WO2012099000A1 - Organic photoelectric conversion element and solar cell - Google Patents

Organic photoelectric conversion element and solar cell Download PDF

Info

Publication number
WO2012099000A1
WO2012099000A1 PCT/JP2012/050549 JP2012050549W WO2012099000A1 WO 2012099000 A1 WO2012099000 A1 WO 2012099000A1 JP 2012050549 W JP2012050549 W JP 2012050549W WO 2012099000 A1 WO2012099000 A1 WO 2012099000A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
compound
general formula
organic photoelectric
Prior art date
Application number
PCT/JP2012/050549
Other languages
French (fr)
Japanese (ja)
Inventor
貴宗 服部
大久保 康
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012553676A priority Critical patent/JP5686141B2/en
Publication of WO2012099000A1 publication Critical patent/WO2012099000A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic photoelectric conversion element and a solar cell, and more particularly to a bulk heterojunction type organic photoelectric conversion element and a solar cell using the organic photoelectric conversion element.
  • Non-Patent Document 2 discloses a specific band gap (p-type semiconductor). There is a need for compounds having bg) and LUMO levels.
  • this condition is a necessary condition, and in order to actually achieve a photoelectric conversion efficiency of 10%, it is necessary to satisfy a plurality of conditions.
  • two conditions that an external quantum efficiency (EQE) is 65% and a fill factor (FF) are 65% are set as a precondition.
  • the external quantum efficiency is a value indicating how many electrons can be generated from one photon of sunlight decomposed into a spectrum
  • the fill factor (FF) is the resistance inside the solar cell. It is a value concerned and is the ratio of the actual maximum power on the IV characteristic and the product of the open circuit voltage and the short circuit current. In other words, by setting a coefficient called a curve factor, if the irradiation light is sunlight, the efficiency of the solar cell is expressed by the following simple expression.
  • Photoelectric conversion efficiency (%) open circuit voltage (V) ⁇ short circuit current density (mA / cm 2 ) ⁇ fill factor (FF) Since the integration of external quantum efficiency ⁇ theoretical Jsc is the short-circuit current density, it can be seen that the external quantum efficiency (EQE) and the fill factor (FF) are very important factors for the efficiency of the solar cell.
  • the mobility of the p-type semiconductor material can be mentioned.
  • the open-circuit voltage is a difference between the HOMO level of the p-type semiconductor material used for the bulk heterojunction layer and the LUMO level of the n-type semiconductor material. It is said that there is a correlation, and it is considered that a higher open circuit voltage is obtained as the value of the difference is larger.
  • a suitable morphology is preferably formed in the bulk heterojunction layer in order to obtain higher power generation efficiency.
  • This invention is made
  • the objective is to provide the organic photoelectric conversion element excellent in photoelectric conversion efficiency, and a solar cell using the same.
  • An organic photoelectric conversion element having a transparent first electrode, a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode in this order on a transparent substrate,
  • the photoelectric conversion layer contains a compound having a partial structure represented by the following general formula (1) as the p-type organic semiconductor material.
  • Z 1 and Z 2 are each independently a cyano group, a fluoroalkyl group, —C ( ⁇ O) —R 1 , —C ( ⁇ O) —OR 2 , —C [ ⁇ C (CN 2 ] —R 3 , —C (R 4 ) ⁇ N—SO 2 R 5 , —C (R 6 ) ⁇ N—CN, represents an alkyl group, an aryl group or an alkoxy group, and represents at least one of Z 1 and Z 2
  • Z 1 and Z 2 may be bonded to each other to form a ring.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, —OH, —NHR 7 (R 7 represents a hydrogen atom or an alkyl group), or monovalent Represents an organic group.
  • Y 1 and Y 2 represent CH or N, and X represents a sulfur, oxygen or selenium atom.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 in the general formula (1) are each independently a hydrogen atom, —OH, —NHR 7 (R 7 is a hydrogen atom or an alkyl group)
  • R 7 is a hydrogen atom or an alkyl group
  • At least one of Z 1 and Z 2 is —C ( ⁇ O) —OR 2 (R 2 represents an alkyl group).
  • R 2 represents an alkyl group.
  • A represents a saturated divalent linking group
  • Q 1 and Q 2 represent oxygen or a biscyanomethylene group.
  • Y 1 and Y 2 represent CH or N.
  • 7. 7 The organic photoelectric conversion device as described in 6 above, wherein in the general formula (2), Y 1 and Y 2 represent a nitrogen atom.
  • R 10 is an alkyl group having 6 to 10 carbon atoms.
  • Z represents an atom selected from carbon, silicon, and germanium
  • R 15 and R 16 represent a substituent selected from an alkyl group, a fluorinated alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and an alkylsilyl group. Represents a group, may further have a substituent, and may be bonded to each other to form a ring.
  • 12 12 The organic photoelectric conversion device according to any one of 1 to 11, wherein the photoelectric conversion layer is a photoelectric conversion layer produced by a solution coating method.
  • a solar cell comprising the organic photoelectric conversion device as described in any one of 1 to 13 above.
  • the above-described means of the present invention can provide an organic photoelectric conversion element having a high fill factor value and excellent photoelectric conversion efficiency, and a solar cell using the organic photoelectric conversion element.
  • the compound which has a partial structure represented by the said General formula (1) as a p-type organic-semiconductor material of the bulk heterojunction type photoelectric converting layer containing a p-type organic-semiconductor material and an n-type organic-semiconductor material especially By using this, it is possible to provide an organic photoelectric conversion element having a high fill factor value and high photoelectric conversion efficiency.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the organic photoelectric conversion element of the present invention.
  • the organic photoelectric conversion element 10 has a transparent first electrode 12 on a transparent substrate 11, a photoelectric conversion layer 14 on the first electrode 12, and a first electrode on the photoelectric conversion layer 14. Two electrodes 13 are provided.
  • a hole transport layer 17 described later is provided between the first electrode 12 and the photoelectric conversion layer 14, and an electron transport layer described later is provided between the photoelectric conversion layer 14 and the second electrode 13.
  • the substrate 11 and the first electrode 12 are transparent, and light used for photoelectric conversion enters from the direction of the arrow in FIG.
  • the photoelectric conversion layer 14 is a layer that converts light energy into electric energy, and contains a p-type semiconductor material and an n-type semiconductor material.
  • the p-type semiconductor material functions relatively as an electron donor (donor), and the n-type semiconductor material functions relatively as an electron acceptor (acceptor).
  • the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”.
  • an electron acceptor which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.
  • the generated electric charge is generated between the electron acceptors due to the internal electric field, for example, when the work functions of the first electrode 12 and the second electrode 13 are different, due to the potential difference between the first electrode 12 and the second electrode 13. And the holes pass between the electron donors and are carried to different electrodes, and a photocurrent is detected.
  • the first electrode 12 functions as an anode (anode) and the second electrode functions as a cathode (cathode).
  • Figure 2 shows an example of another configuration.
  • the work function of the second electrode 13 is made larger than the work function of the first electrode 12, whereby electrons are transferred to the first electrode 12.
  • an electron transport layer 18 is provided between the first electrode 12 and the photoelectric conversion layer 14, and a hole transport layer 17 described later is provided between the photoelectric conversion layer 14 and the second electrode 13.
  • the first electrode functions as a cathode (cathode) and the second electrode functions as an anode (anode).
  • the configuration shown in FIG. 2 that is, the first electrode is a cathode (cathode) and the second electrode is an anode (anode) is a preferred embodiment.
  • the organic photoelectric conversion element of the present invention has a layer such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smoothing layer. You may have.
  • FIG. 3 is a cross-sectional view illustrating an organic photoelectric conversion element including a tandem photoelectric conversion layer.
  • the first electrode 12 and the first photoelectric conversion layer 14 ′ are stacked on the substrate 11, the charge recombination layer 15 is stacked, the second photoelectric conversion layer 16, and then the second photoelectric conversion layer 16.
  • the electrodes 13 By stacking the electrodes 13, a tandem configuration can be obtained.
  • the second photoelectric conversion layer 16 may be a layer that absorbs the same spectrum as the absorption spectrum of the first photoelectric conversion layer 14 ′ or may be a layer that absorbs a different spectrum, but is preferably a layer that absorbs a different spectrum. is there.
  • each photoelectric conversion layer preferably has a configuration as shown in FIG.
  • the photoelectric conversion layer contains a compound having a partial structure represented by the general formula (1) as a p-type organic semiconductor material.
  • the compound is an organic compound having semiconductor characteristics. Although it may only have the partial structure of the general formula (1), in order to obtain an organic compound having more preferable semiconductor characteristics as an organic thin film solar cell, it may be a compound having a structure combined with a donor unit described later. preferable.
  • X represents an oxygen atom, a sulfur atom or a selenium atom
  • Y represents —CH— or —N—.
  • Z 1 and Z 2 each independently represent a cyano group, a fluoroalkyl group, —C ( ⁇ O) —R 1 , —C ( ⁇ O) —OR 2 , —C [ ⁇ C (CN) 2 ] -R 3 , —CR 4 ⁇ N—SO 2 R 5 , —CR 6 ⁇ N—CN, an alkyl group, an aryl group or an alkoxy group, wherein at least one of Z 1 and Z 2 is a cyano group,
  • a fluoroalkyl group, —C ( ⁇ O) —R 1 , —C ( ⁇ O) —OR 2 , —C [ ⁇ C (CN) 2 ] —R 3 , —CR 4 ⁇ N—SO 2 R 5 , or -CR 6 is N-CN.
  • Z 1 and Z 2 may be bonded to each other to form a ring.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, —OH, —NHR 7 (R 7 represents a hydrogen atom or an alkyl group), or monovalent Represents an organic group.
  • the fluoroalkyl group in Z 1 and Z 2 is an alkyl group in which any one of a straight chain or branched alkyl group having 1 to 20 carbon atoms is substituted with a fluorine atom, and preferably has 1 to 10 carbon atoms. It is an alkyl group in which any hydrogen of a linear alkyl group is substituted with a fluorine atom.
  • halogenated alkyl examples include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a 3,3,3-trifluoropropyl group, a 2,2,3,3,4 , 4,4-heptafluorobutyl group, 3,3,4,4,5,5,5-heptafluoropentyl group and the like.
  • the alkyl group for Z 1 and Z 2 is preferably a linear or branched alkyl group having 1 to 20 carbon atoms.
  • the aryl group in Z 1 and Z 2 preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms.
  • a phenyl group, a p-methylphenyl group, Non-condensed hydrocarbon groups such as biphenyl group and terphenyl group; naphthyl group, pentarenyl group, indenyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group, acenaphthenyl group, phenalenyl group, phenanthryl group
  • condensed polycyclic hydrocarbon groups such as anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrycen
  • the alkoxy group (—OR) in Z 1 and Z 2 preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms.
  • n-propoxy group iso-propyloxy group, n-butoxy group, tert-butoxy group, n-pentyloxy group, n-hexyloxy group, n-octyloxy group, 2-ethylhexyloxy group, n-dodecyl
  • Examples thereof include an oxy group, a tridecyloxy group, a tetradecyloxy group, a pentadecyloxy group, a hexadecyloxy group, a heptadecyloxy group, an octadecyloxy group, and a nonadecyloxy group.
  • Z 1 and Z 2 may be bonded to each other to form a ring.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, —OH, —NHR 7 (R 7 represents a hydrogen atom or an alkyl group), or monovalent Represents an organic group.
  • NHR 7 for example, amino group, methylamino group, dimethylamino group, diethylamino group, diisopropylamino group, methyl-tert-butylamino group, pentylamino group, dihexylamino group, dioctylamino group, didecylamino group, Examples include dihexadecylamino group, 2-ethylhexylamino group, di2-ethylhexylamino group, di2-hexyldecylamino group, dibenzylamino group and the like.
  • Examples of the monovalent organic group in R 1 to R 6 include alkyl group, cycloalkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, acyl group, alkoxycarbonyl group, amino group, alkoxy group, cycloalkyloxy Group, aryloxy group, aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, silyl group, sulfonyl group, List sulfinyl group, ureido group, phosphoric acid amide group, halogen atom, hydroxyl group, mercapto group, cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group
  • R 1 to R 6 are more preferably an alkyl group or an alkoxy group, and particularly preferably an alkyl group.
  • the alkyl group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms.
  • the alkyl groups described above are Examples include a methyl group, an ethyl group, an iso-propyl group, a tert-butyl group, an n-octyl group, a 2-ethylhexyl group, an n-decyl group, and an n-hexadecyl group.
  • the cycloalkyl group in R 1 to R 6 preferably has 4 to 8 carbon atoms, and examples thereof include a cyclopentyl group and a cyclohexyl group.
  • the alkenyl group in R 1 to R 6 preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms.
  • a vinyl group an allyl group, 2-butenyl group Group, 3-pentenyl group and the like.
  • the alkynyl group in R 1 to R 6 preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, and examples thereof include a propargyl group and a 3-pentenyl group. Can be mentioned.
  • the aryl group in R 1 to R 6 preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms.
  • the aryl groups described above are Examples thereof include a phenyl group, a p-methylphenyl group, and a naphthyl group.
  • the heteroaryl group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms.
  • the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, Examples thereof include imidazolyl, pyridyl, quinolyl, furyl, piperidyl, benzoxazolyl, benzimidazolyl, benzthiazolyl, thienyl and the like.
  • the acyl group (—COR) in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms.
  • the alkoxycarbonyl group (—COOR) in R 1 to R 6 preferably has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 12 carbon atoms.
  • the amino group in R 1 to R 6 preferably has 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms, particularly preferably 0 to 6 carbon atoms.
  • the amino groups described above are Examples include amino group, methylamino group, dimethylamino group, diethylamino group, pentylamino group, 2-ethylhexylamino group, dibenzylamino group and the like.
  • the alkoxy group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms.
  • the alkoxy groups described above are Examples thereof include methoxy group, ethoxy group, n-propoxy group, n-butoxy group and the like.
  • the cycloalkyloxy group in R 1 to R 6 preferably has 4 to 8 carbon atoms, and examples thereof include cyclopentyloxy and cyclohexyloxy.
  • the aryloxy group in R 1 to R 6 preferably has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, and particularly preferably 6 to 12 carbon atoms.
  • phenyloxy, 2-naphthyloxy and the like Is mentioned.
  • the acyloxy group in R 1 to R 6 preferably has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetoxy and benzoyloxy.
  • the acylamino group (—NHCOR) in R 1 to R 6 preferably has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 10 carbon atoms.
  • acetylamino benzoylamino Etc.
  • the alkoxycarbonylamino group in R 1 to R 6 preferably has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, and examples thereof include methoxycarbonylamino and the like. .
  • the aryloxycarbonylamino group in R 1 to R 6 preferably has 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino and the like. Can be mentioned.
  • the sulfonylamino group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms.
  • methanesulfonylamino, benzenesulfonylamino, etc. Is mentioned.
  • the sulfamoyl group for R 1 to R 6 preferably has 0 to 20 carbon atoms, more preferably 0 to 16 carbon atoms, and particularly preferably 0 to 12 carbon atoms, and examples thereof include sulfamoyl, methylsulfamoyl, dimethylsulfamoyl. Famoyl, phenylsulfamoyl and the like can be mentioned.
  • the carbamoyl group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms.
  • carbamoyl methylcarbamoyl, diethylcarbamoyl, phenyl And carbamoyl.
  • the alkylthio group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include methylthio and ethylthio.
  • the arylthio group in R 1 to R 6 preferably has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenylthio.
  • the sulfonyl group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include mesyl and tosyl.
  • the sulfinyl group in R 1 - R 6, preferably from 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, e.g., methanesulfinyl, benzenesulfinyl, and the like .
  • the ureido group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include ureido, methylureido, phenylureido and the like. Can be mentioned.
  • the phosphoric acid amide group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms.
  • diethylphosphoric acid amide, phenyl phosphorus Examples include acid amides.
  • halogen atom in R 1 to R 6 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, —OH, —NHR 7 (R 7 is a hydrogen atom or an alkyl group) Represents an alkyl group.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are preferably a hydrogen atom or an alkyl group, and more preferably an alkyl group, when Z 1 and Z 2 do not form a ring.
  • Z 1 and Z 2 do not form a ring, among the above substituents, Z 1 or Z 2 preferably has a cyano group or —C ( ⁇ O) —OR 2 , and Z 1 More preferably, both Z and Z 2 are cyano groups, or both Z 1 and Z 2 are —C ( ⁇ O) —OR 2 .
  • R 1 is selected from the group consisting of a hydrogen atom, —OH, and —NHR 7 (R 7 represents a hydrogen atom or an alkyl group). preferable.
  • the two R 1 groups of Z 1 and Z 2 are a combination of a hydrogen atom and —OH, and a combination of a hydrogen atom and NHR 7 (R 7 represents an alkyl group).
  • R 3 is selected from the group consisting of a hydrogen atom, —NHR 7 (R 7 represents a hydrogen atom or an alkyl group) and an alkyl group. preferable.
  • two R 3 groups of Z 1 and Z 2 are a combination of a hydrogen atom and an alkyl group, a combination of an alkyl group and an alkyl group, a hydrogen atom and —NHR 7 (R 7 represents an alkyl group), It is a combination.
  • R 4 ) ⁇ N—SO 2 R 5 R 4 and R 5 are preferably selected from the group consisting of a hydrogen atom or an alkyl group. More preferably, the two R 4 groups of Z 1 and Z 2 are a combination of an alkyl group and an alkyl group.
  • R 6 is preferably selected from the group consisting of a hydrogen atom and an alkyl group.
  • two R 6 of Z 1 and Z 2 is a combination of an alkyl group and an alkyl group.
  • Z 1 and Z 2 form a ring means that the carbon (C1) -hydrogen bond of Z 1 selected from the above substituents and the carbon of Z 2 selected from the above substituents. It means that (C2) -hydrogen bond forms a ring and becomes a C1-C2 bond.
  • the thienobenzene and thienopyrazine structures represented by the general formula (1) have a deep HOMO level and a narrow band gap, and an element having a high open-circuit voltage and a short-circuit current can be obtained. More preferred.
  • X is preferably a sulfur atom.
  • X is a sulfur atom, the conductivity is improved and high mobility is provided.
  • both Z 1 and Z 2 are the above cyano group, fluoroalkyl group, —C ( ⁇ O) —R 1 , —C ( ⁇ O) —OR 2 , —C [ ⁇ C (CN ) 2 ] —R 3 , —C (R 4 ) ⁇ N—SO 2 R 5 , and —C (R 6 ) ⁇ N—CN, the compound has a deeper HOMO level.
  • Z 1 and Z 2 are —C ( ⁇ O) —R 1 , —C ( ⁇ O) —OR 2 , —C [ ⁇ C (CN) 2 ] —R 3 , —C
  • the partial structure represented by the general formula (1) is a partial structure represented by the following general formula (4).
  • A represents —CH 2 CH 2 —, a connecting group of oxygen atom or nitrogen atom
  • Q 1 and Q 2 are oxygen atoms
  • ⁇ N (CN), ⁇ N—SO 2 R 5 , or C (CN) 2 is represented
  • Y 1 and Y 2 represent CH or N
  • X represents sulfur, oxygen or selenium atom.
  • the partial structure represented by the general formula (1) is more preferably a partial structure represented by the general formula (2).
  • A represents a nitrogen atom in the general formula (4) or (2)
  • the effect is improved and higher mobility is provided. That is, in the general formula (4) or (2), it is preferable that Y 1 and Y 2 represent a nitrogen atom.
  • R 10 is a linear or branched alkyl group having 1 to 20 carbon atoms, preferably a linear or branched alkyl group having 6 to 10 carbon atoms, and more preferably a branched alkyl group having 6 to 10 carbon atoms. It is an alkyl group. Specific examples of the alkyl group include the alkyl groups described above, and examples thereof include n-pentyl, n-hexyl, 2-ethylhexyl and the like. Of these, 2-ethylhexyl is preferred.
  • the solubility is improved and a polymer having a high molecular weight is easily obtained when a polymer containing the present compound is prepared.
  • the solubility is further improved, and a compound having a higher molecular weight can be obtained.
  • the structures represented by the general formulas (1), (4), and (2) are structures generally called acceptors (hereinafter, the partial structure is also referred to as an acceptor unit), and a unit that functions as a donor ( By combining with a donor unit), a narrow band gap material, that is, a material that can efficiently absorb sunlight up to a long wavelength. That is, the compound having a partial structure represented by the general formula (1) of the present invention preferably has an arbitrary donor unit.
  • any unit that has a LUMO level or a HOMO level shallower than a hydrocarbon aromatic ring (benzene, naphthalene, anthracene, etc.) having the same ⁇ electron number can be used without limitation. it can.
  • a thiophene ring More preferably, a thiophene ring, a furan ring, a pyrrole ring, a hetero 5-membered ring such as cyclopentadiene, silacyclopentadiene, a benzene ring, and a structure containing these as a condensed ring.
  • fluorene examples include fluorene, silafluorene, carbazole, dithienocyclopentadiene, dithienosilacyclopentadiene, dithienopyrrole, benzodithiophene, and structures containing these as condensed rings.
  • the donor unit is preferably a compound having a partial structure represented by the following general formula (3), (5), or (6).
  • Z represents an atom selected from carbon, silicon, and germanium. Of these, carbon and silicon are preferable, and silicon is more preferable.
  • R 15 and R 16 each represents a substituent selected from an alkyl group, a fluorinated alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and an alkylsilyl group, and further has a substituent. It may be bonded to each other to form a ring. Among these, an alkyl group is particularly preferable and used.
  • R 17 , R 18 , R 19 and R 20 are each independently an alkyl group, a fluorinated alkyl group, a cycloalkyl group, an alkoxy group, an aryl group, or a heteroaryl group.
  • an alkyl group and an alkoxy group are preferable, and an alkoxy group is more preferably used.
  • the alkyl group in R 15 to R 20 is a linear or branched alkyl group having 1 to 20 carbon atoms, preferably a linear alkyl group having 1 to 10 carbon atoms. Specific examples include the alkyl groups described above.
  • the fluorinated alkyl group for R 15 to R 20 is an alkyl group in which any one of a straight chain or branched alkyl group having 1 to 20 carbon atoms is substituted with fluorine, and preferably has 1 to 10 carbon atoms. Any hydrogen in the linear alkyl group is an alkyl group substituted with fluorine. Specific examples include the fluorinated alkyl groups (fluoroalkyl groups) described above.
  • the cycloalkyl group in R 15 to R 20 is a cyclic alkyl group having 4 to 8 carbon atoms. Specific examples include the cycloalkyl groups described above.
  • the aryl group in R 15 to R 20 is an aromatic group having 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms. Specific examples include the aryl groups described above.
  • the heteroaryl group in R 15 to R 20 is a heteroaromatic group having 3 to 20 carbon atoms, preferably 4 to 12 carbon atoms, and the hetero atom is a nitrogen atom, an oxygen atom, or a sulfur atom.
  • Specific examples of the alkylsilyl group in R 15 to R 20 include the heteroaryl groups described above are silyl groups having an alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. For example, trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl, triisopropylsilyl and the like can be mentioned.
  • the alkoxy group for R 15 and R 16 is an oxyalkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, and more preferably 1 to 8 carbon atoms. Specific examples include the alkoxy groups described above. For example, n-octyloxy, n-dodecyloxy and the like are preferable.
  • the structure represented by the above general formulas (3) and (5) has a half surface having a larger ⁇ -conjugated plane by condensation of a highly mobile thiophene structure, and a substituent capable of imparting solubility. Therefore, both solubility and high mobility can be achieved, and higher photoelectric conversion efficiency can be expected.
  • a structure in which the atom represented by Z is a silicon atom is preferable. This is because, as described in AdvMatter 2010p367, when Z is a silicon atom, the crystallinity is high and high mobility tends to be obtained.
  • a polymer having a number average molecular weight of 10,000 to 100,000 is preferable, and a polymer having a number average molecular weight of 15,000 to 50,000 is more preferable.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC).
  • the number average molecular weight is measured by the following method.
  • the combination of the acceptor unit exemplified above and the donor unit is not particularly limited, and an arbitrary acceptor unit and any donor unit may be appropriately combined to form a compound (conjugated system).
  • Molecular compounds can be synthesized and used.
  • a compound having an acceptor unit and a donor unit is synthesized and its performance is evaluated.
  • the technical scope of the present invention is not limited to these examples.
  • the proportion of the partial structure (1) in the compound having a partial structure according to the present invention is generally preferably 20 to 80% by mass, particularly preferably 25 to 60% by mass with respect to the compound.
  • the compound is preferably a high molecular weight compound as described above.
  • the compound has a partial structure as a repeating unit, and the entire compound including a repeating unit other than the partial structure is used. , Preferably in the range of 30 to 50 mol%.
  • the reason why the photoelectric conversion layer has the compound having the partial structure represented by the general formula (1) to achieve the effect of the present application is not clear, but is estimated as follows.
  • Non-Patent Document 3 and Non-Patent Document 4 do not have an electron withdrawing group.
  • the partial structure according to the present invention since the partial structure according to the present invention has an electron-attracting group, it is considered that the HOMO level of the compounds is lower than those of the compounds and gives a high open circuit voltage.
  • n is a value that falls within the above-described molecular weight.
  • n needs to be about 10 to 200 in order to fall within the range of the number average molecular weight of 10,000 to 100,000. There is.
  • Y 1 in the general formula (1) is carbon
  • the compound 301 and 401 is Y 1
  • Y 2 in the general formula (1) is carbon
  • the compound 301 and 401 is Y 1
  • Y 2 showing an example of the synthesis of the compounds 607,901,902 is N.
  • Exemplified compound 301 is synthesized by a polymerization reaction of the following compound (A) and compound (B).
  • Compound (B) Compound (B) can be synthesized with reference to Chemical Communications, 2009, 5570-5572.
  • the obtained precipitate was dissolved in chloroform and filtered to remove insoluble matters.
  • the resulting chloroform solution was purified by passing through an alumina column.
  • the obtained chloroform solution was concentrated under reduced pressure, added to 200 ml of methanol, and reprecipitated. This precipitate was dried under reduced pressure to obtain 0.12 g of Exemplified Compound 301.
  • Exemplified compound 401 can be synthesized by a polymerization reaction of the following compound (D) and compound (B).
  • the obtained precipitate was dissolved in chloroform and filtered to remove insoluble matters.
  • the resulting chloroform solution was purified by passing through an alumina column.
  • the obtained chloroform solution was concentrated under reduced pressure, added to 200 ml of methanol, and reprecipitated. This precipitate was dried under reduced pressure to obtain 0.24 g of Exemplified Compound 401.
  • Illustrative compound 607 can be synthesized by a polymerization reaction of the following compound (F) and compound (B).
  • Compound (F) can be synthesized from compound (G) according to the following route.
  • Synthesis of Compound (G) J. Org. Chem. Vol. 73, no. 21, 2008, 8531 can be used as a reference.
  • Synthesis of Compound (F) 3.97 g of Compound (G) and 1.74 g of n-octylboronic acid were placed in a nitrogen-substituted 100 ml three-necked flask, dissolved in 50 ml of toluene, and cooled on ice. 1.16 g of triphenylphosphine tetrakis palladium was added to the resulting solution, and the mixture was heated to reflux for 12 hours. Toluene was distilled off under reduced pressure and purified by silica gel column chromatography to obtain 3.0 g of compound (F).
  • the obtained precipitate was dissolved in chloroform and filtered to remove insoluble matters.
  • the resulting chloroform solution was purified by passing through an alumina column.
  • the obtained chloroform solution was concentrated under reduced pressure, added to 200 ml of methanol, and reprecipitated. This precipitate was dried under reduced pressure to obtain 0.30 g of Exemplified Compound 607.
  • Illustrative compound 610 can be synthesized by a polymerization reaction of the following compound (H) and compound (B).
  • Compound (H) can be synthesized from compound (J) according to the following route.
  • the obtained precipitate was dissolved in chloroform and filtered to remove insoluble matters.
  • the resulting chloroform solution was purified by passing through an alumina column.
  • the obtained chloroform solution was concentrated under reduced pressure, added to 200 ml of methanol, and reprecipitated. This precipitate was dried under reduced pressure to obtain 0.29 g of Exemplified Compound 610.
  • Example Compound 901 can be synthesized by a polymerization reaction of compound (K) and compound (B).
  • Compound (K) can be synthesized from compound (N) according to the following synthesis route.
  • Exemplified compound 902 can be synthesized by a polymerization reaction of the following compound (K) and compound (P).
  • the p-type organic semiconductor material contains a compound having a partial structure represented by the general formula (1), and preferably contains a compound having a structure combined with a donor unit.
  • p-type semiconductor materials may be added in addition to the compound having the partial structure.
  • examples of other p-type semiconductor materials used for the photoelectric conversion layer include various condensed polycyclic aromatic low molecular compounds and conjugated polymers.
  • condensed polycyclic aromatic low molecular weight compound examples include anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumanthanthene, bisanthene, zeslene.
  • TTF tetrathiafulvalene
  • TCNQ tetracyanoquinodimethane
  • BEDTTTTF bisethylenetetrathiafulvalene
  • Examples of the derivative having the above condensed polycycle include WO 03/16599 pamphlet, WO 03/28125 pamphlet, US Pat. No. 6,690,029, JP 2004-107216 A.
  • conjugated polymer for example, a polythiophene such as poly-3-hexylthiophene (P3HT) and its oligomer, or a technical group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Polythiophene, Nature Material, (2006) vol. 5, p328, a polythiophene-thienothiophene copolymer described in WO2008000664, a polythiophene-diketopyrrolopyrrole copolymer described in WO2008000664, a polythiophene-thiazolothiazole copolymer described in Adv Mater, 2007p4160, Nature Mat. vol.
  • P3HT poly-3-hexylthiophene
  • polypyrrole and its oligomer polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, Examples thereof include polymer materials such as ⁇ -conjugated polymers such as polysilane and polygermane.
  • oligomeric materials not polymer materials, include thiophene hexamer ⁇ -seccithiophene ⁇ , ⁇ -dihexyl- ⁇ -sexualthiophene, ⁇ , ⁇ -dihexyl- ⁇ -kinkethiophene, ⁇ , ⁇ -bis (3 Oligomers such as -butoxypropyl) - ⁇ -sexithiophene can be preferably used.
  • an electron transport layer or a hole blocking layer is further formed on a photoelectric conversion layer (bulk hetero junction layer) by a solution process, it can be easily laminated if it can be further applied on the layer once applied.
  • a layer is further laminated by a solution process on a layer made of a material having a good solubility, there is a problem that it cannot be laminated because the underlying layer is dissolved. Therefore, the material which can be insolubilized after apply
  • Such materials include materials that can be insolubilized by polymerizing and crosslinking the coating film after coating, such as polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Or a material in which soluble substituents react and become insoluble (pigmented) by applying energy such as heat, as described in US Patent Application Publication No. 2003/136964, and Japanese Patent Application Laid-Open No. 2008-16834 And so on.
  • the n-type organic semiconductor material used for the photoelectric conversion layer according to the present invention is not particularly limited. Fluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide and other aromatic carboxylic acid anhydrides and imidized compounds thereof Examples thereof include polymer compounds.
  • fullerene derivatives that can efficiently perform charge separation with various p-type semiconductor materials at high speed (up to 50 femtoseconds) are preferable.
  • Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc. Partially by hydrogen atom, halogen atom, substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, ether group, thioether group, amino group, silyl group, etc. Examples thereof include substituted fullerene derivatives.
  • N-methylfullropyrrolidine [6,6] -phenyl C61-butyric acid methyl ester (abbreviation PC61BM), [6,6] -phenyl C61-butyric acid-n-butyl ester (PC61BnB), [6,6]- Phenyl C61-butyric acid-isobutyl ester (PC61BiB), [6,6] -phenyl C61-butyric acid-n-hexyl ester (PC61BH), [6,6] -phenyl C71-butyric acid methyl ester (abbreviation) PC71BM), Adv. Mater. , Vol.
  • fullerene having a cyclic ether group such as Amer. Chem. Soc. , (2009) vol. 130, p15429, SIMEF, Appl. Phys. Lett. , Vol. 87 (2005), C60MC12 described in p203504, etc. It is preferable to use a fullerene derivative having a substituent and having improved solubility as described below.
  • the junction form of the p-type organic semiconductor and the n-type organic semiconductor in the photoelectric conversion layer is not particularly limited, and may be a planar heterojunction or a bulk heterojunction.
  • a planar heterojunction is a junction in which a p-type organic semiconductor layer containing a p-type organic semiconductor and an n-type organic semiconductor layer containing an n-type organic semiconductor are stacked, and the surface where these two layers contact is the pn junction interface. It is a form.
  • a bulk heterojunction is formed by applying a mixture of a p-type organic semiconductor and an n-type organic semiconductor. In this single layer, a domain of the p-type organic semiconductor and a domain of the n-type organic semiconductor are formed.
  • the junction between the p-type organic semiconductor and the n-type organic semiconductor in the photoelectric conversion layer is preferably a bulk heterojunction.
  • the photoelectric conversion layer (bulk heterojunction layer) is composed of a single layer (i layer) obtained by mixing a normal p-type organic semiconductor material and an n-type organic semiconductor layer. In some cases, it has a three-layer structure (pin structure) sandwiched between a p-layer made of a p-type organic semiconductor and an n-layer made of an n-type organic semiconductor. Such a pin structure has higher rectification of holes and electrons, reduces loss due to charge-separated hole-electron recombination, and can achieve higher photoelectric conversion efficiency. .
  • the mixing ratio of the p-type organic semiconductor and the n-type organic semiconductor contained in the photoelectric conversion layer is preferably in the range of 2: 8 to 8: 2, more preferably 4: 6 to 6: 4. Range.
  • the film thickness of one photoelectric conversion layer is preferably 50 to 400 nm, more preferably 80 to 300 nm, and particularly preferably 100 to 200 nm. In general, from the viewpoint of absorbing more light, it is preferable that the thickness of the photoelectric conversion layer is larger. However, as the film thickness increases, the extraction efficiency of carriers (holes / electrons) decreases, so the photoelectric conversion efficiency decreases. Tend to.
  • a compound having the partial structure of the formula (1) of the present invention when used as a p-type organic semiconductor material to form a photoelectric conversion layer, it is 100 nm as compared with a photoelectric conversion layer using a conventional p-type organic semiconductor material. Even in the case of the above film thickness, since the extraction efficiency of carriers (holes / electrons) is difficult to decrease, high photoelectric conversion efficiency can be maintained.
  • Examples of a method for forming a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material include a vapor deposition method and a coating method (including a casting method and a spin coating method).
  • the coating method is preferable in order to increase the area of the interface where charge and electron separation of the above-described holes is performed and to produce a device having high photoelectric conversion efficiency. Also, the coating method is excellent in production speed. That is, the photoelectric conversion layer of the present invention is preferably produced by a solution coating method.
  • the application method used in this case is not limited, and examples thereof include spin coating, casting from a solution, dip coating, wire bar coating, gravure coating, and spray coating. Furthermore, patterning can also be performed by a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
  • a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
  • the photoelectric conversion layer can have an appropriate phase separation structure.
  • the photoelectric conversion layer may be composed of a single layer in which a p-type organic semiconductor material and an n-type organic semiconductor material are uniformly mixed.
  • the photoelectric conversion layer may be a plurality of layers in which the mixing ratio of the electron acceptor and the electron donor is changed. It may be configured. In this case, it can be formed by using a material that can be insolubilized after application.
  • Electrode transport layer In the organic photoelectric conversion element of the present invention, by forming an electron transport layer in the middle of the photoelectric conversion layer and the cathode, it becomes possible to more efficiently extract charges generated in the photoelectric conversion layer. It is preferable to have.
  • the first electrode is a cathode.
  • the electron transport layer is a layer that is located between the cathode and the bulk heterojunction layer and can more efficiently transfer electrons between the bulk heterojunction layer and the electrode.
  • a compound having an LUMO level intermediate between the LUMO level of the n-type semiconductor material of the bulk heterojunction photoelectric conversion layer and the work function of the cathode is suitable as the electron transporting layer.
  • it is a compound having an electron mobility of 10 ⁇ 4 or more.
  • the electron transport layer having a HOMO level deeper than the HOMO level of the p-type semiconductor material used in the bulk heterojunction type photoelectric conversion layer includes a hole generated in the bulk heterojunction layer as a cathode.
  • a hole blocking function having a rectifying effect that does not flow to the side is provided.
  • Such an electron transport layer is also referred to as a hole blocking layer. More preferably, a material having a HOMO level deeper than the HOMO level of the n-type semiconductor is used for the electron transport layer. In addition, in view of the property of blocking holes, it is preferable to use a compound having a hole mobility lower than 10 ⁇ 6 .
  • the electron transport layer As the electron transport layer, octaazaporphyrin, p-type semiconductor perfluoro compounds (perfluoropentacene, perfluorophthalocyanine, etc.), carboline compounds described in International Publication No. 04/095889, and the like can be used.
  • the electron transport layer having a HOMO level deeper than the HOMO level of the p-type semiconductor material used for the photoelectric conversion layer has a rectifying effect so that holes generated in the photoelectric conversion layer do not flow to the cathode side.
  • the hole blocking function is imparted.
  • a material deeper than the HOMO level of the n-type semiconductor is used as the electron transport layer.
  • Such an electron transport layer is also called a hole blocking layer, and it is preferable to use an electron transport layer having such a function.
  • examples of such materials include phenanthrene compounds such as bathocuproine, n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide.
  • N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.
  • unit used for the photoelectric converting layer can also be used.
  • the means for forming these layers may be either a vacuum vapor deposition method or a solution coating method, but is preferably a solution coating method.
  • the organic photoelectric conversion element of the present invention has a hole transport layer between the photoelectric conversion layer and the anode, and it is possible to extract charges generated in the photoelectric conversion layer more efficiently. It is preferable.
  • the present invention can be preferably applied when the second electrode is a hole transport layer.
  • PEDOT poly-3,4-ethylenedioxythiophene
  • PSS polystyrene sulfonic acid
  • cyan compounds described in International Publication No. 06/019270, and the like can be used.
  • the hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the photoelectric conversion layer has a rectifying effect that prevents electrons generated in the photoelectric conversion layer from flowing to the anode side. It has an electronic block function.
  • Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function.
  • unit used for the photoelectric converting layer can also be used.
  • the means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method. Forming a coating film in the lower layer before forming the photoelectric conversion layer is preferable because it has the effect of leveling the coating surface and reduces the influence of leakage and the like.
  • it preferably has a hole mobility higher than 10 ⁇ 4 due to the property of transporting holes, and a compound with electron mobility lower than 10 ⁇ 6 due to the property of blocking electrons. It is preferable to use it.
  • Examples of the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.
  • the organic photoelectric conversion element of the present invention has the first electrode and the second electrode.
  • the tandem configuration can be achieved by using the intermediate electrode.
  • the first electrode is a transparent electrode.
  • Transparent means that the light transmittance is 50% or more.
  • the light transmittance is the total light transmittance in the visible light wavelength region measured by a method in accordance with “Testing method of total light transmittance of plastic-transparent material” of JIS K 7361-1 (corresponding to ISO 13468-1). Say.
  • the first electrode of the present invention is preferably a transparent cathode (cathode), and the second electrode is preferably an anode (anode).
  • first electrode transparent cathode
  • transparent metal oxides such as indium tin oxide (ITO), AZO, FTO, SnO 2 , ZnO, and titanium oxide, Ag, Al, Au, and Pt.
  • ITO indium tin oxide
  • AZO zinc oxide
  • FTO zinc oxide
  • SnO 2 zinc oxide
  • ZnO zirconium oxide
  • titanium oxide Ag, Al, Au
  • Pt platinum oxide
  • a very thin metal layer, a metal nanowire, a layer containing nanowires such as carbon nanotubes or a nanoparticle, a conductive polymer material such as PEDOT: PSS, polyaniline, or the like can be used.
  • Conductive polymers can also be used. Further, a plurality of these conductive compounds can be combined to form a cathode.
  • the second electrode may be a single conductive material layer, but in addition to a conductive material, a resin that holds these may be used in combination.
  • the work function of the transparent electrode which is the cathode
  • the built-in potential is necessary for carriers generated in the bulk heterojunction type photoelectric conversion layer to diffuse and reach each electrode. That is, it is preferable that the work function difference between the anode and the cathode is as large as possible.
  • the conductive material of the anode a material having a work function (4 eV or less) metal, alloy, electrically conductive compound, and a mixture thereof as an electrode material is used.
  • an electrode material include gold, silver, copper, platinum, rhodium, indium, nickel, palladium, and the like.
  • silver is most preferable from the viewpoint of hole extraction performance, light reflectance, and durability against oxidation.
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the anode side is made light transmissive
  • a conductive material suitable for the anode such as aluminum and aluminum alloy
  • silver and silver compound is made thin with a film thickness of about 1 to 20 nm, and then the transparent electrode A light-transmitting anode can be obtained by providing the conductive light-transmitting material film mentioned in the description.
  • the so-called normal layer type (the first electrode is an anode and the second electrode is a cathode)
  • the relationship between the work functions of the first electrode and the second electrode may be reversed as described above, but the types of substantially transparent electrodes are limited, and the work functions are compared.
  • a normal layer type organic thin film solar cell can be obtained by using a metal having a shallow work function (less than ⁇ 4.0 eV) on the second electrode side. Examples of such a metal include aluminum, calcium, magnesium, lithium, sodium, potassium, and the like. In general, aluminum having high reflectivity and high conductivity is used.
  • the material of the intermediate electrode required in the case of the tandem configuration as shown in FIG. 3 is preferably a layer using a compound having both transparency and conductivity.
  • Transparent metal oxides such as ITO, AZO, FTO, SnO 2 , ZnO and titanium oxide, very thin metal layers such as Ag, Al, Au and Pt, or layers containing nanowires and nanoparticles such as metal nanowires and carbon nanotubes PEDOT: PSS, conductive polymer materials such as polyaniline, etc.
  • conductive polymer materials such as polyaniline, etc.
  • the substrate is a transparent substrate, and the term “transparent” has the same meaning as described above for the electrodes.
  • the substrate for example, a glass substrate, a resin substrate, and the like are preferably used, but it is desirable to use a transparent resin film from the viewpoint of light weight and flexibility.
  • a transparent resin film which can be preferably used as a transparent substrate by this invention,
  • the material, a shape, a structure, thickness, etc. can be suitably selected from well-known things.
  • polyolefins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin film such as modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, cyclic olefin resin, etc.
  • Resin films vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin films, polysulfone (PSF) resin films, polyether sulfone (PES) resin films, polycarbonate (PC) resin films , Polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, and the like.
  • the resin film transmittance of 80% or more at 80 ⁇ 800 nm) can be preferably applied to a transparent resin film according to the present invention.
  • biaxially stretched polyethylene terephthalate film preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film. More preferred are a stretched polyethylene terephthalate film and a biaxially stretched polyethylene naphthalate film.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
  • a barrier coat layer may be formed in advance on the transparent substrate, or a hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred. Good.
  • the organic photoelectric conversion element of the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight.
  • a light condensing layer such as an antireflection film or a microlens array, or a light diffusion layer that can scatter light reflected by the cathode and enter the power generation layer again may be provided. .
  • the antireflection layer can be provided as the antireflection layer.
  • the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ⁇ 1.63 because the transmittance can be improved by reducing the interface reflection between the film substrate and the easy adhesion layer.
  • the method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • the condensing layer for example, it is processed to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the light scattering layer examples include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
  • the method and process for patterning each electrode, photoelectric conversion layer, hole transport layer, electron transport layer and the like according to the present invention are not particularly limited, and known methods can be appropriately applied.
  • the electrode can be patterned by a known method such as mask vapor deposition during vacuum deposition or etching or lift-off.
  • the pattern may be formed by transferring a pattern formed on another substrate.
  • the solar cell of this invention has said organic photoelectric conversion element. That is, this invention provides the solar cell which comprises the said organic photoelectric conversion element.
  • the solar cell of the present invention comprises the above-described organic photoelectric conversion element, has a structure in which optimum design and circuit design are performed for sunlight, and optimum photoelectric conversion is performed when sunlight is used as a light source. .
  • the photoelectric conversion layer has a structure that can be irradiated with sunlight, and when the solar cell of the present invention is configured, the photoelectric conversion layer and each electrode are housed in a case and sealed, Alternatively, it is preferable to seal them entirely with resin.
  • a sealing method it is preferable to seal not only the organic photoelectric conversion element but also an organic electroluminescence element by a known method so that the produced organic photoelectric conversion element does not deteriorate due to oxygen, moisture, etc. in the environment. .
  • a method of sealing a cap made of aluminum or glass with an adhesive, a plastic film on which a gas barrier layer such as aluminum, silicon oxide, or aluminum oxide is formed and an organic photoelectric conversion element with an adhesive For example, a method of sealing a cap made of aluminum or glass with an adhesive, a plastic film on which a gas barrier layer such as aluminum, silicon oxide, or aluminum oxide is formed and an organic photoelectric conversion element with an adhesive.
  • Method of bonding spin coating of organic polymer materials with high gas barrier properties (polyvinyl alcohol, etc.), inorganic thin films with high gas barrier properties (silicon oxide, aluminum oxide, etc.) or organic films (parylene, etc.) deposited under vacuum And a method of laminating these in a composite manner.
  • AFPO-Green 5 used as a comparative example was synthesized with reference to Non-Patent Document 3.
  • the patterned transparent electrode was cleaned in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried by nitrogen blowing, and finally subjected to ultraviolet ozone cleaning.
  • the substrate was brought into a glove box (oxygen concentration 10 ppm, dew point temperature ⁇ 80 ° C.), and a 150 mM TiOx precursor solution prepared by the following procedure was spin coated (rotation speed 2000 rpm) on the transparent substrate under a nitrogen atmosphere. , Rotation time 60 s), and wiped off in a predetermined pattern.
  • the TiOx precursor was hydrolyzed by being left in the air, and then the TiOx precursor was heat-treated at 150 ° C. for 1 hour to obtain a 30 nm TiOx layer as an electron transport layer.
  • the mixed solution was heated at 80 ° C. for 2 hours and then refluxed for 1 hour. Finally, it was cooled to room temperature and adjusted to a predetermined concentration (150 ml) using methoxyethanol to obtain a TiOx precursor. The above steps were all performed in a nitrogen atmosphere.
  • photoelectric conversion layer (Preparation of photoelectric conversion layer) Next, photoelectric conversion by dissolving AFPO-Green5 as a p-type semiconductor material in 1.0% by mass and PC71BM (manufactured by Frontier Carbon, Nano Spectra E110H) as an n-type semiconductor material in 0.8% by mass in dichlorobenzene. A layer solution was prepared. The photoelectric conversion layer solution is spin-coated so as to have a film thickness of 150 nm after drying while being filtered with a 0.45 ⁇ m filter, and dried at room temperature for 30 minutes to obtain a photoelectric conversion layer on the TiOx layer. It was.
  • An organic solvent-based PEDOT: PSS dispersion (Enocoat HC200, manufactured by Kaken Sangyo Co., Ltd.) is spin-coated (2000 rpm, 60 s) on the obtained photoelectric conversion layer (also referred to as an organic semiconductor layer) to form a conductive polymer layer. Filmed and air dried to produce a hole transport layer.
  • Evaluation of the obtained organic photoelectric conversion element 1 was evaluated as a solar cell as follows.
  • the obtained organic photoelectric conversion element 1 was irradiated with light from a solar simulator (AM1.5G) at an irradiation intensity of 100 mW / cm 2 without sealing, and voltage-current characteristics were measured. Voltage), FF (fill factor) and photoelectric conversion efficiency were measured.
  • Organic photoelectric conversion elements 2-13 were prepared in the same manner except that AFPO-Green 5 was changed to the compounds shown in Table 1 in the production of organic photoelectric conversion element 1.
  • the compounds 301, 401, 607, 901, and 902 those described above were used.
  • Compounds 201, 203 and 504 were synthesized in the same manner as described above.
  • the molecular weights of the compounds 201, 203, and 504 are shown below.
  • the molecular weight is the number average molecular weight (Mn)
  • Synthesis of Compound 701 Compound 701 can be synthesized by changing ethylhexylamine used when compound 901 was synthesized to pentylamine.
  • Compound 801 can be synthesized by changing the ethylhexylamine used in the synthesis of compound 901 to hexylamine.
  • the obtained organic photoelectric conversion elements 2 to 13 were each sealed with an epoxy resin and a glass cap, and irradiated with solar simulator (AM1.5G) light at an irradiation intensity of 100 mW / cm 2 , and voltage-current characteristics. Were measured, and Voc (open circuit voltage), FF (fill factor) and photoelectric conversion efficiency were measured.
  • A1.5G solar simulator
  • the organic photoelectric conversion elements 2 to 13 of the present invention have high Voc (open voltage), FF (curve factor) and photoelectric conversion efficiency, and are excellent as solar cells. It was found to show the characteristics.

Abstract

[Problem] The purpose of the present invention is to provide an organic photoelectric conversion element having excellent photoelectric conversion efficiency, and a solar cell using the organic photoelectric conversion element. [Solution] Provided is an organic photoelectric conversion element that has, in this order on a transparent substrate, a transparent first electrode, a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode. The organic photoelectric conversion element is characterized in that the photoelectric conversion layer contains, as the p-type organic semiconductor material, a compound having a partial structure expressed by general formula (1).

Description

有機光電変換素子および太陽電池Organic photoelectric conversion element and solar cell
 本発明は、有機光電変換素子、太陽電池に関し、更に詳しくは、バルクヘテロジャンクション型の有機光電変換素子、この有機光電変換素子を用いた太陽電池に関する。 The present invention relates to an organic photoelectric conversion element and a solar cell, and more particularly to a bulk heterojunction type organic photoelectric conversion element and a solar cell using the organic photoelectric conversion element.
 近年の化石エネルギーの高騰によって、自然エネルギーから直接電力を発電できるシステムが求められており、単結晶・多結晶・アモルファスのSiを用いた太陽電池、GaAsやCIGS(銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)からなる半導体材料)などの化合物系の太陽電池、あるいは色素増感型光電変換素子(グレッツェルセル)などが提案・実用化されている。 Due to the recent rise in fossil energy, a system that can generate electric power directly from natural energy has been demanded. Solar cells using single-crystal / polycrystal / amorphous Si, GaAs, CIGS (copper (Cu), indium (In) ), Semiconductor materials such as gallium (Ga) and selenium (Se)), and dye-sensitized photoelectric conversion elements (Gretzel cells) have been proposed and put to practical use.
 しかしながら、これらの太陽電池で発電するコストは、未だ化石燃料を用いて発電・送電される電気の価格よりも高いものとなっており、普及の妨げとなっていた。また、基板に重いガラスを用いなければならないため、設置時に補強工事が必要であり、これらも発電コストが高くなる一因であった。 However, the cost of generating electricity with these solar cells is still higher than the price of electricity generated and transmitted using fossil fuels, which has hindered the spread. In addition, since heavy glass must be used for the substrate, reinforcement work is required at the time of installation, which is one of the causes that increase the power generation cost.
 このような状況に対し、化石燃料による発電コストよりも低い発電コストを達成しうる太陽電池として、透明電極と対電極との間に電子供与体層(p型半導体層)と電子受容体層(n型半導体層)とが混合された光電変換層を挟んだバルクヘテロジャンクション型光電変換素子が提案され、5%を超える効率が報告されている(例えば、特許文献1および非特許文献1参照)。 For such a situation, as a solar cell that can achieve a power generation cost lower than that of fossil fuel, an electron donor layer (p-type semiconductor layer) and an electron acceptor layer (p-type semiconductor layer) are provided between the transparent electrode and the counter electrode. A bulk heterojunction photoelectric conversion element sandwiching a photoelectric conversion layer mixed with an n-type semiconductor layer) has been proposed, and an efficiency exceeding 5% has been reported (for example, see Patent Document 1 and Non-Patent Document 1).
 これらのバルクヘテロジャンクション型光電変換素子を用いた太陽電池においては、陽極・陰極以外は塗布プロセスで形成されているため、高速且つ安価で製造が可能であると期待され、前述の発電コストの課題を解決できる可能性がある。更に、上記のSi系太陽電池、半導体系太陽電池、色素増感太陽電池などと異なり、160℃より高温のプロセスがないため、安価且つ軽量なプラスチック基板上への形成も可能であると期待される。 In solar cells using these bulk heterojunction type photoelectric conversion elements, it is expected that they can be manufactured at high speed and at low cost because they are formed by a coating process except for the anode and cathode. There is a possibility that it can be solved. Furthermore, unlike the Si-based solar cells, semiconductor-based solar cells, and dye-sensitized solar cells described above, there is no process at a temperature higher than 160 ° C., so that it is expected to be formed on a cheap and lightweight plastic substrate. The
 しかし発電コストの削減のためには、さらなる効率向上が求められており、有機薄膜太陽電池において光電変換効率10%以上を出すためには、非特許文献2ではp型半導体として特定のバンドギャップ(bg)およびLUMO準位を有する化合物が必要とされている。 However, in order to reduce the power generation cost, further improvement in efficiency is required. In order to obtain a photoelectric conversion efficiency of 10% or more in the organic thin film solar cell, Non-Patent Document 2 discloses a specific band gap (p-type semiconductor). There is a need for compounds having bg) and LUMO levels.
 しかし、この条件は必要条件であり、実際に光電変換効率10%を出すためにはさらに複数の条件を満たすことが必要である。前記非特許文献2においては、外部量子効率(EQE)が65%、および曲線因子(FF)が65%という2つの条件が前提条件として設定されている。 However, this condition is a necessary condition, and in order to actually achieve a photoelectric conversion efficiency of 10%, it is necessary to satisfy a plurality of conditions. In the said nonpatent literature 2, two conditions that an external quantum efficiency (EQE) is 65% and a fill factor (FF) are 65% are set as a precondition.
 ここで外部量子効率(EQE)とは、スペクトルに分解された太陽光の光子1つからどれくらいの電子を発生できるかを示す値であり、曲線因子(FF)とは、太陽電池内部の抵抗とかかわる値であり、IV特性上の実際の最大電力と、開放電圧と短絡電流の積の比である。逆にいえば、曲線因子という係数を設定することで、照射光が太陽光であれば、太陽電池の効率は以下の簡略な式で表わされることになる。 Here, the external quantum efficiency (EQE) is a value indicating how many electrons can be generated from one photon of sunlight decomposed into a spectrum, and the fill factor (FF) is the resistance inside the solar cell. It is a value concerned and is the ratio of the actual maximum power on the IV characteristic and the product of the open circuit voltage and the short circuit current. In other words, by setting a coefficient called a curve factor, if the irradiation light is sunlight, the efficiency of the solar cell is expressed by the following simple expression.
 光電変換効率(%)=開放電圧(V)×短絡電流密度(mA/cm)×曲線因子(FF)
 なお外部量子効率×理論Jscの積分が短絡電流密度であるため、外部量子効率(EQE)および曲線因子(FF)が太陽電池の効率に非常に重要な要素であることが分かる。
Photoelectric conversion efficiency (%) = open circuit voltage (V) × short circuit current density (mA / cm 2 ) × fill factor (FF)
Since the integration of external quantum efficiency × theoretical Jsc is the short-circuit current density, it can be seen that the external quantum efficiency (EQE) and the fill factor (FF) are very important factors for the efficiency of the solar cell.
 この曲線因子および外部量子効率に関係する特性として、p型半導体材料の移動度を挙げることができる。 As the characteristics relating to the fill factor and the external quantum efficiency, the mobility of the p-type semiconductor material can be mentioned.
 高い光電変換効率を得るためには高い開放電圧を得る必要があるが、一般に開放電圧はバルクヘテロジャンクション層に用いられるp型半導体材料のHOMO準位とn型半導体材料のLUMO準位との差分と相関があるといわれ、この差分の値が大きいほど高い開放電圧が得られると考えられている。 In order to obtain high photoelectric conversion efficiency, it is necessary to obtain a high open-circuit voltage. In general, the open-circuit voltage is a difference between the HOMO level of the p-type semiconductor material used for the bulk heterojunction layer and the LUMO level of the n-type semiconductor material. It is said that there is a correlation, and it is considered that a higher open circuit voltage is obtained as the value of the difference is larger.
 また高い短絡電流を得るには幅広い波長の光を吸収できることが求められるため、p型半導体材料のバンドギャップが狭いほど高い短絡電流が得られると考えられている。 Further, since it is required to absorb light having a wide wavelength in order to obtain a high short-circuit current, it is considered that a higher short-circuit current can be obtained as the band gap of the p-type semiconductor material is narrower.
 さらに高い発電効率を得るにはバルクヘテロジャンクション層内で好適なモルフォロジを形成していることが好ましいと考えられている。 It is considered that a suitable morphology is preferably formed in the bulk heterojunction layer in order to obtain higher power generation efficiency.
 そして、有機光電変換素子用材料として、チエノピラジン系化合物が含まれた材料が知られている(非特許文献3および4参照)。 As materials for organic photoelectric conversion elements, materials containing thienopyrazine compounds are known (see Non-Patent Documents 3 and 4).
 しなしながら、これらの有機光電変換素子においても、光電変換効率は充分なものではなかった。 However, even in these organic photoelectric conversion elements, the photoelectric conversion efficiency was not sufficient.
国際公開第08/066933号International Publication No. 08/066933
 本発明は、上記課題に鑑みなされたものであり、その目的は光電変換効率に優れる有機光電変換素子、それを用いた太陽電池を提供することにある。 This invention is made | formed in view of the said subject, The objective is to provide the organic photoelectric conversion element excellent in photoelectric conversion efficiency, and a solar cell using the same.
 本発明の上記課題は、下記の手段により達成される。 The above object of the present invention is achieved by the following means.
 1.透明な基板上に、透明な第一の電極、p型有機半導体材料とn型有機半導体材料とを含有する光電変換層、および第二の電極をこの順に有する有機光電変換素子であって、該光電変換層が、該p型有機半導体材料として下記一般式(1)で表わされる部分構造を有する化合物を含有することを特徴とする有機光電変換素子。 1. An organic photoelectric conversion element having a transparent first electrode, a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode in this order on a transparent substrate, The photoelectric conversion layer contains a compound having a partial structure represented by the following general formula (1) as the p-type organic semiconductor material.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、ZおよびZは、それぞれ独立して、シアノ基、フルオロアルキル基、-C(=O)-R、-C(=O)-OR、-C[=C(CN)]-R、-C(R)=N-SO、-C(R)=N-CN、アルキル基、アリール基またはアルコキシ基を表し、ZおよびZの少なくとも一つは、シアノ基、フルオロアルキル基、-C(=O)-R、-C(=O)-OR、-C[=C(CN)]-R、-C(R)=N-SO、または-C(R)=N-CNである。 (Wherein Z 1 and Z 2 are each independently a cyano group, a fluoroalkyl group, —C (═O) —R 1 , —C (═O) —OR 2 , —C [═C (CN 2 ] —R 3 , —C (R 4 ) ═N—SO 2 R 5 , —C (R 6 ) ═N—CN, represents an alkyl group, an aryl group or an alkoxy group, and represents at least one of Z 1 and Z 2 One is a cyano group, a fluoroalkyl group, —C (═O) —R 1 , —C (═O) —OR 2 , —C [═C (CN) 2 ] —R 3 , —C (R 4 ) = N—SO 2 R 5 , or —C (R 6 ) = N—CN.
 ZとZは、互いに結合して環を形成してもよい。R、R、R、R、R、およびRは、それぞれ独立して、水素原子、-OH、-NHR(Rは水素原子またはアルキル基を表す)、または1価の有機基を表す。 Z 1 and Z 2 may be bonded to each other to form a ring. R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, —OH, —NHR 7 (R 7 represents a hydrogen atom or an alkyl group), or monovalent Represents an organic group.
 YおよびYは、CHまたはNを表し、Xは硫黄、酸素またはセレン原子を表す。 Y 1 and Y 2 represent CH or N, and X represents a sulfur, oxygen or selenium atom.
 2.前記一般式(1)で表わされる構造を有する化合物の数平均分子量が、15000~50000であることを特徴とする前記1に記載の有機光電変換素子。 2. 2. The organic photoelectric conversion device as described in 1 above, wherein the compound having the structure represented by the general formula (1) has a number average molecular weight of 15,000 to 50,000.
 3.前記一般式(1)におけるR、R、R、R、RおよびRが、それぞれ独立して、水素原子、-OH、-NHR(Rは水素原子またはアルキル基を表す)、またはアルキル基であることを特徴とする前記1または2に記載の有機光電変換素子。 3. R 1 , R 2 , R 3 , R 4 , R 5 and R 6 in the general formula (1) are each independently a hydrogen atom, —OH, —NHR 7 (R 7 is a hydrogen atom or an alkyl group) The organic photoelectric conversion device as described in 1 or 2 above, wherein the organic photoelectric conversion device is an alkyl group.
 4.前記一般式(1)における、Xが硫黄原子であることを特徴とする前記1~3のいずれか1項に記載の有機光電変換素子。 4. 4. The organic photoelectric conversion device according to any one of 1 to 3, wherein X in the general formula (1) is a sulfur atom.
 5.前記一般式(1)における、ZおよびZの少なくともどちらかひとつが、-C(=O)-OR(Rはアルキル基を表す。)であることを特徴とする前記1~4のいずれか1項に記載の有機光電変換素子。 5. In the above general formula (1), at least one of Z 1 and Z 2 is —C (═O) —OR 2 (R 2 represents an alkyl group). The organic photoelectric conversion element of any one of these.
 6.前記一般式(1)で表される部分構造が下記一般式(2)で表される部分構造であることを特徴とする前記1~4のいずれか1項に記載の有機光電変換素子。 6. 5. The organic photoelectric conversion element as described in any one of 1 to 4, wherein the partial structure represented by the general formula (1) is a partial structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、Aは飽和の2価の連結基を表し、QおよびQは酸素、もしくはビスシアノメチレン基を表す。YおよびYはCHもしくはNを表す。)
 7.前記一般式(2)において、YおよびYが窒素原子を表すことを特徴とする前記6に記載の有機光電変換素子。
(In the formula, A represents a saturated divalent linking group, Q 1 and Q 2 represent oxygen or a biscyanomethylene group. Y 1 and Y 2 represent CH or N.)
7. 7. The organic photoelectric conversion device as described in 6 above, wherein in the general formula (2), Y 1 and Y 2 represent a nitrogen atom.
 8.前記一般式(2)において、-A-が-N(R10)-(R10は置換基を表す)を表すことを特徴とする前記6または7に記載の有機光電変換素子。 8). 8. The organic photoelectric conversion device as described in 6 or 7 above, wherein in the general formula (2), -A- represents -N (R 10 )-(R 10 represents a substituent).
 9.前記一般式(2)において、R10が炭素数6以上、10以下であるアルキル基であることを特徴とする前記8に記載の有機光電変換素子。 9. 9. The organic photoelectric conversion device as described in 8 above, wherein in the general formula (2), R 10 is an alkyl group having 6 to 10 carbon atoms.
 10.前記一般式(2)において、R10が分岐アルキル基であることを特徴とする前記8または9に記載の有機光電変換素子。 10. In the general formula (2), an organic photoelectric conversion element described in the 8 or 9, characterized in that R 10 is a branched alkyl group.
 11.前記一般式(1)で表される部分構造を有する化合物が下記一般式(3)で表される部分構造を有する化合物であることを特徴とする前記1~10のいずれか1項に記載の有機光電変換素子。 11. 11. The compound according to any one of 1 to 10 above, wherein the compound having a partial structure represented by the general formula (1) is a compound having a partial structure represented by the following general formula (3): Organic photoelectric conversion element.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、Zは炭素、珪素、ゲルマニウムから選ばれる原子を表し、R15およびR16はアルキル基、フッ化アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルキルシリル基から選ばれる置換基を表し、さらに置換基を有していてもよいし、たがいに結合して環を形成してもよい。)
 12.前記光電変換層が、溶液塗布法によって作製された光電変換層であることを特徴とする前記1~11のいずれか1項に記載の有機光電変換素子。
(In the formula, Z represents an atom selected from carbon, silicon, and germanium, and R 15 and R 16 represent a substituent selected from an alkyl group, a fluorinated alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and an alkylsilyl group. Represents a group, may further have a substituent, and may be bonded to each other to form a ring.)
12 12. The organic photoelectric conversion device according to any one of 1 to 11, wherein the photoelectric conversion layer is a photoelectric conversion layer produced by a solution coating method.
 13.前記第一の電極がカソードであることを特徴とする前記1~12のいずれか1項に記載の有機光電変換素子。 13. 13. The organic photoelectric conversion element as described in any one of 1 to 12, wherein the first electrode is a cathode.
 14.前記1~13のいずれか1項に記載の有機光電変換素子を具備することを特徴とする太陽電池。 14. 14. A solar cell comprising the organic photoelectric conversion device as described in any one of 1 to 13 above.
 本発明の上記手段により、高い曲線因子の値を有し光電変換効率に優れる有機光電変換素子、それを用いた太陽電池を提供することができる。 The above-described means of the present invention can provide an organic photoelectric conversion element having a high fill factor value and excellent photoelectric conversion efficiency, and a solar cell using the organic photoelectric conversion element.
本発明の有機光電変換素子の構成の例を示す概略断面図である。It is a schematic sectional drawing which shows the example of a structure of the organic photoelectric conversion element of this invention. 本発明の有機光電変換素子の構成の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of a structure of the organic photoelectric conversion element of this invention. タンデム型の光電変換層を備えた、本発明の有機光電変換素子の例を示す概略断面図である。It is a schematic sectional drawing which shows the example of the organic photoelectric conversion element of this invention provided with the tandem type photoelectric conversion layer.
 本発明は、透明な基板上に、透明な第一の電極、p型有機半導体材料とn型有機半導体材料とを含有する光電変換層、および第二の電極をこの順に有する有機光電変換素子であって、該光電変換層が、p型有機半導体材料として上記一般式(1)で表わされる部分構造を有する化合物を含有することを特徴とする。 The present invention is an organic photoelectric conversion element having a transparent first electrode, a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode in this order on a transparent substrate. The photoelectric conversion layer contains a compound having a partial structure represented by the general formula (1) as a p-type organic semiconductor material.
 本発明では、特にp型有機半導体材料とn型有機半導体材料とを含有するバルクヘテロジャンクション型の光電変換層のp型有機半導体材料として、上記一般式(1)で表される部分構造を有する化合物を用いることで、高い曲線因子の値を有し光電変換効率が高い有機光電変換素子を提供することができる。 In this invention, the compound which has a partial structure represented by the said General formula (1) as a p-type organic-semiconductor material of the bulk heterojunction type photoelectric converting layer containing a p-type organic-semiconductor material and an n-type organic-semiconductor material especially By using this, it is possible to provide an organic photoelectric conversion element having a high fill factor value and high photoelectric conversion efficiency.
 (有機光電変換素子の構成)
 図1は、本発明の有機光電変換素子の構成の例を示す概略断面図である。
(Configuration of organic photoelectric conversion element)
FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the organic photoelectric conversion element of the present invention.
 有機光電変換素子10は、透明な基板11上に、透明な第一の電極12を有し、第一の電極12の上に光電変換層14を有し、さらに光電変換層14の上に第二の電極13を有する。 The organic photoelectric conversion element 10 has a transparent first electrode 12 on a transparent substrate 11, a photoelectric conversion layer 14 on the first electrode 12, and a first electrode on the photoelectric conversion layer 14. Two electrodes 13 are provided.
 図1の例では、第一の電極12と光電変換層14との間に後述する正孔輸送層17を有し、光電変換層14と第二の電極13との間に後述する電子輸送層18を有する。 In the example of FIG. 1, a hole transport layer 17 described later is provided between the first electrode 12 and the photoelectric conversion layer 14, and an electron transport layer described later is provided between the photoelectric conversion layer 14 and the second electrode 13. 18
 本発明においては、基板11および第一の電極12は透明であり、光電変換に用いられる光は、図1の矢印の方向から入射される。 In the present invention, the substrate 11 and the first electrode 12 are transparent, and light used for photoelectric conversion enters from the direction of the arrow in FIG.
 光電変換層14は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを含有する。 The photoelectric conversion layer 14 is a layer that converts light energy into electric energy, and contains a p-type semiconductor material and an n-type semiconductor material.
 p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプタ)として機能する。 The p-type semiconductor material functions relatively as an electron donor (donor), and the n-type semiconductor material functions relatively as an electron acceptor (acceptor).
 ここで、電子供与体及び電子受容体は、“光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体”であり、電極のように単に電子を供与あるいは受容するものではなく、光反応によって、電子を供与あるいは受容するものである。 Here, the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”. And an electron acceptor ”, which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.
 図1において、基板11を介して第一の電極12から入射された光は、光電変換層14の光電変換層14における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。 In FIG. 1, light incident from the first electrode 12 through the substrate 11 is absorbed by the electron acceptor or the electron donor in the photoelectric conversion layer 14 of the photoelectric conversion layer 14, and from the electron donor to the electron acceptor. Electrons move and a hole-electron pair (charge separation state) is formed.
 発生した電荷は内部電界、例えば、第一の電極12と第二の電極13との仕事関数が異なる場合では第一の電極12と第二の電極13との電位差によって、電子は電子受容体間を通り、また正孔は電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。 The generated electric charge is generated between the electron acceptors due to the internal electric field, for example, when the work functions of the first electrode 12 and the second electrode 13 are different, due to the potential difference between the first electrode 12 and the second electrode 13. And the holes pass between the electron donors and are carried to different electrodes, and a photocurrent is detected.
 図1の例では、第一の電極12の仕事関数は第二の電極13の仕事関数よりも大きいため、正孔は第一の電極12へ、電子は第二の電極13へ輸送される。この場合、第二の電極13には仕事関数が小さく酸化されやすい金属が用いられる。この場合、第一の電極はアノード(陽極)として、第二の電極はカソード(陰極)として機能する。 1, since the work function of the first electrode 12 is larger than the work function of the second electrode 13, holes are transported to the first electrode 12 and electrons are transported to the second electrode 13. In this case, a metal having a small work function and easily oxidized is used for the second electrode 13. In this case, the first electrode functions as an anode (anode) and the second electrode functions as a cathode (cathode).
 図2に他の構成の例を示す。 Figure 2 shows an example of another configuration.
 図2においては、図1の場合とは反対に、第一の電極12の仕事関数よりも第二の電極13の仕事関数を大きくすることで、電子を第一の電極12へ、正孔を第二の電極13へと輸送するように設計した場合を示した。この場合には、第一の電極12と光電変換層14との間に電子輸送層18を有し、光電変換層14と第二の電極13との間に後述する正孔輸送層17を有し、第一の電極はカソード(陰極)として、第二の電極はアノード(陽極)として機能する。 In FIG. 2, contrary to the case of FIG. 1, the work function of the second electrode 13 is made larger than the work function of the first electrode 12, whereby electrons are transferred to the first electrode 12. The case where it designed so that it might convey to the 2nd electrode 13 was shown. In this case, an electron transport layer 18 is provided between the first electrode 12 and the photoelectric conversion layer 14, and a hole transport layer 17 described later is provided between the photoelectric conversion layer 14 and the second electrode 13. The first electrode functions as a cathode (cathode) and the second electrode functions as an anode (anode).
 本発明においては、耐久性の面から特に、図2に示す構成、即ち、第一の電極がカソード(陰極)であり、第二の電極がアノード(陽極)であることが好ましい態様である。 In the present invention, particularly from the viewpoint of durability, the configuration shown in FIG. 2, that is, the first electrode is a cathode (cathode) and the second electrode is an anode (anode) is a preferred embodiment.
 なお、図1、図2には記載していないが、本発明の有機光電変換素子は、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、あるいは平滑化層等の層を有していてもよい。 Although not shown in FIGS. 1 and 2, the organic photoelectric conversion element of the present invention has a layer such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smoothing layer. You may have.
 更に、太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層した、タンデム型の構成としてもよい。図3は、タンデム型の光電変換層を備える有機光電変換素子を示す断面図である。 Furthermore, it is good also as a tandem-type structure which laminated | stacked such a photoelectric conversion element for the purpose of the improvement of sunlight utilization factor (photoelectric conversion efficiency). FIG. 3 is a cross-sectional view illustrating an organic photoelectric conversion element including a tandem photoelectric conversion layer.
 タンデム型構成の場合、基板11上に第一の電極12、第一の光電変換層14’を積層し、電荷再結合層15を積層した後、第二の光電変換層16、次いで第二の電極13を積層することで、タンデム型の構成とすることができる。 In the case of the tandem configuration, the first electrode 12 and the first photoelectric conversion layer 14 ′ are stacked on the substrate 11, the charge recombination layer 15 is stacked, the second photoelectric conversion layer 16, and then the second photoelectric conversion layer 16. By stacking the electrodes 13, a tandem configuration can be obtained.
 第二の光電変換層16は、第一の光電変換層14’の吸収スペクトルと同じスペクトルを吸収する層でもよいし、異なるスペクトルを吸収する層でもよいが、好ましくは異なるスペクトルを吸収する層である。 The second photoelectric conversion layer 16 may be a layer that absorbs the same spectrum as the absorption spectrum of the first photoelectric conversion layer 14 ′ or may be a layer that absorbs a different spectrum, but is preferably a layer that absorbs a different spectrum. is there.
 また、第一の光電変換層14’、第二の光電変換層16と各電極の間には、正孔輸送層17や電子輸送層18を有していても良いが、本発明においてはタンデム構成においてもそれぞれの光電変換層は、図2に示されるような構成を有していることが好ましい。 Further, a hole transport layer 17 or an electron transport layer 18 may be provided between the first photoelectric conversion layer 14 ′, the second photoelectric conversion layer 16 and each electrode. Also in the configuration, each photoelectric conversion layer preferably has a configuration as shown in FIG.
 以下に、これらの層を構成する材料について述べる。 The materials that make up these layers are described below.
 〔p型有機半導体材料〕
 光電変換層は、p型有機半導体材料として上記一般式(1)で表される部分構造を有する化合物を含有する。
[P-type organic semiconductor materials]
The photoelectric conversion layer contains a compound having a partial structure represented by the general formula (1) as a p-type organic semiconductor material.
 当該化合物は、半導体特性を有する有機化合物である。一般式(1)の部分構造を有するのみでもよいが、有機薄膜太陽電池としてより好ましい半導体特性を有する有機化合物とするためには、後述するドナーユニットと結合させた構造を有する化合物であることが好ましい。 The compound is an organic compound having semiconductor characteristics. Although it may only have the partial structure of the general formula (1), in order to obtain an organic compound having more preferable semiconductor characteristics as an organic thin film solar cell, it may be a compound having a structure combined with a donor unit described later. preferable.
 (一般式(1)の部分構造)
 一般式(1)において、式中、Xは酸素原子もしくは硫黄原子もしくはセレン原子を表し、Yは-CH-または-N-を表す。
(Partial structure of general formula (1))
In the general formula (1), X represents an oxygen atom, a sulfur atom or a selenium atom, and Y represents —CH— or —N—.
 式中、ZおよびZは、それぞれ独立して、シアノ基、フルオロアルキル基、-C(=O)-R、-C(=O)-OR、-C[=C(CN)]-R、-CR=N-SO、-CR=N-CN、アルキル基、アリール基またはアルコキシ基を表し、ZおよびZの少なくとも一つは、シアノ基、フルオロアルキル基、-C(=O)-R、-C(=O)-OR、-C[=C(CN)]-R、-CR=N-SO、または-CR=N-CNである。 In the formula, Z 1 and Z 2 each independently represent a cyano group, a fluoroalkyl group, —C (═O) —R 1 , —C (═O) —OR 2 , —C [═C (CN) 2 ] -R 3 , —CR 4 ═N—SO 2 R 5 , —CR 6 ═N—CN, an alkyl group, an aryl group or an alkoxy group, wherein at least one of Z 1 and Z 2 is a cyano group, A fluoroalkyl group, —C (═O) —R 1 , —C (═O) —OR 2 , —C [═C (CN) 2 ] —R 3 , —CR 4 ═N—SO 2 R 5 , or -CR 6 = is N-CN.
 ZとZは、互いに結合して環を形成してもよい。R、R、R、R、R、およびRは、それぞれ独立して、水素原子、-OH、-NHR(Rは水素原子またはアルキル基を表す)、または1価の有機基を表す。 Z 1 and Z 2 may be bonded to each other to form a ring. R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, —OH, —NHR 7 (R 7 represents a hydrogen atom or an alkyl group), or monovalent Represents an organic group.
 ZおよびZにおけるフルオロアルキル基としては、炭素数1~20の直鎖または分岐のアルキル基のいずれかの水素がフッ素原子で置換されたアルキル基であり、好ましくは炭素数1~10の直鎖のアルキル基のいずれかの水素がフッ素原子で置換されたアルキル基である。ハロゲン化アルキルとしては、例えば、フロオロメチル基、ジフロオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、3,3,3-トリフルオロプロピル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、3,3,4,4,5,5,5-ヘプタフルオロペンチル基等が挙げられる。 The fluoroalkyl group in Z 1 and Z 2 is an alkyl group in which any one of a straight chain or branched alkyl group having 1 to 20 carbon atoms is substituted with a fluorine atom, and preferably has 1 to 10 carbon atoms. It is an alkyl group in which any hydrogen of a linear alkyl group is substituted with a fluorine atom. Examples of the halogenated alkyl include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a 3,3,3-trifluoropropyl group, a 2,2,3,3,4 , 4,4-heptafluorobutyl group, 3,3,4,4,5,5,5-heptafluoropentyl group and the like.
 ZおよびZにおけるアルキル基としては、炭素原子数1~20の直鎖または分岐のアルキル基が好ましい。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、1,3-ジメチルブチル基、1-イソプロピルプロピル基、1,2-ジメチルブチル基、n-ヘプチル基、1,4-ジメチルペンチル基、3-エチルペンチル基、2-メチル-1-イソプロピルプロピル基、1-エチル-3-メチルブチル基、n-オクチル基、2-エチルヘキシル基、3-メチル-1-イソプロピルブチル基、2-メチル-1-イソプロピル基、1-t-ブチル-2-メチルプロピル基、n-ノニル基、3,5,5-トリメチルヘキシル基、n-デシル基、イソデシル基、n-ウンデシル基、1-メチルデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基などが挙げられる。 The alkyl group for Z 1 and Z 2 is preferably a linear or branched alkyl group having 1 to 20 carbon atoms. For example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, tert-pentyl group, neopentyl group, 1,2-dimethylpropyl group, n-hexyl group, isohexyl group, 1,3-dimethylbutyl group, 1-isopropylpropyl group, 1,2-dimethylbutyl group, n-heptyl group, 1,4-dimethylpentyl group 3-ethylpentyl group, 2-methyl-1-isopropylpropyl group, 1-ethyl-3-methylbutyl group, n-octyl group, 2-ethylhexyl group, 3-methyl-1-isopropylbutyl group, 2-methyl- 1-isopropyl group, 1-t-butyl-2-methylpropyl group, n-nonyl group, 3,5,5-trimethylhexyl group n-decyl, isodecyl, n-undecyl, 1-methyldecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n- Examples include octadecyl group and n-nonadecyl group.
 ZおよびZにおけるアリール基としては、好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えば、フェニル基、p-メチルフェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ナフチル基、ペンタレニル基、インデニル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。 The aryl group in Z 1 and Z 2 preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms. For example, a phenyl group, a p-methylphenyl group, Non-condensed hydrocarbon groups such as biphenyl group and terphenyl group; naphthyl group, pentarenyl group, indenyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group, acenaphthenyl group, phenalenyl group, phenanthryl group And condensed polycyclic hydrocarbon groups such as anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrycenyl group, and naphthacenyl group.
 ZおよびZにおけるアルコキシ基(-OR)としては、好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8である。例えば、n-プロポキシ基、iso-プロピルオキシ基、n-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、n-ドデシルオキシ基、トリデシルオキシ基、テトラデシルオキシ基、ペンタデシルオキシ基、ヘキサデシルオキシ基、ヘプタデシルオキシ基、オクタデシルオキシ基、ノナデシルオキシ基などが挙げられる。 The alkoxy group (—OR) in Z 1 and Z 2 preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms. For example, n-propoxy group, iso-propyloxy group, n-butoxy group, tert-butoxy group, n-pentyloxy group, n-hexyloxy group, n-octyloxy group, 2-ethylhexyloxy group, n-dodecyl Examples thereof include an oxy group, a tridecyloxy group, a tetradecyloxy group, a pentadecyloxy group, a hexadecyloxy group, a heptadecyloxy group, an octadecyloxy group, and a nonadecyloxy group.
 ZとZは、互いに結合して環を形成してもよい。 Z 1 and Z 2 may be bonded to each other to form a ring.
 R、R、R、R、R、およびRは、それぞれ独立して、水素原子、-OH、-NHR(Rは水素原子またはアルキル基を表す)、または1価の有機基を表す。 R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, —OH, —NHR 7 (R 7 represents a hydrogen atom or an alkyl group), or monovalent Represents an organic group.
 R~RにおけるNHRとしては、Rは水素原子またはアルキル基である。ここで、Rにおけるアルキル基としては、好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8である。具体的には上記で記載したアルキル基が挙げられる。よって、NHRとしては、例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、メチル-tert-ブチルアミノ基、ペンチルアミノ基、ジヘキシルアミノ基、ジオクチルアミノ基、ジデシルアミノ基、ジヘキサデシルアミノ基、2-エチルヘキシルアミノ基、ジ2-エチルヘキシルアミノ基、ジ2-ヘキシルデシルアミノ基、ジベンジルアミノ基等が例示される。 As NHR 7 in R 1 to R 6 , R 7 is a hydrogen atom or an alkyl group. Here, the alkyl group for R 7 preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms. Specific examples include the alkyl groups described above. Therefore, as NHR 7 , for example, amino group, methylamino group, dimethylamino group, diethylamino group, diisopropylamino group, methyl-tert-butylamino group, pentylamino group, dihexylamino group, dioctylamino group, didecylamino group, Examples include dihexadecylamino group, 2-ethylhexylamino group, di2-ethylhexylamino group, di2-hexyldecylamino group, dibenzylamino group and the like.
 R~Rにおける1価の有機基としては、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アシル基、アルコキシカルボニル基、アミノ基、アルコキシ基、シクロアルキルオキシ基、アリールオキシ基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、シリル基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ハロゲン原子、ヒドロキシル基、メルカプト基、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基等を挙げることができる。これらのうち、アルキル基、アルコキシ基、アミノ基、ヒドロキシル基が好ましい。また、ZおよびZが環を形成しない場合は、R~Rとしては、アルキル基、アルコキシ基がより好ましく、特にアルキル基が好ましく用いられる。 Examples of the monovalent organic group in R 1 to R 6 include alkyl group, cycloalkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, acyl group, alkoxycarbonyl group, amino group, alkoxy group, cycloalkyloxy Group, aryloxy group, aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, silyl group, sulfonyl group, List sulfinyl group, ureido group, phosphoric acid amide group, halogen atom, hydroxyl group, mercapto group, cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, etc. It can be. Among these, an alkyl group, an alkoxy group, an amino group, and a hydroxyl group are preferable. When Z 1 and Z 2 do not form a ring, R 1 to R 6 are more preferably an alkyl group or an alkoxy group, and particularly preferably an alkyl group.
 R~Rにおけるアルキル基としては、好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8であり、具体的には上記で記載したアルキル基が例示されるが、例えば、メチル基、エチル基、iso-プロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基、n-デシル基、n-ヘキサデシル基等が挙げられる。 The alkyl group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms. Specifically, the alkyl groups described above are Examples include a methyl group, an ethyl group, an iso-propyl group, a tert-butyl group, an n-octyl group, a 2-ethylhexyl group, an n-decyl group, and an n-hexadecyl group.
 R~Rにおけるシクロアルキル基としては、好ましくは炭素数4~8であり、例えば、シクロペンチル基、シクロヘキシル基等が挙げられる。 The cycloalkyl group in R 1 to R 6 preferably has 4 to 8 carbon atoms, and examples thereof include a cyclopentyl group and a cyclohexyl group.
 R~Rにおけるアルケニル基としては、好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8であり、例えば、ビニル基、アリル基、2-ブテニル基、3-ペンテニル基等が挙げられる。 The alkenyl group in R 1 to R 6 preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms. For example, a vinyl group, an allyl group, 2-butenyl group Group, 3-pentenyl group and the like.
 R~Rにおけるアルキニル基としては、好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8であり、例えば、プロパルギル基、3-ペンテニル基等が挙げられる。 The alkynyl group in R 1 to R 6 preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, and examples thereof include a propargyl group and a 3-pentenyl group. Can be mentioned.
 R~Rにおけるアリール基としては、好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、具体的には上記で記載したアリール基が例示されるが、例えば、フェニル基、p-メチルフェニル基、ナフチル基等が挙げられる。 The aryl group in R 1 to R 6 preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms. Specifically, the aryl groups described above are Examples thereof include a phenyl group, a p-methylphenyl group, and a naphthyl group.
 R~Rにおけるヘテロアリール基としては、好ましくは炭素数1~20、より好ましくは炭素数1~12であり、ヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子、具体的には、例えば、イミダゾリル、ピリジル、キノリル、フリル、ピペリジル、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、チエニル等が挙げられる。 The heteroaryl group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms. Examples of the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, Examples thereof include imidazolyl, pyridyl, quinolyl, furyl, piperidyl, benzoxazolyl, benzimidazolyl, benzthiazolyl, thienyl and the like.
 R~Rにおけるアシル基(-COR)としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、アセチル、プロピオニル基、ブチリル基、イソブチリル基、tert-ブチリル基、ペンタノイル基、バレリル基、イソバレリル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、デカノイル基、ドデカノイル基、ヘキサデカノイル基、オクタデカノイル基、シクロヘキサンカルボニル基、ベンゾイル基、2-エチルヘキシルカルボニル基、2-ヘキシルデシルカルボニル基、ホルミル、ピバロイル等が挙げられる。 The acyl group (—COR) in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms. For example, acetyl, propionyl group, Butyryl, isobutyryl, tert-butyryl, pentanoyl, valeryl, isovaleryl, hexanoyl, heptanoyl, octanoyl, decanoyl, dodecanoyl, hexadecanoyl, octadecanoyl, cyclohexanecarbonyl, benzoyl Group, 2-ethylhexylcarbonyl group, 2-hexyldecylcarbonyl group, formyl, pivaloyl and the like.
 R~Rにおけるアルコキシカルボニル基(-COOR)としては、好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~12であり、例えばメトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、tert-ブトキシカルボニル基、n-ヘキシルオキシカルボニル基、n-オクチルオキシカルボニル基、n-デシルオキシカルボニル基、n-ヘキサデシルオキシカルボニル基、2-エチルヘキシルオキシカルボニル基、2-ヘキシルデシルオキシカルボニル基等が挙げられる。 The alkoxycarbonyl group (—COOR) in R 1 to R 6 preferably has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 12 carbon atoms. For example, methoxycarbonyl group, ethoxy Carbonyl group, isopropoxycarbonyl group, tert-butoxycarbonyl group, n-hexyloxycarbonyl group, n-octyloxycarbonyl group, n-decyloxycarbonyl group, n-hexadecyloxycarbonyl group, 2-ethylhexyloxycarbonyl group, Examples include 2-hexyldecyloxycarbonyl group.
 R~Rにおけるアミノ基としては、好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6であり、具体的には上記で記載したアミノ基が例示されるが、例えばアミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ペンチルアミノ基、2-エチルヘキシルアミノ基、ジベンジルアミノ基等が挙げられる。 The amino group in R 1 to R 6 preferably has 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms, particularly preferably 0 to 6 carbon atoms. Specifically, the amino groups described above are Examples include amino group, methylamino group, dimethylamino group, diethylamino group, pentylamino group, 2-ethylhexylamino group, dibenzylamino group and the like.
 R~Rにおけるアルコキシ基としては、好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8であり、具体的には上記で記載したアルコキシ基が例示されるが、例えば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基等が挙げられる。 The alkoxy group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms. Specifically, the alkoxy groups described above are Examples thereof include methoxy group, ethoxy group, n-propoxy group, n-butoxy group and the like.
 R~Rにおけるシクロアルキルオキシ基としては、好ましくは炭素数4~8であり、例えば、シクロペンチルオキシ、シクロヘキシルオキシ等が挙げられる。 The cycloalkyloxy group in R 1 to R 6 preferably has 4 to 8 carbon atoms, and examples thereof include cyclopentyloxy and cyclohexyloxy.
 R~Rにおけるアリールオキシ基としては、好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えば、フェニルオキシ、2-ナフチルオキシ等が挙げられる。 The aryloxy group in R 1 to R 6 preferably has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, and particularly preferably 6 to 12 carbon atoms. For example, phenyloxy, 2-naphthyloxy and the like Is mentioned.
 R~Rにおけるアリールオキシカルボニル基としては、好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~10であり、例えば、フェニルオキシカルボニル等が挙げられる。 The aryloxycarbonyl group in the R 1 ~ R 6, preferably 7 to 20 carbon atoms, more preferably having 7 to 16 carbon atoms, particularly preferably having 7-10 carbon atoms, for example, phenyloxycarbonyl and the like .
 R~Rにおけるアシルオキシ基としては、好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~10であり、例えばアセトキシ、ベンゾイルオキシ等が挙げられる。 The acyloxy group in R 1 to R 6 preferably has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetoxy and benzoyloxy.
 R~Rにおけるアシルアミノ基(-NHCOR)としては、好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~10であり、例えば、アセチルアミノ、ベンゾイルアミノ等が挙げられる。 The acylamino group (—NHCOR) in R 1 to R 6 preferably has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 10 carbon atoms. For example, acetylamino, benzoylamino Etc.
 R~Rにおけるアルコキシカルボニルアミノ基としては、好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましくは炭素数2~12であり、例えば、メトキシカルボニルアミノ等が挙げられる。 The alkoxycarbonylamino group in R 1 to R 6 preferably has 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, and examples thereof include methoxycarbonylamino and the like. .
 R~Rにおけるアリールオキシカルボニルアミノ基としては、好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~12であり、例えば、フェニルオキシカルボニルアミノ等が挙げられる。 The aryloxycarbonylamino group in R 1 to R 6 preferably has 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino and the like. Can be mentioned.
 R~Rにおけるスルホニルアミノ基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、メタンスルホニルアミノ、ベンゼンスルホニルアミノ等が挙げられる。 The sulfonylamino group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms. For example, methanesulfonylamino, benzenesulfonylamino, etc. Is mentioned.
 R~Rにおけるスルファモイル基としては、好ましくは炭素数0~20、より好ましくは炭素数0~16、特に好ましくは炭素数0~12であり、例えば、スルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイル等が挙げられる。 The sulfamoyl group for R 1 to R 6 preferably has 0 to 20 carbon atoms, more preferably 0 to 16 carbon atoms, and particularly preferably 0 to 12 carbon atoms, and examples thereof include sulfamoyl, methylsulfamoyl, dimethylsulfamoyl. Famoyl, phenylsulfamoyl and the like can be mentioned.
 R~Rにおけるカルバモイル基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、カルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイル等が挙げられる。 The carbamoyl group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms. For example, carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenyl And carbamoyl.
 R~Rにおけるアルキルチオ基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、メチルチオ、エチルチオ等が挙げられる。 The alkylthio group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include methylthio and ethylthio.
 R~Rにおけるアリールチオ基としては、好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えば、フェニルチオ等が挙げられる。 The arylthio group in R 1 to R 6 preferably has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenylthio.
 R~Rにおけるスルホニル基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、メシル、トシル等が挙げられる。 The sulfonyl group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include mesyl and tosyl.
 R~Rにおけるスルフィニル基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、メタンスルフィニル、ベンゼンスルフィニル等が挙げられる。 The sulfinyl group in R 1 - R 6, preferably from 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, e.g., methanesulfinyl, benzenesulfinyl, and the like .
 R~Rにおけるウレイド基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、ウレイド、メチルウレイド、フェニルウレイド等が挙げられる。 The ureido group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include ureido, methylureido, phenylureido and the like. Can be mentioned.
 R~Rにおけるリン酸アミド基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、ジエチルリン酸アミド、フェニルリン酸アミド等が挙げられる。 The phosphoric acid amide group in R 1 to R 6 preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms. For example, diethylphosphoric acid amide, phenyl phosphorus Examples include acid amides.
 R~Rにおけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of the halogen atom in R 1 to R 6 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 R~Rにおけるヒドロキシ基、メルカプト基、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基等が挙げられる。これらの置換基はさらに置換されてもよい。 Examples thereof include a hydroxy group, a mercapto group, a cyano group, a sulfo group, a carboxyl group, a nitro group, a hydroxamic acid group, a sulfino group, a hydrazino group, and an imino group in R 1 to R 6 . These substituents may be further substituted.
 本発明の好ましい形態では、R、R、R、R、R、およびRは、それぞれ独立して、水素原子、-OH、-NHR(Rは水素原子またはアルキル基を表す)、またはアルキル基を表す。 In a preferred embodiment of the present invention, R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, —OH, —NHR 7 (R 7 is a hydrogen atom or an alkyl group) Represents an alkyl group.
 R、R、R、R、R、およびRは、ZとZとが環を形成しない場合は、水素原子、アルキル基が好ましく、アルキル基がより好ましい。 R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are preferably a hydrogen atom or an alkyl group, and more preferably an alkyl group, when Z 1 and Z 2 do not form a ring.
 また、ZおよびZとしては、上記置換基(シアノ基、フルオロアルキル基、-C(=O)-R、-C(=O)-OR、-C[=C(CN)]-R、-C(R)=N-SO、または-C(R)=N-CN)の中でも、シアノ基、-C(=O)-OR、-C[=C(CN)]-R、-C(R)=N-SO、または-C(R)=N-CNからなる群より選択されるのが好ましい。また、ZとZとが環を形成しない場合は、上記置換基の中でも、ZまたはZが、シアノ基または-C(=O)-ORを有するのがより好ましく、ZとZとがどちらもシアノ基、またはZとZとがどちらも-C(=O)-ORであるのがさらに好ましい。 Z 1 and Z 2 are the above substituents (cyano group, fluoroalkyl group, —C (═O) —R 1 , —C (═O) —OR 2 , —C [═C (CN) 2 ] —R 3 , —C (R 4 ) ═N—SO 2 R 5 , or —C (R 6 ) ═N—CN), a cyano group, —C (═O) —OR 2 , —C [ It is preferably selected from the group consisting of ═C (CN) 2 ] —R 3 , —C (R 4 ) ═N—SO 2 R 5 , or —C (R 6 ) = N—CN. Further, when Z 1 and Z 2 do not form a ring, among the above substituents, Z 1 or Z 2 preferably has a cyano group or —C (═O) —OR 2 , and Z 1 More preferably, both Z and Z 2 are cyano groups, or both Z 1 and Z 2 are —C (═O) —OR 2 .
 また、本発明において、ZとZとが環を形成する場合、ZとZとが、-C(=O)-R、-C(=O)-OR、-C[=C(CN)]-R、-C(R)=N-SOおよび-C(R)=N-CNからなる群から選択されることが好ましい。この際、-C(=O)-Rとしては、Rが、水素原子、-OH、および-NHR(Rは水素原子またはアルキル基を表す)からなる群から選択されるのが好ましい。より好ましくは、ZおよびZのふたつのRが、水素原子と-OHとの組み合わせ、水素原子とNHR(Rはアルキル基を表す)の組み合わせである。-C[=C(CN)]-Rとしては、Rが、水素原子、-NHR(Rは水素原子またはアルキル基を表す)およびアルキル基からなる群から選択されるのが好ましい。より好ましくは、ZおよびZのふたつのRが、水素原子とアルキル基との組み合わせ、アルキル基とアルキル基との組み合わせ、水素原子と-NHR(Rはアルキル基を表す)との組み合わせである。-C(R)=N-SOとしては、RおよびRが、水素原子またはアルキル基からなる群から選択されるのが好ましい。より好ましくは、ZおよびZのふたつのRが、アルキル基とアルキル基との組み合わせである。-C(R)=N-CNとしては、Rが、水素原子およびアルキル基からなる群から選択されるのが好ましい。より好ましくは、ZおよびZのふたつのRが、アルキル基とアルキル基との組み合わせである。なお、本明細書中、ZとZとが環を形成するとは、上記置換基から選択されるZの炭素(C1)-水素結合と、上記置換基から選択されるZの炭素(C2)-水素結合と、が環を形成し、C1-C2結合となることを意味する。 In the present invention, when Z 1 and Z 2 form a ring, Z 1 and Z 2 can be represented by —C (═O) —R 1 , —C (═O) —OR 2 , —C [ = C (CN) 2 ] -R 3 , -C (R 4 ) = N-SO 2 R 5 and -C (R 6 ) = N-CN are preferably selected. In this case, as —C (═O) —R 1 , R 1 is selected from the group consisting of a hydrogen atom, —OH, and —NHR 7 (R 7 represents a hydrogen atom or an alkyl group). preferable. More preferably, the two R 1 groups of Z 1 and Z 2 are a combination of a hydrogen atom and —OH, and a combination of a hydrogen atom and NHR 7 (R 7 represents an alkyl group). As —C [═C (CN) 2 ] —R 3 , R 3 is selected from the group consisting of a hydrogen atom, —NHR 7 (R 7 represents a hydrogen atom or an alkyl group) and an alkyl group. preferable. More preferably, two R 3 groups of Z 1 and Z 2 are a combination of a hydrogen atom and an alkyl group, a combination of an alkyl group and an alkyl group, a hydrogen atom and —NHR 7 (R 7 represents an alkyl group), It is a combination. As —C (R 4 ) ═N—SO 2 R 5 , R 4 and R 5 are preferably selected from the group consisting of a hydrogen atom or an alkyl group. More preferably, the two R 4 groups of Z 1 and Z 2 are a combination of an alkyl group and an alkyl group. As —C (R 6 ) ═N—CN, R 6 is preferably selected from the group consisting of a hydrogen atom and an alkyl group. More preferably, two R 6 of Z 1 and Z 2 is a combination of an alkyl group and an alkyl group. In the present specification, Z 1 and Z 2 form a ring means that the carbon (C1) -hydrogen bond of Z 1 selected from the above substituents and the carbon of Z 2 selected from the above substituents. It means that (C2) -hydrogen bond forms a ring and becomes a C1-C2 bond.
 前記一般式(1)で表されるチエノベンゼンおよびチエノピラジン構造は深いHOMO準位および狭いバンドギャップを有しており、高い開放電圧および短絡電流を有する素子を得ることができるが、下記の態様がより好ましい。 The thienobenzene and thienopyrazine structures represented by the general formula (1) have a deep HOMO level and a narrow band gap, and an element having a high open-circuit voltage and a short-circuit current can be obtained. More preferred.
 一般式(1)においてXが硫黄原子であるのが好ましい。Xが硫黄原子である場合、導電性が向上し高い移動度を与える。 In the general formula (1), X is preferably a sulfur atom. When X is a sulfur atom, the conductivity is improved and high mobility is provided.
 一般式(1)においてZ、Zの両方が、上記シアノ基、フルオロアルキル基、-C(=O)-R、-C(=O)-OR、-C[=C(CN)]-R、-C(R)=N-SO、-C(R)=N-CNである場合、化合物はさらに深いHOMO準位を有する。 In the general formula (1), both Z 1 and Z 2 are the above cyano group, fluoroalkyl group, —C (═O) —R 1 , —C (═O) —OR 2 , —C [═C (CN ) 2 ] —R 3 , —C (R 4 ) ═N—SO 2 R 5 , and —C (R 6 ) ═N—CN, the compound has a deeper HOMO level.
 一般式(1)において、特にZおよびZが-C(=O)-R、-C(=O)-OR、-C[=C(CN)]-R、-C(R)=N-SO、または-C(R)=N-CNである場合、化合物の共役が拡張し、化合物同士のスタッキングが増す。そのため高い移動度を与えるようになる。 In the general formula (1), especially Z 1 and Z 2 are —C (═O) —R 1 , —C (═O) —OR 2 , —C [═C (CN) 2 ] —R 3 , —C When (R 4 ) = N—SO 2 R 5 , or —C (R 6 ) = N—CN, the conjugation of the compound is expanded and stacking between the compounds is increased. Therefore, high mobility is given.
 これは、一般式(1)においてチエノベンゼン環およびチエノピラジン環が電子求引基を有しながら、その電子求引基同士が環構造を形成している場合、平面構造がさらに拡張し、高い移動度を与え、また、スタッキングが増すことで好適なモルフォロジを与え、高い発電効率が得られるためと推測される。 This is because, in the general formula (1), when the thienobenzene ring and the thienopyrazine ring have an electron withdrawing group, but the electron withdrawing groups form a ring structure, the planar structure is further expanded, and high mobility. It is presumed that a high degree of power generation efficiency can be obtained by providing a suitable morphology by increasing the degree of stacking and providing a suitable morphology.
 一般式(1)においてYが窒素原子である場合、環全体の電子欠乏性が向上し、よりHOMO準位が深くなる。 In the general formula (1), when Y is a nitrogen atom, the electron deficiency of the entire ring is improved and the HOMO level becomes deeper.
 本発明において、一般式(1)で表される部分構造が、下記一般式(4)で表される部分構造である場合が好ましい態様である。 In the present invention, it is preferable that the partial structure represented by the general formula (1) is a partial structure represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、Aは、-CHCH-、酸素原子または窒素原子の連結基を表し、QおよびQは酸素原子、=N(CN)、=N-SO、または=C(CN)を表し、YおよびYはCHもしくはNを表し、Xは硫黄、酸素またはセレン原子を表す。)
 本発明において、一般式(1)で表される部分構造が、一般式(2)で表される部分構造である場合がより好ましい態様である。
(In the formula, A represents —CH 2 CH 2 —, a connecting group of oxygen atom or nitrogen atom, Q 1 and Q 2 are oxygen atoms, ═N (CN), ═N—SO 2 R 5 , or C (CN) 2 is represented, Y 1 and Y 2 represent CH or N, and X represents sulfur, oxygen or selenium atom.)
In the present invention, the partial structure represented by the general formula (1) is more preferably a partial structure represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本発明における一般式(4)または(2)で表される部分構造を有する化合物について説明する。 The compound having a partial structure represented by the general formula (4) or (2) in the present invention will be described.
 一般式(4)または(2)のように電子求引基同士が結合し、飽和環状骨格を形成している場合、化合物同士のスタッキング能が向上し、高い移動度を与える。 When the electron withdrawing groups are bonded to each other as in the general formula (4) or (2) to form a saturated cyclic skeleton, the stacking ability between the compounds is improved and high mobility is given.
 さらに、一般式(4)または(2)においてAが窒素原子を表す場合、その効果が向上し、さらに高い移動度を与える。すなわち、一般式(4)または(2)において、YおよびYが窒素原子を表すのが好ましい。 Furthermore, when A represents a nitrogen atom in the general formula (4) or (2), the effect is improved and higher mobility is provided. That is, in the general formula (4) or (2), it is preferable that Y 1 and Y 2 represent a nitrogen atom.
 またさらに、より好ましい形態としては、一般式(4)または(2)において、-A-が、-N(R10)-(R10は置換基を表す。)で表される。この場合、上記効果がさらに発揮されうる。R10としては、炭素数1~20の直鎖または分岐のアルキル基であり、好ましくは炭素数6~10の直鎖または分岐のアルキル基であり、より好ましくは炭素数6~10の分岐のアルキル基である。アルキル基としては、具体的には、上記で記載したアルキル基が挙げられるが、例えば、n-ペンチル、n-ヘキシル、2-エチルヘキシルなどが例示される。これらのうち、2-エチルヘキシルが好ましい。 Furthermore, as a more preferable form, in the general formula (4) or (2), -A- is represented by -N (R 10 )-(R 10 represents a substituent). In this case, the above effect can be further exhibited. R 10 is a linear or branched alkyl group having 1 to 20 carbon atoms, preferably a linear or branched alkyl group having 6 to 10 carbon atoms, and more preferably a branched alkyl group having 6 to 10 carbon atoms. It is an alkyl group. Specific examples of the alkyl group include the alkyl groups described above, and examples thereof include n-pentyl, n-hexyl, 2-ethylhexyl and the like. Of these, 2-ethylhexyl is preferred.
 また、窒素原子上にC6以上のアルキル基を有する場合、溶解度が向上し本化合物を含むポリマーを調整する際に高い分子量を持つポリマーが得られやすくなる。この際、アルキル基が分岐したものであると溶解度がさらに向上し、より高い分子量を有する化合物が得られる。 In addition, when a C6 or higher alkyl group is present on the nitrogen atom, the solubility is improved and a polymer having a high molecular weight is easily obtained when a polymer containing the present compound is prepared. In this case, if the alkyl group is branched, the solubility is further improved, and a compound having a higher molecular weight can be obtained.
 なお、前記一般式(1)、(4)、(2)の構造は、一般的にアクセプターと呼ばれる構造(以下、当該部分構造をアクセプター性ユニットとも称する。)であり、ドナーとして機能するユニット(ドナー性ユニット)と結合させることで狭いバンドギャップの材料、すなわち太陽光を長波長まで効率良く吸収できる材料となる。すなわち、本発明の一般式(1)で表わされる部分構造を有する化合物としては、任意のドナー性ユニットとを有するのが好ましい。 The structures represented by the general formulas (1), (4), and (2) are structures generally called acceptors (hereinafter, the partial structure is also referred to as an acceptor unit), and a unit that functions as a donor ( By combining with a donor unit), a narrow band gap material, that is, a material that can efficiently absorb sunlight up to a long wavelength. That is, the compound having a partial structure represented by the general formula (1) of the present invention preferably has an arbitrary donor unit.
 ドナー性ユニットとしては、例えば、同じπ電子数を有する炭化水素芳香族環(ベンゼン、ナフタレン、アントラセン等)よりもLUMO準位またはHOMO準位が浅くなるようなユニットであれば際限なく用いることができる。 As the donor unit, for example, any unit that has a LUMO level or a HOMO level shallower than a hydrocarbon aromatic ring (benzene, naphthalene, anthracene, etc.) having the same π electron number can be used without limitation. it can.
 より好ましくは、チオフェン環、フラン環、ピロール環、シクロペンタジエン、シラシクロペンタジエン等の複素5員環、ベンゼン環およびこれらを縮合環として含む構造である。 More preferably, a thiophene ring, a furan ring, a pyrrole ring, a hetero 5-membered ring such as cyclopentadiene, silacyclopentadiene, a benzene ring, and a structure containing these as a condensed ring.
 具体的には、フルオレン、シラフルオレン、カルバゾール、ジチエノシクロペンタジエン、ジチエノシラシクロペンタジエン、ジチエノピロール、ベンゾジチオフェンおよびこれらを縮合環として含む構造、等を挙げることができる。 Specific examples include fluorene, silafluorene, carbazole, dithienocyclopentadiene, dithienosilacyclopentadiene, dithienopyrrole, benzodithiophene, and structures containing these as condensed rings.
 本実施形態において、ドナー性ユニットとして、下記一般式(3)、(5)、または(6)で表される部分構造を有する化合物であるのが好ましい。 In this embodiment, the donor unit is preferably a compound having a partial structure represented by the following general formula (3), (5), or (6).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 より好ましくは上記一般式(3)または(5)で表わされる構造であり、さらに好ましくは上記一般式(3)で表わされる構造である。 More preferred is a structure represented by the above general formula (3) or (5), and further preferred is a structure represented by the above general formula (3).
 一般式(3)中、Zは炭素、珪素、ゲルマニウムから選ばれる原子を表す。これらのうち、好ましくは炭素、珪素であり、より好ましくは珪素である。一般式(3)中、R15、R16はアルキル基、フッ化アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルキルシリル基から選ばれる置換基を表し、さらに置換基を有していてもよいし、たがいに結合して環を形成してもよい。これらの中でも特にアルキル基が好ましく、用いられる。 In general formula (3), Z represents an atom selected from carbon, silicon, and germanium. Of these, carbon and silicon are preferable, and silicon is more preferable. In the general formula (3), R 15 and R 16 each represents a substituent selected from an alkyl group, a fluorinated alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and an alkylsilyl group, and further has a substituent. It may be bonded to each other to form a ring. Among these, an alkyl group is particularly preferable and used.
 一般式(5)および(6)中、R17、R18、R19およびR20は、それぞれ独立して、アルキル基、フッ化アルキル基、シクロアルキル基、アルコキシ基、アリール基、ヘテロアリール基、アルキルシリル基から選ばれる置換基を表し、さらに置換基を有していてもよいし、たがいに結合して環を形成してもよい。これらの中でも、アルキル基、アルコキシ基が好ましく、アルコキシ基がより好ましく用いられる。 In the general formulas (5) and (6), R 17 , R 18 , R 19 and R 20 are each independently an alkyl group, a fluorinated alkyl group, a cycloalkyl group, an alkoxy group, an aryl group, or a heteroaryl group. Represents a substituent selected from alkylsilyl groups, and may further have a substituent, or may be bonded to each other to form a ring. Among these, an alkyl group and an alkoxy group are preferable, and an alkoxy group is more preferably used.
 R15~R20におけるアルキル基としては、炭素数1~20の直鎖または分岐のアルキル基であり、好ましくは炭素数1~10の直鎖のアルキル基である。具体的には上記で記載したアルキル基が挙げられる。 The alkyl group in R 15 to R 20 is a linear or branched alkyl group having 1 to 20 carbon atoms, preferably a linear alkyl group having 1 to 10 carbon atoms. Specific examples include the alkyl groups described above.
 R15~R20におけるフッ化アルキル基としては、炭素数1~20の直鎖または分岐のアルキル基のいずれかの水素がフッ素で置換されたアルキル基であり、好ましくは炭素数1~10の直鎖のアルキル基のいずれかの水素がフッ素で置換されたアルキル基である。具体的には上記で記載したフッ化アルキル基(フルオロアルキル基)が挙げられる。 The fluorinated alkyl group for R 15 to R 20 is an alkyl group in which any one of a straight chain or branched alkyl group having 1 to 20 carbon atoms is substituted with fluorine, and preferably has 1 to 10 carbon atoms. Any hydrogen in the linear alkyl group is an alkyl group substituted with fluorine. Specific examples include the fluorinated alkyl groups (fluoroalkyl groups) described above.
 R15~R20におけるシクロアルキル基としては、炭素数4~8の環状アルキル基である。具体的には上記で記載したシクロアルキル基が挙げられる。 The cycloalkyl group in R 15 to R 20 is a cyclic alkyl group having 4 to 8 carbon atoms. Specific examples include the cycloalkyl groups described above.
 R15~R20におけるアリール基としては、炭素数6~30、好ましくは炭素数6~20、より好ましくは炭素数6~12の芳香族基である。具体的には上記で記載したアリール基が挙げられる。 The aryl group in R 15 to R 20 is an aromatic group having 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms. Specific examples include the aryl groups described above.
 R15~R20におけるヘテロアリール基としては、炭素数3~20、好ましくは炭素数4~12の複素芳香族基であり、ヘテロ原子としては、窒素原子、酸素原子、硫黄原子である。具体的には上記で記載したヘテロアリール基が挙げられる
 R15~R20におけるアルキルシリル基としては、炭素数1~20、好ましくは炭素数1~10のアルキル基を有するシリル基である。例えば、トリメチルシリル、トリエチルシリル、tert-ブチルジメチルシリル、トリイソプロピルシリル等が挙げられる。
フロオロメチル、ジフロオロメチル、トリフルオロメチル、2,2,2-トリフルオロエチル、3,3,3-トリフルオロプロピル、2,2,3,3,4,4,4-ヘプタフルオロブチル、3,3,4,4,5,5,5-ヘプタフルオロペンチルなどが挙げられる。
The heteroaryl group in R 15 to R 20 is a heteroaromatic group having 3 to 20 carbon atoms, preferably 4 to 12 carbon atoms, and the hetero atom is a nitrogen atom, an oxygen atom, or a sulfur atom. Specific examples of the alkylsilyl group in R 15 to R 20 include the heteroaryl groups described above are silyl groups having an alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. For example, trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl, triisopropylsilyl and the like can be mentioned.
Fluoromethyl, difluoromethyl, trifluoromethyl, 2,2,2-trifluoroethyl, 3,3,3-trifluoropropyl, 2,2,3,3,4,4,4-heptafluorobutyl, 3,3 Examples include 4,4,5,5,5-heptafluoropentyl.
 R15、R16におけるアルコキシ基としては、炭素数1~20、好ましくは炭素数1~12、より好ましくは炭素数1~8のオキシアルキル基である。具体的には上記で記載したアルコキシ基が挙げられるが、例えば、n-オクチルオキシ、n-ドデシルオキシ等が好ましい。 The alkoxy group for R 15 and R 16 is an oxyalkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, and more preferably 1 to 8 carbon atoms. Specific examples include the alkoxy groups described above. For example, n-octyloxy, n-dodecyloxy and the like are preferable.
 上記一般式(3)および(5)で表されるような構造は、移動度の高いチオフェン構造が縮合してさらに大きなπ共役平面を有している半面、溶解性を付与可能な置換基を有しているため、溶解性と高移動度の両立を可能とし、一層高い光電変換効率を期待できるようになる。 The structure represented by the above general formulas (3) and (5) has a half surface having a larger π-conjugated plane by condensation of a highly mobile thiophene structure, and a substituent capable of imparting solubility. Therefore, both solubility and high mobility can be achieved, and higher photoelectric conversion efficiency can be expected.
 中でもZで表わされる原子が珪素原子である構造であることが好ましい。これはAdvMater2010p367に記載されているように、Zがケイ素原子である場合に結晶性が高く、高い移動度が得られる傾向があるためである。 Among these, a structure in which the atom represented by Z is a silicon atom is preferable. This is because, as described in AdvMatter 2010p367, when Z is a silicon atom, the crystallinity is high and high mobility tends to be obtained.
 好適なモルフォロジを与えるには適度な分子量を持つことが必要であり、10000から100000の間の数平均分子量を持つポリマーが好ましく、15000から50000の間の数平均分子量を持つポリマーがさらに好ましい。 In order to give a suitable morphology, it is necessary to have an appropriate molecular weight, and a polymer having a number average molecular weight of 10,000 to 100,000 is preferable, and a polymer having a number average molecular weight of 15,000 to 50,000 is more preferable.
 なお、数平均分子量はゲルパーミエーションクロマトグラフィー(GPC)で測定することができる。 The number average molecular weight can be measured by gel permeation chromatography (GPC).
 ここでいう数平均分子量は、下記の方法により測定したものをいう。 Here, the number average molecular weight is measured by the following method.
 ウオーターズ社製150C ALC/GPC(カラム:東ソー(株)製GMHHR-H(S)、溶媒:1,2,4-トリクロロベンゼン)を使用して、ゲルパーミエーション・クロマトグラフィー(GPC)法により、数平均分子量(Mn)を測定した。なお、東ソー(株)製標準ポリスチレンを用いて、ユニバーサルキャリブレーション法によりカラム溶出体積は校正した。 Water per 150C ALC / GPC (column: GMHHR-H (S) manufactured by Tosoh Corporation), solvent: 1,2,4-trichlorobenzene), by gel permeation chromatography (GPC) method, The number average molecular weight (Mn) was measured. In addition, column elution volume was calibrated by the universal calibration method using Tosoh Corporation standard polystyrene.
 なお、本形態において、上記で例示したアクセプター性ユニットと、ドナー性ユニットとの組み合わせは、特に制限はなく、任意のアクセプター性ユニットと、任意のドナー性ユニットとを適宜組み合わせて化合物(共役系高分子化合物)を合成し、使用することが可能である。後述の実施例では、アクセプター性ユニットとドナー性ユニットとを有する化合物を合成しその性能を評価しているが、本発明の技術的範囲は、これらの例にのみに制限されない。 Note that in this embodiment, the combination of the acceptor unit exemplified above and the donor unit is not particularly limited, and an arbitrary acceptor unit and any donor unit may be appropriately combined to form a compound (conjugated system). Molecular compounds) can be synthesized and used. In the examples described later, a compound having an acceptor unit and a donor unit is synthesized and its performance is evaluated. However, the technical scope of the present invention is not limited to these examples.
 本発明に係る部分構造を有する化合物に占める(1)の部分構造の割合は、当該化合物に対して概ね20~80質量%が好ましく25~60質量%が特に好ましい。本発明においては、当該化合物は、上記のような高分子量の化合物であることが好ましいが、この場合部分構造を繰り返し単位として有し、この部分構造以外の繰り返し単位を含めた化合物全体に対して、30~50モル%の範囲で含有することが好ましい。 The proportion of the partial structure (1) in the compound having a partial structure according to the present invention is generally preferably 20 to 80% by mass, particularly preferably 25 to 60% by mass with respect to the compound. In the present invention, the compound is preferably a high molecular weight compound as described above. In this case, the compound has a partial structure as a repeating unit, and the entire compound including a repeating unit other than the partial structure is used. , Preferably in the range of 30 to 50 mol%.
 本発明において、光電変換層が、一般式(1)で表される部分構造を有する化合物を有することで、本願の効果を奏する理由は、明確ではないが、以下のように推測される。 In the present invention, the reason why the photoelectric conversion layer has the compound having the partial structure represented by the general formula (1) to achieve the effect of the present application is not clear, but is estimated as follows.
 詳細な理由は不明であるが、その要因はピラジン環上に有している置換基の違いに由来するものであると推測している。非特許文献3、非特許文献4に記載してあるチエノピラジン系化合物は電子求引性基を有していない。それらに対し本発明に係る部分構造は電子求引基を有しているため、化合物のHOMO準位がこれら化合物より低下し、高い開放電圧を与えたものと考えている。 Although the detailed reason is unknown, it is speculated that the cause is derived from the difference in substituents on the pyrazine ring. The thienopyrazine compounds described in Non-Patent Document 3 and Non-Patent Document 4 do not have an electron withdrawing group. On the other hand, since the partial structure according to the present invention has an electron-attracting group, it is considered that the HOMO level of the compounds is lower than those of the compounds and gives a high open circuit voltage.
 特にそのチエノピラジン環の電子求引基同士が環構造を形成している場合にさらに高い効率を与える。これは平面構造が拡張し、化合物同士のスタッキングが増し、移動度が向上したためであると考えられる。またその環構造上に溶解性の高い置換基を有していると、化合物の溶解度が向上し、ポリマー化した際の分子量を向上させることができる。またポリマー自身の溶解度も向上する。これらの点が好適なモルフォロジの形成に影響を与え、高い発電効率が得られたと考えている。 Especially, when the electron-withdrawing group of the thienopyrazine ring forms a ring structure, higher efficiency is given. This is considered to be because the planar structure was expanded, the stacking of the compounds increased, and the mobility was improved. Moreover, when it has a substituent with high solubility on the ring structure, the solubility of a compound will improve and the molecular weight at the time of polymerizing can be improved. Also, the solubility of the polymer itself is improved. These points affected the formation of a suitable morphology, and we believe that high power generation efficiency was obtained.
 以下に、一般式(1)で表される部分構造を有する化合物の例を挙げるが、本発明はこれらに限定されない。 Hereinafter, examples of the compound having a partial structure represented by the general formula (1) will be given, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記化合物において、nで表わされる数は前述の分子量に入るような値となれば十分であるが、例えば数平均分子量10000~100000の範囲に入るためにはnはおよそ10~200程度である必要がある。 In the above compound, it is sufficient that the number represented by n is a value that falls within the above-described molecular weight. For example, n needs to be about 10 to 200 in order to fall within the range of the number average molecular weight of 10,000 to 100,000. There is.
 (本発明に係る化合物の合成方法)
 一般式(1)で表される部分構造を有する化合物は、以下の例のようにして合成することができる。
(Synthesis method of the compound according to the present invention)
The compound having the partial structure represented by the general formula (1) can be synthesized as in the following example.
 下記に、一般式(1)におけるY、Yが炭素である、上記化合物301、401、Y、Yが、Nである上記化合物607、901、902の合成例を示す。 Below, is a Y 1, Y 2 in the general formula (1) is carbon, the compound 301 and 401, is Y 1, Y 2, showing an example of the synthesis of the compounds 607,901,902 is N.
 (例示化合物301の合成) (Synthesis of Exemplified Compound 301)
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 例示化合物301は下記化合物(A)と化合物(B)との重合反応により合成される。 Exemplified compound 301 is synthesized by a polymerization reaction of the following compound (A) and compound (B).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 化合物(A)の合成
 化合物(A)は以下のルートに従い、化合物(C)より合成できる。
Synthesis of Compound (A) Compound (A) can be synthesized from compound (C) according to the following route.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 化合物(C)の合成
 J. Org.Chem.Vol.74,No.23,2009、9181を参考に合成できる。
Synthesis of Compound (C) J. Org. Chem. Vol. 74, no. 23, 2009, 9181 can be synthesized with reference.
 化合物(A)の合成
 窒素置換した100ml、3口フラスコに化合物(C)を1.84g取り、50mlのジクロロメタンに溶解し、氷冷した。得られた溶液に3.54gのNブロモスクシミドを加え、室温で24時間攪拌した。ジクロロエタンを減圧留去し、シリカゲルカラムクロマトグラフィーで精製することで化合物(A)を2.53g得た。
Synthesis of Compound (A) 1.84 g of Compound (C) was taken in a nitrogen-substituted 100 ml three-necked flask, dissolved in 50 ml of dichloromethane, and cooled on ice. 3.54 g of N bromosuccinimide was added to the resulting solution and stirred at room temperature for 24 hours. Dichloroethane was distilled off under reduced pressure and purified by silica gel column chromatography to obtain 2.53 g of compound (A).
 化合物(B)の合成 Synthesis of compound (B)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 化合物(B)
 化合物(B)はChemical Communications, 2009, 5570-5572を参考に合成できる。
Compound (B)
Compound (B) can be synthesized with reference to Chemical Communications, 2009, 5570-5572.
 例示化合物301の合成
 十分に窒素置換された100mlの3口フラスコに化合物(A)を0.34g、化合物(B)を0.86g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。
Synthesis of Exemplary Compound 301 0.34 g of Compound (A) and 0.86 g of Compound (B) were placed in a 100 ml three-necked flask thoroughly substituted with nitrogen, and 20 ml of nitrogen gas was bubbled in advance into toluene. Dissolved. To the resulting solution, 0.12 g of tetrakistriphenylphosphine palladium was added and heated to reflux for 20 hours. After completion of the reaction, the reaction solution was cooled to around room temperature. The reaction solution was added to 200 ml of methanol for reprecipitation, and the precipitate was collected.
 得られた沈殿物をクロロホルムに溶解し、濾過して不溶物を除去した。得られたクロロホルム溶液をアルミナカラムに通して精製した。得られたクロロホルム溶液を減圧濃縮し、メタノール200mlに加えて再沈殿した。この沈殿を減圧乾燥し、例示化合物301を0.12g得た。 The obtained precipitate was dissolved in chloroform and filtered to remove insoluble matters. The resulting chloroform solution was purified by passing through an alumina column. The obtained chloroform solution was concentrated under reduced pressure, added to 200 ml of methanol, and reprecipitated. This precipitate was dried under reduced pressure to obtain 0.12 g of Exemplified Compound 301.
 例示化合物301の分子量を測定したところ、Mn=29000,PDI(多分散度:polydispersity index)=1.8であった。 The molecular weight of Exemplified Compound 301 was measured and found to be Mn = 29000 and PDI (polydispersity index) = 1.8.
 (例示化合物401の合成) (Synthesis of Exemplified Compound 401)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 例示化合物401は下記化合物(D)と化合物(B)との重合反応により合成できる。 Exemplified compound 401 can be synthesized by a polymerization reaction of the following compound (D) and compound (B).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 化合物(D)の合成
 化合物(D)は以下のルートに従い、化合物(E)より合成できる。
Synthesis of Compound (D) Compound (D) can be synthesized from compound (E) according to the following route.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 化合物(E)の合成
 J.Org.Chem.Vol.74,No.23,2009、9181を参考に合成できる。
Synthesis of compound (E) Org. Chem. Vol. 74, no. 23, 2009, 9181 can be synthesized with reference.
 化合物(D)の合成
 窒素置換した100ml、3口フラスコに化合物(E)を2.5g取り、50mlのジクロロメタンに溶解し、氷冷した。得られた溶液に3.54gのNブロモスクシミドを加え、室温で24時間攪拌した。ジクロロエタンを減圧留去し、シリカゲルカラムクロマトグラフィーで精製する事で化合物(D)を2.0g得た。
Synthesis of Compound (D) 2.5 g of Compound (E) was taken in a nitrogen-substituted 100 ml three-necked flask, dissolved in 50 ml of dichloromethane, and cooled on ice. 3.54 g of N bromosuccinimide was added to the resulting solution and stirred at room temperature for 24 hours. Dichloroethane was distilled off under reduced pressure and purified by silica gel column chromatography to obtain 2.0 g of compound (D).
 化合物(B)の合成
 先に記載のように合成できる。
Synthesis of Compound (B) The compound (B) can be synthesized as described above.
 (例示化合物401の合成)
 十分に窒素置換された100mlの3口フラスコに化合物(D)を0.41g、化合物(B)を0.86g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。
(Synthesis of Exemplary Compound 401)
0.41 g of compound (D) and 0.86 g of compound (B) were placed in a 100 ml three-necked flask thoroughly purged with nitrogen, and dissolved in toluene that had been degassed by bubbling nitrogen gas in advance. To the resulting solution, 0.12 g of tetrakistriphenylphosphine palladium was added and heated to reflux for 20 hours. After completion of the reaction, the reaction solution was cooled to around room temperature. The reaction solution was added to 200 ml of methanol for reprecipitation, and the precipitate was collected.
 得られた沈殿物をクロロホルムに溶解し、濾過して不溶物を除去した。得られたクロロホルム溶液をアルミナカラムに通して精製した。得られたクロロホルム溶液を減圧濃縮し、メタノール200mlに加えて再沈殿した。この沈殿を減圧乾燥し、例示化合物401を0.24g得た。 The obtained precipitate was dissolved in chloroform and filtered to remove insoluble matters. The resulting chloroform solution was purified by passing through an alumina column. The obtained chloroform solution was concentrated under reduced pressure, added to 200 ml of methanol, and reprecipitated. This precipitate was dried under reduced pressure to obtain 0.24 g of Exemplified Compound 401.
 例示化合物401の分子量を測定したところ、Mn=31000,PDI=2.0であった。 The molecular weight of Exemplified Compound 401 was measured and found to be Mn = 31000 and PDI = 2.0.
 (例示化合物607の合成) (Synthesis of Exemplified Compound 607)
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 例示化合物607は下記化合物(F)と化合物(B)との重合反応により合成できる。 Illustrative compound 607 can be synthesized by a polymerization reaction of the following compound (F) and compound (B).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 化合物(F)は以下のルートに従い、化合物(G)より合成できる。 Compound (F) can be synthesized from compound (G) according to the following route.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 化合物(G)の合成
 J. Org.Chem.Vol.73,No.21,2008、8531を参考にし合成できる.
 化合物(F)の合成
 窒素置換した100ml 3口フラスコに化合物(G)を3.97gとn-オクチルボロン酸を1.74g取り、50mlのトルエンに溶解し、氷冷した。得られた溶液にトリフェニルホスフィンテトラキスパラジウムを1.16g加え、12時間加熱還流した。トルエンを減圧留去し、シリカゲルカラムクロマトグラフィーで精製する事で化合物(F)を3.0g得た。
Synthesis of Compound (G) J. Org. Chem. Vol. 73, no. 21, 2008, 8531 can be used as a reference.
Synthesis of Compound (F) 3.97 g of Compound (G) and 1.74 g of n-octylboronic acid were placed in a nitrogen-substituted 100 ml three-necked flask, dissolved in 50 ml of toluene, and cooled on ice. 1.16 g of triphenylphosphine tetrakis palladium was added to the resulting solution, and the mixture was heated to reflux for 12 hours. Toluene was distilled off under reduced pressure and purified by silica gel column chromatography to obtain 3.0 g of compound (F).
 化合物(B)の合成
 先に記載のように合成できる。
Synthesis of Compound (B) The compound (B) can be synthesized as described above.
 (例示化合物607の合成)
 十分に窒素置換された100mlの3口フラスコに化合物(F)を0.43g、化合物(B)を0.86g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。
(Synthesis of Exemplary Compound 607)
0.43 g of compound (F) and 0.86 g of compound (B) were placed in a 100 ml three-necked flask thoroughly purged with nitrogen, and dissolved in 20 ml of degassed toluene by bubbling nitrogen gas in advance. To the resulting solution, 0.12 g of tetrakistriphenylphosphine palladium was added and heated to reflux for 20 hours. After completion of the reaction, the reaction solution was cooled to around room temperature. The reaction solution was added to 200 ml of methanol for reprecipitation, and the precipitate was collected.
 得られた沈殿物をクロロホルムに溶解し、濾過して不溶物を除去した。得られたクロロホルム溶液をアルミナカラムに通して精製した。得られたクロロホルム溶液を減圧濃縮し、メタノール200mlに加えて再沈殿した。この沈殿を減圧乾燥し、例示化合物607を0.30g得た。 The obtained precipitate was dissolved in chloroform and filtered to remove insoluble matters. The resulting chloroform solution was purified by passing through an alumina column. The obtained chloroform solution was concentrated under reduced pressure, added to 200 ml of methanol, and reprecipitated. This precipitate was dried under reduced pressure to obtain 0.30 g of Exemplified Compound 607.
 例示化合物607の分子量を測定したところ、Mn=30000,PDI=1.8であった。 The molecular weight of Exemplified Compound 607 was measured and found to be Mn = 30000 and PDI = 1.8.
 (例示化合物610の合成) (Synthesis of Exemplified Compound 610)
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 例示化合物610は下記化合物(H)と化合物(B)との重合反応により合成できる。 Illustrative compound 610 can be synthesized by a polymerization reaction of the following compound (H) and compound (B).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 化合物(H)は以下のルートに従い、化合物(J)より合成できる。 Compound (H) can be synthesized from compound (J) according to the following route.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 化合物(J)の合成
 J.Org.Chem.Vol.73,No.21,2008、8531を参考にし合成できる。
Synthesis of Compound (J) Org. Chem. Vol. 73, no. 21, 2008, 8531 can be used as a reference.
 化合物(I)の合成
 J.Org.Chem.Vol.73,No.21,2008、8531を参考に以下のように合成できる。
Synthesis of Compound (I) Org. Chem. Vol. 73, no. 21, 2008, 8531 can be synthesized as follows.
 具体的には窒素置換した100ml、3口フラスコに化合物(J)を2.92g取り、50mlのn-オクタノールに溶解し、氷冷した。得られた溶液に0.65gのシアン化カリウムを加え、100度で12時間攪拌した。n-オクタノールを減圧留去し、シリカゲルカラムクロマトグラフィーで精製する事で化合物(I)を2.26g得た。 Specifically, 2.92 g of compound (J) was taken in a 100 ml three-neck flask purged with nitrogen, dissolved in 50 ml of n-octanol, and cooled on ice. To the obtained solution, 0.65 g of potassium cyanide was added and stirred at 100 degrees for 12 hours. n-Octanol was distilled off under reduced pressure and purified by silica gel column chromatography to obtain 2.26 g of Compound (I).
 化合物(H)の合成
 窒素置換した100ml 3口フラスコに化合物(I)を2.26g取り、50mlのジクロロメタンに溶解し、氷冷した。得られた溶液に2.76gのNブロモスクシミドを加え、室温で24時間攪拌した。ジクロロエタンを減圧留去し、シリカゲルカラムクロマトグラフィーで精製する事で化合物(H)を2.2g得た。
Synthesis of Compound (H) 2.26 g of Compound (I) was taken in a nitrogen-substituted 100 ml three-necked flask, dissolved in 50 ml of dichloromethane, and ice-cooled. 2.76 g of N bromosuccinimide was added to the resulting solution, and the mixture was stirred at room temperature for 24 hours. Dichloroethane was distilled off under reduced pressure and purified by silica gel column chromatography to obtain 2.2 g of compound (H).
 化合物(B)の合成
 先に記載のように合成できる。
Synthesis of Compound (B) The compound (B) can be synthesized as described above.
 (例示化合物610の合成)
 十分に窒素置換された100mlの3口フラスコに化合物(H)を0.45g、化合物(B)を0.86g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。
(Synthesis of Exemplary Compound 610)
0.45 g of compound (H) and 0.86 g of compound (B) were placed in a 100 ml three-necked flask thoroughly purged with nitrogen, and dissolved in toluene that had been degassed by bubbling nitrogen gas in advance. To the resulting solution, 0.12 g of tetrakistriphenylphosphine palladium was added and heated to reflux for 20 hours. After completion of the reaction, the reaction solution was cooled to around room temperature. The reaction solution was added to 200 ml of methanol for reprecipitation, and the precipitate was collected.
 得られた沈殿物をクロロホルムに溶解し、濾過して不溶物を除去した。得られたクロロホルム溶液をアルミナカラムに通して精製した。得られたクロロホルム溶液を減圧濃縮し、メタノール200mlに加えて再沈殿した。この沈殿を減圧乾燥し、例示化合物610を0.29g得た。 The obtained precipitate was dissolved in chloroform and filtered to remove insoluble matters. The resulting chloroform solution was purified by passing through an alumina column. The obtained chloroform solution was concentrated under reduced pressure, added to 200 ml of methanol, and reprecipitated. This precipitate was dried under reduced pressure to obtain 0.29 g of Exemplified Compound 610.
 例示化合物610の分子量を測定したところ、Mn=28000,PDI=1.7であった。 The molecular weight of Exemplified Compound 610 was measured and found to be Mn = 28000 and PDI = 1.7.
 (例示化合物901の合成) (Synthesis of Exemplified Compound 901)
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 例時化合物901は化合物(K)と化合物(B)の重合反応により合成することができる。 Example Compound 901 can be synthesized by a polymerization reaction of compound (K) and compound (B).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 化合物(K)は以下の合成ルートに従い、化合物(N)より合成できる。 Compound (K) can be synthesized from compound (N) according to the following synthesis route.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 化合物(N)の合成
 J.Org.Chem.Vol.73,No.21,20088531を参考に合成できる。
Synthesis of Compound (N) Org. Chem. Vol. 73, no. The compound can be synthesized with reference to 21,20085331.
 化合物(M)の合成
 窒素置換した100ml、3口フラスコに化合物(N)を1.86g取り、50mlのエタノールに溶解し、氷冷した。得られた溶液に5.00gの濃塩酸を加え、室温で24時間攪拌した。反応終了後、酢酸エチルで抽出し、飽和食塩水で洗浄した。硫酸マグネシウムで乾燥し、溶媒を減圧留去した後に、シリカゲルカラムクロマトグラフィーで精製する事で化合物(M)を2.10g得た。
Synthesis of Compound (M) 1.86 g of Compound (N) was taken in a nitrogen-substituted 100 ml three-neck flask, dissolved in 50 ml of ethanol, and ice-cooled. To the obtained solution, 5.00 g of concentrated hydrochloric acid was added and stirred at room temperature for 24 hours. After completion of the reaction, the mixture was extracted with ethyl acetate and washed with saturated brine. After drying over magnesium sulfate and distilling off the solvent under reduced pressure, 2.10 g of compound (M) was obtained by purification by silica gel column chromatography.
 化合物(L)の合成
 窒素置換した100ml 3口フラスコに化合物(M)を2.1g取り、50mlのトルエンに溶解し、氷冷した。得られた溶液に2.21gの塩化チオニルを加え、5時間加熱還流した。トルエンとともに塩化チオニルを減圧留去し、黄色の固体を得た。この固体を50mlのジクロロメタンに溶解し、氷冷した。得られた溶液に2.87gのトリエチルアミンを加えた後、1.34gのエチルヘキシルアミンを徐々に加え5時間攪拌した。有機層を水で洗浄し、さらに飽和食塩水で洗浄した。硫酸マグネシウムで乾燥し、溶媒を減圧留去した後に、シリカゲルカラムクロマトグラフィーで精製する事で化合物(L)を1.90g得た。
Synthesis of Compound (L) 2.1 g of compound (M) was taken in a nitrogen-substituted 100 ml three-necked flask, dissolved in 50 ml of toluene, and ice-cooled. To the resulting solution, 2.21 g of thionyl chloride was added and heated to reflux for 5 hours. Thionyl chloride was distilled off under reduced pressure together with toluene to obtain a yellow solid. This solid was dissolved in 50 ml of dichloromethane and cooled on ice. After 2.87 g of triethylamine was added to the resulting solution, 1.34 g of ethylhexylamine was gradually added and stirred for 5 hours. The organic layer was washed with water and further washed with saturated brine. After drying with magnesium sulfate and distilling off the solvent under reduced pressure, 1.90 g of Compound (L) was obtained by purification by silica gel column chromatography.
 化合物(K)の合成
 窒素置換した100ml 3口フラスコに化合物(L)を1.90g取り、50mlのジクロロメタンに溶解し、氷冷した。得られた溶液に2.14gのNブロモスクシミドを加え、室温で24時間攪拌した。ジクロロエタンを減圧留去し、シリカゲルカラムクロマトグラフィーで精製する事で化合物(K)を1.84g得た。
Synthesis of Compound (K) 1.90 g of Compound (L) was taken in a nitrogen-substituted 100 ml three-necked flask, dissolved in 50 ml of dichloromethane, and cooled on ice. 2.14 g of N bromosuccinimide was added to the resulting solution and stirred at room temperature for 24 hours. Dichloroethane was distilled off under reduced pressure and purified by silica gel column chromatography to obtain 1.84 g of compound (K).
 化合物(B)の合成
 先に記載のように合成できる。
Synthesis of Compound (B) The compound (B) can be synthesized as described above.
 (例示化合物901の合成)
 十分に窒素置換された100mlの3口フラスコに化合物(K)を0.48g、化合物(B)を0.86g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。
(Synthesis of Exemplary Compound 901)
0.48 g of compound (K) and 0.86 g of compound (B) were placed in a 100 ml three-necked flask thoroughly purged with nitrogen, and dissolved in toluene that had been degassed by bubbling nitrogen gas in advance. To the resulting solution, 0.12 g of tetrakistriphenylphosphine palladium was added and heated to reflux for 20 hours. After completion of the reaction, the reaction solution was cooled to around room temperature. The reaction solution was added to 200 ml of methanol for reprecipitation, and the precipitate was collected.
 得られた沈殿物をクロロホルムに溶解し、濾過して不溶物を除去した。得られたクロロホルム溶液をアルミナカラムに通して精製した。得られたクロロホルム溶液を減圧濃縮し、メタノール200mlに加えて再沈殿した。この沈殿を減圧乾燥し、例示化合物901を0.38g得た。 The obtained precipitate was dissolved in chloroform and filtered to remove insoluble matters. The resulting chloroform solution was purified by passing through an alumina column. The obtained chloroform solution was concentrated under reduced pressure, added to 200 ml of methanol, and reprecipitated. This precipitate was dried under reduced pressure to obtain 0.38 g of Exemplified Compound 901.
 例示化合物901の分子量を測定したところ、Mn=30000,PDI=1.8であった。 The molecular weight of Exemplified Compound 901 was measured and found to be Mn = 30000 and PDI = 1.8.
 (例示化合物902の合成) (Synthesis of Exemplified Compound 902)
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 例示化合物902は下記化合物(K)と化合物(P)の重合反応により合成できる。 Exemplified compound 902 can be synthesized by a polymerization reaction of the following compound (K) and compound (P).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 化合物(K)の合成
 先に記載のように合成できる。
Synthesis of Compound (K) The compound (K) can be synthesized as described above.
 化合物(P)の合成
 化合物(P)は特許文献US2010078074を参考に合成できる。
Synthesis of Compound (P) Compound (P) can be synthesized with reference to Patent Document US2010078074.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 (例示化合物902の合成)
 十分に窒素置換された100mlの3口フラスコに化合物(K)を0.48g、化合物(P)を0.77g取り、20mlの予め窒素ガスをバブリングして脱気したトルエンに溶解した。得られた溶液にテトラキストリフェニルホスフィンパラジウムを0.12g加え、20時間加熱還流した。反応終了後、反応液を室温付近まで冷却した。その反応液をメタノール200mlに加えて再沈殿を行い、沈殿物を回収した。
(Synthesis of Exemplary Compound 902)
0.48 g of compound (K) and 0.77 g of compound (P) were placed in a 100 ml three-necked flask thoroughly purged with nitrogen, and dissolved in 20 ml of degassed toluene by bubbling nitrogen gas in advance. To the resulting solution, 0.12 g of tetrakistriphenylphosphine palladium was added and heated to reflux for 20 hours. After completion of the reaction, the reaction solution was cooled to around room temperature. The reaction solution was added to 200 ml of methanol for reprecipitation, and the precipitate was collected.
 得られた沈殿物をクロロホルムに溶解し、濾過して不溶物を除去した。得られたクロロホルム溶液をアルミナカラムに通して精製した。得られたクロロホルム溶液を減圧濃縮し、メタノール200mlに加えて再沈殿した。この沈殿を減圧乾燥し、例示化合物902を0.33g得た。 The obtained precipitate was dissolved in chloroform and filtered to remove insoluble matters. The resulting chloroform solution was purified by passing through an alumina column. The obtained chloroform solution was concentrated under reduced pressure, added to 200 ml of methanol, and reprecipitated. This precipitate was dried under reduced pressure to obtain 0.33 g of Exemplified Compound 902.
 例示化合物902の分子量を測定したところ、Mn=32000,PDI=1.9であった。 The molecular weight of Exemplified Compound 902 was measured and found to be Mn = 32000 and PDI = 1.9.
 〔その他のp型半導体材料〕
 本発明では、上述のように、p型有機半導体材料として一般式(1)で表される部分構造を有する化合物を含有し、好ましくは、ドナーユニットと結合させた構造を有する化合物を含有する。
[Other p-type semiconductor materials]
In the present invention, as described above, the p-type organic semiconductor material contains a compound having a partial structure represented by the general formula (1), and preferably contains a compound having a structure combined with a donor unit.
 上記部分構造を有する化合物以外に他のp型半導体材料を添加してもよい。光電変換層層に用いられるその他のp型半導体材料としては、種々の縮合多環芳香族低分子化合物や共役系ポリマーが挙げられる。 Other p-type semiconductor materials may be added in addition to the compound having the partial structure. Examples of other p-type semiconductor materials used for the photoelectric conversion layer include various condensed polycyclic aromatic low molecular compounds and conjugated polymers.
 縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、へプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)-テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、及びこれらの誘導体や前駆体が挙げられる。 Examples of the condensed polycyclic aromatic low molecular weight compound include anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumanthanthene, bisanthene, zeslene. , Heptazethrene, pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, etc., porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenetetrathiafulvalene ( BEDTTTTF) -perchloric acid complexes, and derivatives and precursors thereof.
 また上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004-107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。 Examples of the derivative having the above condensed polycycle include WO 03/16599 pamphlet, WO 03/28125 pamphlet, US Pat. No. 6,690,029, JP 2004-107216 A. A pentacene derivative having a substituent described in JP-A No. 2003-136964, a pentacene precursor described in US Patent Application Publication No. 2003/136964, and the like; Amer. Chem. Soc. , Vol127. No. 14.4986, J. MoI. Amer. Chem. Soc. , Vol. 123, p9482; Amer. Chem. Soc. , Vol. 130 (2008), no. 9, acene-based compounds substituted with a trialkylsilylethynyl group described in 2706 and the like.
 共役系ポリマーとしては、例えば、ポリ3-ヘキシルチオフェン(P3HT)等のポリチオフェン及びそのオリゴマー、またはTechnical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン-チエノチオフェン共重合体、WO2008000664に記載のポリチオフェン-ジケトピロロピロール共重合体、Adv Mater,2007p4160に記載のポリチオフェン-チアゾロチアゾール共重合体,Nature Mat.vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、ポリシラン、ポリゲルマン等のσ共役系ポリマー、等のポリマー材料が挙げられる。 As the conjugated polymer, for example, a polythiophene such as poly-3-hexylthiophene (P3HT) and its oligomer, or a technical group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Polythiophene, Nature Material, (2006) vol. 5, p328, a polythiophene-thienothiophene copolymer described in WO2008000664, a polythiophene-diketopyrrolopyrrole copolymer described in WO2008000664, a polythiophene-thiazolothiazole copolymer described in Adv Mater, 2007p4160, Nature Mat. vol. 6 (2007), p497 described in PCPDTBT, etc., polypyrrole and its oligomer, polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, Examples thereof include polymer materials such as σ-conjugated polymers such as polysilane and polygermane.
 また、ポリマー材料ではなくオリゴマー材料としては、チオフェン6量体であるα-セクシチオフェンα,ω-ジヘキシル-α-セクシチオフェン、α,ω-ジヘキシル-α-キンケチオフェン、α,ω-ビス(3-ブトキシプロピル)-α-セクシチオフェン、等のオリゴマーが好適に用いることができる。 In addition, oligomeric materials, not polymer materials, include thiophene hexamer α-seccithiophene α, ω-dihexyl-α-sexualthiophene, α, ω-dihexyl-α-kinkethiophene, α, ω-bis (3 Oligomers such as -butoxypropyl) -α-sexithiophene can be preferably used.
 また光電変換層(バルクへテロジャンクション層)上にさらに溶液プロセスで電子輸送層や正孔ブロック層を形成する際には、一度塗布した層の上にさらに塗布することができれば、容易に積層することができるが、通常溶解性の良い材料からなる層の上にさらに層を溶液プロセスによって積層使用とすると、下地の層を溶かしてしまうために積層することができないという課題を有していた。したがって、溶液プロセスで塗布した後に不溶化できるような材料を含んでいてもよい。 In addition, when an electron transport layer or a hole blocking layer is further formed on a photoelectric conversion layer (bulk hetero junction layer) by a solution process, it can be easily laminated if it can be further applied on the layer once applied. However, if a layer is further laminated by a solution process on a layer made of a material having a good solubility, there is a problem that it cannot be laminated because the underlying layer is dissolved. Therefore, the material which can be insolubilized after apply | coating with a solution process may be included.
 このような材料としては、Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225に記載の重合性基を有するようなポリチオフェンのような、塗布後に塗布膜を重合架橋して不溶化できる材料、または米国特許出願公開第2003/136964号、および特開2008-16834等に記載されているような、熱等のエネルギーを加えることによって可溶性置換基が反応して不溶化する(顔料化する)材料などを挙げることができる。 Examples of such materials include materials that can be insolubilized by polymerizing and crosslinking the coating film after coating, such as polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Or a material in which soluble substituents react and become insoluble (pigmented) by applying energy such as heat, as described in US Patent Application Publication No. 2003/136964, and Japanese Patent Application Laid-Open No. 2008-16834 And so on.
 〔n型半導体材料〕
 本発明に係る光電変換層に用いられるn型有機半導体材料としては、特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型有機半導体の水素原子をフッ素原子に置換したパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
[N-type semiconductor materials]
The n-type organic semiconductor material used for the photoelectric conversion layer according to the present invention is not particularly limited. Fluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide and other aromatic carboxylic acid anhydrides and imidized compounds thereof Examples thereof include polymer compounds.
 この中でもn型有機半導体材料としては、各種のp型半導体材料と高速(~50フェムト秒)且つ効率的に電荷分離を行うことができる、フラーレン誘導体が好ましい。 Among these, as the n-type organic semiconductor material, fullerene derivatives that can efficiently perform charge separation with various p-type semiconductor materials at high speed (up to 50 femtoseconds) are preferable.
 フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、及びこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。 Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc. Partially by hydrogen atom, halogen atom, substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, ether group, thioether group, amino group, silyl group, etc. Examples thereof include substituted fullerene derivatives.
 中でもN-Methylfulleropyrrolidine、[6,6]-フェニルC61-ブチリックアシッドメチルエステル(略称PC61BM)、[6,6]-フェニルC61-ブチリックアシッド-nブチルエステル(PC61BnB)、[6,6]-フェニルC61-ブチリックアシッド-イソブチルエステル(PC61BiB)、[6,6]-フェニルC61-ブチリックアシッド-n-ヘキシルエステル(PC61BH)、[6,6]-フェニルC71-ブチリックアシッドメチルエステル(略称PC71BM)、Adv.Mater.,vol.20(2008),p2116等に記載のbis-PCBM、特開2006-199674号公報等のアミノ化フラーレン、特開2008-130889号公報等のメタロセン化フラーレン、米国特許第7,329,709号明細書等の環状エーテル基を有するフラーレン、J.Amer.Chem.Soc.,(2009)vol.130,p15429に記載のSIMEF、Appl.Phys.Lett.,Vol.87(2005)、p203504に記載のC60MC12等のような、置換基を有してより溶解性が向上した下記の如きフラーレン誘導体を用いることが好ましい。 Among them, N-methylfullropyrrolidine, [6,6] -phenyl C61-butyric acid methyl ester (abbreviation PC61BM), [6,6] -phenyl C61-butyric acid-n-butyl ester (PC61BnB), [6,6]- Phenyl C61-butyric acid-isobutyl ester (PC61BiB), [6,6] -phenyl C61-butyric acid-n-hexyl ester (PC61BH), [6,6] -phenyl C71-butyric acid methyl ester (abbreviation) PC71BM), Adv. Mater. , Vol. 20 (2008), p2116, etc., aminated fullerenes such as JP-A 2006-199674, metallocene fullerenes such as JP-A 2008-130889, US Pat. No. 7,329,709, etc. Fullerene having a cyclic ether group such as Amer. Chem. Soc. , (2009) vol. 130, p15429, SIMEF, Appl. Phys. Lett. , Vol. 87 (2005), C60MC12 described in p203504, etc. It is preferable to use a fullerene derivative having a substituent and having improved solubility as described below.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 光電変換層における、p型有機半導体およびn型有機半導体の接合形態は、特に制限はなく、平面へテロ接合であってもよいし、バルクへテロ接合(バルクヘテロジャンクション)であってもよい。平面ヘテロ接合とは、p型有機半導体を含むp型有機半導体層と、n型有機半導体を含むn型有機半導体層とが積層され、これら2つの層が接触する面がpn接合界面となる接合形態である。一方、バルクヘテロジャンクションとは、p型有機半導体とn型有機半導体との混合物を塗布することにより形成され、この単一の層中において、p型有機半導体のドメインとn型有機半導体のドメインとがミクロ相分離構造をとっている。したがって、バルクヘテロジャンクションでは、平面へテロ接合と比較して、pn接合界面が層全体にわたって数多く存在することになる。よって、光吸収により生成した励起子の多くがpn接合界面に到達できることになり、電荷分離に至る効率を高めることができる。このような理由から、光電変換層における、p型有機半導体とn型有機半導体との接合は、バルクヘテロジャンクションであることが好ましい。 The junction form of the p-type organic semiconductor and the n-type organic semiconductor in the photoelectric conversion layer is not particularly limited, and may be a planar heterojunction or a bulk heterojunction. A planar heterojunction is a junction in which a p-type organic semiconductor layer containing a p-type organic semiconductor and an n-type organic semiconductor layer containing an n-type organic semiconductor are stacked, and the surface where these two layers contact is the pn junction interface. It is a form. On the other hand, a bulk heterojunction is formed by applying a mixture of a p-type organic semiconductor and an n-type organic semiconductor. In this single layer, a domain of the p-type organic semiconductor and a domain of the n-type organic semiconductor are formed. It has a microphase separation structure. Therefore, in a bulk heterojunction, many pn junction interfaces exist throughout the layer as compared to a planar heterojunction. Therefore, most of the excitons generated by light absorption can reach the pn junction interface, and the efficiency leading to charge separation can be increased. For these reasons, the junction between the p-type organic semiconductor and the n-type organic semiconductor in the photoelectric conversion layer is preferably a bulk heterojunction.
 また、光電変換層(バルクヘテロジャンクション層)は、通常の、p型有機半導体材料とn型有機半導体層が混合されてなる単一の層(i層)からなる場合の他に、当該i層がp型有機半導体からなるp層およびn型有機半導体からなるn層により挟持されてなる3層構造(p-i-n構造)を有する場合がある。このようなp-i-n構造は、正孔および電子の整流性がより高くなり、電荷分離した正孔・電子の再結合等によるロスが低減され、一層高い光電変換効率を得ることができる。 In addition, the photoelectric conversion layer (bulk heterojunction layer) is composed of a single layer (i layer) obtained by mixing a normal p-type organic semiconductor material and an n-type organic semiconductor layer. In some cases, it has a three-layer structure (pin structure) sandwiched between a p-layer made of a p-type organic semiconductor and an n-layer made of an n-type organic semiconductor. Such a pin structure has higher rectification of holes and electrons, reduces loss due to charge-separated hole-electron recombination, and can achieve higher photoelectric conversion efficiency. .
 本発明において、光電変換層に含まれるp型有機半導体とn型有機半導体との混合比は、質量比で2:8~8:2の範囲が好ましく、より好ましくは4:6~6:4の範囲である。また、光電変換層1層の膜厚は、好ましくは50~400nmであり、より好ましくは80~300nmであり、特に好ましくは100~200nmである。一般に、より多くの光を吸収させる観点から、光電変換層の膜厚は大きい方が好ましいが、膜厚が大きくなるとキャリア(正孔・電子)の取り出し効率が低下するために光電変換効率が低下する傾向がある。しかしながら、本発明の式(1)の部分構造を有する化合物をp型有機半導体材料として用いて光電変換層を形成すると、従来のp型有機半導体材料を用いた光電変換層と比較して、100nm以上の膜厚とした場合であってもキャリア(正孔・電子)の取り出し効率が低下しにくいため、高い光電変換効率を維持することができる。 In the present invention, the mixing ratio of the p-type organic semiconductor and the n-type organic semiconductor contained in the photoelectric conversion layer is preferably in the range of 2: 8 to 8: 2, more preferably 4: 6 to 6: 4. Range. The film thickness of one photoelectric conversion layer is preferably 50 to 400 nm, more preferably 80 to 300 nm, and particularly preferably 100 to 200 nm. In general, from the viewpoint of absorbing more light, it is preferable that the thickness of the photoelectric conversion layer is larger. However, as the film thickness increases, the extraction efficiency of carriers (holes / electrons) decreases, so the photoelectric conversion efficiency decreases. Tend to. However, when a compound having the partial structure of the formula (1) of the present invention is used as a p-type organic semiconductor material to form a photoelectric conversion layer, it is 100 nm as compared with a photoelectric conversion layer using a conventional p-type organic semiconductor material. Even in the case of the above film thickness, since the extraction efficiency of carriers (holes / electrons) is difficult to decrease, high photoelectric conversion efficiency can be maintained.
 〔光電変換層の形成方法〕
 p型有機半導体材料とn型有機半導体材料とを含有する光電変換層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。
[Method for forming photoelectric conversion layer]
Examples of a method for forming a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material include a vapor deposition method and a coating method (including a casting method and a spin coating method).
 このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また、塗布法は製造速度にも優れている。すなわち、本発明の光電変換層は、溶液塗布法によって作製されるのが好ましい。 Among these, the coating method is preferable in order to increase the area of the interface where charge and electron separation of the above-described holes is performed and to produce a device having high photoelectric conversion efficiency. Also, the coating method is excellent in production speed. That is, the photoelectric conversion layer of the present invention is preferably produced by a solution coating method.
 この際に使用する塗布方法に制限はないが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ワイヤーバーコート法、グラビアコート法、スプレーコート法等が挙げられる。さらには、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングすることもできる。 The application method used in this case is not limited, and examples thereof include spin coating, casting from a solution, dip coating, wire bar coating, gravure coating, and spray coating. Furthermore, patterning can also be performed by a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
 塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。 After application, it is preferable to perform heating in order to cause removal of residual solvent, moisture, and gas, and improvement of mobility and absorption of long wave by crystallization of the semiconductor material.
 製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集または結晶化が促進され、光電変換層を適切な相分離構造とすることができる。 When annealing is performed at a predetermined temperature during the production process, a part of the particles is microscopically aggregated or crystallized, and the photoelectric conversion layer can have an appropriate phase separation structure.
 その結果、光電変換層の正孔と電子(キャリア)の移動度が向上し、高い効率を得ることができるようになる。 As a result, the mobility of holes and electrons (carriers) in the photoelectric conversion layer is improved, and high efficiency can be obtained.
 光電変換層は、p型有機半導体材料とn型有機半導体材料とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。この場合、塗布後に不溶化できるような材料を用いることで形成することが可能となる。 The photoelectric conversion layer may be composed of a single layer in which a p-type organic semiconductor material and an n-type organic semiconductor material are uniformly mixed. However, the photoelectric conversion layer may be a plurality of layers in which the mixing ratio of the electron acceptor and the electron donor is changed. It may be configured. In this case, it can be formed by using a material that can be insolubilized after application.
 〔電子輸送層〕
 本発明の有機光電変換素子は、光電変換層とカソードとの中間に電子輸送層を形成することで、光電変換層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
(Electron transport layer)
In the organic photoelectric conversion element of the present invention, by forming an electron transport layer in the middle of the photoelectric conversion layer and the cathode, it becomes possible to more efficiently extract charges generated in the photoelectric conversion layer. It is preferable to have.
 本発明においては、第一の電極がカソードである場合に特に好ましく適当できる。 In the present invention, it is particularly preferable and suitable when the first electrode is a cathode.
 電子輸送層とは、このようにカソードとバルクヘテロジャンクション層の中間に位置して、バルクヘテロジャンクション層と電極との間で電子の授受をより効率的にすることのできる層のことである。 The electron transport layer is a layer that is located between the cathode and the bulk heterojunction layer and can more efficiently transfer electrons between the bulk heterojunction layer and the electrode.
 より具体的には、バルクヘテロジャンクション型の光電変換層のn型半導体材料のLUMO準位とカソードの仕事関数との中間のLUMO準位を有する化合物が電子輸送層として適切である。 More specifically, a compound having an LUMO level intermediate between the LUMO level of the n-type semiconductor material of the bulk heterojunction photoelectric conversion layer and the work function of the cathode is suitable as the electron transporting layer.
 より好ましくは、電子移動度が10-4以上の化合物である。 More preferably, it is a compound having an electron mobility of 10 −4 or more.
 電子輸送層の中には、バルクヘテロジャンクション型の光電変換層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、バルクヘテロジャンクション層で生成した正孔をカソード側には流さないような整流効果を有する、正孔ブロック機能が付与される。 In the electron transport layer, the electron transport layer having a HOMO level deeper than the HOMO level of the p-type semiconductor material used in the bulk heterojunction type photoelectric conversion layer includes a hole generated in the bulk heterojunction layer as a cathode. A hole blocking function having a rectifying effect that does not flow to the side is provided.
 このような電子輸送層は、正孔ブロック層とも呼ばれる。より好ましくは、n型半導体のHOMO準位よりも深いHOMO準位を有する材料を電子輸送層として用いることである。また、正孔を阻止する特性から、正孔移動度が10-6よりも低い化合物を用いることが好ましい。 Such an electron transport layer is also referred to as a hole blocking layer. More preferably, a material having a HOMO level deeper than the HOMO level of the n-type semiconductor is used for the electron transport layer. In addition, in view of the property of blocking holes, it is preferable to use a compound having a hole mobility lower than 10 −6 .
 電子輸送層としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、国際公開第04/095889号に記載のカルボリン化合物等を用いることができるが、同様に、光電変換層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、光電変換層で生成した正孔をカソード側には流さないような整流効果を有する、正孔ブロック機能が付与される。より好ましくは、n型半導体のHOMO準位よりも深い材料を電子輸送層として用いることである。また、電子を輸送する特性から、電子移動度の高い化合物を用いることが好ましい。 As the electron transport layer, octaazaporphyrin, p-type semiconductor perfluoro compounds (perfluoropentacene, perfluorophthalocyanine, etc.), carboline compounds described in International Publication No. 04/095889, and the like can be used. The electron transport layer having a HOMO level deeper than the HOMO level of the p-type semiconductor material used for the photoelectric conversion layer has a rectifying effect so that holes generated in the photoelectric conversion layer do not flow to the cathode side. The hole blocking function is imparted. More preferably, a material deeper than the HOMO level of the n-type semiconductor is used as the electron transport layer. Moreover, it is preferable to use a compound with high electron mobility from the characteristic of transporting electrons.
 このような電子輸送層は、正孔ブロック層とも呼ばれ、このような機能を有する電子輸送層を使用するほうが好ましい。このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、光電変換層に用いたn型半導体材料単体からなる層を用いることもできる。 Such an electron transport layer is also called a hole blocking layer, and it is preferable to use an electron transport layer having such a function. Examples of such materials include phenanthrene compounds such as bathocuproine, n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide. N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used. Moreover, the layer which consists of a n-type semiconductor material single-piece | unit used for the photoelectric converting layer can also be used.
 これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。 The means for forming these layers may be either a vacuum vapor deposition method or a solution coating method, but is preferably a solution coating method.
 〔正孔輸送層(電子ブロック層)〕
 本発明の有機光電変換素子は、光電変換層とアノードとの中間には正孔輸送層を、光電変換層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
[Hole transport layer (electron blocking layer)]
The organic photoelectric conversion element of the present invention has a hole transport layer between the photoelectric conversion layer and the anode, and it is possible to extract charges generated in the photoelectric conversion layer more efficiently. It is preferable.
 本発明においては、第二の電極が正孔輸送層である場合に好ましく適用できる。 The present invention can be preferably applied when the second electrode is a hole transport layer.
 これらの層を構成する材料としては、例えば、正孔輸送層としては、スタルクヴイテック製、商品名BaytronP等のPEDOT(ポリ-3,4-エチレンジオキシチオフェン)-PSS(ポリスチレンスルホン酸)、ポリアニリン及びそのドープ材料、国際公開第06/019270号等に記載のシアン化合物、などを用いることができる。なお、光電変換層に用いられるn型半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、光電変換層で生成した電子をアノード側には流さないような整流効果を有する、電子ブロック機能が付与される。このような正孔輸送層は電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用する方が好ましい。 As a material constituting these layers, for example, as a hole transport layer, PEDOT (poly-3,4-ethylenedioxythiophene) -PSS (polystyrene sulfonic acid) manufactured by Starck Vitec, trade name BaytronP, etc., Polyaniline and its doping material, cyan compounds described in International Publication No. 06/019270, and the like can be used. Note that the hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the photoelectric conversion layer has a rectifying effect that prevents electrons generated in the photoelectric conversion layer from flowing to the anode side. It has an electronic block function. Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function.
 このような材料としては、特開平5-271166号公報等に記載のトリアリールアミン系化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。また、光電変換層に用いたp型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。光電変換層を形成する前に、下層に塗布膜を形成すると塗布面をレベリングする効果があり、リーク等の影響が低減するため好ましい。 As such materials, triarylamine compounds described in JP-A-5-271166, metal oxides such as molybdenum oxide, nickel oxide, and tungsten oxide can be used. Moreover, the layer which consists of a p-type semiconductor material single-piece | unit used for the photoelectric converting layer can also be used. The means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method. Forming a coating film in the lower layer before forming the photoelectric conversion layer is preferable because it has the effect of leveling the coating surface and reduces the influence of leakage and the like.
 また、同様に正孔を輸送する特性から10-4よりも高い正孔移動度を有していることが好ましく、また電子を阻止する特性から、電子移動度が10-6よりも低い化合物を用いることが好ましい。 Similarly, it preferably has a hole mobility higher than 10 −4 due to the property of transporting holes, and a compound with electron mobility lower than 10 −6 due to the property of blocking electrons. It is preferable to use it.
 〔その他の層〕
 本発明の有機光電変換素子の構成としては、エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。
[Other layers]
As a structure of the organic photoelectric conversion element of this invention, it is good also as a structure which has various intermediate | middle layers in an element for the purpose of the improvement of energy conversion efficiency and the improvement of element lifetime.
 中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層などを挙げることができる。 Examples of the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.
 〔電極〕
 本発明の有機光電変換素子においては、第一の電極と第二の電極を有するが、タンデム構成をとる場合には、中間電極を用いることでタンデム構成を達成することができる。
〔electrode〕
The organic photoelectric conversion element of the present invention has the first electrode and the second electrode. When the tandem configuration is adopted, the tandem configuration can be achieved by using the intermediate electrode.
 本発明において、第一の電極は、透明な電極である。 In the present invention, the first electrode is a transparent electrode.
 透明な、とは、光透過率が50%以上であるものをいう。 “Transparent” means that the light transmittance is 50% or more.
 光透過率とは、JIS K 7361-1(ISO 13468-1に対応)の「プラスチック-透明材料の全光線透過率の試験方法」に準拠した方法で測定した可視光波長領域における全光線透過率をいう。 The light transmittance is the total light transmittance in the visible light wavelength region measured by a method in accordance with “Testing method of total light transmittance of plastic-transparent material” of JIS K 7361-1 (corresponding to ISO 13468-1). Say.
 本発明の第一の電極は、前述のように透明なカソード(陰極)であり、第二の電極はアノード(陽極)であることが好ましい。 As described above, the first electrode of the present invention is preferably a transparent cathode (cathode), and the second electrode is preferably an anode (anode).
 〔第一の電極(透明なカソード)〕
 本発明の第一の電極に用いられる、材料としては、例えば、インジウムチンオキシド(ITO)、AZO、FTO、SnO、ZnO、酸化チタン等の透明金属酸化物、Ag、Al、Au、Pt等の非常に薄い金属層または金属ナノワイヤ、カーボンナノチューブ等のナノワイヤやナノ粒子を含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等を用いることができる。
[First electrode (transparent cathode)]
Examples of the material used for the first electrode of the present invention include transparent metal oxides such as indium tin oxide (ITO), AZO, FTO, SnO 2 , ZnO, and titanium oxide, Ag, Al, Au, and Pt. A very thin metal layer, a metal nanowire, a layer containing nanowires such as carbon nanotubes or a nanoparticle, a conductive polymer material such as PEDOT: PSS, polyaniline, or the like can be used.
 また、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性高分子等も用いることができる。また、これらの導電性化合物を複数組み合わせてカソードとすることもできる。 Also selected from the group consisting of derivatives of polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, polyisothianaphthene, polycarbazole, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polyphenylacetylene, polydiacetylene and polynaphthalene. Conductive polymers can also be used. Further, a plurality of these conductive compounds can be combined to form a cathode.
 〔第二の電極(アノード)〕
 第二の電極は導電材単独層であってもよいが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。
[Second electrode (anode)]
The second electrode may be a single conductive material layer, but in addition to a conductive material, a resin that holds these may be used in combination.
 カソードである透明電極の仕事関数がおよそ-5.0~-4.0eVであるため、バルクヘテロジャンクション型の光電変換層で生成したキャリアが拡散してそれぞれの電極に到達するためには、ビルトインポテンシャル、すなわちアノードとカソード間の仕事関数の差がなるべく大きいことが好ましい。 Since the work function of the transparent electrode, which is the cathode, is about −5.0 to −4.0 eV, the built-in potential is necessary for carriers generated in the bulk heterojunction type photoelectric conversion layer to diffuse and reach each electrode. That is, it is preferable that the work function difference between the anode and the cathode is as large as possible.
 したがって、アノードの導電材としては、仕事関数の大きい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、金、銀、銅、白金、ロジウム、インジウム、ニッケル、パラジウム等が挙げられる。 Therefore, as the conductive material of the anode, a material having a work function (4 eV or less) metal, alloy, electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such an electrode material include gold, silver, copper, platinum, rhodium, indium, nickel, palladium, and the like.
 これらの中で、正孔の取り出し性能、光の反射率、及び酸化等に対する耐久性の点から、銀が最も好ましい。 Of these, silver is most preferable from the viewpoint of hole extraction performance, light reflectance, and durability against oxidation.
 アノードはこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。 The anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.
 また、アノード側を光透過性とする場合は、例えば、アルミニウム及びアルミニウム合金、銀及び銀化合物等のアノードに適した導電性材料を薄く1~20nm程度の膜厚で作製した後、上記透明電極の説明で挙げた導電性光透過性材料の膜を設けることで、光透過性アノードとすることができる。 In the case where the anode side is made light transmissive, for example, a conductive material suitable for the anode such as aluminum and aluminum alloy, silver and silver compound is made thin with a film thickness of about 1 to 20 nm, and then the transparent electrode A light-transmitting anode can be obtained by providing the conductive light-transmitting material film mentioned in the description.
 なお上記は耐久性向上に有利な、いわゆる逆層型素子とするための第2の電極材料に好ましい材料を記載したが、いわゆる順層型(第1の電極がアノードで第2の電極がカソード)とするためには、前述のように第1電極と第2の電極の仕事関数の関係を逆転させればよいが、実質的に透明な電極は種類が限られておりその仕事関数は比較的深いものが多いため、実際には第2の電極側に仕事関数の浅い(-4.0eV未満)金属を使用することで順層型の有機薄膜太陽電池とすることができる。そのような金属としては、例えば、アルミニウム、カルシウム、マグネシウム、リチウム、ナトリウム、カリウムなどである。一般的には反射率が高く導電性の高いアルミニウムが使用される。 In the above description, preferred materials for the second electrode material for making a so-called reverse layer type element, which is advantageous for improving the durability, have been described. However, the so-called normal layer type (the first electrode is an anode and the second electrode is a cathode) ), The relationship between the work functions of the first electrode and the second electrode may be reversed as described above, but the types of substantially transparent electrodes are limited, and the work functions are compared. In many cases, a normal layer type organic thin film solar cell can be obtained by using a metal having a shallow work function (less than −4.0 eV) on the second electrode side. Examples of such a metal include aluminum, calcium, magnesium, lithium, sodium, potassium, and the like. In general, aluminum having high reflectivity and high conductivity is used.
 〔中間電極〕
 また、前記図3のようなタンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記アノードで用いたような材料(ITO、AZO、FTO、SnO、ZnO、酸化チタン等の透明金属酸化物、Ag、Al、Au、Pt等の非常に薄い金属層または金属ナノワイヤ、カーボンナノチューブ等のナノワイヤやナノ粒子を含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
[Intermediate electrode]
Further, the material of the intermediate electrode required in the case of the tandem configuration as shown in FIG. 3 is preferably a layer using a compound having both transparency and conductivity. Transparent metal oxides such as ITO, AZO, FTO, SnO 2 , ZnO and titanium oxide, very thin metal layers such as Ag, Al, Au and Pt, or layers containing nanowires and nanoparticles such as metal nanowires and carbon nanotubes PEDOT: PSS, conductive polymer materials such as polyaniline, etc.) can be used.
 なお、前述した正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極(電荷再結合層)として働く組み合わせもあり、このような構成とすると1層形成する工程を省くことができ好ましい。 In addition, in the hole transport layer and the electron transport layer described above, there is also a combination that works as an intermediate electrode (charge recombination layer) by appropriately combining and laminating. Is preferable.
 〔基板〕
 本発明において、基板は透明な基板であるが、透明な、とは前述の電極の記載と同様の意味を有する。
〔substrate〕
In the present invention, the substrate is a transparent substrate, and the term “transparent” has the same meaning as described above for the electrodes.
 基板としては、例えばガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。 As the substrate, for example, a glass substrate, a resin substrate, and the like are preferably used, but it is desirable to use a transparent resin film from the viewpoint of light weight and flexibility. There is no restriction | limiting in particular in the transparent resin film which can be preferably used as a transparent substrate by this invention, The material, a shape, a structure, thickness, etc. can be suitably selected from well-known things.
 例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380~800nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。 For example, polyolefins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin film such as modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, cyclic olefin resin, etc. Resin films, vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin films, polysulfone (PSF) resin films, polyether sulfone (PES) resin films, polycarbonate (PC) resin films , Polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, and the like. If the resin film transmittance of 80% or more at 80 ~ 800 nm), can be preferably applied to a transparent resin film according to the present invention.
 中でも、透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。 Among them, from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film. More preferred are a stretched polyethylene terephthalate film and a biaxially stretched polyethylene naphthalate film.
 本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。 The transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution. A conventionally well-known technique can be used about a surface treatment or an easily bonding layer. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment. Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
 また、酸素及び水蒸気の透過を抑制する目的で、透明基板にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。 Further, for the purpose of suppressing the permeation of oxygen and water vapor, a barrier coat layer may be formed in advance on the transparent substrate, or a hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred. Good.
 〔光学機能層〕
 本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてよい。光学機能層としては、例えば、反射防止膜、マイクロレンズアレイ等の集光層、カソードで反射した光を散乱させて再度発電層に入射させることができるような光拡散層などを設けてもよい。
(Optical function layer)
The organic photoelectric conversion element of the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight. As the optical functional layer, for example, a light condensing layer such as an antireflection film or a microlens array, or a light diffusion layer that can scatter light reflected by the cathode and enter the power generation layer again may be provided. .
 反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57~1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。 Various known antireflection layers can be provided as the antireflection layer. For example, when the transparent resin film is a biaxially stretched polyethylene terephthalate film, the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ˜1.63 because the transmittance can be improved by reducing the interface reflection between the film substrate and the easy adhesion layer. The method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
 集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。 As the condensing layer, for example, it is processed to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。 As an example of a microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
 また、光散乱層としては、各種のアンチグレア層、金属または各種無機酸化物などのナノ粒子・ナノワイヤー等を無色透明なポリマーに分散した層などを挙げることができる。 Examples of the light scattering layer include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
 〔パターニング〕
 本発明に係る各々の電極、光電変換層や、正孔輸送層、電子輸送層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
[Patterning]
The method and process for patterning each electrode, photoelectric conversion layer, hole transport layer, electron transport layer and the like according to the present invention are not particularly limited, and known methods can be appropriately applied.
 光電変換層、輸送層等の可溶性の材料であれば、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取ってもよいし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしてもよい。 If it is a soluble material such as a photoelectric conversion layer and a transport layer, only unnecessary portions may be wiped after the entire surface of die coating, dip coating, etc., or patterning is directly performed at the time of coating using a method such as an ink jet method or screen printing. May be.
 電極材料などの不溶性の材料の場合は、電極を真空堆積時にマスク蒸着を行ったり、エッチングまたはリフトオフ等の公知の方法によってパターニングすることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成してもよい。 In the case of an insoluble material such as an electrode material, the electrode can be patterned by a known method such as mask vapor deposition during vacuum deposition or etching or lift-off. Alternatively, the pattern may be formed by transferring a pattern formed on another substrate.
 (太陽電池)
 本発明の太陽電池は、上記の有機光電変換素子を有する。すなわち、本発明は、上記有機光電変換素子を具備する太陽電池を提供する。
(Solar cell)
The solar cell of this invention has said organic photoelectric conversion element. That is, this invention provides the solar cell which comprises the said organic photoelectric conversion element.
 本発明の太陽電池は、上記有機光電変換素子を具備し、太陽光に最適の設計並びに回路設計が行われ、太陽光を光源として用いたときに最適な光電変換が行われるような構造を有する。 The solar cell of the present invention comprises the above-described organic photoelectric conversion element, has a structure in which optimum design and circuit design are performed for sunlight, and optimum photoelectric conversion is performed when sunlight is used as a light source. .
 即ち、光電変換層に太陽光が照射されうる構造となっており、本発明の太陽電池を構成する際には、前記光電変換層および各々の電極をケース内に収納して封止するか、あるいはそれら全体を樹脂封止することが好ましい。 That is, the photoelectric conversion layer has a structure that can be irradiated with sunlight, and when the solar cell of the present invention is configured, the photoelectric conversion layer and each electrode are housed in a case and sealed, Alternatively, it is preferable to seal them entirely with resin.
 封止の方法としては、作製した有機光電変換素子が環境中の酸素、水分等で劣化しないために、有機光電変換素子だけでなく有機エレクトロルミネッセンス素子などで公知の手法によって封止することが好ましい。 As a sealing method, it is preferable to seal not only the organic photoelectric conversion element but also an organic electroluminescence element by a known method so that the produced organic photoelectric conversion element does not deteriorate due to oxygen, moisture, etc. in the environment. .
 例えば、アルミまたはガラスで、できたキャップを接着剤によって接着することによって封止する手法、アルミニウム、酸化珪素、酸化アルミニウム等のガスバリア層が形成されたプラスチックフィルムと有機光電変換素子上を接着剤で貼合する手法、ガスバリア性の高い有機高分子材料(ポリビニルアルコール等)をスピンコートする方法、ガスバリア性の高い無機薄膜(酸化珪素、酸化アルミニウム等)または有機膜(パリレン等)を真空下で堆積する方法、及びこれらを複合的に積層する方法等を挙げることができる。 For example, a method of sealing a cap made of aluminum or glass with an adhesive, a plastic film on which a gas barrier layer such as aluminum, silicon oxide, or aluminum oxide is formed and an organic photoelectric conversion element with an adhesive. Method of bonding, spin coating of organic polymer materials with high gas barrier properties (polyvinyl alcohol, etc.), inorganic thin films with high gas barrier properties (silicon oxide, aluminum oxide, etc.) or organic films (parylene, etc.) deposited under vacuum And a method of laminating these in a composite manner.
 なお、本出願は、2011年1月18日に出願された日本国特許出願第2011-007584号に基づいており、その開示内容は、参照により全体として引用されている。 Note that this application is based on Japanese Patent Application No. 2011-007584 filed on January 18, 2011, the disclosure of which is incorporated by reference in its entirety.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 実施例1
 《有機光電変換素子1の作製》
 特開2009-146981号公報の記載を参考として、以下のようにして有機光電変換素子(所謂逆層型の)を作製した。
Example 1
<< Production of Organic Photoelectric Conversion Element 1 >>
With reference to the description in JP-A-2009-146981, an organic photoelectric conversion element (so-called reverse layer type) was produced as follows.
 また、比較例として使用したAFPO-Green5は非特許文献3を参考し合成した。 In addition, AFPO-Green 5 used as a comparative example was synthesized with reference to Non-Patent Document 3.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 (TiOx層の作製):電子輸送層として作製
 ガラス基板上に、インジウム・スズ酸化物(ITO)透明導電膜を110nm堆積したもの(表面抵抗率13Ω/□)を、通常のフォトリソグラフィ技術と塩酸エッチングとを用いて2mm幅にパターニングして、透明電極を形成した。
(Preparation of TiOx layer): Preparation as an electron transport layer Indium tin oxide (ITO) transparent conductive film deposited on a glass substrate with a thickness of 110 nm (surface resistivity 13 Ω / □), ordinary photolithography technology and hydrochloric acid A transparent electrode was formed by patterning to a width of 2 mm using etching.
 パターン形成した透明電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。 The patterned transparent electrode was cleaned in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried by nitrogen blowing, and finally subjected to ultraviolet ozone cleaning.
 次いで、基板をグローブボックス(酸素濃度10ppm、露点温度-80℃)中に持ち込み、窒素雰囲気下でこの透明基板上に、以下の手順で作製した150mMのTiOx前駆体溶液をスピンコート(回転速度2000rpm、回転時間60s)し、所定のパターンに拭き取りを行った。 Next, the substrate was brought into a glove box (oxygen concentration 10 ppm, dew point temperature −80 ° C.), and a 150 mM TiOx precursor solution prepared by the following procedure was spin coated (rotation speed 2000 rpm) on the transparent substrate under a nitrogen atmosphere. , Rotation time 60 s), and wiped off in a predetermined pattern.
 次に、空気中で放置してTiOx前駆体を加水分解させ、続いて、TiOx前駆体を150℃で1時間加熱処理して30nmのTiOx層を電子輸送層として得た。 Next, the TiOx precursor was hydrolyzed by being left in the air, and then the TiOx precursor was heat-treated at 150 ° C. for 1 hour to obtain a 30 nm TiOx layer as an electron transport layer.
 (TiOx前駆体の調製:ゾルゲル法)
 先ず、100ml三口フラスコに2-メトキシエタノール12.5mlと、6.25mmolのチタニウムテトライソプロポキシドとを入れ、氷浴中で10分間冷却した。次に、12.5mmolのアセチルアセトンをゆっくり加えて、氷浴中で10分間撹拌した。
(Preparation of TiOx precursor: sol-gel method)
First, 12.5 ml of 2-methoxyethanol and 6.25 mmol of titanium tetraisopropoxide were placed in a 100 ml three-necked flask and cooled in an ice bath for 10 minutes. Next, 12.5 mmol of acetylacetone was slowly added and stirred in an ice bath for 10 minutes.
 次に、混合溶液を80℃で2時間加熱後、1時間還流した。最後に、室温まで冷却し、メトキシエタノールを用いて所定の濃度(150ml)に調整し、TiOx前駆体を得た。なお、上記工程は全て窒素雰囲気で行った。 Next, the mixed solution was heated at 80 ° C. for 2 hours and then refluxed for 1 hour. Finally, it was cooled to room temperature and adjusted to a predetermined concentration (150 ml) using methoxyethanol to obtain a TiOx precursor. The above steps were all performed in a nitrogen atmosphere.
 (光電変換層の作製)
 次いで、p型半導体材料として、AFPO-Green5を1.0質量%、n型半導体材料としてPC71BM(フロンティアカーボン製、Nanon Spectra E110H)を0.8質量%になるようにジクロロベンゼンに溶解した光電変換層用の液を作製した。当該光電変換層用の液を、0.45μmのフィルタでろ過をかけながら乾燥後膜厚150nmとなるようにスピンコートを行い、室温で30分乾燥し、TiOx層の上に光電変換層を得た。
(Preparation of photoelectric conversion layer)
Next, photoelectric conversion by dissolving AFPO-Green5 as a p-type semiconductor material in 1.0% by mass and PC71BM (manufactured by Frontier Carbon, Nano Spectra E110H) as an n-type semiconductor material in 0.8% by mass in dichlorobenzene. A layer solution was prepared. The photoelectric conversion layer solution is spin-coated so as to have a film thickness of 150 nm after drying while being filtered with a 0.45 μm filter, and dried at room temperature for 30 minutes to obtain a photoelectric conversion layer on the TiOx layer. It was.
 (正孔輸送層の作製)
 得られた光電変換層(有機半導体層ともいう)の上に有機溶剤系PEDOT:PSSの分散液(化研産業製、エノコートHC200)をスピンコート(2000rpm、60s)して導電性ポリマー層を成膜し、風乾して正孔輸送層を作製した。
(Preparation of hole transport layer)
An organic solvent-based PEDOT: PSS dispersion (Enocoat HC200, manufactured by Kaken Sangyo Co., Ltd.) is spin-coated (2000 rpm, 60 s) on the obtained photoelectric conversion layer (also referred to as an organic semiconductor layer) to form a conductive polymer layer. Filmed and air dried to produce a hole transport layer.
 次に、正孔輸送層の上に銀電極層を膜厚約100nmになるように真空蒸着を行った後、150℃で10分間加熱処理を行い、逆層型の有機光電変換素子1を作製した。 Next, after vacuum-depositing a silver electrode layer on the hole transport layer so as to have a film thickness of about 100 nm, a heat treatment is performed at 150 ° C. for 10 minutes to produce a reverse layer type organic photoelectric conversion element 1. did.
 (有機光電変換素子1の評価)
 得られた有機光電変換素子1の評価は、以下のように太陽電池として評価した。
(Evaluation of the organic photoelectric conversion element 1)
Evaluation of the obtained organic photoelectric conversion element 1 was evaluated as a solar cell as follows.
 得られた有機光電変換素子1は、封止を行わずに、ソーラシミュレーター(AM1.5G)の光を100mW/cmの照射強度で照射して、電圧-電流特性を測定し、Voc(開放電圧)、FF(曲線因子)及び光電変換効率を測定した。 The obtained organic photoelectric conversion element 1 was irradiated with light from a solar simulator (AM1.5G) at an irradiation intensity of 100 mW / cm 2 without sealing, and voltage-current characteristics were measured. Voltage), FF (fill factor) and photoelectric conversion efficiency were measured.
 《有機光電変換素子2~13の作製》
 有機光電変換素子1の作製において、AFPO-Green5を表1に示す化合物に変更した以外は同様にして、有機光電変換素子2~13を各々作製した。
<< Preparation of organic photoelectric conversion elements 2-13 >>
Organic photoelectric conversion elements 2 to 13 were prepared in the same manner except that AFPO-Green 5 was changed to the compounds shown in Table 1 in the production of organic photoelectric conversion element 1.
 化合物301、401、607、901、902については、上述したものを用いた。化合物201、203、504は、上述のものと同様にして合成した。なお、化合物201、203、504の分子量は下記に示す。ここで分子量は数平均分子量(Mn)であり、PDIは分散度(重量平均分子量/数平均分子量=Mw/Mn)を示す。 As the compounds 301, 401, 607, 901, and 902, those described above were used. Compounds 201, 203 and 504 were synthesized in the same manner as described above. The molecular weights of the compounds 201, 203, and 504 are shown below. Here, the molecular weight is the number average molecular weight (Mn), and PDI indicates the degree of dispersion (weight average molecular weight / number average molecular weight = Mw / Mn).
 化合物201の分子量は28000、PDI=1.7
 化合物203の分子量は30000、PDI=2.1
 化合物504の分子量は25000、PDI=2.0
 (化合物701の合成)
 化合物701は化合物901を合成した際に用いたエチルヘキシルアミンをペンチルアミンに変更することで合成できる。
The molecular weight of the compound 201 is 28000, PDI = 1.7.
Compound 203 has a molecular weight of 30,000 and PDI = 2.1.
Compound 504 has a molecular weight of 25000 and PDI = 2.0.
(Synthesis of Compound 701)
Compound 701 can be synthesized by changing ethylhexylamine used when compound 901 was synthesized to pentylamine.
 得られた化合物701の分子量は35000、PDI=2.2だった。 The obtained compound 701 had a molecular weight of 35000 and PDI = 2.2.
 (化合物801の合成)
 化合物801は化合物901を合成した際に用いたエチルヘキシルアミンをヘキシルアミンに変更することで合成できる。
(Synthesis of Compound 801)
Compound 801 can be synthesized by changing the ethylhexylamine used in the synthesis of compound 901 to hexylamine.
 得られた化合物801の分子量は32000、PDI=1.9だった。 The obtained compound 801 had a molecular weight of 32000 and PDI = 1.9.
 (有機光電変換素子2~13の評価)
 得られた有機光電変換素子2~13の評価は、以下のように太陽電池として評価した。
(Evaluation of organic photoelectric conversion elements 2 to 13)
The obtained organic photoelectric conversion elements 2 to 13 were evaluated as solar cells as follows.
 得られた有機光電変換素子2~13は、各々エポキシ樹脂とガラスキャップで封止を行い、ソーラシミュレーター(AM1.5G)の光を100mW/cmの照射強度で照射して、電圧-電流特性を測定し、Voc(開放電圧)、FF(曲線因子)及び光電変換効率を測定した。 The obtained organic photoelectric conversion elements 2 to 13 were each sealed with an epoxy resin and a glass cap, and irradiated with solar simulator (AM1.5G) light at an irradiation intensity of 100 mW / cm 2 , and voltage-current characteristics. Were measured, and Voc (open circuit voltage), FF (fill factor) and photoelectric conversion efficiency were measured.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 表1から、比較の有機光電変換素子1に比べて、本発明の有機光電変換素子2~13は、Voc(開放電圧)、FF(曲線因子)及び光電変換効率が高く、太陽電池としての優れた特性を示すことがわかった。 From Table 1, compared with the comparative organic photoelectric conversion element 1, the organic photoelectric conversion elements 2 to 13 of the present invention have high Voc (open voltage), FF (curve factor) and photoelectric conversion efficiency, and are excellent as solar cells. It was found to show the characteristics.
 10 有機光電変換素子、
 11 基板、
 12 第一の電極、
 13 第二の電極、
 14 光電変換層、
 14′ 第一の光電変換層、
 15 電荷再結合層、
 16 第二の光電変換層、
 17 正孔輸送層、
 18 電子輸送層。
10 organic photoelectric conversion elements,
11 substrate,
12 first electrode,
13 Second electrode,
14 photoelectric conversion layer,
14 'first photoelectric conversion layer,
15 charge recombination layer,
16 Second photoelectric conversion layer,
17 hole transport layer,
18 Electron transport layer.

Claims (14)

  1.  透明な基板上に、透明な第一の電極、p型有機半導体材料とn型有機半導体材料とを含有する光電変換層、および第二の電極をこの順に有する有機光電変換素子であって、該光電変換層が、該p型有機半導体材料として下記一般式(1)で表わされる部分構造を有する化合物を含有することを特徴とする有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
    (式中、ZおよびZは、それぞれ独立して、シアノ基、フルオロアルキル基、-C(=O)-R、-C(=O)-OR、-C[=C(CN)]-R、-C(R)=N-SO、-C(R)=N-CN、アルキル基、アリール基またはアルコキシ基を表し、ZおよびZの少なくとも一つは、シアノ基、フルオロアルキル基、-C(=O)-R、-C(=O)-OR、-C[=C(CN)]-R、-C(R)=N-SO、または-C(R)=N-CNである。
     ZとZは、互いに結合して環を形成してもよい。R、R、R、R、R、およびRは、それぞれ独立して、水素原子、-OH、-NHR(Rは水素原子またはアルキル基を表す)、または1価の有機基を表す。
     YおよびYは、CHまたはNを表し、Xは硫黄、酸素またはセレン原子を表す。)
    An organic photoelectric conversion element having a transparent first electrode, a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode in this order on a transparent substrate, The photoelectric conversion layer contains a compound having a partial structure represented by the following general formula (1) as the p-type organic semiconductor material.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein Z 1 and Z 2 are each independently a cyano group, a fluoroalkyl group, —C (═O) —R 1 , —C (═O) —OR 2 , —C [═C (CN 2 ] —R 3 , —C (R 4 ) ═N—SO 2 R 5 , —C (R 6 ) ═N—CN, represents an alkyl group, an aryl group or an alkoxy group, and represents at least one of Z 1 and Z 2 One is a cyano group, a fluoroalkyl group, —C (═O) —R 1 , —C (═O) —OR 2 , —C [═C (CN) 2 ] —R 3 , —C (R 4 ) = N—SO 2 R 5 , or —C (R 6 ) = N—CN.
    Z 1 and Z 2 may be bonded to each other to form a ring. R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, —OH, —NHR 7 (R 7 represents a hydrogen atom or an alkyl group), or monovalent Represents an organic group.
    Y 1 and Y 2 represent CH or N, and X represents a sulfur, oxygen or selenium atom. )
  2.  前記一般式(1)で表わされる構造を有する化合物の数平均分子量が、15000~50000であることを特徴とする請求項1に記載の有機光電変換素子。 2. The organic photoelectric conversion device according to claim 1, wherein the compound having the structure represented by the general formula (1) has a number average molecular weight of 15,000 to 50,000.
  3.  前記一般式(1)におけるR、R、R、R、R、およびRが、それぞれ独立して、水素原子、-OH、-NHR(Rは水素原子またはアルキル基を表す)、またはアルキル基であることを特徴とする請求項1または2に記載の有機光電変換素子。 In the general formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, —OH, —NHR 7 (R 7 is a hydrogen atom or an alkyl group) The organic photoelectric conversion device according to claim 1, wherein the organic photoelectric conversion device is an alkyl group.
  4.  前記一般式(1)における、Xが硫黄原子であることを特徴とする請求項1~3のいずれか1項に記載の有機光電変換素子。 The organic photoelectric conversion device according to any one of claims 1 to 3, wherein X in the general formula (1) is a sulfur atom.
  5.  前記一般式(1)における、ZおよびZの少なくともどちらかひとつが、-C(=O)-OR(Rはアルキル基を表す。)であることを特徴とする請求項1~4のいずれか1項に記載の有機光電変換素子。 2. In the general formula (1), at least one of Z 1 and Z 2 is —C (═O) —OR 2 (R 2 represents an alkyl group). 5. The organic photoelectric conversion element according to any one of 4 above.
  6.  前記一般式(1)で表される部分構造が下記一般式(2)で表される部分構造であることを特徴とする請求項1~4のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Aは飽和の2価の連結基を表し、QおよびQは酸素、もしくはビスシアノメチレン基を表す。YおよびYはCHもしくはNを表す。)
    The organic photoelectric conversion device according to any one of claims 1 to 4, wherein the partial structure represented by the general formula (1) is a partial structure represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, A represents a saturated divalent linking group, Q 1 and Q 2 represent oxygen or a biscyanomethylene group. Y 1 and Y 2 represent CH or N.)
  7.  前記一般式(2)において、YおよびYが窒素原子を表すことを特徴とする請求項6に記載の有機光電変換素子。 In the general formula (2), an organic photoelectric conversion device according to claim 6, Y 1 and Y 2, characterized in that the representative of the nitrogen atom.
  8.  前記一般式(2)において、-A-が-N(R10)-(R10は置換基を表す)を表すことを特徴とする請求項6または7に記載の有機光電変換素子。 8. The organic photoelectric conversion device according to claim 6, wherein in the general formula (2), -A- represents -N (R 10 )-(R 10 represents a substituent).
  9.  前記一般式(2)において、R10が炭素数6以上、10以下であるアルキル基であることを特徴とする請求項8に記載の有機光電変換素子。 In the general formula (2), R 10 is 6 or more carbon atoms, an organic photoelectric conversion device according to claim 8, wherein the alkyl group is 10 or less.
  10.  前記一般式(2)において、R10が分岐アルキル基であることを特徴とする請求項8または9に記載の有機光電変換素子。 In the general formula (2), an organic photoelectric conversion device according to claim 8 or 9, characterized in that R 10 is a branched alkyl group.
  11.  前記一般式(1)で表される部分構造を有する化合物が下記一般式(3)で表される部分構造を有する化合物であることを特徴とする請求項1~10のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Zは炭素、珪素、ゲルマニウムから選ばれる原子を表し、R15およびR16はアルキル基、フッ化アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルキルシリル基から選ばれる置換基を表し、さらに置換基を有していてもよいし、たがいに結合して環を形成してもよい。)
    11. The compound according to claim 1, wherein the compound having a partial structure represented by the general formula (1) is a compound having a partial structure represented by the following general formula (3). Organic photoelectric conversion element.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, Z represents an atom selected from carbon, silicon, and germanium, and R 15 and R 16 represent a substituent selected from an alkyl group, a fluorinated alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and an alkylsilyl group. Represents a group, may further have a substituent, and may be bonded to each other to form a ring.)
  12.  前記光電変換層が、溶液塗布法によって作製された光電変換層であることを特徴とする請求項1~11のいずれか1項に記載の有機光電変換素子。 The organic photoelectric conversion element according to any one of claims 1 to 11, wherein the photoelectric conversion layer is a photoelectric conversion layer produced by a solution coating method.
  13.  前記第一の電極がカソードであることを特徴とする請求項1~12のいずれか1項に記載の有機光電変換素子。 The organic photoelectric conversion device according to any one of claims 1 to 12, wherein the first electrode is a cathode.
  14.  請求項1~13のいずれか1項に記載の有機光電変換素子を具備することを特徴とする太陽電池。 A solar cell comprising the organic photoelectric conversion device according to any one of claims 1 to 13.
PCT/JP2012/050549 2011-01-18 2012-01-13 Organic photoelectric conversion element and solar cell WO2012099000A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012553676A JP5686141B2 (en) 2011-01-18 2012-01-13 Organic photoelectric conversion element and solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-007584 2011-01-18
JP2011007584 2011-01-18

Publications (1)

Publication Number Publication Date
WO2012099000A1 true WO2012099000A1 (en) 2012-07-26

Family

ID=46515628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050549 WO2012099000A1 (en) 2011-01-18 2012-01-13 Organic photoelectric conversion element and solar cell

Country Status (2)

Country Link
JP (1) JP5686141B2 (en)
WO (1) WO2012099000A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162514A (en) * 2011-01-20 2012-08-30 Kuraray Co Ltd Dithienogermole polymer and organic semiconductor device containing the same
JP2012207104A (en) * 2011-03-29 2012-10-25 Mitsubishi Chemicals Corp Method for producing copolymer using iodinated condensed thiophene compound and iodinated dioxopyrrolo-thiophene compound
JP2013023572A (en) * 2011-07-20 2013-02-04 Mitsubishi Chemicals Corp New copolymer, organic semiconductor material, and organic electronic device, photoelectric conversion element and solar cell module each using the new copolymer and organic semiconductor material
JP2013170187A (en) * 2012-02-17 2013-09-02 Fujifilm Corp Organic photoelectric conversion element composition, thin film containing the same, photoelectric cell, organic semiconductor polymer used for the same, compound and method for producing polymer
WO2013168709A1 (en) * 2012-05-07 2013-11-14 富士フイルム株式会社 Organic thin film solar cell, monomers and organic semiconductor material composition used in organic thin film solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02252727A (en) * 1989-03-27 1990-10-11 Fuji Photo Film Co Ltd Polyisothianaphthene polymer and conductive material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018665A (en) * 2002-06-17 2004-01-22 Toyo Ink Mfg Co Ltd Organic electroluminescent device material and organic electroluminescent device using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02252727A (en) * 1989-03-27 1990-10-11 Fuji Photo Film Co Ltd Polyisothianaphthene polymer and conductive material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BREDAS, J. L. ET AL.: "Towards organic polymers with very small intrinsic band gaps. I. Electoronic structure of polyisothianaphthene and derivatives", JOURNAL OF CHEMICAL PHYSICS, vol. 85, no. 8, 15 October 1986 (1986-10-15), pages 4673 - 4678 *
MANCEAU, M. ET AL.: "Photochemical stability of pi-conjugated polymers for polymer solar cells: a rule of thumb", JOURNAL OF MATERIALS CHEMISTRY, vol. 21, 28 March 2011 (2011-03-28), pages 4132 - 4141, XP008147864, DOI: doi:10.1039/C0JM03105D *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162514A (en) * 2011-01-20 2012-08-30 Kuraray Co Ltd Dithienogermole polymer and organic semiconductor device containing the same
JP2012207104A (en) * 2011-03-29 2012-10-25 Mitsubishi Chemicals Corp Method for producing copolymer using iodinated condensed thiophene compound and iodinated dioxopyrrolo-thiophene compound
JP2013023572A (en) * 2011-07-20 2013-02-04 Mitsubishi Chemicals Corp New copolymer, organic semiconductor material, and organic electronic device, photoelectric conversion element and solar cell module each using the new copolymer and organic semiconductor material
JP2013170187A (en) * 2012-02-17 2013-09-02 Fujifilm Corp Organic photoelectric conversion element composition, thin film containing the same, photoelectric cell, organic semiconductor polymer used for the same, compound and method for producing polymer
US9680103B2 (en) 2012-02-17 2017-06-13 Fujifilm Corporation Organic photoelectric conversion element composition, thin film and photovoltaic cell each containing the same, organic semiconductor polymer and compound each for use in these, and method of producing the polymer
WO2013168709A1 (en) * 2012-05-07 2013-11-14 富士フイルム株式会社 Organic thin film solar cell, monomers and organic semiconductor material composition used in organic thin film solar cell
JP2013254943A (en) * 2012-05-07 2013-12-19 Fujifilm Corp Organic thin film solar battery, composition for organic semiconductor material used therein, and monomer

Also Published As

Publication number Publication date
JPWO2012099000A1 (en) 2014-06-09
JP5686141B2 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP6020463B2 (en) ORGANIC PHOTOELECTRIC CONVERSION DEVICE, SOLAR CELL USING SAME, AND OPTICAL SENSOR ARRAY
JP5838975B2 (en) Organic photoelectric conversion element and solar cell
JP6024776B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP2012255098A (en) Conjugated polymer, and organic photoelectric converter using the same
JP5845937B2 (en) Organic photoelectric conversion element
WO2012153845A1 (en) Organic photoelectric conversion element, method for producing same, and solar cell
JP5476969B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP5686141B2 (en) Organic photoelectric conversion element and solar cell
JP5839033B2 (en) Conjugated polymer and organic photoelectric conversion device using the same
JP5699524B2 (en) Organic photoelectric conversion element and solar cell
WO2010090123A1 (en) Organic photoelectric conversion element, solar cell using same, and optical sensor array
JP5447513B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP2013143486A (en) Organic photoelectric conversion element, solar cell using the same and optical sensor array using the same
JP2014053383A (en) Tandem organic photoelectric conversion element and solar cell using the same
JP2012049352A (en) Organic photoelectric conversion element, and solar cell and optical sensor array utilizing the same
JP5691810B2 (en) Conjugated polymer and organic photoelectric conversion device using the same
JP2012109365A (en) Organic photoelectric conversion element and solar cell
JP5790404B2 (en) Conjugated polymer compound and organic photoelectric conversion device using the same
JP5691449B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP5582042B2 (en) Organic photoelectric conversion element and solar cell
JP5440508B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP5440208B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP5413055B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553676

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736617

Country of ref document: EP

Kind code of ref document: A1