WO2012153845A1 - Organic photoelectric conversion element, method for producing same, and solar cell - Google Patents

Organic photoelectric conversion element, method for producing same, and solar cell Download PDF

Info

Publication number
WO2012153845A1
WO2012153845A1 PCT/JP2012/062168 JP2012062168W WO2012153845A1 WO 2012153845 A1 WO2012153845 A1 WO 2012153845A1 JP 2012062168 W JP2012062168 W JP 2012062168W WO 2012153845 A1 WO2012153845 A1 WO 2012153845A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
organic photoelectric
conversion element
layer
Prior art date
Application number
PCT/JP2012/062168
Other languages
French (fr)
Japanese (ja)
Inventor
大久保 康
貴宗 服部
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2013514074A priority Critical patent/JP5920341B2/en
Publication of WO2012153845A1 publication Critical patent/WO2012153845A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3245Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and oxygen as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic photoelectric conversion element, a manufacturing method thereof, and a solar cell, and more particularly to a bulk heterojunction type organic photoelectric conversion element, a manufacturing method thereof, and a solar cell using the organic photoelectric conversion element.
  • Solar cells using single-crystal / polycrystalline / amorphous Si, GaAs and CIGS (copper (Cu), indium (In), Compound-based solar cells such as gallium (Ga) and selenium (Se), or dye-sensitized photoelectric conversion elements (Gretzel cells) have been proposed and put to practical use.
  • solar cells using these bulk heterojunction photoelectric conversion elements can be formed by coating except for the anode and cathode, they can be manufactured at high speed and at low cost. There is a possibility to solve the problem of power generation cost. Furthermore, unlike the above-described Si-based solar cells, compound-based solar cells, dye-sensitized solar cells, etc., it does not require a manufacturing process that is exposed to high-temperature conditions exceeding 160 ° C., so that it is formed on an inexpensive and lightweight plastic substrate. Is also expected to be possible.
  • the reverse-layer solar cell has a disadvantageous configuration from the viewpoint of utilization of light because a conductive polymer layer having poor light transmittance exists between the metal electrode and the photoelectric conversion layer. It is required from simulation that the optimum film thickness of the conversion layer is thicker than that of a normal layer solar cell (see, for example, Non-Patent Document 2). Therefore, there is a demand for a material that can generate electricity well even with a thick film (150 nm or more), but many materials have good efficiency in a thin film (100 nm or less) photoelectric conversion layer, but a thick film (100 nm or more) has a curve. The factor (FF) was lowered, and it was difficult to achieve high efficiency.
  • FF factor
  • Non-Patent Document 3 a polymer having a fluorinated benzotriazole group described in Non-Patent Document 3 and a polymer having a fluorinated benzothiadiazole group described in Non-Patent Document 4 are used for the photoelectric conversion layer. Therefore, it has been reported that power can be generated with an efficiency of 7% or more even with a thick film thickness of around 200 nm. Although the solar cells in these reports have a normal layer configuration, it is expected that a solar cell having both high photoelectric conversion efficiency and durability can be obtained when the reverse layer configuration is adopted.
  • the durability in organic thin-film solar cells is not only determined by the work function of the electrode material, but is also related to the photo-oxidation stability of the photoelectric conversion material itself, and the oxygen level ( Unless the HOMO level is sufficiently deeper than ⁇ 5.3 to ⁇ 5.4 eV), photo-oxidation degradation occurs due to light irradiation in the presence of oxygen, and the photoelectric conversion efficiency decreases with time. There was a problem of going. From such a viewpoint, the polymer having a fluorinated benzotriazole group described in Non-Patent Document 3 has a HOMO level of ⁇ 5.3 eV, which is not yet sufficiently deep, and has insufficient durability against photooxidation. In the polymer having a fluorinated benzothiadiazole group described in Non-Patent Document 4, the HOMO level has a slightly deep level of -5.4 to -5.5 eV. , Still proved to be inadequate.
  • Non-Patent Documents 3 and 4 are also difficult to play when applying a polar solution containing PEDOT: PSS that constitutes the hole transport layer in the case of the reverse layer structure, which is a manufacturing problem. It has been found.
  • the present invention has been made in view of the above problems, and an object of the present invention is to use an organic photoelectric conversion element having high photoelectric conversion efficiency, excellent durability, and good coating properties, a production method thereof, and the organic photoelectric conversion element. Is to provide a solar cell.
  • Non-Patent Documents 3 and 4 As a result of studying the problems in Non-Patent Documents 3 and 4, the present inventors have found that a p-type organic semiconductor material for a photoelectric conversion layer has a higher electron-withdrawing property than a benzotriazole group and a benzothiadiazole group. It has been found that an organic photoelectric conversion element and an organic thin-film solar cell having high photoelectric conversion efficiency and high durability can be obtained with a polymer having a substituent having a halogenated group even when the film thickness is increased. In addition, when this polymer having a halogenated benzoxadiazole group is used for a photoelectric conversion layer, it is also repelled when a conductive polymer coating solution using a polar solvent is applied on the layer. It was difficult to obtain an organic photoelectric conversion element with a high yield.
  • An organic photoelectric conversion element having a transparent first electrode, a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode in this order on a transparent substrate,
  • the photoelectric conversion layer contains a compound having a partial structure represented by the following general formula (1) as the p-type organic semiconductor material.
  • each X independently represents a fluorine atom or a chlorine atom.
  • R 1 to R 3 each independently represents a hydrogen atom, a halogen atom, an alkyl group, a fluorinated alkyl group, an alkenyl group, or an alkynyl group.
  • the p-type organic semiconductor material is a copolymer having a structure represented by the general formula (1) and a structure represented by the following general formula (2):
  • the organic photoelectric conversion element in any one of.
  • R 4 to R 5 are each independently a hydrogen atom, a halogen atom, an alkyl group, a fluorinated alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an alkoxy group, a fluorinated alkoxy group, or an alkylthio group. Represents a fluorinated alkylthio group, an alkylamino group, a fluorinated alkylamino group, an aryl group or a heteroaryl group.) 6). 6. The organic photoelectric conversion device as described in any one of 1 to 5 above, wherein in the general formula (1), n is 1.
  • R 2 represents an alkyl group having 8 to 20 carbon atoms.
  • R 2 is a copolymer containing both a partial structure
  • R 2 is a partial structure represents an alkyl group or a hydrogen atom of less than 8 carbon atoms represents the alkyl group having 8 or more carbon atoms 9.
  • the organic photoelectric conversion device as described in any one of 1 to 8 above.
  • a method for producing an organic photoelectric conversion element comprising producing the photoelectric conversion layer of the organic photoelectric conversion element according to any one of 1 to 9 without being exposed to oxygen and moisture during film formation and after film formation.
  • a solar cell comprising the organic photoelectric conversion device according to any one of 1 to 9, wherein the first electrode is a cathode and the second electrode is an anode.
  • an organic photoelectric conversion element having a high fill factor value, high photoelectric conversion efficiency, excellent durability, and good coatability, a manufacturing method thereof, and a solar cell using the organic photoelectric conversion element are provided. can do.
  • the organic photoelectric conversion element of the present invention has a transparent first electrode, a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode in this order on a transparent substrate.
  • the compound which has the partial structure represented by the said General formula (1) as a p-type organic-semiconductor material of the bulk heterojunction type photoelectric converting layer containing a p-type organic-semiconductor material and an n-type organic-semiconductor material especially
  • an organic photoelectric conversion element having a high fill factor value, high photoelectric conversion efficiency, and excellent durability can be provided.
  • paintability can also be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the organic photoelectric conversion element of the present invention.
  • the organic photoelectric conversion element 10 has a transparent first electrode 12 on a transparent substrate 11, a hole transport layer 17 on the first electrode 12, and a hole transport layer 17 on the hole transport layer 17.
  • the photoelectric conversion layer 14 is provided, the electron transport layer 18 is provided on the photoelectric conversion layer 14, and the second electrode 13 is provided on the electron transport layer 18.
  • the substrate 11 and the first electrode 12 are transparent, and light used for photoelectric conversion enters from the direction of the arrow in FIG.
  • the photoelectric conversion layer 14 is a layer that converts light energy into electric energy, and contains a p-type organic semiconductor material and an n-type organic semiconductor material.
  • the p-type organic semiconductor material functions relatively as an electron donor (donor), and the n-type organic semiconductor material functions relatively as an electron acceptor.
  • the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”.
  • an electron acceptor which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.
  • the generated electric charge is generated between the electron acceptors due to the internal electric field, for example, when the work functions of the first electrode 12 and the second electrode 13 are different, due to the potential difference between the first electrode 12 and the second electrode 13. And the holes pass between the electron donors and are carried to different electrodes, and a photocurrent is detected.
  • the work function of the first electrode 12 is larger than the work function of the second electrode 13, so that holes are transported to the first electrode 12 and electrons are transported to the second electrode 13.
  • the second electrode 13 is made of a metal that has a small work function and is easily oxidized.
  • the first electrode functions as an anode (anode) and the second electrode functions as a cathode (cathode).
  • Figure 2 shows an example of another configuration.
  • the work function of the second electrode 13 is made larger than the work function of the first electrode 12, so that electrons are transferred to the first electrode 12 and holes are transferred to the first electrode 12.
  • This is a configuration when designed to be transported to two electrodes 13.
  • the electron transport layer 18 is disposed between the first electrode 12 and the photoelectric conversion layer 14
  • the hole transport layer 17 is disposed between the photoelectric conversion layer 14 and the second electrode 13
  • the first electrode functions as a cathode (cathode) and the second electrode functions as an anode (anode).
  • the organic photoelectric conversion element of the present invention has a configuration shown in FIG. 2 in particular from the viewpoint of durability of the second electrode, that is, the first electrode is a cathode (cathode) and the second electrode is an anode (anode). It is preferable that
  • the organic photoelectric conversion element of the present invention is not limited to the hole blocking layer, the electron blocking layer, the electron injection layer, the hole injection layer, or the smoothing layer. It may have a layer.
  • FIG. 3 is a cross-sectional view illustrating an organic photoelectric conversion element including a tandem photoelectric conversion layer.
  • the first electrode 12 and the first photoelectric conversion layer 14 ′ are stacked on the substrate 11, the charge recombination layer 15 is stacked, the second photoelectric conversion layer 16, and then the second photoelectric conversion layer 15.
  • the electrode 13 is laminated.
  • the second photoelectric conversion layer 16 may be a layer that absorbs light having the same spectrum as the absorption spectrum of the first photoelectric conversion layer 14 ′ or may be a layer that absorbs light having a different spectrum, but preferably has a different spectrum. It is a layer that absorbs light.
  • each layer preferably has a reverse layer configuration as shown in FIG.
  • the photoelectric conversion layer contains a compound having a partial structure represented by the general formula (1) as a p-type organic semiconductor material.
  • the compound is an organic compound having semiconductor characteristics.
  • a compound having only a partial structure of the general formula (1) may be used, but in order to obtain an organic compound having more preferable semiconductor characteristics (specific HOMO / LUMO levels) as an organic thin film solar cell, it is bonded to a donor unit described later. It is preferable that the compound has a structure.
  • X represents a fluorine atom or a chlorine atom each independently.
  • R 1 to R 3 are each independently a hydrogen atom, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), alkyl group, fluorinated alkyl group, alkenyl group, alkynyl group, cycloalkyl group, alkoxy group Group, fluorinated alkoxy group, alkylthio group, fluorinated alkylthio group, alkylamino group, fluorinated alkylamino group, aryl group, or heteroaryl group, or a linking group in which these groups are bonded to each other, the aryl group or The heteroaryl group may be a condensed ring structure.
  • n independently represents an integer of 0 to 2.
  • Non-Patent Documents 3 and 4 having a halogenated benzotriazole group or a halogenated benzothiadiazole group Levels can be provided, and higher open-circuit voltage and photooxidation stability can be provided. Further, as in Non-Patent Documents 3 and 4 having a halogenated benzotriazole group or a halogenated benzothiadiazole group, a sufficiently high fill factor and photoelectric conversion efficiency can be provided even with a thick film of 150 nm or more.
  • the alkyl group is preferably an alkyl group having 1 to 24 carbon atoms, more preferably an alkyl group having 8 to 24 carbon atoms.
  • the fluorinated alkyl group is a fluorinated alkyl group in which part or all of the hydrogen atoms in the alkyl group are fluorinated. Since the fluorinated alkyl group in which all hydrogen atoms are fluorinated tends to be poor in solubility, the hydrogen atom in the position close to the mother nucleus (benzooxadiazole ring) is not fluorinated, and the terminal hydrogen atom is fluorine.
  • the fluorinated alkyl group is preferable. For example, — (CH 2 CH 2 ) —C 4 F 9 , — (CH 2 CH 2 ) —C 7 F 15 and the like can be mentioned.
  • the alkenyl group is preferably an alkenyl group having 2 to 20 carbon atoms, and examples thereof include a vinyl group and an allyl group.
  • the alkynyl group is preferably an alkynyl group having 2 to 20 carbon atoms, and examples thereof include an ethynyl group and a propargyl group.
  • the cycloalkyl group is preferably a cycloalkyl group having 3 to 20 carbon atoms, more preferably a cycloalkyl group having 4 to 8 carbon atoms, and examples thereof include cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantyl and the like.
  • the alkoxy group and the fluorinated alkoxy group are preferably an alkoxy group having 1 to 24 carbon atoms and a fluorinated alkoxy group.
  • a methoxy group, an isopropoxy group, a t-butoxy group, a 2-ethylhexyloxy group, and 2-ethyloctyl examples include an oxy group, an n-dodecyloxy group, a 2-butyloctyloxy group, a trifluoromethoxy group, a group having a structure in which a hydrogen atom of a hydroxyl group is substituted with the aforementioned alkyl group, fluorinated alkyl group, or the like. it can.
  • the alkylthio group and the fluorinated alkylthio group are preferably an alkylthio group having 1 to 24 carbon atoms and a fluorinated alkylthio group.
  • a methylthio group, an isopropylthio group, a t-butylthio group, a 2-ethylhexylthio group, a trifluoromethylthio group A group having a structure in which a hydrogen atom of a thiol group is substituted with the aforementioned alkyl group, fluorinated alkyl group, or the like.
  • an alkylamino group having 1 to 24 carbon atoms and a fluorinated alkylamino group are preferable.
  • dimethylamino group, diisopropylamino group, methyl-t-butylamino group, di- Examples thereof include a group having a structure in which one or more hydrogen atoms of an amino group (—NH 2 ) are substituted with the aforementioned alkyl group, fluorinated alkyl group or the like, such as a 2-ethylhexylamino group.
  • an aryl group having 6 to 30 carbon atoms is preferable, an aryl group having 6 to 20 carbon atoms is more preferable, and an aryl group having 6 to 12 carbon atoms is particularly preferable.
  • the heteroaryl group is preferably a heteroaryl group having 1 to 20 carbon atoms, and more preferably a heteroaryl group having 1 to 12 carbon atoms.
  • the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • Specific examples include imidazolyl, pyridyl, quinolyl, furyl, piperidyl, benzoxazolyl, benzimidazolyl, benzthiazolyl, thienyl, furyl, pyrrole, thiazolyl and the like.
  • Condensed rings include hetero five-membered rings such as thiophene ring, furan ring, pyrrole ring, cyclopentadiene, and silacyclopentadiene, and structures containing these as condensed rings, specifically, fluorene, silafluorene, carbazole, dithienocyclo. Examples include pentadiene, dithienosilacyclopentadiene, dithienopyrrole, and benzodithiophene.
  • substituents may be linking groups bonded to each other.
  • R 1 to R 3 preferably represent an alkyl group having 8 to 20 carbon atoms. This is because, in order to form a sufficiently thick photoelectric conversion layer using the obtained p-type organic semiconductor material, the p-type organic semiconductor material must have a certain degree of solubility, and the viewpoint of imparting solubility Thus, a material substituted with an alkyl group having 8 or more carbon atoms is preferable.
  • the alkyl chain length is longer than 20, the portion (conjugated polymer main chain) contributing to charge transport tends to decrease or the short circuit current value tends to decrease.
  • a linear alkyl group may provide alignment (also referred to as a fastener effect), and may provide high mobility. It is preferable that the p-type organic semiconductor material is substituted with an alkyl group (that is, R 1 to R 3 represent a linear alkyl group).
  • R 1 to R 3 represent a linear alkyl group.
  • R 1 ⁇ R 3 represents an alkyl group having 8 or more carbon atoms, a part as will be described later R 1 ⁇ R 3 is having less than 8 carbon atoms the alkyl group
  • a copolymer having a partial structure representing a hydrogen atom may be used. As will be described later, such a copolymer is preferable because it has a merit that it is easy to achieve both a preferable molecular weight and crystallinity.
  • R 1 is preferably a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) as in the case of X.
  • R 1 is preferably the same atom as X.
  • X is preferably a fluorine atom.
  • the fluorine atom is the smallest of the halogen atoms, and when substituted with a benzooxadiazole group, it does not easily cause steric hindrance with the adjacent thiophene ring and the like, and the planarity of the molecule is easily maintained. As a result, the crystallinity and mobility of the obtained molecule are improved, and an organic photoelectric conversion element having a high fill factor is easily obtained.
  • each n is independently an integer of 0 to 2, and is preferably 1.
  • n 0, the resulting polymer may have insufficient solubility.
  • the partial structure represented by the general formula (1) is a partial structure generally called an acceptor unit (a unit having a deep HOMO / LUMO level) in a donor-acceptor type p-type organic semiconductor material.
  • an acceptor unit a unit having a deep HOMO / LUMO level
  • a compound in which a donor unit that functions as a donor (a unit having a shallow HOMO / LUMO level) and an acceptor unit is conjugated to form a material having both long-wavelength absorption and a deep LUMO level, and is a p-type organic semiconductor material are preferably used.
  • any unit that has a LUMO level or a HOMO level shallower than a hydrocarbon aromatic ring (benzene, naphthalene, anthracene, etc.) having the same number of ⁇ electrons can be used without limitation. More preferred are heterocyclic 5-membered rings such as thiophene ring, furan ring, pyrrole ring, cyclopentadiene, and silacyclopentadiene, and condensed rings containing these ring structures.
  • condensed ring examples include fluorene, silafluorene, carbazole, dithienocyclopentadiene, dithienosilacyclopentadiene, dithienopyrrole, and benzodithiophene.
  • the p-type organic semiconductor material is more preferably a copolymer having a structure represented by the general formula (1) and a structure represented by the general formula (2).
  • R 4 to R 5 each independently represent a hydrogen atom, a halogen atom, an alkyl group, a fluorinated alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an alkoxy group, or a fluorinated alkoxy group.
  • Preferred forms and specific examples of these groups are the same as the groups mentioned in the general formula (1).
  • Such a structure is preferable because it can provide a material with high mobility, high solubility, and absorption up to a long wavelength.
  • the compound having the partial structure represented by the general formula (1) used as the p-type organic semiconductor material preferably has a number average molecular weight of 15000 to 50000.
  • low molecular weight compounds for example, fullerene derivatives
  • the type organic semiconductor material is a polymer, it tends to form a microphase separation structure and to easily generate carrier paths that respectively carry holes and electrons generated in the bulk heterojunction photoelectric conversion layer.
  • the number average molecular weight of the p-type organic semiconductor material is preferably 50000 or less. More preferably, it is in the range of 15000 to 30000.
  • solubility substitutes the mother nucleus represented by the general formula (1) or the general formula (1) and the general formula (2) with a substituent having solubility (also referred to as “soluble group”).
  • soluble group also referred to as “soluble group”.
  • the general formula (1) having a structure substituted with a soluble group and an aryl group substituted with a soluble group, or the structure represented by the general formula (1) and the general formula (2) By copolymerizing the general formula (1) having no solubility group or the structure represented by the general formula (1) and the general formula (2), both the preferable molecular weight range and the crystallinity are achieved. It is also a preferable means.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC).
  • the number average molecular weight is a value measured by the following method.
  • a compound having a desired molecular weight can be separated by purification using preparative gel permeation chromatography (GPC).
  • the ratio of the partial structure represented by the general formula (1) contained in the compound having the partial structure represented by the general formula (1) according to the present invention is approximately 20 to 20% with respect to 100% by mass of the total mass of the compound. 80% by mass is preferable, and 25 to 60% by mass is particularly preferable.
  • the compound having the partial structure represented by the general formula (1) is preferably a high molecular weight compound as described above. In this case, the partial structure represented by the general formula (1) is used.
  • the number of repeating units is preferably in the range of 30 to 50 mol% with respect to the total number of repeating units of the whole compound including repeating units other than this partial structure.
  • the number of partial structures according to the present invention is a value that falls within the aforementioned molecular weight range.
  • the number average molecular weight of 10,000 to 100,000 approximately 10 to 200 is required. It needs to be about.
  • Non-Patent Document 3 Macromolecules, 2010, 43, p4609, and J. Org. Am. Chem. Soc. , 2007, 129, p4112, 2,6-bis (trimethylstannyl) -4,8-di-3-butylnonyl-benzo [1,2-b: 4,5-b ′] dithiophene was synthesized. .
  • n-type organic semiconductor materials used for the photoelectric conversion layer according to the present invention is not particularly limited. Fluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide and other aromatic carboxylic acid anhydrides and imidized compounds thereof Examples thereof include polymer compounds.
  • n-type organic semiconductor material a fullerene derivative capable of efficiently performing charge separation with various p-type organic semiconductor materials at high speed (up to 50 femtoseconds) is preferable.
  • Fullerene derivatives include fullerene C 60 , fullerene C 70 , fullerene C 76 , fullerene C 78 , fullerene C 84 , fullerene C 240 , fullerene C 540 , mixed fullerene, fullerene nanotube, multi-wall nanotube, single-wall nanotube, nanohorn (cone Type), etc., and some of these are hydrogen atoms, halogen atoms, substituted or unsubstituted alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, cycloalkyl groups, silyl groups, ether groups, thioether groups, The fullerene derivative substituted by the amino group, the silyl group, etc. can be mentioned.
  • N-Methylfulleropyrrolidine represented by the following structural formula [6,6] - phenyl C 61 - butyric acid methyl ester (abbreviation PCBM or PC61BM), [6,6] - phenyl C 61 - butyric acid -n-butyl Esters (PCBnB), [6,6] -Phenyl C 61 -butyric acid-isobutyl ester (PCBiB), [6,6] -Phenyl C 61 -butyric acid-n-hexyl ester (PCBH), Adv. Mater. , Vol.
  • Examples of a method for forming a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material include a vapor deposition method and a coating method (including a casting method and a spin coating method).
  • the coating method is preferable in order to increase the area of the interface where charge and electron separation of the above-described holes is performed and to produce a device having high photoelectric conversion efficiency. Also, the coating method is excellent in production speed.
  • the coating method used at this time is not limited, and examples thereof include spin coating, casting from a solution, dip coating, wire bar coating, gravure coating, spray coating, and blade coating.
  • patterning can also be performed by a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
  • the solvent is preferably a solvent that can dissolve both the p-type organic semiconductor material and the n-type organic semiconductor material that are solutes.
  • aromatic solvents such as toluene, xylene and tetralin
  • halogen solvents such as chloroform, dichloroethane, chlorobenzene, dichlorobenzene and trichlorobenzene are preferable.
  • p497 a poor solvent (octanedithiol, diiodooctane, etc.) that improves the crystallinity of the p-type organic semiconductor material may be further added in an amount of 0.1 to 5% by mass.
  • the total concentration of the solute in these solvents varies depending on the film thickness to be obtained and the film forming method, but is preferably about 1 to 3% by mass in the spin coating method and the blade coating method. More preferably, it is 1.5 to 2.5% by mass.
  • a photoelectric conversion layer having a thickness of about 150 to 300 nm can be formed by spin coating and blade coating, which are typical film forming methods.
  • the mass ratio of the p-type organic semiconductor material and the n-type organic semiconductor material that are solutes can be any value such as 1: 4 to 4: 1. A value of about 1: 2 is preferable.
  • the photoelectric conversion layer can have an appropriate phase separation structure.
  • the photoelectric conversion layer may be composed of a single layer in which a p-type organic semiconductor material and an n-type organic semiconductor material are uniformly mixed.
  • the photoelectric conversion layer may be a plurality of layers in which the mixing ratio of the electron acceptor and the electron donor is changed. It may be configured.
  • each layer can be formed by using a material that can be insolubilized after application.
  • a p-type organic semiconductor material that can be insolubilized after coating for example, a coating film after coating, such as polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225.
  • a material that can be insolubilized by polymerization cross-linking, or a soluble substituent reacts by applying energy such as heat as described in US Patent Application Publication No. 2003/136964 and JP-A-2008-16834.
  • Examples thereof include porphyrin compounds that are insolubilized (pigmented).
  • Examples of the n-type organic semiconductor material that can be insolubilized after application include Adv. Mater. , Vol. 20 (2008), p2116, phenyl-C61-glycidyl butyrate (PCBG), and the like.
  • the photoelectric conversion layer is susceptible to photo-oxidation, it is preferable that the photoelectric conversion layer is formed in an environment that is not exposed to oxygen and moisture as a coating environment in the process of forming the photoelectric conversion layer and the process after the photoelectric conversion layer is formed.
  • the concentrations of oxygen and moisture in the atmosphere are each preferably 5000 ppm or less. More preferably, it is 1000 ppm, More preferably, it is 500 ppm, Most preferably, it is 100 ppm or less.
  • the solvent contained in the hole transport layer coating solution applied to the upper layer of the photoelectric conversion layer when forming the hole transport layer (HIL) is a hydrophilic solvent.
  • the compound of the present invention has good coatability, probably because it has a relatively highly polar benzooxadiazole mother nucleus.
  • a hole transport layer coating solution is mixed with alcohols such as methanol, ethanol and isopropanol, or a hydrophilic organic solvent such as acetonitrile, as long as the solute of the hole transport layer does not precipitate. It is also an effective means.
  • Various surfactants may be added to the hole transport layer coating solution.
  • the organic photoelectric conversion element of the present invention preferably has an electron transport layer between the photoelectric conversion layer and the cathode. Thereby, it is possible to more efficiently extract charges generated in the photoelectric conversion layer.
  • the present invention can be particularly preferably applied when the first electrode is a cathode.
  • the electron transport layer is a layer that is positioned between the cathode and the bulk heterojunction layer as described above, and can more efficiently transfer electrons between the bulk heterojunction layer and the electrode.
  • the material constituting the electron transport layer is preferably a compound having an LUMO level between the LUMO level of the n-type organic semiconductor material of the bulk heterojunction photoelectric conversion layer and the work function of the cathode.
  • it is a compound having an electron mobility of 10 ⁇ 4 or more.
  • Such an electron transport layer is also referred to as a hole blocking layer. More preferably, a material having a HOMO level deeper than the HOMO level of the n-type organic semiconductor material is used as the electron transport layer. In addition, in view of the property of blocking holes, it is preferable to use a compound having a hole mobility lower than 10 ⁇ 6 .
  • octaazaporphyrin a perfluoro body of a p-type organic semiconductor material (perfluoropentacene, perfluorophthalocyanine, etc.), a carboline compound described in International Publication No. 04/095889, and the like can be used.
  • rectification is performed so that holes generated in the photoelectric conversion layer do not flow to the cathode side.
  • a hole blocking function having an effect is imparted.
  • a material deeper than the HOMO level of the n-type organic semiconductor material is used as the electron transport layer.
  • phenanthrene compounds such as bathocuproine
  • n-type organic semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide.
  • N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.
  • unit used for the photoelectric converting layer can also be used.
  • the means for forming these layers may be either a vacuum vapor deposition method or a solution coating method, but is preferably a solution coating method.
  • the organic photoelectric conversion element of the present invention preferably has a hole transport layer between the photoelectric conversion layer and the anode. Thereby, it is possible to more efficiently extract charges generated in the photoelectric conversion layer.
  • the present invention can be preferably applied when the second electrode is an anode.
  • the material constituting the hole transport layer for example, PEDOT (poly-3,4-ethylenedioxythiophene) -PSS (polystyrene sulfonic acid) such as Startron Vtec, trade name BaytronP, polyaniline and its doped material, The cyanide compounds described in International Publication No. 06/019270 and the like can be used.
  • PEDOT poly-3,4-ethylenedioxythiophene
  • PSS polystyrene sulfonic acid
  • Startron Vtec trade name BaytronP
  • polyaniline and its doped material The cyanide compounds described in International Publication No. 06/019270 and the like can be used.
  • the hole transport layer having a LUMO level shallower than the LUMO level of the n-type organic semiconductor material used for the photoelectric conversion layer has a rectifying effect so that electrons generated in the photoelectric conversion layer do not flow to the anode side.
  • the electronic block function is provided.
  • Such a hole transport layer is
  • unit used for the photoelectric converting layer can also be used.
  • the means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method. Forming a coating film in the lower layer before forming the photoelectric conversion layer is preferable because it has the effect of leveling the coating surface and reduces the influence of leakage and the like.
  • it preferably has a hole mobility higher than 10 ⁇ 4 due to the property of transporting holes, and a compound with electron mobility lower than 10 ⁇ 6 due to the property of blocking electrons. It is preferable to use it.
  • the organic photoelectric conversion device of the present invention may have various intermediate layers in the device for the purpose of improving photoelectric conversion efficiency and device life.
  • Examples of the intermediate layer include a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.
  • the organic photoelectric conversion element of the present invention essentially includes the first electrode and the second electrode, and further includes an intermediate electrode (charge recombination layer) when a tandem configuration is employed.
  • the first electrode is a transparent electrode.
  • Transparent means that the light transmittance is 50% or more.
  • the light transmittance is the total light in the visible wavelength range measured by a method in accordance with “Testing method of total light transmittance of plastic-transparent material” of JIS K 7361-1: 1997 (corresponding to ISO 13468-1). It refers to transmittance.
  • the first electrode of the present invention is preferably a transparent cathode (cathode), and the second electrode is preferably an anode (anode).
  • first electrode transparent cathode
  • transparent metal oxides such as indium tin oxide (ITO), AZO, FTO, SnO 2 , ZnO, and titanium oxide, Ag, Al, Au, and Pt.
  • ITO indium tin oxide
  • AZO zinc oxide
  • FTO zinc oxide
  • SnO 2 zinc oxide
  • ZnO zirconium oxide
  • titanium oxide Ag, Al, Au
  • Pt platinum oxide
  • a very thin metal layer or a metal nanowire, a nanowire such as a carbon nanotube or a layer containing nanoparticles, a conductive polymer material such as PEDOT: PSS, polyaniline, or the like can be used.
  • Conductive polymers can also be used. Further, a plurality of these conductive compounds can be combined to form a cathode.
  • the second electrode may be a single layer made of a conductive material, but in addition to the conductive material, a resin that holds these may be used in combination.
  • the work function of the transparent electrode which is the cathode
  • the built-in potential is necessary for carriers generated in the bulk heterojunction type photoelectric conversion layer to diffuse and reach each electrode. That is, it is preferable that the work function difference between the anode and the cathode is as large as possible.
  • a metal, an alloy, an electrically conductive compound, and a mixture thereof having a large work function (4 eV or less) are used as the conductive material constituting the anode.
  • Specific examples include gold, silver, copper, platinum, rhodium, indium, nickel, palladium, and the like.
  • silver is most preferable from the viewpoint of hole extraction performance, light reflectance, and durability against oxidation.
  • the cathode can be produced by forming these conductive materials into a thin film by a method such as vapor deposition or sputtering.
  • the film thickness is usually selected from the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • anode side is made light transmissive, for example, a conductive material suitable for the anode such as aluminum and aluminum alloy, silver and silver compound is formed into a thin film of about 1 to 20 nm, and then the above transparent
  • a film of the conductive light-transmitting material mentioned in the description of the electrode a light-transmitting anode can be obtained.
  • the above is a preferable material for the second electrode for the so-called reverse layer type element, which is advantageous for improving the durability, and is a so-called normal layer type (the first electrode is an anode and the second electrode is a cathode).
  • the relationship between the work functions of the first electrode and the second electrode may be reversed as described above.
  • the types of substantially transparent electrodes are limited, and the work function is relatively low. Since many of them are deep, in practice, a normal layer type organic thin film solar cell can be obtained by using a metal having a shallow work function (less than ⁇ 4.0 eV) on the second electrode side. Examples of such a metal include aluminum, calcium, magnesium, lithium, sodium, potassium, and the like. In general, aluminum having high reflectivity and high conductivity is used.
  • Intermediate electrode Charge recombination layer
  • the material of the intermediate electrode required in the case of the tandem configuration as shown in FIG. 3 a compound having both transparency and conductivity is preferable, and the materials used in the anode (ITO, AZO, FTO, SnO) are used. 2 , transparent metal oxides such as ZnO and titanium oxide, very thin metal layers such as Ag, Al, Au, and Pt or metal nanowires, layers containing nanowires such as carbon nanotubes, nanoparticles, PEDOT: PSS, polyaniline, etc. Or the like can be used.
  • the hole transport layer and the electron transport layer described above there is also a combination that works as an intermediate electrode (charge recombination layer) by stacking them in an appropriate combination.
  • the step of forming a layer can be omitted, which is preferable.
  • the substrate is a transparent substrate, and “transparent” has the same definition as in the above-described electrode.
  • the substrate for example, a glass substrate, a resin substrate, and the like are preferably used, but it is desirable to use a transparent resin film from the viewpoint of light weight and flexibility.
  • a transparent resin film which can be preferably used as a transparent substrate by this invention,
  • the material, a shape, a structure, thickness, etc. can be suitably selected from well-known things.
  • polyolefins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin film such as modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, cyclic olefin resin, etc.
  • Resin film vinyl resin film such as polyvinyl chloride, polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, Polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, etc.
  • the resin film is (380 ⁇ 800 nm) transmittance of 80% or more in, it can be preferably applied to a transparent resin film according to the present invention.
  • biaxially stretched polyethylene terephthalate film preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • the material constituting the easy-adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer. be able to.
  • a barrier coat layer may be formed in advance on the transparent substrate, or a hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred. Good.
  • the organic photoelectric conversion element of the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight.
  • the optical functional layer for example, a light condensing layer such as an antireflection film or a microlens array, or a light diffusion layer that can scatter the light reflected by the cathode and enter the photoelectric conversion layer again can be provided. Good.
  • the antireflection layer various known antireflection layers can be provided.
  • the transparent resin film constituting the substrate is a biaxially stretched polyethylene terephthalate film
  • the refractive index of the easy adhesion layer adjacent to the film Is preferably 1.57 to 1.63, since the interface reflection between the film substrate and the easy adhesion layer can be reduced and the transmittance can be improved.
  • the method of adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • the condensing layer can be provided, for example, by processing so as to provide a microlens array-like structure on the sunlight receiving side of the support substrate, or by combining with a so-called condensing sheet. Thereby, the amount of received light from a specific direction can be increased, and conversely, the dependence on the incident angle of sunlight can be reduced.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the light scattering layer examples include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
  • the method and process for patterning each electrode, photoelectric conversion layer, hole transport layer, electron transport layer and the like according to the present invention are not particularly limited, and known methods can be appropriately applied.
  • the material constituting the layer is soluble, such as a photoelectric conversion layer, a charge transport layer, etc.
  • only unnecessary portions may be wiped after the entire surface application such as die coating, dip coating, etc., and methods such as ink jet method and screen printing May be used for direct patterning during coating.
  • the electrode can be subjected to mask vapor deposition during vacuum deposition or patterned by a known method such as etching or lift-off.
  • the pattern may be formed by transferring a pattern formed on another substrate.
  • the solar cell of this invention has said organic photoelectric conversion element.
  • the solar cell of the present invention comprises the above-described organic photoelectric conversion element, has a structure in which optimum design and circuit design are performed for sunlight, and optimum photoelectric conversion is performed when sunlight is used as a light source. .
  • the photoelectric conversion layer has a structure that can be irradiated with sunlight, and when the solar cell of the present invention is configured, the photoelectric conversion layer and each electrode are housed in a case and sealed, Alternatively, it is preferable to seal them entirely with resin.
  • the produced organic photoelectric conversion element is not deteriorated by oxygen, moisture, etc. in the environment, it is preferable to seal not only the organic photoelectric conversion element but also an organic electroluminescence element by a known method. .
  • a method of sealing a cap made of aluminum or glass by bonding with an adhesive, a plastic film on which a gas barrier layer such as aluminum, silicon oxide, or aluminum oxide is formed and an organic photoelectric conversion element are pasted with an adhesive.
  • Method spin coating of organic polymer material (polyvinyl alcohol, etc.) with high gas barrier property on organic photoelectric conversion element, inorganic thin film (silicon oxide, aluminum oxide, etc.) or organic film (parylene, etc.) with high gas barrier property And the like, and a method of laminating these sealing materials in a composite manner.
  • Example 1 [Production of organic photoelectric conversion element] (Preparation of organic photoelectric conversion element 1) An organic photoelectric conversion element was produced with reference to WO2008 / 134492.
  • an indium tin oxide (ITO) transparent conductive film 150 nm deposited as a first electrode is patterned to a width of 10 mm using a normal photolithography technique and wet etching, A first electrode was formed.
  • the patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning. After this, the substrate was brought into the glove box and operated under a nitrogen atmosphere.
  • a 0.05 mass% methoxyethanol solution of 3- (2-aminoethyl) -aminopropyltrimethoxysilane manufactured by Aldrich was used with a blade coater so that the dry film thickness was about 5 nm. And dried. Thereafter, heat treatment was performed at 120 ° C. for 1 minute on a hot plate to form an electron transport layer.
  • Comparative Compound 1 (synthesized based on Non-Patent Document 3), which is a p-type organic semiconductor material, and PC61BM (frontier carbon nanom spectra E100H), which is an n-type organic semiconductor material, in o-dichlorobenzene. ) was mixed at 1.6% by mass, dissolved by stirring overnight while heating to 110 ° C. in an oven, and then applied using a blade coater so that the dry film thickness was about 200 nm. The film was dried for 2 minutes at a temperature to form a photoelectric conversion layer.
  • Comparative Compound 1 (synthesized based on Non-Patent Document 3), which is a p-type organic semiconductor material, and PC61BM (frontier carbon nanom spectra E100H), which is an n-type organic semiconductor material, in o-dichlorobenzene. ) was mixed at 1.6% by mass, dissolved by stirring overnight while heating to 110 ° C. in an oven, and then applied using a blade coat
  • PEDOT-PSS CLEVIOS (registered trademark) PVP AI 4083, manufactured by Helios Co., Ltd., made of conductive polymer and polyanion, conductivity (1 ⁇ 10 ⁇ 3 S / cm) was diluted with an equal amount of isopropanol, and applied and dried using a blade coater so that the dry film thickness was about 30 nm. Then, it heat-processed with the warm air of 90 degreeC for 20 second, and formed the positive hole transport layer (organic material layer). At the time of application, the atmospheric temperature was 23 ° C. and the humidity was 65%.
  • the element was set so that the shadow mask having a width of 10 mm was orthogonal to the first electrode (transparent electrode), the inside of the vacuum deposition apparatus was depressurized to 1 ⁇ 10 ⁇ 3 Pa or less, and then the deposition rate was 0.5 nm.
  • a second electrode was formed by laminating 200 nm of Ag metal at a rate of / sec.
  • the obtained laminate was moved to a nitrogen chamber and sandwiched between two relief printing transparent barrier films GX (water vapor transmission rate 0.05 g / m 2 / d), and UV curable resin (Nagase ChemteX Corporation). Manufactured, manufactured by UV RESIN XNR5570-B1) and then taken out into the atmosphere to obtain an organic photoelectric conversion element 1 having a light receiving portion of about 10 ⁇ 10 mm size.
  • Organic photoelectric conversion devices 2 to 11 were obtained in the same manner except that the p-type organic semiconductor material was changed to the materials shown in Table 1 in the production of the organic photoelectric conversion device 1. Comparative compound 2 was synthesized with reference to Non-Patent Document 4.
  • the organic photoelectric conversion elements 5 and 6 are the same polymer (Exemplary Compound 14), but are made of materials having different synthetic lots and different molecular weights as organic photoelectric conversion elements.
  • the organic photoelectric conversion element for which the photoelectric conversion efficiency was evaluated was heated to 85 ° C. in an open circuit state between the anode and the cathode, and the solar simulator (AM1.5G) light was continuously exposed to the initial conversion efficiency. Assuming that 100 is 100, the time to 80 was measured as LT80. The larger this value is, the better the durability of the organic photoelectric conversion element is.
  • Table 1 shows the evaluation results.
  • Example 2 [Production of organic photoelectric conversion element] (Preparation of organic photoelectric conversion element 2 ') Using the same material and composition as those of the organic photoelectric conversion element 2 prepared in Example 1, the following normal layer type organic photoelectric conversion element was prepared.
  • Example 2 The same transparent substrate as in Example 1 was washed in the same process, and then a conductive polymer CLEVIOS P VP AI 4083 was blade-coated to a thickness of 30 nm on the ITO film, and then in the atmosphere at 140 ° C. Heat-dried for 10 minutes.
  • the substrate was brought into the glove box and worked in a nitrogen atmosphere.
  • the substrate was again heat-treated at 140 ° C. for 10 minutes in a nitrogen atmosphere.
  • a solution prepared by dissolving 0.8% by mass of the comparative compound 2 and 1.6% by mass of PCBM as an n-type organic semiconductor material in chlorobenzene was prepared, and similarly, a film thickness of 200 nm was obtained. Blade coating was performed and dried at 80 ° C. for 2 minutes.
  • the substrate on which the series of organic layers was formed was placed in a vacuum deposition apparatus without being exposed to the atmosphere.
  • the element was set so that the shadow mask with a width of 10 mm was orthogonal to the transparent electrode, and the inside of the vacuum deposition apparatus was depressurized to 10 ⁇ 3 Pa or less, and then 0.6 nm of lithium fluoride was deposited and 100 nm of aluminum was deposited as a counter electrode.
  • heating was performed at 120 ° C. for 30 minutes to obtain a comparative organic photoelectric conversion element 2 ′.
  • the deposition rate was 2 nm / second, and the size was 10 mm square.
  • the obtained organic photoelectric conversion element 2 ′ was prepared by using a UV curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1) under a nitrogen atmosphere, and a relief barrier film GX (water vapor transmission rate 0.05 g / m 2 / d) and sealed and taken out to the atmosphere.
  • a UV curable resin manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1
  • GX water vapor transmission rate 0.05 g / m 2 / d
  • Table 2 shows the evaluation results.
  • Example 3 [Production of organic photoelectric conversion element] (Production of organic photoelectric conversion element 1 ′′)
  • the organic photoelectric conversion element 1 ′′ was produced by performing the application of the hole transport layer as it was in the glove box (in the GB), not in the atmosphere. .
  • HIL hole transport layer
  • the hole transport layer (HIL) has oxygen and moisture as in the glove box (GB). It can be seen that the durability can be further improved by coating in an environment free from water. However, in such a dry environment, the organic photoelectric conversion elements 1 ′′ and 2 ′′ using the comparative compounds 1 and 2 cannot be formed because the hole transport layer is repelled, and a process advantageous for durability is performed. It turns out that it cannot be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

[Problem] The objective of the present invention is to provide: an organic photoelectric conversion element that has a high photoelectric conversion efficiency, superior durability, and favorable coating characteristics; a method for producing the organic photoelectric conversion element; and a solar cell that uses the organic photoelectric conversion element. [Solution] The photoelectric conversion element has, in the given order on a transparent substrate, a transparent first electrode, a photoelectric conversion layer having both a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode, and is characterized by the photoelectric conversion layer containing a compound having a substructure represented by general formula (1) as the p-type organic semiconductor material. (In the formula: X each independently represents a fluorine atom or a chlorine atom; R1-R3 each independently represents a hydrogen atom, a halogen atom, an alkyl group, a fluoroalkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an alkoxy group, a fluoroalkoxy group, an alkylthio group, a fluoroalkylthio group, an alkylamino group, a fluoroalkylamino group, an aryl group, or a heteroaryl group, or alternatively a linking group wherein said groups are bonded together; the aryl group or the heteroaryl group may be a condensed ring structure; and n each independently represents an integer from 0 to 2.)

Description

有機光電変換素子、その製造方法及び太陽電池ORGANIC PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL
 本発明は、有機光電変換素子、その製造方法及び太陽電池に関し、さらに詳しくは、バルクヘテロジャンクション型の有機光電変換素子、その製造方法、及びその有機光電変換素子を用いた太陽電池に関する。 The present invention relates to an organic photoelectric conversion element, a manufacturing method thereof, and a solar cell, and more particularly to a bulk heterojunction type organic photoelectric conversion element, a manufacturing method thereof, and a solar cell using the organic photoelectric conversion element.
 近年の化石燃料の高騰によって、自然エネルギーから直接発電できるシステムが求められており、単結晶・多結晶・アモルファスのSiを用いた太陽電池、GaAsやCIGS(銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)からなる半導体材料)等の化合物系の太陽電池、あるいは色素増感型光電変換素子(グレッツェルセル)等が提案・実用化されている。 Due to the recent rise in fossil fuels, a system that can generate electricity directly from natural energy is required. Solar cells using single-crystal / polycrystalline / amorphous Si, GaAs and CIGS (copper (Cu), indium (In), Compound-based solar cells such as gallium (Ga) and selenium (Se), or dye-sensitized photoelectric conversion elements (Gretzel cells) have been proposed and put to practical use.
 しかしながら、これらの太陽電池で発電される電気のコストは、未だ化石燃料を用いて発電・送電される電気のコストよりも高いものとなっており、普及の妨げとなっていた。また、基板に重いガラスを用いなければならないため、設置時に補強工事が必要であり、これらも発電コストを高くする一因であった。 However, the cost of electricity generated by these solar cells is still higher than the cost of electricity generated and transmitted using fossil fuels, which has hindered the spread of electricity. In addition, since heavy glass must be used for the substrate, reinforcement work is required at the time of installation, which is also a factor in increasing the power generation cost.
 このような状況に対し、化石燃料による発電コストよりも低い発電コストを達成しうる太陽電池として、透明電極と対電極との間に電子供与体層(p型有機半導体層)と電子受容体層(n型有機半導体層)とが混合された光電変換層を挟んだバルクヘテロジャンクション型光電変換素子が提案され、5%を超える効率が報告されている(例えば、非特許文献1参照)。 In such a situation, as a solar cell that can achieve a power generation cost lower than that of fossil fuel, an electron donor layer (p-type organic semiconductor layer) and an electron acceptor layer are provided between the transparent electrode and the counter electrode. A bulk heterojunction photoelectric conversion element sandwiching a photoelectric conversion layer mixed with (n-type organic semiconductor layer) has been proposed, and an efficiency exceeding 5% has been reported (for example, see Non-Patent Document 1).
 これらのバルクヘテロジャンクション型光電変換素子を用いた太陽電池(「有機薄膜太陽電池」とも称する)は、アノード・カソード以外は塗布により形成することができるため、高速且つ安価で製造が可能であり、前述の発電コストの課題を解決できる可能性がある。さらに、上記のSi系太陽電池、化合物系太陽電池、色素増感太陽電池等と異なり、160℃を超える高温条件下に曝す製造工程を必要としないため、安価且つ軽量なプラスチック基板上への形成も可能であると期待される。 Since solar cells using these bulk heterojunction photoelectric conversion elements (also referred to as “organic thin film solar cells”) can be formed by coating except for the anode and cathode, they can be manufactured at high speed and at low cost. There is a possibility to solve the problem of power generation cost. Furthermore, unlike the above-described Si-based solar cells, compound-based solar cells, dye-sensitized solar cells, etc., it does not require a manufacturing process that is exposed to high-temperature conditions exceeding 160 ° C., so that it is formed on an inexpensive and lightweight plastic substrate. Is also expected to be possible.
 しかしながら、実用化に向けては高効率化の他に耐久性の向上も求められている。このような課題に対しては、高い仕事関数を有する金属を対電極として用い、太陽光入射側をカソードとするタイプの太陽電池(いわゆる逆層型太陽電池)とすることにより電極等の劣化が抑制され、耐久性が向上することが知られているため(例えば、特許文献1参照)、逆層構成において高い光電変換効率を達成できる材料が求められている。 However, in addition to high efficiency, improvement in durability is also required for practical application. For such problems, the use of a metal having a high work function as a counter electrode and a solar cell of the type having a sunlight incident side as a cathode (so-called reverse layer type solar cell) causes deterioration of the electrode and the like. Since it is known that the durability is improved and the durability is improved (see, for example, Patent Document 1), a material capable of achieving high photoelectric conversion efficiency in the reverse layer configuration is demanded.
 ところが、逆層型太陽電池は、光透過性に劣る導電性ポリマー層が金属電極と光電変換層との間に存在する関係から、光の利用の観点からいえば不利な構成であるため、光電変換層の最適な膜厚が順層型太陽電池に比して厚くなることがシミュレーションから求められている(例えば、非特許文献2参照)。したがって、厚膜(150nm~)でも良好に発電する材料が求められているが、多くの材料は薄膜(100nm以下)の光電変換層では良好な効率が出るものの、厚膜(100nm以上)では曲線因子(FF)が低下し、高い効率を達成することが困難であるという課題を有していた。 However, the reverse-layer solar cell has a disadvantageous configuration from the viewpoint of utilization of light because a conductive polymer layer having poor light transmittance exists between the metal electrode and the photoelectric conversion layer. It is required from simulation that the optimum film thickness of the conversion layer is thicker than that of a normal layer solar cell (see, for example, Non-Patent Document 2). Therefore, there is a demand for a material that can generate electricity well even with a thick film (150 nm or more), but many materials have good efficiency in a thin film (100 nm or less) photoelectric conversion layer, but a thick film (100 nm or more) has a curve. The factor (FF) was lowered, and it was difficult to achieve high efficiency.
 この様な課題に対し、最近、非特許文献3に記載されたフッ化ベンゾトリアゾール基を有するポリマー、及び非特許文献4に記載されたフッ化ベンゾチアジアゾール基を有するポリマーを光電変換層に用いることにより、200nm前後の厚い膜厚でも7%以上の効率で発電できるとの報告がなされた。これらの報告における太陽電池は順層構成であるが、前記逆層構成とした際には高い光電変換効率と耐久性とが両立された太陽電池が得られると期待される。 For such problems, recently, a polymer having a fluorinated benzotriazole group described in Non-Patent Document 3 and a polymer having a fluorinated benzothiadiazole group described in Non-Patent Document 4 are used for the photoelectric conversion layer. Therefore, it has been reported that power can be generated with an efficiency of 7% or more even with a thick film thickness of around 200 nm. Although the solar cells in these reports have a normal layer configuration, it is expected that a solar cell having both high photoelectric conversion efficiency and durability can be obtained when the reverse layer configuration is adopted.
特開2009-146981号公報JP 2009-146981 A
 しかしながら、有機薄膜太陽電池における耐久性は、電極材料の仕事関数だけで決まるものではなく、光電変換材料自体の光酸化安定性も関係しており、通常の有機色素と同様に酸素の準位(-5.3~-5.4eV)よりも十分深いHOMO準位を有していないと、酸素存在下で光が照射されることで光酸化劣化され、経時的に光電変換効率が低下していくといった課題があった。このような観点からは、前記非特許文献3に記載のフッ化ベンゾトリアゾール基を有するポリマーはHOMO準位が-5.3eVとまだ十分深くなく、光酸化に対する耐久性が不十分であった。前記非特許文献4に記載のフッ化ベンゾチアジアゾール基を有するポリマーでは、HOMO準位が-5.4~-5.5eVと若干深い準位を有しているが、本発明者らの検討では、いまだ不十分なものであることが判明した。 However, the durability in organic thin-film solar cells is not only determined by the work function of the electrode material, but is also related to the photo-oxidation stability of the photoelectric conversion material itself, and the oxygen level ( Unless the HOMO level is sufficiently deeper than −5.3 to −5.4 eV), photo-oxidation degradation occurs due to light irradiation in the presence of oxygen, and the photoelectric conversion efficiency decreases with time. There was a problem of going. From such a viewpoint, the polymer having a fluorinated benzotriazole group described in Non-Patent Document 3 has a HOMO level of −5.3 eV, which is not yet sufficiently deep, and has insufficient durability against photooxidation. In the polymer having a fluorinated benzothiadiazole group described in Non-Patent Document 4, the HOMO level has a slightly deep level of -5.4 to -5.5 eV. , Still proved to be inadequate.
 また、別の課題としては、フッ素を含有する材料は一般的に疎水性が高くなり、フッ素を含有する材料からなる層の上に塗布を行う際に塗布液を弾きやすくなるといった課題を有している。前記非特許文献3、4で開示されている材料も、逆層構成とした場合に正孔輸送層を構成するPEDOT:PSSを含む極性溶液を塗布する際に弾きやすく、製造上の課題であることが判明した。 Another problem is that fluorine-containing materials generally have a high hydrophobicity, which makes it easier to repel the coating liquid when coating on a layer made of fluorine-containing materials. ing. The materials disclosed in Non-Patent Documents 3 and 4 are also difficult to play when applying a polar solution containing PEDOT: PSS that constitutes the hole transport layer in the case of the reverse layer structure, which is a manufacturing problem. It has been found.
 本発明は、上記課題に鑑みなされたものであり、その目的は、光電変換効率が高く耐久性に優れ、かつ塗布性も良好な有機光電変換素子、その製造方法及びその有機光電変換素子を用いた太陽電池を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to use an organic photoelectric conversion element having high photoelectric conversion efficiency, excellent durability, and good coating properties, a production method thereof, and the organic photoelectric conversion element. Is to provide a solar cell.
 本発明者らは、前記非特許文献3、4における課題を検討した結果、光電変換層のp型有機半導体材料として、ベンゾトリアゾール基及びベンゾチアジアゾール基よりも電子吸引性が強い、ベンゾオキサジアゾール基をハロゲン化した置換基を有するポリマーによって、厚膜化しても高い光電変換効率を有し、かつ耐久性も高い有機光電変換素子及び有機薄膜太陽電池を得ることができることを見出した。また、このハロゲン化されたベンゾオキサジアゾール基を有するポリマーを光電変換層に用いた場合、その層上に極性溶媒を用いた導電性高分子の塗布液を塗布した際にも弾きが発生しにくく、高い収率で有機光電変換素子を得ることができることを見出した。 As a result of studying the problems in Non-Patent Documents 3 and 4, the present inventors have found that a p-type organic semiconductor material for a photoelectric conversion layer has a higher electron-withdrawing property than a benzotriazole group and a benzothiadiazole group. It has been found that an organic photoelectric conversion element and an organic thin-film solar cell having high photoelectric conversion efficiency and high durability can be obtained with a polymer having a substituent having a halogenated group even when the film thickness is increased. In addition, when this polymer having a halogenated benzoxadiazole group is used for a photoelectric conversion layer, it is also repelled when a conductive polymer coating solution using a polar solvent is applied on the layer. It was difficult to obtain an organic photoelectric conversion element with a high yield.
 すなわち、本発明の上記課題は、以下の構成により達成される。 That is, the above-described problem of the present invention is achieved by the following configuration.
 1.透明な基板上に、透明な第1の電極、p型有機半導体材料とn型有機半導体材料とを含有する光電変換層、及び第2の電極をこの順に有する有機光電変換素子であって、該光電変換層が、該p型有機半導体材料として下記一般式(1)で表される部分構造を有する化合物を含有することを特徴とする有機光電変換素子。 1. An organic photoelectric conversion element having a transparent first electrode, a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode in this order on a transparent substrate, The photoelectric conversion layer contains a compound having a partial structure represented by the following general formula (1) as the p-type organic semiconductor material.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、Xは、それぞれ独立して、フッ素原子又は塩素原子を表す。R~Rは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、フッ化アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アルコキシ基、フッ化アルコキシ基、アルキルチオ基、フッ化アルキルチオ基、アルキルアミノ基、フッ化アルキルアミノ基、アリール基、若しくはヘテロアリール基、又はこれらの基が互いに結合した連結基を表し、前記アリール基又はヘテロアリール基は、縮合環構造であってもよい。nは、それぞれ独立して、0~2の整数を表す。)
 2.前記一般式(1)で表される部分構造を有する化合物の数平均分子量が、15000~50000であることを特徴とする前記1に記載の有機光電変換素子。
(In the formula, each X independently represents a fluorine atom or a chlorine atom. R 1 to R 3 each independently represents a hydrogen atom, a halogen atom, an alkyl group, a fluorinated alkyl group, an alkenyl group, or an alkynyl group. Group, cycloalkyl group, alkoxy group, fluorinated alkoxy group, alkylthio group, fluorinated alkylthio group, alkylamino group, fluorinated alkylamino group, aryl group or heteroaryl group, or a linking group in which these groups are bonded to each other And the aryl group or heteroaryl group may be a condensed ring structure, and each n independently represents an integer of 0 to 2.)
2. 2. The organic photoelectric conversion device according to 1 above, wherein the compound having a partial structure represented by the general formula (1) has a number average molecular weight of 15,000 to 50,000.
 3.前記一般式(1)において、RがXと同じ原子を表すことを特徴とする前記1又は2に記載の有機光電変換素子。 3. 3. The organic photoelectric conversion device as described in 1 or 2 above, wherein in the general formula (1), R 1 represents the same atom as X.
 4.前記一般式(1)において、Xがフッ素原子を表すことを特徴とする前記1~3のいずれかに記載の有機光電変換素子。 4. 4. The organic photoelectric conversion element as described in any one of 1 to 3 above, wherein in the general formula (1), X represents a fluorine atom.
 5.前記p型有機半導体材料が、前記一般式(1)で表される構造と、さらに下記一般式(2)で表される構造とを有する共重合体であることを特徴とする前記1~4のいずれかに記載の有機光電変換素子。 5. The p-type organic semiconductor material is a copolymer having a structure represented by the general formula (1) and a structure represented by the following general formula (2): The organic photoelectric conversion element in any one of.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、フッ化アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アルコキシ基、フッ化アルコキシ基、アルキルチオ基、フッ化アルキルチオ基、アルキルアミノ基、フッ化アルキルアミノ基、アリール基又はヘテロアリール基を表す。)
 6.前記一般式(1)において、nが1であることを特徴とする前記1~5のいずれかに記載の有機光電変換素子。
(Wherein R 4 to R 5 are each independently a hydrogen atom, a halogen atom, an alkyl group, a fluorinated alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an alkoxy group, a fluorinated alkoxy group, or an alkylthio group. Represents a fluorinated alkylthio group, an alkylamino group, a fluorinated alkylamino group, an aryl group or a heteroaryl group.)
6). 6. The organic photoelectric conversion device as described in any one of 1 to 5 above, wherein in the general formula (1), n is 1.
 7.前記一般式(1)において、Rが炭素数8~20のアルキル基を表すことを特徴とする前記1~6のいずれかに記載の有機光電変換素子。 7. 7. The organic photoelectric conversion device as described in any one of 1 to 6 above, wherein in the general formula (1), R 2 represents an alkyl group having 8 to 20 carbon atoms.
 8.前記一般式(1)において、Rが直鎖のアルキル基を表すことを特徴とする前記1~7のいずれかに記載の有機光電変換素子。 8). 8. The organic photoelectric conversion device as described in any one of 1 to 7 above, wherein in the general formula (1), R 2 represents a linear alkyl group.
 9.前記一般式(1)において、Rが炭素数8以上のアルキル基を表す部分構造と、Rが炭素数8未満のアルキル基又は水素原子を表す部分構造とをともに含む共重合体であることを特徴とする前記1~8のいずれかに記載の有機光電変換素子。 9. In the general formula (1), R 2 is a copolymer containing both a partial structure, R 2 is a partial structure represents an alkyl group or a hydrogen atom of less than 8 carbon atoms represents the alkyl group having 8 or more carbon atoms 9. The organic photoelectric conversion device as described in any one of 1 to 8 above.
 10.前記1~9のいずれかに記載の有機光電変換素子の光電変換層を、製膜中及び製膜後に酸素及び水分に曝すことなく製造することを特徴とする有機光電変換素子の製造方法。 10. 10. A method for producing an organic photoelectric conversion element, comprising producing the photoelectric conversion layer of the organic photoelectric conversion element according to any one of 1 to 9 without being exposed to oxygen and moisture during film formation and after film formation.
 11.前記第1の電極がカソードであり、前記第2の電極がアノードである前記1~9のいずれかに記載の有機光電変換素子を具備することを特徴とする太陽電池。 11. 10. A solar cell comprising the organic photoelectric conversion device according to any one of 1 to 9, wherein the first electrode is a cathode and the second electrode is an anode.
 本発明により、高い曲線因子の値を有し光電変換効率が高く、耐久性に優れ、かつ塗布性も良好な有機光電変換素子、その製造方法及びその有機光電変換素子を用いた太陽電池を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, an organic photoelectric conversion element having a high fill factor value, high photoelectric conversion efficiency, excellent durability, and good coatability, a manufacturing method thereof, and a solar cell using the organic photoelectric conversion element are provided. can do.
本発明の有機光電変換素子の構成の例を示す概略断面図である。It is a schematic sectional drawing which shows the example of a structure of the organic photoelectric conversion element of this invention. 本発明の有機光電変換素子の構成の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of a structure of the organic photoelectric conversion element of this invention. タンデム型の光電変換層を備えた、本発明の有機光電変換素子の例を示す概略断面図である。It is a schematic sectional drawing which shows the example of the organic photoelectric conversion element of this invention provided with the tandem type photoelectric conversion layer.
 本発明の有機光電変換素子は、透明な基板上に、透明な第1の電極、p型有機半導体材料とn型有機半導体材料とを含有する光電変換層、及び第2の電極をこの順に有する有機光電変換素子であって、該光電変換層が、p型有機半導体材料として前記一般式(1)で表される部分構造を有する化合物を含有することを特徴とする。 The organic photoelectric conversion element of the present invention has a transparent first electrode, a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode in this order on a transparent substrate. An organic photoelectric conversion device, wherein the photoelectric conversion layer contains a compound having a partial structure represented by the general formula (1) as a p-type organic semiconductor material.
 本発明では、特にp型有機半導体材料とn型有機半導体材料とを含有するバルクヘテロジャンクション型の光電変換層のp型有機半導体材料として、前記一般式(1)で表される部分構造を有する化合物を用いることで、高い曲線因子の値を有し光電変換効率が高く、耐久性に優れる有機光電変換素子を提供することができる。また、塗布性も良好な有機光電変換素子をも提供することができる。 In this invention, the compound which has the partial structure represented by the said General formula (1) as a p-type organic-semiconductor material of the bulk heterojunction type photoelectric converting layer containing a p-type organic-semiconductor material and an n-type organic-semiconductor material especially By using, an organic photoelectric conversion element having a high fill factor value, high photoelectric conversion efficiency, and excellent durability can be provided. Moreover, the organic photoelectric conversion element with favorable applicability | paintability can also be provided.
 (有機光電変換素子の構成)
 図1は、本発明の有機光電変換素子の構成の例を示す概略断面図である。
(Configuration of organic photoelectric conversion element)
FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the organic photoelectric conversion element of the present invention.
 有機光電変換素子10は、透明な基板11上に、透明な第1の電極12を有し、第1の電極12の上に正孔輸送層17を有し、正孔輸送層17の上に光電変換層14を有し、光電変換層14の上に電子輸送層18を有し、電子輸送層18の上に第2の電極13を有する。 The organic photoelectric conversion element 10 has a transparent first electrode 12 on a transparent substrate 11, a hole transport layer 17 on the first electrode 12, and a hole transport layer 17 on the hole transport layer 17. The photoelectric conversion layer 14 is provided, the electron transport layer 18 is provided on the photoelectric conversion layer 14, and the second electrode 13 is provided on the electron transport layer 18.
 本発明においては、基板11及び第1の電極12は透明であり、光電変換に用いられる光は、図1の矢印の方向から入射する。 In the present invention, the substrate 11 and the first electrode 12 are transparent, and light used for photoelectric conversion enters from the direction of the arrow in FIG.
 光電変換層14は、光エネルギーを電気エネルギーに変換する層であって、p型有機半導体材料とn型有機半導体材料とを含有する。 The photoelectric conversion layer 14 is a layer that converts light energy into electric energy, and contains a p-type organic semiconductor material and an n-type organic semiconductor material.
 p型有機半導体材料は、相対的に電子供与体(ドナー)として機能し、n型有機半導体材料は、相対的に電子受容体(アクセプタ)として機能する。 The p-type organic semiconductor material functions relatively as an electron donor (donor), and the n-type organic semiconductor material functions relatively as an electron acceptor.
 ここで、電子供与体及び電子受容体は、“光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体”であり、電極のように単に電子を供与あるいは受容するものではなく、光反応によって、電子を供与あるいは受容するものである。 Here, the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”. And an electron acceptor ”, which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.
 図1において、基板11を介して第1の電極12から入射した光は、光電変換層14における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。 In FIG. 1, light incident from the first electrode 12 through the substrate 11 is absorbed by the electron acceptor or electron donor in the photoelectric conversion layer 14, and electrons move from the electron donor to the electron acceptor. A pair of holes and electrons (charge separation state) is formed.
 発生した電荷は内部電界、例えば、第1の電極12と第2の電極13との仕事関数が異なる場合では第1の電極12と第2の電極13との電位差によって、電子は電子受容体間を通り、また正孔は電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。 The generated electric charge is generated between the electron acceptors due to the internal electric field, for example, when the work functions of the first electrode 12 and the second electrode 13 are different, due to the potential difference between the first electrode 12 and the second electrode 13. And the holes pass between the electron donors and are carried to different electrodes, and a photocurrent is detected.
 図1の例では、第1の電極12の仕事関数は第2の電極13の仕事関数よりも大きいため、正孔は第1の電極12へ、電子は第2の電極13へ輸送される。この場合、第2の電極13には仕事関数が小さく酸化されやすい金属が用いられる。この場合、第1の電極はアノード(陽極)として、第2の電極はカソード(陰極)として機能する。 In the example of FIG. 1, the work function of the first electrode 12 is larger than the work function of the second electrode 13, so that holes are transported to the first electrode 12 and electrons are transported to the second electrode 13. In this case, the second electrode 13 is made of a metal that has a small work function and is easily oxidized. In this case, the first electrode functions as an anode (anode) and the second electrode functions as a cathode (cathode).
 図2に他の構成の例を示す。 Figure 2 shows an example of another configuration.
 図2は、図1の場合とは反対に、第1の電極12の仕事関数よりも第2の電極13の仕事関数を大きくすることで、電子を第1の電極12へ、正孔を第2の電極13へと輸送するように設計した場合の構成である。この場合には、第1の電極12と光電変換層14との間に電子輸送層18が配置され、光電変換層14と第2の電極13との間に正孔輸送層17が配置され、第1の電極はカソード(陰極)として、第2の電極はアノード(陽極)として機能する。 2, contrary to the case of FIG. 1, the work function of the second electrode 13 is made larger than the work function of the first electrode 12, so that electrons are transferred to the first electrode 12 and holes are transferred to the first electrode 12. This is a configuration when designed to be transported to two electrodes 13. In this case, the electron transport layer 18 is disposed between the first electrode 12 and the photoelectric conversion layer 14, the hole transport layer 17 is disposed between the photoelectric conversion layer 14 and the second electrode 13, The first electrode functions as a cathode (cathode) and the second electrode functions as an anode (anode).
 本発明の有機光電変換素子は、第2の電極の耐久性の面から、特に図2に示す構成、即ち、第1の電極がカソード(陰極)であり、第2の電極がアノード(陽極)であることが好ましい。 The organic photoelectric conversion element of the present invention has a configuration shown in FIG. 2 in particular from the viewpoint of durability of the second electrode, that is, the first electrode is a cathode (cathode) and the second electrode is an anode (anode). It is preferable that
 なお、図1、図2には記載していないが、本発明の有機光電変換素子は、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、あるいは平滑化層等の他の層を有していてもよい。 Although not shown in FIGS. 1 and 2, the organic photoelectric conversion element of the present invention is not limited to the hole blocking layer, the electron blocking layer, the electron injection layer, the hole injection layer, or the smoothing layer. It may have a layer.
 さらに、太陽光利用率(光電変換効率)の向上を目的として、光電変換層を複数積層した、タンデム型の構成としてもよい。図3は、タンデム型の光電変換層を備える有機光電変換素子を示す断面図である。 Furthermore, for the purpose of improving the solar light utilization rate (photoelectric conversion efficiency), a tandem configuration in which a plurality of photoelectric conversion layers are stacked may be employed. FIG. 3 is a cross-sectional view illustrating an organic photoelectric conversion element including a tandem photoelectric conversion layer.
 タンデム型構成の場合、基板11上に第1の電極12、第1の光電変換層14’を積層し、電荷再結合層15を積層した後、第2の光電変換層16、次いで第2の電極13を積層する。 In the case of the tandem configuration, the first electrode 12 and the first photoelectric conversion layer 14 ′ are stacked on the substrate 11, the charge recombination layer 15 is stacked, the second photoelectric conversion layer 16, and then the second photoelectric conversion layer 15. The electrode 13 is laminated.
 第2の光電変換層16は、第1の光電変換層14’の吸収スペクトルと同じスペクトルの光を吸収する層でもよいし、異なるスペクトルの光を吸収する層でもよいが、好ましくは異なるスペクトルの光を吸収する層である。 The second photoelectric conversion layer 16 may be a layer that absorbs light having the same spectrum as the absorption spectrum of the first photoelectric conversion layer 14 ′ or may be a layer that absorbs light having a different spectrum, but preferably has a different spectrum. It is a layer that absorbs light.
 なお、第1の光電変換層14’、第2の光電変換層16と各電極との間には、正孔輸送層17や電子輸送層18を有していてもよく、また、本発明においてはタンデム構成においてもそれぞれの層は、図2に示されるような逆層構成を有していることが好ましい。 Note that a hole transport layer 17 and an electron transport layer 18 may be provided between the first photoelectric conversion layer 14 ′ and the second photoelectric conversion layer 16 and each electrode. In the tandem configuration, each layer preferably has a reverse layer configuration as shown in FIG.
 以下に、これらの層を構成する材料について述べる。 The materials that make up these layers are described below.
 〔p型有機半導体材料〕
 (一般式(1)で表される部分構造を有する化合物)
 光電変換層は、p型有機半導体材料として前記一般式(1)で表される部分構造を有する化合物を含有する。
[P-type organic semiconductor materials]
(Compound having a partial structure represented by the general formula (1))
The photoelectric conversion layer contains a compound having a partial structure represented by the general formula (1) as a p-type organic semiconductor material.
 当該化合物は、半導体特性を有する有機化合物である。一般式(1)の部分構造のみを有する化合物でもよいが、有機薄膜太陽電池としてより好ましい半導体特性(特定のHOMO・LUMO準位)を有する有機化合物とするためには、後述するドナーユニットと結合させた構造を有する化合物であることが好ましい。 The compound is an organic compound having semiconductor characteristics. A compound having only a partial structure of the general formula (1) may be used, but in order to obtain an organic compound having more preferable semiconductor characteristics (specific HOMO / LUMO levels) as an organic thin film solar cell, it is bonded to a donor unit described later. It is preferable that the compound has a structure.
 前記一般式(1)において、式中、Xは、それぞれ独立して、フッ素原子又は塩素原子を表す。R~Rは、それぞれ独立して、水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基、フッ化アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アルコキシ基、フッ化アルコキシ基、アルキルチオ基、フッ化アルキルチオ基、アルキルアミノ基、フッ化アルキルアミノ基、アリール基、若しくはヘテロアリール基、又はこれらの基が互いに結合した連結基を表し、前記アリール基又はヘテロアリール基は、縮合環構造であってもよい。nは、それぞれ独立して、0~2の整数を表す。 In the said General formula (1), X represents a fluorine atom or a chlorine atom each independently. R 1 to R 3 are each independently a hydrogen atom, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), alkyl group, fluorinated alkyl group, alkenyl group, alkynyl group, cycloalkyl group, alkoxy group Group, fluorinated alkoxy group, alkylthio group, fluorinated alkylthio group, alkylamino group, fluorinated alkylamino group, aryl group, or heteroaryl group, or a linking group in which these groups are bonded to each other, the aryl group or The heteroaryl group may be a condensed ring structure. n independently represents an integer of 0 to 2.
 すなわち、共役高分子の主鎖がハロゲン化されたベンゾオキサジアゾール基を有することで、ハロゲン化ベンゾトリアゾール基やハロゲン化ベンゾチアジアゾール基を有する非特許文献3、4の場合よりも深いHOMO・LUMO準位を提供することができ、より高い開放電圧及び光酸化安定性を提供することができる。また、ハロゲン化ベンゾトリアゾール基やハロゲン化ベンゾチアジアゾール基を有する非特許文献3、4の場合のように150nm以上の厚膜でも十分高い曲線因子及び光電変換効率を提供することができる。 That is, by having a halogenated benzooxadiazole group in the main chain of the conjugated polymer, HOMO / LUMO deeper than those in Non-Patent Documents 3 and 4 having a halogenated benzotriazole group or a halogenated benzothiadiazole group. Levels can be provided, and higher open-circuit voltage and photooxidation stability can be provided. Further, as in Non-Patent Documents 3 and 4 having a halogenated benzotriazole group or a halogenated benzothiadiazole group, a sufficiently high fill factor and photoelectric conversion efficiency can be provided even with a thick film of 150 nm or more.
 上記アルキル基としては、炭素数1~24のアルキル基が好ましく、炭素数8~24のアルキル基がより好ましく、例えば、メチル、エチル、n-プロピル、iso-プロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル基、イソペンチル、ネオペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-ノナデシル基、n-イコシル、2-エチルヘキシル、3-ブチルノニル、3-エチルノニル、2-テトラオクチル、2-ヘキシルデシル、1-オクチルノニル、2-デシルテトラデシル等が挙げられる。 The alkyl group is preferably an alkyl group having 1 to 24 carbon atoms, more preferably an alkyl group having 8 to 24 carbon atoms. For example, methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, sec -Butyl, tert-butyl, n-pentyl group, isopentyl, neopentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n- Tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl group, n-icosyl, 2-ethylhexyl, 3-butylnonyl, 3-ethylnonyl, 2-tetraoctyl, 2-hexyldecyl, 1 -Octylnonyl, 2-decyltetradecyl and the like.
 フッ化アルキル基は、上記アルキル基中の水素原子の一部又は全てがフッ素化されたフッ化アルキル基である。全ての水素原子がフッ素化されたフッ化アルキル基は溶解性が低下しやすいため、母核(ベンゾオキサジアゾール環)に近い位置の水素原子はフッ素化されず、末端部の水素原子がフッ素化されたフッ化アルキル基であることが好ましい。例えば-(CHCH)-C、-(CHCH)-C15等が挙げられる。 The fluorinated alkyl group is a fluorinated alkyl group in which part or all of the hydrogen atoms in the alkyl group are fluorinated. Since the fluorinated alkyl group in which all hydrogen atoms are fluorinated tends to be poor in solubility, the hydrogen atom in the position close to the mother nucleus (benzooxadiazole ring) is not fluorinated, and the terminal hydrogen atom is fluorine. The fluorinated alkyl group is preferable. For example, — (CH 2 CH 2 ) —C 4 F 9 , — (CH 2 CH 2 ) —C 7 F 15 and the like can be mentioned.
 アルケニル基としては、炭素数2~20のアルケニル基が好ましく、例えば、ビニル基、アリル基等が挙げられる。 The alkenyl group is preferably an alkenyl group having 2 to 20 carbon atoms, and examples thereof include a vinyl group and an allyl group.
 アルキニル基としては、炭素数2~20のアルキニル基が好ましく、例えば、エチニル基、プロパルギル基等が挙げられる。 The alkynyl group is preferably an alkynyl group having 2 to 20 carbon atoms, and examples thereof include an ethynyl group and a propargyl group.
 シクロアルキル基としては、炭素数3~20のシクロアルキル基が好ましく、炭素数4~8のシクロアルキル基がより好ましく、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、ノルボルニル、アダマンチル等が挙げられる。 The cycloalkyl group is preferably a cycloalkyl group having 3 to 20 carbon atoms, more preferably a cycloalkyl group having 4 to 8 carbon atoms, and examples thereof include cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantyl and the like.
 アルコキシ基、フッ化アルコキシ基としては、炭素数1~24のアルコキシ基、フッ化アルコキシ基が好ましく、例えば、メトキシ基、イソプロポキシ基、t-ブトキシ基、2-エチルヘキシルオキシ基、2-エチルオクチルオキシ基、n-ドデシルオキシ基、2-ブチルオクチルオキシ基、トリフルオロメトキシ基等、水酸基の水素原子が前述のアルキル基、フッ化アルキル基等で置換された構造を有する基等を挙げることができる。 The alkoxy group and the fluorinated alkoxy group are preferably an alkoxy group having 1 to 24 carbon atoms and a fluorinated alkoxy group. For example, a methoxy group, an isopropoxy group, a t-butoxy group, a 2-ethylhexyloxy group, and 2-ethyloctyl Examples include an oxy group, an n-dodecyloxy group, a 2-butyloctyloxy group, a trifluoromethoxy group, a group having a structure in which a hydrogen atom of a hydroxyl group is substituted with the aforementioned alkyl group, fluorinated alkyl group, or the like. it can.
 アルキルチオ基、フッ化アルキルチオ基としては、炭素数1~24のアルキルチオ基、フッ化アルキルチオ基が好ましく、例えば、メチルチオ基、イソプロピルチオ基、t-ブチルチオ基、2-エチルヘキシルチオ基、トリフルオロメチルチオ基等、チオール基の水素原子が前述のアルキル基、フッ化アルキル基等で置換された構造を有する基等を挙げることができる。 The alkylthio group and the fluorinated alkylthio group are preferably an alkylthio group having 1 to 24 carbon atoms and a fluorinated alkylthio group. For example, a methylthio group, an isopropylthio group, a t-butylthio group, a 2-ethylhexylthio group, a trifluoromethylthio group A group having a structure in which a hydrogen atom of a thiol group is substituted with the aforementioned alkyl group, fluorinated alkyl group, or the like.
 アルキルアミノ基、フッ化アルキルアミノ基としては、炭素数1~24のアルキルアミノ基、フッ化アルキルアミノ基が好ましく、例えば、ジメチルアミノ基、ジイソプロピルアミノ基、メチル-t-ブチルアミノ基、ジ-2-エチルヘキシルアミノ基等、アミノ基(-NH)の水素原子1以上が前述のアルキル基、フッ化アルキル基等で置換された構造を有する基等を挙げることができる。 As the alkylamino group and fluorinated alkylamino group, an alkylamino group having 1 to 24 carbon atoms and a fluorinated alkylamino group are preferable. For example, dimethylamino group, diisopropylamino group, methyl-t-butylamino group, di- Examples thereof include a group having a structure in which one or more hydrogen atoms of an amino group (—NH 2 ) are substituted with the aforementioned alkyl group, fluorinated alkyl group or the like, such as a 2-ethylhexylamino group.
 アリール基としては、炭素数6~30のアリール基が好ましく、炭素数6~20のアリール基がより好ましく、炭素数6~12のアリール基が特に好ましく、例えば、フェニル、p-メチルフェニル、ナフチル、フェナントリル、ピレニル等が挙げられる。 As the aryl group, an aryl group having 6 to 30 carbon atoms is preferable, an aryl group having 6 to 20 carbon atoms is more preferable, and an aryl group having 6 to 12 carbon atoms is particularly preferable. For example, phenyl, p-methylphenyl, naphthyl , Phenanthryl, pyrenyl and the like.
 ヘテロアリール基としては、炭素数1~20のヘテロアリール基が好ましく、炭素数1~12のヘテロアリール基がより好ましい。ヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子が挙げられる。具体的な基としては、例えば、イミダゾリル、ピリジル、キノリル、フリル、ピペリジル、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、チエニル、フリル、ピロール、チアゾリル等が挙げられる。 The heteroaryl group is preferably a heteroaryl group having 1 to 20 carbon atoms, and more preferably a heteroaryl group having 1 to 12 carbon atoms. Examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom. Specific examples include imidazolyl, pyridyl, quinolyl, furyl, piperidyl, benzoxazolyl, benzimidazolyl, benzthiazolyl, thienyl, furyl, pyrrole, thiazolyl and the like.
 縮合環としては、チオフェン環、フラン環、ピロール環、シクロペンタジエン、シラシクロペンタジエン等の複素5員環及びこれらを縮合環として含む構造、具体的には、フルオレン、シラフルオレン、カルバゾール、ジチエノシクロペンタジエン、ジチエノシラシクロペンタジエン、ジチエノピロール、ベンゾジチオフェン等を挙げることができる。 Condensed rings include hetero five-membered rings such as thiophene ring, furan ring, pyrrole ring, cyclopentadiene, and silacyclopentadiene, and structures containing these as condensed rings, specifically, fluorene, silafluorene, carbazole, dithienocyclo. Examples include pentadiene, dithienosilacyclopentadiene, dithienopyrrole, and benzodithiophene.
 また、これらの置換基は互いに複数結合した連結基であってもよい。 Further, these substituents may be linking groups bonded to each other.
 これらの置換基の中でも、R~Rは炭素数8~20のアルキル基を表すことが好ましい。これは、得られるp型有機半導体材料を用いて十分な厚膜の光電変換層を形成するためには、p型有機半導体材料に一定以上の溶解性が必要であり、溶解性の付与といった観点では炭素数8以上のアルキル基で置換された材料であることが好ましい。他方でアルキル鎖長が20よりも長すぎると、電荷の輸送に寄与する部分(共役高分子主鎖)が減少するためか、短絡電流値が減少する傾向がある。また、特に高分子材料の場合、溶解性の付与だけでなく、直鎖状のアルキル基が配列性を提供して(ファスナー効果とも呼ばれる)高い移動度を提供しうる場合もあるため、直鎖状のアルキル基で置換されたp型有機半導体材料である(すなわち、R~Rは、直鎖のアルキル基を表す)ことが好ましい。さらに、一般式(1)において、R~Rが炭素数8以上のアルキル基を表す部分構造があれば、後述するように一部にR~Rが炭素数8未満のアルキル基又は水素原子を表す部分構造を有する共重合体としてもよい。後述するが、このような共重合体は好ましい分子量と結晶性とを両立させやすいというメリットがあり、好ましい。 Among these substituents, R 1 to R 3 preferably represent an alkyl group having 8 to 20 carbon atoms. This is because, in order to form a sufficiently thick photoelectric conversion layer using the obtained p-type organic semiconductor material, the p-type organic semiconductor material must have a certain degree of solubility, and the viewpoint of imparting solubility Thus, a material substituted with an alkyl group having 8 or more carbon atoms is preferable. On the other hand, when the alkyl chain length is longer than 20, the portion (conjugated polymer main chain) contributing to charge transport tends to decrease or the short circuit current value tends to decrease. In particular, in the case of a polymer material, in addition to imparting solubility, a linear alkyl group may provide alignment (also referred to as a fastener effect), and may provide high mobility. It is preferable that the p-type organic semiconductor material is substituted with an alkyl group (that is, R 1 to R 3 represent a linear alkyl group). Further, in the general formula (1), if there is a partial structure R 1 ~ R 3 represents an alkyl group having 8 or more carbon atoms, a part as will be described later R 1 ~ R 3 is having less than 8 carbon atoms the alkyl group Alternatively, a copolymer having a partial structure representing a hydrogen atom may be used. As will be described later, such a copolymer is preferable because it has a merit that it is easy to achieve both a preferable molecular weight and crystallinity.
 前記一般式(1)において、RはXと同様にハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)であることも好ましい。このような構造とすることで、一層深いHOMO・LUMO準位のポリマーとすることができ、より高い開放電圧及び光酸化安定性を提供することができる。また、RはXと同じ原子であることが好ましい。このような構造とすることで、分子の対称性が向上するため、得られるポリマーの結晶性が向上し、高い移動度及び高い曲線因子を得やすい。 In the general formula (1), R 1 is preferably a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) as in the case of X. By setting it as such a structure, it can be set as a polymer of a deeper HOMO * LUMO level, and can provide a higher open circuit voltage and photo-oxidation stability. R 1 is preferably the same atom as X. By adopting such a structure, the symmetry of the molecule is improved, so that the crystallinity of the obtained polymer is improved, and high mobility and a high fill factor are easily obtained.
 特に、前記一般式(1)において、Xはフッ素原子であることが好ましい。フッ素原子はハロゲン原子の中では最も小さい原子であり、ベンゾオキサジアゾール基に置換した際に、隣接するチオフェン環等と立体障害を起こしにくく、分子の平面性が保持されやすくなる。その結果、得られる分子の結晶性や移動度が向上し、曲線因子の高い有機光電変換素子が得やすくなるためである。 In particular, in the general formula (1), X is preferably a fluorine atom. The fluorine atom is the smallest of the halogen atoms, and when substituted with a benzooxadiazole group, it does not easily cause steric hindrance with the adjacent thiophene ring and the like, and the planarity of the molecule is easily maintained. As a result, the crystallinity and mobility of the obtained molecule are improved, and an organic photoelectric conversion element having a high fill factor is easily obtained.
 また、前記一般式(1)において、nは、それぞれ独立して、0~2の整数であり、1であることが好ましい。n=0では得られるポリマーの溶解性が不足する場合がある。また、n=2では得られるポリマーのHOMO/LUMO準位が浅くなり、有機光電変換素子とした際に開放電圧が若干低くなることがあるためである。また、詳細は不明であるが、n=1であるポリマーの場合は、耐久性が高いものが得られやすい。 In the general formula (1), each n is independently an integer of 0 to 2, and is preferably 1. When n = 0, the resulting polymer may have insufficient solubility. Further, when n = 2, the HOMO / LUMO level of the obtained polymer becomes shallow, and the open circuit voltage may be slightly lowered when an organic photoelectric conversion element is obtained. Moreover, although details are unknown, in the case of a polymer with n = 1, a highly durable one is easily obtained.
 なお、一般式(1)で表される部分構造は、ドナー・アクセプター型のp型有機半導体材料においては一般的にアクセプターユニット(深いHOMO・LUMO準位を有するユニット)と呼ばれる部分構造である。ドナーとして機能するドナーユニット(浅いHOMO・LUMO準位を有するユニット)とアクセプターユニットとを結合させた化合物は共役して長波長の吸収と深いLUMO準位を併せ持つ材料となり、p型有機半導体材料として、好ましく用いられる。 The partial structure represented by the general formula (1) is a partial structure generally called an acceptor unit (a unit having a deep HOMO / LUMO level) in a donor-acceptor type p-type organic semiconductor material. . A compound in which a donor unit that functions as a donor (a unit having a shallow HOMO / LUMO level) and an acceptor unit is conjugated to form a material having both long-wavelength absorption and a deep LUMO level, and is a p-type organic semiconductor material Are preferably used.
 ドナーユニットとしては、例えば同じπ電子数を有する炭化水素芳香族環(ベンゼン、ナフタレン、アントラセン等)よりもLUMO準位又はHOMO準位が浅くなるようなユニットであれば際限なく用いることができる。より好ましくは、チオフェン環、フラン環、ピロール環、シクロペンタジエン、シラシクロペンタジエン等の複素5員環及びこれらの環構造を含む縮合環である。縮合環としては、具体的には、フルオレン、シラフルオレン、カルバゾール、ジチエノシクロペンタジエン、ジチエノシラシクロペンタジエン、ジチエノピロール、ベンゾジチオフェン等を挙げることができる。 As the donor unit, for example, any unit that has a LUMO level or a HOMO level shallower than a hydrocarbon aromatic ring (benzene, naphthalene, anthracene, etc.) having the same number of π electrons can be used without limitation. More preferred are heterocyclic 5-membered rings such as thiophene ring, furan ring, pyrrole ring, cyclopentadiene, and silacyclopentadiene, and condensed rings containing these ring structures. Specific examples of the condensed ring include fluorene, silafluorene, carbazole, dithienocyclopentadiene, dithienosilacyclopentadiene, dithienopyrrole, and benzodithiophene.
 (一般式(1)で表される構造と、一般式(2)で表される構造とを有する共重合体)
 前記p型有機半導体材料は、より好ましくは、前記一般式(1)で表される構造と、前記一般式(2)で表される構造とを有する共重合体である。
(Copolymer having the structure represented by the general formula (1) and the structure represented by the general formula (2))
The p-type organic semiconductor material is more preferably a copolymer having a structure represented by the general formula (1) and a structure represented by the general formula (2).
 一般式(2)において、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、フッ化アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アルコキシ基、フッ化アルコキシ基、アルキルチオ基、フッ化アルキルチオ基、アルキルアミノ基、フッ化アルキルアミノ基、アリール基又はヘテロアリール基を表す。これらの基のの好ましい形態及び具体例は、前記一般式(1)で挙げた基と同じである。このような構造は、高い移動度、高い溶解性、及び長波長まで吸収可能な材料を提供することができるため好ましい。 In the general formula (2), R 4 to R 5 each independently represent a hydrogen atom, a halogen atom, an alkyl group, a fluorinated alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an alkoxy group, or a fluorinated alkoxy group. Represents an alkylthio group, a fluorinated alkylthio group, an alkylamino group, a fluorinated alkylamino group, an aryl group or a heteroaryl group. Preferred forms and specific examples of these groups are the same as the groups mentioned in the general formula (1). Such a structure is preferable because it can provide a material with high mobility, high solubility, and absorption up to a long wavelength.
 さらに、p型有機半導体材料として用いられる上記一般式(1)で表される部分構造を有する化合物は、数平均分子量が15000~50000であることが好ましい。 Furthermore, the compound having the partial structure represented by the general formula (1) used as the p-type organic semiconductor material preferably has a number average molecular weight of 15000 to 50000.
 数平均分子量を15000以上とすることにより、バルクヘテロジャンクション型の光電変換層を構成する他方の成分であるn型有機半導体材料として低分子化合物(例えば、フラーレン誘導体)が広く用いられているため、p型有機半導体材料が高分子である方が互いにミクロ相分離構造を形成し、バルクヘテロジャンクション型光電変換層で発生した正孔と電子をそれぞれ運ぶキャリアパスを生成しやすくなる傾向がある。 By setting the number average molecular weight to 15000 or more, low molecular weight compounds (for example, fullerene derivatives) are widely used as the n-type organic semiconductor material that is the other component constituting the bulk heterojunction photoelectric conversion layer. When the type organic semiconductor material is a polymer, it tends to form a microphase separation structure and to easily generate carrier paths that respectively carry holes and electrons generated in the bulk heterojunction photoelectric conversion layer.
 他方で分子量が大きすぎると溶解性が低下するため、p型有機半導体材料の数平均分子量は50000以下であることが好ましい。より好ましくは15000~30000の範囲である。 On the other hand, if the molecular weight is too large, the solubility is lowered. Therefore, the number average molecular weight of the p-type organic semiconductor material is preferably 50000 or less. More preferably, it is in the range of 15000 to 30000.
 なお、溶解性は前記一般式(1)、又は、一般式(1)及び一般式(2)で表される母核を溶解性を有する置換基(「溶解性基」とも称する)で置換することで向上させることもできるが、溶解性基が過剰にあると結晶性及び移動度を低下させ、得られる有機薄膜太陽電池の曲線因子等の特性を低下させることがある。そこで、溶解性基及び溶解性基で置換されたアリール基等で置換された構造を有する前記一般式(1)、又は、一般式(1)及び一般式(2)で表される構造と、溶解性基を有しない前記一般式(1)、又は、一般式(1)及び一般式(2)で表される構造とを共重合することによって、前記好ましい分子量の範囲と結晶性とを両立させることも好ましい手段である。 In addition, the solubility substitutes the mother nucleus represented by the general formula (1) or the general formula (1) and the general formula (2) with a substituent having solubility (also referred to as “soluble group”). However, if the amount of the soluble group is excessive, the crystallinity and mobility may be lowered, and the characteristics such as the curve factor of the obtained organic thin film solar cell may be lowered. Therefore, the general formula (1) having a structure substituted with a soluble group and an aryl group substituted with a soluble group, or the structure represented by the general formula (1) and the general formula (2), By copolymerizing the general formula (1) having no solubility group or the structure represented by the general formula (1) and the general formula (2), both the preferable molecular weight range and the crystallinity are achieved. It is also a preferable means.
 なお、数平均分子量はゲルパーミエーションクロマトグラフィー(GPC)で測定することができる。 The number average molecular weight can be measured by gel permeation chromatography (GPC).
 具体的には、数平均分子量は、下記の方法により測定した値を採用する。 Specifically, the number average molecular weight is a value measured by the following method.
 ウオーターズ社製150C ALC/GPC(カラム:東ソー(株)製GMHHR-H(S)、溶媒:1,2,4-トリクロロベンゼン)を使用して、ゲルパーミエーション・クロマトグラフィー(GPC)法により、重量平均分子量(Mw)及び数平均分子量(Mn)を測定する。なお、東ソー(株)製標準ポリスチレンを用いて、ユニバーサルキャリブレーション法によりカラム溶出体積を校正する。 Water per 150C ALC / GPC (column: GMHHR-H (S) manufactured by Tosoh Corporation), solvent: 1,2,4-trichlorobenzene), by gel permeation chromatography (GPC) method, The weight average molecular weight (Mw) and the number average molecular weight (Mn) are measured. In addition, the column elution volume is calibrated by the universal calibration method using Tosoh Corporation standard polystyrene.
 なお、分取用のゲルパーミエーションクロマトグラフィー(GPC)を用いて精製することにより、所望の分子量を有する化合物を分離することができる。 A compound having a desired molecular weight can be separated by purification using preparative gel permeation chromatography (GPC).
 本発明に係る一般式(1)で表される部分構造を有する化合物に含まれる、一般式(1)で表される部分構造の割合は、化合物の全質量100質量%に対し、概ね20~80質量%が好ましく、25~60質量%が特に好ましい。本発明においては、一般式(1)で表される部分構造を有する化合物は、上記のような高分子量の化合物であることが好ましいが、この場合、一般式(1)で表される部分構造を繰り返し単位の数、この部分構造以外の繰り返し単位を含めた化合物全体の繰り返し単位の総数に対して、30~50モル%の範囲であることが好ましい。 The ratio of the partial structure represented by the general formula (1) contained in the compound having the partial structure represented by the general formula (1) according to the present invention is approximately 20 to 20% with respect to 100% by mass of the total mass of the compound. 80% by mass is preferable, and 25 to 60% by mass is particularly preferable. In the present invention, the compound having the partial structure represented by the general formula (1) is preferably a high molecular weight compound as described above. In this case, the partial structure represented by the general formula (1) is used. The number of repeating units is preferably in the range of 30 to 50 mol% with respect to the total number of repeating units of the whole compound including repeating units other than this partial structure.
 以下に、一般式(1)で表される部分構造を有する化合物の例を挙げるが、本発明はこれらに限定されない。 Hereinafter, examples of the compound having a partial structure represented by the general formula (1) will be given, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記化合物において、本発明に係る部分構造の数は前述の分子量の範囲に入るような値となれば十分であるが、例えば数平均分子量10000~100000の範囲に入るためには、およそ10~200程度である必要がある。 In the above compound, it is sufficient that the number of partial structures according to the present invention is a value that falls within the aforementioned molecular weight range. For example, in order to fall within the range of the number average molecular weight of 10,000 to 100,000, approximately 10 to 200 is required. It needs to be about.
 〔本発明に係る化合物の合成方法〕
 本発明に係る化合物のうち、一般式(1)で表される部分構造を有する化合物は、J.Med.Chem.,1995,p1786、J.Fluorine Chem.,2004,p421、及びPhysical Organic,1967,p.909等を参考として合成することができる。
[Method for Synthesizing Compound According to the Present Invention]
Among the compounds according to the present invention, compounds having a partial structure represented by the general formula (1) Med. Chem. 1995, p. 1786, J. Am. Fluorine Chem. , 2004, p421, and Physical Organic, 1967, p. 909 etc. can be synthesized with reference.
 〔合成例〕
 以下、本発明の一般式(1)で表される部分構造を有する化合物の合成例を示す。
(Synthesis example)
Hereinafter, synthesis examples of compounds having a partial structure represented by the general formula (1) of the present invention will be shown.
 (例示化合物10) (Exemplary Compound 10)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 J.Fluorine Chem.,2004,p421に従って合成した5,6-ジフルオロ-ベンゾオキサジアゾール1.56g(10mmol)、ヨウ素10.1g(40mmol)を発煙硫酸50mlに加え、60℃で24時間撹拌を行った。反応終了後、氷冷下で水及び塩化メチレンを加えて有機相を抽出した。さらに1N水酸化ナトリウム水溶液で3回、次いで炭酸水素ナトリウム水溶液で洗浄した後、有機相を硫酸マグネシウムで乾燥させ、硫酸マグネシウムをろ別したのち、有機溶媒を留去して淡黄色の粗精製物を得た。得られた粗精製物をシリカゲルカラムクロマトグラフィーで精製し、4,7-ジヨード-5,6-ジフルオロ-ベンゾオキサジアゾール3.06gを得た(収率75%)。 J. Fluorine Chem. , 2004, p421, 1.56 g (10 mmol) of 5,6-difluoro-benzooxadiazole and 10.1 g (40 mmol) of iodine were added to 50 ml of fuming sulfuric acid and stirred at 60 ° C. for 24 hours. After completion of the reaction, water and methylene chloride were added under ice cooling to extract the organic phase. After further washing with a 1N aqueous sodium hydroxide solution three times and then with a sodium hydrogen carbonate aqueous solution, the organic phase was dried over magnesium sulfate, and the magnesium sulfate was filtered off. Got. The obtained crude product was purified by silica gel column chromatography to obtain 3.06 g of 4,7-diiodo-5,6-difluoro-benzooxadiazole (yield 75%).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 ついで、ビス-(5,5’-トリメチルスタンニル)-3,3’-ジ-ドデシル-シリレン-2,2’-ジチオフェンを、特表2010-507233号公報及びAdv.Mater.,2010,p-E63を参考として合成した。 Next, bis- (5,5'-trimethylstannyl) -3,3'-di-dodecyl-silylene-2,2'-dithiophene was prepared as described in JP-T-2010-507233 and Adv. Mater. , 2010, p-E63 was synthesized with reference.
 上記4,7-ジヨード-5,6-ジフルオロ-ベンゾオキサジアゾール204mg(0.5mmol)と、ビス-(5,5’-トリメチルスタンニル)-3,3’-ジ-ドデシル-シリレン-2,2’-ジチオフェン428mg(0.5mmol)を20mlの無水トルエンに溶解させた。この溶液を窒素でパージした後、12.55mg(0.014mmol)のトリス(ジベンジリデンアセトン)ジパラジウム(0)と、28.80mg(0.110mmol)のトリフェニルホスフィンとを加えた。この溶液をさらに15分間、窒素でパージした。その後、110~120℃まで溶液を加熱し、40時間反応させた。さらにエンドキャップを行うため、2-トリブチル錫チオフェン(11mg、0.03mmol)を添加し、10時間還流した。さらに2-ブロモチオフェン(10mg、0.06mmol)を添加し、10時間還流した。反応完了後、溶媒を留去して生じた残渣を、メタノール(50ml×3回)で洗浄し、その後、アセトン(50ml×3回)で洗浄した。 204 mg (0.5 mmol) of the above 4,7-diiodo-5,6-difluoro-benzooxadiazole and bis- (5,5′-trimethylstannyl) -3,3′-di-dodecyl-silylene-2 , 2′-dithiophene (428 mg, 0.5 mmol) was dissolved in 20 ml of anhydrous toluene. After purging the solution with nitrogen, 12.55 mg (0.014 mmol) of tris (dibenzylideneacetone) dipalladium (0) and 28.80 mg (0.110 mmol) of triphenylphosphine were added. The solution was purged with nitrogen for an additional 15 minutes. Thereafter, the solution was heated to 110 to 120 ° C. and reacted for 40 hours. In order to further endcap, 2-tributyltin thiophene (11 mg, 0.03 mmol) was added and refluxed for 10 hours. Further 2-bromothiophene (10 mg, 0.06 mmol) was added and refluxed for 10 hours. After completion of the reaction, the solvent was distilled off, and the resulting residue was washed with methanol (50 ml × 3 times), and then washed with acetone (50 ml × 3 times).
 回収したポリマー生成物を、加熱してクロロホルム(30ml)に溶解し、0.45μmの膜を介してろ過した。このろ過液を3mlずつリサイクルHPLC(日本分析化学工業製)に装填し、精製した。高分子量の分画を集めて100mgの純粋なポリマー(Mn=21000)(例示化合物10)を得た。 The recovered polymer product was heated and dissolved in chloroform (30 ml), and filtered through a 0.45 μm membrane. Each 3 ml of this filtrate was charged into a recycle HPLC (manufactured by Nippon Analytical Chemical Industry) and purified. The high molecular weight fractions were collected to obtain 100 mg of a pure polymer (Mn = 21000) (Exemplary Compound 10).
 (例示化合物20) (Exemplary Compound 20)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 まず前記非特許文献3、Macromolecules,2010,43,p4609、及びJ.Am.Chem.Soc.,2007,129,p4112を参考として、2,6-ビス(トリメチルスタンニル)-4,8-ジ-3-ブチルノニル-ベンゾ[1,2-b:4,5-b’]ジチオフェンを合成した。 First, Non-Patent Document 3, Macromolecules, 2010, 43, p4609, and J. Org. Am. Chem. Soc. , 2007, 129, p4112, 2,6-bis (trimethylstannyl) -4,8-di-3-butylnonyl-benzo [1,2-b: 4,5-b ′] dithiophene was synthesized. .
 前記4,7-ジヨード-5,6-ジフルオロ-ベンゾオキサジアゾール204mg(0.5mmol)と、2,6-ビス(トリメチルスタンニル)-4,8-ジ-3-ブチルノニル-ベンゾ[1,2-b:4,5-b]ジチオフェン441mg(0.5mmol)を20mlの無水トルエンに溶解させた。この溶液を窒素でパージした後、12.55mg(0.014mmol)のトリス(ジベンジリデンアセトン)ジパラジウム(0)と、28.80mg(0.110mmol)のトリフェニルホスフィンとを加えた。この溶液をさらに15分間、窒素でパージした。その後、110~120℃まで溶液を加熱し、40時間反応させた。さらにエンドキャップを行うため、2-トリブチル錫チオフェン(11mg、0.03mmol)を添加し、10時間還流した。さらに2-ブロモチオフェン(10mg、0.06mmol)を添加し、10時間還流した。反応完了後、溶媒を留去して生じた残渣を、メタノール(50ml×3回)で洗浄し、その後、アセトン(50ml×3回)で洗浄した。 204 mg (0.5 mmol) of the 4,7-diiodo-5,6-difluoro-benzooxadiazole and 2,6-bis (trimethylstannyl) -4,8-di-3-butylnonyl-benzo [1, 441 mg (0.5 mmol) of 2-b: 4,5-b] dithiophene was dissolved in 20 ml of anhydrous toluene. After purging the solution with nitrogen, 12.55 mg (0.014 mmol) of tris (dibenzylideneacetone) dipalladium (0) and 28.80 mg (0.110 mmol) of triphenylphosphine were added. The solution was purged with nitrogen for an additional 15 minutes. Thereafter, the solution was heated to 110 to 120 ° C. and reacted for 40 hours. In order to further endcap, 2-tributyltin thiophene (11 mg, 0.03 mmol) was added and refluxed for 10 hours. Further 2-bromothiophene (10 mg, 0.06 mmol) was added and refluxed for 10 hours. After completion of the reaction, the solvent was distilled off, and the resulting residue was washed with methanol (50 ml × 3 times), and then washed with acetone (50 ml × 3 times).
 回収したポリマー生成物を、加熱してクロロホルム(30ml)に溶解し、0.45μmの膜を介してろ過した。このろ過液を3mlずつリサイクルHPLC(日本分析化学工業製)に装填し、精製した。高分子量の分画を集めて140mgの純粋なポリマー(Mn=15000)(例示化合物20)を得た。 The recovered polymer product was heated and dissolved in chloroform (30 ml), and filtered through a 0.45 μm membrane. Each 3 ml of this filtrate was charged into a recycle HPLC (manufactured by Nippon Analytical Chemical Industry) and purified. The high molecular weight fractions were collected to obtain 140 mg of a pure polymer (Mn = 15000) (Exemplary Compound 20).
 (例示化合物25) (Exemplary Compound 25)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 まず、非特許文献3等を参考として、4-(2-エチルヘキシル)チオフェン-2-イル-トリメチル錫を合成した。 First, 4- (2-ethylhexyl) thiophen-2-yl-trimethyltin was synthesized with reference to Non-Patent Document 3 and the like.
 4-(2-エチルヘキシル)チオフェン-2-イル-トリメチル錫を1.58g(4.4mmol)、前記4,7-ジヨード-5,6-ジフルオロ-ベンゾオキサジアゾール814mg(2.0mmol)とを脱水トルエン20mlに溶解させ、15分間アルゴンで置換した後、テトラキス(トリフェニルホスフィン)パラジウムを40mgを添加して2時間還流を行った。 1.58 g (4.4 mmol) of 4- (2-ethylhexyl) thiophen-2-yl-trimethyltin and 814 mg (2.0 mmol) of 4,7-diiodo-5,6-difluoro-benzooxadiazole After dissolving in 20 ml of dehydrated toluene and replacing with argon for 15 minutes, 40 mg of tetrakis (triphenylphosphine) palladium was added and refluxed for 2 hours.
 反応終了後にトルエンを留去し、粗精製物はシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル=100:0~90:10)で精製し、さらにイソプロパノールで再結晶を行い、オレンジ色の結晶を600mg得た(収率55%)。 After completion of the reaction, toluene was distilled off, and the crude product was purified by silica gel column chromatography (heptane: ethyl acetate = 100: 0 to 90:10) and recrystallized with isopropanol to obtain 600 mg of orange crystals. (Yield 55%).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 次いで、前記で得られた4,7-ビス-(4-(2-エチルヘキシル)チオフェン-2-イル)-5,6-ジフルオロ-ベンゾオキサジアゾール545mg(1mmol)をテトラヒドロフラン20mlに溶解した後、N-ブロモスクシンイミド(NBS)392mg(2.2mmol)を添加し、室温で一昼夜撹拌を行った後、飽和食塩水を加えて水洗し、有機相を無水硫酸マグネシウムで乾燥した後に溶媒を留去して粗精製物を得た。得られた粗精製物はイソプロパノールで再結晶を行うことにより、オレンジ色の結晶として4,7-ビス-(5-ブロモ-4-(2-エチルヘキシル)チオフェン-2-イル)-5,6-ジフルオロ-ベンゾオキサジアゾール560mgを得た(収率79%)。 Next, 545 mg (1 mmol) of 4,7-bis- (4- (2-ethylhexyl) thiophen-2-yl) -5,6-difluoro-benzooxadiazole obtained above was dissolved in 20 ml of tetrahydrofuran, After adding 392 mg (2.2 mmol) of N-bromosuccinimide (NBS) and stirring overnight at room temperature, saturated brine was added to wash with water, and the organic phase was dried over anhydrous magnesium sulfate, and then the solvent was distilled off. As a result, a crude product was obtained. The obtained crude product was recrystallized from isopropanol to give 4,7-bis- (5-bromo-4- (2-ethylhexyl) thiophen-2-yl) -5,6- 560 mg of difluoro-benzooxadiazole was obtained (yield 79%).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 前記4,7-ビス-(5-ブロモ-4-(2-エチルヘキシル)チオフェン-2-イル)-5,6-ジフルオロ-ベンゾオキサジアゾール351mg(0.5mmol)と、2,6-ビス(トリメチルスタンニル)-4,8-ジ-3-ブチルノニル-ベンゾ[1,2-b:4,5-b’]ジチオフェン441mg(0.5mmol)を20mlの無水トルエンに溶解させた。この溶液を窒素でパージした後、12.55mg(0.014mmol)のトリス(ジベンジリデンアセトン)ジパラジウム(0)と、28.80mg(0.110mmol)のトリフェニルホスフィンとを加えた。この溶液をさらに15分間、窒素でパージした。その後、110~120℃まで溶液を加熱し、40時間反応させた。さらにエンドキャップを行うため、2-トリブチル錫チオフェン(11mg、0.03mmol)を添加し、10時間還流した。さらに2-ブロモチオフェン(10mg、0.06mmol)を添加し、10時間還流した。反応完了後、溶媒を留去して生じた残渣を、メタノール(50ml×3回)で洗浄し、その後、アセトン(50ml×3回)で洗浄した。 351 mg (0.5 mmol) of 4,7-bis- (5-bromo-4- (2-ethylhexyl) thiophen-2-yl) -5,6-difluoro-benzooxadiazole and 2,6-bis ( 441 mg (0.5 mmol) of trimethylstannyl) -4,8-di-3-butylnonyl-benzo [1,2-b: 4,5-b ′] dithiophene was dissolved in 20 ml of anhydrous toluene. After purging the solution with nitrogen, 12.55 mg (0.014 mmol) of tris (dibenzylideneacetone) dipalladium (0) and 28.80 mg (0.110 mmol) of triphenylphosphine were added. The solution was purged with nitrogen for an additional 15 minutes. Thereafter, the solution was heated to 110 to 120 ° C. and reacted for 40 hours. In order to further endcap, 2-tributyltin thiophene (11 mg, 0.03 mmol) was added and refluxed for 10 hours. Further 2-bromothiophene (10 mg, 0.06 mmol) was added and refluxed for 10 hours. After completion of the reaction, the solvent was distilled off, and the resulting residue was washed with methanol (50 ml × 3 times), and then washed with acetone (50 ml × 3 times).
 回収したポリマー生成物を、加熱してクロロホルム(30ml)に溶解し、0.45μmの膜を介してろ過した。このろ過液を3mlずつリサイクルHPLC(日本分析化学工業製)に装填し、精製した。高分子量の分画を集めて140mgの純粋なポリマー(Mn=50000)(例示化合物25)を得た。 The recovered polymer product was heated and dissolved in chloroform (30 ml), and filtered through a 0.45 μm membrane. Each 3 ml of this filtrate was charged into a recycle HPLC (manufactured by Nippon Analytical Chemical Industry) and purified. The high molecular weight fractions were collected to obtain 140 mg of a pure polymer (Mn = 50000) (Exemplary Compound 25).
 (例示化合物31) (Exemplary Compound 31)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 例示化合物25の合成において、4-(2-エチルヘキシル)チオフェン-2-イル-トリメチル錫の代わりに2-チエニルトリメチル錫を用いた以外は同様にして、4,7-ビス-(5-ブロモチオフェン-2-イル)-5,6-ジフルオロ-ベンゾオキサジアゾールを、4-ドデシルチオフェン-2-イル-トリメチル錫を用いて4,7-ビス-(5-ブロモ-4-ドデシルチオフェン-2-イル)-5,6-ジフルオロ-ベンゾオキサジアゾールを合成した。またJ.Am.Chem.Soc.,2007,129,p4112を参考として、2,6-ビス(トリメチルスタンニル)-4,8-ジドデシル-ベンゾ[1,2-b:4,5-b’]ジチオフェンを合成した。 4,7-bis- (5-bromothiophene) was synthesized in the same manner as in the synthesis of Exemplified Compound 25 except that 2-thienyltrimethyltin was used instead of 4- (2-ethylhexyl) thiophen-2-yl-trimethyltin. -2-yl) -5,6-difluoro-benzoxadiazole using 4-dodecylthiophen-2-yl-trimethyltin and 4,7-bis- (5-bromo-4-dodecylthiophene-2- Yl) -5,6-difluoro-benzooxadiazole was synthesized. Also, J. Am. Chem. Soc. , 2007, 129, p4112, 2,6-bis (trimethylstannyl) -4,8-didodecyl-benzo [1,2-b: 4,5-b ′] dithiophene was synthesized.
 次いで、前記4,7-ビス-(5-ブロモ-4-ドデシルチオフェン-2-イル)-5,6-ジフルオロ-ベンゾオキサジアゾール325mg(0.4mmol)と、4,7-ビス-(5-ブロモチオフェン-2-イル)-5,6-ジフルオロ-ベンゾオキサジアゾール48mg(0.1mmol)と、2,6-ビス(トリメチルスタンニル)-4,8-ジドデシル-ベンゾ[1,2-b:4,5-b’]ジチオフェン426mg(0.5mmol)とを20mlの無水トルエンに溶解させた。この溶液を窒素でパージした後、12.55mg(0.014mmol)のトリス(ジベンジリデンアセトン)ジパラジウム(0)と、28.80mg(0.110mmol)のトリフェニルホスフィンとを加えた。この溶液をさらに15分間、窒素でパージした。その後、110~120℃まで溶液を加熱し、40時間反応させた。さらにエンドキャップを行うため、2-トリブチル錫チオフェン(11mg、0.03mmol)を添加し、10時間還流した。さらに2-ブロモチオフェン(10mg、0.06mmol)を添加し、10時間還流した。反応完了後、溶媒を留去して生じた残渣を、メタノール(50ml×3回)で洗浄し、その後、アセトン(50ml×3回)で洗浄した。 Next, 325 mg (0.4 mmol) of the 4,7-bis- (5-bromo-4-dodecylthiophen-2-yl) -5,6-difluoro-benzooxadiazole and 4,7-bis- (5 -Bromothiophen-2-yl) -5,6-difluoro-benzooxadiazole 48 mg (0.1 mmol) and 2,6-bis (trimethylstannyl) -4,8-didodecyl-benzo [1,2- b: 4,5-b ′] dithiophene (426 mg, 0.5 mmol) was dissolved in 20 ml of anhydrous toluene. After purging the solution with nitrogen, 12.55 mg (0.014 mmol) of tris (dibenzylideneacetone) dipalladium (0) and 28.80 mg (0.110 mmol) of triphenylphosphine were added. The solution was purged with nitrogen for an additional 15 minutes. Thereafter, the solution was heated to 110 to 120 ° C. and reacted for 40 hours. In order to further end-cap, 2-tributyltin thiophene (11 mg, 0.03 mmol) was added and refluxed for 10 hours. Further 2-bromothiophene (10 mg, 0.06 mmol) was added and refluxed for 10 hours. After completion of the reaction, the solvent was distilled off, and the resulting residue was washed with methanol (50 ml × 3 times), and then washed with acetone (50 ml × 3 times).
 回収したポリマー生成物を、加熱してクロロホルム(30ml)に溶解し、0.45μmの膜を介してろ過した。このろ過液を3mlずつリサイクルHPLC(日本分析化学工業製)に装填し、精製した。高分子量の分画を集めて140mgの純粋なポリマー(Mn=29000)(例示化合物31)を得た。 The recovered polymer product was heated and dissolved in chloroform (30 ml), and filtered through a 0.45 μm membrane. Each 3 ml of this filtrate was charged into a recycle HPLC (manufactured by Nippon Analytical Chemical Industry) and purified. The high molecular weight fractions were collected to obtain 140 mg of a pure polymer (Mn = 29000) (Exemplary Compound 31).
 なお、他の例示化合物も同様にして合成できる。 In addition, other exemplary compounds can be synthesized in the same manner.
 〔n型有機半導体材料〕
 本発明に係る光電変換層に用いられるn型有機半導体材料としては、特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型有機半導体の水素原子をフッ素原子に置換したパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
[N-type organic semiconductor materials]
The n-type organic semiconductor material used for the photoelectric conversion layer according to the present invention is not particularly limited. Fluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide and other aromatic carboxylic acid anhydrides and imidized compounds thereof Examples thereof include polymer compounds.
 この中でもn型有機半導体材料としては、各種のp型有機半導体材料と高速(~50フェムト秒)且つ効率的に電荷分離を行うことができる、フラーレン誘導体が好ましい。 Among these, as the n-type organic semiconductor material, a fullerene derivative capable of efficiently performing charge separation with various p-type organic semiconductor materials at high speed (up to 50 femtoseconds) is preferable.
 フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、及びこれらの一部が水素原子、ハロゲン原子、置換又は無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。 Fullerene derivatives include fullerene C 60 , fullerene C 70 , fullerene C 76 , fullerene C 78 , fullerene C 84 , fullerene C 240 , fullerene C 540 , mixed fullerene, fullerene nanotube, multi-wall nanotube, single-wall nanotube, nanohorn (cone Type), etc., and some of these are hydrogen atoms, halogen atoms, substituted or unsubstituted alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, cycloalkyl groups, silyl groups, ether groups, thioether groups, The fullerene derivative substituted by the amino group, the silyl group, etc. can be mentioned.
 中でもN-Methylfulleropyrrolidine、下記構造式で表される[6,6]-フェニルC61-ブチリックアシッドメチルエステル(略称PCBMまたはPC61BM)、[6,6]-フェニルC61-ブチリックアシッド-nブチルエステル(PCBnB)、[6,6]-フェニルC61-ブチリックアシッド-イソブチルエステル(PCBiB)、[6,6]-フェニルC61-ブチリックアシッド-n-ヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis-PCBM、特開2006-199674号公報等のアミノ化フラーレン、特開2008-130889号公報等のメタロセン化フラーレン、米国特許第7,329,709号明細書等の環状エーテル基を有するフラーレン、J.Amer.Chem.Soc.,(2009)vol.130,p15429に記載のSIMEF、Appl.Phys.Lett.,vol.87(2005)、p203504に記載のC60MC12等のような、置換基を有してより溶解性が向上した下記の如きフラーレン誘導体を用いることが好ましい。中でも好ましくは、PCBM、PCBnB、PCBiB、PCBH等のメタノフラーレン誘導体であり、最も好ましくはPCBMである。 Of these N-Methylfulleropyrrolidine, represented by the following structural formula [6,6] - phenyl C 61 - butyric acid methyl ester (abbreviation PCBM or PC61BM), [6,6] - phenyl C 61 - butyric acid -n-butyl Esters (PCBnB), [6,6] -Phenyl C 61 -butyric acid-isobutyl ester (PCBiB), [6,6] -Phenyl C 61 -butyric acid-n-hexyl ester (PCBH), Adv. Mater. , Vol. 20 (2008), p2116, etc., aminated fullerenes such as JP-A 2006-199674, metallocene fullerenes such as JP-A 2008-130889, US Pat. No. 7,329,709, etc. Fullerene having a cyclic ether group such as Amer. Chem. Soc. , (2009) vol. 130, p15429, SIMEF, Appl. Phys. Lett. , Vol. 87 (2005), C 60 MC12 described in p203504, etc. It is preferable to use a fullerene derivative having a substituent and having improved solubility as described below. Among these, methanofullerene derivatives such as PCBM, PCBnB, PCBiB, and PCBH are preferable, and PCBM is most preferable.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 〔光電変換層の形成方法〕
 p型有機半導体材料とn型有機半導体材料とを含有する光電変換層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。
[Method for forming photoelectric conversion layer]
Examples of a method for forming a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material include a vapor deposition method and a coating method (including a casting method and a spin coating method).
 このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また、塗布法は製造速度にも優れている。 Among these, the coating method is preferable in order to increase the area of the interface where charge and electron separation of the above-described holes is performed and to produce a device having high photoelectric conversion efficiency. Also, the coating method is excellent in production speed.
 この際に使用する塗布方法に制限はないが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ワイヤーバーコート法、グラビアコート法、スプレーコート法、ブレードコート法等が挙げられる。さらには、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングすることもできる。 The coating method used at this time is not limited, and examples thereof include spin coating, casting from a solution, dip coating, wire bar coating, gravure coating, spray coating, and blade coating. Furthermore, patterning can also be performed by a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
 このような溶液塗布法で塗布する場合には、少なくとも光電変換層塗布液にはp型有機半導体材料、n型有機半導体材料、及び溶剤の3種で構成される塗布液を用いる必要がある。溶剤としては、溶質となるp型有機半導体材料及びn型有機半導体材料の両方を溶解可能な溶媒が好ましい。このような溶媒としては、例えば、トルエン、キシレン、テトラリン等の芳香族系溶媒、及びクロロホルム、ジクロロエタン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン系溶媒が好ましい。また、Nature Mat.,vol.6(2007),p497にあるような、p型有機半導体材料の結晶性を高めるような貧溶媒(オクタンジチオール、ジヨードオクタン等)をさらに0.1~5質量%添加してもよい。 When coating by such a solution coating method, it is necessary to use a coating liquid composed of three types of a p-type organic semiconductor material, an n-type organic semiconductor material, and a solvent as at least a photoelectric conversion layer coating liquid. The solvent is preferably a solvent that can dissolve both the p-type organic semiconductor material and the n-type organic semiconductor material that are solutes. As such a solvent, for example, aromatic solvents such as toluene, xylene and tetralin, and halogen solvents such as chloroform, dichloroethane, chlorobenzene, dichlorobenzene and trichlorobenzene are preferable. Also, Nature Mat. , Vol. 6 (2007), p497, a poor solvent (octanedithiol, diiodooctane, etc.) that improves the crystallinity of the p-type organic semiconductor material may be further added in an amount of 0.1 to 5% by mass.
 これらの溶媒に対する溶質のトータル濃度は、得たい膜厚及び製膜方法によって異なるが、スピンコート法及びブレードコート法においては約1~3質量%とすることが好ましい。より好ましくは1.5~2.5質量%である。このような溶解量とすることで、代表的な製膜法であるスピンコート法及びブレードコート法で約150~300nm程度の膜厚の光電変換層を形成することができる。 The total concentration of the solute in these solvents varies depending on the film thickness to be obtained and the film forming method, but is preferably about 1 to 3% by mass in the spin coating method and the blade coating method. More preferably, it is 1.5 to 2.5% by mass. By setting such a dissolution amount, a photoelectric conversion layer having a thickness of about 150 to 300 nm can be formed by spin coating and blade coating, which are typical film forming methods.
 このうち、溶質であるp型有機半導体材料とn型有機半導体材料の質量比は、例えば、1:4~4:1と任意の値を使用することができるが、実際には1:1~1:2程度の値とする方が好ましい。 Among these, the mass ratio of the p-type organic semiconductor material and the n-type organic semiconductor material that are solutes can be any value such as 1: 4 to 4: 1. A value of about 1: 2 is preferable.
 塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。 After application, it is preferable to perform heating in order to cause removal of residual solvent, moisture, and gas, and improvement of mobility and absorption of long wave by crystallization of the semiconductor material.
 製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集又は結晶化が促進され、光電変換層を適切な相分離構造とすることができる。 When annealing is performed at a predetermined temperature during the manufacturing process, a part of the particles is microscopically aggregated or crystallized, and the photoelectric conversion layer can have an appropriate phase separation structure.
 その結果、光電変換層の正孔と電子(キャリア)の移動度が向上し、高い効率を得ることができるようになる。 As a result, the mobility of holes and electrons (carriers) in the photoelectric conversion layer is improved, and high efficiency can be obtained.
 光電変換層は、p型有機半導体材料とn型有機半導体材料とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。この場合、塗布後に不溶化できるような材料を用いることで各層を形成することが可能となる。塗布後に不溶化できるp型有機半導体材料としては、例えば、Technical Digest of the International PVSEC-17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェンのような、塗布後に塗布膜を重合架橋して不溶化できる材料、又は米国特許出願公開第2003/136964号、及び特開2008-16834号等に記載されているような、熱等のエネルギーを加えることによって可溶性置換基が反応して不溶化する(顔料化する)ポルフィリン化合物等を挙げることができる。また、塗布後に不溶化できるn型有機半導体材料としては、例えばAdv.Mater.,vol.20(2008),p2116に記載のフェニル-C61-酪酸グリシジル(PCBG)、等を挙げることができる。 The photoelectric conversion layer may be composed of a single layer in which a p-type organic semiconductor material and an n-type organic semiconductor material are uniformly mixed. However, the photoelectric conversion layer may be a plurality of layers in which the mixing ratio of the electron acceptor and the electron donor is changed. It may be configured. In this case, each layer can be formed by using a material that can be insolubilized after application. As a p-type organic semiconductor material that can be insolubilized after coating, for example, a coating film after coating, such as polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. A material that can be insolubilized by polymerization cross-linking, or a soluble substituent reacts by applying energy such as heat as described in US Patent Application Publication No. 2003/136964 and JP-A-2008-16834. Examples thereof include porphyrin compounds that are insolubilized (pigmented). Examples of the n-type organic semiconductor material that can be insolubilized after application include Adv. Mater. , Vol. 20 (2008), p2116, phenyl-C61-glycidyl butyrate (PCBG), and the like.
 また、光電変換層は光酸化を受けやすいため、光電変換層を形成する工程及び光電変換層が形成された以降の工程の塗布環境としては、酸素及び水分にさらされない環境で形成することが好ましい。雰囲気中の酸素及び水分の濃度が、それぞれ、5000ppm以下であることが好ましい。より好ましくは1000ppm、さらに好ましくは500ppm、最も好ましくは100ppm以下である。 In addition, since the photoelectric conversion layer is susceptible to photo-oxidation, it is preferable that the photoelectric conversion layer is formed in an environment that is not exposed to oxygen and moisture as a coating environment in the process of forming the photoelectric conversion layer and the process after the photoelectric conversion layer is formed. . The concentrations of oxygen and moisture in the atmosphere are each preferably 5000 ppm or less. More preferably, it is 1000 ppm, More preferably, it is 500 ppm, Most preferably, it is 100 ppm or less.
 通常、このような乾燥した環境となると、正孔輸送層(HIL)を形成する際に光電変換層の上層に塗布する正孔輸送層塗布液に含まれる溶媒が親水性溶媒であるため、ハジキが発生しやすくなるが、本発明の化合物は比較的極性の高いベンゾオキサジアゾール母核を有しているためか、良好な塗布性を有している。なお、このようなハジキを抑制するためには、正孔輸送層の溶質が析出しない範囲で正孔輸送層塗布液にメタノール、エタノール、イソプロパノール等のアルコール類又はアセトニトリル等の親水性有機溶媒を混合することも有効な手段である。また、正孔輸送層塗布液に各種界面活性剤を添加してもよい。 Normally, in such a dry environment, the solvent contained in the hole transport layer coating solution applied to the upper layer of the photoelectric conversion layer when forming the hole transport layer (HIL) is a hydrophilic solvent. However, the compound of the present invention has good coatability, probably because it has a relatively highly polar benzooxadiazole mother nucleus. In order to suppress such repelling, a hole transport layer coating solution is mixed with alcohols such as methanol, ethanol and isopropanol, or a hydrophilic organic solvent such as acetonitrile, as long as the solute of the hole transport layer does not precipitate. It is also an effective means. Various surfactants may be added to the hole transport layer coating solution.
 〔電子輸送層〕
 本発明の有機光電変換素子は、光電変換層とカソードとの間に電子輸送層を有することが好ましい。これにより、光電変換層で発生した電荷をより効率的に取り出すことが可能となる。
(Electron transport layer)
The organic photoelectric conversion element of the present invention preferably has an electron transport layer between the photoelectric conversion layer and the cathode. Thereby, it is possible to more efficiently extract charges generated in the photoelectric conversion layer.
 本発明においては、第1の電極がカソードである場合に特に好ましく適用できる。 In the present invention, the present invention can be particularly preferably applied when the first electrode is a cathode.
 電子輸送層とは、このようにカソードとバルクヘテロジャンクション層の間に位置して、バルクヘテロジャンクション層と電極との間で電子の授受をより効率的にすることのできる層のことである。 The electron transport layer is a layer that is positioned between the cathode and the bulk heterojunction layer as described above, and can more efficiently transfer electrons between the bulk heterojunction layer and the electrode.
 電子輸送層を構成する材料としては、バルクヘテロジャンクション型の光電変換層のn型有機半導体材料のLUMO準位とカソードの仕事関数との間のLUMO準位を有する化合物が好ましい。 The material constituting the electron transport layer is preferably a compound having an LUMO level between the LUMO level of the n-type organic semiconductor material of the bulk heterojunction photoelectric conversion layer and the work function of the cathode.
 より好ましくは、電子移動度が10-4以上の化合物である。 More preferably, it is a compound having an electron mobility of 10 −4 or more.
 また、バルクヘテロジャンクション型の光電変換層に用いられるp型有機半導体材料のHOMO準位よりも深いHOMO準位を有する材料を用いて電子輸送層を形成することにより、バルクヘテロジャンクション層で生成した正孔をカソード側には流さないような整流効果を有する、正孔ブロック機能を電子輸送層に付与することができる。 In addition, by forming an electron transport layer using a material having a HOMO level deeper than that of the p-type organic semiconductor material used for the bulk heterojunction photoelectric conversion layer, holes generated in the bulk heterojunction layer are formed. Can be imparted to the electron transporting layer with a rectifying effect that does not flow to the cathode side.
 このような電子輸送層は、正孔ブロック層とも呼ばれる。より好ましくは、n型有機半導体材料のHOMO準位よりも深いHOMO準位を有する材料を電子輸送層として用いることである。また、正孔を阻止する特性から、正孔移動度が10-6よりも低い化合物を用いることが好ましい。 Such an electron transport layer is also referred to as a hole blocking layer. More preferably, a material having a HOMO level deeper than the HOMO level of the n-type organic semiconductor material is used as the electron transport layer. In addition, in view of the property of blocking holes, it is preferable to use a compound having a hole mobility lower than 10 −6 .
 電子輸送層としては、オクタアザポルフィリン、p型有機半導体材料のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、国際公開第04/095889号に記載のカルボリン化合物等を用いることができるが、同様に、光電変換層に用いられるp型有機半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、光電変換層で生成した正孔をカソード側には流さないような整流効果を有する、正孔ブロック機能が付与される。より好ましくは、n型有機半導体材料のHOMO準位よりも深い材料を電子輸送層として用いることである。また、電子を輸送する特性から、電子移動度の高い化合物を用いることが好ましい。 As the electron transport layer, octaazaporphyrin, a perfluoro body of a p-type organic semiconductor material (perfluoropentacene, perfluorophthalocyanine, etc.), a carboline compound described in International Publication No. 04/095889, and the like can be used. Similarly, in the electron transport layer having a HOMO level deeper than the HOMO level of the p-type organic semiconductor material used for the photoelectric conversion layer, rectification is performed so that holes generated in the photoelectric conversion layer do not flow to the cathode side. A hole blocking function having an effect is imparted. More preferably, a material deeper than the HOMO level of the n-type organic semiconductor material is used as the electron transport layer. Moreover, it is preferable to use a compound with high electron mobility from the characteristic of transporting electrons.
 このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型有機半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、光電変換層に用いたn型有機半導体材料単体からなる層を用いることもできる。 Examples of such materials include phenanthrene compounds such as bathocuproine, n-type organic semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide. N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used. Moreover, the layer which consists of a n-type organic-semiconductor material single-piece | unit used for the photoelectric converting layer can also be used.
 これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。 The means for forming these layers may be either a vacuum vapor deposition method or a solution coating method, but is preferably a solution coating method.
 〔正孔輸送層(電子ブロック層)〕
 本発明の有機光電変換素子は、光電変換層とアノードとの間に正孔輸送層を有することが好ましい。これにより、光電変換層で発生した電荷をより効率的に取り出すことが可能となる。
[Hole transport layer (electron blocking layer)]
The organic photoelectric conversion element of the present invention preferably has a hole transport layer between the photoelectric conversion layer and the anode. Thereby, it is possible to more efficiently extract charges generated in the photoelectric conversion layer.
 本発明においては、第2の電極がアノードである場合に好ましく適用できる。 The present invention can be preferably applied when the second electrode is an anode.
 正孔輸送層を構成する材料としては、例えば、スタルクヴイテック製、商品名BaytronP等のPEDOT(ポリ-3,4-エチレンジオキシチオフェン)-PSS(ポリスチレンスルホン酸)、ポリアニリン及びそのドープ材料、国際公開第06/019270号等に記載のシアン化合物、等を用いることができる。なお、光電変換層に用いられるn型有機半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、光電変換層で生成した電子をアノード側には流さないような整流効果を有する、電子ブロック機能が付与される。このような正孔輸送層は電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用する方が好ましい。 As the material constituting the hole transport layer, for example, PEDOT (poly-3,4-ethylenedioxythiophene) -PSS (polystyrene sulfonic acid) such as Startron Vtec, trade name BaytronP, polyaniline and its doped material, The cyanide compounds described in International Publication No. 06/019270 and the like can be used. Note that the hole transport layer having a LUMO level shallower than the LUMO level of the n-type organic semiconductor material used for the photoelectric conversion layer has a rectifying effect so that electrons generated in the photoelectric conversion layer do not flow to the anode side. The electronic block function is provided. Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function.
 このような材料としては、特開平5-271166号公報等に記載のトリアリールアミン系化合物、国際公開第2008/134492号に記載のアミン系シランカップリング剤のようなアミン化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。また、光電変換層に用いたp型有機半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。光電変換層を形成する前に、下層に塗布膜を形成すると塗布面をレベリングする効果があり、リーク等の影響が低減するため好ましい。 Examples of such materials include triarylamine compounds described in JP-A No. 5-271166, amine compounds such as amine silane coupling agents described in International Publication No. 2008/134492, molybdenum oxide, Metal oxides such as nickel oxide and tungsten oxide can be used. Moreover, the layer which consists of a p-type organic-semiconductor material single-piece | unit used for the photoelectric converting layer can also be used. The means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method. Forming a coating film in the lower layer before forming the photoelectric conversion layer is preferable because it has the effect of leveling the coating surface and reduces the influence of leakage and the like.
 また、同様に正孔を輸送する特性から10-4よりも高い正孔移動度を有していることが好ましく、また電子を阻止する特性から、電子移動度が10-6よりも低い化合物を用いることが好ましい。 Similarly, it preferably has a hole mobility higher than 10 −4 due to the property of transporting holes, and a compound with electron mobility lower than 10 −6 due to the property of blocking electrons. It is preferable to use it.
 〔その他の層〕
 本発明の有機光電変換素子は、光電変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。
[Other layers]
The organic photoelectric conversion device of the present invention may have various intermediate layers in the device for the purpose of improving photoelectric conversion efficiency and device life.
 中間層の例としては、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層等を挙げることができる。 Examples of the intermediate layer include a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.
 〔電極〕
 本発明の有機光電変換素子は、第1の電極と第2の電極を必須に有し、タンデム構成をとる場合には、さらに中間電極(電荷再結合層)を有する。
〔electrode〕
The organic photoelectric conversion element of the present invention essentially includes the first electrode and the second electrode, and further includes an intermediate electrode (charge recombination layer) when a tandem configuration is employed.
 本発明において、第1の電極は、透明な電極である。 In the present invention, the first electrode is a transparent electrode.
 「透明な」とは、光透過率が50%以上であるものをいう。 “Transparent” means that the light transmittance is 50% or more.
 光透過率とは、JIS K 7361-1:1997(ISO 13468-1に対応)の「プラスチック-透明材料の全光線透過率の試験方法」に準拠した方法で測定した可視光波長領域における全光線透過率をいう。 The light transmittance is the total light in the visible wavelength range measured by a method in accordance with “Testing method of total light transmittance of plastic-transparent material” of JIS K 7361-1: 1997 (corresponding to ISO 13468-1). It refers to transmittance.
 本発明の第1の電極は、前述のように透明なカソード(陰極)であり、第2の電極はアノード(陽極)であることが好ましい。 As described above, the first electrode of the present invention is preferably a transparent cathode (cathode), and the second electrode is preferably an anode (anode).
 〔第1の電極(透明なカソード)〕
 本発明の第1の電極に用いられる材料としては、例えば、インジウムチンオキシド(ITO)、AZO、FTO、SnO、ZnO、酸化チタン等の透明金属酸化物、Ag、Al、Au、Pt等の非常に薄い金属層又は金属ナノワイヤ、カーボンナノチューブ等のナノワイヤやナノ粒子を含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等を用いることができる。
[First electrode (transparent cathode)]
Examples of the material used for the first electrode of the present invention include transparent metal oxides such as indium tin oxide (ITO), AZO, FTO, SnO 2 , ZnO, and titanium oxide, Ag, Al, Au, and Pt. A very thin metal layer or a metal nanowire, a nanowire such as a carbon nanotube or a layer containing nanoparticles, a conductive polymer material such as PEDOT: PSS, polyaniline, or the like can be used.
 また、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性高分子等も用いることができる。また、これらの導電性化合物を複数組み合わせてカソードとすることもできる。 Also selected from the group consisting of derivatives of polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, polyisothianaphthene, polycarbazole, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polyphenylacetylene, polydiacetylene and polynaphthalene. Conductive polymers can also be used. Further, a plurality of these conductive compounds can be combined to form a cathode.
 〔第2の電極(アノード)〕
 第2の電極は導電性材料からなる単独層であってもよいが、導電性材料に加えて、これらを保持する樹脂を併用してもよい。
[Second electrode (anode)]
The second electrode may be a single layer made of a conductive material, but in addition to the conductive material, a resin that holds these may be used in combination.
 カソードである透明電極の仕事関数がおよそ-5.0~-4.0eVであるため、バルクヘテロジャンクション型の光電変換層で生成したキャリアが拡散してそれぞれの電極に到達するためには、ビルトインポテンシャル、すなわちアノードとカソード間の仕事関数の差がなるべく大きいことが好ましい。 Since the work function of the transparent electrode, which is the cathode, is about −5.0 to −4.0 eV, the built-in potential is necessary for carriers generated in the bulk heterojunction type photoelectric conversion layer to diffuse and reach each electrode. That is, it is preferable that the work function difference between the anode and the cathode is as large as possible.
 したがって、アノードを構成する導電性材料としては、仕事関数の大きい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物が用いられる。具体例としては、金、銀、銅、白金、ロジウム、インジウム、ニッケル、パラジウム等が挙げられる。 Therefore, as the conductive material constituting the anode, a metal, an alloy, an electrically conductive compound, and a mixture thereof having a large work function (4 eV or less) are used. Specific examples include gold, silver, copper, platinum, rhodium, indium, nickel, palladium, and the like.
 これらの中で、正孔の取り出し性能、光の反射率、及び酸化等に対する耐久性の点から、銀が最も好ましい。 Of these, silver is most preferable from the viewpoint of hole extraction performance, light reflectance, and durability against oxidation.
 カソードはこれらの導電性材料を蒸着やスパッタリング等の方法により薄膜とすることにより、作製することができる。また、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲から選択される。 The cathode can be produced by forming these conductive materials into a thin film by a method such as vapor deposition or sputtering. The film thickness is usually selected from the range of 10 nm to 5 μm, preferably 50 to 200 nm.
 また、アノード側を光透過性とする場合は、例えば、アルミニウム及びアルミニウム合金、銀及び銀化合物等のアノードに適した導電性材料を1~20nm程度の薄膜とした後、その上に、上記透明電極の説明で挙げた導電性光透過性材料の膜を設けることで、光透過性アノードとすることができる。 Further, when the anode side is made light transmissive, for example, a conductive material suitable for the anode such as aluminum and aluminum alloy, silver and silver compound is formed into a thin film of about 1 to 20 nm, and then the above transparent By providing a film of the conductive light-transmitting material mentioned in the description of the electrode, a light-transmitting anode can be obtained.
 なお、上記は耐久性向上に有利な、いわゆる逆層型素子とするための第2の電極として好ましい材料であり、いわゆる順層型(第1の電極がアノードで第2の電極がカソード)とするためには、前述のように第1の電極と第2の電極の仕事関数の関係を逆転させればよいが、実質的に透明な電極は種類が限られておりその仕事関数は比較的深いものが多いため、実際には第2の電極側に仕事関数の浅い(-4.0eV未満)金属を使用することで順層型の有機薄膜太陽電池とすることができる。そのような金属としては、例えば、アルミニウム、カルシウム、マグネシウム、リチウム、ナトリウム、カリウム等である。一般的には反射率が高く導電性の高いアルミニウムが使用される。 Note that the above is a preferable material for the second electrode for the so-called reverse layer type element, which is advantageous for improving the durability, and is a so-called normal layer type (the first electrode is an anode and the second electrode is a cathode). In order to achieve this, the relationship between the work functions of the first electrode and the second electrode may be reversed as described above. However, the types of substantially transparent electrodes are limited, and the work function is relatively low. Since many of them are deep, in practice, a normal layer type organic thin film solar cell can be obtained by using a metal having a shallow work function (less than −4.0 eV) on the second electrode side. Examples of such a metal include aluminum, calcium, magnesium, lithium, sodium, potassium, and the like. In general, aluminum having high reflectivity and high conductivity is used.
 〔中間電極(電荷再結合層)〕
 また、前記図3のようなタンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物が好ましく、前記アノードで用いたような材料(ITO、AZO、FTO、SnO、ZnO、酸化チタン等の透明金属酸化物、Ag、Al、Au、Pt等の非常に薄い金属層又は金属ナノワイヤ、カーボンナノチューブ等のナノワイヤやナノ粒子を含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
[Intermediate electrode (charge recombination layer)]
Further, as the material of the intermediate electrode required in the case of the tandem configuration as shown in FIG. 3, a compound having both transparency and conductivity is preferable, and the materials used in the anode (ITO, AZO, FTO, SnO) are used. 2 , transparent metal oxides such as ZnO and titanium oxide, very thin metal layers such as Ag, Al, Au, and Pt or metal nanowires, layers containing nanowires such as carbon nanotubes, nanoparticles, PEDOT: PSS, polyaniline, etc. Or the like can be used.
 なお、前述した正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極(電荷再結合層)として働く組み合わせもあり、このような構成とすると中間電極を別途1層形成する工程を省くことができ好ましい。 In addition, among the hole transport layer and the electron transport layer described above, there is also a combination that works as an intermediate electrode (charge recombination layer) by stacking them in an appropriate combination. The step of forming a layer can be omitted, which is preferable.
 〔基板〕
 本発明において、基板は透明な基板であるが、「透明な」とは前述の電極における定義と同様である。
〔substrate〕
In the present invention, the substrate is a transparent substrate, and “transparent” has the same definition as in the above-described electrode.
 基板としては、例えばガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。 As the substrate, for example, a glass substrate, a resin substrate, and the like are preferably used, but it is desirable to use a transparent resin film from the viewpoint of light weight and flexibility. There is no restriction | limiting in particular in the transparent resin film which can be preferably used as a transparent substrate by this invention, The material, a shape, a structure, thickness, etc. can be suitably selected from well-known things.
 例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリスルホン(PSF)樹脂フィルム、ポリエーテルスルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視光領域の波長(380~800nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。 For example, polyolefins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin film such as modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, cyclic olefin resin, etc. Resin film, vinyl resin film such as polyvinyl chloride, polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, Polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, etc. If the resin film is (380 ~ 800 nm) transmittance of 80% or more in, it can be preferably applied to a transparent resin film according to the present invention.
 中でも、透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルスルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。 Among them, from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
 本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層を構成する材料としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。 The transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution. A conventionally well-known technique can be used about a surface treatment or an easily bonding layer. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment. Examples of the material constituting the easy-adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer. be able to.
 また、酸素及び水蒸気の透過を抑制する目的で、透明基板にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。 Further, for the purpose of suppressing the permeation of oxygen and water vapor, a barrier coat layer may be formed in advance on the transparent substrate, or a hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred. Good.
 〔光学機能層〕
 本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてよい。光学機能層としては、例えば、反射防止膜、マイクロレンズアレイ等の集光層、カソードで反射した光を散乱させて再度光電変換層に入射させることができるような光拡散層等を設けてもよい。
(Optical function layer)
The organic photoelectric conversion element of the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight. As the optical functional layer, for example, a light condensing layer such as an antireflection film or a microlens array, or a light diffusion layer that can scatter the light reflected by the cathode and enter the photoelectric conversion layer again can be provided. Good.
 反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、基板を構成する透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57~1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化錫ゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。 As the antireflection layer, various known antireflection layers can be provided. For example, when the transparent resin film constituting the substrate is a biaxially stretched polyethylene terephthalate film, the refractive index of the easy adhesion layer adjacent to the film. Is preferably 1.57 to 1.63, since the interface reflection between the film substrate and the easy adhesion layer can be reduced and the transmittance can be improved. The method of adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
 集光層は、例えば、支持基板の太陽光受光側にマイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより設けることができる。これにより、特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。 The condensing layer can be provided, for example, by processing so as to provide a microlens array-like structure on the sunlight receiving side of the support substrate, or by combining with a so-called condensing sheet. Thereby, the amount of received light from a specific direction can be increased, and conversely, the dependence on the incident angle of sunlight can be reduced.
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。 As an example of a microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
 また、光散乱層としては、各種のアンチグレア層、金属又は各種無機酸化物等のナノ粒子・ナノワイヤ等を無色透明なポリマーに分散した層等を挙げることができる。 Examples of the light scattering layer include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
 〔パターニング〕
 本発明に係る各々の電極、光電変換層や、正孔輸送層、電子輸送層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
[Patterning]
The method and process for patterning each electrode, photoelectric conversion layer, hole transport layer, electron transport layer and the like according to the present invention are not particularly limited, and known methods can be appropriately applied.
 光電変換層、電荷輸送層等などのように、層を構成する材料が可溶性であれば、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取ってもよいし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしてもよい。 If the material constituting the layer is soluble, such as a photoelectric conversion layer, a charge transport layer, etc., only unnecessary portions may be wiped after the entire surface application such as die coating, dip coating, etc., and methods such as ink jet method and screen printing May be used for direct patterning during coating.
 電極材料等の不溶性の材料の場合は、電極を真空堆積時にマスク蒸着を行ったり、エッチング又はリフトオフ等の公知の方法によってパターニングしたりすることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成してもよい。 In the case of an insoluble material such as an electrode material, the electrode can be subjected to mask vapor deposition during vacuum deposition or patterned by a known method such as etching or lift-off. Alternatively, the pattern may be formed by transferring a pattern formed on another substrate.
 〔太陽電池〕
 本発明の太陽電池は、上記の有機光電変換素子を有する。
[Solar cell]
The solar cell of this invention has said organic photoelectric conversion element.
 本発明の太陽電池は、上記有機光電変換素子を具備し、太陽光に最適の設計並びに回路設計が行われ、太陽光を光源として用いたときに最適な光電変換が行われるような構造を有する。 The solar cell of the present invention comprises the above-described organic photoelectric conversion element, has a structure in which optimum design and circuit design are performed for sunlight, and optimum photoelectric conversion is performed when sunlight is used as a light source. .
 即ち、光電変換層に太陽光が照射されうる構造となっており、本発明の太陽電池を構成する際には、前記光電変換層及び各々の電極をケース内に収納して封止するか、あるいはそれら全体を樹脂封止することが好ましい。 That is, the photoelectric conversion layer has a structure that can be irradiated with sunlight, and when the solar cell of the present invention is configured, the photoelectric conversion layer and each electrode are housed in a case and sealed, Alternatively, it is preferable to seal them entirely with resin.
 封止の方法としては、作製した有機光電変換素子が環境中の酸素、水分等で劣化しないために、有機光電変換素子だけでなく有機エレクトロルミネッセンス素子等で公知の手法によって封止することが好ましい。 As a sealing method, since the produced organic photoelectric conversion element is not deteriorated by oxygen, moisture, etc. in the environment, it is preferable to seal not only the organic photoelectric conversion element but also an organic electroluminescence element by a known method. .
 例えば、アルミ又はガラスで出来たキャップを接着剤によって接着することによって封止する手法、アルミニウム、酸化珪素、酸化アルミニウム等のガスバリア層が形成されたプラスチックフィルムと有機光電変換素子とを接着剤で貼合する手法、ガスバリア性の高い有機高分子材料(ポリビニルアルコール等)を有機光電変換素子上にスピンコートする方法、ガスバリア性の高い無機薄膜(酸化珪素、酸化アルミニウム等)又は有機膜(パリレン等)を真空下で有機光電変換素子上に堆積する方法、及びこれらの封止材を複合的に積層する方法等を挙げることができる。 For example, a method of sealing a cap made of aluminum or glass by bonding with an adhesive, a plastic film on which a gas barrier layer such as aluminum, silicon oxide, or aluminum oxide is formed and an organic photoelectric conversion element are pasted with an adhesive. Method, spin coating of organic polymer material (polyvinyl alcohol, etc.) with high gas barrier property on organic photoelectric conversion element, inorganic thin film (silicon oxide, aluminum oxide, etc.) or organic film (parylene, etc.) with high gas barrier property And the like, and a method of laminating these sealing materials in a composite manner.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 例1
 〔有機光電変換素子の作製〕
 (有機光電変換素子1の作製)
 国際公開第2008/134492号を参考として、有機光電変換素子を作製した。
Example 1
[Production of organic photoelectric conversion element]
(Preparation of organic photoelectric conversion element 1)
An organic photoelectric conversion element was produced with reference to WO2008 / 134492.
 PET基板上に、第1の電極としてインジウムチンオキシド(ITO)透明導電膜150nm堆積したもの(シート抵抗12Ω/sq)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて10mm幅にパターニングし、第1の電極を形成した。パターン形成した第1の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。これ以降は基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。 On a PET substrate, an indium tin oxide (ITO) transparent conductive film 150 nm deposited as a first electrode (sheet resistance 12 Ω / sq) is patterned to a width of 10 mm using a normal photolithography technique and wet etching, A first electrode was formed. The patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning. After this, the substrate was brought into the glove box and operated under a nitrogen atmosphere.
 この第1の電極上に、Aldrich社製3-(2-アミノエチル)-アミノプロピルトリメトキシシランの0.05質量%メトキシエタノール溶液を、乾燥膜厚が約5nmになるようにブレードコーターを用いて塗布乾燥した。その後、ホットプレート上で120℃1分間の加熱処理をして、電子輸送層を製膜した。 On this first electrode, a 0.05 mass% methoxyethanol solution of 3- (2-aminoethyl) -aminopropyltrimethoxysilane manufactured by Aldrich was used with a blade coater so that the dry film thickness was about 5 nm. And dried. Thereafter, heat treatment was performed at 120 ° C. for 1 minute on a hot plate to form an electron transport layer.
 次いで、o-ジクロロベンゼンに、p型有機半導体材料である比較化合物1(非特許文献3に基づいて合成)を0.8質量%、n型有機半導体材料であるPC61BM(フロンティアカーボン製nanom spectra E100H)を1.6質量%で混合した溶液を調製し、オーブンで110℃に加熱しながら一昼夜撹拌して溶解した後、乾燥膜厚が約200nmになるようにブレードコーターを用いて塗布し、80℃で2分間乾燥して、光電変換層を製膜した。 Next, 0.8% by mass of Comparative Compound 1 (synthesized based on Non-Patent Document 3), which is a p-type organic semiconductor material, and PC61BM (frontier carbon nanom spectra E100H), which is an n-type organic semiconductor material, in o-dichlorobenzene. ) Was mixed at 1.6% by mass, dissolved by stirring overnight while heating to 110 ° C. in an oven, and then applied using a blade coater so that the dry film thickness was about 200 nm. The film was dried for 2 minutes at a temperature to form a photoelectric conversion layer.
 光電変換層の乾燥完了後、再び大気下に取り出し、次いで正孔輸送層として、導電性高分子及びポリアニオンからなるPEDOT-PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率1×10-3S/cm)を等量のイソプロパノールで希釈した液を調製し、乾燥膜厚が約30nmになるようにブレードコーターを用いて塗布乾燥した。その後、90℃の温風で20秒間加熱処理して、正孔輸送層(有機材料層)を形成した。なお塗布時の大気の温度は23℃、湿度は65%であった。 After drying of the photoelectric conversion layer was completed, it was taken out again into the atmosphere, and then, as a hole transport layer, PEDOT-PSS (CLEVIOS (registered trademark) PVP AI 4083, manufactured by Helios Co., Ltd., made of conductive polymer and polyanion, conductivity (1 × 10 −3 S / cm) was diluted with an equal amount of isopropanol, and applied and dried using a blade coater so that the dry film thickness was about 30 nm. Then, it heat-processed with the warm air of 90 degreeC for 20 second, and formed the positive hole transport layer (organic material layer). At the time of application, the atmospheric temperature was 23 ° C. and the humidity was 65%.
 次に、10mm幅のシャドウマスクが第1の電極(透明電極)と直交するように素子をセットし、1×10-3Pa以下にまで真空蒸着装置内を減圧した後、蒸着速度0.5nm/秒でAgメタルを200nm積層して、第2の電極を形成した。得られた積層体を窒素チャンバーに移動し、2枚の凸版印刷製透明バリアフィルムGX(水蒸気透過率0.05g/m/d)の間に挟みこみ、UV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて封止を行った後に大気下に取り出し、受光部が約10×10mmサイズの有機光電変換素子1を得た。 Next, the element was set so that the shadow mask having a width of 10 mm was orthogonal to the first electrode (transparent electrode), the inside of the vacuum deposition apparatus was depressurized to 1 × 10 −3 Pa or less, and then the deposition rate was 0.5 nm. A second electrode was formed by laminating 200 nm of Ag metal at a rate of / sec. The obtained laminate was moved to a nitrogen chamber and sandwiched between two relief printing transparent barrier films GX (water vapor transmission rate 0.05 g / m 2 / d), and UV curable resin (Nagase ChemteX Corporation). Manufactured, manufactured by UV RESIN XNR5570-B1) and then taken out into the atmosphere to obtain an organic photoelectric conversion element 1 having a light receiving portion of about 10 × 10 mm size.
 (有機光電変換素子2~11の作製)
 有機光電変換素子1の作製において、p型有機半導体材料を表1に記載の材料に変更した以外は同様にして有機光電変換素子2~11を得た。なお比較化合物2は非特許文献4を参照して合成した。また、有機光電変換素子5と6は、同じポリマー(例示化合物14)であるが、合成ロットが異なり、分子量の異なる材料を有機光電変換素子としたものである。
(Preparation of organic photoelectric conversion elements 2 to 11)
Organic photoelectric conversion devices 2 to 11 were obtained in the same manner except that the p-type organic semiconductor material was changed to the materials shown in Table 1 in the production of the organic photoelectric conversion device 1. Comparative compound 2 was synthesized with reference to Non-Patent Document 4. The organic photoelectric conversion elements 5 and 6 are the same polymer (Exemplary Compound 14), but are made of materials having different synthetic lots and different molecular weights as organic photoelectric conversion elements.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 〔有機光電変換素子の評価〕
 (光電変換効率の評価)
 上記封止後の有機光電変換素子に、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、有効面積を1.0cmにしたマスクを受光部に重ね、短絡電流密度Jsc(mA/cm)及び開放電圧Voc(V)、曲線因子(フィルファクター)FF(%)を、同素子上に形成した4箇所の受光部についてそれぞれ測定し、平均値を求めた。また、測定されたJsc、Voc、FFから下記式1に従って光電変換効率η(%)を求めた。
[Evaluation of organic photoelectric conversion elements]
(Evaluation of photoelectric conversion efficiency)
The organic photoelectric conversion element after the sealing, was irradiated with light having an intensity of 100 mW / cm 2 solar simulator (AM1.5G filter), a superposed mask in which the effective area 1.0 cm 2 to the light receiving portion, the short circuit current The density Jsc (mA / cm 2 ), the open circuit voltage Voc (V), and the fill factor (fill factor) FF (%) were measured for each of the four light receiving portions formed on the element, and the average value was obtained. Moreover, photoelectric conversion efficiency (eta) (%) was calculated | required according to following formula 1 from measured Jsc, Voc, and FF.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 (有機光電変換素子の耐久性評価)
 光電変換効率の評価を行った有機光電変換素子を、陽極と陰極との間はオープンサーキットの状態で85℃に加熱し、ソーラシミュレーター(AM1.5G)の光を暴露し続け、初期の変換効率を100としたとき、80となるまでの時間をLT80として測定した。この値は、大きいほど有機光電変換素子の耐久性が良好であることを示す。
(Durability evaluation of organic photoelectric conversion elements)
The organic photoelectric conversion element for which the photoelectric conversion efficiency was evaluated was heated to 85 ° C. in an open circuit state between the anode and the cathode, and the solar simulator (AM1.5G) light was continuously exposed to the initial conversion efficiency. Assuming that 100 is 100, the time to 80 was measured as LT80. The larger this value is, the better the durability of the organic photoelectric conversion element is.
 評価の結果を表1に示す。 Table 1 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表1から、本発明の例示化合物を用いた逆層型の有機光電変換素子は、比較化合物を用いた有機光電変換素子に較べ、より高い耐久性を示すことが分かる。また、光電変換効率も比較の有機光電変換素子と同等以上を示すことが分かる。 From Table 1, it can be seen that the reverse layer type organic photoelectric conversion element using the exemplary compound of the present invention exhibits higher durability than the organic photoelectric conversion element using the comparative compound. It can also be seen that the photoelectric conversion efficiency is equal to or higher than that of the comparative organic photoelectric conversion element.
 例2
 〔有機光電変換素子の作製〕
 (有機光電変換素子2’の作製)
 例1で作製した有機光電変換素子2と同様の素材及び組成を用いて、以下のような順層型の有機光電変換素子を作製した。
Example 2
[Production of organic photoelectric conversion element]
(Preparation of organic photoelectric conversion element 2 ')
Using the same material and composition as those of the organic photoelectric conversion element 2 prepared in Example 1, the following normal layer type organic photoelectric conversion element was prepared.
 例1と同じ透明基板を同様の工程で洗浄した後、ITO膜上に、導電性高分子であるCLEVIOS P VP AI 4083を30nmの膜厚となるようにブレードコートした後、140℃で大気中10分間加熱乾燥した。 The same transparent substrate as in Example 1 was washed in the same process, and then a conductive polymer CLEVIOS P VP AI 4083 was blade-coated to a thickness of 30 nm on the ITO film, and then in the atmosphere at 140 ° C. Heat-dried for 10 minutes.
 これ以降は、基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。まず、窒素雰囲気下で上記基板を再度140℃で10分間再度加熱処理した。 After this, the substrate was brought into the glove box and worked in a nitrogen atmosphere. First, the substrate was again heat-treated at 140 ° C. for 10 minutes in a nitrogen atmosphere.
 p型有機半導体材料として、前記比較化合物2を0.8質量%で、n型有機半導体材料として前記PCBM1.6質量%でクロロベンゼンに溶解した溶液を作製し、同様に200nmの膜厚となるようにブレードコートを行い、80℃で2分間乾燥した。 As a p-type organic semiconductor material, a solution prepared by dissolving 0.8% by mass of the comparative compound 2 and 1.6% by mass of PCBM as an n-type organic semiconductor material in chlorobenzene was prepared, and similarly, a film thickness of 200 nm was obtained. Blade coating was performed and dried at 80 ° C. for 2 minutes.
 次に、上記一連の有機層を成膜した基板を大気に晒すことなく真空蒸着装置内に設置した。10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまで真空蒸着機内を減圧した後、フッ化リチウムを0.6nm、対極としてアルミニウムを100nm蒸着した。最後に120℃で30分間の加熱を行い、比較の有機光電変換素子2’を得た。なお蒸着速度は2nm/秒で、10mm角のサイズとした。 Next, the substrate on which the series of organic layers was formed was placed in a vacuum deposition apparatus without being exposed to the atmosphere. The element was set so that the shadow mask with a width of 10 mm was orthogonal to the transparent electrode, and the inside of the vacuum deposition apparatus was depressurized to 10 −3 Pa or less, and then 0.6 nm of lithium fluoride was deposited and 100 nm of aluminum was deposited as a counter electrode. Finally, heating was performed at 120 ° C. for 30 minutes to obtain a comparative organic photoelectric conversion element 2 ′. The deposition rate was 2 nm / second, and the size was 10 mm square.
 得られた有機光電変換素子2’は、窒素雰囲気下でUV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて凸版印刷製透明バリアフィルムGX(水蒸気透過率0.05g/m/d)と貼り合わせて封止した後に大気下に取り出した。 The obtained organic photoelectric conversion element 2 ′ was prepared by using a UV curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1) under a nitrogen atmosphere, and a relief barrier film GX (water vapor transmission rate 0.05 g / m 2 / d) and sealed and taken out to the atmosphere.
 (有機光電変換素子11’の作製)
 上記有機光電変換素子2’の作製において、p型有機半導体材料として、比較化合物2の代わりに例示化合物31を用い、他は同様にして順層型の有機光電変換素子11’を作製した。
(Preparation of organic photoelectric conversion element 11 ')
In the production of the organic photoelectric conversion element 2 ′, an exemplary compound 31 was used instead of the comparative compound 2 as a p-type organic semiconductor material, and a normal layer type organic photoelectric conversion element 11 ′ was produced in the same manner.
 〔有機光電変換素子の評価〕
 (光電変換効率の評価)
 上記作製した有機光電変換素子2’、11’及び例1で作製した有機光電変換素子2、11について、例1と同様に、光電変換効率及び有機光電変換素子の耐久性評価を評価した。
[Evaluation of organic photoelectric conversion elements]
(Evaluation of photoelectric conversion efficiency)
About the produced organic photoelectric conversion elements 2 ′ and 11 ′ and the organic photoelectric conversion elements 2 and 11 produced in Example 1, the photoelectric conversion efficiency and the durability evaluation of the organic photoelectric conversion elements were evaluated in the same manner as in Example 1.
 評価の結果を表2に示す。 Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表2において有機光電変換素子2及び11を比較すると、本発明の化合物31を用いた有機光電変換素子11の方が、耐久性が高いことが分かる。また、有機光電変換素子11及び11’においてLT80を比較すると、前者の値が、後者の値に比べてはるかに大きく、逆層型の有機光電変換素子において、特に耐久性が高いことが分かる。 When comparing the organic photoelectric conversion elements 2 and 11 in Table 2, it can be seen that the organic photoelectric conversion element 11 using the compound 31 of the present invention has higher durability. Further, when LT80 is compared in the organic photoelectric conversion elements 11 and 11 ', it can be seen that the former value is much larger than the latter value, and the reverse layer type organic photoelectric conversion element has particularly high durability.
 例3
 〔有機光電変換素子の作製〕
 (有機光電変換素子1”の作製)
 例1で作製した有機光電変換素子1を作製する際に、正孔輸送層の塗布を大気下ではなく、グローブボックス内(GB内)でそのまま行うことで、有機光電変換素子1”を作製した。
Example 3
[Production of organic photoelectric conversion element]
(Production of organic photoelectric conversion element 1 ″)
When producing the organic photoelectric conversion element 1 produced in Example 1, the organic photoelectric conversion element 1 ″ was produced by performing the application of the hole transport layer as it was in the glove box (in the GB), not in the atmosphere. .
 しかしながら、グローブボックス内のような非常に乾燥した環境下では、正孔輸送層の親水性溶媒は弾かれてしまい、用意した5枚の有機光電変換素子中、5枚とも製膜することができなかった。 However, in a very dry environment such as in a glove box, the hydrophilic solvent of the hole transport layer is repelled, and all five of the prepared organic photoelectric conversion elements can be formed. There wasn't.
 (有機光電変換素子2”の作製)
 例1で作製した有機光電変換素子2を作製する際に、正孔輸送層の塗布を大気下ではなく、グローブボックス内でそのまま行うことで、有機光電変換素子2”を作製した。
(Production of organic photoelectric conversion element 2 ″)
When producing the organic photoelectric conversion element 2 produced in Example 1, the organic photoelectric conversion element 2 ″ was produced by applying the hole transport layer as it was in the glove box, not in the atmosphere.
 しかしながら、グローブボックス内のような非常に乾燥した環境下では、正孔輸送層の親水性溶媒は弾かれてしまい、用意した5枚の有機光電変換素子中、4枚を製膜することができなかった。 However, in a very dry environment such as in a glove box, the hydrophilic solvent of the hole transport layer is repelled, and four of the prepared five organic photoelectric conversion elements can be formed. There wasn't.
 (有機光電変換素子4”、7”、9”、11”の作製)
 例1で作製した有機光電変換素子4,7,9、11を作製する際に、正孔輸送層の塗布を大気下ではなく、グローブボックス内でそのまま行うことで、有機光電変換素子4”、7”、9”、11”を作製した。有機光電変換素子4”、7”、9”、11”ではグローブボックス内のような非常に乾燥した環境下でも用意した5枚の有機光電変換素子中、5枚とも正孔輸送層を弾かずに製膜することができた。
(Production of organic photoelectric conversion elements 4 ″, 7 ″, 9 ″, 11 ″)
When producing the organic photoelectric conversion elements 4, 7, 9, and 11 produced in Example 1, by applying the hole transport layer as it is in the glove box, not in the atmosphere, the organic photoelectric conversion element 4 ″, 7 ", 9", and 11 "were produced. In the organic photoelectric conversion elements 4 ″, 7 ″, 9 ″, and 11 ″, five of the organic photoelectric conversion elements prepared in a very dry environment such as a glove box do not play the hole transport layer. It was possible to form a film.
 〔有機光電変換素子の評価〕
 上記作製した有機光電変換素子1”、2”、4”、7”、9”、11”及び例1で作製した有機光電変換素子1、2、4、7、9、11について、例1と同様に、光電変換効率及び有機光電変換素子の耐久性評価を評価した。
[Evaluation of organic photoelectric conversion elements]
Regarding the organic photoelectric conversion elements 1 ″, 2 ″, 4 ″, 7 ″, 9 ″, 11 ″ prepared above and the organic photoelectric conversion elements 1, 2, 4, 7, 9, 11 prepared in Example 1, Example 1 and Similarly, durability evaluation of the photoelectric conversion efficiency and the organic photoelectric conversion element was evaluated.
 またHIL(正孔輸送層)塗布性として、5枚の有機光電変換素子のうち何枚において弾かずに塗布できたか(塗布性)を評価した。 Further, as the HIL (hole transport layer) coating property, it was evaluated how many of the five organic photoelectric conversion elements could be coated without flipping (coating property).
 得られた結果を表3に示す。 Table 3 shows the obtained results.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 表3において有機光電変換素子4と4”、7と7”、9と9”、11と11”を比較すると、正孔輸送層(HIL)をグローブボックス(GB)内のような酸素及び水分のない環境下で塗布することで耐久性がさらに改善できることが分かる。しかしこのような乾燥した環境下では、比較化合物1、2を使用した有機光電変換素子1”、2”は正孔輸送層が弾かれて製膜できず、耐久性の上で有利な工程を使用できないことが分かる。 In Table 3, when comparing the organic photoelectric conversion elements 4 and 4 ″, 7 and 7 ″, 9 and 9 ″, and 11 and 11 ″, the hole transport layer (HIL) has oxygen and moisture as in the glove box (GB). It can be seen that the durability can be further improved by coating in an environment free from water. However, in such a dry environment, the organic photoelectric conversion elements 1 ″ and 2 ″ using the comparative compounds 1 and 2 cannot be formed because the hole transport layer is repelled, and a process advantageous for durability is performed. It turns out that it cannot be used.
 なお、本出願は、2011年5月12日に出願された日本国特許出願第2011-106985号に基づいており、その開示内容は、参照により全体として引用されている。 Note that this application is based on Japanese Patent Application No. 2011-106985 filed on May 12, 2011, the disclosure of which is incorporated by reference in its entirety.
 10 有機光電変換素子、
 11 基板、
 12 第1の電極、
 13 第2の電極、
 14 光電変換層、
 14’ 第1の光電変換層、
 15 電荷再結合層、
 16 第2の光電変換層、
 17 正孔輸送層、
 18 電子輸送層。
10 organic photoelectric conversion elements,
11 substrate,
12 first electrode;
13 second electrode,
14 photoelectric conversion layer,
14 '1st photoelectric converting layer,
15 charge recombination layer,
16 Second photoelectric conversion layer,
17 hole transport layer,
18 Electron transport layer.

Claims (11)

  1.  透明な基板上に、透明な第1の電極、p型有機半導体材料とn型有機半導体材料とを含有する光電変換層、及び第2の電極をこの順に有する有機光電変換素子であって、該光電変換層が、該p型有機半導体材料として下記一般式(1)で表される部分構造を有する化合物を含有することを特徴とする有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは、それぞれ独立して、フッ素原子又は塩素原子を表す。R~Rは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、フッ化アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アルコキシ基、フッ化アルコキシ基、アルキルチオ基、フッ化アルキルチオ基、アルキルアミノ基、フッ化アルキルアミノ基、アリール基、若しくはヘテロアリール基、又はこれらの基が互いに結合した連結基を表し、前記アリール基又はヘテロアリール基は、縮合環構造であってもよい。nは、それぞれ独立して、0~2の整数を表す。)
    An organic photoelectric conversion element having a transparent first electrode, a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode in this order on a transparent substrate, The photoelectric conversion layer contains a compound having a partial structure represented by the following general formula (1) as the p-type organic semiconductor material.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, each X independently represents a fluorine atom or a chlorine atom. R 1 to R 3 each independently represents a hydrogen atom, a halogen atom, an alkyl group, a fluorinated alkyl group, an alkenyl group, or an alkynyl group. Group, cycloalkyl group, alkoxy group, fluorinated alkoxy group, alkylthio group, fluorinated alkylthio group, alkylamino group, fluorinated alkylamino group, aryl group or heteroaryl group, or a linking group in which these groups are bonded to each other And the aryl group or heteroaryl group may be a condensed ring structure, and each n independently represents an integer of 0 to 2.)
  2.  前記一般式(1)で表される部分構造を有する化合物の数平均分子量が、15000~50000であることを特徴とする請求項1に記載の有機光電変換素子。 2. The organic photoelectric conversion device according to claim 1, wherein the compound having a partial structure represented by the general formula (1) has a number average molecular weight of 15,000 to 50,000.
  3.  前記一般式(1)において、RがXと同じ原子を表すことを特徴とする請求項1又は2に記載の有機光電変換素子。 In Formula (1), an organic photoelectric conversion element according to claim 1 or 2, characterized in that R 1 represents the same atom as X.
  4.  前記一般式(1)において、Xがフッ素原子を表すことを特徴とする請求項1~3のいずれか1項に記載の有機光電変換素子。 The organic photoelectric conversion element according to any one of claims 1 to 3, wherein in the general formula (1), X represents a fluorine atom.
  5.  前記p型有機半導体材料が、前記一般式(1)で表される構造と、さらに下記一般式(2)で表される構造とを有する共重合体であることを特徴とする請求項1~4のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、フッ化アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アルコキシ基、フッ化アルコキシ基、アルキルチオ基、フッ化アルキルチオ基、アルキルアミノ基、フッ化アルキルアミノ基、アリール基又はヘテロアリール基を表す。)
    The p-type organic semiconductor material is a copolymer having a structure represented by the general formula (1) and a structure represented by the following general formula (2). 5. The organic photoelectric conversion element according to any one of 4 above.
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 4 to R 5 are each independently a hydrogen atom, a halogen atom, an alkyl group, a fluorinated alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an alkoxy group, a fluorinated alkoxy group, or an alkylthio group. Represents a fluorinated alkylthio group, an alkylamino group, a fluorinated alkylamino group, an aryl group or a heteroaryl group.)
  6.  前記一般式(1)において、nが1であることを特徴とする請求項1~5のいずれか1項に記載の有機光電変換素子。 The organic photoelectric conversion element according to any one of claims 1 to 5, wherein n is 1 in the general formula (1).
  7.  前記一般式(1)において、Rが炭素数8~20のアルキル基を表すことを特徴とする請求項1~6のいずれか1項に記載の有機光電変換素子。 The organic photoelectric conversion device according to any one of claims 1 to 6, wherein in the general formula (1), R 2 represents an alkyl group having 8 to 20 carbon atoms.
  8.  前記一般式(1)において、Rが直鎖のアルキル基を表すことを特徴とする請求項1~7のいずれか1項に記載の有機光電変換素子。 The organic photoelectric conversion device according to any one of claims 1 to 7, wherein in the general formula (1), R 2 represents a linear alkyl group.
  9.  前記一般式(1)で表される部分構造が、Rが炭素数8以上のアルキル基を表す部分構造と、Rが炭素数8未満のアルキル基又は水素原子を表す部分構造とをともに含むことを特徴とする請求項1~8のいずれか1項に記載の有機光電変換素子。 The partial structure represented by the general formula (1) includes a partial structure in which R 2 represents an alkyl group having 8 or more carbon atoms and a partial structure in which R 3 represents an alkyl group having less than 8 carbon atoms or a hydrogen atom. 9. The organic photoelectric conversion element according to claim 1, wherein the organic photoelectric conversion element is contained.
  10.  請求項1~9のいずれか1項に記載の有機光電変換素子の光電変換層を、製膜中及び製膜後に酸素及び水分に曝すことなく製造することを特徴とする有機光電変換素子の製造方法。 10. A process for producing an organic photoelectric conversion element according to claim 1, wherein the photoelectric conversion layer of the organic photoelectric conversion element according to claim 1 is produced without being exposed to oxygen and moisture during film formation and after film formation. Method.
  11.  前記第1の電極がカソードであり、前記第2の電極がアノードである請求項1~9のいずれか1項に記載の有機光電変換素子を具備することを特徴とする太陽電池。 10. A solar cell comprising the organic photoelectric conversion device according to claim 1, wherein the first electrode is a cathode and the second electrode is an anode.
PCT/JP2012/062168 2011-05-12 2012-05-11 Organic photoelectric conversion element, method for producing same, and solar cell WO2012153845A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013514074A JP5920341B2 (en) 2011-05-12 2012-05-11 ORGANIC PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-106985 2011-05-12
JP2011106985 2011-05-12

Publications (1)

Publication Number Publication Date
WO2012153845A1 true WO2012153845A1 (en) 2012-11-15

Family

ID=47139319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062168 WO2012153845A1 (en) 2011-05-12 2012-05-11 Organic photoelectric conversion element, method for producing same, and solar cell

Country Status (2)

Country Link
JP (1) JP5920341B2 (en)
WO (1) WO2012153845A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095813A (en) * 2011-10-31 2013-05-20 Sumitomo Chemical Co Ltd Polymer compound and photoelectric conversion element using the same
WO2014157497A1 (en) * 2013-03-28 2014-10-02 富士フイルム株式会社 Organic photoelectric conversion element, organic thin film solar cell, composition used in same, coating film, compound useful for same, and method for producing compound
JP2014229799A (en) * 2013-05-23 2014-12-08 富士フイルム株式会社 Organic photoelectric conversion element, organic thin film solar battery, composition used therefor, coating film, compound useful therefor, and manufacturing method of such compound
WO2017097246A1 (en) * 2015-12-09 2017-06-15 The Hong Kong University Of Science And Technology Fluorinated benzoxadiazole-based donor-acceptor polymers for electronic and photonic applications
WO2017159609A1 (en) * 2016-03-18 2017-09-21 東レ株式会社 Photovoltaic element
JP2017534621A (en) * 2014-10-22 2017-11-24 ザ・ホンコン・ユニバーシティー・オブ・サイエンス・アンド・テクノロジーThe Hong Kong University of Science & Technology Difluorobithiophene based donor-acceptor polymers for electronic and photonic applications
US10777746B2 (en) * 2014-01-20 2020-09-15 Sumitomo Chemical Company, Limited Compound and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052711A1 (en) * 2009-10-29 2011-05-05 住友化学株式会社 Photoelectric conversion element
WO2011052702A1 (en) * 2009-10-29 2011-05-05 住友化学株式会社 Polymeric compound and electronic element
WO2011060526A1 (en) * 2009-11-18 2011-05-26 National Research Council Of Canada Fluorinated monomers, oligomers and polymers for use in organic electronic devices
WO2011136311A1 (en) * 2010-04-28 2011-11-03 住友化学株式会社 Polymer compound

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5893846B2 (en) * 2011-05-06 2016-03-23 住友化学株式会社 Method for producing compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052711A1 (en) * 2009-10-29 2011-05-05 住友化学株式会社 Photoelectric conversion element
WO2011052702A1 (en) * 2009-10-29 2011-05-05 住友化学株式会社 Polymeric compound and electronic element
WO2011060526A1 (en) * 2009-11-18 2011-05-26 National Research Council Of Canada Fluorinated monomers, oligomers and polymers for use in organic electronic devices
WO2011136311A1 (en) * 2010-04-28 2011-11-03 住友化学株式会社 Polymer compound

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095813A (en) * 2011-10-31 2013-05-20 Sumitomo Chemical Co Ltd Polymer compound and photoelectric conversion element using the same
WO2014157497A1 (en) * 2013-03-28 2014-10-02 富士フイルム株式会社 Organic photoelectric conversion element, organic thin film solar cell, composition used in same, coating film, compound useful for same, and method for producing compound
JP2014209535A (en) * 2013-03-28 2014-11-06 富士フイルム株式会社 Organic photoelectric conversion element, organic thin-film solar battery, composition used therefor, coating film, compound useful therefor, and manufacturing method thereof
JP2014229799A (en) * 2013-05-23 2014-12-08 富士フイルム株式会社 Organic photoelectric conversion element, organic thin film solar battery, composition used therefor, coating film, compound useful therefor, and manufacturing method of such compound
US10777746B2 (en) * 2014-01-20 2020-09-15 Sumitomo Chemical Company, Limited Compound and electronic device
JP2017534621A (en) * 2014-10-22 2017-11-24 ザ・ホンコン・ユニバーシティー・オブ・サイエンス・アンド・テクノロジーThe Hong Kong University of Science & Technology Difluorobithiophene based donor-acceptor polymers for electronic and photonic applications
WO2017097246A1 (en) * 2015-12-09 2017-06-15 The Hong Kong University Of Science And Technology Fluorinated benzoxadiazole-based donor-acceptor polymers for electronic and photonic applications
US20180355099A1 (en) * 2015-12-09 2018-12-13 The Hong Kong University Of Science And Technology Fluorinated Benzoxadiazole-Based Donor-Acceptor Polymers for Electronic and Photonic Applications
CN109071782A (en) * 2015-12-09 2018-12-21 香港科技大学 Application based on the donor-receptor polymer of fluoro benzoxadiazole in electronics and photonics
WO2017159609A1 (en) * 2016-03-18 2017-09-21 東レ株式会社 Photovoltaic element
CN108701770A (en) * 2016-03-18 2018-10-23 东丽株式会社 Photovoltaic element
JPWO2017159609A1 (en) * 2016-03-18 2019-01-17 東レ株式会社 Photovoltaic element

Also Published As

Publication number Publication date
JP5920341B2 (en) 2016-05-18
JPWO2012153845A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5838975B2 (en) Organic photoelectric conversion element and solar cell
JP5692228B2 (en) Organic photoelectric conversion device and solar cell using the same
JP5920341B2 (en) ORGANIC PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL
JP6015672B2 (en) Organic photoelectric conversion element
JP6024776B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
WO2011074411A1 (en) Organic photoelectric conversion element
WO2011093309A1 (en) Organic photoelectric conversion element
JP5310838B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP5772836B2 (en) Organic photoelectric conversion layer material composition, organic photoelectric conversion element, method for producing organic photoelectric conversion element, and solar cell
JP5699524B2 (en) Organic photoelectric conversion element and solar cell
JP5862189B2 (en) Organic photoelectric conversion device and solar cell using the same
JP2014053383A (en) Tandem organic photoelectric conversion element and solar cell using the same
JP5712769B2 (en) Organic photoelectric conversion element and solar cell
JP2012099592A (en) Organic photoelectric conversion element, solar cell and method for manufacturing the same
WO2010090123A1 (en) Organic photoelectric conversion element, solar cell using same, and optical sensor array
JP5686141B2 (en) Organic photoelectric conversion element and solar cell
JP2013089684A (en) Organic photoelectric conversion element and solar cell using the same
JP2012109365A (en) Organic photoelectric conversion element and solar cell
JP2013026483A (en) Organic photoelectric conversion element, method for manufacturing the same, and solar cell
JP5582042B2 (en) Organic photoelectric conversion element and solar cell
JP5691810B2 (en) Conjugated polymer and organic photoelectric conversion device using the same
JP5413055B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP2012015390A (en) Organic photoelectric conversion element, solar battery and optical sensor array
WO2011033973A1 (en) Organic photoelectric conversion element and solar battery
JP2012099632A (en) Organic photoelectric conversion element, solar battery using the organic photoelectric conversion element, and optical sensor array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013514074

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782503

Country of ref document: EP

Kind code of ref document: A1