WO2012099005A1 - 細胞情報データの作成方法 - Google Patents

細胞情報データの作成方法 Download PDF

Info

Publication number
WO2012099005A1
WO2012099005A1 PCT/JP2012/050565 JP2012050565W WO2012099005A1 WO 2012099005 A1 WO2012099005 A1 WO 2012099005A1 JP 2012050565 W JP2012050565 W JP 2012050565W WO 2012099005 A1 WO2012099005 A1 WO 2012099005A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
image
identification information
information
unit
Prior art date
Application number
PCT/JP2012/050565
Other languages
English (en)
French (fr)
Inventor
博文 塩野
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2012099005A1 publication Critical patent/WO2012099005A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/58Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/583Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20036Morphological image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro

Definitions

  • the present invention relates to a method for creating cell information data, a cell information evaluation method, a cell information provision method, a cell information evaluation device, a cell information provision device, a cell information evaluation program, and a cell information provision program.
  • Patent Document 1 a database in which an image of a cell is stored in association with the morphological feature of the cell is known.
  • a cell illustration or cell image corresponding to a cell morphological feature amount input from a database is searched using the cell morphological feature amount as input information, and the cell illustration is obtained as a result of the search.
  • the image search system which displays the image of a cell on a display part is disclosed.
  • the cell information search apparatus which enable it to search the information regarding the said cell from the image by which the cell was imaged, It is an object to provide a cell information registration program, a cell information search system, and a cell information registration system.
  • the present invention provides the following means. (1) an identification information storage unit in which identification information given to classify cells is stored; An image data input unit for inputting an image of the target cell; An extraction unit that extracts the morphological feature amount of the target cell from the image input to the image data input unit; Based on the morphological feature amount extracted by the extraction unit, a search unit that searches the identification information storage unit for the identification information corresponding to the target cell; A cell information retrieval apparatus comprising: (2) In the identification information storage unit, the morphological feature amount of the cell selected for classifying the cell and the identification information uniquely set every time the cell is classified into a different classification are stored in association with each other.
  • the cell information search device extracts identification information from the identification information storage unit based on a plurality of types of morphological features obtained from the cell morphology.
  • the cell information retrieval device according to (1) or (2), further comprising: (4) an image storage unit in which the identification information and the image in which the cell having the morphological feature amount corresponding to the identification information is captured are stored in association with each other; An identification information input unit for inputting the identification information; An image search unit for searching for an image corresponding to the input identification information stored in the identification information storage unit;
  • the cell information search device according to any one of (1) to (3), further comprising: (5) When there are a plurality of images corresponding to one piece of identification information, the image search unit is assigned to each of the plurality of images from
  • the cell information search device according to (4), wherein one image is selected based on the reliability of the attribute information.
  • (6) The cell information search according to (4) or (5), wherein the image storage unit stores an image obtained by capturing one or more cells in association with one piece of the identification information. apparatus. (7) an attribute information storage unit storing attribute information indicating an attribute of the cell corresponding to the identification information; An attribute information reading unit that reads attribute information corresponding to the identification information read by the search unit from an attribute information storage unit;
  • the cell information search device according to any one of (1) to (6), comprising: (8) The cell information search device according to (7), wherein the attribute information storage unit stores one piece of the attribute information in association with one piece of the identification information.
  • the cell information retrieval device according to (7) or (8), wherein the attribute information is data of a cell in an image obtained by imaging the cell corresponding to the identification information.
  • the image storage unit stores the identification information, the input target cell image, and the cell attribute information in association with each other, (1) to (8) further including an image registration unit that stores the input image of the target cell and the attribute information of the cell in the image storage unit in association with the identification information obtained as a result of the search by the search unit.
  • the cell information search device according to any one of the above. (11) When there are a plurality of images obtained by imaging the cells corresponding to one piece of the identification information, the images are assigned to each of the plurality of images corresponding to the one piece of identification information stored in the image storage unit.
  • the above includes an attribute information change unit that reads out the attribute information with the highest reliability from the attribute information of the cells captured in each image and stores the read attribute information in the attribute information storage unit (
  • the cell information retrieval device 10).
  • the image registration unit may be configured based on a frequency at which attribute information that is the same as or similar to each attribute information appears in the plurality of attribute information assigned to each of the plurality of images corresponding to the one identification information.
  • An identification information storage unit for storing identification information given to classify cells and morphological features of the cells in association with each other;
  • An extraction unit that extracts a morphological feature amount from an area of the cell in the image in which the cell is imaged;
  • a classifying unit that classifies the extracted morphological features into a predetermined class based on a predetermined classification method;
  • An identification information registration unit that associates the identification information for identifying each of the classified classes with the morphological feature quantity and stores the identification information in the identification information storage unit;
  • a cell information registration device comprising: (15) The cell information registration device according to (14), further including an image registration unit that stores an image obtained by capturing the cell in an image storage unit in association with the identification information.
  • the cell information registration device according to (14) or (15), further including an attribute information registration unit that stores the attribute information of the input target cell in the attribute information storage unit in association with the identification information.
  • the attribute information registration unit includes a plurality of pieces of information corresponding to the one piece of identification information stored in the attribute information storage unit. The attribute information with the highest reliability is read out from the attribute information of the cells captured in each image given to each of the images, and the read attribute information corresponds to one piece of the identification information.
  • the cell information registration device according to (16), wherein the attribute information is stored in the attribute information storage unit as the attribute information.
  • An image storage unit in which an input image of a target cell and the cell attribute information are stored in association with each other;
  • An image registration unit for storing the input image of the target cell and the attribute information of the cell in the image storage unit in association with the identification information obtained as a result of the search by the search unit;
  • the reliability for calculating the reliability based on the frequency of appearance of attribute information that is the same or similar to each attribute information in a plurality of attribute information assigned to each of the plurality of images corresponding to the one identification information
  • a calculation unit With The cell information registration device according to (17), wherein the image registration unit stores the attribute information and the reliability in the image storage unit in association with each other.
  • the reliability calculation unit calculates the reliability based on a product of a frequency of appearance of the attribute information and a weighting element assigned to each attribute information. Registration device.
  • a computer as a cell information retrieval device comprising an identification information storage unit that is stored in association with the image in which the cell is captured, An image data input unit that inputs an image of the target cell, and a first step of extracting the morphological feature amount of the target cell from the image input to the image data input unit; A second step of searching for the identification information corresponding to the target cell based on the morphological feature amount extracted by the extraction unit and the morphological feature amount stored in the identification information storage unit; Cell information retrieval program to execute.
  • a computer as a cell information registration device, A first step of extracting morphological features from the morphology of the cells in the image in which the cells are imaged; A second step of classifying the extracted morphological features into a predetermined class based on a predetermined classification method; A third step of associating the identification information for identifying the classified class with the class and storing it in the identification information storage unit; Cell information registration program to execute.
  • an identification information storage device in which identification information given to classify cells is stored;
  • An image data input unit for inputting an image of the target cell;
  • An extraction unit that extracts the morphological feature amount of the target cell from the image input to the image data input unit;
  • a search unit comprising: a search unit that searches the identification information storage unit for the identification information corresponding to the target cell based on the morphological feature amount extracted by the extraction unit;
  • a cell information retrieval system comprising:
  • An identification information storage device in which identification information given to classify cells and a morphological feature of the cell are stored in association with each other;
  • An extraction unit that extracts a morphological feature amount from an area of the cell in the image in which the cell is imaged;
  • a classifying unit that classifies the extracted morphological features into a predetermined class based on a predetermined classification method;
  • a registration device comprising an identification information registration unit for associating identification information for identifying each of the classified classes with the morphological feature quantity and storing the identification information in the identification information storage device;
  • a cell information registration system in which identification information given to classify cells and a morphological feature of the cell are stored in association with each other.
  • an identification information storage unit in which identification information given to classify cells is stored;
  • a search unit that searches the identification information storage unit for the identification information corresponding to the target cell based on the morphological feature amount of the target cell;
  • a cell information retrieval apparatus comprising: (25) The morphological feature amount of the target cell is extracted from image data obtained by imaging the target cell in a computer installed outside the cell information search device, and is transmitted to the search unit of the cell information search device.
  • FIG. 1 is a diagram for explaining an outline of a cell information search apparatus according to an embodiment of the present invention.
  • the cell information retrieval device 1 receives an image (hereinafter referred to as a target image) in which the target cell is imaged, and calculates identification information.
  • the cell information search device 1 outputs representative attribute information that is typical attribute information belonging to the target cell corresponding to the calculated identification information, or a representative image that is a typical image of the target cell.
  • the cell information retrieval apparatus 1 outputs information indicating the activity of the target cell, the cell culture method, the function of the cell, or the cell handling method to the outside.
  • FIG. 2 is a functional block diagram of the cell information search apparatus in one embodiment of the present invention.
  • the cell information search apparatus 1 includes a storage unit 10, an identification information search unit 20, a representative image search unit 40, an attribute information read unit 31, an image registration unit 32, and an attribute information change unit (attribute information registration unit) 34. And an accounting unit 35.
  • the storage unit 10 includes an identification information storage unit 11, an attribute information storage unit 12, an image storage unit 13, and an all data storage unit 14.
  • the identification information storage unit 11 stores morphological feature quantities of cells and identification information in association with each other.
  • the morphological feature amount of the cell will be described.
  • the morphological feature amount of the cell is extracted by the extraction unit 22 from an image obtained by capturing the cell.
  • FIG. 3 is a diagram for explaining each morphological feature amount of a cell.
  • the morphological feature amount of the cell is, for example, as follows.
  • “Total area” (see FIG. 3A) is a value indicating the area of the cell of interest.
  • the extraction unit 22 can obtain the value of “Total area” based on the number of pixels in the cell region of interest.
  • Hole area is a value indicating the area of Hole in the cell of interest.
  • Hole refers to a portion where the brightness of the image in the cell is equal to or greater than a threshold value due to contrast (a portion that is close to white in phase difference observation).
  • a threshold value due to contrast (a portion that is close to white in phase difference observation).
  • stained lysosomes of intracellular organelles are detected as Hole.
  • a cell nucleus and other organelles can be detected as Hole.
  • the extraction unit 22 may detect a group of pixels in which the luminance value in the cell is equal to or greater than the threshold as Hole, and obtain the value of “Hole area” based on the number of pixels of the Hole.
  • This “relative hole area” is attribute information indicating the ratio of the organelle in the cell size, and its value fluctuates depending on, for example, enlargement of the organelle or deterioration of the shape of the nucleus. .
  • “Perimeter” is a value indicating the length of the outer periphery of the cell of interest.
  • the extraction unit 22 can obtain the value of “Perimeter” by contour tracking processing when extracting cells.
  • “Width” is a value indicating the length of the cell of interest in the horizontal direction (X direction) of the image.
  • “Height” is a value indicating the length of the cell of interest in the image vertical direction (Y direction).
  • Length is a value indicating the maximum value (the total length of the cell) of the lines crossing the cell of interest.
  • “Breadth” is a value indicating the maximum value (lateral width of the cell) among lines orthogonal to “Length”.
  • “Fiber Length” (see (i) of FIG. 3) is a value indicating the length when the target cell is assumed to be pseudo linear.
  • the extraction unit 22 calculates the value of “Fiber Length” according to the following equation (1).
  • “Fiber Breath” (see (j) of FIG. 3) is a value indicating a width (a length in a direction perpendicular to Fiber Length) when the target cell is assumed to be pseudo linear.
  • the extraction unit 22 obtains the value of “Fiber Breath” by the following equation (2).
  • Shape Factor (see (k) of FIG. 3) is a value indicating the circularity (roundness of the cell) of the cell of interest.
  • the extraction unit 22 obtains the value of “Shape Factor” by the following equation (3).
  • Inner radius is a value indicating the radius of the inscribed circle of the cell of interest.
  • Outer radius is a value indicating the radius of the circumscribed circle of the cell of interest.
  • “Mean radius” (see (o) of FIG. 3) is a value indicating an average distance between all the points constituting the outline of the cell of interest and its centroid point.
  • “Equivalent radius” (see FIG. 3 (p)) is a value indicating the radius of a circle having the same area as the cell of interest. The attribute information of “Equivalent radius” indicates the size when the cell of interest is virtually approximated to a circle.
  • FIG. 4 shows an example of a table in which class ids, which are identification codes unique to classes into which cells stored in the identification information storage unit 11 are classified, identification information, and morphological features are associated with each other.
  • class ids which are identification codes unique to classes into which cells stored in the identification information storage unit 11 are classified
  • identification information and morphological features are associated with each other.
  • the class id and the identification information are associated one-to-one.
  • a combination of identification information and morphological feature amount attribute information in the example of FIG. 4, cell roundness, cell area, and cell length) are associated one-to-one.
  • FIG. 5 is a diagram for explaining an example of identification information.
  • the identification information is information including information indicating the cell type.
  • the identification information includes, as an example, an id indicating one of the cell attribute information, a value indicating the cell activity, a value indicating the cell quality, and a cell culture time [hour]. It is configured using the indicated value and the serial number.
  • the value indicating the degree of cell activity is an integer from 0 to 100, and the larger the number, the higher the cell activity.
  • the value indicating the cell activity is, for example, a value calculated based on the oxygen consumption of the cell. The higher the oxygen consumption of the cell, the higher the activity of the cell.
  • the value which shows the quality of a cell is an integer from 0 to 100, and the quality of a cell is so high that a number is large.
  • the value indicating the quality of the cell is, for example, a value calculated based on the cell growth rate with respect to the culture time. The higher the cell growth rate with respect to the previous culture time, the higher the cell quality value.
  • the serial number is a unique number assigned to a cell having the same cell type, cell activity, and cell quality.
  • the identification information is not limited to the above, and may include information indicating the morphological feature amount of other cells, or may include attribute information of other cells.
  • the attribute information of other cells includes culture time (hour), information indicating cell origin (for example, human, mouse, etc.), information indicating cell site (for example, liver, epidermis, nerve, etc.), culture, etc.
  • Information indicating conditions temperature, atmosphere, substrate, medium, serum, additive
  • information indicating the purpose of culture information indicating the presence or absence of successful cases for each purpose, information indicating cell activity
  • the information indicating the purpose of the culture is, for example, the purpose of induction into specific cells (cancer cells) or the purpose of differentiation into specific cells (bone cells).
  • Future cell prediction is, for example, future cell differentiation prediction or cell division frequency prediction.
  • the authenticity of a cell is, for example, whether or not a cell of a specific cell type obtained is really that cell type.
  • the cell information evaluation apparatus 1 can determine whether the purchased ES cells (Embryonic Stem cells) are really ES cells.
  • FIG. 6 is an example of a table (table T1) in which cell identification information stored in the attribute information storage unit 12 is associated with the cell attribute information.
  • the combination of identification information and cell attribute information (here, cell type id, cell activity, cell quality, culture time, culture condition id) is associated one-to-one.
  • FIG. 7 is an example of a table (table T2) in which the cell type id for identifying the cell type stored in the attribute information storage unit 12 is associated with the cell type information.
  • the cell type information is character information indicating the name of the cell type. This makes it easier for a person to determine the type of cell.
  • the cell type id and the cell type are associated one to one.
  • the attribute information storage unit 12 is assumed as a relational database, and the cell type is referred to from the cell type id.
  • FIG. 8 is an example of a table (table T3) in which the culture condition id, temperature, medium type, serum, and additive id stored in the attribute information storage unit 12 are associated.
  • table T3 in which the culture condition id, temperature, medium type, serum, and additive id stored in the attribute information storage unit 12 are associated.
  • cell culture conditions temperature, medium type, serum, additive id
  • FIG. 8 is an example of a table (table T3) in which the culture condition id, temperature, medium type, serum, and additive id stored in the attribute information storage unit 12 are associated.
  • cell culture conditions temperature, medium type, serum, additive id
  • FIG. 9 is an example of a table (table T4) in which the additive id stored in the attribute information storage unit 12 is associated with the presence or absence of each additive.
  • the presence or absence of each additive eg, glutamine, pyruvic acid, HEPES (2- [4- (2-Hydroxyethyl) -1-piperazinyl] ethanesulfonic acid)
  • the additive id e.g, glutamine, pyruvic acid, HEPES (2- [4- (2-Hydroxyethyl) -1-piperazinyl] ethanesulfonic acid
  • 1 means that the additive is added
  • 0 means that the additive is not added.
  • FIG. 10 is a diagram illustrating an example of a table in which the image id, the image file path name, the identification information, the attribute information, and the reliability of the attribute information stored in the image storage unit 13 are associated with each other. It is.
  • one or more image ids and image file path names may be associated with one piece of identification information.
  • the attribute information of the cell and the reliability of the attribute information may be associated with each image on a one-to-one basis.
  • the reliability of the attribute information is a value from 0 to 10 representing the reliability of the attribute information. The higher the value, the higher the reliability of the attribute information. Further, the image registration unit 32 stores an image obtained by capturing cells in the image storage unit 13.
  • the storage unit 10 is, for example, a relational database.
  • Relational database refers to a method of expressing a single data as a set of multiple items and representing the set of data in a table, and combining data using key data such as id numbers And extraction can be performed easily. Therefore, in the storage unit 10, the cell type id in the image storage unit 13 and the cell type id in the attribute information storage unit 12 are stored in association with each other. As a result, the image search unit 42 can read the cell type from the attribute information storage unit 12 using the cell type id of the image storage unit 13 as a key.
  • the culture condition id of the image storage unit 13 and the culture condition id of the attribute information storage unit 12 are stored in association with each other.
  • the image search unit 42 can read out the culture condition from the attribute information storage unit 12 using the culture condition id of the image storage unit 13 as a key.
  • FIG. 11 is a diagram illustrating an example of a table in which the image id, the identification information, all the attribute information, and the reliability of the attribute information stored in the all data storage unit 14 are associated with each other.
  • the cell type id and the culture condition id are shown as an example of the attribute information, but other attribute information is also included.
  • the image id stored in all data storage unit 14 is associated with the image id stored in image storage unit 13 on a one-to-one basis. Thereby, the image stored in the image storage unit 13 can be referred to from the image id stored in the all data storage unit 14.
  • the all data storage unit 14 stores the target image input from the outside, all the attribute information corresponding to the target image, the reliability of the attribute information and the identification information searched based on the target image in association with each other. Yes.
  • the all data storage unit 14 is a database that is not used at the time of a search using identification information or an image as an input.
  • an attribute information change unit (attribute information registration unit) 34 is stored in attribute information storage unit 12. It is a database used for determining whether or not to change the attribute information.
  • the identification information search unit 20 includes an image data input unit 21, an extraction unit 22, and a search unit 23.
  • the image data input unit 21 receives a target image supplied from the outside.
  • the image data input unit 21 supplies the target image to the extraction unit 22.
  • the extraction unit 22 extracts a cell image area from the target image supplied from the image data input unit 21.
  • the extraction unit 22 calculates the 16 morphological feature amounts for each cell region from the extracted cell image region.
  • the extraction unit 22 calculates an average value of 16 morphological feature amounts for one target image by averaging the calculated morphological feature amounts for each cell region.
  • the average value of the 16 morphological feature amounts is collectively referred to as a morphological feature amount.
  • the extraction unit 22 supplies the morphological feature amount to the classification unit 24 and the reliability calculation unit 33 in the image registration unit 32.
  • the search unit 23 includes a classification unit 24.
  • the classification unit 24 classifies the cells into a class for classifying the cells based on the morphological feature amount supplied from the extraction unit 22 and a predetermined classification method (for example, a classification method using a classification tree) constructed in advance.
  • the classification unit 24 reads out the class id assigned to the classified class.
  • the classification unit 24 reads identification information corresponding to the class id from the identification information storage unit 11.
  • FIG. 12 is an example of a classification tree used by the classification unit 24 when classifying cells.
  • a cell having a cell roundness of 70 or more and less than 90, a cell area of 50 or more and less than 150, and a cell length of 10 or more and less than 30 is uniquely classified into a class having a class id of 1.
  • the classification unit 24 classifies cells into classes using this classification tree.
  • the classification unit 24 displays the read identification information on a display device (not shown). In addition, the classification unit 24 displays the morphological feature amount as a representative feature amount on a display device (not illustrated). The classification unit 24 supplies the representative feature amount to the accounting unit 35. Further, the classification unit 24 supplies identification information to the attribute information reading unit 31, the image registration unit 32, the image search unit 42, and the charging unit 35.
  • the attribute information reading unit 31 reads from the attribute information storage unit 12 the attribute information corresponding to the identification information supplied from the classification unit 24 or the identification information supplied from the outside. Specifically, for example, in the table T1 in FIG. 6, the attribute information reading unit 31 obtains the cell type id, the cell activity, the cell quality, the culture time, and the culture condition id, which are the attribute information from the identification information. read out. The attribute information reading unit 31 reads cell type information corresponding to the read cell type id from the table T2 shown in FIG.
  • the attribute information reading unit 31 reads the cell temperature information corresponding to the read culture condition id, the culture temperature, the type of medium, the serum, and the additive id from the table T3 shown in FIG. Furthermore, the attribute information reading unit 31 reads the presence / absence of the additive corresponding to the read additive id from the table T4 shown in FIG.
  • the attribute information reading unit 31 includes the cell type id “110”, the cell activity “80”, and the cell quality “100”, which are attribute information corresponding to the identification information “110-80-100-24-1”. ", The culture time” 24 "[hour], and the culture condition id” 2 "are read from the table T1 shown in FIG.
  • the attribute information reading unit 31 reads “HeLa cells” corresponding to the read cell type id “110” from the table T2 shown in FIG.
  • the attribute information reading unit 31 includes a culture temperature “37” [degree] which is a culture condition corresponding to the read culture condition id “2”, a medium type “DMEM”, a serum “bovine newborn serum”, an addition
  • the object id “3” is read from the table T3 shown in FIG.
  • the attribute information reading unit 31 reads glutamine “1”, pyruvic acid “1”, and HEPES “1” corresponding to the read additive id “3”. This shows that glutamine, pyruvic acid and HEPES were used as additives.
  • the attribute information reading unit 31 outputs the read attribute information to the outside and displays it on a display device (not shown). Further, the attribute information reading unit 31 supplies the read attribute information to the accounting unit 35.
  • the image registration unit 32 includes a reliability calculation unit 33.
  • the image registration unit 32 receives a target image supplied from the outside, and stores the target image in the image storage unit 13.
  • the reliability calculation unit 33 receives the attribute information supplied from the outside and the morphological feature amount supplied from the extraction unit 22.
  • the reliability calculation unit 33 calculates the reliability T of the attribute information supplied from the outside using the following equation (4).
  • w i is a weight (value from 0 to 1) of the i-th attribute information
  • S i is a score (value from 0 to 10) of the i-th attribute information
  • N is each identification information Is the number of types of attribute information corresponding to. For example, if the attribute information has two types of activity and quality, N is 2.
  • the greater the weight w i of attribute information the greater the effect that attribute information has on the score. That is, the greater the weight w i of the attribute information, the more important the index is when determining the reliability of the attribute information.
  • the weight w i of the attribute information can be set in advance by the user. For example, the priority order of the weights is determined according to the type of user research. Further, a default value is set in the apparatus, and the weight is determined by the default value unless changed by the user. w i shall meet the following formula (5).
  • the reliability calculation unit 33 calculates a normalized frequency with a maximum frequency of 1 for each value of the predetermined attribute information stored in the all data storage unit 14.
  • the reliability calculation unit 33 uses a value obtained by multiplying the normalized frequency by 10 as a score.
  • the predetermined attribute information may be partial attribute information or all attribute information.
  • the reliability calculation unit 33 extracts the normalized frequency corresponding to the input value using the input value of the predetermined attribute information as the input value.
  • the reliability calculation unit 33 calculates the score by multiplying the extracted normalized frequency by 10.
  • FIG. 13A is a diagram showing a normalized frequency distribution (score distribution) of activity.
  • the horizontal axis is the activity, and the vertical axis is the normalized frequency or score.
  • the normalized frequency distribution of the activity is a distribution in which the normalized frequency becomes 1 when the activity is 5.
  • the reliability calculation unit 33 extracts 1 as the normalized frequency and 10 as the score from FIG. . Further, assuming that the activity is 3, the reliability calculation unit 33 extracts 5 as a score from the distribution of FIG. 13A. If the activity is 2, the reliability calculation unit 33 extracts 2 as a score from the distribution of FIG. 13A.
  • FIG. 13B is a diagram showing a normalized frequency distribution (score distribution) of quality.
  • the horizontal axis is quality, and the vertical axis is normalized frequency or score.
  • the normalized frequency distribution of quality is a distribution in which the normalized frequency is 1 when the quality is 8.
  • the reliability calculation unit 33 extracts 0.5 as the normalized frequency from FIG. Extract. Similarly, assuming that the quality is 8, the reliability calculation unit 33 extracts 1 as the normalized frequency and 10 as the score from FIG. Similarly, assuming that the quality is 5, the reliability calculation unit 33 extracts 0.2 as the normalized frequency and 2 as the score from FIG. Thus, the score depends on the distribution.
  • N 2
  • the activity weight w 1 is set to 0.8
  • the quality weight w 2 is set to 0.2.
  • the reliability calculation unit 33 determines the frequency at which attribute information that is the same as or similar to each attribute information appears in a plurality of attribute information assigned to each of a plurality of images corresponding to one identification information. Based on this, the reliability of the target image is calculated. Further, the reliability calculation unit 33 calculates the reliability T based on the product of the frequency at which the attribute information appears and the weighting element assigned to each attribute information.
  • S i has been described as the score of the i-th attribute information, it may be the score of the i-th morphological feature amount.
  • the reliability calculation unit 33 can calculate the reliability by comparing the morphological feature amount extracted from the input image with the distribution of the morphological feature amount.
  • S i may be the sum of the score of the i th attribute information and the score of the i th morphological feature.
  • the reliability calculation unit 33 compares the input attribute information with the distribution of the attribute information, and the comparison result between the morphological feature quantity extracted from the input image and the morphological feature quantity distribution. Based on the above, the reliability can be calculated.
  • the image registration unit 32 associates the identification information supplied from the classification unit 24, the input target image, and the reliability of the attribute information calculated by the reliability calculation unit 33, and stores them in the image storage unit 13. .
  • the image registration unit 32 also includes the identification information supplied from the classification unit 24, the input target image, all the input attribute information, and the reliability of the attribute information calculated by the reliability calculation unit 33. Are stored in the entire data storage unit 14.
  • the image registration unit 32 In order to notify the attribute information change unit (attribute information registration unit) 34 that the new attribute information has been stored in the all data storage unit 14, the image registration unit 32 newly inputs the attribute information and the attribute The identification information is supplied to the attribute information changing unit (attribute information registering unit) 34.
  • attribute information change unit (attribute information registration unit) 34 When new attribute information is stored in all data storage unit 14, attribute information changing unit (attribute information registering unit) 34 determines whether or not to change the attribute information. For this purpose, the attribute information change unit (attribute information registration unit) 34 reads each attribute information corresponding to the identification information supplied from the image registration unit 32 from the all data storage unit 14.
  • Attribute information changing unit (attribute information registering unit) 34 reads out the identification information and the attribute information when all the data storage unit 14 has only one attribute information for the predetermined identification information.
  • the attribute information change unit (attribute information registration unit) 34 stores the read attribute information in the attribute information storage unit 12 in association with the identification information.
  • the attribute information changing unit (attribute information registration unit) 34 Process when the data stored in all the data storage units 14 increases and there are a plurality of attribute information for the same identification information in all the data storage units 14, the attribute information changing unit (attribute information registration unit) 34 Process.
  • the attribute information changing unit (attribute information registering unit) 34 classifies each piece of attribute information classified into the same identification information (for example, temperature during culture, type of culture medium, type of serum, additive, amount of additive added, additive) Concentrations and passage techniques (cell detachment enzyme concentration, enzyme temperature, time exposed to the enzyme, type of serum to neutralize the enzyme, time spent on the serum, etc.) Calculate the frequency distribution.
  • the attribute information changing unit (attribute information registering unit) 34 includes a mode value (hereinafter referred to as a conventional mode value) in the frequency distribution of each attribute information before new attribute information is input, and new attribute information.
  • (i is a positive integer representing the number of attribute information) of the difference in the mode value (hereinafter referred to as a new mode value) in the frequency distribution of the attribute information after calculate.
  • the attribute information change unit (attribute information registration unit) 34 determines whether or not the absolute value of the difference between the new mode value and the conventional mode value is greater than a predetermined threshold Th. When larger than the predetermined threshold value, the attribute information changing unit (attribute information registering unit) 34 changes the attribute information stored in the attribute information storage unit 12 to a new mode value.
  • the attribute information changing unit (attribute information registering unit) 34 changes the attribute information to a large number even if the initial reliability is low.
  • FIG. 14A is a diagram illustrating a frequency distribution of temperature during culture before new attribute information is input.
  • the horizontal axis is the temperature during culture, and the vertical axis is the frequency.
  • the mode value is 36 degrees.
  • FIG. 14B is a diagram illustrating a frequency distribution of temperatures during culture after new attribute information is input.
  • the horizontal axis is the temperature during culture, and the vertical axis is the frequency.
  • the mode value is 37 degrees.
  • the absolute value of the difference between the new mode value of 37 degrees and the conventional mode value of 36 degrees is 1.
  • the predetermined threshold is 0.5
  • the absolute value is larger than the predetermined threshold 0.5. Therefore, the attribute information changing unit (attribute information registering unit) 34 changes the culture temperature stored in the attribute information storage unit 12 from 36 degrees to 37 degrees.
  • the attribute information change unit (attribute information registration unit) 34 uses the identification information whose attribute information has been changed to the reliability calculation unit. 33.
  • the reliability calculation unit 33 reads the attribute information corresponding to the identification information in which the attribute information supplied from the attribute information change unit (attribute information registration unit) 34 is changed from the all data storage unit 14, and the read attribute Recalculate the reliability of the information.
  • the reliability calculation unit 33 changes the reliability of the attribute information stored in the all data storage unit 14 to the reliability of the recalculated attribute information. Similarly, the reliability calculation unit 33 changes the reliability of the attribute information stored in the image storage unit 13 to the reliability of the recalculated attribute information.
  • the representative image search unit 40 includes an identification information input unit 41 and an image search unit 42.
  • the identification information input unit 41 receives identification information input from the outside, and supplies the identification information to the image search unit 42.
  • the image search unit 42 reads a representative image corresponding to the identification information supplied from the identification information input unit 41 from the image storage unit 13.
  • the image search unit 42 displays the read representative image on a display device (not shown). Further, the image search unit 42 supplies the read representative image to the charging unit 35.
  • the billing unit 35 calculates a billing amount for the searcher according to information to be output to the outside, and outputs the calculated billing amount to the outside. For example, the billing unit 35 outputs a predetermined billing amount to the outside every time one piece of supplied identification information or one supplied representative feature amount is output.
  • the accounting unit 35 calculates a charging amount according to the type of attribute information supplied to the outside among the representative attribute information supplied from the attribute information reading unit 31, and outputs the calculated amount to the outside.
  • the billing unit 35 calculates a billing amount according to the number of representative images supplied from the image search unit 42 and outputs the calculated amount to the outside.
  • the cell information registration device 101 is a part of the cell information search device 1, and includes a storage unit 10, an identification information search unit 20, and an attribute information read unit. 31, an image registration unit 32, and an attribute information change unit (attribute information registration unit) 34. Since the description of the processing of each part is the same as that of the cell information search device 1, it will be omitted.
  • the cell information registration device 101 when the cell image registration device 101 receives the image of the cell and the attribute information of the cell, the cell information registration device 101 extracts the identification information for identifying the cell, and the extracted identification
  • the information, the image, and the attribute information can be associated with each other and stored in the storage unit 10.
  • the cell information search device 1 receives a target image from a terminal device such as a personal computer used by the searcher via a communication network such as the Internet, and sends the identification information corresponding to the target image to the searcher via the communication network. It may be a server device that returns to the terminal device used.
  • the cell information registration device 101 receives a target image from a terminal device such as a personal computer used by a user via a communication network such as the Internet, and sends identification information corresponding to the target image via the communication network.
  • the server device may be returned to the terminal device used by the user.
  • storage part 10 of the cell information search device 1 of this embodiment was mentioned inside the cell information search device 1, it is not restricted to this, Even if the memory
  • the example implement
  • storage part 10 of the cell information search device 1 is used as a memory
  • the apparatus may be realized as a cell information search system as a whole.
  • storage part 10 of the cell information registration apparatus 101 of this embodiment was inside the cell information registration apparatus 101, it is not restricted to this, Even if the memory
  • storage part 10 of the cell information registration apparatus 101 is used as a memory
  • the apparatus may be realized as a cell information registration system as a whole.
  • a part or all of the functions of the cell information search device 1 or the cell information registration device 101 according to the present embodiment may be realized by a computer.
  • the cell information search program or cell information registration program for realizing the function is recorded on a computer-readable recording medium, and the cell information search program or cell information registration program recorded on the recording medium is stored in the computer system. You may implement
  • the “computer system” includes an OS (Operating System) and peripheral hardware.
  • the “computer-readable recording medium” refers to a portable recording medium such as a flexible disk, a magneto-optical disk, an optical disk, and a memory card, and a storage device such as a hard disk built in the computer system.
  • the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • it may include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system serving as a server or a client.
  • the above program may be for realizing a part of the functions described above, or may be realized by a combination with the program already recorded in the computer system. .
  • the extraction process of the morphological feature amount of the image data of the target cell is performed by the image data input unit 21 and the extraction unit 22. That is, the cell morphological feature amount extraction processing is performed by the cell information retrieval apparatus 1.
  • the present invention is not limited to this, and the extraction process of the morphological feature amount of the image data of the target cell is executed in the user's personal computer, and the morphological feature amount data is obtained from the search unit of the cell information search device 1 23 may be transmitted.
  • a transmission method data is transmitted to the cell information retrieval apparatus 1 installed outside using the Internet.
  • FIG. 15 is a flowchart illustrating a flow of processing in which the cell information search device reads identification information, attribute information, and a representative image when a target image is input.
  • the image data input unit 21 receives a target image supplied from the outside (step S101).
  • the image data input unit 21 supplies the target image to the extraction unit 22.
  • the extraction unit 22 extracts a morphological feature amount from the supplied image (step S102), and supplies the extracted morphological feature amount to the classification unit 24.
  • the classifying unit 24 classifies the cell class by comparing the supplied morphological feature quantity with a pre-constructed classification tree.
  • the classification unit 24 reads identification information corresponding to the class id assigned to the classified class from the identification information storage unit 11, and displays the read identification information on a display device (not shown) (step S103).
  • the classification unit 24 supplies the extracted identification information to the attribute information reading unit 31 and the image search unit 42.
  • the attribute information reading unit 31 reads the attribute information corresponding to the identification information from the attribute information storage unit 12, and displays the read attribute information on a display device (not shown) (step S104).
  • the image search unit 42 reads a representative image corresponding to the identification information from the image storage unit 13 and displays the read representative image on a display device (not shown) (step S105). Above, the process of this flowchart is complete
  • the cell information search device 1 can display representative attribute information or a representative image of the identification information on an external display unit. it can.
  • the cell information search device 1 sets the culture time information included in the identification information to arbitrary culture time information, and from the image storage unit 13 based on the arbitrary culture time information. A plurality of images can be extracted, and a time-series image of cells obtained by arranging the extracted images in order of culture time can be displayed on an external display unit.
  • FIG. 16 is a flowchart showing a flow of processing in which the cell information search device stores the target image when the target image and the attribute information are input.
  • the image data input unit 21 receives a target image input from the outside, and supplies the target image to the extraction unit 22 (step S201).
  • the image registration unit 32 receives a target image input from the outside.
  • the image registration unit 32 receives the attribute information of the target cell input from the outside, and supplies the attribute information to the reliability calculation unit 33 in the image registration unit 32 (step S202).
  • the identification information search unit 20 extracts the identification information by the processing from step S102 to step S103 in FIG. 15, and supplies the identification information to the image registration unit 32 (step S203).
  • the reliability calculation unit 33 selects the attribute information selected for calculating the reliability in advance from the attribute information of the supplied target cells by comparing the attribute information with the distribution of the attribute information up to now.
  • the score of each attribute information is calculated.
  • the reliability calculation unit 33 multiplies the calculated score of each attribute information by a weight determined in advance for each attribute information.
  • the reliability calculation unit 33 calculates the reliability of the attribute information of the target cell by taking the sum of the values obtained by multiplication (step S204).
  • the reliability calculation unit 33 associates the input target image, the supplied identification information, the input attribute information, and the calculated reliability of the attribute information to the all data storage unit 14.
  • the reliability calculation unit 33 stores the input target image, the supplied identification information, and the calculated reliability of the attribute information in the image storage unit 13 in association with each other.
  • the cell information search apparatus 1 can also search the stored target image.
  • FIG. 17 is a flowchart showing a flow of processing in which the cell information search device reads the target image when the identification information is input.
  • the identification information input unit 41 receives identification information input from the outside, and supplies the identification information to the image search unit 42 (step S301).
  • the image search unit 42 reads a representative image corresponding to the identification information supplied from the identification information input unit 41 from the image storage unit 13 and displays the read representative image on a display device (not shown) (step S302). Above, the process of this flowchart is complete
  • the cell information search apparatus 1 can display the representative image of the cell corresponding to the identification information on an external display device from the identification information described in a publication such as a paper or a homepage.
  • the cell information search device 1 may output the representative attribute information of the cell corresponding to the identification information to the outside.
  • FIG. 18 is a flowchart showing a flow of processing in which the cell information evaluation apparatus 1 changes cell information.
  • the cell information search device 1 changes the attribute information at every predetermined time interval or when more attribute information than the predetermined number predetermined for the same identification information is stored in the all data storage unit 14.
  • the processing from step S401 to step S405 is the same as the processing from step S201 to step S205 in FIG.
  • the attribute information change unit (attribute information registration unit) 34 reads the attribute information corresponding to the identification information supplied from the image registration unit 32 from the all data storage unit 14. If the number of read attribute information is 0 (YES in step S406), the attribute information change unit (attribute information registration unit) 34 proceeds to the process of step S412. On the other hand, the attribute information changing unit (attribute information registering unit) 34 determines whether the number of read attribute information is 1 when the number of read attribute information is not 0 (NO in step S406).
  • the attribute information change unit (attribute information registration unit) 34 associates the read attribute information with the identification information, and attribute information storage unit 12 (Step S408).
  • the attribute information changing unit (attribute information registering unit) 34 stores the new attribute information in the all data storage unit 14 for each attribute information.
  • (i is a positive integer representing the number of each attribute information) is calculated (step S409).
  • the attribute information change unit (attribute information registration unit) 34 When the absolute value
  • the attribute information change unit (attribute information registration unit) 34 determines whether or not all identification information has been checked (step S412). If the attribute information change unit (attribute information registration unit) 34 has not checked all the identification information (NO in step S412), the attribute information change unit (attribute information registration unit) 34 returns to the process of step S406. On the other hand, when the attribute information changing unit (attribute information registering unit) 34 checks all pieces of identification information (YES in step S412), the attribute information changing unit (attribute information registering unit) 34 ends the process. Above, the process of this flowchart is complete
  • the cell information search device 1 can output an appropriate score even if the distribution of attribute information belonging to the same identification information is changed. Thereby, the cell information search device 1 can always output appropriate attribute information from an appropriate score.
  • the cell information search device 1 when an image obtained by imaging a cell is input, the cell information search device 1 is copied to the identification information for identifying the cell, the representative image of the cell, and the input image. It is possible to output information such as cell activity, cell quality, cell culture method, and culture handling method.
  • Information on the cell can be retrieved from the image of the cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Library & Information Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Databases & Information Systems (AREA)
  • Cell Biology (AREA)
  • Data Mining & Analysis (AREA)
  • Analytical Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Geometry (AREA)
  • Multimedia (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

 本発明は、細胞を分類するために付与される識別情報が記憶されている識別情報記憶部(11)と対象細胞が撮像された画像が入力される画像データ入力部(21)と、画像データ入力部(21)に入力された画像から、対象細胞の形態的特徴量を抽出する抽出部(22)と、抽出部(22)により抽出した形態的特徴量に基づいて、対象細胞に該当する識別情報を識別情報記憶部(11)から検索する検索部と、を備える細胞情報検索装置を提供する。

Description

[規則37.2に基づきISAが決定した発明の名称] 細胞情報データの作成方法
 本発明は、細胞情報データの作成方法、細胞情報評価方法、細胞情報提供方法、細胞情報評価装置、細胞情報提供装置、細胞情報評価プログラム、細胞情報提供プログラムに関する。
 本願は、2011年1月19日に、日本に出願された特願2011-008893号に基づき優先権を主張し、その内容をここに援用する。
 従来、細胞の画像を前記細胞の形態的特徴量と関連付けて記憶されたデータベースが知られている。例えば、特許文献1において、細胞の形態的特徴量を入力情報として、データベースから入力された細胞の形態的特徴量に対応した細胞のイラストまたは細胞の画像を検索し、検索の結果として細胞のイラストまたは細胞の画像を表示部に表示させる画像検索システムが開示されている。
特開2003-30202号公報
 しかしながら、検索時には、細胞の形態的特徴量を入力する必要があり、細胞が撮像された画像から、前記細胞に関する情報または前記細胞と同一の種類の画像等を検索することができなかった。
 そこで本発明は、上記問題に鑑みてなされたものであり、細胞が撮像された画像から前記細胞に関する情報を検索することを可能とする細胞情報検索装置、細胞情報登録装置、細胞情報検索プログラム、細胞情報登録プログラム、細胞情報検索システムおよび細胞情報登録システムを提供することを課題とする。
 本発明は、以下の手段を提供する。
 (1)細胞を分類するために付与される識別情報が記憶されている識別情報記憶部と、
 対象細胞が撮像された画像が入力される画像データ入力部と、
 前記画像データ入力部に入力された前記画像から、前記対象細胞の前記形態的特徴量を抽出する抽出部と、
 前記抽出部により抽出した前記形態的特徴量に基づいて、前記対象細胞に該当する前記識別情報を前記識別情報記憶部から検索する検索部と、
 を備える細胞情報検索装置。
 (2)識別情報記憶部に、細胞を分類するために選択された細胞の形態的特徴量と、細胞が異なる分類に分類されるごとに唯一設定された識別情報とが関連付けられて記憶されており、
 前記検索部は、前記細胞の形態から得られる複数種類の形態的特徴量に基づいて、前記識別情報記憶部から識別情報を抽出する上記(1)に記載の細胞情報検索装置。
 (3)前記識別情報と細胞が撮像された画像とが関連付けられて記憶されている画像記憶部と、
 前記検索部による検索の結果得られた識別情報と関連付けて、前記対象細胞が撮像された画像を画像記憶部に記憶させる画像登録部と、
 を更に備える上記(1)または(2)に記載の細胞情報検索装置。
 (4)前記識別情報と、前記識別情報に該当する前記形態的特徴量を持つ前記細胞が撮像されている前記画像とが関連付けられて記憶されている画像記憶部と、
 前記識別情報を入力する識別情報入力部と、
 前記識別情報記憶部に記憶されている前記入力された識別情報に該当する画像を検索する画像検索部と、
 を更に備える上記(1)から(3)のいずれか1項に記載の細胞情報検索装置。
 (5)前記画像検索部は、一つの前記識別情報に対応する画像が複数存在する場合、前記一つの識別情報に対応する複数の画像の中から、前記複数の画像の各々に付与されている属性情報の信頼度に基づき、一つの画像を選択する上記(4)に記載の細胞情報検索装置。
 (6)前記画像記憶部は、1つの前記識別情報に対して、1以上の前記細胞が撮像された画像が関連付けられて記憶されている上記(4)または(5)に記載の細胞情報検索装置。
 (7)前記識別情報に対応する細胞の属性を示す属性情報が記憶されている属性情報記憶部と、
 前記検索部により読み出された識別情報に対応する属性情報を属性情報記憶部から読み出す属性情報読出部と、
 を備える上記(1)から(6)のいずれか1項に記載の細胞情報検索装置。
 (8)前記属性情報記憶部は、1つの前記識別情報に対して、1つの前記属性情報が関連付けられて記憶されている上記(7)に記載の細胞情報検索装置。
 (9)前記属性情報は、前記識別情報に対応する前記細胞が撮像された画像中の細胞のデータである上記(7)または(8)に記載の細胞情報検索装置。
 (10)前記画像記憶部は、前記識別情報と、入力される対象細胞の画像と、前記細胞の属性情報とが関連付けられて記憶されており、
 前記検索部による検索の結果得られた識別情報と関連付けて、入力された対象細胞の画像と前記細胞の属性情報を前記画像記憶部に記憶させる画像登録部を備える上記(1)から(8)のいずれか1項に記載の細胞情報検索装置。
 (11)一つの前記識別情報に対応する前記細胞が撮像された画像が複数ある場合、前記画像記憶部に記憶されている前記一つの識別情報に対応する複数の画像の各々に付与されている各画像中に撮像されている細胞の属性情報の中から最も信頼度の高い前記属性情報を読み出し、前記読み出された属性情報を前記属性情報記憶部に記憶させる属性情報変更部を備える上記(10)に記載の細胞情報検索装置。
 (12)前記画像登録部は、前記一つの識別情報に対応する複数の画像の各々に付与された複数の属性情報において、各々の属性情報と同一又は類似した属性情報が出現する頻度に基づいて、前記対象細胞が撮像された画像の信頼度を算出する信頼度算出部を備える上記(10)または(11)に記載の細胞情報検索装置。
 (13)前記信頼度算出部は、前記属性情報が出現する頻度と各々の属性情報に付与された重み付け要素との積に基づいて前記信頼度を算出する上記(12)に記載の細胞情報検索装置。
 (14)細胞を分類するために付与される識別情報と細胞の形態的特徴量とが関連付けられて記憶される識別情報記憶部と、
 細胞が撮像された画像中の細胞の領域から形態的特徴量を抽出する抽出部と、
 前記抽出された形態的特徴量を予め定められている分類方法に基づいて、所定のクラスに分類する分類部と、
 前記分類されたクラスのそれぞれを識別する識別情報と前記形態的特徴量とを関連付けて前記識別情報記憶部に記憶させる識別情報登録部と、
 を備える細胞情報登録装置。
 (15)前記識別情報と関連付けて、前記細胞が撮像された画像を画像記憶部に記憶させる画像登録部を備える上記(14)に記載の細胞情報登録装置。
 (16)前記識別情報と関連付けて、入力された対象細胞の属性情報を属性情報記憶部に記憶させる属性情報登録部を備える上記(14)または(15)に記載の細胞情報登録装置。
 (17)前記属性情報登録部は、一つの前記識別情報に対応する前記細胞が撮像された画像が複数ある場合、前記属性情報記憶部に記憶されている前記一つの識別情報に対応する複数の画像の各々に付与されている各画像中に撮像されている細胞の属性情報の中から最も信頼度の高い前記属性情報を読み出し、前記読み出された属性情報を一つの前記識別情報に対応する前記属性情報として前記属性情報記憶部に記憶させる上記(16)に記載の細胞情報登録装置。
 (18)入力される対象細胞の画像と、前記細胞の属性情報とが関連付けられて記憶されている画像記憶部と、
 前記検索部による検索の結果得られた識別情報と関連付けて、入力された対象細胞の画像と前記細胞の属性情報を前記画像記憶部に記憶させる画像登録部と、
 前記一つの識別情報に対応する複数の画像の各々に付与された複数の属性情報において、各々の属性情報と同一又は類似した属性情報が出現する頻度に基づいて、前記信頼度を算出する信頼度算出部と、
 を備え、
 前記画像登録部は、前記属性情報と前記信頼度とを関連付けて前記画像記憶部に記憶させる上記(17)に記載の細胞情報登録装置。
 (19)前記信頼度算出部は、前記属性情報が出現する頻度と各々の属性情報に付与された重み付け要素との積に基づいて、前記信頼度を算出する上記(18)に記載の細胞情報登録装置。
 (20)細胞が撮像された画像中の前記細胞の形態から抽出された形態的特徴量に基づいて、前記画像毎に付与される識別情報と、前記識別情報に該当する前記形態的特徴量を持つ前記細胞が撮像されている前記画像とが関連付けられて記憶されている識別情報記憶部を備える細胞情報検索装置としてのコンピュータに、
 対象細胞が撮像された画像を入力する画像データ入力部と、前記画像データ入力部に入力された前記画像から、前記対象細胞の前記形態的特徴量を抽出する第1のステップと、
 前記抽出部により抽出した前記形態的特徴量と、前記識別情報記憶部に記憶された前記形態的特徴量とに基づいて、前記対象細胞に該当する前記識別情報を検索する第2のステップと、
 を実行させるための細胞情報検索プログラム。
 (21)細胞情報登録装置としてのコンピュータに、
 細胞が撮像された画像中の細胞の形態から形態的特徴量を抽出する第1のステップと、
 前記抽出された形態的特徴量を予め定められている分類方法に基づいて、所定のクラスに分類する第2のステップと、
 前記分類されたクラスを識別する識別情報と前記クラスとを関連付けて識別情報記憶部に記憶させる第3のステップと、
 を実行させるための細胞情報登録プログラム。
 (22)細胞を分類するために付与される識別情報が記憶されている識別情報記憶装置と、
 対象細胞が撮像された画像が入力される画像データ入力部と、
 前記画像データ入力部に入力された前記画像から、前記対象細胞の前記形態的特徴量を抽出する抽出部と、
 前記抽出部により抽出した前記形態的特徴量に基づいて、前記対象細胞に該当する前記識別情報を前記識別情報記憶部から検索する検索部と、を備える検索装置と、
 を有する細胞情報検索システム。
 (23)細胞を分類するために付与される識別情報と細胞の形態的特徴量とが関連付けられて記憶される識別情報記憶装置と、
 細胞が撮像された画像中の細胞の領域から形態的特徴量を抽出する抽出部と、
 前記抽出された形態的特徴量を予め定められている分類方法に基づいて、所定のクラスに分類する分類部と、
 前記分類されたクラスのそれぞれを識別する識別情報と前記形態的特徴量とを関連付けて前記識別情報記憶装置に記憶させる識別情報登録部を備える登録装置と、
 を有する細胞情報登録システム。
 (24)細胞を分類するために付与される識別情報が記憶されている識別情報記憶部と、
 対象細胞の形態的特徴量に基づいて、前記対象細胞に該当する前記識別情報を前記識別情報記憶部から検索する検索部と、
 を備える細胞情報検索装置。
 (25)前記対象細胞の形態的特徴量が、前記細胞情報検索装置の外部に設置されたコンピュータにおいて対象細胞が撮像された画像データから抽出され、前記細胞情報検索装置の検索部にデータ送信される、上記(24)に記載の細胞情報検索装置。
 本発明によれば、細胞が撮像された画像から前記細胞に関する情報を検索することを可能とすることができる。
本発明の一実施形態における細胞情報検索装置の概要を説明するための図である。 本発明の一実施形態における細胞情報検索装置の機能ブロック図である。 細胞の形態の各特徴量を説明するための図である。 識別情報記憶部に記憶されている識別情報と形態的特徴量とが関連付けられているテーブルの1例を示した図である。 識別情報の一例を説明するための図である。 属性情報記憶部に記憶されている識別情報と属性情報とが関連付けられているテーブルの1例である。 属性情報記憶部に記憶されている細胞の種類idと細胞の種類とが関連付けられているテーブルの1例である。 属性情報記憶部に記憶されている培養条件idと、温度と、培地の種類と、血清と、添加物idとが関連付けられているテーブルの1例である。 属性情報記憶部に記憶されている添加物idと、各添加物の有り無しとが関連付けられているテーブルの1例である。 画像記憶部に記憶されている画像idと、画像ファイルのパスと、識別情報と、属性情報の信頼度とが関連付けられているテーブルの1例を示した図である。 全データ記憶部に記憶されている画像idと、識別情報と、属性情報と、属性情報の信頼度とが関連付けられているテーブルの1例を示した図である。 分類部が細胞の分類の際に用いる分類木の1例である。 活性度の正規化された頻度分布(スコア分布)を示した図である。 品質の正規化された頻度分布(スコア分布)を示した図である。 新たな属性情報を入れる前の培養時の温度の頻度分布を示した図である。 新たな属性情報を入れた後の培養時の温度の頻度分布を示した図である。 対象画像を入力したときに、細胞情報検索装置が識別情報と属性情報と代表画像とを読み出す処理の流れを示したフローチャートである。 対象画像と属性情報とを入力したときに、細胞情報検索装置が対象画像を保存する処理の流れを示したフローチャートである。 識別情報が入力されたときに、細胞情報検索装置が代表画像を読み出す処理の流れを示したフローチャートである。 細胞情報検索装置が細胞情報を変更する処理の流れを示したフローチャートである。
 以下、本発明の実施形態について、図面を参照して詳細に説明するが、本発明はこれらの実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。まず、本発明の一実施形態における細胞情報検索装置の概要を説明する。
 図1は、本発明の一実施形態における細胞情報検索装置の概要を説明するための図である。細胞情報検索装置1は、対象細胞が撮像された画像(以下、対象画像と称する)を受信し、識別情報を算出する。また細胞情報検索装置1は、算出された識別情報に対応した対象細胞に属する典型的な属性情報である代表属性情報、または対象細胞の典型的な画像である代表画像を出力する。また、細胞情報検索装置1は、前記対象細胞の活性度、前記細胞の培養方法、前記細胞の機能、または前記細胞の取り扱い方法等を示す情報を外部に出力する。
 図2は、本発明の一実施形態における細胞情報検索装置の機能ブロック図である。
 細胞情報検索装置1は、記憶部10と、識別情報検索部20と、代表画像検索部40と、属性情報読出部31と、画像登録部32と、属性情報変更部(属性情報登録部)34と、課金部35とを備える。
 記憶部10は、識別情報記憶部11と、属性情報記憶部12と、画像記憶部13と、全データ記憶部14とを備える。
 識別情報記憶部11には、細胞の形態的特徴量と、識別情報とが関連付けて記憶されている。ここで、細胞の形態的特徴量について説明する。細胞の形態的特徴量は、その細胞が撮像された画像から抽出部22により抽出される。
 図3は、細胞の各形態的特徴量を説明するための図である。細胞の形態的特徴量は、例えば、以下の通りである。「Total area」(図3の(a)参照)は、注目する細胞の面積を示す値である。例えば、抽出部22は、注目する細胞の領域の画素数に基づいて「Total area」の値を求めることができる。
 「Hole area」(図3の(b)参照)は、注目する細胞内のHoleの面積を示す値である。ここで、Holeは、コントラストによって、細胞内における画像の明るさが閾値以上となる部分(位相差観察では白に近い状態となる箇所)を指す。例えば、細胞内小器官の染色されたリソソームなどがHoleとして検出される。
 また、画像によっては、細胞核や、他の細胞小器官がHoleとして検出されうる。抽出部22は、細胞内における輝度値が閾値以上となる画素のまとまりをHoleとして検出し、このHoleの画素数に基づいて「Hole area」の値を求めればよい。
 「relative hole area」(図3の(c)参照)は、「Hole area」の値を「Total area」の値で除した値である(relative hole area=Hole area/Total area)。この「relative hole area」は、細胞の大きさにおける細胞内小器官の割合を示す属性情報であって、例えば細胞内小器官の肥大化や核の形の悪化などに応じてその値が変動する。
 「Perimeter」(図3の(d)参照)は、注目する細胞の外周の長さを示す値である。例えば、抽出部22は、細胞を抽出するときの輪郭追跡処理により「Perimeter」の値を取得することができる。
 「Width」(図3の(e)参照)は、注目する細胞の画像横方向(X方向)での長さを示す値である。
 「Height」(図3の(f)参照)は、注目する細胞の画像縦方向(Y方向)での長さを示す値である。
 「Length」(図3の(g)参照)は、注目する細胞を横切る線のうちの最大値(細胞の全長)を示す値である。
 「Breadth」(図3の(h)参照)は、「Length」に直交する線のうちの最大値(細胞の横幅)を示す値である。
 「Fiber Length」(図3の(i)参照)は、注目する細胞を擬似的に線状と仮定した場合の長さを示す値である。抽出部22は、下式(1)により「Fiber Length」の値を求める。
Figure JPOXMLDOC01-appb-M000001
 但し、本明細書の式において「P」はPerimeterの値を示す。同様に「A」はTotal Areaの値を示す。
 「Fiber Breadth」(図3の(j)参照)は、注目する細胞を擬似的に線状と仮定した場合の幅(Fiber Lengthと直交する方向の長さ)を示す値である。抽出部22は、下式(2)により「Fiber Breadth」の値を求める。
Figure JPOXMLDOC01-appb-M000002
 「Shape Factor」(図3の(k)参照)は、注目する細胞の円形度(細胞の丸さ)を示す値である。抽出部22は、下式(3)により「Shape Factor」の値を求める。
Figure JPOXMLDOC01-appb-M000003
 「Elliptical form Factor」(図3の(l)参照)は、「Length」の値を「Breadth」の値で除した値(Elliptical form Factor=Length/Breadth)であって、注目する細胞の細長さの度合いを示す属性情報となる。
 「Inner radius」(図3の(m)参照)は、注目する細胞の内接円の半径を示す値である。
 「Outer radius」(図3の(n)参照)は、注目する細胞の外接円の半径を示す値である。
「Mean radius」(図3の(o)参照)は、注目する細胞の輪郭を構成する全点とその重心点との平均距離を示す値である。
 「Equivalent radius」(図3の(p)参照)は、注目する細胞と同面積の円の半径を示す値である。この「Equivalent radius」の属性情報は、注目する細胞を仮想的に円に近似した場合の大きさを示している。
 図4は、識別情報記憶部11に記憶されている細胞が分類されるクラスに固有の識別符号であるクラスidと識別情報と形態的特徴量とが関連付けられているテーブルの1例を示した図である。同図において、クラスidと、識別情報とが1対1に関係付けられている。また、識別情報と形態的特徴量の各属性情報(この図4の例では、細胞の丸みと、細胞の面積と、細胞の長さ)の組み合わせとが1対1に関係付けられている。
 図5は、識別情報の一例を説明するための図である。識別情報は、細胞の種類を示す情報を含んだ情報である。
 識別情報は、1例として、細胞の属性情報の1つである細胞の種類を示すidと、細胞の活性度を示す値と、細胞の品質を示す値と、細胞の培養時間[hour]を示す値と、シリアル番号とを用いて構成されている。
 ここで、細胞の活性度を示す値は、0から100までの整数で、数字が大きいほど細胞の活性が高い。細胞の活性度を示す値は、一例としては、細胞の酸素消費量に基づいて算出される値である。細胞の酸素消費量が高いほど、細胞の活性度が高くなる。
 また、細胞の品質を示す値は、0から100までの整数で、数字が大きいほど細胞の品質が高い。細胞の品質を示す値は、一例としては、培養時間に対する細胞の増殖率に基づいて算出される値である。それまでの培養時間に対して、細胞の増殖率が高いほど、細胞の品質の値が高くなる。
 また、シリアル番号とは、細胞の種類と細胞の活性度と細胞の品質が全て同じ細胞に対して、付与される固有の番号である。
 識別情報は上記に限らず、他の細胞の形態的特徴量を示す情報を含んでもよいし、他の細胞の属性情報を含んでもよい。ここで、他の細胞の属性情報は、培養時間(hour)、細胞の由来(例えば、ヒト、マウス等)を示す情報、細胞の部位(例えば、肝臓、表皮、神経等)を示す情報、培養条件(温度、雰囲気、下地、培地、血清、添加物)を示す情報、培養の目的を示す情報、各々の目的に対して成功事例の有無を示す情報、細胞の活性度を示す情報、細胞の機能を示す情報、培養方法を示す情報、細胞の取り扱い方法を示す情報、今後の細胞に関する予測、細胞の真偽等を含む。
 ここで、培養の目的を示す情報とは、例えば、特定の細胞(がん細胞)への誘導目的又は特定の細胞(骨牙細胞)への分化目的などである。今後の細胞に関する予測とは、例えば、今後の細胞の分化予測または細胞の分裂回数予測である。
 細胞の真偽とは、例えば、入手した特定の細胞種の細胞が本当にその細胞種であるか否かということである。これにより、細胞情報評価装置1は、購入されたES細胞(Embryonic Stem cells:胚性幹細胞)が本当にES細胞であるか判定することができる。
 続いて、属性情報記憶部12には、細胞の識別情報と、前記細胞に典型的な属性情報である代表属性情報とが関連付けて記憶されている。
 図6は、属性情報記憶部12に記憶されている細胞の識別情報と前記細胞の属性情報とが関連付けられているテーブルの1例(テーブルT1)である。識別情報と、細胞の属性情報(ここでは、細胞の種類id、細胞の活性度、細胞の品質、培養時間、培養条件id)の組み合わせとが1対1に関連付けられている。
 図7は、属性情報記憶部12に記憶されている細胞の種類を識別する細胞の種類idと細胞の種類情報とが関連付けられているテーブルの1例(テーブルT2)である。ここで、細胞の種類情報は、細胞の種類の名称を示す文字情報である。これによって、人が細胞の種類を判断しやすくなる。細胞の種類idと細胞の種類とが1対1に関連付けられている。本実施形態では、属性情報記憶部12は、リレーショナルデータベースとして想定され、細胞の種類idから細胞の種類が参照される。
 図8は、属性情報記憶部12に記憶されている培養条件idと、温度と、培地の種類と、血清と、添加物idとが関連付けられているテーブルの1例(テーブルT3)である。
 属性情報記憶部12において、培養条件idから細胞の培養条件(温度、培地の種類、血清、添加物id)が参照される。
 図9は、属性情報記憶部12に記憶されている添加物idと、各添加物の有り無しとが関連付けられているテーブルの1例(テーブルT4)である。属性情報記憶部12において、添加物idから各添加物(例えば、グルタミン、ピルビン酸、HEPES(2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic acid))の有り無しが参照される。ここで、1はその添加物が加えられることを意味し、0はその添加物が加えられないことを意味する。
 図10は、画像記憶部13に記憶されている画像idと、画像ファイルパス名と、識別情報と、属性情報と、属性情報の信頼度とが関連付けられているテーブルの1例を示した図である。
 画像記憶部13において、1つの識別情報に対して、1以上の画像idと画像ファイルパス名とが関係づけられていてもよい。また、画像記憶部13において、各画像に対して、その細胞の属性情報と属性情報の信頼度とが1対1で関連付けられていてもよい。
 また、属性情報の信頼度は、属性情報の信頼度を表す0から10までの値であり、その値が高いほど、属性情報の信頼度は高い。
 また、画像記憶部13には、細胞が撮像された画像が画像登録部32により記憶される。
 記憶部10は、例えば、リレーショナルデータベースである。リレーショナルデータベース(関係データベース)とは、1件のデータを複数の項目の集合として表現し、データの集合を表で表す方式をいい、id番号などのキーとなるデータを利用して、データの結合や抽出を容易に行うことができる。従って、記憶部10において、画像記憶部13の細胞の種類idと、属性情報記憶部12の細胞の種類idとが関連付けて記憶されている。これにより、画像検索部42は、画像記憶部13の細胞の種類idをキーとして、属性情報記憶部12から、細胞の種類を読み出すことができる。
 また、記憶部10において、画像記憶部13の培養条件idと、属性情報記憶部12の培養条件idとが関連付けて記憶されている。これにより、画像検索部42は、画像記憶部13の培養条件idをキーとして、属性情報記憶部12から、培養条件を読み出すことができる。
 図11は、全データ記憶部14に記憶されている画像idと、識別情報と、全ての属性情報と、属性情報の信頼度とが関連付けられているテーブルの1例を示した図である。図11のテーブルにおいて、属性情報の一例として、細胞の種類idと培養条件idとが示されているが、その他の属性情報も含まれている。全データ記憶部14に記憶されている画像idは、画像記憶部13に記憶されている画像idと1対1で関係付けられている。
これにより、全データ記憶部14に記憶されている画像idから画像記憶部13に記憶されている画像を参照することができる。
 全データ記憶部14には、外部から入力された対象画像、対象画像に対応する全ての属性情報、前記属性情報の信頼度および対象画像に基づいて検索された識別情報が関連付けられて記憶されている。
 全データ記憶部14は、識別情報または画像を入力とする検索時には使われないデータベースである。全データ記憶部14に記憶されている属性情報が増え、同一識別情報に分類される属性情報が多くなるにつれて、属性情報変更部(属性情報登録部)34が属性情報記憶部12に記憶されている属性情報を変更すべきか否かを判定するために使用するデータベースである。
 続いて、図2の説明に戻って、識別情報検索部20について説明する。識別情報検索部20は、画像データ入力部21と、抽出部22と、検索部23とを備える。画像データ入力部21は、外部から供給される対象画像を受け取る。画像データ入力部21は、対象画像を抽出部22へ供給する。
 抽出部22は、画像データ入力部21から供給された対象画像から細胞の画像領域を抽出する。抽出部22は、抽出された細胞の画像領域から、細胞の領域毎に上記16個の形態的特徴量を算出する。抽出部22は、算出された細胞の領域毎の各形態的特徴量を平均することによって、1つの対象画像に対して、16個の形態的特徴量の平均値を算出する。これ以降、16個の形態的特徴量の平均値を総称して、形態的特徴量と呼ぶこととする。抽出部22は、形態的特徴量を分類部24と画像登録部32内の信頼度算出部33とへ供給する。
 検索部23は分類部24を備える。分類部24は、抽出部22から供給された形態的特徴量と予め構築された所定の分類方法(例えば、分類木による分類方法)により、細胞を分類するクラスに分類する。分類部24は、分類されたクラスに付与されているクラスidを読み出す。分類部24は、そのクラスidに対応する識別情報を識別情報記憶部11から読み出す。
 図12は、分類部24が細胞の分類の際に用いる分類木の1例である。同図において、細胞の丸みが70以上90未満で、かつ細胞の面積が50以上150未満で、かつ細胞の長さが10以上30未満の細胞は、クラスidが1であるクラスに一意に分類されることが示されている。すなわち1つの枝に1つの固有のクラスidが割り当てられている。分類部24は、一例として、この分類木を用いて細胞をクラスに分類する。
 分類部24は、読み出された識別情報を不図示の表示装置に表示させる。また、分類部24は、形態的特徴量を代表特徴量として不図示の表示装置に表示させる。分類部24は、上記代表特徴量を課金部35へ供給する。
 また、分類部24は、属性情報読出部31と、画像登録部32と、画像検索部42と課金部35へ識別情報を供給する。
 属性情報読出部31は、分類部24から供給された識別情報または外部から供給された識別情報に対応する属性情報を属性情報記憶部12から読み出す。具体的には、例えば、図6におけるテーブルT1において、属性情報読出部31は、識別情報から属性情報である細胞の種類idと細胞の活性度と細胞の品質と培養時間と培養条件idとを読み出す。属性情報読出部31は、読み出された細胞の種類idに対応する細胞の種類情報を図7に示されたテーブルT2から読み出す。
 また、属性情報読出部31は、読み出された培養条件idに対応する細胞の属性情報である培養温度と培地の種類と血清と添加物idとを図8に示されたテーブルT3から読み出す。更に、属性情報読出部31は、読み出された添加物idに対応する添加物の有無を図9に示されたテーブルT4から読み出す。
 以下、1例を挙げて説明する。例えば、属性情報読出部31は、識別情報“110-80-100-24-1”に対応する属性情報である細胞の種類id“110”、細胞の活性度“80”、細胞の品質“100”、培養時間“24”[hour]、培養条件id“2”を図6に示されたテーブルT1から読み出す。
 属性情報読出部31は、読み出された細胞の種類id“110”に対応する“HeLa細胞”を図7に示されたテーブルT2から読み出す。
 また、属性情報読出部31は、読み出された培養条件id“2”に対応する培養条件である培養温度“37”[度]、培地の種類“DMEM”、血清“ウシ新生児血清”、添加物id“3”を図8に示されたテーブルT3から読み出す。
 更に、属性情報読出部31は、読み出された添加物id“3” に対応するグルタミン“1”、ピルビン酸“1”、HEPES“1”を読み出す。これによって、グルタミンとピルピン酸とHEPESとが添加物として使用されたことが分かる。
 属性情報読出部31は、読み出された属性情報を外部へ出力し、不図示の表示装置に表示させる。また、属性情報読出部31は、読み出された属性情報を課金部35へ供給する。
 画像登録部32は、信頼度算出部33を備える。画像登録部32は、外部から供給された対象画像を受け取り、その対象画像を画像記憶部13に記憶させる。信頼度算出部33は、外部から供給された属性情報と抽出部22から供給された形態的特徴量を受け取る。
信頼度算出部33は、以下の式(4)を用いて、外部から供給された属性情報の信頼度Tを算出する。
Figure JPOXMLDOC01-appb-M000004
 ここで、wはi番目の属性情報の重み(0から1までの値)であり、Sはi番目の属性情報のスコア(0から10までの値)であり、Nは各識別情報に対応する属性情報の種類の数である。例えば、属性情報が活性度と品質の2種類であればNは2となる。属性情報の重みwは大きいほど、その属性情報がスコアに与える影響は大きくなる。すなわち、属性情報の重みwが多いほど、属性情報の信頼度を決定するに際し、重要な指標であることを意味する。
 属性情報の重みwはユーザーが予め設定できる。例えば、ユーザーの研究などの種類によってその重みの優先順位が決定される。また、装置にはデフォルト値が設定されており、ユーザーが変更しない限り、そのデフォルト値によって重みが決定される。wは下記の式(5)を満たすものとする。
Figure JPOXMLDOC01-appb-M000005
 ここで、属性情報のスコア算出方法について説明する。信頼度算出部33は、全データ記憶部14に記憶されている所定の属性情報の各値について、最大頻度を1とする正規化された頻度を算出する。信頼度算出部33は、正規化された頻度に10を乗じた値をスコアとする。ここで、所定の属性情報とは、一部の属性情報でもよいし、全ての属性情報でもよい。
 信頼度算出部33は、入力された所定の属性情報の値を入力値として、入力値に対応する正規化された頻度を抽出する。信頼度算出部33は、抽出された正規化された頻度に10を乗じて、スコアを算出する。
 次に具体例を用いて、スコアと信頼度の算出方法を説明する。図13Aは、活性度の正規化された頻度分布(スコア分布)を示した図である。横軸は、活性度であり、縦軸は、正規化された頻度またはスコアである。1例として、活性度の正規化された頻度分布は、活性度5のときに、正規化された頻度が1となる分布である。
 外部から入力された対象細胞の属性情報のうち、活性度が5であるとすると、信頼度算出部33は、同図から、正規化された頻度として1を抽出し、スコアとして10を抽出する。また、活性度が3であるとすると、信頼度算出部33は、図13Aの分布からスコアとして5を抽出する。また、活性度が2であるとすると、信頼度算出部33は、図13Aの分布からスコアとして2を抽出する。
 図13Bは、品質の正規化された頻度分布(スコア分布)を示した図である。横軸は、品質であり、縦軸は、正規化された頻度またはスコアである。一例として、品質の正規化された頻度分布は、品質が8のときに、正規化された頻度が1となる分布である。
 現在外部から入力された対象細胞の属性情報のうち、品質が7であるとすると、信頼度算出部33は、同図から、正規化された頻度として0.5を抽出し、スコアとして5を抽出する。同様に、品質が8であるとすると、信頼度算出部33は、同図から、正規化された頻度として1を抽出し、スコアとして10を抽出する。同様に、品質が5であるとすると、信頼度算出部33は、同図から、正規化された頻度として0.2を抽出し、スコアとして2を抽出する。このように、スコアは、分布に依存する。
 例えば、信頼度Tを算出するための、属性情報を上記活性度と品質との2種類のみ(N=2)とする。その場合、一例として活性度の重みwを0.8とし、品質の重みwを0.2とする。
 信頼度算出部33は、信頼度TをT=w+w=0.8×10+0.2×5=9のように算出する。
 以上のように、信頼度算出部33は、一つの識別情報に対応する複数の画像の各々に付与された複数の属性情報において、各々の属性情報と同一又は類似した属性情報が出現する頻度に基づいて、対象画像の信頼度を算出する。また、信頼度算出部33は、属性情報が出現する頻度と各々の属性情報に付与された重み付け要素との積に基づいて信頼度Tを算出する。
 Sはi番目の属性情報のスコアとして説明したが、i番目の形態的特徴量のスコアでもよい。これにより、信頼度算出部33は、入力された画像から抽出された形態的特徴量を形態的特徴量の分布と比較することにより、信頼度を算出することができる。
 また、Sはi番目の属性情報のスコアとi番目の形態的特徴量のスコアを加算したものでもよい。これにより、信頼度算出部33は、入力された属性情報と属性情報との分布との比較結果と、入力された画像から抽出された形態的特徴量と形態的特徴量の分布との比較結果とに基づいて、信頼度を算出することができる。
 画像登録部32は、分類部24から供給された識別情報と、入力された対象画像と、信頼度算出部33により算出された属性情報の信頼度とを関連付けて、画像記憶部13に記憶させる。
 また、画像登録部32は、分類部24から供給された識別情報と、入力された対象画像と、入力された全ての属性情報と、信頼度算出部33により算出された属性情報の信頼度とを関連付けて、全データ記憶部14に記憶させる。
 画像登録部32は、新たな属性情報が全データ記憶部14に記憶させたことを属性情報変更部(属性情報登録部)34へ報知するために、新たに入力された属性情報と、その属性情報の識別情報とを属性情報変更部(属性情報登録部)34へ供給する。
 続いて属性情報変更部(属性情報登録部)34について説明する。全データ記憶部14に新たな属性情報が記憶された場合、属性情報変更部(属性情報登録部)34は、属性情報を変更するか否かを判定する。そのために、属性情報変更部(属性情報登録部)34は、画像登録部32から供給された識別情報に対応する各属性情報を全データ記憶部14から読み出す。
 属性情報変更部(属性情報登録部)34は、全データ記憶部14に所定の識別情報に対する属性情報が1つしか存在しない場合、その識別情報とその属性情報を読出す。属性情報変更部(属性情報登録部)34は、読み出された属性情報を、識別情報と関連付けて属性情報記憶部12へ記憶させる。
 一方、全データ記憶部14に記憶されたデータが増えて、全データ記憶部14に同一の識別情報に対する属性情報が複数存在する場合、属性情報変更部(属性情報登録部)34は、以下の処理を行う。
 属性情報変更部(属性情報登録部)34は、同一識別情報に分類される各属性情報(例えば、培養時の温度、培地の種類、血清の種類、添加物、添加物の添加量、添加物の濃度、継代の手技(細胞剥離酵素の濃度、同酵素の温度、同酵素に晒された時間、同酵素を中和するための血清の種類、同血清につけている時間等) )について、頻度分布を算出する。
 属性情報変更部(属性情報登録部)34は、新たな属性情報が入力される前の各属性情報の頻度分布における最頻値(以下、従来の最頻値と称する)と、新たな属性情報が入力された後の前記属性情報の頻度分布における最頻値(以下、新たな最頻値と称する)の差分の絶対値|dP|(iは属性情報の番号を表す正の整数)を算出する。
 属性情報変更部(属性情報登録部)34は、新たな最頻値と従来の最頻値の差分の絶対値が、所定の閾値Thよりも大きいか否か判定する。所定の閾値よりも大きい場合、属性情報変更部(属性情報登録部)34は、属性情報記憶部12に記憶された属性情報を新たな最頻値に変更する。
 このように、信頼度算出部33により当初信頼度を低く算出されたとしても、その属性情報と同一の属性情報が複数個、利用者から入力された場合、その当初信頼度を低く算出された属性情報と類似した属性情報の個数が多くなる。その場合、属性情報変更部(属性情報登録部)34は、その当初信頼度が低かったとしても、個数が多い属性情報に変更する。
 属性情報変更部(属性情報登録部)34の上記頻度分布算出処理について、培養時の温度を例として説明する。図14Aは、新たな属性情報が入力される前の培養時の温度の頻度分布を示した図である。横軸は培養時の温度、縦軸は頻度である。同図において、最頻値は36度である。
 図14Bは、新たな属性情報が入力された後の培養時の温度の頻度分布を示した図である。横軸は培養時の温度、縦軸は頻度である。同図において、最頻値は37度である。
 新たな最頻値37度と従来の最頻値36度の差分の絶対値は1である。ここで、所定の閾値を0.5とすると、前記絶対値が所定の閾値0.5よりも大きい。従って、属性情報変更部(属性情報登録部)34は、属性情報記憶部12に記憶された培養時の温度を36度から37度に変更する。
 図2に戻って、属性情報記憶部12に記憶されている属性情報が変更された場合、属性情報変更部(属性情報登録部)34は、属性情報が変更された識別情報を信頼度算出部33に供給する。
 信頼度算出部33は、属性情報変更部(属性情報登録部)34から供給された属性情報が変更された識別情報に対応する属性情報を全データ記憶部14から読み出し、その読み出された属性情報の信頼度を算出し直す。
 信頼度算出部33は、全データ記憶部14に記憶された属性情報の信頼度を、算出し直された属性情報の信頼度に変更する。
 同様に、信頼度算出部33は、画像記憶部13に記憶された属性情報の信頼度を、算出し直された属性情報の信頼度に変更する。
 続いて、代表画像検索部40について説明する。代表画像検索部40は、識別情報入力部41と、画像検索部42とを備える。
 識別情報入力部41は、外部から入力された識別情報を受け取り、その識別情報を画像検索部42へ供給する。
 画像検索部42は、識別情報入力部41から供給された識別情報に対応する代表画像を画像記憶部13から読み出す。画像検索部42は、読み出された代表画像を不図示の表示装置へ表示させる。また、画像検索部42は、読み出された代表画像を課金部35へ供給する。
 続いて、図2に戻って、課金部35は、外部へ出力する情報に応じて検索者への課金額を算出し、算出された課金額を外部へ出力する。例えば、課金部35は、供給された識別情報または供給された代表特徴量を1つ出力する度に、所定の課金額を外部へ出力する。
 また、課金部35は、属性情報読出部31から供給された代表属性情報のうち外部へ供給する属性情報の種類に応じて課金額を算出し、算出された金額を外部へ出力する。
 また、課金部35は、画像検索部42から供給された代表画像の枚数に応じて、課金額を算出し、算出された金額を外部へ出力する。
 続いて、図2に戻って、本発明の一実施形態における細胞情報登録装置101は、細胞情報検索装置1の一部であり、記憶部10と、識別情報検索部20と、属性情報読出部31と、画像登録部32と、属性情報変更部(属性情報登録部)34とを備える。各部の処理の説明は、細胞情報検索装置1と同じであるので、省略する。
 これにより、本実施形態によれば、細胞情報登録装置101は、細胞が撮像された画像とその細胞の属性情報が入力されると、前記細胞を識別する識別情報を抽出し、抽出された識別情報と前記画像と属性情報とを関連付けて記憶部10に記憶することができる。
 細胞情報検索装置1は、検索者が用いるパソコンなどの端末装置からインターネットなどの通信網を介して対象画像が入力され、その対象画像に対応する識別情報等を上記通信網を介して、検索者が用いる上記端末装置に返すサーバ装置であってもよい。
 同様に、細胞情報登録装置101は、利用者が用いるパソコンなどの端末装置からインターネットなどの通信網を介して対象画像が入力され、その対象画像に対応する識別情報等を上記通信網を介して、利用者が用いる上記端末装置に返すサーバ装置であってもよい。
 また、本実施形態の細胞情報検索装置1の記憶部10は、細胞情報検索装置1の内部にあるとしたが、これに限らず、記憶部10が細胞情報検索装置1の外部にあってもよい。
その場合、例えば、記憶部10は、外部の記憶装置であってもよい。
 また、本実施形態では、細胞情報検索装置1という単体の装置として実現した例を説明したが、これに限らず、細胞情報検索装置1の記憶部10を記憶装置として、それ以外の部分を検索装置として、全体として細胞情報検索システムとして実現してもよい。
 また、本実施形態の細胞情報登録装置101の記憶部10は、細胞情報登録装置101の内部にあるとしたが、これに限らず、記憶部10が細胞情報登録装置1の外部にあってもよい。その場合、例えば、記憶部10は、外部の記憶装置であってもよい。
 また、本実施形態では、細胞情報登録装置101という単体の装置として実現した例を説明したが、これに限らず、細胞情報登録装置101の記憶部10を記憶装置として、それ以外の部分を登録装置として、全体として細胞情報登録システムとして実現してもよい。
 本実施形態である細胞情報検索装置1または細胞情報登録装置101の一部または全部の機能をコンピュータで実現するようにしてもよい。この場合、その機能を実現するための細胞情報検索プログラムまたは細胞情報登録プログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録された細胞情報検索プログラムまたは細胞情報登録プログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。
 ここでいう「コンピュータシステム」とは、OS(Operating System)や周辺機器のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、光ディスク、メモリカード等の可搬型記録媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定期間プログラムを保持するものを含んでもよい。
 また上記のプログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせにより実現するものであってもよい。
 上述した実施形態の変形例を次に説明する。
 上述した実施形態では、画像データ入力部21、抽出部22により対象細胞の画像データの形態的特徴量の抽出処理を行っていた。すなわち、細胞の形態的特徴量抽出処理は、細胞情報検索装置1によって行っていた。しかし、これに限ることはなく、対象細胞の画像データの形態的特徴量の抽出処理を、ユーザーのパーソナルコンピュータにおいて実行して、その形態的特徴量のデータを、細胞情報検索装置1の検索部23に送信しても良い。送信方法としては、インターネットを使い、外部に設置されている細胞情報検索装置1にデータ送信する。
 図15は、対象画像が入力されたときに、細胞情報検索装置が識別情報と属性情報と代表画像とを読み出す処理の流れを示したフローチャートである。
 まず、画像データ入力部21は、外部から供給される対象画像を受け取る(ステップS101)。画像データ入力部21は、その対象画像を抽出部22へ供給する。次に、抽出部22は、供給された画像から形態的特徴量を抽出し(ステップS102)、抽出された形態的特徴量を分類部24へ供給する。
 次に、分類部24は、供給された形態的特徴量と予め構築されている分類木とを比較することにより、細胞のクラスに分類する。分類部24は、分類されたクラスに付与されたクラスidに対応する識別情報を識別情報記憶部11から読み出し、読み出された識別情報を不図示の表示装置に表示させる(ステップS103)。分類部24は、抽出された識別情報を属性情報読出部31と、画像検索部42とへ供給する。
 次に、属性情報読出部31は、識別情報に対応する属性情報を属性情報記憶部12から読み出し、読み出された属性情報を不図示の表示装置に表示させる(ステップS104)。
 次に、画像検索部42は、識別情報に対応する代表画像を画像記憶部13から読み出し、読み出された代表画像を不図示の表示装置に表示させる(ステップS105)。以上で、本フローチャートの処理を終了する。
 以上により、論文などの刊行物やホームページなどに掲載された識別情報が入力されると、細胞情報検索装置1は、代表属性情報またはその識別情報の代表画像を外部の表示部へ表示させることができる。また、細胞情報検索装置1は、識別情報が入力されると、その識別情報に含まれる培養時間情報を任意の培養時間情報に設定し、その任意の培養時間情報に基づいて画像記憶部13から複数の画像を抽出し、抽出された複数の画像を培養時間順に並べた細胞の時系列画像を外部の表示部に表示させることができる。
 図16は、対象画像と属性情報とを入力したときに、細胞情報検索装置が対象画像を保存する処理の流れを示したフローチャートである。
 まず、画像データ入力部21は、外部から入力された対象画像を受け取り、その対象画像を抽出部22へ供給する(ステップS201)。また、画像登録部32は、外部から入力された対象画像を受け取る。
 次に、画像登録部32は、外部から入力された前記対象細胞の属性情報を受け取り、その属性情報を画像登録部32内の信頼度算出部33へ供給する(ステップS202)。
 次に、識別情報検索部20は、図15のステップS102からステップS103の処理により識別情報を抽出し、画像登録部32へ供給する(ステップS203)。
 次に、信頼度算出部33は、供給された対象細胞の属性情報のうち予め信頼度を算出するために選択された属性情報を、現在までの前記属性情報の分布と比較することにより、選択された各属性情報のスコアを算出する。信頼度算出部33は、算出された各属性情報のスコアに、予め属性情報毎に決められた重みを乗じる。信頼度算出部33は、乗算により得られた値の和をとることにより、前記対象細胞の属性情報の信頼度を算出する(ステップS204)。
 次に、信頼度算出部33は、入力された対象画像と、供給された識別情報と、入力された属性情報と、算出された前記属性情報の信頼度とを関連付けて全データ記憶部14へ記憶させる(ステップS205)。
 また、信頼度算出部33は、入力された対象画像と、供給された識別情報と、算出された前記属性情報の信頼度とを関連付けて画像記憶部13へ記憶させる。以上で、本フローチャートの処理を終了する。
 これにより、対象画像が保存された後に代表画像が検索される際に、細胞情報検索装置1は、保存された対象画像も検索の対象にすることができる。
 図17は、識別情報が入力されたときに、細胞情報検索装置が対象画像を読み出す処理の流れを示したフローチャートである。
 まず、識別情報入力部41は、外部から入力された識別情報を受け取り、その識別情報を画像検索部42へ供給する(ステップS301)。
 画像検索部42は、識別情報入力部41から供給された識別情報に対応する代表画像を画像記憶部13から読み出し、読み出された代表画像を不図示の表示装置へ表示させる(ステップS302)。以上で、本フローチャートの処理を終了する。
 これにより、細胞情報検索装置1は、論文等の刊行物またはホームページに記載された識別情報から、その識別情報に対応する細胞の代表画像を外部の表示装置へ表示させることができる。
 細胞情報検索装置1は、識別情報が入力されると、その識別情報に対応する細胞の代表属性情報を外部へ出力してもよい。
 図18は、細胞情報評価装置1が細胞情報を変更する処理の流れを示したフローチャートである。細胞情報検索装置1は、所定の時間間隔毎または、同一の識別情報に予め決められた所定の数よりも多い属性情報が全データ記憶部14に記憶された場合、属性情報を変更する。
 まず、ステップS401からステップS405までの処理は、図16のステップS201からステップS205までの処理と同一なので、説明を省略する。
 次に、属性情報変更部(属性情報登録部)34は、画像登録部32から供給された識別情報に対応する属性情報を全データ記憶部14から読み出す。属性情報変更部(属性情報登録部)34は、読み出された属性情報の数が0の場合(ステップS406 YES)、ステップS412の処理に進む。一方、属性情報変更部(属性情報登録部)34は、読み出された属性情報の数が0でない場合(ステップS406 NO)、読み出された属性情報の数が1であるか判定する。
 読み出された属性情報の数が1である場合(ステップS407 YES)、属性情報変更部(属性情報登録部)34は、読み出された属性情報を識別情報と関連付けて、属性情報記憶部12へ記憶させる(ステップS408)。
 一方、読み出された属性情報が複数の場合(ステップS409 NO)、属性情報変更部(属性情報登録部)34は、属性情報毎に、その新たな属性情報が全データ記憶部14へ記憶される前の属性情報の頻度分布の最頻値(従来の最頻値)と、その新たな属性情報が全データ記憶部14へ記憶した後の属性情報の頻度分布の最頻値(新たな最頻値)との差分の絶対値|dP|(iは各属性情報の番号を表す正の整数)を算出する(ステップS409)。
 図14を用いて説明したように、その絶対値|dP|が、i番目の所定の閾値Thよりも大きい場合(ステップS410 YES)、属性情報変更部(属性情報登録部)34は、属性情報記憶部12に記憶されている前記属性情報のi番目の属性情報を新たな最頻値に変更する(ステップS411)。
 一方、その絶対値|dP|が所定の閾値Th以下の場合(ステップS410 NO)、属性情報登録部34は、属性情報記憶部に記憶されている前記属性情報のi番目の属性情報を変更しない。
 次に、属性情報変更部(属性情報登録部)34は、全ての識別情報を調べたか否か判定する(ステップS412)。属性情報変更部(属性情報登録部)34が全ての識別情報を調べていない場合(ステップS412 NO)、属性情報変更部(属性情報登録部)34は、ステップS406の処理に戻る。
 一方、属性情報変更部(属性情報登録部)34が全ての識別情報を調べた場合(ステップS412 YES)、属性情報変更部(属性情報登録部)34は処理を終了する。以上で、本フローチャートの処理を終了する。
 これにより、細胞情報検索装置1は、同一の識別情報に属する属性情報の分布が変更しても適切なスコアを出力することができる。これにより、細胞情報検索装置1は、適切なスコアから常に適切な属性情報を出力することができる。
 以上により、本実施形態によれば、細胞情報検索装置1は、細胞が撮像された画像が入力されると、前記細胞を識別する識別情報、その細胞の代表画像、入力された画像に写された細胞の活性度、その細胞の品質、その細胞の培養方法、その培養の取り扱い方法等の情報を出力することができる。
 細胞が撮像された画像から前記細胞に関する情報を検索することができる。
1 細胞情報検索装置
10 記憶部
11 識別情報記憶部
12 属性情報記憶部
13 画像記憶部
14 全データ記憶部
20 識別情報検索部
21 画像データ入力部
22 抽出部
23 検索部
24 分類部
31 属性情報読出部
32 画像登録部
33 信頼度算出部
34 属性情報変更部(属性情報登録部)
35 課金部
40 代表画像検索部
41 識別情報入力部
42 画像検索部
101 細胞情報登録装置

Claims (25)

  1.  細胞を分類するために付与される識別情報が記憶されている識別情報記憶部と、
     対象細胞が撮像された画像が入力される画像データ入力部と、
     前記画像データ入力部に入力された前記画像から、前記対象細胞の前記形態的特徴量を抽出する抽出部と、
     前記抽出部により抽出した前記形態的特徴量に基づいて、前記対象細胞に該当する前記識別情報を前記識別情報記憶部から検索する検索部と、
     を備える細胞情報検索装置。
  2.  識別情報記憶部に、細胞を分類するために選択された細胞の形態的特徴量と、細胞が異なる分類に分類されるごとに唯一設定された識別情報とが関連付けられて記憶されており、
     前記検索部は、前記細胞の形態から得られる複数種類の形態的特徴量に基づいて、前記識別情報記憶部から識別情報を抽出する請求項1に記載の細胞情報検索装置。
  3.  前記識別情報と細胞が撮像された画像とが関連付けられて記憶されている画像記憶部と、
     前記検索部による検索の結果得られた識別情報と関連付けて、前記対象細胞が撮像された画像を画像記憶部に記憶させる画像登録部と、
     を更に備える請求項1または請求項2に記載の細胞情報検索装置。
  4.  前記識別情報と、前記識別情報に該当する前記形態的特徴量を持つ前記細胞が撮像されている前記画像とが関連付けられて記憶されている画像記憶部と、
     前記識別情報を入力する識別情報入力部と、
     前記識別情報記憶部に記憶されている前記入力された識別情報に該当する画像を検索する画像検索部と、
     を更に備える請求項1から請求項3のいずれか1項に記載の細胞情報検索装置。
  5.  前記画像検索部は、一つの前記識別情報に対応する画像が複数存在する場合、前記一つの識別情報に対応する複数の画像の中から、前記複数の画像の各々に付与されている属性情報の信頼度に基づき、一つの画像を選択する請求項4に記載の細胞情報検索装置。
  6.  前記画像記憶部は、1つの前記識別情報に対して、1以上の前記細胞が撮像された画像が関連付けられて記憶されている請求項4または請求項5に記載の細胞情報検索装置。
  7.  前記識別情報に対応する細胞の属性を示す属性情報が記憶されている属性情報記憶部と、
     前記検索部により読み出された識別情報に対応する属性情報を属性情報記憶部から読み出す属性情報読出部と、
     を備える請求項1から請求項6のいずれか1項に記載の細胞情報検索装置。
  8.  前記属性情報記憶部は、1つの前記識別情報に対して、1つの前記属性情報が関連付けられて記憶されている請求項7に記載の細胞情報検索装置。
  9.  前記属性情報は、前記識別情報に対応する前記細胞が撮像された画像中の細胞のデータである請求項7または請求項8に記載の細胞情報検索装置。
  10.  前記画像記憶部は、前記識別情報と、入力される対象細胞の画像と、前記細胞の属性情報とが関連付けられて記憶されており、
     前記検索部による検索の結果得られた識別情報と関連付けて、入力された対象細胞の画像と前記細胞の属性情報を前記画像記憶部に記憶させる画像登録部を備える請求項1から請求項8のいずれか1項に記載の細胞情報検索装置。
  11.  一つの前記識別情報に対応する前記細胞が撮像された画像が複数ある場合、前記画像記憶部に記憶されている前記一つの識別情報に対応する複数の画像の各々に付与されている各画像中に撮像されている細胞の属性情報の中から最も信頼度の高い前記属性情報を読み出し、前記読み出された属性情報を前記属性情報記憶部に記憶させる属性情報変更部を備える請求項10に記載の細胞情報検索装置。
  12.  前記画像登録部は、前記一つの識別情報に対応する複数の画像の各々に付与された複数の属性情報において、各々の属性情報と同一又は類似した属性情報が出現する頻度に基づいて、前記対象細胞が撮像された画像の信頼度を算出する信頼度算出部を備える請求項10または請求項11に記載の細胞情報検索装置。
  13.  前記信頼度算出部は、前記属性情報が出現する頻度と各々の属性情報に付与された重み付け要素との積に基づいて前記信頼度を算出する請求項12に記載の細胞情報検索装置。
  14.  細胞を分類するために付与される識別情報と細胞の形態的特徴量とが関連付けられて記憶される識別情報記憶部と、
     細胞が撮像された画像中の細胞の領域から形態的特徴量を抽出する抽出部と、
     前記抽出された形態的特徴量を予め定められている分類方法に基づいて、所定のクラスに分類する分類部と、
     前記分類されたクラスのそれぞれを識別する識別情報と前記形態的特徴量とを関連付けて前記識別情報記憶部に記憶させる識別情報登録部と、
     を備える細胞情報登録装置。
  15.  前記識別情報と関連付けて、前記細胞が撮像された画像を画像記憶部に記憶させる画像登録部を備える請求項14に記載の細胞情報登録装置。
  16.  前記識別情報と関連付けて、入力された対象細胞の属性情報を属性情報記憶部に記憶させる属性情報登録部を備える請求項14または請求項15に記載の細胞情報登録装置。
  17.  前記属性情報登録部は、一つの前記識別情報に対応する前記細胞が撮像された画像が複数ある場合、前記属性情報記憶部に記憶されている前記一つの識別情報に対応する複数の画像の各々に付与されている各画像中に撮像されている細胞の属性情報の中から最も信頼度の高い前記属性情報を読み出し、前記読み出された属性情報を一つの前記識別情報に対応する前記属性情報として前記属性情報記憶部に記憶させる請求項16に記載の細胞情報登録装置。
  18.  入力される対象細胞の画像と、前記細胞の属性情報とが関連付けられて記憶されている画像記憶部と、
     前記検索部による検索の結果得られた識別情報と関連付けて、入力された対象細胞の画像と前記細胞の属性情報を前記画像記憶部に記憶させる画像登録部と、
     前記一つの識別情報に対応する複数の画像の各々に付与された複数の属性情報において、各々の属性情報と同一又は類似した属性情報が出現する頻度に基づいて、前記信頼度を算出する信頼度算出部と、
     を備え、
     前記画像登録部は、前記属性情報と前記信頼度とを関連付けて前記画像記憶部に記憶させる請求項17に記載の細胞情報登録装置。
  19.  前記信頼度算出部は、前記属性情報が出現する頻度と各々の属性情報に付与された重み付け要素との積に基づいて、前記信頼度を算出する請求項18に記載の細胞情報登録装置。
  20.  細胞が撮像された画像中の前記細胞の形態から抽出された形態的特徴量に基づいて、前記画像毎に付与される識別情報と、前記識別情報に該当する前記形態的特徴量を持つ前記細胞が撮像されている前記画像とが関連付けられて記憶されている識別情報記憶部を備える細胞情報検索装置としてのコンピュータに、
     対象細胞が撮像された画像を入力する画像データ入力部と、前記画像データ入力部に入力された前記画像から、前記対象細胞の前記形態的特徴量を抽出する第1のステップと、
     前記抽出部により抽出した前記形態的特徴量と、前記識別情報記憶部に記憶された前記形態的特徴量とに基づいて、前記対象細胞に該当する前記識別情報を検索する第2のステップと、
     を実行させるための細胞情報検索プログラム。
  21.  細胞情報登録装置としてのコンピュータに、
     細胞が撮像された画像中の細胞の形態から形態的特徴量を抽出する第1のステップと、
     前記抽出された形態的特徴量を予め定められている分類方法に基づいて、所定のクラスに分類する第2のステップと、
     前記分類されたクラスを識別する識別情報と前記クラスとを関連付けて識別情報記憶部に記憶させる第3のステップと、
     を実行させるための細胞情報登録プログラム。
  22.  細胞を分類するために付与される識別情報が記憶されている識別情報記憶装置と、
     対象細胞が撮像された画像が入力される画像データ入力部と、
     前記画像データ入力部に入力された前記画像から、前記対象細胞の前記形態的特徴量を抽出する抽出部と、
     前記抽出部により抽出した前記形態的特徴量に基づいて、前記対象細胞に該当する前記識別情報を前記識別情報記憶部から検索する検索部と、を備える検索装置と、
     を有する細胞情報検索システム。
  23.  細胞を分類するために付与される識別情報と細胞の形態的特徴量とが関連付けられて記憶される識別情報記憶装置と、
     細胞が撮像された画像中の細胞の領域から形態的特徴量を抽出する抽出部と、
     前記抽出された形態的特徴量を予め定められている分類方法に基づいて、所定のクラスに分類する分類部と、
     前記分類されたクラスのそれぞれを識別する識別情報と前記形態的特徴量とを関連付けて前記識別情報記憶装置に記憶させる識別情報登録部を備える登録装置と、
     を有する細胞情報登録システム。
  24.  細胞を分類するために付与される識別情報が記憶されている識別情報記憶部と、
     対象細胞の形態的特徴量に基づいて、前記対象細胞に該当する前記識別情報を前記識別情報記憶部から検索する検索部と、
     を備える細胞情報検索装置。
  25.  前記対象細胞の形態的特徴量が、前記細胞情報検索装置の外部に設置されたコンピュータにおいて対象細胞が撮像された画像データから抽出され、前記細胞情報検索装置の検索部にデータ送信される、請求項24に記載の細胞情報検索装置。
PCT/JP2012/050565 2011-01-19 2012-01-13 細胞情報データの作成方法 WO2012099005A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011008893 2011-01-19
JP2011-008893 2011-01-19

Publications (1)

Publication Number Publication Date
WO2012099005A1 true WO2012099005A1 (ja) 2012-07-26

Family

ID=46515633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050565 WO2012099005A1 (ja) 2011-01-19 2012-01-13 細胞情報データの作成方法

Country Status (1)

Country Link
WO (1) WO2012099005A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046052A1 (ja) * 2013-09-26 2015-04-02 オリンパス株式会社 細胞観察情報処理システム、細胞観察情報処理方法、細胞観察情報処理プログラム、細胞観察情報処理システムに備わる記録部、細胞観察情報処理システムに備わる装置
WO2015046053A1 (ja) * 2013-09-26 2015-04-02 オリンパス株式会社 細胞観察情報処理システム、細胞観察情報処理方法、細胞観察情報処理プログラム、細胞観察情報処理システムに備わる記録部、細胞観察情報処理システムに備わる装置
WO2016009708A1 (ja) * 2014-07-16 2016-01-21 オリンパス株式会社 細胞観察情報処理システム、細胞観察情報処理方法、細胞観察情報処理プログラム
JP2017117302A (ja) * 2015-12-25 2017-06-29 富士フイルム株式会社 細胞画像検索装置および方法並びにプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349533A (ja) * 2005-06-16 2006-12-28 Olympus Corp 画像処理装置および画像処理プログラム
JP2008064534A (ja) * 2006-09-06 2008-03-21 Olympus Corp 細胞画像処理装置および細胞画像処理方法
WO2010098105A1 (ja) * 2009-02-26 2010-09-02 国立大学法人名古屋大学 培養状態評価装置、培養状態評価方法、インキュベータおよびプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349533A (ja) * 2005-06-16 2006-12-28 Olympus Corp 画像処理装置および画像処理プログラム
JP2008064534A (ja) * 2006-09-06 2008-03-21 Olympus Corp 細胞画像処理装置および細胞画像処理方法
WO2010098105A1 (ja) * 2009-02-26 2010-09-02 国立大学法人名古屋大学 培養状態評価装置、培養状態評価方法、インキュベータおよびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATORU NISHIMURA ET AL.: "Decision Tree Induction from Numeric Data Stream", FIT2009, DAI 8 KAI FORUM ON INFORMATION TECHNOLOGY KOEN RONBUNSHU, SEPARATE, vol. 2, 20 August 2009 (2009-08-20), pages 75 - 82 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046052A1 (ja) * 2013-09-26 2015-04-02 オリンパス株式会社 細胞観察情報処理システム、細胞観察情報処理方法、細胞観察情報処理プログラム、細胞観察情報処理システムに備わる記録部、細胞観察情報処理システムに備わる装置
WO2015046053A1 (ja) * 2013-09-26 2015-04-02 オリンパス株式会社 細胞観察情報処理システム、細胞観察情報処理方法、細胞観察情報処理プログラム、細胞観察情報処理システムに備わる記録部、細胞観察情報処理システムに備わる装置
JP2015065822A (ja) * 2013-09-26 2015-04-13 オリンパス株式会社 細胞観察情報処理システム、細胞観察情報処理方法、細胞観察情報処理プログラム、細胞観察情報処理システムに備わる記録部、細胞観察情報処理システムに備わる装置
JP2015069223A (ja) * 2013-09-26 2015-04-13 オリンパス株式会社 細胞観察情報処理システム、細胞観察情報処理方法、細胞観察情報処理プログラム、細胞観察情報処理システムに備わる記録部、細胞観察情報処理システムに備わる装置
EP3037987A1 (en) * 2013-09-26 2016-06-29 Olympus Corporation Cell observation information processing system, cell observation information processing method, cell observation information processing program, recording unit included in cell observation information processing system, and device included in cell observation information processing system
EP3037987A4 (en) * 2013-09-26 2017-05-10 Olympus Corporation Cell observation information processing system, cell observation information processing method, cell observation information processing program, recording unit included in cell observation information processing system, and device included in cell observation information processing system
WO2016009708A1 (ja) * 2014-07-16 2016-01-21 オリンパス株式会社 細胞観察情報処理システム、細胞観察情報処理方法、細胞観察情報処理プログラム
JP2016023942A (ja) * 2014-07-16 2016-02-08 オリンパス株式会社 細胞観察情報処理システム、細胞観察情報処理方法、細胞観察情報処理プログラム
JP2017117302A (ja) * 2015-12-25 2017-06-29 富士フイルム株式会社 細胞画像検索装置および方法並びにプログラム
WO2017110082A1 (ja) * 2015-12-25 2017-06-29 富士フイルム株式会社 細胞画像検索装置および方法並びにプログラム
US10885103B2 (en) 2015-12-25 2021-01-05 Fujifilm Corporation Cell image search apparatus, method, and program

Similar Documents

Publication Publication Date Title
CN105612249B (zh) 图像处理装置、程序、信息存储介质和图像处理方法
ES2731327T3 (es) Método para caracterizar imágenes adquiridas a través de un dispositivo médico de vídeo
US8867779B2 (en) Image tagging user interface
CN103201769A (zh) 图像处理装置、图像处理方法、程序、集成电路
CN105874452B (zh) 从社交摘要中标记兴趣点
CN103744887B (zh) 一种用于人物搜索的方法、装置和计算机设备
WO2012099005A1 (ja) 細胞情報データの作成方法
AU2018202767A1 (en) Data structure and algorithm for tag less search and svg retrieval
KR20090017268A (ko) 사용자의 관심 키워드를 업데이트 하는 방법과 그 방법을수행하기 위한 시스템
Creasy et al. Deep learning-based spermatogenic staging assessment for hematoxylin and eosin-stained sections of rat testes
Nguyen et al. Automatic glandular and tubule region segmentation in histological grading of breast cancer
AU2015263079A1 (en) ID information for identifying an animal
JP6070420B2 (ja) 画像処理装置及びプログラム
JP2006217045A (ja) インデックス画像生成装置及びインデックス画像を生成するプログラム
Chen et al. Gender and authorship patterns in urban land science
JP6314071B2 (ja) 情報処理装置、情報処理方法及びプログラム
CN106326436A (zh) 显示界面元素的方法及装置
CN109063758A (zh) 基于图片的服装识别方法及装置
KR20190023503A (ko) 이미지 기반 특허 검색 장치
WO2020006834A1 (zh) 金融机构推荐方法、设备、存储介质及装置
Cheikh et al. A structure-based approach for colon gland segmentation in digital pathology
WO2012099163A1 (ja) 細胞情報データの作成方法
JP2009187401A5 (ja)
JP6156137B2 (ja) 画像処理装置及びプログラム
Gao et al. Detecting geometric conflicts for generalisation of polygonal maps

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP