phase change, and are easy to manage and energy efficient. It is used in the field. To prevent reverse osmosis membrane permeability and separability from decreasing, sand filtration, coagulation sedimentation, pressurized flotation, microfiltration membrane and ultrafiltration membrane filtration are usually performed before supplying seawater or brine to the reverse osmosis membrane. In addition, the film surface is periodically cleaned after pretreatment using a method such as the above.
 膜表面の定期的な洗浄方法としては、亜硫酸水素ナトリウム、特殊な殺菌剤や硫酸による運転中の間欠洗浄に加え、一定期間の運転後に淡水化装置を停止させ、クエン酸による酸洗浄、及び、苛性ソーダによるアルカリ洗浄を行う定期洗浄などが挙げられる。 As a method of periodically cleaning the membrane surface, in addition to intermittent cleaning during operation with sodium bisulfite, special bactericides and sulfuric acid, the desalination apparatus is stopped after a certain period of operation, acid cleaning with citric acid, and Regular cleaning that performs alkali cleaning with caustic soda is included.
 間欠洗浄では、硫酸などの酸を間欠的に供給する殺菌方法が開発され(特許文献1)、多くのプラントで実用化されてきた。しかしながら、この間欠洗浄では、一時的に膜表面に付着した微生物層や金属イオンの析出物を除去することはできるが、間欠洗浄のみではこれら汚染物質の蓄積を完全に防止することはできず、いずれは設備を停止しての定期洗浄操作が必要となる。 In intermittent cleaning, a sterilization method for intermittently supplying an acid such as sulfuric acid has been developed (Patent Document 1) and has been put into practical use in many plants. However, this intermittent cleaning can remove the microbial layer and metal ion deposits temporarily attached to the membrane surface, but the intermittent cleaning alone cannot completely prevent the accumulation of these contaminants. Eventually, regular cleaning operations will be required with the equipment stopped.
 定期洗浄では、淡水化装置に併設され、洗浄水と洗浄薬品を混合及び備蓄する洗浄タンク、洗浄タンク内の洗浄水を該淡水化装置に送液するための洗浄ポンプ、及び、洗浄水中の粒子状物質を除去するためのフィルターから成る洗浄設備を用い、洗浄タンクにクエン酸又は苛性ソーダを投入し、クエン酸水溶液濃度1~3%若しくは苛性ソーダ水溶液pH10~12となるように溶解、希釈し、洗浄ポンプを用いて逆浸透膜モジュールに送液して行う。逆浸透膜を洗浄した洗浄水は、洗浄戻り配管を経由して洗浄タンクに循環する。 In the periodic cleaning, a cleaning tank is provided in the desalination apparatus to mix and store cleaning water and cleaning chemicals, a cleaning pump for sending cleaning water in the cleaning tank to the desalination apparatus, and particles in the cleaning water Washing equipment consisting of a filter to remove particulate matter, put citric acid or caustic soda into the washing tank, dissolve, dilute and wash to make citric acid aqueous solution concentration 1-3% or caustic soda aqueous solution pH 10-12 Liquid is sent to the reverse osmosis membrane module using a pump. The washing water that has washed the reverse osmosis membrane is circulated to the washing tank via the washing return pipe.
 逆浸透膜の透過原理から、海水またはかん水など、ある程度の塩分を含んだ供給水が逆浸透膜を透過するには、高圧ポンプなどを用いて供給水の圧力を浸透圧以上にする必要がある。浸透圧は塩分濃度と関係するが、例えば海水を逆浸透膜で分離する場合、最低3MPa程度以上、実用性を考慮すると少なくとも5MPa程度以上の圧力が必要となる。かん水の場合でも最低1MPa程度以上の圧力が必要となる。従って、淡水化装置において、圧力の高い液体が通る部分、すなわち、高圧ポンプと、高圧ポンプから逆浸透膜モジュールまでの配管と関連バルブ、及び逆浸透膜モジュールからの濃縮水の配管とバルブは、耐圧性のあるステンレス鋼を使用する。 Based on the permeation principle of reverse osmosis membranes, it is necessary to make the supply water pressure higher than the osmotic pressure using a high-pressure pump or the like so that the supply water containing a certain amount of salt, such as seawater or brine, can permeate the reverse osmosis membrane . The osmotic pressure is related to the salinity concentration. For example, when seawater is separated by a reverse osmosis membrane, a pressure of at least about 3 MPa or more and at least about 5 MPa is required in consideration of practicality. Even in the case of irrigation, a pressure of at least about 1 MPa is required. Therefore, in the desalination apparatus, the portion through which the high-pressure liquid passes, that is, the high-pressure pump, the piping and the related valve from the high-pressure pump to the reverse osmosis membrane module, and the concentrated water piping and valve from the reverse osmosis membrane module, Use pressure resistant stainless steel.
 しかし、ステンレス鋼の耐腐食性には限界がある。金属の腐食に影響する因子は様々であるが、根本的には金属が持つ電位と関係する。環境によって金属表面には異なる皮膜が生成されるが、その皮膜の性質によって電位は影響を受ける。ステンレス鋼は、濃硫酸、濃硝酸、塩素イオンを含まない淡水と中性溶液、アルカリ性溶液では表面に不動態皮膜が形成され、性質が安定となり腐食しにくい。しかし、塩酸、希硫酸、海水の中では不動態皮膜が形成されない或いは不安定となるため、腐食が発生する。塩素イオンを含む海水が酸性である環境では、ステンレス鋼の腐食はさらに促進される。実際の海水淡水化プラントで、高圧配管に一番多く使われるステンレス鋼316Lと317Lが数ヶ月後で腐食し始めたという実例も多数報告されている(例えば、非特許文献1など。)。希硫酸に耐える目的で開発された、耐腐食性のより強い904Lなどのステンレス鋼の場合でも隙間腐食が起きている(非特許文献2)。電位の異なる金属同士の接触も腐食に大きく影響する。淡水化装置には、配管と配管、配管とポンプの接続部分や溶接部分が多く存在するが、これらの部位で隙間腐食や孔食が発生しやすい。 However, there is a limit to the corrosion resistance of stainless steel. There are various factors that affect metal corrosion, but it is fundamentally related to the potential of the metal. Depending on the environment, different coatings are formed on the metal surface, but the potential is affected by the nature of the coating. Stainless steel has a passive film formed on its surface in fresh water, neutral solution, and alkaline solution that do not contain concentrated sulfuric acid, concentrated nitric acid, and chlorine ions, and its properties are stable and resistant to corrosion. However, since a passive film is not formed or becomes unstable in hydrochloric acid, dilute sulfuric acid, and seawater, corrosion occurs. In an environment where the seawater containing chloride ions is acidic, the corrosion of stainless steel is further accelerated. In actual seawater desalination plants, many examples have been reported that stainless steels 316L and 317L, which are most frequently used for high-pressure piping, began to corrode after several months (for example, Non-Patent Document 1). Crevice corrosion has occurred even in the case of stainless steel such as 904L, which has been developed for the purpose of enduring dilute sulfuric acid and has stronger corrosion resistance (Non-Patent Document 2). Contact between metals with different potentials also greatly affects corrosion. In the desalination apparatus, there are many pipes and pipes, pipes and pumps, and welded parts, but crevice corrosion and pitting corrosion are likely to occur at these parts.
 配管やポンプが腐食すると、前処理後の逆浸透膜への供給水の水質に悪影響を与えるだけでなく、場合によってはプラントを停止してメンテナンスする必要がある。よりメンテナンス性を高めるために、耐腐食性の極めて高い254SMOのような[ASTM A31254]や[UNS S31254]相当品のスーパー・オーステナイト・ステンレス鋼や二相ステンレス鋼などの高価な材質を採用するプラントも1990年代中頃から建設されている。しかし、これらの耐腐食性の高いステンレス鋼の価格は、通常316Lや317Lの2-3倍であるため、これらの耐腐食性の高いステンレス鋼を採用すると装置の設備費が高くなり、造水コストも高くなる。 ¡Corrosion of pipes and pumps not only adversely affects the quality of the water supplied to the reverse osmosis membrane after pretreatment, but in some cases it is necessary to stop and maintain the plant. Plants that use expensive materials such as [ASTM A31254] and [UNS S31254] equivalent super austenitic stainless steel and duplex stainless steel, such as 254SMO, which has extremely high corrosion resistance, in order to enhance maintainability. It has been built since the mid-1990s. However, the prices of these highly corrosion-resistant stainless steels are usually 2-3 times that of 316L and 317L, so the use of these highly corrosion-resistant stainless steels increases the equipment costs of the equipment, Cost is also high.
 淡水化装置において、ステンレス配管の腐食問題を抑制しようとする試みはいくつか行われている。例えば特許文献2では、スーパー・オーステナイト・ステンレス鋼またはチタン材等の耐食性材質からなる筒状の耐食性配管と、この内部管体を覆って設けられた耐圧性配管を有する金属製の耐圧性外殻と、この外殻管体と前記内部管体との間に充填されるプラスチック・セメント材等からなるシーリング材とを備えたコンポジット構造の配管を提案している。こういうアイデアで作られた配管は安価で堅牢とは言えるが、配管製造工程が複雑であり、かつ配管性能の安定性を評価する必要があるなど、実用化までに解決すべき課題は多い。もう一つ配管腐食問題に注目した特許文献3では、ポリカルボン酸等の有機酸を被処理液に添加することにより高圧配管の腐食抑制を図るものである。しかし、有機酸を添加することにより配管腐食はある程度抑制されるとしても、薬品使用費がかかりコストアップになること、また廃水中の有機物濃度が上昇し、場合によっては再処理する必要があり環境への負担が高くなる等の弱点がある。 Several attempts have been made to control the corrosion problem of stainless steel piping in desalination equipment. For example, in Patent Document 2, a metal pressure-resistant outer shell having a tubular corrosion-resistant pipe made of a corrosion-resistant material such as super austenite, stainless steel, or titanium material, and a pressure-resistant pipe provided to cover the inner tube body. And a pipe having a composite structure including a sealing material made of plastic, cement, or the like filled between the outer shell tube and the inner tube. Although it can be said that piping made with such an idea is inexpensive and robust, there are many problems to be solved before practical use, such as complicated piping manufacturing processes and the need to evaluate the stability of piping performance. In Patent Document 3, which pays attention to another pipe corrosion problem, an organic acid such as polycarboxylic acid is added to the liquid to be treated to suppress corrosion of the high-pressure pipe. However, even if pipe corrosion is suppressed to some extent by adding organic acid, the cost of using chemicals increases, and the concentration of organic substances in the wastewater increases. In some cases, it is necessary to reprocess the environment. There are weaknesses such as increasing the burden on
 洗浄設備と逆浸透膜設備とを接続する箇所については、できるだけ洗浄水の送液に抵抗となる機器を経由しないよう、逆浸透膜モジュールの直前から洗浄液体を注入し、洗浄タンクへの戻り配管は逆浸透膜モジュールの下流直後に接続(特許文献4)することが一般的である。そのため、洗浄液体注入箇所については、供給塩水と洗浄液体とを切り替える弁に、洗浄液体の戻り分岐箇所については、濃縮塩水と洗浄戻り液体とを切り替える弁に、それぞれ高耐圧性、及び高耐腐食性を有する弁を採用している。 At the location where the cleaning equipment and reverse osmosis membrane equipment are connected, inject the cleaning liquid immediately before the reverse osmosis membrane module so as not to go through the equipment that resists the flow of cleaning water as much as possible, and return piping to the cleaning tank Is generally connected immediately after the reverse osmosis membrane module (Patent Document 4). Therefore, the cleaning liquid injection point is a valve that switches between supply salt water and cleaning liquid, and the return branch point of the cleaning liquid is a valve that switches between concentrated salt water and cleaning return liquid. The valve which has the property is adopted.
 通常、洗浄設備と逆浸透膜設備とを接続する箇所に使用する弁については、ボール弁、グローブ弁、バタフライ弁など様々な形式の弁を使用することができるが、いずれの弁を用いても内漏れが発生する可能性がある。内漏れとは、弁座と弁体の僅かな隙間から、弁前後の高圧側から低圧側に流体が漏れ流れることを指す。洗浄設備と逆浸透膜設備を遮断する弁は、その前後の差圧が大きい上に、洗浄時の汚れ成分が弁座や弁体に付着することにより内漏れが発生しやすい。内漏れが発生すると、1~10MPa程度の圧力をもった塩水や濃縮水が、低圧材料で構成された洗浄設備に流入し、最悪の場合、配管、弁栓類や継ぎ手が破裂する可能性があった。この内漏れを防止する有効な対策方法は無く、弁を2重にして冗長化を図るか、内漏れが発生しても洗浄配管内が昇圧しないよう逃がし弁を設けるなどの対処療法しか無かった。 Normally, various types of valves such as ball valves, globe valves, butterfly valves can be used as the valves used for connecting the cleaning equipment and reverse osmosis membrane equipment. Internal leakage may occur. The internal leakage means that fluid flows from the high pressure side before and after the valve to the low pressure side through a slight gap between the valve seat and the valve body. The valve that shuts off the cleaning equipment and the reverse osmosis membrane equipment has a large differential pressure before and after that, and a leak component easily adheres to the valve seat and valve body during cleaning. When an internal leak occurs, salt water or concentrated water with a pressure of about 1 to 10 MPa flows into the cleaning equipment composed of low-pressure materials, and in the worst case, piping, valve plugs and joints may burst. there were. There are no effective countermeasures to prevent this internal leakage, and there were only coping treatments such as making the valve redundant by making it redundant, or providing a relief valve so that the pressure in the cleaning pipe does not increase even if internal leakage occurs. .
日本国特開2000-237555号公報Japanese Unexamined Patent Publication No. 2000-237555 日本国特開2001-137671号公報Japanese Patent Laid-Open No. 2001-137671 国際公開第02/080671号International Publication No. 02/080671 日本国特開平10-464号公報Japanese Laid-Open Patent Publication No. 10-464
 本発明の目的は、逆浸透膜モジュールを用いて海水やかん水などの塩水から淡水を得る塩水淡水化装置において、比較的高価な高圧耐性の遮断弁の数量を削減すること、および、高圧の塩水や濃縮水が洗浄配管に流入し破裂する事故を防ぐことである。 An object of the present invention is to reduce the number of relatively expensive high-pressure resistant shut-off valves in a salt water desalination apparatus that obtains fresh water from salt water such as seawater and brine using a reverse osmosis membrane module, and high-pressure salt water And accidents where concentrated water flows into the cleaning pipe and bursts.
 前記課題を解決するための本発明は、次の(1)~(2)の特徴を有するものである。
 (1)塩水を昇圧する供給ポンプ、
 昇圧された塩水を淡水と濃縮水とに分離する逆浸透膜からなる逆浸透膜モジュール、および
 逆浸透膜モジュールを洗浄するための洗浄装置
 を備えた塩水淡水化装置において、
 供給ポンプと逆浸透膜モジュールとを結合する管路の少なくとも一部、および/または、逆浸透膜モジュールから排出される濃縮水の管路の少なくとも一部が取り外し式の配管からなり、
 取り外し式の配管を取り外すことで、逆浸透膜モジュールの上流側の管路、および/または、逆浸透膜モジュールから排出される濃縮水の管路が洗浄装置と結合可能となる機構を備えた塩水淡水化装置。
 (2)前記取り外し式の配管と前記管路が溝式継ぎ手で結合されている、(1)に記載の塩水淡水化装置。
The present invention for solving the above problems has the following features (1) to (2).
(1) a supply pump for boosting salt water,
In a salt water desalination apparatus comprising a reverse osmosis membrane module comprising a reverse osmosis membrane that separates pressurized salt water into fresh water and concentrated water, and a washing device for washing the reverse osmosis membrane module,
At least a part of the pipe line connecting the supply pump and the reverse osmosis membrane module and / or at least a part of the pipe of the concentrated water discharged from the reverse osmosis membrane module is a detachable pipe,
Salt water provided with a mechanism that allows the pipe on the upstream side of the reverse osmosis membrane module and / or the pipe of the concentrated water discharged from the reverse osmosis membrane module to be coupled with the cleaning device by removing the removable pipe Desalination equipment.
(2) The salt water desalination apparatus according to (1), wherein the detachable pipe and the pipe line are joined by a grooved joint.
 本発明によれば、塩水供給管路における切り替え弁、あるいは、濃縮水導出管路における切り替え弁に換え、取り外し式の配管のみを用いることができるため、塩水淡水化装置におけるコスト削減が可能となる。また、物理的に通常運転配管と洗浄配管を切り離すことができるため、高圧の塩水や濃縮水が洗浄配管に流入し破裂する事故を未然に防ぐことができる。 According to the present invention, since only the detachable pipe can be used instead of the switching valve in the salt water supply pipe or the switching valve in the concentrated water outlet pipe, the cost of the salt water desalination apparatus can be reduced. . Further, since the normal operation pipe and the cleaning pipe can be physically separated, it is possible to prevent an accident in which high-pressure salt water or concentrated water flows into the cleaning pipe and bursts.
図1は、本発明の塩水淡水化装置(エネルギー回収装置の無いケース)を示すフロー図である。FIG. 1 is a flow chart showing a salt water desalination apparatus (a case without an energy recovery apparatus) of the present invention. 図2は、本発明の塩水淡水化装置(容積式エネルギー回収装置を用いたケース)を示すフロー図である。FIG. 2 is a flow diagram showing the saltwater desalination apparatus of the present invention (case using a positive displacement energy recovery apparatus). 図3は、本発明の塩水淡水化装置(タービン式エネルギー回収装置を用いたケース)を示すフロー図である。FIG. 3 is a flow diagram showing the saltwater desalination apparatus of the present invention (case using a turbine energy recovery apparatus). 図4は、本発明の取り外し式配管を示す図1~3に係る詳細図である。FIG. 4 is a detailed view according to FIGS. 1 to 3 showing the removable pipe of the present invention. 図5は、本発明の取り外し式配管を示す図1~3に係る詳細図である。FIG. 5 is a detailed view according to FIGS. 1 to 3 showing the removable pipe of the present invention. 図6は、従来の塩水淡水化装置(エネルギー回収装置の無いケース)を示すフロー図である。FIG. 6 is a flowchart showing a conventional salt water desalination apparatus (a case without an energy recovery apparatus). 図7は、従来の塩水淡水化装置(容積式エネルギー回収装置を用いたケース)を示すフロー図である。FIG. 7 is a flowchart showing a conventional salt water desalination apparatus (case using a positive displacement energy recovery apparatus). 図8は、従来の塩水淡水化装置(タービン式エネルギー回収装置を用いたケース)を示すフロー図である。FIG. 8 is a flowchart showing a conventional salt water desalination apparatus (case using a turbine type energy recovery apparatus).
 本発明の実施形態を説明するために、まず、従来の塩水淡水化装置における洗浄水供給管路の結合方法を比較例として、エネルギー回収装置の無いケース(図6)、容積式エネルギー回収装置を用いたケース(図7)、及びタービン式エネルギー回収装置を用いたケース(図8)について説明する。 In order to describe the embodiment of the present invention, first, as a comparative example of a method for combining cleaning water supply pipes in a conventional salt water desalination apparatus, a case without an energy recovery apparatus (FIG. 6), a positive displacement energy recovery apparatus The case (FIG. 7) used and the case (FIG. 8) using a turbine type energy recovery device will be described.
 エネルギー回収装置の無いケース(図6)の塩水淡水化装置は主に、供給ポンプ1、逆浸透膜(RO膜)からなる逆浸透膜モジュール2、一端が前処理設備に結合し、他端が供給ポンプ1に結合された塩水供給管路9、一端が供給ポンプ1に結合し、他端が逆浸透膜モジュール塩水供給管路分岐部31に結合した逆浸透膜モジュール塩水供給管路17、一端が逆浸透膜モジュール塩水供給管路分岐部31に結合し、他端が逆浸透膜モジュール2の塩水供給部に結合された第2の逆浸透膜モジュール塩水供給管路18、一端が逆浸透膜モジュールの淡水導出部に結合され、他端が淡水回収設備に結合した淡水取出管路19、一端が逆浸透膜モジュール2の濃縮水導出部に結合され、他端が濃縮水絞り弁25に結合された逆浸透膜モジュール濃縮水取出管路20、一端が濃縮水絞り弁25に結合され、他端が低圧濃縮水管路分岐部27に結合された第2の逆浸透膜モジュール濃縮水取出管路26、一端が低圧濃縮水管路分岐部27に結合され、他端が濃縮水収集設備に結合した濃縮水払出管路22、洗浄水を貯留する洗浄タンク5、洗浄水を逆浸透膜設備に供給する洗浄ポンプ6、一端を洗浄タンク5の洗浄水導出部に結合され、洗浄ポンプ6を経由し、他端が逆浸透膜モジュール塩水供給管路分岐部31に結合した洗浄水供給管路23、一端が低圧濃縮水管路分岐部27に結合し、他端が洗浄タンク5の洗浄水戻り部に結合した洗浄水戻り管路24、逆浸透膜モジュール塩水供給管路17上にあって、洗浄運転時に遮断する塩水供給管路遮断弁32、洗浄水供給管路23上にあって、通常の造水運転時に遮断する洗浄水供給管路遮断弁33、濃縮水払出管路22上にあって、洗浄時に遮断する低圧濃縮水遮断弁29、かつ、洗浄水戻り管路24上にあって、通常の造水運転時に遮断する低圧洗浄水戻り遮断弁28からなる。 The salt water desalination device in the case without an energy recovery device (Fig. 6) mainly includes a feed pump 1, a reverse osmosis membrane module 2 comprising a reverse osmosis membrane (RO membrane), one end coupled to a pretreatment facility, and the other end A salt water supply line 9 coupled to the supply pump 1, one end coupled to the supply pump 1, and one end coupled to the reverse osmosis membrane module salt water supply line branch 31, one end of the reverse osmosis membrane module salt water supply line 17, one end Is connected to the reverse osmosis membrane module salt water supply pipe branching portion 31 and the other end is connected to the salt water supply portion of the reverse osmosis membrane module 2, the second reverse osmosis membrane module salt water supply pipeline 18, one end is the reverse osmosis membrane The fresh water outlet 19 is connected to the fresh water outlet of the module, the other end is connected to the fresh water recovery facility, one end is connected to the concentrated water outlet of the reverse osmosis membrane module 2, and the other end is connected to the concentrated water throttle valve 25. Reverse osmosis membrane module concentration The second reverse osmosis membrane module concentrated water outlet conduit 26, one end of which is coupled to the concentrated water throttle valve 25 and one end of which is coupled to the low pressure concentrated water conduit branching section 27, and one end of which is a low pressure concentrated water conduit. Concentrated water discharge line 22 coupled to branch portion 27 and the other end coupled to concentrated water collection facility, cleaning tank 5 storing cleaning water, cleaning pump 6 supplying cleaning water to reverse osmosis membrane facility, cleaning one end The wash water supply line 23 is connected to the wash water lead-out part of the tank 5 and passes through the wash pump 6 and the other end is connected to the reverse osmosis membrane module salt water supply pipe branch part 31, and one end is the low-pressure concentrated water pipe branch part. 27 on the washing water return line 24 and the reverse osmosis membrane module salt water supply line 17 connected to the washing water return part of the washing tank 5 at the other end, and the salt water supply line shut off during the washing operation. On valve 32, wash water supply line 23, It is on the washing water supply line shut-off valve 33 and the concentrated water discharge pipe 22 that are shut off during normal water production operation, and on the low-pressure concentrated water shut-off valve 29 that is shut off during washing and on the washing water return line 24. And a low-pressure washing water return shut-off valve 28 that shuts off during normal water production operation.
 エネルギー回収装置の無いケース(図6)の塩水淡水化装置を用いて塩水を淡水化するフローは、典型的には次に述べる通りである。前処理設備から導入された塩水が塩水供給管路9から流入し、供給ポンプ1により加圧され、逆浸透膜モジュール塩水供給管路17、及び第2の逆浸透膜モジュール塩水供給管路18を経由して逆浸透膜モジュール2の塩水供給部に供給される。この際、塩水が洗浄水供給管路23に流入しないよう、塩水供給管路遮断弁32は開、洗浄水供給管路遮断弁33は閉としておく。逆浸透膜モジュール2にて、逆浸透膜法により淡水、及び濃縮水に分離され、淡水は淡水取出管路19を通り淡水回収設備へ払い出される。濃縮水は逆浸透膜モジュール濃縮水取出管路20を経由し、濃縮水絞り弁25で減圧された後、第2の逆浸透膜モジュール濃縮水取出管路26、及び濃縮水払出管路22を経由して濃縮水回収設備へ払い出される。この際、濃縮水が洗浄水戻り管路24に流入しないよう、低圧濃縮水遮断弁29は開、低圧洗浄水戻り遮断弁28は閉としておく。 The flow of desalinating salt water using the salt water desalination apparatus in the case where there is no energy recovery device (FIG. 6) is typically as described below. The salt water introduced from the pretreatment facility flows in from the salt water supply line 9 and is pressurized by the supply pump 1, and passes through the reverse osmosis membrane module salt water supply line 17 and the second reverse osmosis membrane module salt water supply line 18. Via, it is supplied to the salt water supply part of the reverse osmosis membrane module 2. At this time, the salt water supply pipe cutoff valve 32 is opened and the cleaning water supply pipe cutoff valve 33 is closed so that salt water does not flow into the washing water supply pipe 23. In the reverse osmosis membrane module 2, the water is separated into fresh water and concentrated water by the reverse osmosis membrane method, and the fresh water passes through the fresh water take-out pipeline 19 and is discharged to the fresh water recovery facility. The concentrated water passes through the reverse osmosis membrane module concentrated water outlet conduit 20 and is depressurized by the concentrated water throttle valve 25, and then the second reverse osmosis membrane module concentrated water outlet conduit 26 and the concentrated water discharge conduit 22 are passed through. It is paid out to the concentrated water recovery facility. At this time, the low-pressure concentrated water shut-off valve 29 is opened and the low-pressure wash water return shut-off valve 28 is closed so that the concentrated water does not flow into the wash water return conduit 24.
 エネルギー回収装置の無いケース(図6)の逆浸透膜モジュール2を洗浄するフローは、典型的には、次に述べる通りである。洗浄タンク5内で調整された洗浄水は、洗浄ポンプ6にて必要な圧力に昇圧され、洗浄水供給管路23と第2の逆浸透膜モジュール塩水供給管路18を経由して逆浸透膜モジュール2に供給される。この際、洗浄水が逆浸透膜モジュール塩水供給管路17に逆流しないよう、塩水供給管路遮断弁32は閉、洗浄水供給管路遮断弁33は開としておく。洗浄後の排水は、大部分が逆浸透膜モジュール2の濃縮水導出部から取り出され、逆浸透膜モジュール濃縮水取出管路20、第2の逆浸透膜モジュール濃縮水取出管路26、及び洗浄水戻り管路24を経由して洗浄タンク5に循環する。この際、洗浄後の洗浄水が濃縮水払出管路22に流出しないよう、低圧濃縮水遮断弁29は閉、低圧洗浄水戻り遮断弁28は開としておく。なお、一部、逆浸透膜モジュール2から淡水取出管路19に払い出される洗浄後の洗浄水は、淡水取出管路19上に設けられた分岐部から洗浄タンク5に循環させるが、本図では省略している。 The flow for cleaning the reverse osmosis membrane module 2 in the case without the energy recovery device (FIG. 6) is typically as described below. The washing water adjusted in the washing tank 5 is boosted to a necessary pressure by the washing pump 6, and passes through the washing water supply line 23 and the second reverse osmosis membrane module salt water supply line 18 to form a reverse osmosis membrane. Supplied to module 2. At this time, the salt water supply line shut-off valve 32 is closed and the wash water supply line shut-off valve 33 is opened so that the wash water does not flow back to the reverse osmosis membrane module salt water supply pipe 17. Most of the waste water after washing is taken out from the concentrated water outlet part of the reverse osmosis membrane module 2, and the reverse osmosis membrane module concentrated water extraction conduit 20, the second reverse osmosis membrane module concentrated water extraction conduit 26, and the cleaning It circulates through the water return line 24 to the washing tank 5. At this time, the low-pressure concentrated water shut-off valve 29 is closed and the low-pressure wash water return shut-off valve 28 is opened so that the washed water after washing does not flow into the concentrated water discharge pipe 22. In addition, a part of the washed water discharged from the reverse osmosis membrane module 2 to the fresh water extraction conduit 19 is circulated from the branch portion provided on the fresh water extraction conduit 19 to the cleaning tank 5. Omitted.
 容積式エネルギー回収装置を用いたケース(図7)の塩水淡水化装置は主に、供給ポンプ1、逆浸透膜(RO膜)からなる逆浸透膜モジュール2、容積式エネルギー回収装置3、ブースターポンプ4、一端が前処理設備に結合し、他端が塩水供給管路分岐部10に結合した塩水供給管路9、一端が塩水供給管路分岐部10に結合し、他端が供給ポンプ1に結合された供給ポンプ吸込管路11、一端が供給ポンプ1に結合し、他端が供給ポンプ吐出管路結合部16に結合された供給ポンプ吐出管路12、一端が塩水供給管路分岐部10に結合し、他端が容積式エネルギー回収装置3に結合された容積式エネルギー回収装置塩水吸込管路13、一端が容積式エネルギー回収装置3に結合し、他端がブースターポンプ4に結合され、かつ、容積式エネルギー回収装置3において、容積式エネルギー回収装置塩水吸込管路13に導通している容積式エネルギー回収装置塩水吐出管路14、一端がブースターポンプ4に結合し、他端が供給ポンプ吐出管路結合部16に結合されたブースターポンプ吐出管路15、一端が供給ポンプ吐出管路結合部16に結合され、他端が逆浸透膜モジュール塩水供給管路分岐部31に結合された逆浸透膜モジュール塩水供給管路17、一端が逆浸透膜モジュール塩水供給管路分岐部31に結合され、他端が逆浸透膜モジュール2の塩水供給部に結合された第2の逆浸透膜モジュール塩水供給管路18、一端が逆浸透膜モジュールの淡水導出部に結合され、他端が淡水回収設備に結合した淡水取出管路19、一端が逆浸透膜モジュール2の濃縮水導出部に結合され、他端が高圧濃縮水管路分岐部34に結合された逆浸透膜モジュール濃縮水取出管路20、一端が高圧濃縮水管路分岐部34に結合され、他端が容積式エネルギー回収装置3に結合されたエネルギー回収装置濃縮水吸込管路21、一端が容積式エネルギー回収装置3に結合され、他端が濃縮水収集設備に結合し、かつ、容積式エネルギー回収装置3において、エネルギー回収装置濃縮水吸込管路21に導通している濃縮水払出管路22、洗浄水を貯留する洗浄タンク5、洗浄水を逆浸透膜設備に供給する洗浄ポンプ6、一端を洗浄タンク5の洗浄水導出部に結合され、洗浄ポンプ6を経由し、他端が逆浸透膜モジュール塩水供給管路分岐部31に結合した洗浄水供給管路23、一端が高圧濃縮水管路分岐部34に結合し、他端が洗浄タンク5の洗浄水戻り部に結合した洗浄水戻り管路24、逆浸透膜モジュール塩水供給管路17上にあって、洗浄運転時に遮断する塩水供給管路遮断弁32、洗浄水供給管路23上にあって、通常の造水運転時に遮断する洗浄水供給管路遮断弁33、エネルギー回収装置濃縮水吸込管路21上にあって、洗浄時に遮断する高圧濃縮水遮断弁36、かつ、洗浄水戻り管路24上にあって、通常の造水運転時に遮断する高圧洗浄水戻り遮断弁35からなる。 The salt water desalination apparatus in the case using the positive displacement energy recovery device (FIG. 7) mainly includes a supply pump 1, a reverse osmosis membrane module 2 comprising a reverse osmosis membrane (RO membrane), a positive displacement energy recovery device 3, and a booster pump. 4. One end is connected to the pretreatment facility, the other end is connected to the salt water supply pipe branching section 10, one end is connected to the salt water supply pipe branching section 10, and the other end is connected to the supply pump 1. Combined supply pump suction line 11, one end is connected to supply pump 1, the other end is connected to supply pump discharge line connection part 16, and supply pump discharge line 12 is connected to salt water supply line branch part 10. The other end is coupled to the positive displacement energy recovery device 3, the other end is coupled to the booster pump 4, and the other end is coupled to the booster pump 4. And positive displacement d In the rugie recovery device 3, the positive displacement energy recovery device salt water discharge line 14 connected to the positive displacement energy recovery device salt water suction line 13, one end is coupled to the booster pump 4, and the other end is coupled to the supply pump discharge line. A reverse osmosis membrane module salt water having one end coupled to the supply pump discharge line coupling portion 16 and one end coupled to the reverse osmosis membrane module salt water supply pipeline branching portion 31. The second reverse osmosis membrane module salt water supply line 18, one end of which is connected to the reverse osmosis membrane module salt water supply line branching portion 31 and the other end is connected to the salt water supply portion of the reverse osmosis membrane module 2. , One end is connected to the fresh water outlet of the reverse osmosis membrane module, the other end is connected to the fresh water recovery equipment 19, and one end is connected to the concentrated water outlet of the reverse osmosis membrane module 2. The reverse osmosis membrane module concentrated water outlet pipe 20 is connected to the high pressure concentrated water pipe branching section 34 at the other end, one end is connected to the high pressure concentrated water pipe branching section 34, and the other end is connected to the positive displacement energy recovery device 3. The energy recovery device concentrated water suction pipe 21, one end is coupled to the positive displacement energy recovery device 3, the other end is coupled to the concentrated water collection facility, and in the positive displacement energy recovery device 3, the energy recovery device concentrated water The concentrated water discharge line 22 connected to the suction line 21, the cleaning tank 5 for storing the cleaning water, the cleaning pump 6 for supplying the cleaning water to the reverse osmosis membrane facility, and one end to the cleaning water outlet of the cleaning tank 5 The wash water supply line 23 is connected to the reverse osmosis membrane module salt water supply line branch part 31 through the washing pump 6, the other end is connected to the high-pressure concentrated water line branch part 34, and the other end is connected through the washing pump 6. Washing tank 5 On the washing water return line 24 connected to the washing water return part, the reverse osmosis membrane module salt water supply line 17, and on the salt water supply line cutoff valve 32 and the washing water supply line 23 that are shut off during the washing operation. Further, the cleaning water supply pipe shut-off valve 33 that shuts off during normal water production operation, the high-pressure concentrated water shut-off valve 36 that shuts off at the time of washing on the energy recovery device concentrated water suction pipe 21, and the cleaning water return pipe A high pressure flush water return shut-off valve 35 is provided on the path 24 and shuts off during normal water production operation.
 容積式エネルギー回収装置を用いたケース(図7)の塩水淡水化装置を用いて塩水を淡水化するフローは、典型的には次に述べる通りである。前処理装置から導入された塩水が塩水供給管路9から流入し、塩水供給管路分岐部10を介して供給ポンプ吸込管路11と容積式エネルギー回収装置塩水吸込管路13とに分岐され、一部は供給ポンプ吸込管路11に入り供給ポンプ1により加圧され、残りは容積式エネルギー回収装置塩水吸込管路13を経由して容積式エネルギー回収装置3に流入し、容積式エネルギー回収装置3の圧力交換作用により逆浸透膜モジュール2から逆浸透膜モジュール濃縮水取出管路20、及びエネルギー回収装置濃縮水吸込管路21を経由して排出される濃縮水の圧力を回収し、容積式エネルギー回収装置塩水吐出管路14を経由して圧力昇圧用のブースターポンプ4に供給され、さらにブースターポンプ4の昇圧作用によりブースターポンプ吐出管路15を経由して供給ポンプ吐出管路結合部16にて上記供給ポンプ1の吐出水と合流し、第2の逆浸透膜モジュール塩水供給管路18を経由して逆浸透膜モジュール2の塩水供給部に供給される。逆浸透膜モジュール2に供給された塩水は、逆浸透膜法により淡水と濃縮水とに分離され、淡水は逆浸透膜モジュール2の淡水導出部より淡水取出管路19を介して淡水回収設備に払い出され、濃縮水は逆浸透膜モジュール2の濃縮水導出部より逆浸透膜モジュール濃縮水取出管路20を介して排出される。逆浸透膜モジュール濃縮水取出管路20から排出された高圧の濃縮水はエネルギー回収装置濃縮水吸込管路21を経由して容積式エネルギー回収装置3に流入し、その圧力が前述の通り容積式エネルギー回収装置塩水吸込管路13より流入した塩水の昇圧に利用される。圧力を回収された低圧の濃縮水は濃縮水払出管路22を介して濃縮水収集設備へ流出する。 The flow of desalinating salt water using the salt water desalination apparatus in the case (FIG. 7) using the positive displacement energy recovery apparatus is typically as described below. The salt water introduced from the pretreatment device flows in from the salt water supply line 9 and is branched to the supply pump suction line 11 and the positive displacement energy recovery apparatus salt water suction line 13 via the salt water supply line branching section 10. A part enters the supply pump suction line 11 and is pressurized by the supply pump 1, and the rest flows into the positive displacement energy recovery apparatus 3 via the positive displacement energy recovery apparatus salt water suction line 13, and the positive displacement energy recovery apparatus The pressure of the concentrated water discharged from the reverse osmosis membrane module 2 through the reverse osmosis membrane module concentrated water extraction conduit 20 and the energy recovery device concentrated water suction conduit 21 by the pressure exchange action 3 is recovered, and the positive displacement The booster pump 4 is supplied to the booster pump 4 for pressure increase via the energy recovery device salt water discharge line 14, and is further boosted by the booster pump 4. The supply pump discharge pipe coupling unit 16 joins with the discharge water of the supply pump 1 and the second reverse osmosis membrane module salt water supply pipe 18 passes through the salt water supply unit of the reverse osmosis membrane module 2. To be supplied. The salt water supplied to the reverse osmosis membrane module 2 is separated into fresh water and concentrated water by the reverse osmosis membrane method, and the fresh water is supplied from the fresh water outlet part of the reverse osmosis membrane module 2 to the fresh water recovery facility via the fresh water extraction line 19. The concentrated water is discharged and discharged from the concentrated water outlet portion of the reverse osmosis membrane module 2 through the reverse osmosis membrane module concentrated water extraction conduit 20. The high-pressure concentrated water discharged from the reverse osmosis membrane module concentrated water outlet conduit 20 flows into the positive displacement energy recovery device 3 via the energy recovery device concentrated water suction conduit 21, and the pressure is positive as described above. It is used for boosting the salt water that flows in from the energy recovery device salt water suction pipe 13. The low-pressure concentrated water whose pressure has been recovered flows out to the concentrated water collecting facility via the concentrated water discharge line 22.
 容積式エネルギー回収装置を用いたケース(図7)の逆浸透膜モジュール2を洗浄するフローは、典型的には、次に述べる通りである。洗浄タンク5内で調整された洗浄水は、洗浄ポンプ6にて必要な圧力に昇圧され、洗浄水供給管路23と第2の逆浸透膜モジュール塩水供給管路18を経由して逆浸透膜モジュール2に供給される。この際、洗浄水が逆浸透膜モジュール塩水供給管路17に逆流しないよう、塩水供給管路遮断弁32は閉、洗浄水供給管路遮断弁33は開としておく。洗浄後の排水は、大部分が逆浸透膜モジュール2の濃縮水導出部から取り出され、逆浸透膜モジュール濃縮水取出管路20、及び洗浄水戻り管路24を経由して洗浄タンク5に循環する。この際、洗浄後の洗浄水がエネルギー回収装置濃縮水吸込管路21に流出しないよう、高圧洗浄水戻り遮断弁35は開、高圧濃縮水遮断弁36は閉としておく。なお、一部、逆浸透膜モジュール2から淡水取出管路19に払い出される洗浄後の洗浄水は、淡水取出管路19上に設けられた分岐部から洗浄タンク5に循環させるが、本図では省略している。 The flow for cleaning the reverse osmosis membrane module 2 in the case (FIG. 7) using the positive displacement energy recovery device is typically as described below. The washing water adjusted in the washing tank 5 is boosted to a necessary pressure by the washing pump 6, and passes through the washing water supply line 23 and the second reverse osmosis membrane module salt water supply line 18 to form a reverse osmosis membrane. Supplied to module 2. At this time, the salt water supply line shut-off valve 32 is closed and the wash water supply line shut-off valve 33 is opened so that the wash water does not flow back to the reverse osmosis membrane module salt water supply pipe 17. Most of the waste water after washing is taken out from the concentrated water outlet part of the reverse osmosis membrane module 2 and circulated to the washing tank 5 via the reverse osmosis membrane module concentrated water extraction pipe line 20 and the washing water return pipe line 24. To do. At this time, the high pressure washing water return shut-off valve 35 is opened and the high pressure concentrated water shut-off valve 36 is closed so that the wash water after washing does not flow into the energy recovery device concentrated water suction pipe 21. In addition, a part of the washed water discharged from the reverse osmosis membrane module 2 to the fresh water extraction conduit 19 is circulated from the branch portion provided on the fresh water extraction conduit 19 to the cleaning tank 5. Omitted.
 タービン式エネルギー回収装置を用いたケース(図8)の塩水淡水化装置は主に、供給ポンプ1、逆浸透膜(RO膜)からなる逆浸透膜モジュール2、タービン式エネルギー回収装置37、一端が前処理設備に結合し、他端が供給ポンプ1に結合した塩水供給管路9、一端が供給ポンプ1の吐出部に結合し、他端がタービン式エネルギー回収装置37の塩水昇圧部を経由し、逆浸透膜モジュール塩水供給管路分岐部31に結合された逆浸透膜モジュール塩水供給管路17、一端が逆浸透膜モジュール塩水供給管路分岐部31に結合され、他端が逆浸透膜モジュール2の塩水供給部に結合された第2の逆浸透膜モジュール塩水供給管路18、一端が逆浸透膜モジュールの淡水導出部に結合され、他端が淡水回収設備に結合した淡水取出管路19、一端が逆浸透膜モジュール2の濃縮水導出部に結合され、他端が高圧濃縮水管路分岐部34に結合された逆浸透膜モジュール濃縮水取出管路20、一端が高圧濃縮水管路分岐部34に結合され、他端がタービン式エネルギー回収装置37の濃縮水圧力エネルギー回収部に結合されたエネルギー回収装置濃縮水吸込管路21、一端がタービン式エネルギー回収装置37に結合され、他端が濃縮水収集設備に結合し、かつ、タービン式エネルギー回収装置37において、エネルギー回収装置濃縮水吸込管路21に導通している濃縮水払出管路22、洗浄水を貯留する洗浄タンク5、洗浄水を逆浸透膜設備に供給する洗浄ポンプ6、一端を洗浄タンク5の洗浄水導出部に結合され、洗浄ポンプ6を経由し、他端が逆浸透膜モジュール塩水供給管路分岐部31に結合した洗浄水供給管路23、一端が高圧濃縮水管路分岐部34に結合し、他端が洗浄タンク5の洗浄水戻り部に結合した洗浄水戻り管路24、逆浸透膜モジュール塩水供給管路17上にあって、洗浄運転時に遮断する塩水供給管路遮断弁32、洗浄水供給管路23上にあって、通常の造水運転時に遮断する洗浄水供給管路遮断弁33、エネルギー回収装置濃縮水吸込管路21上にあって、洗浄時に遮断する高圧濃縮水遮断弁36、かつ、洗浄水戻り管路24上にあって、通常の造水運転時に遮断する高圧洗浄水戻り遮断弁35からなる。 The salt water desalination apparatus in the case using the turbine type energy recovery device (FIG. 8) mainly includes a supply pump 1, a reverse osmosis membrane module 2 including a reverse osmosis membrane (RO membrane), a turbine type energy recovery device 37, and one end thereof. The salt water supply line 9 is connected to the pretreatment facility, the other end is connected to the supply pump 1, one end is connected to the discharge part of the supply pump 1, and the other end is connected to the salt water booster of the turbine energy recovery device 37. The reverse osmosis membrane module salt water supply pipeline branch 17 connected to the reverse osmosis membrane module salt water supply pipeline branch 31, one end coupled to the reverse osmosis membrane module salt water supply pipeline branch 31, and the other end of the reverse osmosis membrane module A second reverse osmosis membrane module salt water supply line 18 coupled to the second salt water supply unit, one end coupled to the fresh water lead-out unit of the reverse osmosis membrane module, and the other end coupled to the fresh water recovery facility 19 One end of the reverse osmosis membrane module 2 is coupled to the concentrated water outlet and the other end is coupled to the high pressure concentrated water conduit branching portion 34, and one end is connected to the high pressure concentrated water conduit branching portion 34. The energy recovery device concentrated water suction pipe 21 is connected to the concentrated energy pressure energy recovery unit of the turbine type energy recovery device 37, one end is connected to the turbine type energy recovery device 37, and the other end is concentrated. In the turbine type energy recovery device 37 coupled to the water collection facility, the concentrated water discharge conduit 22 connected to the energy recovery device concentrated water suction conduit 21, the cleaning tank 5 for storing cleaning water, and the cleaning water Washing pump 6 for supplying to the reverse osmosis membrane equipment, one end is connected to the washing water outlet of the washing tank 5 and the other end is connected to the reverse osmosis membrane module salt water supply line via the washing pump 6 Wash water supply line 23 connected to the branch 31, one end connected to the high-pressure concentrated water pipe branch 34, and the other end connected to the wash water return part 24 of the wash tank 5, the reverse osmosis membrane module A salt water supply line shut-off valve 32 that is on the salt water supply pipe 17 and shuts off during the cleaning operation, and a wash water supply pipe shut-off valve 33 that is on the wash water supply pipe 23 and shuts off during the normal water production operation. The high-pressure concentrated water shut-off valve 36 on the energy recovery device concentrated water suction pipe 21 and shut off at the time of washing, and the high-pressure washing water on the washing water return pipe 24 and cut off at the time of normal fresh water generation operation. It consists of a return shut-off valve 35.
 タービン式エネルギー回収装置を用いたケース(図8)の塩水淡水化装置を用いて塩水を淡水化するフローは、典型的には次に述べる通りである。前処理装置から導入された塩水が塩水供給管路9から流入し、供給ポンプ1により加圧され、さらに濃縮水の圧力エネルギーを回収した動力を用いてタービン式エネルギー回収装置37にて昇圧され、逆浸透膜モジュール塩水供給管路17、及び第2の逆浸透膜モジュール塩水供給管路18を経由して逆浸透膜モジュール2の塩水供給部に供給される。逆浸透膜モジュール2に供給された塩水は、逆浸透膜法により淡水と濃縮水とに分離され、淡水は逆浸透膜モジュール2の淡水導出部より淡水取出管路19を介して淡水回収設備に払い出され、濃縮水は逆浸透膜モジュール2の濃縮水導出部より逆浸透膜モジュール濃縮水取出管路20を介して排出される。逆浸透膜モジュール濃縮水取出管路20から排出された高圧の濃縮水はエネルギー回収装置濃縮水吸込管路21を経由してタービン式エネルギー回収装置37に流入し、その圧力が前述の通り逆浸透膜モジュール塩水供給管路17の塩水の昇圧に利用される。圧力を回収された低圧の濃縮水は濃縮水払出管路22を介して濃縮水収集設備へ流入する。 The flow of desalinating salt water using the salt water desalination apparatus in the case (FIG. 8) using the turbine type energy recovery apparatus is typically as described below. The salt water introduced from the pretreatment device flows in from the salt water supply line 9, is pressurized by the supply pump 1, and is further pressurized by the turbine-type energy recovery device 37 using the power recovered from the pressure energy of the concentrated water, The reverse osmosis membrane module salt water supply pipe 17 and the second reverse osmosis membrane module salt water supply pipe 18 are supplied to the salt water supply unit of the reverse osmosis membrane module 2. The salt water supplied to the reverse osmosis membrane module 2 is separated into fresh water and concentrated water by the reverse osmosis membrane method, and the fresh water is supplied from the fresh water outlet part of the reverse osmosis membrane module 2 to the fresh water recovery facility via the fresh water extraction line 19. The concentrated water is discharged and discharged from the concentrated water outlet portion of the reverse osmosis membrane module 2 through the reverse osmosis membrane module concentrated water extraction conduit 20. The high-pressure concentrated water discharged from the reverse osmosis membrane module concentrated water outlet conduit 20 flows into the turbine type energy recovery device 37 via the energy recovery device concentrated water suction conduit 21, and the pressure is reverse osmosis as described above. It is used for boosting the salt water in the membrane module salt water supply line 17. The low-pressure concentrated water whose pressure has been recovered flows into the concentrated water collection facility via the concentrated water discharge line 22.
 タービン式エネルギー回収装置を用いたケース(図8)の逆浸透膜モジュール2を洗浄するフローは、典型的には、次に述べる通りである。洗浄タンク5内で調整された洗浄水は、洗浄ポンプ6にて必要な圧力に昇圧され、洗浄水供給管路23と第2の逆浸透膜モジュール塩水供給管路18を経由して逆浸透膜モジュール2に供給される。この際、洗浄水が逆浸透膜モジュール塩水供給管路17に逆流しないよう、塩水供給管路遮断弁32は閉、洗浄水供給管路遮断弁33は開としておく。洗浄後の排水は、大部分が逆浸透膜モジュール2の濃縮水導出部から取り出され、逆浸透膜モジュール濃縮水取出管路20、及び洗浄水戻り管路24を経由して洗浄タンク5に循環する。この際、洗浄後の洗浄水がエネルギー回収装置濃縮水吸込管路21に流出しないよう、高圧洗浄水戻り遮断弁35は開、高圧濃縮水遮断弁36は閉としておく。なお、一部、逆浸透膜モジュール2から淡水取出管路19に払い出される洗浄後の洗浄水は、淡水取出管路19上に設けられた分岐部から洗浄タンク5に循環させるが、本図では省略している。 The flow for cleaning the reverse osmosis membrane module 2 in the case (FIG. 8) using the turbine type energy recovery device is typically as described below. The washing water adjusted in the washing tank 5 is boosted to a necessary pressure by the washing pump 6, and passes through the washing water supply line 23 and the second reverse osmosis membrane module salt water supply line 18 to form a reverse osmosis membrane. Supplied to module 2. At this time, the salt water supply line shut-off valve 32 is closed and the wash water supply line shut-off valve 33 is opened so that the wash water does not flow back to the reverse osmosis membrane module salt water supply pipe 17. Most of the waste water after washing is taken out from the concentrated water outlet part of the reverse osmosis membrane module 2 and circulated to the washing tank 5 via the reverse osmosis membrane module concentrated water extraction pipe line 20 and the washing water return pipe line 24. To do. At this time, the high pressure washing water return shut-off valve 35 is opened and the high pressure concentrated water shut-off valve 36 is closed so that the wash water after washing does not flow into the energy recovery device concentrated water suction pipe 21. In addition, a part of the washed water discharged from the reverse osmosis membrane module 2 to the fresh water extraction conduit 19 is circulated from the branch portion provided on the fresh water extraction conduit 19 to the cleaning tank 5. Omitted.
 なお、前処理設備から導入された塩水は、通常逆浸透膜モジュール2で処理される前に前処理されることが好ましく、本発明の塩水淡水化装置においても好ましく採用することができる。前処理設備が導入される位置は通常、塩水供給管路9内であり、図1~3、6~8のいずれにおいても塩水供給管路9内に前処理設備が導入されている。ここで、前処理設備としては、精密膜ろ過あるいは限外膜ろ過、活性炭ろ過、保安フィルターなどが使用される。また、必要に応じ、殺菌剤、凝集剤、さらに還元剤、pH調整剤、スケール防止剤などの薬液添加を行うことができる。 In addition, it is preferable that the salt water introduced from the pre-treatment facility is usually pre-treated before being treated by the reverse osmosis membrane module 2, and can be preferably employed in the salt water desalination apparatus of the present invention. The position where the pretreatment equipment is introduced is usually in the salt water supply pipe 9, and the pretreatment equipment is introduced into the salt water supply pipe 9 in any of FIGS. 1 to 3 and 6 to 8. Here, precision membrane filtration or ultramembrane filtration, activated carbon filtration, a safety filter, etc. are used as pretreatment equipment. Moreover, chemical | medical solution additions, such as a disinfectant, a flocculant, a reducing agent, pH adjuster, a scale inhibitor, can be performed as needed.
 ここで、図6~8の各ケースにおける高圧材質からなる部分は、エネルギー回収装置の無いケース(図6)では、逆浸透膜モジュール塩水供給管路17、第2の逆浸透膜モジュール塩水供給管路18、逆浸透膜モジュール濃縮水取出管路20、並びに、塩水供給管路遮断弁32、洗浄水供給管路遮断弁33、濃縮水絞り弁25と、図示しない関連バルブ類、供給ポンプ1、及び逆浸透膜モジュール2である。また、洗浄水供給管路23上の洗浄水供給管路遮断弁33から逆浸透膜モジュール塩水供給管路分岐部31の区間も高圧材質とする必要がある。 Here, the portions made of the high pressure material in the cases of FIGS. 6 to 8 are the reverse osmosis membrane module salt water supply pipe 17 and the second reverse osmosis membrane module salt water supply pipe in the case without the energy recovery device (FIG. 6). Path 18, reverse osmosis membrane module concentrated water outlet pipe 20, salt water supply pipe cutoff valve 32, washing water supply pipe cutoff valve 33, concentrated water throttle valve 25, related valves not shown, supply pump 1, And the reverse osmosis membrane module 2. Further, the section from the washing water supply line shut-off valve 33 on the washing water supply line 23 to the reverse osmosis membrane module salt water supply line branch part 31 also needs to be made of a high pressure material.
 容積式エネルギー回収装置を用いたケース(図7)では、供給ポンプ吐出管路12、容積式エネルギー回収装置塩水吐出管路14、ブースターポンプ吐出管路15、逆浸透膜モジュール塩水供給管路17、第2の逆浸透膜モジュール塩水供給管路18、逆浸透膜モジュール濃縮水取出管路20、エネルギー回収装置濃縮水吸込管路21、並びに、塩水供給管路遮断弁32、洗浄水供給管路遮断弁33、高圧洗浄水戻り遮断弁35、高圧濃縮水遮断弁36と、図示しない関連バルブ類、供給ポンプ1、容積式エネルギー回収装置3、ブースターポンプ4、及び逆浸透膜モジュール2である。また、洗浄水供給管路23上の洗浄水供給管路遮断弁33から逆浸透膜モジュール塩水供給管路分岐部31の区間、及び、洗浄水戻り管路24上の高圧洗浄水戻り遮断弁35から高圧濃縮水管路分岐部34の区間も高圧材質とする必要がある。 In the case using the positive displacement energy recovery device (FIG. 7), the supply pump discharge line 12, the positive displacement energy recovery device salt water discharge line 14, the booster pump discharge line 15, the reverse osmosis membrane module salt water supply line 17, Second reverse osmosis membrane module salt water supply line 18, reverse osmosis membrane module concentrated water outlet line 20, energy recovery device concentrated water suction line 21, salt water supply line shut-off valve 32, wash water supply line shut off These are a valve 33, a high-pressure washing water return cutoff valve 35, a high-pressure concentrated water cutoff valve 36, related valves not shown, a supply pump 1, a positive displacement energy recovery device 3, a booster pump 4, and a reverse osmosis membrane module 2. Further, a section from the washing water supply pipe cutoff valve 33 on the washing water supply pipe 23 to the reverse osmosis membrane module salt water supply pipe branching section 31, and a high-pressure washing water return cutoff valve 35 on the washing water return pipe 24. To the high pressure concentrated water pipe branching section 34 also needs to be made of a high pressure material.
 タービン式エネルギー回収装置を用いたケース(図8)では、逆浸透膜モジュール塩水供給管路17、第2の逆浸透膜モジュール塩水供給管路18、逆浸透膜モジュール濃縮水取出管路20、エネルギー回収装置濃縮水吸込管路21、並びに、塩水供給管路遮断弁32、洗浄水供給管路遮断弁33、高圧洗浄水戻り遮断弁35、高圧濃縮水遮断弁36と、図示しない関連バルブ類、供給ポンプ1、タービン式エネルギー回収装置37、及び逆浸透膜モジュール2である。また、洗浄水供給管路23上の洗浄水供給管路遮断弁33から逆浸透膜モジュール塩水供給管路分岐部31の区間、及び、洗浄水戻り管路24上の高圧洗浄水戻り遮断弁35から高圧濃縮水管路分岐部34の区間も高圧材質とする必要がある。 In the case where the turbine type energy recovery device is used (FIG. 8), the reverse osmosis membrane module salt water supply line 17, the second reverse osmosis membrane module salt water supply line 18, the reverse osmosis membrane module concentrated water extraction line 20, the energy The recovery device concentrated water suction line 21, the salt water supply line cutoff valve 32, the washing water supply line cutoff valve 33, the high pressure washing water return cutoff valve 35, the high pressure concentrated water cutoff valve 36, and related valves not shown in the figure, These are the supply pump 1, the turbine type energy recovery device 37, and the reverse osmosis membrane module 2. Further, a section from the washing water supply pipe cutoff valve 33 on the washing water supply pipe 23 to the reverse osmosis membrane module salt water supply pipe branching section 31, and a high-pressure washing water return cutoff valve 35 on the washing water return pipe 24. To the high pressure concentrated water pipe branching section 34 also needs to be made of a high pressure material.
 図6~8の各ケースにおける低圧材質からなる部分は、エネルギー回収装置の無いケース(図6)では、塩水供給管路9、淡水取出管路19、第2の逆浸透膜モジュール濃縮水取出管路26、濃縮水払出管路22、洗浄水戻り管路24、洗浄水供給管路遮断弁33より上流側の洗浄水供給管路23と図示しない関連バルブ類である。 The parts made of the low-pressure material in each case of FIGS. 6 to 8 are the salt water supply line 9, the fresh water discharge line 19, and the second reverse osmosis membrane module concentrated water discharge line in the case without the energy recovery device (FIG. 6). The cleaning water supply conduit 23 upstream of the passage 26, the concentrated water discharge conduit 22, the cleaning water return conduit 24, and the cleaning water supply conduit shut-off valve 33 and related valves (not shown).
 容積式エネルギー回収装置を用いたケース(図7)では、塩水供給管路9、供給ポンプ吸込管路11、容積式エネルギー回収装置塩水吸込管路13、淡水取出管路19、濃縮水払出管路22、洗浄水供給管路遮断弁33より上流側の洗浄水供給管路23、高圧洗浄水戻り遮断弁35より下流側の洗浄水戻り管路24と図示しない関連バルブ類である。 In the case using the positive displacement energy recovery device (FIG. 7), the salt water supply line 9, supply pump suction line 11, positive displacement energy recovery device salt water suction line 13, fresh water discharge line 19, and concentrated water discharge line. 22, a cleaning water supply pipe 23 upstream from the cleaning water supply pipe cutoff valve 33, a cleaning water return pipe 24 downstream from the high pressure washing water return cutoff valve 35, and related valves (not shown).
 タービン式エネルギー回収装置を用いたケース(図8)では、塩水供給管路9、淡水取出管路19、濃縮水払出管路22、洗浄水供給管路遮断弁33より上流側の洗浄水供給管路23、高圧洗浄水戻り遮断弁35より下流側の洗浄水戻り管路24と図示しない関連バルブ類である。 In the case where the turbine type energy recovery device is used (FIG. 8), the wash water supply pipe upstream of the salt water supply pipe 9, the fresh water discharge pipe 19, the concentrated water discharge pipe 22, and the wash water supply pipe shut-off valve 33 is provided. The cleaning water return conduit 24 downstream of the passage 23 and the high-pressure cleaning water return shut-off valve 35 and related valves not shown.
 よく用いられる高圧材質として各種のステンレス鋼がある。ステンレス鋼は耐圧性に加えて耐酸性を向上させるために鉄にクロム、ニッケル、モリブデン、窒素、銅などを含ませた合金鋼であり、その金属組織によりオーステナイト系(例えば304、304L、316、316L、317、317L、904L)とオーステナイト・フェライト系(例えば254SMO 、2205、2507、Zeron100、329)があり、本発明においてはこれらのどのステンレス合金鋼を使用してもよい。 There are various stainless steels as high-pressure materials that are often used. Stainless steel is an alloy steel that contains iron, chromium, nickel, molybdenum, nitrogen, copper, etc. in order to improve acid resistance in addition to pressure resistance, and austenitic (for example, 304, 304L, 316, 316L, 317, 317L, 904L) and austenitic ferrite (for example, 254 SMO254, 2205, 2507, Zeron 100, 329), and any of these stainless steel alloys may be used in the present invention.
 また、よく用いられる低圧材質として、各種のプラスチック材がある。プラスチック材には耐塩水腐食性を持つ塩化ビニル、ポリプロピレン、ポリエステルや、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、テトラフルオロエチレン重合体等のフッ素樹脂があり、本発明においてはこれらのどのプラスチック材を使用してもよい。また、先述のプラスチック材を、塩水と鋼管が直接接触しないよう鋼管内面にライニング若しくはコーティングしたライニング鋼管を使用してもよい。また、先述の高圧材料として記載したステンレス鋼を低圧材料として用いてもよい。 Also, there are various plastic materials as low-pressure materials that are often used. Plastic materials include fluororesins such as vinyl chloride, polypropylene, polyester, and polyvinylidene fluoride, polytetrafluoroethylene, and tetrafluoroethylene polymers that have saltwater corrosion resistance. Any of these plastic materials is used in the present invention. May be. Moreover, you may use the lining steel pipe which lined or coated the above-mentioned plastic material on the inner surface of a steel pipe so that salt water and a steel pipe may not contact directly. Further, stainless steel described as the above-described high pressure material may be used as the low pressure material.
 ここで、供給ポンプ1とは、上記高圧材質を用いて作られたポンプで、様々な形式があるが、本発明においては目的の圧力と流量を得られるものであれば特に形式を限定するものではなく、例えばプランジャーポンプのようなピストンタイプのポンプ、渦巻ポンプ、遠心ポンプ、多段遠心ポンプなどを適宜目的に応じて用いることができる。 Here, the supply pump 1 is a pump made of the above-described high-pressure material, and there are various types. However, in the present invention, the type is particularly limited as long as the desired pressure and flow rate can be obtained. Instead, for example, a piston type pump such as a plunger pump, a centrifugal pump, a centrifugal pump, a multistage centrifugal pump, or the like can be used according to the purpose.
 本発明で言う塩水とは、塩分を含む水の総称であり、塩素イオン濃度が300から15,000mg/l程度の一般的にかん水と呼称する比較的低濃度の塩水や、塩素イオン濃度が15,000から40,000mg/l程度の一般的に海水と呼称する比較的高濃度の塩水などを指す。 The salt water referred to in the present invention is a generic term for salt-containing water, and a relatively low concentration salt water generally called brine with a chlorine ion concentration of about 300 to 15,000 mg / l, or a chlorine ion concentration of 15,000 or more. It refers to a relatively high concentration of salt water, generally called seawater, of about 40,000 mg / l.
 ここで、本発明に係る逆浸透膜モジュール2に使用される逆浸透膜とは、供給液の一部の成分、例えば塩分を透過させ他の成分を透過させない半透性膜である。その素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材が使用できる。膜形態には中空糸膜、平膜などがある。本発明では、逆浸透膜の素材、膜形態によらず利用することができる。 Here, the reverse osmosis membrane used in the reverse osmosis membrane module 2 according to the present invention is a semipermeable membrane that allows some components of the supply liquid, for example, salt to permeate and does not allow other components to permeate. The material can be a polymer material such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer. Examples of membrane forms include hollow fiber membranes and flat membranes. In this invention, it can utilize regardless of the raw material and membrane form of a reverse osmosis membrane.
 逆浸透膜エレメントとは上記逆浸透膜を実際に使用するための形態化したものであり平膜、スパイラル、チューブラー、プレート・アンド・フレームのエレメントに組み込んで、また中空糸膜は束ねた上でエレメントに組み込んで使用することができるが、本発明ではこれらの逆浸透膜エレメントの形態に左右されるものではない。 The reverse osmosis membrane element is a form for practical use of the above reverse osmosis membrane. It is incorporated into a flat membrane, spiral, tubular, plate and frame element, and the hollow fiber membrane is bundled. However, in the present invention, it does not depend on the form of these reverse osmosis membrane elements.
 逆浸透膜モジュールとは上述の逆浸透膜エレメント1~数本を圧力容器の中に収めたモジュールを並列に配置したもので、その組合せ、本数、配列は目的に応じて任意に行うことができる。 A reverse osmosis membrane module is a module in which one to several reverse osmosis membrane elements described above are housed in a pressure vessel arranged in parallel, and the combination, number and arrangement thereof can be arbitrarily determined according to the purpose. .
 エネルギー回収装置は、一般に、高圧ポンプの吐出側から出る液体が直接エネルギー回収装置に流入する、いわゆる高圧ポンプ一体型と、供給水の一部が高圧ポンプに流入し残りの一部がエネルギー回収装置に流入する、いわゆる高圧ポンプ分離型に大きく分かれるが、本発明で使用される容積式エネルギー回収装置3は、塩水供給管路9から流入された塩水の一部が供給ポンプ1に流入し、残りの一部が容積式エネルギー回収装置3に流入する、先述の高圧ポンプ分離型のエネルギー回収装置である。また、本発明で使用されるタービン式エネルギー回収装置は、塩水供給管路9から流入した塩水のうち、サンプルや水質測定計器などに供給するため分流した部分を除く全量が供給ポンプ1にて昇圧され、更にタービン式エネルギー回収装置によって昇圧される先述の高圧ポンプ一体型のエネルギー回収装置である。なお、タービン式エネルギー回収装置としては、濃縮水の圧力エネルギーをタービンや水車によって回転動力に変換し、直接供給ポンプ1の電動機軸を補助的に回転させるタイプのエネルギー回収装置を用いても良い。 In general, the energy recovery device is a so-called high-pressure pump integrated type in which the liquid discharged from the discharge side of the high-pressure pump directly flows into the energy recovery device, and a part of the supply water flows into the high-pressure pump and the remaining part of the energy recovery device However, in the positive displacement energy recovery device 3 used in the present invention, part of the salt water that flows in from the salt water supply line 9 flows into the supply pump 1 and remains. Is the above-described high-pressure pump separation type energy recovery device in which part of the gas flows into the positive displacement energy recovery device 3. Further, the turbine type energy recovery device used in the present invention boosts the total amount of salt water flowing in from the salt water supply line 9 except for a portion that is diverted for supply to a sample or a water quality measuring instrument by the supply pump 1. The high-pressure pump-integrated energy recovery device is further boosted by a turbine type energy recovery device. In addition, as a turbine type energy recovery apparatus, you may use the type of energy recovery apparatus which converts the pressure energy of concentrated water into rotational power with a turbine or a water turbine, and rotates the motor shaft of the direct supply pump 1 auxiliary.
 容積式エネルギー回収装置3、及びタービン式エネルギー回収装置37の材質は各種のステンレス及び/またはセラミックス材質部品を含み、ステンレス材質としては前述の高圧配管と同様に304、304L、316、316L、317、317L、904L、254SMO、2205、2507、Zeron100、329など、セラミックス材質としてはアルミナ、酸化アルミ、炭化珪素、窒化珪素、ジルコニア、窒化アルミなどが含まれる。 The material of the positive displacement energy recovery device 3 and the turbine energy recovery device 37 includes various stainless steel and / or ceramic material parts, and the stainless steel materials are 304, 304L, 316, 316L, 317, Ceramic materials include alumina, aluminum oxide, silicon carbide, silicon nitride, zirconia, aluminum nitride, etc., such as 317L, 904L, 254SMO, 2205, 2507, Zeron 100, 329, etc.
 ブースターポンプ4とは、上記高圧材質を用いて作られたポンプで、設計流量において、ブースターポンプ吐出管路15、供給ポンプ吐出管路結合部16から逆浸透膜モジュール2の塩水供給部に至る逆浸透膜モジュール塩水供給管路17、並びに第2の逆浸透膜モジュール塩水供給管路18、逆浸透膜モジュール2、逆浸透膜モジュール濃縮水取出管路20、エネルギー回収装置濃縮水吸込管路21、容積式エネルギー回収装置3、及び容積式エネルギー回収装置塩水吐出管路14の圧力損失の合計と等しい揚程以上の能力を有すればよく、本発明においては上記の揚程と流量を得られるものであれば特に形式を限定するものではなく、例えばプランジャーポンプのようなピストンタイプのポンプ、渦巻ポンプ、遠心ポンプ、多段遠心ポンプなどを適宜目的に応じて用いることができる。 The booster pump 4 is a pump made of the above-described high-pressure material, and the reverse flow from the booster pump discharge line 15 and the supply pump discharge line connection part 16 to the salt water supply part of the reverse osmosis membrane module 2 at the design flow rate. Osmosis membrane module salt water supply line 17, second reverse osmosis membrane module salt water supply line 18, reverse osmosis membrane module 2, reverse osmosis membrane module concentrated water extraction line 20, energy recovery device concentrated water suction line 21, It is only necessary to have a capacity equal to or higher than the lift equal to the total pressure loss of the positive displacement energy recovery device 3 and the positive displacement energy recovery device salt water discharge pipe 14. In the present invention, the above lift and flow rate can be obtained. There is no particular limitation on the type, for example, a piston type pump such as a plunger pump, a centrifugal pump, a centrifugal pump, a multistage centrifugal pump It can be used in accordance with the appropriate object flop.
 逆浸透膜モジュール2の洗浄工程では、必ずしも洗浄水を洗浄タンク5に戻す必要はなく、洗浄水戻り管路24を経由せずに、そのまま排水してもよい。また、洗浄水中の不純物を除去するために、フィルターを洗浄水戻り管路24、洗浄タンク5から逆浸透膜モジュール塩水供給管路分岐部31に至る洗浄水供給管路23のいずれかに設置してもよい。 In the washing process of the reverse osmosis membrane module 2, it is not always necessary to return the washing water to the washing tank 5, and it may be drained as it is without going through the washing water return conduit 24. In order to remove impurities in the washing water, a filter is installed in any of the washing water return pipe 24 and the washing water supply pipe 23 extending from the washing tank 5 to the reverse osmosis membrane module salt water supply pipe branching section 31. May be.
 本発明では、図1~3に示す実施形態(実施例)のように、第2の逆浸透膜モジュール塩水供給管路18と、逆浸透膜モジュール塩水供給管路17、もしくは洗浄水供給管路23を選択的に切り替えるために、両端に取り外し式配管接続継ぎ手8を有する取り外し式配管7を使用することを特徴とする。この取り外し式配管7を使用することにより、高圧材料を用いる塩水供給管路遮断弁32、及び洗浄水供給管路遮断弁33を不要とすることができる。 In the present invention, as in the embodiment (example) shown in FIGS. 1 to 3, the second reverse osmosis membrane module salt water supply line 18, the reverse osmosis membrane module salt water supply line 17, or the washing water supply line In order to selectively switch 23, a removable pipe 7 having a removable pipe connection joint 8 at both ends is used. By using the detachable pipe 7, the salt water supply line cutoff valve 32 and the washing water supply line cutoff valve 33 using a high pressure material can be dispensed with.
 濃縮側についても同様に、逆浸透膜モジュール濃縮水取出管路20と、エネルギー回収装置濃縮水吸込管路21、もしくは洗浄水戻り管路24を選択的に切り替えるために、両端に取り外し式配管接続継ぎ手8を有する取り外し式配管7を使用することができる。この取り外し式配管7を使用することにより、先述の高圧材料を用いる高圧洗浄水戻り遮断弁35、及び高圧濃縮水遮断弁36を不要とすることができる。なお、図1では、濃縮水絞り弁25で減圧されるため、低圧洗浄水戻り遮断弁28と低圧濃縮水遮断弁29には先述の低圧材料を使用することができることから、濃縮水絞り弁25の下流側に濃縮水払出管路22と洗浄水戻り管路24との分岐部(低圧濃縮水管路分岐部27)を設けており、あえて取り外し式配管7を使用していないが、低圧洗浄水戻り遮断弁28と低圧濃縮水遮断弁29の代わりに取り外し式配管7を採用することもできるし、濃縮水絞り弁25の上流側に取り外し式配管7を採用し、洗浄タンク5へ接続された洗浄水戻り管路24を設けても良い。 Similarly, on the concentrating side, in order to selectively switch the reverse osmosis membrane module concentrated water outlet conduit 20 and the energy recovery device concentrated water suction conduit 21 or the washing water return conduit 24, removable pipe connections are made at both ends. A removable pipe 7 with a joint 8 can be used. By using this detachable pipe 7, the high-pressure washing water return cutoff valve 35 and the high-pressure concentrated water cutoff valve 36 using the above-described high-pressure material can be dispensed with. In FIG. 1, since the pressure is reduced by the concentrated water throttle valve 25, the above-described low pressure material can be used for the low pressure wash water return cutoff valve 28 and the low pressure concentrated water cutoff valve 29. Is provided with a branching section (low pressure concentrated water pipe branching section 27) between the concentrated water discharge pipe 22 and the washing water return pipe 24, and the detachable pipe 7 is not used. Instead of the return shutoff valve 28 and the low-pressure concentrated water shutoff valve 29, the removable pipe 7 can be adopted, or the removable pipe 7 is adopted upstream of the concentrated water throttle valve 25 and connected to the washing tank 5. A washing water return conduit 24 may be provided.
 図4及び図5に、両端に取り外し式配管接続継ぎ手8を有する取り外し式配管7の詳細図を示す。図4は通常運転時の接続状況であり、逆浸透膜モジュール塩水供給管路17と第2の逆浸透膜モジュール塩水供給管路18を接続した状況を示している。図5は洗浄時の接続状況であり、洗浄水供給管路23と第2の逆浸透膜モジュール塩水供給管路18を接続した状況を示している。作業台30は、取り外し式配管7が重い場合などに切り替え時の作業性を考慮し設置することができる。また、図4及び図5では同じ取り外し式配管7の向きを変えることによって、通常運転と洗浄運転の切り替えを行うように記載しているが、それぞれの接続に異なった形状・材質の取り外し式配管7を準備しても良い。取り外し式配管接続継ぎ手8としては、簡便に取り外し式配管7を取り外せるタイプの継ぎ手であればその形式にこだわる必要は無く、溝式継ぎ手(ビクトリック継ぎ手)、ユニオンカップリング、フランジ継ぎ手、ネジ式継ぎ手など様々な継ぎ手を使用することができる。 4 and 5 are detailed views of the removable pipe 7 having the removable pipe connection joints 8 at both ends. FIG. 4 shows a connection state during normal operation, and shows a state in which the reverse osmosis membrane module salt water supply pipe 17 and the second reverse osmosis membrane module salt water supply pipe 18 are connected. FIG. 5 shows a connection state at the time of cleaning, and shows a state in which the cleaning water supply line 23 and the second reverse osmosis membrane module salt water supply line 18 are connected. The work table 30 can be installed in consideration of workability at the time of switching when the removable pipe 7 is heavy. 4 and 5, it is described that the normal operation and the cleaning operation are switched by changing the direction of the same removable pipe 7, but the removable pipes having different shapes and materials are connected to each connection. 7 may be prepared. There is no need to stick to the detachable pipe connection joint 8 as long as it is a type that allows the detachable pipe 7 to be easily removed. The groove type joint (victolic joint), union coupling, flange joint, and screw joint Various joints can be used.
 本発明の効果として、上述の高圧材料を用いた遮断弁を使用しなくて済む以外に、安全上のメリットがある。図6~8に示す遮断弁による切り替えの場合、洗浄水供給管路23上の洗浄水供給管路遮断弁33、もしくは洗浄水戻り管路24上の高圧洗浄水戻り遮断弁35が通常運転時に内漏れを起こした場合、1~10MPa程度の高圧の塩水や濃縮水が、低圧材料で構成された洗浄水供給管路23や洗浄水戻り管路24に流入し、最悪の場合、低圧材料で構成された洗浄ラインが破裂する可能性がある。本発明では物理的に通常運転ラインと洗浄ラインとを切り離すため、加圧された塩水や濃縮水が洗浄ラインに流入する可能性は無く、安全である。 As an effect of the present invention, there is a merit in terms of safety other than the use of the shut-off valve using the above-described high-pressure material. In the case of switching by the shut-off valve shown in FIGS. 6 to 8, the wash water supply pipe shut-off valve 33 on the wash water supply pipe 23 or the high-pressure wash water return shut-off valve 35 on the wash water return pipe 24 is in normal operation. When internal leakage occurs, high-pressure salt water or concentrated water of about 1 to 10 MPa flows into the washing water supply pipe 23 and the washing water return pipe 24 composed of low-pressure materials. The configured cleaning line may burst. In the present invention, since the normal operation line and the washing line are physically separated, there is no possibility that pressurized salt water or concentrated water flows into the washing line, and it is safe.
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2011年1月19日出願の日本特許出願2011-008518に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2011-008518 filed on Jan. 19, 2011, the contents of which are incorporated herein by reference.
 本発明によれば、塩水供給管路における切り替え弁、あるいは、濃縮水導出管路における切り替え弁に換え、取り外し式の配管のみを用いることができるため、塩水淡水化装置におけるコスト削減が可能となる。また、物理的に通常運転配管と洗浄配管を切り離すことができるため、高圧の塩水や濃縮水が洗浄配管に流入し破裂する事故を未然に防ぐことができる。 According to the present invention, since only the detachable pipe can be used instead of the switching valve in the salt water supply pipe or the switching valve in the concentrated water outlet pipe, the cost of the salt water desalination apparatus can be reduced. . Further, since the normal operation pipe and the cleaning pipe can be physically separated, it is possible to prevent an accident in which high-pressure salt water or concentrated water flows into the cleaning pipe and bursts.
1:供給ポンプ
2:逆浸透膜モジュール
3:容積式エネルギー回収装置
4:ブースターポンプ
5:洗浄タンク
6:洗浄ポンプ
7:取り外し式配管
8:取り外し式配管接続継ぎ手
9:塩水供給管路
10:塩水供給管路分岐部
11:供給ポンプ吸込管路
12:供給ポンプ吐出管路
13:容積式エネルギー回収装置塩水吸込管路
14:容積式エネルギー回収装置塩水吐出管路
15:ブースターポンプ吐出管路
16:供給ポンプ吐出管路結合部
17:逆浸透膜モジュール塩水供給管路
18:第2の逆浸透膜モジュール塩水供給管路
19:淡水取出管路
20:逆浸透膜モジュール濃縮水取出管路
21:エネルギー回収装置濃縮水吸込管路
22:濃縮水払出管路
23:洗浄水供給管路
24:洗浄水戻り管路
25:濃縮水絞り弁
26:第2の逆浸透膜モジュール濃縮水取出管路
27:低圧濃縮水管路分岐部
28:低圧洗浄水戻り遮断弁
29:低圧濃縮水遮断弁
30:作業台
31:逆浸透膜モジュール塩水供給管路分岐部
32:塩水供給管路遮断弁
33:洗浄水供給管路遮断弁
34:高圧濃縮水管路分岐部
35:高圧洗浄水戻り遮断弁
36:高圧濃縮水遮断弁
37:タービン式エネルギー回収装置
1: Supply pump 2: Reverse osmosis membrane module 3: Positive displacement energy recovery device 4: Booster pump 5: Wash tank 6: Wash pump 7: Detachable pipe 8: Detachable pipe connection joint 9: Saline water supply line 10: Salt water Supply pipe branching section 11: Supply pump suction pipe 12: Supply pump discharge pipe 13: Positive displacement energy recovery device salt water suction pipe 14: Positive displacement energy recovery apparatus salt water discharge pipe 15: Booster pump discharge pipe 16: Supply pump discharge line coupling unit 17: reverse osmosis membrane module salt water supply line 18: second reverse osmosis membrane module salt water supply line 19: fresh water extraction line 20: reverse osmosis membrane module concentrated water extraction line 21: energy Recovery device Concentrated water suction line 22: Concentrated water discharge line 23: Wash water supply line 24: Wash water return line 25: Concentrated water throttle valve 26: Second reverse osmosis membrane module Concentrated water outlet 27: Low pressure concentrated water branch 28: Low pressure wash water return shut-off valve 29: Low pressure concentrated water shut-off valve 30: Worktable 31: Reverse osmosis membrane module salt water supply pipe branch 32: Salt water supply pipe Road shutoff valve 33: Wash water supply pipe shutoff valve 34: High pressure concentrated water pipe branching section 35: High pressure wash water return shutoff valve 36: High pressure concentrated water shutoff valve 37: Turbine energy recovery device

Claims (2)

  1.  塩水を昇圧する供給ポンプ、
     昇圧された塩水を淡水と濃縮水とに分離する逆浸透膜からなる逆浸透膜モジュール、および
     逆浸透膜モジュールを洗浄するための洗浄装置
     を備えた塩水淡水化装置において、
     供給ポンプと逆浸透膜モジュールとを結合する管路の少なくとも一部、および/または、逆浸透膜モジュールから排出される濃縮水の管路の少なくとも一部が取り外し式の配管からなり、
     取り外し式の配管を取り外すことで、逆浸透膜モジュールの上流側の管路、および/または、逆浸透膜モジュールから排出される濃縮水の管路が洗浄装置と結合可能となる機構を備えた塩水淡水化装置。
    Supply pump for boosting salt water,
    In a salt water desalination apparatus comprising a reverse osmosis membrane module comprising a reverse osmosis membrane that separates pressurized salt water into fresh water and concentrated water, and a washing device for washing the reverse osmosis membrane module,
    At least a part of the pipe line connecting the supply pump and the reverse osmosis membrane module and / or at least a part of the pipe of the concentrated water discharged from the reverse osmosis membrane module is a detachable pipe,
    Salt water provided with a mechanism that allows the pipe on the upstream side of the reverse osmosis membrane module and / or the pipe of the concentrated water discharged from the reverse osmosis membrane module to be coupled with the cleaning device by removing the removable pipe Desalination equipment.
  2.  前記取り外し式の配管と前記管路が溝式継ぎ手で結合されている、請求項1に記載の塩水淡水化装置。 The salt water desalination apparatus according to claim 1, wherein the detachable pipe and the pipe line are joined by a grooved joint.
PCT/JP2012/050754 2011-01-19 2012-01-16 Salt water desalination apparatus WO2012099074A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280006052.9A CN103339069B (en) 2011-01-19 2012-01-16 Saline-water reclamation device
JP2012514663A JP5880432B2 (en) 2011-01-19 2012-01-16 Salt water desalination equipment
KR1020137019023A KR101837230B1 (en) 2011-01-19 2012-01-16 Salt water desalination apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-008518 2011-01-19
JP2011008518 2011-01-19

Publications (1)

Publication Number Publication Date
WO2012099074A1 true WO2012099074A1 (en) 2012-07-26

Family

ID=46515699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050754 WO2012099074A1 (en) 2011-01-19 2012-01-16 Salt water desalination apparatus

Country Status (6)

Country Link
JP (1) JP5880432B2 (en)
KR (1) KR101837230B1 (en)
CN (1) CN103339069B (en)
MY (1) MY168233A (en)
TW (1) TW201235088A (en)
WO (1) WO2012099074A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171105A1 (en) * 2015-04-21 2016-10-27 三菱重工業株式会社 Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning apparatus
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108554191A (en) * 2018-07-03 2018-09-21 俞鑫臣 The compound reverse osmosis seawater desalting film of high energy of submarine
CN110526339A (en) * 2019-09-11 2019-12-03 上海瑜科环境工程有限公司 The compound desalinating process of pressure energy
US10787872B1 (en) 2019-10-11 2020-09-29 Halliburton Energy Services, Inc. Graphene oxide coated membranes to increase the density of water base fluids
US10689268B1 (en) 2019-10-11 2020-06-23 Halliburton Energy Services, Inc. Coated porous substrates for oil and gas or chemical processing wastewater treatment
US10919781B1 (en) 2019-10-11 2021-02-16 Halliburton Energy Services, Inc. Coated porous substrates for fracking water treatment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10464A (en) * 1996-06-18 1998-01-06 Mitsubishi Heavy Ind Ltd Reverse osmosis apparatus for freshening seawater
JP2001137671A (en) * 1999-11-10 2001-05-22 Toray Ind Inc Water treating device, water making method and piping
JP2001187323A (en) * 1999-12-28 2001-07-10 Nitto Denko Corp Membrane separation device and operation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201103695Y (en) * 2007-09-16 2008-08-20 孙斌 Filter screen type non-washing break valve
CN201189449Y (en) * 2008-04-29 2009-02-04 天津膜天膜工程技术有限公司 Immersion type film filteration device
WO2010004819A1 (en) * 2008-07-09 2010-01-14 東レ株式会社 Salt water desalination equipment using reverse osmosis membrane, and method for producing desalinated water using salt water desalination equipment
CN101475271A (en) * 2009-02-09 2009-07-08 庞剑 Multipurpose purifying water filtration apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10464A (en) * 1996-06-18 1998-01-06 Mitsubishi Heavy Ind Ltd Reverse osmosis apparatus for freshening seawater
JP2001137671A (en) * 1999-11-10 2001-05-22 Toray Ind Inc Water treating device, water making method and piping
JP2001187323A (en) * 1999-12-28 2001-07-10 Nitto Denko Corp Membrane separation device and operation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171105A1 (en) * 2015-04-21 2016-10-27 三菱重工業株式会社 Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning apparatus
JP2016203081A (en) * 2015-04-21 2016-12-08 三菱重工業株式会社 Reverse osmosis membrane washing method, and reverse osmosis membrane washing device
US20180104652A1 (en) * 2015-04-21 2018-04-19 Mitsubishi Heavy Industries, Ltd. Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning apparatus
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11563229B1 (en) 2022-05-09 2023-01-24 Rahul S Nana Reverse electrodialysis cell with heat pump
US11611099B1 (en) 2022-05-09 2023-03-21 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11699803B1 (en) 2022-05-09 2023-07-11 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Also Published As

Publication number Publication date
TW201235088A (en) 2012-09-01
CN103339069B (en) 2015-08-05
JPWO2012099074A1 (en) 2014-06-30
CN103339069A (en) 2013-10-02
MY168233A (en) 2018-10-15
KR101837230B1 (en) 2018-03-09
KR20140007821A (en) 2014-01-20
JP5880432B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5880432B2 (en) Salt water desalination equipment
JP6762258B2 (en) Reverse osmosis treatment system and reverse osmosis treatment method
JP5549591B2 (en) Fresh water production method and fresh water production apparatus
CN102985373B (en) Fresh water producing apparatus and method for operating same
JP5923294B2 (en) Reverse osmosis processing equipment
WO2010004819A1 (en) Salt water desalination equipment using reverse osmosis membrane, and method for producing desalinated water using salt water desalination equipment
CN105903355A (en) Method for preventing and treating pollution through reverse osmosis membrane or nano filter membrane system
CN105540746A (en) Water purifying system
JP6458302B2 (en) Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning device
CN203820558U (en) Reverse osmosis seawater desalting device for novel ship
JP6505504B2 (en) Desalination system using reverse osmosis membrane and operation method thereof
JP2011115704A (en) Salt water desalination apparatus
WO2018159561A1 (en) Reverse osmosis treatment device and reverse osmosis treatment method
RU2199377C1 (en) Membrane plant for separation of solutions
JP2006122787A (en) Seawater desalting method
CN103435175A (en) Filtering system
CN207596603U (en) Pretreatment and softening first-stage reverse osmosis device
JP2005313034A (en) Water supply system
RU22434U1 (en) SOLUTION SEPARATION INSTALLATION
Ghomshe Cleaning strategy of fouled reverse osmosis membrane: direct osmosis at high salinities (DO-HS) as on-line technique without interruption of RO operation
CN212999357U (en) Reverse osmosis device
CN219010078U (en) Waste water recovery system
RU2300413C2 (en) Membrane installation for separation of the solutions
JP7427890B2 (en) Concentration system
RU2701342C1 (en) Method for desalination of water using reverse osmosis and device for its implementation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012514663

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137019023

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301003976

Country of ref document: TH

122 Ep: pct application non-entry in european phase

Ref document number: 12736870

Country of ref document: EP

Kind code of ref document: A1