WO2012098885A1 - Image display device and drive method for image display device - Google Patents

Image display device and drive method for image display device Download PDF

Info

Publication number
WO2012098885A1
WO2012098885A1 PCT/JP2012/000296 JP2012000296W WO2012098885A1 WO 2012098885 A1 WO2012098885 A1 WO 2012098885A1 JP 2012000296 W JP2012000296 W JP 2012000296W WO 2012098885 A1 WO2012098885 A1 WO 2012098885A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
subfield
gradation
gradation value
image signal
Prior art date
Application number
PCT/JP2012/000296
Other languages
French (fr)
Japanese (ja)
Inventor
広史 本田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012098885A1 publication Critical patent/WO2012098885A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/10Special adaptations of display systems for operation with variable images
    • G09G2320/103Detection of image changes, e.g. determination of an index representative of the image change
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2044Display of intermediate tones using dithering
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2059Display of intermediate tones using error diffusion

Definitions

  • the present invention relates to an image display device that displays an image in an image display region by combining binary control of light emission and non-light emission in a light emitting element that constitutes a pixel, and a driving method of the image display device.
  • a plasma display panel (hereinafter abbreviated as “panel”) is a typical image display device that displays an image in an image display area by combining binary control of light emission and non-light emission in a light emitting element constituting a pixel. is there.
  • a large number of discharge cells which are light-emitting elements constituting pixels, are formed between a front substrate and a rear substrate that are arranged to face each other.
  • a plurality of pairs of display electrodes composed of a pair of scan electrodes and sustain electrodes are formed on the front glass substrate in parallel with each other.
  • a dielectric layer and a protective layer are formed so as to cover the display electrode pairs.
  • the back substrate has a plurality of parallel data electrodes formed on the glass substrate on the back side, a dielectric layer is formed so as to cover the data electrodes, and a plurality of barrier ribs are formed thereon in parallel with the data electrodes. ing. And the fluorescent substance layer is formed in the surface of a dielectric material layer, and the side surface of a partition.
  • the front substrate and the rear substrate are arranged opposite to each other and sealed so that the display electrode pair and the data electrode are three-dimensionally crossed.
  • a discharge gas containing xenon at a partial pressure ratio of 5% is sealed, and a discharge cell is formed in a portion where the display electrode pair and the data electrode face each other.
  • ultraviolet rays are generated by gas discharge in each discharge cell, and the phosphors of each color of red (R), green (G) and blue (B) are excited and emitted by the ultraviolet rays. Display an image.
  • a subfield method is generally used as a method for displaying an image in an image display region by combining binary control of light emission and non-light emission in a light emitting element.
  • each discharge cell In the subfield method, one field is divided into a plurality of subfields having different emission luminances.
  • each discharge cell light emission / non-light emission of each subfield is controlled by a combination according to a desired gradation value.
  • each discharge cell emits light with the emission luminance of one field set to a desired gradation value, and an image composed of various combinations of gradation values is displayed in the image display area of the panel.
  • each subfield has an address period and a sustain period.
  • the scan pulse is sequentially applied to the scan electrodes, and the address pulse is selectively applied to the data electrodes based on the image signal to be displayed.
  • an address discharge is generated between the scan electrode and the data electrode of the discharge cell to emit light, and a wall charge is formed in the discharge cell (hereinafter, these operations are also collectively referred to as “address”). ).
  • the number of sustain pulses based on the gradation weights determined for each subfield is alternately applied to the display electrode pairs composed of the scan electrodes and the sustain electrodes.
  • a sustain discharge is generated in the discharge cell that has generated the address discharge, and the phosphor layer of the discharge cell emits light (hereinafter referred to as “lighting” that the discharge cell emits light by the sustain discharge, and “non-emitting”). Also written as “lit”.)
  • each discharge cell is made to emit light with the luminance according to the gradation weight.
  • each discharge cell of the panel is caused to emit light with a luminance corresponding to the gradation value of the image signal, and an image is displayed in the image display area of the panel.
  • the plasma display device has an image signal processing circuit.
  • the image signal processing circuit converts an image signal (hereinafter simply referred to as “image signal”) input to the plasma display device into a subfield code indicating lighting / non-lighting for each subfield in each discharge cell.
  • the image signal processing circuit has a conversion table composed of a plurality of subfield codes.
  • one subfield code is associated with one gradation value. That is, when one gradation value is input, the conversion table outputs one subfield code associated with the gradation value.
  • the conversion table is stored in a semiconductor storage element such as a ROM and provided in the image signal processing circuit. Then, using the conversion table, the image signal processing circuit converts each gradation value of the image signal into a subfield code (data indicating light emission / non-light emission for each subfield) corresponding to each gradation value. Output to the circuit.
  • the number of gradation values that can be displayed on the panel is determined by the number of subfield codes constituting the conversion table. If the number of subfield codes constituting the conversion table is large, the number of gradation values that can be displayed on the panel increases, and if the number of subfield codes constituting the conversion table is small, the number of gradation values that can be displayed on the panel. Decrease.
  • the number of gradation values that can be displayed on the panel is related to the power consumption of the plasma display device, and the number of gradation values that can be displayed on the panel is relatively reduced when the power consumption is reduced. Therefore, the subfield codes constituting the conversion table are generally determined in consideration of the power consumption of the plasma display device, the smoothness of the image that can be displayed on the panel, and the like.
  • the gradation values that cannot be displayed on the panel increase. For example, if the conversion table includes the subfield code of gradation value “7” and gradation value “9” and does not include the subfield code of gradation value “8”, the gradation value “8” is displayed on the panel. "Cannot be displayed. However, gradation values that cannot be displayed on the panel can be displayed on the panel in a pseudo manner by using a generally known method such as a dither method or an error diffusion method.
  • this moving image pseudo contour changes according to the number of subfield codes constituting the conversion table, and when the number of subfield codes constituting the conversion table increases, the moving image pseudo contour is likely to occur. .
  • the plasma display device it is desirable to display the image with a smooth gradation change by increasing the gradation values that can be displayed on the panel as much as possible, while reducing the moving image pseudo contour as much as possible.
  • the plasma display device includes a plurality of conversion tables having different numbers and types of subfield codes constituting the conversion table, and the plurality of conversion tables. Has been disclosed (for example, see Patent Document 1).
  • a plasma display device includes a plurality of conversion tables. Then, a minimum value and an average value of the image signal are obtained, and a threshold value is calculated from the minimum value and the average value. Then, one conversion table is selected from a plurality of conversion tables based on this threshold value. Then, the image signal is converted into a subfield code based on the selected conversion table.
  • the number of conversion tables to be provided in the plasma display device is very large as compared with the conventional plasma display device. For this reason, it is difficult to configure an image signal processing circuit having such a large number of conversion tables and selecting an optimum one from a large number of conversion tables according to various conditions. It is coming.
  • the plasma display device includes a plurality of electrode driving circuits for driving each electrode, and the driving voltage waveforms necessary for displaying an image on the panel are respectively displayed using the plurality of electrode driving circuits. Apply to electrode.
  • the plurality of electrode drive circuits include a data electrode drive circuit for driving the data electrodes.
  • the data electrode driving circuit applies a write pulse for a write operation to each of the plurality of data electrodes according to the image signal. Therefore, the data electrode driving circuit is generally configured using a dedicated integrated circuit (IC) for generating an address pulse.
  • IC integrated circuit
  • the data electrode viewed from the data electrode driving circuit is a capacitive load having a stray capacitance between adjacent data electrodes, a stray capacitance between the scan electrodes, and a stray capacitance between the sustain electrodes. Therefore, in order to apply a drive voltage waveform to the data electrode, the data electrode drive circuit must charge and discharge this capacitor, and power consumption for that purpose is required.
  • the image display quality may be deteriorated only by prohibiting the sub-field writing operation in order to suppress the power consumption of the data electrode driving circuit.
  • a plurality of subfields having gradation weights constitute one field, and each of the plurality of subfields is expressed using a subfield code indicating a combination of light emission and non-light emission in each of the plurality of subfields.
  • This is an image display device that controls the light emission and non-light emission, displays a gradation value based on an image signal on each of a plurality of pixels constituting the image display area, and displays an image in the image display area.
  • This image display device includes an image signal processing circuit that outputs a display code that is a subfield code for displaying a gradation value based on an image signal on a pixel.
  • the image signal processing circuit includes a base code generation unit, a rule generation unit, an upper and lower code generation unit, and a display code selection unit.
  • the base code generation unit generates a deleted base code in which a specific subfield based on a power control signal is set as a non-light-emitting subfield in a plurality of basic subfield codes, and from among the plurality of deleted base codes Then, a deleted base code having a gradation value that is larger than the gradation value of the image signal at the target pixel and closest to the gradation value of the image signal at the target pixel is selected as the upper gradation base code.
  • the rule generation unit generates a rule for generating a new subfield code by changing the light-emitting subfield in the upper gradation base code to a non-light-emitting subfield based on the image signal at the target pixel.
  • the upper / lower code generation unit applies the above-described rule to the upper gradation base code, and the gradation of the image signal at the target pixel is larger than the gradation value of the image signal at the target pixel.
  • the subfield code having the gradation value closest to the value is selected as the upper gradation code, and the gradation value closest to the gradation value of the image signal at the target pixel is equal to or lower than the gradation value of the image signal at the target pixel.
  • the subfield code having the lower gradation code is selected as the lower gradation code.
  • the display code selection unit calculates a gradation value to be displayed on the target pixel by adding a predetermined value to the gradation value of the image signal in the target pixel, and sets the target pixel of the upper gradation code and the lower gradation code. One having a gradation value closer to the gradation value to be displayed is selected as a display code.
  • the conversion from the image signal to the subfield code can be performed by calculation using the calculation circuit. Therefore, even in an image display device that needs to cope with high functionality and multi-function, it is not necessary to provide a huge number of conversion tables for converting image signals into subfield codes. That is, it is not necessary to configure the image signal processing circuit so as to select an optimal one from a vast number of conversion tables according to various conditions. Furthermore, power consumption can be suppressed while suppressing a decrease in image display quality in the image display device.
  • the plurality of basic subfield codes described above are all subfields having the largest gradation weight among the subfields that emit light, and all having a gradation weight smaller than that subfield.
  • This is a sub-field code in which the sub-field emits light.
  • the predetermined value described above is an error generated by error diffusion processing and a dither value generated by dither processing.
  • the rule generated by the rule generation unit when the image signal at the target pixel is a moving image is the rule generated by the rule generation unit when the image signal at the target pixel is a still image.
  • the present invention also comprises a plurality of subfields using a subfield code indicating a combination of light emission and non-light emission in each of the plurality of subfields, with a plurality of subfields having gradation weights defined.
  • This driving method generates a deleted base code in which a specific subfield based on a power control signal is a non-lighting subfield in a plurality of basic subfield codes, and from among the plurality of deleted base codes, Selecting a deleted base code having a tone value larger than the tone value of the image signal at the target pixel and closest to the tone value of the image signal at the target pixel as the upper tone base code; Based on the image signal, a step of generating a rule for generating a new subfield code by changing a light emitting subfield in the upper gradation base code to a non-light emitting subfield; The tone of the image signal at the pixel of interest from the newly generated subfield code by applying the rule A subfield code having a gradation value that is larger and closest to the gradation value of the image signal at the target pixel is selected as the upper gradation code, and the image signal of the target pixel is equal to or lower than the gradation value of the image signal at the target pixel.
  • the gradation value based on the image signal is displayed on the pixel of interest, whichever has the gradation value closer to the gradation value to be displayed on the pixel of interest, of the upper gradation code and the lower gradation code.
  • the conversion from the image signal to the subfield code can be performed by calculation using the calculation circuit. Therefore, even in an image display device that needs to cope with high functionality and multi-function, it is not necessary to provide a huge number of conversion tables for converting image signals into subfield codes. That is, it is not necessary to configure the image signal processing circuit so as to select an optimal one from a vast number of conversion tables according to various conditions. Furthermore, power consumption can be suppressed while suppressing a decrease in image display quality in the image display device.
  • FIG. 1 is an exploded perspective view showing a structure of a panel used in an image display apparatus according to an embodiment of the present invention.
  • FIG. 2 is an electrode array diagram of a panel used in the image display apparatus according to the embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing drive voltage waveforms applied to the respective electrodes of the panel used in the image display device according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of a code set when one field is composed of eight subfields.
  • FIG. 5 is a diagram schematically showing an example of a circuit block constituting the image display device according to the embodiment of the present invention.
  • FIG. 1 is an exploded perspective view showing a structure of a panel used in an image display apparatus according to an embodiment of the present invention.
  • FIG. 2 is an electrode array diagram of a panel used in the image display apparatus according to the embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing drive voltage waveforms applied to the respective electrodes of the panel used
  • FIG. 6 is a diagram schematically showing an example of a circuit block constituting the image signal processing circuit of the image display apparatus according to the embodiment of the present invention.
  • FIG. 7A is a diagram showing an example of a base code set used in the image display device according to the embodiment of the present invention.
  • FIG. 7B is a diagram showing another example of the base code set used in the image display device according to the embodiment of the present invention.
  • FIG. 7C is a diagram illustrating another example of the base code set used in the image display device according to the embodiment of the present invention.
  • FIG. 7D is a diagram showing an example of a deleted base code set newly created by the subfield deletion unit of the image display device according to the embodiment of the present invention.
  • FIG. 7A is a diagram showing an example of a base code set used in the image display device according to the embodiment of the present invention.
  • FIG. 7B is a diagram showing another example of the base code set used in the image display device according to the embodiment of the present invention.
  • FIG. 7C
  • FIG. 7E is a diagram showing another example of the deleted base code set newly created by the subfield deletion unit of the image display device according to the embodiment of the present invention.
  • FIG. 8A is a diagram illustrating an example of an intermediate code set generated by the rules generated by the rule generation unit of the image display device according to the embodiment of the present invention.
  • FIG. 8B is a diagram showing another example of the intermediate code set generated by the rules generated by the rule generation unit of the image display device according to the embodiment of the present invention.
  • FIG. 8C is a diagram illustrating another example of the intermediate code set generated by the rules generated by the rule generation unit of the image display device according to the embodiment of the present invention.
  • FIG. 8A is a diagram illustrating an example of an intermediate code set generated by the rules generated by the rule generation unit of the image display device according to the embodiment of the present invention.
  • FIG. 8B is a diagram showing another example of the intermediate code set generated by the rules generated by the rule generation unit of the image display device according to the embodiment of the present invention.
  • FIG. 8D is a diagram illustrating another example of the intermediate code set generated by the rules generated by the rule generation unit of the image display device according to the embodiment of the present invention.
  • FIG. 9A is a diagram showing an example of a dither pattern used in the image display device according to the embodiment of the present invention.
  • FIG. 9B is a diagram showing another example of the dither pattern used in the image display device according to the embodiment of the present invention.
  • FIG. 10 is a diagram showing the error diffusion coefficient of the error diffusion unit of the image display device according to the embodiment of the present invention.
  • FIG. 11 is a flowchart showing the operation of the image signal processing circuit of the image display device according to the embodiment of the present invention.
  • FIG. 1 is an exploded perspective view showing the structure of panel 10 used in the image display apparatus according to the embodiment of the present invention.
  • a plurality of display electrode pairs 14 each including a scanning electrode 12 and a sustaining electrode 13 are formed on a glass front substrate 11.
  • a dielectric layer 15 is formed so as to cover the scan electrode 12 and the sustain electrode 13, and a protective layer 16 is formed on the dielectric layer 15.
  • This protective layer 16 has been used as a panel material in order to lower the discharge start voltage in the discharge cell, and has a large secondary electron emission coefficient and durability when neon (Ne) and xenon (Xe) gas is sealed. It is made of a material mainly composed of magnesium oxide (MgO).
  • the protective layer 16 may be composed of a single layer or may be composed of a plurality of layers. Moreover, the structure which particle
  • a plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed so as to cover the data electrodes 22, and a grid-like partition wall 24 is further formed thereon.
  • a phosphor layer 25R that emits red (R)
  • a phosphor layer 25G that emits green (G)
  • a phosphor layer 25B that emits blue (B).
  • the phosphor layer 25R, the phosphor layer 25G, and the phosphor layer 25B are collectively referred to as a phosphor layer 25.
  • the front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 intersect each other with a minute space therebetween, and a discharge space is provided in the gap between the front substrate 11 and the rear substrate 21.
  • the outer peripheral part is sealed with sealing materials, such as glass frit.
  • sealing materials such as glass frit.
  • a mixed gas of neon and xenon is sealed in the discharge space as a discharge gas.
  • the discharge space is partitioned into a plurality of sections by the barrier ribs 24, and discharge cells, which are light-emitting elements constituting the pixels, are formed at the intersections between the display electrode pairs 14 and the data electrodes 22.
  • one pixel is composed of three consecutive discharge cells arranged in the direction in which the display electrode pair 14 extends.
  • the three discharge cells are a discharge cell having a phosphor layer 25R and emitting red (R) (red discharge cell), and a discharge cell having a phosphor layer 25G and emitting green (G) (green). And a discharge cell having a phosphor layer 25B and emitting blue (B) light (blue discharge cell).
  • the structure of the panel 10 is not limited to the above-described structure, and may be, for example, provided with a stripe-shaped partition wall.
  • FIG. 2 is an electrode array diagram of panel 10 used in the plasma display device according to one embodiment of the present invention.
  • the panel 10 includes n scan electrodes SC1 to SCn (scan electrode 12 in FIG. 1) extended in the horizontal direction (row direction and line direction) and n sustain electrodes SU1 to SUn (FIG. 1).
  • the sustain electrodes 13) are arranged, and m data electrodes D1 to Dm (data electrodes 22 in FIG. 1) extending in the vertical direction (column direction) are arranged.
  • m discharge cells are formed on one pair of display electrodes 14 and m / 3 pixels are formed.
  • the plasma display device in the present embodiment drives the panel 10 by the subfield method.
  • the subfield method one field of an image signal is divided into a plurality of subfields on the time axis, and a gradation weight is set for each subfield. Therefore, each field has a plurality of subfields having different gradation weights.
  • Each subfield has an initialization period, an address period, and a sustain period. Based on the image signal, light emission / non-light emission of each discharge cell is controlled for each subfield. That is, a plurality of gradations based on the image signal are displayed on the panel 10 by combining the light-emitting subfield and the non-light-emitting subfield based on the image signal.
  • an initializing operation is performed in which initializing discharge is generated in the discharge cells and wall charges necessary for the address discharge in the subsequent address period are formed on each electrode.
  • Initialization operation includes “forced initialization operation” that forcibly generates an initializing discharge in all discharge cells regardless of the operation of the immediately preceding subfield and an addressing discharge that occurs in the addressing period of the immediately preceding subfield.
  • the forced initializing operation the rising ramp waveform voltage and the falling ramp waveform voltage are applied to the scan electrode 12 to generate an initializing discharge in the discharge cell.
  • the forced initializing operation is performed in all discharge cells in the initializing period of one subfield, and all the discharge cells are selected in the initializing period of the other subfield. Perform initialization.
  • force initialization period the initialization period in which the forced initialization operation is performed
  • subfield having the forced initialization period is referred to as “forced initialization subfield”.
  • An initialization period for performing the selective initialization operation is referred to as a “selective initialization period”
  • a subfield having the selective initialization period is referred to as a “selective initialization subfield”.
  • subfield SF1 is a forced initialization subfield
  • the other subfields are selected initialization subfields.
  • the present invention is not limited to the above-described subfields as subfields for forced initialization subfields and subfields for selective initialization subfields.
  • the structure which switches a subfield structure based on an image signal etc. may be sufficient.
  • a scan pulse is applied to the scan electrode 12 and an address pulse is selectively applied to the data electrode 22 to selectively generate an address discharge in the discharge cells to emit light. Then, an address operation is performed to form wall charges in the discharge cells for generating a sustain discharge in the subsequent sustain period.
  • sustain pulses of the number obtained by multiplying the gradation weight set in each subfield by a predetermined proportional constant are alternately applied to the scan electrode 12 and the sustain electrode 13 to generate an address discharge in the immediately preceding address period.
  • a sustain discharge is generated in the discharged discharge cell, and a sustain operation for emitting light from the discharge cell is performed.
  • This proportionality constant is a luminance multiple.
  • the gradation weight represents the ratio of the magnitude of the luminance displayed in each subfield, and the number of sustain pulses corresponding to the gradation weight is generated in the sustain period in each subfield. Therefore, for example, the subfield with the gradation weight “8” emits light with a luminance about eight times that of the subfield with the gradation weight “1”, and about four times as high as the subfield with the gradation weight “2”. Emits light. Therefore, for example, if the subfield with the gradation weight “8” and the subfield with the gradation weight “2” are emitted, the discharge cell can emit light with a luminance corresponding to the gradation value “10”.
  • each discharge cell emits light with various gradation values by selectively emitting light in each subfield by controlling light emission / non-light emission of each discharge cell for each subfield in a combination according to the image signal. That is, a gradation value corresponding to an image signal can be displayed on each discharge cell, and an image based on the image signal can be displayed on the panel 10.
  • one pixel includes three consecutive discharge cells arranged in the direction in which the display electrode pair 14 extends, that is, a red discharge cell, a green discharge cell, and a blue discharge.
  • a red discharge cell is also referred to as a “red pixel”, a green discharge cell as a “green pixel”, and a blue discharge cell as a “blue pixel”.
  • FIG. 3 is a diagram schematically showing drive voltage waveforms applied to the respective electrodes of panel 10 used in the plasma display device according to one embodiment of the present invention.
  • FIG. 3 shows data electrode D1 to data electrode Dm, scan electrode SC1 that performs the address operation first in the address period, scan electrode SCn that performs the address operation last in the address period (for example, scan electrode SC1080), sustain electrode SU1 to The drive voltage waveform applied to each of the sustain electrodes SUn is shown.
  • Scan electrode SCi, sustain electrode SUi, and data electrode Dk in the following represent electrodes selected based on image data (data indicating light emission / non-light emission for each subfield) from among the electrodes.
  • FIG. 3 shows a subfield SF1 that is a forced initialization subfield, and a subfield SF2 and a subfield SF3 that are selective initialization subfields.
  • the subfield SF1, the subfield SF2, and the subfield SF3 have different waveform shapes of the drive voltage applied to the scan electrode 12 in the initialization period.
  • each subfield except subfield SF1 is a selective initialization subfield, and substantially the same drive voltage waveform in each period except the number of sustain pulses. Is generated.
  • the voltage 0 (V) is applied to the data electrode D1 to the data electrode Dm and the sustain electrode SU1 to the sustain electrode SUn.
  • a voltage Vi1 is applied to scan electrode SC1 through scan electrode SCn after voltage 0 (V) is applied, and a ramp waveform voltage that gradually rises from voltage Vi1 to voltage Vi2 (hereinafter referred to as an “upward ramp waveform voltage”). ) Is applied.
  • voltage Vi1 is set to a voltage lower than the discharge start voltage for sustain electrode SU1 to sustain electrode SUn
  • voltage Vi2 is set to a voltage exceeding the discharge start voltage for sustain electrode SU1 to sustain electrode SUn.
  • the wall voltage on the electrode represents a voltage generated by wall charges accumulated on the dielectric layer covering the electrode, the protective layer, the phosphor layer, and the like.
  • the positive voltage Ve is applied to the sustain electrodes SU1 to SUn, and the voltage 0 (V) is applied to the data electrodes D1 to Dm.
  • a scan waveform SC1 to scan electrode SCn are applied with a ramp waveform voltage that gently falls from voltage Vi3 to negative voltage Vi4 (hereinafter referred to as “down ramp waveform voltage”).
  • Voltage Vi3 is set to a voltage lower than the discharge start voltage with respect to sustain electrode SU1 through sustain electrode SUn
  • voltage Vi4 is set to a voltage exceeding the discharge start voltage with respect to sustain electrode SU1 through sustain electrode SUn.
  • the above voltage waveform is a forced initializing waveform that generates an initializing discharge in the discharge cell regardless of the operation of the immediately preceding subfield.
  • the operation for applying the forced initialization waveform to the scan electrode 12 is the forced initialization operation.
  • the forced initialization operation in the initialization period Ti1 of the forced initialization subfield ends.
  • initializing discharge is forcibly generated in all the discharge cells in the image display area of the panel 10.
  • voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn
  • voltage 0 (V) is applied to data electrode D1 through data electrode Dm
  • scan electrode SC1 through scan electrode SCn are applied. Applies a voltage Vc.
  • a negative scan pulse having a negative voltage Va is applied to the first (first row) scan electrode SC1 in terms of arrangement.
  • a positive address pulse of a positive voltage Vd is applied to the data electrode Dk of the discharge cell that should emit light in the first row of the data electrodes D1 to Dm.
  • sustain electrode SU1 since voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, sustain electrode SU1 in a region intersecting data electrode Dk is induced by a discharge generated between data electrode Dk and scan electrode SC1. Discharge also occurs between scan electrode SC1 and scan electrode SC1. Thus, address discharge is generated in the discharge cells (discharge cells to emit light) to which the scan pulse voltage Va and the address pulse voltage Vd are simultaneously applied.
  • a positive wall voltage is accumulated on the scan electrode SC1
  • a negative wall voltage is accumulated on the sustain electrode SU1
  • a negative wall voltage is also accumulated on the data electrode Dk.
  • the address operation in the discharge cells in the first row is completed.
  • the discharge cell having the data electrode Dh to which the address pulse is not applied the data electrode Dh is the data electrode D1 to the data electrode Dm excluding the data electrode Dk
  • the intersection of the data electrode Dh and the scan electrode SC1 Since the voltage of the portion does not exceed the discharge start voltage, the address discharge does not occur, and the wall voltage after the end of the initialization period Ti1 is maintained.
  • a scan pulse of the voltage Va is applied to the second (second row) scan electrode SC2 from the top, and the voltage Vd is applied to the data electrode Dk corresponding to the discharge cell to emit light in the second row. Apply the write pulse.
  • address discharge occurs in the discharge cells in the second row to which the scan pulse and address pulse are simultaneously applied.
  • the address operation in the discharge cells in the second row is performed.
  • voltage Ve applied to sustain electrode SU1 through sustain electrode SUn in the second half of initialization period Ti1 and voltage Ve applied to sustain electrode SU1 through sustain electrode SUn in address period Tw1 may have different voltage values. .
  • the voltage 0 (V) is applied to the sustain electrodes SU1 to SUn. Then, sustain pulse of positive voltage Vs is applied to scan electrode SC1 through scan electrode SCn.
  • the voltage difference between the scan electrode SCi and the sustain electrode SUi exceeds the discharge start voltage, and is maintained between the scan electrode SCi and the sustain electrode SUi. Discharge occurs.
  • the phosphor layer 25 of the discharge cell in which the sustain discharge has occurred emits light by the ultraviolet rays generated by the sustain discharge.
  • a negative wall voltage is accumulated on scan electrode SCi
  • a positive wall voltage is accumulated on sustain electrode SUi.
  • a positive wall voltage is also accumulated on the data electrode Dk.
  • the sustain discharge does not occur in the discharge cells in which the address discharge has not occurred in the address period Tw1.
  • the sustain pulses of the number obtained by multiplying the gradation weight by a predetermined luminance multiple are alternately applied to scan electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn.
  • the discharge cells that have generated the address discharge in the address period generate the sustain discharges the number of times corresponding to the gradation weight, and emit light with the luminance corresponding to the gradation weight.
  • scan electrode SC1 to scan are performed while voltage 0 (V) is applied to sustain electrode SU1 to sustain electrode SUn and data electrode D1 to data electrode Dm.
  • An upward ramp waveform voltage that gradually rises from voltage 0 (V) to voltage Vr is applied to electrode SCn.
  • the sustain of the discharge cell that has generated the sustain discharge is maintained while the rising ramp waveform voltage applied to scan electrode SC1 through scan electrode SCn exceeds the discharge start voltage.
  • a weak discharge (erase discharge) is continuously generated between the electrode SUi and the scan electrode SCi.
  • the charged particles generated by this weak discharge are accumulated as wall charges on the sustain electrode SUi and the scan electrode SCi so as to reduce the voltage difference between the sustain electrode SUi and the scan electrode SCi.
  • the wall voltage on scan electrode SCi and the wall voltage on sustain electrode SUi are weakened while the positive wall voltage on data electrode Dk remains.
  • unnecessary wall charges in the discharge cell are erased.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the positive voltage Ve is applied to the sustain electrodes SU1 to SUn.
  • Scan electrode SC1 to scan electrode SCn decrease from a voltage lower than the discharge start voltage (for example, voltage 0 (V)) toward negative voltage Vi4 at the same gradient as the downward ramp waveform voltage generated in initialization period Ti1. Apply a downward ramp waveform voltage.
  • the voltage Vi4 is set to a voltage exceeding the discharge start voltage.
  • the negative wall voltage on scan electrode SCi and the positive wall voltage on sustain electrode SUi are weakened.
  • an excessive portion of the positive wall voltage on the data electrode Dk is discharged.
  • the wall voltage in the discharge cell is adjusted to a wall voltage suitable for the address operation in the address period Tw2.
  • the voltage waveform described above is a selective initialization waveform in which an initializing discharge is selectively generated in a discharge cell that has performed an address operation in the address period (here, address period Tw1) of the immediately preceding subfield.
  • the operation of applying the selective initialization waveform to the scan electrode 12 is the selective initialization operation.
  • the same drive voltage waveform as that in the address period Tw1 of the subfield SF1 is applied to each electrode.
  • the number of sustain pulses corresponding to the gradation weights are alternately applied to the scan electrodes SC1 to SCn and the sustain electrodes SU1 to SUn.
  • each subfield after subfield SF3 the same drive voltage waveform as in subfield SF2 is applied to each electrode except for the number of sustain pulses generated in the sustain period.
  • Voltage Vc ⁇ 60 (V)
  • voltage Va ⁇ 200 (V)
  • voltage Vs 200 (V)
  • voltage Vr 200 (V)
  • voltage Ve 130 (V)
  • voltage Vd 70 (V)
  • the gradient of the rising ramp waveform voltage generated in the initialization period Ti1 is about 1.3 V / ⁇ sec
  • the gradient of the rising ramp waveform voltage generated in each sustain period is about 10 V / ⁇ sec.
  • the gradient of the generated downward ramp waveform voltage is about ⁇ 1.5 V / ⁇ sec.
  • the specific numerical values such as the voltage value and the gradient described above are merely examples, and the present invention is not limited to the numerical values described above for each voltage value and the gradient.
  • Each voltage value, gradient, and the like are preferably set optimally based on the discharge characteristics of the panel and the specifications of the plasma display device.
  • subfield SF1 is a forced initialization subfield for performing a forced initialization operation
  • other subfields are a selective initialization subfield for performing a selective initialization operation
  • the present invention is not limited to this configuration.
  • the subfield SF1 may be a selective initialization subfield and other subfields may be forced initialization subfields, or a plurality of subfields may be forced initialization subfields.
  • one field is composed of a plurality of subfields in which gradation weights are determined in advance. Then, by combining a subfield that is lit (lighting subfield) and a subfield that is not lit (non-lighting subfield), each discharge cell emits light with a light emission luminance corresponding to the magnitude of the gradation value based on the image signal. .
  • subfield code a combination of a lighting subfield and a non-lighting subfield
  • code set a set of a plurality of subfield codes
  • a subfield code is selected from a plurality of subfield codes constituting a code set according to a gradation value. Then, light emission / non-light emission of each subfield is controlled based on the subfield code, and the discharge cell is caused to emit light with a luminance corresponding to the magnitude of the gradation value, and an image is displayed on the panel 10.
  • the gradation value when displaying black (the gradation value when no sustain discharge occurs) is assumed to be “0”.
  • a gradation value corresponding to the gradation weight “N” is expressed as a gradation value “N”.
  • the gradation value displayed by the discharge cells that emit light only in the subfield SF1 having the gradation weight “1” is the gradation value “1”.
  • FIG. 4 is a diagram showing an example of a code set when one field is composed of eight subfields.
  • the numerical value shown immediately below the notation indicating each subfield represents the gradation weight of each subfield.
  • FIG. 4 includes eight subfields SF1 to SF8 in one field, and each subfield is “1”, “2”, “3”, “5”, “8”, respectively. ”,“ 13 ”,“ 21 ”, and“ 34 ”indicate code sets having gradation weights.
  • the light emitting subfield is indicated by “1”
  • the non-light emitting subfield is indicated by a blank
  • the leftmost column indicates the gradation value to be displayed in each subfield code.
  • the subfield code corresponding to the gradation value “2” is “01000000”.
  • subfield code data 0 or 1 is arranged in the order of subfield SF1, subfield SF2, subfield SF3, subfield SF4, subfield SF5, subfield SF6, subfield SF7, and subfield SF8 from the left.
  • binary numerical values shown as subfield codes are arranged in the order of subfield SF1, subfield SF2, subfield SF3,.
  • the subfield code corresponding to the gradation value “14” is “11101000”. Accordingly, in the discharge cell displaying the gradation value “14”, the subfield SF1, the subfield SF2, the subfield SF3, and the subfield SF5 emit light.
  • FIG. 5 is a diagram schematically showing an example of a circuit block constituting the image display device 30 according to the embodiment of the present invention.
  • the image display device 30 includes a panel 10 and a drive circuit that drives the panel 10.
  • the drive circuit includes an image signal processing circuit 31, a data electrode drive circuit 32, a scan electrode drive circuit 33, a sustain electrode drive circuit 34, a timing generation circuit 35, and a power supply circuit (not shown) that supplies necessary power to each circuit block. It has.
  • the image signals input to the image signal processing circuit 31 are a red image signal, a green image signal, and a blue image signal. Based on the red image signal, the green image signal, and the blue image signal, the image signal processing circuit 31 sets each gradation value of red, green, and blue (a gradation value expressed by one field) to each discharge cell. To do.
  • the input image signal includes a luminance signal (Y signal) and a saturation signal (C signal, or RY signal and BY signal, or u signal and v signal, etc.).
  • a red image signal, a green image signal, and a blue image signal are calculated based on the luminance signal and the saturation signal, and then, each gradation value of red, green, and blue is set in each discharge cell.
  • the red, green, and blue gradation values set for each discharge cell are subfield codes indicating lighting / non-lighting for each subfield (light emission / non-light emission corresponds to digital signals “1” and “0”).
  • the subfield code is output as a display code. That is, the image signal processing circuit 31 converts the red image signal, the green image signal, and the blue image signal into a red display code, a green display code, and a blue display code and outputs the converted signals.
  • the image signal processing circuit 31 does not convert an image signal into a subfield code using a conversion table, but converts the image signal into a subfield code by a logical operation. Details of this will be described later.
  • the timing generation circuit 35 generates various timing signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal.
  • the generated timing signal is supplied to each circuit block (data electrode drive circuit 32, scan electrode drive circuit 33, sustain electrode drive circuit 34, image signal processing circuit 31, etc.).
  • Scan electrode drive circuit 33 includes a ramp waveform generation unit, a sustain pulse generation unit, and a scan pulse generation unit (not shown in FIG. 5), and generates a drive voltage waveform based on a timing signal supplied from timing generation circuit 35. Then, the voltage is applied to each of scan electrode SC1 to scan electrode SCn.
  • the ramp waveform generator generates a forced initialization waveform and a selective initialization waveform to be applied to scan electrode SC1 through scan electrode SCn during the initialization period based on the timing signal.
  • the sustain pulse generator generates a sustain pulse to be applied to scan electrode SC1 through scan electrode SCn during the sustain period based on the timing signal.
  • the scan pulse generator includes a plurality of scan electrode drive ICs (scan ICs), and generates scan pulses to be applied to scan electrode SC1 through scan electrode SCn during the address period based on the timing signal.
  • Sustain electrode drive circuit 34 includes a sustain pulse generation unit and a circuit (not shown in FIG. 5) for generating voltage Ve, and generates and maintains a drive voltage waveform based on the timing signal supplied from timing generation circuit 35.
  • the voltage is applied to each of electrode SU1 through sustain electrode SUn.
  • a sustain pulse is generated based on the timing signal and applied to sustain electrode SU1 through sustain electrode SUn.
  • voltage Ve is generated based on the timing signal and applied to sustain electrode SU1 through sustain electrode SUn.
  • the data electrode drive circuit 32 includes the same number of switch circuits 36 as the data electrodes 22. In this embodiment, since the number of data electrodes 22 is “m”, the data electrode drive circuit 32 includes m switch circuits 36 (switch circuit 36 (1) to switch circuit 36 (m)). Each of the m switch circuits 36 (1) to 36 (m) corresponds to each of the m data electrodes D1 to Dm.
  • the data electrode drive circuit 32 generates an address pulse corresponding to each of the data electrodes D1 to Dm based on the display code of each color output from the image signal processing circuit 31 and the timing signal supplied from the timing generation circuit 35. .
  • the data electrode drive circuit 32 then writes a write pulse (write pulse voltage Vd or 0 (V) from the switch circuit 36 (1) to the switch circuit 36 (m) to the data electrode D1 to the data electrode Dm during the write period. )) Is applied.
  • the dedicated IC In order for the dedicated IC to operate normally, it is necessary to keep the power consumption, temperature, etc. within the predetermined range as the standard for the dedicated IC. For example, if the power consumption exceeds a predetermined upper limit of power consumption (allowable power loss), the dedicated IC may cause an abnormal operation. Therefore, in the image display device 30, the data electrode drive circuit 32 needs to operate so that the power consumption of the dedicated IC does not exceed a predetermined upper limit.
  • a display code is generated so as to reduce the power consumption of the data electrode drive circuit 32. Details of generation of the display code will be described later.
  • FIG. 6 is a diagram schematically showing an example of a circuit block constituting the image signal processing circuit 31 of the image display device 30 according to the embodiment of the present invention.
  • the image signal processing circuit 31 includes an attribute detection unit 41, an amplitude limiting unit 46, a base code generation unit 50, a rule generation unit 61, an upper and lower code generation unit 70, and a display code selection unit 80.
  • the attribute detection unit 41 specifies the relationship between the image signal and the position of the pixel displaying the image signal.
  • the time differentiation of the image signal corresponding to each pixel determines whether each pixel is in the moving image area or the still image area. Detect if there is any.
  • a change in brightness is detected by spatial differentiation of the image signal (detecting a change in the image signal between adjacent pixels), and it is detected whether or not each pixel corresponds to the contour portion of the image. Then, those detection results are output as attributes of the image signal corresponding to each pixel.
  • the amplitude limiter 46 multiplies the image signal by the amplification factor A output from the base code generator 50, and outputs the multiplied image signal.
  • the amplification factor A is a numerical value of “1” or less. Therefore, the amplitude limiting unit 46 reduces the amplitude of the image signal based on the amplification factor A. Details of the amplification factor A will be described later.
  • a subfield code that is basic in subsequent signal processing is referred to as a “basic code”, and a code set including the base code is referred to as a “basic code set”.
  • the base code is a subfield code generated by lighting one by one or two in order from the subfield having the smallest gradation weight. Therefore, the base code is a subfield code in which a subfield having the largest gradation weight among the subfields to emit light and all subfields having a gradation weight smaller than that subfield emit light.
  • the base code generation unit 50 Based on the power control signal Cnt, the base code generation unit 50 generates a deleted base code with a specific subfield of the base code set as a non-light-emitting subfield. Then, based on the gradation value (hereinafter referred to as “input gradation”) of the image signal input to the image signal processing circuit 31 from the deleted base code set including a plurality of deleted base codes, “ Select "Upper gradation basis code”.
  • the upper gradation base code is a subfield code in which a specific subfield is set to a non-lighting subfield based on the power control signal Cnt, and has a gradation value larger than the input gradation and closest to the input gradation. This is a subfield code having a gradation value. Therefore, the upper gradation base code includes a subfield having the largest gradation weight among the lighting subfields and a specific subfield having a gradation weight smaller than that subfield and based on the power control signal Cnt. Except for the subfield, the lighting subfield is used.
  • the power control signal Cnt is generated in a power estimation unit (not shown).
  • the power estimation unit estimates power consumption in the image display device 30 based on the image signal, temperature, and the like.
  • the power estimation unit outputs the power control signal Cnt by increasing the value of the power control signal Cnt if the estimated value of power consumption is large, and decreasing the value of the power control signal Cnt if the estimated value of power consumption is small.
  • the method for estimating the power consumption in the power estimation unit may be a generally known power estimation method. For example, if the design of an image is detected, the estimated power consumption is increased if the design is fine, and the estimated power consumption is decreased if the design is small. A method of increasing the value or a method of increasing the estimated value of power consumption when the temperature of the image display device 30 rises may be used.
  • the power control signal Cnt is a real number equal to or greater than “0” and is continuously changed according to the change of the image signal.
  • the power control signal Cnt is not limited to this.
  • the base code generation unit 50 selects a deleted base code having a gradation value larger than the input gradation and closest to the input gradation, and outputs it as an upper gradation base code.
  • FIG. 7A is a diagram illustrating an example of a base code set used in the image display device 30 according to an embodiment of the present invention.
  • FIG. 7B is a diagram showing another example of the base code set used in the image display device 30 according to the embodiment of the present invention.
  • FIG. 7C is a diagram showing another example of the base code set used in the image display device 30 according to the embodiment of the present invention.
  • each subfield code (base) is displayed in the second column from the left.
  • Code represents the gradation value to be displayed.
  • the numerical value written immediately below the notation indicating each subfield in each base code set represents the gradation weight of each subfield.
  • FIG. 7A shows an example of a base code set often used in the NTSC standard.
  • the base code set shown in FIG. 7A is composed of 8 subfields, and each subfield is “1”, “2”, “3”, “5”, “ It has gradation weights of “8”, “13”, “21”, and “34”.
  • the first subfield (subfield SF1) of one field is set to the subfield having the smallest gradation weight, and thereafter, the subfields are arranged so that the gradation weight is sequentially increased. . And it is set as a lighting subfield one by one in an order from the subfield with the smallest gradation weight. Therefore, the number of base codes included in this base code set is (the number of subfields constituting one field + 1). For example, in the example of the base code set shown in FIG. 7A, the number of base codes is nine.
  • FIG. 7B shows an example of a base code set often used in the PAL standard.
  • one field is composed of 12 subfields, and each subfield is “1”, “2”, “4”, “9”, “9” in order from the subfield SF1. It has gradation weights of “18”, “36”, “65”, “5”, “7”, “15”, “33”, “60”.
  • the base code set shown in FIG. 7B has two subfield groups.
  • the first subfield group is composed of subfields SF1 to SF7, and the second subfield group is composed of subfields SF8 to SF12.
  • Each subfield group has the first subfield of each subfield group (subfield SF1 and subfield SF8 in the example shown in FIG. 7B) as the subfield having the smallest gradation weight in each subfield group. Thereafter, the subfields are arranged so that the gradation weights are sequentially increased. In each subfield group, one or two lighting subfields are set in order from the subfield having the smallest gradation weight. Therefore, the number of base codes included in this base code set is equal to or less than (the number of subfields constituting one field + 1). For example, in the example of the base code set shown in FIG. 7B, the number of base codes is 10.
  • FIG. 7C shows an example of a base code set used in a 3D display device (stereoscopic display device).
  • one field is composed of five subfields, and each subfield is “1”, “16”, “8”, “4”, “ 2 "gradation weight.
  • the first subfield (subfield SF1) of one field is the subfield having the smallest gradation weight
  • the second subfield (subfield SF2) is the subfield having the largest gradation weight.
  • the subfields are arranged so that the gradation weights are sequentially reduced. And it is set as a lighting subfield one by one in an order from the subfield with the smallest gradation weight. Therefore, the number of base codes included in this base code set is (the number of subfields constituting one field + 1). For example, in the example of the base code set shown in FIG. 7C, the number of base codes is 6.
  • the image display device 30 in the present embodiment generates a new code set based on the base code set as described above, and converts the input gradation into a subfield code using the code set.
  • the base code generation unit 50 includes a base code storage unit 52, a subfield deletion unit 53, and a base code selection unit 54.
  • the base code storage unit 52 stores a base code set and gradation values of a plurality of base codes constituting the base code set. Each base code and each gradation value of the base code are stored in the base code storage unit 52 in association with each other.
  • the subfield deleting unit 53 sets a specific subfield based on the power control signal Cnt in the base code set output from the base code storage unit 52 as a non-lighting subfield.
  • the subfield code set obtained in this way is output as a deleted base code set.
  • the sub-field code obtained from the base code by making a specific sub-field based on the power control signal Cnt a non-lighting sub-field is “deleted base code”.
  • a subfield code set obtained from a base code set by using a specific subfield based on the power control signal Cnt as a non-lighting subfield is a “deleted base code set”.
  • the base code generation unit 50 selects a deleted base code having a gradation value that is larger than the input gradation and closest to the input gradation in the deleted base code set, and uses the deleted base code as the upper gradation. Output as base code.
  • the display code is generated using the “deleted base code set” in which the write operation of the specific subfield is prohibited and the specific subfield is set to the non-lighting subfield. .
  • the power consumption of the data electrode driving circuit 32 is limited.
  • the amplitude of the image signal is adjusted based on the power control signal Cnt.
  • the power control signal Cnt is a real number equal to or greater than “0”.
  • Nd 2
  • Nd 3
  • the write operation is prohibited in the subfield having the smallest gradation weight, the second subfield having the smallest gradation weight, and the third subfield having the smallest gradation weight, and the three sub-fields are prohibited.
  • FIG. 7D is a diagram illustrating an example of a deleted base code set newly created by the subfield deletion unit 53 of the image display device 30 according to the embodiment of the present invention.
  • FIG. 7E is a diagram showing another example of the deleted base code set newly created by the subfield deletion unit 53 of the image display device 30 according to the embodiment of the present invention.
  • the light emitting subfield is “1”
  • the non-light emitting subfield is blank
  • the second column from the left is displayed in each subfield code.
  • the numerical value written immediately below the notation indicating each subfield in each deleted base code set represents the gradation weight of each subfield.
  • the deleted base code set shown in FIG. 7D is a deleted base code set created from the base code set shown in FIG. 7A using the subfield SF1 having the smallest gradation weight as a non-lighting subfield.
  • the deleted base code set shown in FIG. 7E is subfield SF1 having the smallest tone weight, subfield SF2 having the second lowest tone weight, and third tone weight from the base code set shown in FIG. 7A.
  • This is a deleted base code set created by making the three subfields of the small subfield SF3 non-lighting subfields.
  • the subfield deletion unit 53 newly provides a deleted base code set from the base code set stored in the base code storage unit 52 by providing a subfield that prohibits the write operation. create.
  • the maximum gradation value in the deleted base code set is higher than the maximum gradation value in the base code set by the gradation weight of the subfield for which the write operation is prohibited.
  • the gradation value decreases by that amount.
  • gradation display in the high gradation region cannot be performed by that amount, and a so-called “white-out” phenomenon occurs.
  • the “white-out” phenomenon is a phenomenon in which the gradation of a high luminance region in the display image is lowered.
  • the subfield deletion unit 53 in the present embodiment calculates the amplification factor A for adjusting the amplitude of the image signal based on the power control signal Cnt, and sends it to the amplitude limiting unit 46. Output.
  • the maximum gradation value that can be displayed on the panel 10 is “87”.
  • the subfield deleting unit 53 outputs a numerical value “1” obtained by dividing “87” by “87” as the amplification factor A.
  • the subfield deleting unit 53 outputs a numerical value “0.99” obtained by dividing “86” by “87” as the amplification factor A.
  • the power control signal Cnt is “3”, as shown in the deleted base code set in FIG. 7E, the write operation in the subfield SF1, subfield SF2, and subfield SF3 is prohibited. Therefore, when the power control signal Cnt is “3”, the maximum gradation value that can be displayed on the panel 10 is “81” in the deleted base code set of FIG. 7E. Therefore, the subfield deleting unit 53 outputs the numerical value “0.93” obtained by dividing “81” by “87” as the amplification factor A.
  • the amplitude limiter 46 multiplies the image signal by the amplification factor A. That is, the amplitude limiter 46 determines the gradation value of the deleted base code having the largest gradation value in the deleted base code set as the base code level having the largest gradation value in the base code set.
  • the image signal is multiplied by an amplification factor A obtained by dividing by the tone value.
  • the image display device 30 in the present embodiment displays an image on the panel 10 based on the multiplied image signal.
  • the power control signal Cnt is a real number and continuously changes according to the change of the image signal. Therefore, in the present embodiment, amplification factor A is calculated based on the following equation so as to change continuously according to power control signal Cnt.
  • A (Cnt ⁇ Nd) ⁇ (A (Nd + 1) ⁇ A (Nd)) + A (Nd)
  • a (integer N) is the gradation value of the deleted base code having the largest gradation value in the deleted base code set when the write operation in N subfields is prohibited, and the base code It represents the ratio with the gradation value of the base code having the largest gradation value in the set.
  • the base code selection unit 54 compares each gradation value of the deleted base code constituting the deleted base code set with the input gradation. Then, a deleted base code having a gradation value larger than the input gradation and closest to the input gradation is selected. Then, the selected deleted base code is output as an upper gradation base code.
  • the deleted base code set is equal to the original base code set.
  • a lighting subfield in the upper gradation base code is changed to a non-lighting subfield, so that a new base code set that is not included in the deleted base code set is used.
  • the rule generation unit 61 generates a rule for generating this new subfield code.
  • the rule generation unit 61 generates a base code based on the image signal and the attribute (attribute associated with the image signal) detected by the attribute detection unit 41 in order to increase the number of subfield codes used for image display.
  • a rule for changing the lighting subfield in the upper gradation base code selected in the unit 50 to the non-lighting subfield is generated.
  • the rule generated by the rule generation unit 61 defines a rule for changing the lighting subfield in the upper gradation base code to the non-lighting subfield.
  • the rule generated by the rule generation unit 61 restricts subfields to be changed from lighting to non-lighting in the upper gradation base code. This is because the gradation value of the deleted base code in which the gradation value of the new subfield code created by changing the lighting subfield to the non-lighting subfield in the upper gradation base code is smaller than that of the upper gradation base code This is so as not to fall below the value.
  • the upper gradation base code allows unlimited subfields to change from lighting to non-lighting, all lighting subfields become non-lighting subfields, and subfield codes with a gradation value of “0” are generated. This is because there is a possibility that it may occur.
  • the rule generation unit 61 generates a rule so that the subfield code generated based on the rule has the next gradation value.
  • the “lower gradation base code” is a deleted base code having a gradation value that is equal to or lower than the input gradation and closest to the input gradation.
  • the rule generated by the rule generation unit 61 is composed of one or more of the following three rules. 1) A rule for setting the first subfield to be changed from the lighting subfield to the non-lighting subfield. 2) A rule for setting the second subfield to be changed from the lighting subfield to the non-lighting subfield. 3) A rule for setting a sub-field that prohibits non-lighting. Details of these rules will be described later.
  • the upper / lower code generation unit 70 applies the rule generated by the rule generation unit 61 to the upper gradation base code output from the base code generation unit 50 to generate an upper gradation code and a lower gradation code.
  • the upper gradation code has a gradation value larger than the input gradation and closest to the input gradation among subfield codes that can be newly generated based on the rule generated by the rule generation unit 61. It is a subfield code.
  • the lower gradation code is a gradation value that is lower than the input gradation and closest to the input gradation among the subfield codes that can be newly generated based on the rule generated by the rule generation unit 61. It is a subfield code having.
  • the upper / lower code generation unit 70 includes an intermediate code generation unit 72 and an upper / lower code selection unit 74.
  • the intermediate code generation unit 72 changes the lighting subfield in the upper gradation base code to the non-lighting subfield and generates a new subfield code.
  • the newly generated subfield code is referred to as “intermediate code”.
  • a set obtained by adding the original upper tone base code to these intermediate codes is referred to as an “intermediate code set”.
  • the intermediate code is a subfield code used when displaying an image on panel 10. Therefore, each discharge cell of panel 10 emits light with a luminance of a gradation value based on the intermediate code.
  • FIG. 8A is a diagram illustrating an example of an intermediate code set generated by the rules generated by the rule generation unit 61 of the image display device 30 according to the embodiment of the present invention.
  • FIG. 8B is a diagram illustrating another example of the intermediate code set generated by the rules generated by the rule generation unit 61 of the image display device 30 according to the embodiment of the present invention.
  • FIG. 8C is a diagram illustrating another example of the intermediate code set generated by the rules generated by the rule generation unit 61 of the image display device 30 according to the embodiment of the present invention.
  • FIG. 8D is a diagram illustrating another example of the intermediate code set generated by the rules generated by the rule generation unit 61 of the image display device 30 according to the embodiment of the present invention.
  • the light emitting subfield is indicated by “1”
  • the non-light emitting subfield is indicated by a blank
  • the second column from the left indicates each subfield.
  • the gradation value displayed in the code is represented.
  • the numerical value written immediately below the notation indicating each subfield in each intermediate code set represents the gradation weight of each subfield.
  • the intermediate code set shown in FIGS. 8A, 8B, 8C, and 8D includes one field composed of 8 subfields, and each subfield is “1”, “2”, It has gradation weights of “3”, “5”, “8”, “13”, “21”, “34”.
  • FIG. 8A as an example of the intermediate code set, the above-described “1) Rule for setting the first subfield to be changed from the lighting subfield to the non-lighting subfield” is shown in FIG. 8A.
  • An intermediate code set generated by applying to the deleted base code “01111100” having the value “31” is shown.
  • rule 1 This “1) rule for setting the first subfield to be changed from a lighting subfield to a non-lighting subfield” is a rule that “one of the lighting subfields is changed to a non-lighting subfield”. (Hereinafter referred to as “rule 1”).
  • the subfield code “01111000” obtained by changing the subfield SF6 to the non-lighting subfield is equal to the deleted base code (order .5) of the gradation value “18” illustrated in FIG. 7D. Therefore, four subfield codes excluding the subfield code “01111000” are newly generated intermediate codes.
  • FIG. 8B as an example of the intermediate code set, in addition to the above-described rule 1, “2) a rule for setting the second subfield to be changed from the lighting subfield to the non-lighting subfield” is shown in FIG.
  • Rule 2 for setting the second subfield to be changed from the lighting subfield to the non-lighting subfield is “the subfield code having the smallest gradation value among the newly generated intermediate codes”.
  • the sub-field SF2 is a non-lighting sub-field ”(hereinafter referred to as“ rule 2 ”).
  • rule 1 and rule 2 described above are applied to the deleted base code “01111100” having the gradation value “31” shown in FIG. 7D, five new subfield codes are generated as intermediate codes. Can do.
  • FIG. 8C as an example of the intermediate code set, in addition to the above-described rule 1, “3) a rule for setting a subfield that prohibits non-lighting” is shown in the gradation value “The intermediate code set generated by applying to the deleted base code “11111100” of “31” is shown.
  • rule for setting a subfield that prohibits non-lighting is a rule that “subfield SF1 and subfield SF2 are prohibited from being non-lighting subfield” (hereinafter “rule”). 3 ”).
  • the subfield SF1 is a non-lighting subfield. Therefore, in the above-mentioned rule 3, “prohibiting subfield SF1 from being a non-lighting subfield” is ignored. Therefore, the above-mentioned rule 3 is “inhibiting the subfield SF2 from being a non-lighting subfield”.
  • the “subfield code whose subfield SF2 is a non-lighting subfield” is a subfield code “00111100” having a gradation value of “29”.
  • the subfield code having the gradation value “29” is excluded from the intermediate code set.
  • FIG. 8D shows, as an example of the intermediate code set, “1) Rule when setting the first subfield to be changed from the lighting subfield to the non-lighting subfield” (rule 1) in FIG.
  • An intermediate code set generated by applying to the deleted base code “00011100” having the gradation value “26” shown is shown.
  • This rule 1 is a rule that “one of the lighting subfields is changed to a non-lighting subfield”.
  • subfield SF4 In the deleted base code “00011100” (order 4) with the gradation value “26” shown in FIG. 7E, three subfields from subfield SF4 to subfield SF6 are lighting subfields.
  • the subfield code “00011000” obtained by changing the subfield SF6 to the non-lighting subfield is equal to the deleted base code (order .3) of the gradation value “13” illustrated in FIG. 7E. Accordingly, two subfield codes excluding the subfield code “00011000” are newly generated intermediate codes.
  • the intermediate code generation unit 72 applies the rule generated by the rule generation unit 61 to the upper gradation base code output from the base code generation unit 50 to generate an intermediate code, and the intermediate code set Is generated.
  • rule 1 and rule 3 are used when generating intermediate code.
  • rule 2 may be added when generating intermediate code.
  • the image display device 30 displays an image with relatively low power consumption, or when an image with relatively little occurrence of moving image pseudo contour is displayed, the number of intermediate codes generated can be increased. It is. Then, by increasing the number of intermediate codes generated, an image can be displayed with a smoother gradation change.
  • the upper / lower code selection unit 74 compares each gradation value of the subfield code constituting the intermediate code set generated by the intermediate code generation unit 72 with the input gradation. Then, the upper / lower code selection unit 74 selects a subfield code having a gradation value larger than the input gradation and closest to the input gradation, and outputs it as an upper gradation code. In addition, the upper / lower code selection unit 74 selects a subfield code having a gradation value equal to or lower than the input gradation and closest to the input gradation, and outputs it as a lower gradation code.
  • the display code selection unit 80 calculates a gradation value to be displayed on the target pixel by adding a predetermined value to the input gradation. Then, the display code selection unit 80 selects one of the upper gradation code and the lower gradation code that has a gradation value closer to the gradation value to be displayed on the target pixel, and outputs it as a display code.
  • the pixel of interest is a pixel that is a target of calculation of a gradation value at that time.
  • the above-described predetermined value added to the input gradation is an error diffused by the error diffusion process and a dither value calculated by the dither process. Therefore, the display code selection unit 80 adds the error and the dither value to the input gradation to calculate the gradation value to be displayed on the target pixel, and selects the target pixel from the upper gradation code and the lower gradation code. The one having a gradation value closer to the gradation value to be displayed is selected as a display code. Further, the display code selection unit 80 calculates the difference between the gradation value to be displayed on the target pixel and the gradation value of the display code, and diffuses the difference as an error to surrounding pixels.
  • the display code selection unit 80 includes a dither selection unit 82, an error diffusion unit 84, and a display code determination unit 86.
  • the dither selection unit 82 stores a plurality of dither patterns. Then, one dither pattern is selected from a plurality of stored dither patterns based on the image signal and the attribute detected by the attribute detection unit 41.
  • the dither selection unit 82 selects a dither element corresponding to the position of the pixel from the selected dither pattern based on the position of the pixel displaying the image signal. Further, the dither selection unit 82 calculates the dither value by multiplying the selected dither element by the difference between the gradation value of the upper gradation code and the gradation value of the lower gradation code.
  • FIG. 9A is a diagram showing an example of a dither pattern used in the image display device 30 according to the embodiment of the present invention.
  • FIG. 9B is a diagram showing another example of the dither pattern used in the image display device 30 according to the embodiment of the present invention.
  • one column represents one pixel.
  • FIG. 9A shows the simplest binary dither.
  • “+0.25” and “ ⁇ 0.25” are arranged in a checkered pattern as dither elements.
  • FIG. 9B is a diagram showing an example of a four-value dither. In FIG. 9B, dither elements “+0.375”, “+0.125”, “ ⁇ 0.375” and “ ⁇ 0.125” are arranged.
  • the error diffusion unit 84 outputs an error to be added to the target pixel to the display code determination unit 86 and diffuses the error output from the display code determination unit 86 to the peripheral pixels of the target pixel.
  • the dither selection unit 82 stores, for example, two types of dither patterns shown in FIGS. 9A and 9B, and selects one of the dither patterns based on the image signal and the attribute detected by the attribute detection unit 41. .
  • the dither pattern shown in FIG. 9A is selected, the dither element is either “+0.25” or “ ⁇ 0.25”.
  • the dither element shown in FIG. 9B is selected, the dither element is “+0”. .375 ”,“ +0.125 ”,“ ⁇ 0.375 ”, and“ ⁇ 0.125 ”.
  • the dither selection unit 82 selects any one of these dither elements based on the position of the pixel displaying the image signal. Further, the dither value is calculated by multiplying the selected dither element by the difference between the tone value of the upper tone code and the tone value of the lower tone code. The calculated dither value is added to the input gradation in the display code selection unit 80.
  • FIG. 10 is a diagram showing error diffusion coefficients of the error diffusion unit 84 of the image display device 30 in the embodiment of the present invention.
  • one column represents one pixel.
  • the middle column in FIG. 10 represents a pixel (target pixel) that is a target of error diffusion processing.
  • the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the pixel arranged at the upper left of the target pixel by the diffusion coefficient k1 to the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the pixel arranged on the target pixel by the diffusion coefficient k2 to the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the pixel arranged at the upper right of the target pixel by the diffusion coefficient k3 to the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the pixel arranged on the left of the target pixel by the diffusion coefficient k4 to the target pixel.
  • the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the target pixel by the diffusion coefficient k4 to the pixel arranged on the right side of the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the target pixel by the diffusion coefficient k3 to the pixel arranged at the lower left of the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the target pixel by the diffusion coefficient k2 to the pixel arranged below the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the target pixel by the diffusion coefficient k1 to the pixel arranged at the lower right of the target pixel.
  • which diffusion coefficient is selected is determined using a random number generated by a random number generator (not shown).
  • the display code determination section 86 Based on the input gradation, the dither value output from the dither selection section 82, and the error output from the error diffusion section 84, the display code determination section 86 converts the display code actually used for image display into the upper gradation code. Alternatively, it is determined as one of the lower gradation codes.
  • the display code determination unit 86 calculates a gradation value to be displayed on the target pixel by adding the dither value and the error to the input gradation.
  • the display code is selected as the display code.
  • the display code determination unit 86 calculates the difference between the gradation value to be displayed on the target pixel and the gradation value of the display code, and outputs the difference to the error diffusion unit 84 as a newly generated error.
  • the image signal processing circuit 31 operates based on the following conditions. 1)
  • the base code set shown in FIG. 7A is used as the base code set. 2)
  • the rules used in the description of FIG. 8A are used. That is, rule 1 “change any one of the lighting subfields to a non-lighting subfield” is used. 3) Based on the attribute accompanying the image signal, “Rule for setting sub-field forbidden to turn off” (rule 3) is added to rule 1.
  • FIG. 11 is a flowchart showing the operation of the image signal processing circuit 31 of the image display device 30 according to the embodiment of the present invention.
  • the image signal processing circuit 31 executes the following series of steps.
  • Step S41 An image signal corresponding to one pixel (target pixel) is input to the image signal processing circuit 31.
  • the attribute detection unit 41 detects an attribute associated with the image signal.
  • the image signal corresponding to the target pixel has a gradation value (input gradation) of “25”, and the attribute detection unit 41 detects that the attribute associated with the image signal is a moving image and a contour portion.
  • the description will be given on the assumption that it was obtained.
  • Step S53 The sub-field deletion unit 53 calculates the number Nd of sub-fields that prohibit the write operation by truncating the power control signal Cnt after the decimal point. Then, in the base code set stored in the base code storage unit 52, the subfield having the smallest gradation weight, the subfield having the second smallest gradation weight, the subfield having the third smallest gradation weight,... In order, Nd subfields are made non-lighting subfields. In this way, a deleted base code set is created.
  • the subfield deleting unit 53 prohibits the write operation in the subfield having the smallest gradation weight, the second subfield having the smallest gradation weight, and the third subfield having the smallest gradation weight, and Make one subfield unlit.
  • the deleted base code set created in this way is, for example, the deleted base code set shown in FIG. 7E.
  • the subfield deletion unit 53 calculates an amplification factor A for adjusting the amplitude of the image signal.
  • the largest gradation value in the base code set shown in FIG. 7A is “87”.
  • Nd 4
  • the write operation in all subfields from the subfield with the smallest gradation weight to the subfield with the fourth smallest gradation weight is performed in the subfield deletion unit 53. Is prohibited.
  • the amplification factor A is as follows.
  • the base code generation unit 50 selects the upper gradation base code corresponding to the image signal of the target pixel.
  • step S54 a subfield code having a gradation value that is larger than the gradation value of the image signal at the target pixel and closest to the gradation value of the image signal at the target pixel is selected from the deleted base code set. Select as the upper tone base code.
  • the base code generation unit 50 compares each gradation of the deleted base code constituting the deleted base code set created by the subfield deletion unit 53 with the input gradation. Then, a deleted base code having a gradation value larger than the input gradation and closest to the input gradation is selected and output as an upper gradation base code.
  • the base code generation unit 50 selects the deleted base code “00011100” having the gradation value “26” and outputs it as the upper gradation base code.
  • Step S61 The rule generation unit 61 generates a rule for generating an intermediate code set.
  • step S61 a rule for generating a new subfield code by changing the light emitting subfield in the upper gradation base code to a non-light emitting subfield is generated based on the image signal at the target pixel.
  • the rule generation unit 61 performs a basic rule (rule 1) “change any one of the lighting subfields to the non-lighting subfield” if the attribute attached to the image signal is a still image. ) Is generated.
  • the rule generation unit 61 restricts the subfield codes that can be used for displaying the image in order to suppress the moving image pseudo contour.
  • the subfield codes include those that have a high effect of suppressing moving image pseudo contours and those that do not.
  • the base codes shown in FIGS. 7A to 7C are subfield codes that have a high effect of suppressing the moving image pseudo contour.
  • the appearance of the moving image pseudo contour depends on the subfield code that can be used to display the image, and the image is displayed using the subfield code that is highly effective in suppressing the moving image pseudo contour.
  • the moving image pseudo contour can be suppressed.
  • the subfield code that can be used for displaying an image is limited as compared with the case where the suppression of the moving image pseudo contour is unnecessary. This is the reason why the rule generation unit 61 restricts the subfield codes that can be used for image display in order to suppress the moving image pseudo contour.
  • the rule generating unit 61 sets “a subfield that prohibits non-lighting” in the basic rule 1 in order to suppress the moving image pseudo contour. Add “When the rule”.
  • This additional rule is, for example, rule 3 described with reference to FIG. 8C, which is “prohibiting subfield SF1 and subfield SF2 from being turned off”. As a result, the rule generation unit 61 limits the subfield codes that can be used for displaying an image.
  • the rule generated by the rule generation unit 61 is that the attribute attached to the image signal is a still image.
  • the rule generation unit 61 includes a rule that is generated when the image signal at the target pixel is a still image.
  • Step S72 The intermediate code generation unit 72 generates an intermediate code set.
  • the intermediate code generation unit 72 generates an intermediate code from the upper gradation base code based on the rules generated by the rule generation unit 61.
  • the code generation unit 72 applies the rules 1 and 3 generated by the rule generation unit 61 to the deleted base code “00011100” to generate a new intermediate code.
  • subfield SF1 and subfield SF2 are already non-lighting subfields. Therefore, rule 3 “prohibiting subfield SF1 and subfield SF2 from being turned off” is ignored in this case.
  • the subfield SF6 to the subfield SF6, which is the lighting subfield of the deleted base code “00011100”, is a target of replacement with the non-lighting subfield based on the rule 1. Then, based on rule 1, the subfields SF4 to SF6 are set to non-lighting subfields. In this way, the intermediate code generating unit 72 generates three intermediate codes “00011000”, “00010100”, and “000001100”.
  • the intermediate code set thus obtained is, for example, the intermediate code set shown in FIG. 8D.
  • the upper / lower code selection unit 74 selects an upper gradation code and a lower gradation code.
  • step S74 the tone value of the image signal at the target pixel is larger than the tone value of the image signal at the target pixel from the intermediate code set generated by applying the above-described rule to the upper tone base code.
  • the subfield code having the closest gradation value is selected as the upper gradation code, and the subfield code having the gradation value closest to the gradation value of the image signal at the target pixel is equal to or smaller than the gradation value of the image signal at the target pixel.
  • Select the field code as the lower gradation code.
  • the upper / lower code selection unit 74 compares each gradation value of the subfield code constituting the intermediate code set with the input gradation. Then, a subfield code having a gradation value larger than the input gradation and closest to the input gradation is selected and output as an upper gradation code. Also, a subfield code having a gradation value that is equal to or lower than the input gradation and closest to the input gradation is selected, and is output as a lower gradation code.
  • the subfield code corresponding to the upper gradation code is gradation. It is a subfield code of the value “26”.
  • the subfield code corresponding to the lower gradation code is a subfield code having a gradation value of “21”. Therefore, the upper / lower code selection unit 74 selects the subfield code “00011100” having the gradation value “26” as the upper gradation code and the subfield code “00001100” having the gradation value “21” as the lower gradation code. ”Is selected.
  • Step S82 The dither selection unit 82 selects a dither element based on the attribute of the image signal.
  • the dither selection unit 82 uses the attribute detected by the image signal and attribute detection unit 41. Based on the above, one of the dither patterns is selected.
  • the dither pattern shown in FIG. 9A is selected. If the attribute attached to the image signal is not a contour portion, the dither pattern shown in FIG. 9B is selected. If the selection unit 82 is set, when the attribute attached to the image signal is a contour portion, the dither selection unit 82 selects the dither pattern shown in FIG. 9A. Then, the dither selection unit 82 selects one of the dither elements set in the dither pattern based on the position of the target pixel. For example, the dither selection unit 82 selects “0.25” as the dither element based on the dither pattern shown in FIG. 9A.
  • Step S83 The dither selector 82 calculates a dither value.
  • the dither selection unit 82 calculates the dither value by multiplying the selected dither element by the difference between the tone value of the upper tone code and the tone value of the lower tone code.
  • the upper gradation code selected in step S74 is the gradation value “26”
  • the gradation value of the lower gradation code selected in step S74 is “21”
  • the dither selected in step S82 If the element is “0.25”, the dither selection unit 82 multiplies the difference “5” between the gradation value of the upper gradation code and the gradation value of the lower gradation code by the dither element “0.25”. Then, the dither value “1.25” is calculated.
  • Step S86 The display code determination unit 86 calculates a gradation value to be displayed on the target pixel.
  • step S86 a predetermined value is added to the gradation value of the image signal at the target pixel to calculate the gradation value to be displayed on the target pixel.
  • the display code determination unit 86 adds the dither value calculated in step S83 to the input gradation, and further adds the error output from the error diffusion unit 84 based on the calculation result in step S88.
  • the gradation value to be displayed on the target pixel is calculated. Therefore, the predetermined value is a numerical value obtained by adding the dither value output from the dither selection unit 82 and the error output from the error diffusion unit 84.
  • the input gradation is the gradation value “25”
  • the dither value calculated in step S83 is “1.25”
  • the input gradation is the gradation value “25”
  • the dither value calculated in step S83 is “1.25”
  • Step S87 The display code determining unit 86 determines a display code to be used when displaying the gradation value on the target pixel.
  • step S87 the upper gradation code and the lower gradation code having the gradation value closer to the gradation value to be displayed on the target pixel is selected as the display code.
  • the display code determination unit 86 compares the gradation value to be displayed on the target pixel with the gradation value of the upper gradation code and the gradation value of the lower gradation code. If the gradation value to be displayed on the target pixel is closer to the gradation value of the upper gradation code than the gradation value of the lower gradation code, the display used when displaying the gradation value on the attention pixel Select the upper gradation code as the code and output it. Further, when the gradation value to be displayed on the target pixel is closer to the gradation value of the lower gradation code than the gradation value of the upper gradation code, it is used when displaying the gradation value on the attention pixel. The lower gradation code is selected as the display code and is output.
  • the display code determination unit 86 outputs the lower gradation code “00001100” having the gradation value “21” as the display code.
  • the display code determination unit 86 outputs the upper gradation code “00011100” having the gradation value “26” as the display code.
  • Step S88 The display code determination unit 86 calculates the error and outputs it to the error diffusion unit 84.
  • the display code determination unit 86 subtracts the gradation value of the display code from the gradation value to be displayed on the target pixel, and outputs the subtraction result to the error diffusion unit 84 as a newly generated error.
  • the display code determination unit 86 outputs this “1.85” as an error to the error diffusion unit 84.
  • the display code determination unit 86 outputs this “1.65” to the error diffusion unit 84 as an error.
  • step S88 When step S88 is completed, the process returns to step S41. In this way, a series of steps from step S41 to step S88 are repeatedly executed.
  • the image signal processing circuit 31 in the present embodiment includes the base code generation unit 50, the rule generation unit 61, the upper and lower code generation unit 70, and the display code selection unit 80.
  • the base code generation unit 50 creates a deleted base code set in which a specific subfield based on the power control signal Cnt is a non-lighting subfield from the base code set. Then, from among a plurality of deleted base codes constituting the deleted base code set, a deleted base code having a gradation value that is larger than the input gradation and closest to the input gradation is selected and the upper gradation is selected. Set to base code and output it.
  • the rule generation unit 61 illuminates the upper gradation base code based on the image signal and the attribute (attribute associated with the image signal) detected by the attribute detection unit 41 in order to generate an intermediate code used for image display. Generate a rule for changing a subfield to a non-lit subfield.
  • the upper / lower code generation unit 70 applies the rule generated by the rule generation unit 61 to the upper gradation base code output from the base code generation unit 50 to generate an intermediate code.
  • the display code selection unit 80 adds an error and a dither value to the input gradation, and calculates a gradation value to be displayed on the target pixel. Then, of the upper gradation code and the lower gradation code, the one having a gradation value closer to the gradation value to be displayed on the target pixel is selected and output as a display code. Further, the display code selection unit 80 calculates a difference between the gradation value to be displayed on the target pixel and the gradation value of the display code, and diffuses the difference as an error to surrounding pixels.
  • conversion from an image signal to a display code can be performed by calculation using an arithmetic circuit. Therefore, even in such an image display apparatus, it is not necessary to provide a huge number of conversion tables, and a minimum necessary table (for example, the base code set shown in FIGS. 7A, 7B, and 7C) and an image signal It is only necessary to provide an arithmetic circuit for converting from to display code.
  • the power consumption of the data electrode drive circuit 32 can be limited.
  • the amplification factor A for adjusting the amplitude of the image signal is calculated based on the power control signal Cnt, and the amplitude of the image signal is adjusted by the amplification factor A.
  • the amplification factor A is not a fixed value, but continuously changes according to the change of the power control signal Cnt. Therefore, when the amplitude of the image signal is adjusted by the amplification factor A, the display luminance of the image also changes continuously. Therefore, even when the number of subfields that prohibit the write operation is increased or decreased, the change is not easily seen by the user.
  • dither processing and error diffusion processing are performed after setting a subfield for prohibiting the write operation. Therefore, even in the image display device 30 that selects a display code from an intermediate code set having a limited number of subfield codes and uses it to display an image, it is possible to prevent a decrease in image display quality.
  • the conversion from the image signal to the subfield code can be performed by the logical operation, and the data electrode drive circuit is prevented while preventing the image display quality from being deteriorated.
  • the power consumption in 32 can be suppressed.
  • the subfield deletion unit 53 is based on the basis code set stored in the basis code storage unit 52, and starts from the subfield with the smallest tone weight, in order of Nd number of tone weights.
  • An example has been described in which a deleted base code set is newly created by setting a subfield as a non-lighting subfield.
  • the order of setting the non-lighting subfield is not limited to this.
  • the order in which the non-lighting subfields are set may be arbitrarily set. For example, in consideration of the stability of the address discharge, the subfield SF1 arranged at the beginning of the field is excluded from the target of non-lighting subfields. Also good.
  • the order of setting the non-lighting subfields may be set so that the non-lighting subfields are not continuous as much as possible.
  • Nd 1
  • the subfield SF2 is set as a non-lighting subfield.
  • Nd 2
  • the subfield SF2 and the subfield SF4 are set as non-lighting subfields.
  • the non-lighting subfield may be set in this order.
  • the configuration in which the base code generation unit 50 has the base code storage unit 52 and the base code set is stored in advance in the base code storage unit 52 has been described.
  • the present invention is not limited to this configuration.
  • a configuration may be adopted in which a rule for generating a base code is determined in advance and the base code is generated based on the rule.
  • the upper and lower code generation unit 70 selects the upper gradation code and the lower gradation code by the upper and lower code selection unit 74 after the intermediate code set is generated by the intermediate code generation unit 72.
  • the present invention is not limited to this configuration.
  • an intermediate code is generated in order of increasing gradation value, and at the same time, the intermediate code and the input gradation are sequentially compared to select the upper gradation code and the lower gradation code.
  • the present invention is not limited to this configuration.
  • the dither selection unit 82 can be omitted.
  • the error diffusion unit 84 can be omitted.
  • the image display quality may be lowered, so care must be taken.
  • the number of subfields constituting one field, the subfields that are forced initialization subfields, the gradation weights of each subfield, and the like are not limited to the above-described numerical values. Moreover, the structure which switches a subfield structure based on an image signal etc. may be sufficient.
  • the drive voltage waveform shown in FIG. 3 is merely an example in the embodiment of the present invention, and the present invention is not limited to this drive voltage waveform.
  • circuit configurations shown in FIGS. 5 and 6 are merely examples in the embodiment of the present invention, and the present invention is not limited to these circuit configurations.
  • each circuit block shown in the embodiment of the present invention may be configured as an electric circuit that performs each operation shown in the embodiment, or a microcomputer that is programmed to perform the same operation. May be used.
  • the number of subfields constituting one field is not limited to the above number.
  • the number of gradations that can be displayed on the panel 10 can be further increased.
  • the time required for driving panel 10 can be shortened by reducing the number of subfields.
  • one pixel is constituted by discharge cells of three colors of red, green, and blue.
  • a panel in which one pixel is constituted by discharge cells of four colors or more has been described.
  • the specific numerical values shown in the embodiment of the present invention are set based on the characteristics of the panel 10 having a screen size of 50 inches and the number of display electrode pairs 14 of 1024. It is just an example.
  • the present invention is not limited to these numerical values, and each numerical value is desirably set optimally in accordance with panel specifications, panel characteristics, plasma display device specifications, and the like. Each of these numerical values is allowed to vary within a range where the above-described effect can be obtained.
  • the number of subfields constituting one field, the gradation weight of each subfield, and the like are not limited to the values shown in the embodiment of the present invention, and the subfield configuration is based on an image signal or the like. May be configured to switch.
  • the present invention since conversion from an image signal to a subfield code can be performed by calculation, it is not necessary to use a conversion table composed of a large number of subfield codes, and power consumption is suppressed while suppressing a decrease in image display quality. Therefore, the present invention is useful as an image display device that displays an image in an image display region by combining binary control of light emission and non-light emission in a light emitting element that constitutes a pixel, and a driving method of the image display device.

Abstract

Conversion from an image signal to a subfield code in an image display device is computed without using a conversion table. To this end, the image display device has a base code generation unit (50), a rule generation unit (61), a higher/lower code generation unit (70), and a display code selection unit (80). The base code generation unit (50): generates, from a plurality of foundation subfield codes, deleted base codes in which a specific subfield is set as a non-emitting subfield; and selects, as a higher gradient base code, the deleted base code having a gradient value that is larger than the gradient value of an image signal in a pixel of interest, and closest to the gradient value of the image signal in the pixel of interest. The rule generation unit (61) generates a rule for generating a new subfield code from a higher gradient base code. The higher/lower code generation unit (70) generates a higher gradient code and a lower gradient code, and the display code selection unit (80) selects a display code from the higher gradient code and the lower gradient code.

Description

画像表示装置および画像表示装置の駆動方法Image display device and driving method of image display device
 本発明は、画素を構成する発光素子における発光と非発光との2値制御を組み合わせて画像表示領域に画像を表示する画像表示装置および画像表示装置の駆動方法に関する。 The present invention relates to an image display device that displays an image in an image display region by combining binary control of light emission and non-light emission in a light emitting element that constitutes a pixel, and a driving method of the image display device.
 画素を構成する発光素子における発光と非発光との2値制御を組み合わせて画像表示領域に画像を表示する画像表示装置として代表的なものにプラズマディスプレイパネル(以下、「パネル」と略記する)がある。 A plasma display panel (hereinafter abbreviated as “panel”) is a typical image display device that displays an image in an image display area by combining binary control of light emission and non-light emission in a light emitting element constituting a pixel. is there.
 パネルは、対向配置された前面基板と背面基板との間に、画素を構成する発光素子である放電セルが多数形成されている。前面基板は、1対の走査電極と維持電極とからなる表示電極対が前面側のガラス基板上に互いに平行に複数対形成されている。そして、それら表示電極対を覆うように誘電体層および保護層が形成されている。 In the panel, a large number of discharge cells, which are light-emitting elements constituting pixels, are formed between a front substrate and a rear substrate that are arranged to face each other. In the front substrate, a plurality of pairs of display electrodes composed of a pair of scan electrodes and sustain electrodes are formed on the front glass substrate in parallel with each other. A dielectric layer and a protective layer are formed so as to cover the display electrode pairs.
 背面基板は、背面側のガラス基板上に複数の平行なデータ電極が形成され、それらデータ電極を覆うように誘電体層が形成され、さらにその上にデータ電極と平行に複数の隔壁が形成されている。そして、誘電体層の表面と隔壁の側面とに蛍光体層が形成されている。 The back substrate has a plurality of parallel data electrodes formed on the glass substrate on the back side, a dielectric layer is formed so as to cover the data electrodes, and a plurality of barrier ribs are formed thereon in parallel with the data electrodes. ing. And the fluorescent substance layer is formed in the surface of a dielectric material layer, and the side surface of a partition.
 そして、表示電極対とデータ電極とが立体交差するように、前面基板と背面基板とを対向配置して密封する。密封された内部の放電空間には、例えば分圧比で5%のキセノンを含む放電ガスを封入し、表示電極対とデータ電極とが対向する部分に放電セルを形成する。このような構成のパネルにおいて、各放電セル内でガス放電により紫外線を発生し、この紫外線で赤色(R)、緑色(G)および青色(B)の各色の蛍光体を励起発光してカラーの画像表示を行う。 Then, the front substrate and the rear substrate are arranged opposite to each other and sealed so that the display electrode pair and the data electrode are three-dimensionally crossed. In the sealed internal discharge space, for example, a discharge gas containing xenon at a partial pressure ratio of 5% is sealed, and a discharge cell is formed in a portion where the display electrode pair and the data electrode face each other. In the panel having such a configuration, ultraviolet rays are generated by gas discharge in each discharge cell, and the phosphors of each color of red (R), green (G) and blue (B) are excited and emitted by the ultraviolet rays. Display an image.
 発光素子における発光と非発光との2値制御を組み合わせて画像表示領域に画像を表示する方法としては一般にサブフィールド法が用いられている。 A subfield method is generally used as a method for displaying an image in an image display region by combining binary control of light emission and non-light emission in a light emitting element.
 サブフィールド法では、1フィールドを、発光輝度が互いに異なる複数のサブフィールドに分割する。そして、各放電セルでは、所望の階調値に応じた組合せで各サブフィールドの発光・非発光を制御する。これにより1フィールドの発光輝度を所望の階調値にして各放電セルを発光し、パネルの画像表示領域に、様々な階調値の組合せで構成された画像を表示する。 In the subfield method, one field is divided into a plurality of subfields having different emission luminances. In each discharge cell, light emission / non-light emission of each subfield is controlled by a combination according to a desired gradation value. Thus, each discharge cell emits light with the emission luminance of one field set to a desired gradation value, and an image composed of various combinations of gradation values is displayed in the image display area of the panel.
 サブフィールド法において、各サブフィールドは、書込み期間および維持期間を有する。 In the subfield method, each subfield has an address period and a sustain period.
 書込み期間では、走査電極に走査パルスを順次印加するとともに、データ電極には表示すべき画像信号にもとづき選択的に書込みパルスを印加する。これにより、発光を行うべき放電セルの走査電極とデータ電極との間に書込み放電を発生し、その放電セル内に壁電荷を形成する(以下、これらの動作を総称して「書込み」とも記す)。 In the address period, the scan pulse is sequentially applied to the scan electrodes, and the address pulse is selectively applied to the data electrodes based on the image signal to be displayed. As a result, an address discharge is generated between the scan electrode and the data electrode of the discharge cell to emit light, and a wall charge is formed in the discharge cell (hereinafter, these operations are also collectively referred to as “address”). ).
 維持期間では、サブフィールド毎に定められた階調重みにもとづく数の維持パルスを走査電極と維持電極とからなる表示電極対に交互に印加する。これにより、書込み放電を発生した放電セルで維持放電を発生し、その放電セルの蛍光体層を発光させる(以下、放電セルを維持放電により発光させることを「点灯」、発光させないことを「非点灯」とも記す)。これにより、各サブフィールドにおいて、各放電セルを、階調重みに応じた輝度で発光させる。このようにして、パネルの各放電セルを画像信号の階調値に応じた輝度で発光させて、パネルの画像表示領域に画像を表示する。 In the sustain period, the number of sustain pulses based on the gradation weights determined for each subfield is alternately applied to the display electrode pairs composed of the scan electrodes and the sustain electrodes. As a result, a sustain discharge is generated in the discharge cell that has generated the address discharge, and the phosphor layer of the discharge cell emits light (hereinafter referred to as “lighting” that the discharge cell emits light by the sustain discharge, and “non-emitting”). Also written as “lit”.) Thereby, in each subfield, each discharge cell is made to emit light with the luminance according to the gradation weight. In this way, each discharge cell of the panel is caused to emit light with a luminance corresponding to the gradation value of the image signal, and an image is displayed in the image display area of the panel.
 プラズマディスプレイ装置は、画像信号処理回路を備えている。画像信号処理回路は、プラズマディスプレイ装置に入力される画像信号(以下、単に「画像信号」と記す)を、各放電セルにおけるサブフィールド毎の点灯・非点灯を示すサブフィールドコードに変換する。 The plasma display device has an image signal processing circuit. The image signal processing circuit converts an image signal (hereinafter simply referred to as “image signal”) input to the plasma display device into a subfield code indicating lighting / non-lighting for each subfield in each discharge cell.
 画像信号処理回路は、複数のサブフィールドコードで構成された変換テーブルを有する。変換テーブルでは、1つの階調値に1つのサブフィールドコードが対応付けられている。すなわち、変換テーブルは、1つの階調値が入力されると、その階調値に対応付けられた1つのサブフィールドコードを出力する。 The image signal processing circuit has a conversion table composed of a plurality of subfield codes. In the conversion table, one subfield code is associated with one gradation value. That is, when one gradation value is input, the conversion table outputs one subfield code associated with the gradation value.
 変換テーブルは、例えば、ROM等の半導体記憶素子に記憶されて、画像信号処理回路に備えられる。そして、画像信号処理回路は、その変換テーブルを用いて、画像信号の各階調値を、各階調値に対応したサブフィールドコード(サブフィールド毎の発光・非発光を示すデータ)に変換し、後段の回路に出力する。 The conversion table is stored in a semiconductor storage element such as a ROM and provided in the image signal processing circuit. Then, using the conversion table, the image signal processing circuit converts each gradation value of the image signal into a subfield code (data indicating light emission / non-light emission for each subfield) corresponding to each gradation value. Output to the circuit.
 したがって、プラズマディスプレイ装置において、パネルに表示できる階調値の数は、変換テーブルを構成するサブフィールドコードの数によって決まる。変換テーブルを構成するサブフィールドコードの数が多ければ、パネルに表示できる階調値の数は増加し、変換テーブルを構成するサブフィールドコードの数が少なければ、パネルに表示できる階調値の数は減少する。 Therefore, in the plasma display device, the number of gradation values that can be displayed on the panel is determined by the number of subfield codes constituting the conversion table. If the number of subfield codes constituting the conversion table is large, the number of gradation values that can be displayed on the panel increases, and if the number of subfield codes constituting the conversion table is small, the number of gradation values that can be displayed on the panel. Decrease.
 パネルに表示できる階調値の数とプラズマディスプレイ装置の消費電力とは関連性があり、消費電力を減少させようとすると、パネルに表示できる階調値の数は相対的に減少する。したがって、変換テーブルを構成するサブフィールドコードは、一般的には、プラズマディスプレイ装置の消費電力や、パネルに表示できる画像の滑らかさ等を考慮して決められる。 The number of gradation values that can be displayed on the panel is related to the power consumption of the plasma display device, and the number of gradation values that can be displayed on the panel is relatively reduced when the power consumption is reduced. Therefore, the subfield codes constituting the conversion table are generally determined in consideration of the power consumption of the plasma display device, the smoothness of the image that can be displayed on the panel, and the like.
 パネルに表示できる階調値の数が減少すると、パネルに表示できない階調値が増加する。例えば、変換テーブルに階調値「7」、階調値「9」のサブフィールドコードが含まれ、階調値「8」のサブフィールドコードが含まれていなければ、パネルに階調値「8」は表示できない。しかし、パネルに表示できない階調値は、一般に知られたディザ法や誤差拡散法といった手法を用いることで、擬似的にパネルに表示することができる。 When the number of gradation values that can be displayed on the panel decreases, the gradation values that cannot be displayed on the panel increase. For example, if the conversion table includes the subfield code of gradation value “7” and gradation value “9” and does not include the subfield code of gradation value “8”, the gradation value “8” is displayed on the panel. "Cannot be displayed. However, gradation values that cannot be displayed on the panel can be displayed on the panel in a pseudo manner by using a generally known method such as a dither method or an error diffusion method.
 プラズマディスプレイ装置では、動画像をパネルに表示する際に、元の画像信号には含まれない偽の輪郭が使用者に観測されることがある。この偽の輪郭は、一般に、動画擬似輪郭と呼ばれている。この動画擬似輪郭は、変換テーブルを構成するサブフィールドコードの数に応じて変化することが知られており、変換テーブルを構成するサブフィールドコードの数が増えると、動画擬似輪郭は発生しやすくなる。 In the plasma display device, when a moving image is displayed on the panel, a false contour that is not included in the original image signal may be observed by the user. This false contour is generally called a moving image pseudo contour. It is known that this moving image pseudo contour changes according to the number of subfield codes constituting the conversion table, and when the number of subfield codes constituting the conversion table increases, the moving image pseudo contour is likely to occur. .
 プラズマディスプレイ装置においては、パネルに表示できる階調値をできるだけ多くして滑らかな階調の変化で画像を表示することが望ましく、一方、動画擬似輪郭はできるだけ低減することが望ましい。そして、滑らかな階調表示と動画擬似輪郭の抑制とを両立するために、変換テーブルを構成するサブフィールドコードの数や種類が異なる複数の変換テーブルをプラズマディスプレイ装置に備え、それら複数の変換テーブルを画像信号に応じて切り替えて用いる技術が開示されている(例えば、特許文献1参照)。 In the plasma display device, it is desirable to display the image with a smooth gradation change by increasing the gradation values that can be displayed on the panel as much as possible, while reducing the moving image pseudo contour as much as possible. In order to achieve both smooth gradation display and suppression of moving image pseudo contour, the plasma display device includes a plurality of conversion tables having different numbers and types of subfield codes constituting the conversion table, and the plurality of conversion tables. Has been disclosed (for example, see Patent Document 1).
 特許文献1に記載された技術では、プラズマディスプレイ装置に複数の変換テーブルを備える。そして、画像信号の最小値および平均値を求め、この最小値および平均値からしきい値を算出する。そして、このしきい値にもとづき複数の変換テーブルの中から1つの変換テーブルを選択する。そして、選択した変換テーブルにもとづき画像信号をサブフィールドコードに変換する。 In the technique described in Patent Document 1, a plasma display device includes a plurality of conversion tables. Then, a minimum value and an average value of the image signal are obtained, and a threshold value is calculated from the minimum value and the average value. Then, one conversion table is selected from a plurality of conversion tables based on this threshold value. Then, the image signal is converted into a subfield code based on the selected conversion table.
 しかしながら、パネルの大画面化、高精細度化、画像表示品質のさらなる向上、放送方式の多様化、立体視用の3D画像の表示機能等の多機能化、等へプラズマディスプレイ装置を対応させるためには、プラズマディスプレイ装置に備えるべき変換テーブルの数が、従来のプラズマディスプレイ装置と比較して非常に多くなる。そのため、そのような膨大な数の変換テーブルを備え、様々な条件に応じて膨大な数の変換テーブルの中から最適な1つを選択するように画像信号処理回路を構成することが困難になってきている。 However, in order to make the plasma display device compatible with a larger screen, higher definition, further improvement of image display quality, diversification of broadcasting methods, multi-functionality such as 3D image display function for stereoscopic viewing, etc. In this case, the number of conversion tables to be provided in the plasma display device is very large as compared with the conventional plasma display device. For this reason, it is difficult to configure an image signal processing circuit having such a large number of conversion tables and selecting an optimum one from a large number of conversion tables according to various conditions. It is coming.
 また、プラズマディスプレイ装置は、各電極を駆動するために複数の電極駆動回路を備えており、その複数の電極駆動回路を用いて、パネルに画像を表示するために必要な駆動電圧波形をそれぞれの電極に印加する。 In addition, the plasma display device includes a plurality of electrode driving circuits for driving each electrode, and the driving voltage waveforms necessary for displaying an image on the panel are respectively displayed using the plurality of electrode driving circuits. Apply to electrode.
 それら複数の電極駆動回路には、データ電極を駆動するためのデータ電極駆動回路が含まれる。 The plurality of electrode drive circuits include a data electrode drive circuit for driving the data electrodes.
 データ電極駆動回路は、複数のデータ電極のそれぞれに、書込み動作のための書込みパルスを画像信号に応じて印加する。そのため、データ電極駆動回路は、一般的には、書込みパルスを発生するための専用の集積回路(IC)を用いて構成される。 The data electrode driving circuit applies a write pulse for a write operation to each of the plurality of data electrodes according to the image signal. Therefore, the data electrode driving circuit is generally configured using a dedicated integrated circuit (IC) for generating an address pulse.
 データ電極駆動回路から見たデータ電極は、隣接するデータ電極間の浮遊容量、走査電極との間の浮遊容量、および維持電極との間の浮遊容量を有する容量性の負荷である。したがって、データ電極駆動回路は、データ電極に駆動電圧波形を印加するために、この容量を充放電しなければならず、そのための消費電力が必要となる。 The data electrode viewed from the data electrode driving circuit is a capacitive load having a stray capacitance between adjacent data electrodes, a stray capacitance between the scan electrodes, and a stray capacitance between the sustain electrodes. Therefore, in order to apply a drive voltage waveform to the data electrode, the data electrode drive circuit must charge and discharge this capacitor, and power consumption for that purpose is required.
 ICを用いてデータ電極駆動回路を構成するためには、データ電極駆動回路の消費電力をできるだけ低減することが望ましい。そこで、データ電極駆動回路の消費電力を低減する技術が開示されている(例えば、特許文献2参照)。 In order to configure a data electrode driving circuit using an IC, it is desirable to reduce the power consumption of the data electrode driving circuit as much as possible. Therefore, a technique for reducing the power consumption of the data electrode driving circuit is disclosed (for example, see Patent Document 2).
 特許文献2に記載された技術では、階調重みが最も小さいサブフィールドから階調重みが大きいサブフィールドへ、順番に各サブフィールドでの書込み動作を禁止する。こうして、データ電極駆動回路の消費電力を抑制する。 In the technique described in Patent Document 2, the writing operation in each subfield is prohibited in order from the subfield having the smallest gradation weight to the subfield having the largest gradation weight. Thus, power consumption of the data electrode driving circuit is suppressed.
 しかしながら、パネルを大画面化、高精細度化したプラズマディスプレイ装置では、データ電極駆動回路での消費電力が増加する傾向にある。 However, in a plasma display device with a large panel and high definition, power consumption in the data electrode drive circuit tends to increase.
 また、データ電極駆動回路の消費電力を抑えるためにサブフィールドの書込み動作を禁止するだけでは、画像表示品質が低下するおそれがある。 In addition, the image display quality may be deteriorated only by prohibiting the sub-field writing operation in order to suppress the power consumption of the data electrode driving circuit.
特開2000-098959号公報JP 2000-098959 A 特開2000-066638号公報JP 2000-0666638 A
 本発明は、階調重みが定められた複数のサブフィールドで1フィールドを構成し、複数のサブフィールドのそれぞれにおける発光と非発光との組合せを示すサブフィールドコードを用いて複数のサブフィールドのそれぞれの発光と非発光とを制御して、画像表示領域を構成する複数の画素のそれぞれに画像信号にもとづく階調値を表示して画像表示領域に画像を表示する画像表示装置である。この画像表示装置は、画像信号にもとづく階調値を画素に表示するためのサブフィールドコードである表示コードを出力する画像信号処理回路を備える。画像信号処理回路は、基底コード生成部と、ルール生成部と、上下コード生成部と、表示コード選択部とを有する。基底コード生成部は、複数の基本となるサブフィールドコードにおいて、電力制御信号にもとづく特定のサブフィールドを非発光のサブフィールドにした削除済み基底コードを発生し、複数の削除済み基底コードの中から、注目画素における画像信号の階調値よりも大きく、かつ注目画素における画像信号の階調値に最も近い階調値を有する削除済み基底コードを上階調基底コードとして選択する。ルール生成部は、注目画素における画像信号にもとづき、上階調基底コードにおける発光するサブフィールドを非発光のサブフィールドに変更して新たなサブフィールドコードを生成するためのルールを生成する。上下コード生成部は、上階調基底コードに上述のルールを適用して新たに生成されるサブフィールドコードの中から、注目画素における画像信号の階調値より大きく注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを上階調コードとして選択し、かつ、注目画素における画像信号の階調値以下で注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを下階調コードとして選択する。表示コード選択部は、注目画素における画像信号の階調値に所定の値を加算して注目画素に表示すべき階調値を算出し、上階調コードおよび下階調コードのうち注目画素に表示すべき階調値により近い階調値を有する方を表示コードとして選択する。 In the present invention, a plurality of subfields having gradation weights constitute one field, and each of the plurality of subfields is expressed using a subfield code indicating a combination of light emission and non-light emission in each of the plurality of subfields. This is an image display device that controls the light emission and non-light emission, displays a gradation value based on an image signal on each of a plurality of pixels constituting the image display area, and displays an image in the image display area. This image display device includes an image signal processing circuit that outputs a display code that is a subfield code for displaying a gradation value based on an image signal on a pixel. The image signal processing circuit includes a base code generation unit, a rule generation unit, an upper and lower code generation unit, and a display code selection unit. The base code generation unit generates a deleted base code in which a specific subfield based on a power control signal is set as a non-light-emitting subfield in a plurality of basic subfield codes, and from among the plurality of deleted base codes Then, a deleted base code having a gradation value that is larger than the gradation value of the image signal at the target pixel and closest to the gradation value of the image signal at the target pixel is selected as the upper gradation base code. The rule generation unit generates a rule for generating a new subfield code by changing the light-emitting subfield in the upper gradation base code to a non-light-emitting subfield based on the image signal at the target pixel. The upper / lower code generation unit applies the above-described rule to the upper gradation base code, and the gradation of the image signal at the target pixel is larger than the gradation value of the image signal at the target pixel. The subfield code having the gradation value closest to the value is selected as the upper gradation code, and the gradation value closest to the gradation value of the image signal at the target pixel is equal to or lower than the gradation value of the image signal at the target pixel. The subfield code having the lower gradation code is selected as the lower gradation code. The display code selection unit calculates a gradation value to be displayed on the target pixel by adding a predetermined value to the gradation value of the image signal in the target pixel, and sets the target pixel of the upper gradation code and the lower gradation code. One having a gradation value closer to the gradation value to be displayed is selected as a display code.
 これにより、画像信号からサブフィールドコードへの変換を、演算回路を用いた演算によって行うことができるようになる。したがって、高機能化や多機能化等への対応が必要な画像表示装置においても、画像信号からサブフィールドコードへの変換を行う膨大な数の変換テーブルを備える必要がなくなる。すなわち、様々な条件に応じて膨大な数の変換テーブルの中から最適な1つを選択するように画像信号処理回路を構成する必要がなくなる。さらに、画像表示装置における画像表示品質の低下を抑制しつつ、消費電力を抑制することができる。 Thus, the conversion from the image signal to the subfield code can be performed by calculation using the calculation circuit. Therefore, even in an image display device that needs to cope with high functionality and multi-function, it is not necessary to provide a huge number of conversion tables for converting image signals into subfield codes. That is, it is not necessary to configure the image signal processing circuit so as to select an optimal one from a vast number of conversion tables according to various conditions. Furthermore, power consumption can be suppressed while suppressing a decrease in image display quality in the image display device.
 また、本発明の画像表示装置において、上述した複数の基本となるサブフィールドコードは、発光するサブフィールドのうち最も階調重みが大きいサブフィールドと、そのサブフィールドよりも小さい階調重みを有する全てのサブフィールドが発光するサブフィールドコードである。 In the image display device of the present invention, the plurality of basic subfield codes described above are all subfields having the largest gradation weight among the subfields that emit light, and all having a gradation weight smaller than that subfield. This is a sub-field code in which the sub-field emits light.
 また、本発明の画像表示装置において、上述した所定の値は、誤差拡散処理により発生する誤差およびディザ処理により発生するディザ値である。 Further, in the image display device of the present invention, the predetermined value described above is an error generated by error diffusion processing and a dither value generated by dither processing.
 また、本発明の画像表示装置において、注目画素における画像信号が動画であるときにルール生成部が生成するルールは、注目画素における画像信号が静止画であるときにルール生成部が生成するルールを包含する。 In the image display device of the present invention, the rule generated by the rule generation unit when the image signal at the target pixel is a moving image is the rule generated by the rule generation unit when the image signal at the target pixel is a still image. Include.
 また、本発明は、階調重みが定められた複数のサブフィールドで1フィールドを構成し、複数のサブフィールドのそれぞれにおける発光と非発光との組合せを示すサブフィールドコードを用いて複数のサブフィールドのそれぞれの発光と非発光とを制御して、画像表示領域を構成する複数の画素のそれぞれに画像信号にもとづく階調値を表示して画像表示領域に画像を表示する画像表示装置の駆動方法である。この駆動方法は、複数の基本となるサブフィールドコードにおいて、電力制御信号にもとづく特定のサブフィールドを非発光のサブフィールドにした削除済み基底コードを発生し、複数の削除済み基底コードの中から、注目画素における画像信号の階調値よりも大きく、かつ注目画素における画像信号の階調値に最も近い階調値を有する削除済み基底コードを上階調基底コードとして選択するステップと、注目画素における画像信号にもとづき、上階調基底コードにおける発光するサブフィールドを非発光のサブフィールドに変更して新たなサブフィールドコードを生成するためのルールを生成するステップと、上階調基底コードに上述のルールを適用して新たに生成されるサブフィールドコードの中から、注目画素における画像信号の階調値より大きく注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを上階調コードとして選択し、かつ、注目画素における画像信号の階調値以下で注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを下階調コードとして選択するステップと、注目画素における画像信号の階調値に所定の値を加算して注目画素に表示すべき階調値を算出するステップと、上階調コードおよび下階調コードのうち注目画素に表示すべき階調値により近い階調値を有する方を、画像信号にもとづく階調値を注目画素に表示するためのサブフィールドコードである表示コードとして選択するステップとを有する。 The present invention also comprises a plurality of subfields using a subfield code indicating a combination of light emission and non-light emission in each of the plurality of subfields, with a plurality of subfields having gradation weights defined. Method for driving an image display apparatus for controlling each light emission and non-light emission of each of the image display, displaying a gradation value based on an image signal on each of a plurality of pixels constituting the image display area, and displaying an image on the image display area It is. This driving method generates a deleted base code in which a specific subfield based on a power control signal is a non-lighting subfield in a plurality of basic subfield codes, and from among the plurality of deleted base codes, Selecting a deleted base code having a tone value larger than the tone value of the image signal at the target pixel and closest to the tone value of the image signal at the target pixel as the upper tone base code; Based on the image signal, a step of generating a rule for generating a new subfield code by changing a light emitting subfield in the upper gradation base code to a non-light emitting subfield; The tone of the image signal at the pixel of interest from the newly generated subfield code by applying the rule A subfield code having a gradation value that is larger and closest to the gradation value of the image signal at the target pixel is selected as the upper gradation code, and the image signal of the target pixel is equal to or lower than the gradation value of the image signal at the target pixel. A step of selecting a subfield code having a gradation value closest to the gradation value as a lower gradation code, and a gradation to be displayed on the target pixel by adding a predetermined value to the gradation value of the image signal in the target pixel The gradation value based on the image signal is displayed on the pixel of interest, whichever has the gradation value closer to the gradation value to be displayed on the pixel of interest, of the upper gradation code and the lower gradation code. And selecting as a display code which is a subfield code.
 これにより、画像信号からサブフィールドコードへの変換を、演算回路を用いた演算によって行うことができるようになる。したがって、高機能化や多機能化等への対応が必要な画像表示装置においても、画像信号からサブフィールドコードへの変換を行う膨大な数の変換テーブルを備える必要がなくなる。すなわち、様々な条件に応じて膨大な数の変換テーブルの中から最適な1つを選択するように画像信号処理回路を構成する必要がなくなる。さらに、画像表示装置における画像表示品質の低下を抑制しつつ、消費電力を抑制することができる。 Thus, the conversion from the image signal to the subfield code can be performed by calculation using the calculation circuit. Therefore, even in an image display device that needs to cope with high functionality and multi-function, it is not necessary to provide a huge number of conversion tables for converting image signals into subfield codes. That is, it is not necessary to configure the image signal processing circuit so as to select an optimal one from a vast number of conversion tables according to various conditions. Furthermore, power consumption can be suppressed while suppressing a decrease in image display quality in the image display device.
図1は、本発明の一実施の形態における画像表示装置に用いるパネルの構造を示す分解斜視図である。FIG. 1 is an exploded perspective view showing a structure of a panel used in an image display apparatus according to an embodiment of the present invention. 図2は、本発明の一実施の形態における画像表示装置に用いるパネルの電極配列図である。FIG. 2 is an electrode array diagram of a panel used in the image display apparatus according to the embodiment of the present invention. 図3は、本発明の一実施の形態における画像表示装置に用いるパネルの各電極に印加する駆動電圧波形を概略的に示す図である。FIG. 3 is a diagram schematically showing drive voltage waveforms applied to the respective electrodes of the panel used in the image display device according to the embodiment of the present invention. 図4は、1フィールドを8個のサブフィールドで構成するときのコードセットの一例を示す図である。FIG. 4 is a diagram showing an example of a code set when one field is composed of eight subfields. 図5は、本発明の一実施の形態における画像表示装置を構成する回路ブロックの一例を概略的に示す図である。FIG. 5 is a diagram schematically showing an example of a circuit block constituting the image display device according to the embodiment of the present invention. 図6は、本発明の一実施の形態における画像表示装置の画像信号処理回路を構成する回路ブロックの一例を概略的に示す図である。FIG. 6 is a diagram schematically showing an example of a circuit block constituting the image signal processing circuit of the image display apparatus according to the embodiment of the present invention. 図7Aは、本発明の一実施の形態における画像表示装置に用いる基底コードセットの一例を示す図である。FIG. 7A is a diagram showing an example of a base code set used in the image display device according to the embodiment of the present invention. 図7Bは、本発明の一実施の形態における画像表示装置に用いる基底コードセットの他の一例を示す図である。FIG. 7B is a diagram showing another example of the base code set used in the image display device according to the embodiment of the present invention. 図7Cは、本発明の一実施の形態における画像表示装置に用いる基底コードセットの他の一例を示す図である。FIG. 7C is a diagram illustrating another example of the base code set used in the image display device according to the embodiment of the present invention. 図7Dは、本発明の一実施の形態における画像表示装置のサブフィールド削除部が新たに作成した削除済み基底コードセットの一例を示す図である。FIG. 7D is a diagram showing an example of a deleted base code set newly created by the subfield deletion unit of the image display device according to the embodiment of the present invention. 図7Eは、本発明の一実施の形態における画像表示装置のサブフィールド削除部が新たに作成した削除済み基底コードセットの他の一例を示す図である。FIG. 7E is a diagram showing another example of the deleted base code set newly created by the subfield deletion unit of the image display device according to the embodiment of the present invention. 図8Aは、本発明の一実施の形態における画像表示装置のルール生成部において生成されたルールにより生成される中間コードセットの一例を示す図である。FIG. 8A is a diagram illustrating an example of an intermediate code set generated by the rules generated by the rule generation unit of the image display device according to the embodiment of the present invention. 図8Bは、本発明の一実施の形態における画像表示装置のルール生成部において生成されたルールにより生成される中間コードセットの他の一例を示す図である。FIG. 8B is a diagram showing another example of the intermediate code set generated by the rules generated by the rule generation unit of the image display device according to the embodiment of the present invention. 図8Cは、本発明の一実施の形態における画像表示装置のルール生成部において生成されたルールにより生成される中間コードセットの他の一例を示す図である。FIG. 8C is a diagram illustrating another example of the intermediate code set generated by the rules generated by the rule generation unit of the image display device according to the embodiment of the present invention. 図8Dは、本発明の一実施の形態における画像表示装置のルール生成部において生成されたルールにより生成される中間コードセットの他の一例を示す図である。FIG. 8D is a diagram illustrating another example of the intermediate code set generated by the rules generated by the rule generation unit of the image display device according to the embodiment of the present invention. 図9Aは、本発明の一実施の形態における画像表示装置で使用するディザパターンの一例を示す図である。FIG. 9A is a diagram showing an example of a dither pattern used in the image display device according to the embodiment of the present invention. 図9Bは、本発明の一実施の形態における画像表示装置で使用するディザパターンの他の一例を示す図である。FIG. 9B is a diagram showing another example of the dither pattern used in the image display device according to the embodiment of the present invention. 図10は、本発明の一実施の形態における画像表示装置の誤差拡散部の誤差拡散係数を示す図である。FIG. 10 is a diagram showing the error diffusion coefficient of the error diffusion unit of the image display device according to the embodiment of the present invention. 図11は、本発明の一実施の形態における画像表示装置の画像信号処理回路の動作を示すフローチャートである。FIG. 11 is a flowchart showing the operation of the image signal processing circuit of the image display device according to the embodiment of the present invention.
 以下、本発明の実施の形態における画像表示装置について、プラズマディスプレイパネルを用いたプラズマディスプレイ装置を例に挙げて、図面を用いて説明する。 Hereinafter, an image display apparatus according to an embodiment of the present invention will be described with reference to the drawings, taking a plasma display apparatus using a plasma display panel as an example.
 (実施の形態)
 図1は、本発明の一実施の形態における画像表示装置に用いるパネル10の構造を示す分解斜視図である。
(Embodiment)
FIG. 1 is an exploded perspective view showing the structure of panel 10 used in the image display apparatus according to the embodiment of the present invention.
 ガラス製の前面基板11上には、走査電極12と維持電極13とからなる表示電極対14が複数形成されている。そして、走査電極12と維持電極13とを覆うように誘電体層15が形成され、その誘電体層15上に保護層16が形成されている。 A plurality of display electrode pairs 14 each including a scanning electrode 12 and a sustaining electrode 13 are formed on a glass front substrate 11. A dielectric layer 15 is formed so as to cover the scan electrode 12 and the sustain electrode 13, and a protective layer 16 is formed on the dielectric layer 15.
 この保護層16は、放電セルにおける放電開始電圧を下げるために、パネルの材料として使用実績があり、ネオン(Ne)およびキセノン(Xe)ガスを封入した場合に2次電子放出係数が大きく耐久性に優れた酸化マグネシウム(MgO)を主成分とする材料で形成されている。 This protective layer 16 has been used as a panel material in order to lower the discharge start voltage in the discharge cell, and has a large secondary electron emission coefficient and durability when neon (Ne) and xenon (Xe) gas is sealed. It is made of a material mainly composed of magnesium oxide (MgO).
 保護層16は、一つの層で構成されていてもよく、あるいは複数の層で構成されていてもよい。また、層の上に粒子が存在する構成であってもよい。 The protective layer 16 may be composed of a single layer or may be composed of a plurality of layers. Moreover, the structure which particle | grains exist on a layer may be sufficient.
 背面基板21上にはデータ電極22が複数形成され、データ電極22を覆うように誘電体層23が形成され、さらにその上に井桁状の隔壁24が形成されている。そして、隔壁24の側面および誘電体層23上には赤色(R)に発光する蛍光体層25R、緑色(G)に発光する蛍光体層25G、および青色(B)に発光する蛍光体層25Bが設けられている。以下、蛍光体層25R、蛍光体層25G、蛍光体層25Bをまとめて蛍光体層25とも記す。 A plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed so as to cover the data electrodes 22, and a grid-like partition wall 24 is further formed thereon. On the side surfaces of the barrier ribs 24 and on the dielectric layer 23, a phosphor layer 25R that emits red (R), a phosphor layer 25G that emits green (G), and a phosphor layer 25B that emits blue (B). Is provided. Hereinafter, the phosphor layer 25R, the phosphor layer 25G, and the phosphor layer 25B are collectively referred to as a phosphor layer 25.
 これら前面基板11と背面基板21とを、微小な空間を挟んで表示電極対14とデータ電極22とが交差するように対向配置し、前面基板11と背面基板21との間隙に放電空間を設ける。そして、その外周部をガラスフリット等の封着材によって封着する。その放電空間には、例えばネオンとキセノンの混合ガスを放電ガスとして封入する。 The front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 intersect each other with a minute space therebetween, and a discharge space is provided in the gap between the front substrate 11 and the rear substrate 21. . And the outer peripheral part is sealed with sealing materials, such as glass frit. For example, a mixed gas of neon and xenon is sealed in the discharge space as a discharge gas.
 放電空間は隔壁24によって複数の区画に仕切られており、表示電極対14とデータ電極22とが交差する部分に、画素を構成する発光素子である放電セルが形成される。 The discharge space is partitioned into a plurality of sections by the barrier ribs 24, and discharge cells, which are light-emitting elements constituting the pixels, are formed at the intersections between the display electrode pairs 14 and the data electrodes 22.
 そして、これらの放電セルで放電を発生し、放電セルの蛍光体層25を発光(放電セルを点灯)することにより、パネル10にカラーの画像を表示する。 Then, a discharge is generated in these discharge cells, and the phosphor layer 25 of the discharge cells emits light (lights the discharge cells), thereby displaying a color image on the panel 10.
 なお、パネル10においては、表示電極対14が延伸する方向に配列された連続する3つの放電セルで1つの画素を構成する。この3つの放電セルとは、蛍光体層25Rを有し赤色(R)に発光する放電セル(赤の放電セル)と、蛍光体層25Gを有し緑色(G)に発光する放電セル(緑の放電セル)と、蛍光体層25Bを有し青色(B)に発光する放電セル(青の放電セル)である。 In the panel 10, one pixel is composed of three consecutive discharge cells arranged in the direction in which the display electrode pair 14 extends. The three discharge cells are a discharge cell having a phosphor layer 25R and emitting red (R) (red discharge cell), and a discharge cell having a phosphor layer 25G and emitting green (G) (green). And a discharge cell having a phosphor layer 25B and emitting blue (B) light (blue discharge cell).
 なお、パネル10の構造は上述したものに限られるわけではなく、例えばストライプ状の隔壁を備えたものであってもよい。 Note that the structure of the panel 10 is not limited to the above-described structure, and may be, for example, provided with a stripe-shaped partition wall.
 図2は、本発明の一実施の形態におけるプラズマディスプレイ装置に用いるパネル10の電極配列図である。 FIG. 2 is an electrode array diagram of panel 10 used in the plasma display device according to one embodiment of the present invention.
 パネル10には、水平方向(行方向、ライン方向)に延長されたn本の走査電極SC1~走査電極SCn(図1の走査電極12)およびn本の維持電極SU1~維持電極SUn(図1の維持電極13)が配列され、垂直方向(列方向)に延長されたm本のデータ電極D1~データ電極Dm(図1のデータ電極22)が配列されている。 The panel 10 includes n scan electrodes SC1 to SCn (scan electrode 12 in FIG. 1) extended in the horizontal direction (row direction and line direction) and n sustain electrodes SU1 to SUn (FIG. 1). The sustain electrodes 13) are arranged, and m data electrodes D1 to Dm (data electrodes 22 in FIG. 1) extending in the vertical direction (column direction) are arranged.
 そして、1対の走査電極SCi(i=1~n)および維持電極SUiと1つのデータ電極Dj(j=1~m)とが交差した領域に発光素子としての放電セルが1つ形成される。すなわち、1対の表示電極対14上には、m個の放電セルが形成され、m/3個の画素が形成される。そして、放電セルは放電空間内にm×n個形成され、m×n個の放電セルが形成された領域がパネル10の画像表示領域となる。例えば、画素数が1920×1080個のパネルでは、m=1920×3となり、n=1080となる。 One discharge cell as a light emitting element is formed in a region where a pair of scan electrode SCi (i = 1 to n) and sustain electrode SUi intersects with one data electrode Dj (j = 1 to m). . In other words, m discharge cells are formed on one pair of display electrodes 14 and m / 3 pixels are formed. Then, m × n discharge cells are formed in the discharge space, and an area where m × n discharge cells are formed becomes an image display area of the panel 10. For example, in a panel having 1920 × 1080 pixels, m = 1920 × 3 and n = 1080.
 次に、パネル10を駆動するための駆動電圧波形とその動作の概要について説明する。 Next, a driving voltage waveform for driving the panel 10 and an outline of its operation will be described.
 本実施の形態におけるプラズマディスプレイ装置は、サブフィールド法によってパネル10を駆動する。サブフィールド法では、画像信号の1フィールドを時間軸上で複数のサブフィールドに分割し、各サブフィールドに階調重みをそれぞれ設定する。したがって、各フィールドは階調重みが異なる複数のサブフィールドを有する。 The plasma display device in the present embodiment drives the panel 10 by the subfield method. In the subfield method, one field of an image signal is divided into a plurality of subfields on the time axis, and a gradation weight is set for each subfield. Therefore, each field has a plurality of subfields having different gradation weights.
 それぞれのサブフィールドは初期化期間、書込み期間および維持期間を有する。そして、画像信号にもとづき、サブフィールド毎に各放電セルの発光・非発光を制御する。すなわち、画像信号にもとづき、発光するサブフィールドと非発光のサブフィールドとを組み合わせることによって、画像信号にもとづく複数の階調をパネル10に表示する。 Each subfield has an initialization period, an address period, and a sustain period. Based on the image signal, light emission / non-light emission of each discharge cell is controlled for each subfield. That is, a plurality of gradations based on the image signal are displayed on the panel 10 by combining the light-emitting subfield and the non-light-emitting subfield based on the image signal.
 初期化期間では、放電セルに初期化放電を発生し、続く書込み期間における書込み放電に必要な壁電荷を各電極上に形成する初期化動作を行う。 In the initializing period, an initializing operation is performed in which initializing discharge is generated in the discharge cells and wall charges necessary for the address discharge in the subsequent address period are formed on each electrode.
 初期化動作には、直前のサブフィールドの動作にかかわらず全ての放電セルに強制的に初期化放電を発生する「強制初期化動作」と、直前のサブフィールドの書込み期間で書込み放電を発生した放電セルだけに選択的に初期化放電を発生する「選択初期化動作」とがある。強制初期化動作では、上昇する傾斜波形電圧および下降する傾斜波形電圧を走査電極12に印加して、放電セルに初期化放電を発生する。 Initialization operation includes “forced initialization operation” that forcibly generates an initializing discharge in all discharge cells regardless of the operation of the immediately preceding subfield and an addressing discharge that occurs in the addressing period of the immediately preceding subfield. There is a “selective initialization operation” in which initializing discharge is selectively generated only in the discharge cells. In the forced initializing operation, the rising ramp waveform voltage and the falling ramp waveform voltage are applied to the scan electrode 12 to generate an initializing discharge in the discharge cell.
 そして、1フィールドを構成する複数のサブフィールドのうち、1つのサブフィールドの初期化期間では全ての放電セルで強制初期化動作を行い、他のサブフィールドの初期化期間では全ての放電セルで選択初期化動作を行う。 Then, among the plurality of subfields constituting one field, the forced initializing operation is performed in all discharge cells in the initializing period of one subfield, and all the discharge cells are selected in the initializing period of the other subfield. Perform initialization.
 以下、強制初期化動作を行う初期化期間を「強制初期化期間」と呼称し、強制初期化期間を有するサブフィールドを「強制初期化サブフィールド」と呼称する。また、選択初期化動作を行う初期化期間を「選択初期化期間」と呼称し、選択初期化期間を有するサブフィールドを「選択初期化サブフィールド」と呼称する。 Hereinafter, the initialization period in which the forced initialization operation is performed is referred to as “forced initialization period”, and the subfield having the forced initialization period is referred to as “forced initialization subfield”. An initialization period for performing the selective initialization operation is referred to as a “selective initialization period”, and a subfield having the selective initialization period is referred to as a “selective initialization subfield”.
 なお、本実施の形態では、サブフィールドSF1を強制初期化サブフィールドとし、他のサブフィールド(サブフィールドSF2以降のサブフィールド)を選択初期化サブフィールドとする。しかし、本発明は、強制初期化サブフィールドとするサブフィールドおよび選択初期化サブフィールドとするサブフィールドが何ら上述したサブフィールドに限定されるものではない。また、画像信号等にもとづいてサブフィールド構成を切り換える構成であってもよい。 In the present embodiment, subfield SF1 is a forced initialization subfield, and the other subfields (subfields subsequent to subfield SF2) are selected initialization subfields. However, the present invention is not limited to the above-described subfields as subfields for forced initialization subfields and subfields for selective initialization subfields. Moreover, the structure which switches a subfield structure based on an image signal etc. may be sufficient.
 書込み期間では、走査電極12に走査パルスを印加するとともにデータ電極22に選択的に書込みパルスを印加し、発光するべき放電セルに選択的に書込み放電を発生する。そして、続く維持期間で維持放電を発生するための壁電荷をその放電セル内に形成する書込み動作を行う。 In the address period, a scan pulse is applied to the scan electrode 12 and an address pulse is selectively applied to the data electrode 22 to selectively generate an address discharge in the discharge cells to emit light. Then, an address operation is performed to form wall charges in the discharge cells for generating a sustain discharge in the subsequent sustain period.
 維持期間では、それぞれのサブフィールドに設定された階調重みに所定の比例定数を乗じた数の維持パルスを走査電極12および維持電極13に交互に印加し、直前の書込み期間に書込み放電を発生した放電セルで維持放電を発生し、その放電セルを発光する維持動作を行う。この比例定数が輝度倍数である。 In the sustain period, sustain pulses of the number obtained by multiplying the gradation weight set in each subfield by a predetermined proportional constant are alternately applied to the scan electrode 12 and the sustain electrode 13 to generate an address discharge in the immediately preceding address period. A sustain discharge is generated in the discharged discharge cell, and a sustain operation for emitting light from the discharge cell is performed. This proportionality constant is a luminance multiple.
 階調重みとは、各サブフィールドで表示する輝度の大きさの比を表すものであり、各サブフィールドでは階調重みに応じた数の維持パルスを維持期間に発生する。そのため、例えば、階調重み「8」のサブフィールドは、階調重み「1」のサブフィールドの約8倍の輝度で発光し、階調重み「2」のサブフィールドの約4倍の輝度で発光する。したがって、例えば、階調重み「8」のサブフィールドと階調重み「2」のサブフィールドを発光すれば、階調値「10」に相当する輝度で放電セルを発光することができる。 The gradation weight represents the ratio of the magnitude of the luminance displayed in each subfield, and the number of sustain pulses corresponding to the gradation weight is generated in the sustain period in each subfield. Therefore, for example, the subfield with the gradation weight “8” emits light with a luminance about eight times that of the subfield with the gradation weight “1”, and about four times as high as the subfield with the gradation weight “2”. Emits light. Therefore, for example, if the subfield with the gradation weight “8” and the subfield with the gradation weight “2” are emitted, the discharge cell can emit light with a luminance corresponding to the gradation value “10”.
 こうして、画像信号に応じた組合せでサブフィールド毎に各放電セルの発光・非発光を制御して各サブフィールドを選択的に発光することにより、様々な階調値で各放電セルを発光する。すなわち、各放電セルに画像信号に応じた階調値を表示し、画像信号にもとづく画像をパネル10に表示することができる。 Thus, each discharge cell emits light with various gradation values by selectively emitting light in each subfield by controlling light emission / non-light emission of each discharge cell for each subfield in a combination according to the image signal. That is, a gradation value corresponding to an image signal can be displayed on each discharge cell, and an image based on the image signal can be displayed on the panel 10.
 なお、パネル10において、1つの画素は、上述したように、表示電極対14が延伸する方向に配列された連続する3つの放電セル、すなわち、赤の放電セル、緑の放電セル、青の放電セルで構成されるが、本実施の形態では、以下、赤の放電セルを「赤の画素」、緑の放電セルを「緑の画素」、青の放電セルを「青の画素」とも記す。 In the panel 10, as described above, one pixel includes three consecutive discharge cells arranged in the direction in which the display electrode pair 14 extends, that is, a red discharge cell, a green discharge cell, and a blue discharge. In the present embodiment, a red discharge cell is also referred to as a “red pixel”, a green discharge cell as a “green pixel”, and a blue discharge cell as a “blue pixel”.
 図3は、本発明の一実施の形態におけるプラズマディスプレイ装置に用いるパネル10の各電極に印加する駆動電圧波形を概略的に示す図である。 FIG. 3 is a diagram schematically showing drive voltage waveforms applied to the respective electrodes of panel 10 used in the plasma display device according to one embodiment of the present invention.
 図3には、データ電極D1~データ電極Dm、書込み期間において最初に書込み動作を行う走査電極SC1、書込み期間において最後に書込み動作を行う走査電極SCn(例えば、走査電極SC1080)、維持電極SU1~維持電極SUnのそれぞれに印加する駆動電圧波形を示す。また、以下における走査電極SCi、維持電極SUi、データ電極Dkは、各電極の中から画像データ(サブフィールド毎の発光・非発光を示すデータ)にもとづき選択された電極を表す。 FIG. 3 shows data electrode D1 to data electrode Dm, scan electrode SC1 that performs the address operation first in the address period, scan electrode SCn that performs the address operation last in the address period (for example, scan electrode SC1080), sustain electrode SU1 to The drive voltage waveform applied to each of the sustain electrodes SUn is shown. Scan electrode SCi, sustain electrode SUi, and data electrode Dk in the following represent electrodes selected based on image data (data indicating light emission / non-light emission for each subfield) from among the electrodes.
 また、図3には、強制初期化サブフィールドであるサブフィールドSF1と、選択初期化サブフィールドであるサブフィールドSF2およびサブフィールドSF3を示す。サブフィールドSF1と、サブフィールドSF2およびサブフィールドSF3とでは、初期化期間に走査電極12に印加する駆動電圧の波形形状が異なる。 FIG. 3 shows a subfield SF1 that is a forced initialization subfield, and a subfield SF2 and a subfield SF3 that are selective initialization subfields. The subfield SF1, the subfield SF2, and the subfield SF3 have different waveform shapes of the drive voltage applied to the scan electrode 12 in the initialization period.
 なお、サブフィールドSF4以降のサブフィールドは図示していないが、サブフィールドSF1を除く各サブフィールドは選択初期化サブフィールドであり、維持パルスの発生数を除き、各期間でほぼ同様の駆動電圧波形を発生する。 Although the subfields after subfield SF4 are not shown, each subfield except subfield SF1 is a selective initialization subfield, and substantially the same drive voltage waveform in each period except the number of sustain pulses. Is generated.
 まず、強制初期化サブフィールドであるサブフィールドSF1について説明する。 First, the subfield SF1, which is a forced initialization subfield, will be described.
 強制初期化動作を行うサブフィールドSF1の初期化期間Ti1の前半部では、データ電極D1~データ電極Dm、維持電極SU1~維持電極SUnには、それぞれ電圧0(V)を印加する。走査電極SC1~走査電極SCnには、電圧0(V)を印加した後に電圧Vi1を印加し、電圧Vi1から電圧Vi2まで緩やかに上昇する傾斜波形電圧(以下、「上り傾斜波形電圧」と呼称する)を印加する。このとき、電圧Vi1は、維持電極SU1~維持電極SUnに対して放電開始電圧よりも低い電圧に設定し、電圧Vi2は、維持電極SU1~維持電極SUnに対して放電開始電圧を超える電圧に設定する。 In the first half of the initialization period Ti1 of the subfield SF1 in which the forced initialization operation is performed, the voltage 0 (V) is applied to the data electrode D1 to the data electrode Dm and the sustain electrode SU1 to the sustain electrode SUn. A voltage Vi1 is applied to scan electrode SC1 through scan electrode SCn after voltage 0 (V) is applied, and a ramp waveform voltage that gradually rises from voltage Vi1 to voltage Vi2 (hereinafter referred to as an “upward ramp waveform voltage”). ) Is applied. At this time, voltage Vi1 is set to a voltage lower than the discharge start voltage for sustain electrode SU1 to sustain electrode SUn, and voltage Vi2 is set to a voltage exceeding the discharge start voltage for sustain electrode SU1 to sustain electrode SUn. To do.
 この上り傾斜波形電圧が上昇する間に、各放電セルの走査電極SC1~走査電極SCnと維持電極SU1~維持電極SUnとの間、および走査電極SC1~走査電極SCnとデータ電極D1~データ電極Dmとの間に、それぞれ微弱な初期化放電が持続して発生する。そして、走査電極SC1~走査電極SCn上に負の壁電圧が蓄積され、データ電極D1~データ電極Dm上および維持電極SU1~維持電極SUn上には正の壁電圧が蓄積される。この電極上の壁電圧とは、電極を覆う誘電体層上、保護層上、蛍光体層上等に蓄積された壁電荷により生じる電圧を表す。 While the rising ramp waveform voltage rises, scan electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn, and scan electrode SC1 through scan electrode SCn and data electrode D1 through data electrode Dm of each discharge cell. In between, weak initializing discharges are continuously generated. Negative wall voltage is accumulated on scan electrode SC1 through scan electrode SCn, and positive wall voltage is accumulated on data electrode D1 through data electrode Dm and sustain electrode SU1 through sustain electrode SUn. The wall voltage on the electrode represents a voltage generated by wall charges accumulated on the dielectric layer covering the electrode, the protective layer, the phosphor layer, and the like.
 サブフィールドSF1の初期化期間Ti1の後半部では、維持電極SU1~維持電極SUnには正の電圧Veを印加し、データ電極D1~データ電極Dmには電圧0(V)を印加する。走査電極SC1~走査電極SCnには、電圧Vi3から負の電圧Vi4まで緩やかに下降する傾斜波形電圧(以下、「下り傾斜波形電圧」と呼称する)を印加する。電圧Vi3は、維持電極SU1~維持電極SUnに対して放電開始電圧未満の電圧に設定し、電圧Vi4は、維持電極SU1~維持電極SUnに対して放電開始電圧を超える電圧に設定する。 In the latter half of the initialization period Ti1 of the subfield SF1, the positive voltage Ve is applied to the sustain electrodes SU1 to SUn, and the voltage 0 (V) is applied to the data electrodes D1 to Dm. A scan waveform SC1 to scan electrode SCn are applied with a ramp waveform voltage that gently falls from voltage Vi3 to negative voltage Vi4 (hereinafter referred to as “down ramp waveform voltage”). Voltage Vi3 is set to a voltage lower than the discharge start voltage with respect to sustain electrode SU1 through sustain electrode SUn, and voltage Vi4 is set to a voltage exceeding the discharge start voltage with respect to sustain electrode SU1 through sustain electrode SUn.
 この下り傾斜波形電圧を走査電極SC1~走査電極SCnに印加する間に、各放電セルの走査電極SC1~走査電極SCnと維持電極SU1~維持電極SUnとの間、および走査電極SC1~走査電極SCnとデータ電極D1~データ電極Dmとの間に、それぞれ微弱な初期化放電が発生する。これにより、走査電極SC1~走査電極SCn上の負の壁電圧および維持電極SU1~維持電極SUn上の正の壁電圧が弱められ、データ電極D1~データ電極Dm上の正の壁電圧は、書込み期間Tw1での書込み動作に適した電圧に調整される。 While this downward ramp waveform voltage is applied to scan electrode SC1 through scan electrode SCn, between discharge electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn of each discharge cell, and scan electrode SC1 through scan electrode SCn. Between the data electrode D1 and the data electrode Dm, a weak initializing discharge is generated. As a result, the negative wall voltage on scan electrode SC1 through scan electrode SCn and the positive wall voltage on sustain electrode SU1 through sustain electrode SUn are weakened, and the positive wall voltage on data electrode D1 through data electrode Dm is written. The voltage is adjusted to a voltage suitable for the writing operation in the period Tw1.
 以上の電圧波形が、直前のサブフィールドの動作にかかわらず放電セルに初期化放電を発生する強制初期化波形である。そして、強制初期化波形を走査電極12に印加する動作が強制初期化動作である。 The above voltage waveform is a forced initializing waveform that generates an initializing discharge in the discharge cell regardless of the operation of the immediately preceding subfield. The operation for applying the forced initialization waveform to the scan electrode 12 is the forced initialization operation.
 以上により、強制初期化サブフィールド(サブフィールドSF1)の初期化期間Ti1における強制初期化動作が終了する。そして、強制初期化サブフィールドの初期化期間Ti1では、パネル10の画像表示領域における全ての放電セルで強制的に初期化放電を発生する。 Thus, the forced initialization operation in the initialization period Ti1 of the forced initialization subfield (subfield SF1) ends. In the initializing period Ti1 of the forced initializing subfield, initializing discharge is forcibly generated in all the discharge cells in the image display area of the panel 10.
 サブフィールドSF1の書込み期間Tw1では、維持電極SU1~維持電極SUnには電圧Veを印加し、データ電極D1~データ電極Dmには電圧0(V)を印加し、走査電極SC1~走査電極SCnには電圧Vcを印加する。 In address period Tw1 of subfield SF1, voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, voltage 0 (V) is applied to data electrode D1 through data electrode Dm, and scan electrode SC1 through scan electrode SCn are applied. Applies a voltage Vc.
 次に、配置的に見て上から1番目(1行目)の走査電極SC1に負の電圧Vaの負極性の走査パルスを印加する。そして、データ電極D1~データ電極Dmのうちの1行目において発光するべき放電セルのデータ電極Dkに正の電圧Vdの正極性の書込みパルスを印加する。 Next, a negative scan pulse having a negative voltage Va is applied to the first (first row) scan electrode SC1 in terms of arrangement. Then, a positive address pulse of a positive voltage Vd is applied to the data electrode Dk of the discharge cell that should emit light in the first row of the data electrodes D1 to Dm.
 書込みパルスの電圧Vdを印加したデータ電極Dkと走査パルスの電圧Vaを印加した走査電極SC1との交差部にある放電セルでは、データ電極Dkと走査電極SC1との電圧差が放電開始電圧を超え、データ電極Dkと走査電極SC1との間に放電が発生する。 In the discharge cell at the intersection of the data electrode Dk to which the address pulse voltage Vd is applied and the scan electrode SC1 to which the scan pulse voltage Va is applied, the voltage difference between the data electrode Dk and the scan electrode SC1 exceeds the discharge start voltage. A discharge occurs between the data electrode Dk and the scan electrode SC1.
 また、維持電極SU1~維持電極SUnに電圧Veを印加しているため、データ電極Dkと走査電極SC1との間に発生する放電に誘発されて、データ電極Dkと交差する領域にある維持電極SU1と走査電極SC1との間にも放電が発生する。こうして、走査パルスの電圧Vaと書込みパルスの電圧Vdとが同時に印加された放電セル(発光するべき放電セル)に書込み放電が発生する。 In addition, since voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, sustain electrode SU1 in a region intersecting data electrode Dk is induced by a discharge generated between data electrode Dk and scan electrode SC1. Discharge also occurs between scan electrode SC1 and scan electrode SC1. Thus, address discharge is generated in the discharge cells (discharge cells to emit light) to which the scan pulse voltage Va and the address pulse voltage Vd are simultaneously applied.
 書込み放電が発生した放電セルでは、走査電極SC1上に正の壁電圧が蓄積され、維持電極SU1上に負の壁電圧が蓄積され、データ電極Dk上にも負の壁電圧が蓄積される。 In the discharge cell in which the address discharge has occurred, a positive wall voltage is accumulated on the scan electrode SC1, a negative wall voltage is accumulated on the sustain electrode SU1, and a negative wall voltage is also accumulated on the data electrode Dk.
 このようにして、1行目の放電セルにおける書込み動作が終了する。なお、書込みパルスを印加しなかったデータ電極Dh(データ電極Dhはデータ電極D1~データ電極Dmのうちデータ電極Dkを除いたもの)を有する放電セルでは、データ電極Dhと走査電極SC1との交差部の電圧は放電開始電圧を超えないので、書込み放電は発生せず、初期化期間Ti1終了後の壁電圧が保たれる。 In this way, the address operation in the discharge cells in the first row is completed. In the discharge cell having the data electrode Dh to which the address pulse is not applied (the data electrode Dh is the data electrode D1 to the data electrode Dm excluding the data electrode Dk), the intersection of the data electrode Dh and the scan electrode SC1. Since the voltage of the portion does not exceed the discharge start voltage, the address discharge does not occur, and the wall voltage after the end of the initialization period Ti1 is maintained.
 次に、配置的に見て上から2番目(2行目)の走査電極SC2に電圧Vaの走査パルスを印加するとともに、2行目に発光するべき放電セルに対応するデータ電極Dkに電圧Vdの書込みパルスを印加する。これにより、走査パルスと書込みパルスとが同時に印加された2行目の放電セルでは書込み放電が発生する。こうして、2行目の放電セルにおける書込み動作を行う。 Next, a scan pulse of the voltage Va is applied to the second (second row) scan electrode SC2 from the top, and the voltage Vd is applied to the data electrode Dk corresponding to the discharge cell to emit light in the second row. Apply the write pulse. As a result, address discharge occurs in the discharge cells in the second row to which the scan pulse and address pulse are simultaneously applied. Thus, the address operation in the discharge cells in the second row is performed.
 同様の書込み動作を、走査電極SC3、走査電極SC4、・・・、走査電極SCnという順番で、n行目の放電セルに至るまで順次行い、サブフィールドSF1の書込み期間Tw1が終了する。このようにして、書込み期間Tw1では、発光するべき放電セルに選択的に書込み放電を発生し、その放電セルに維持放電のための壁電荷を形成する。 The same address operation is sequentially performed in the order of scan electrode SC3, scan electrode SC4,..., Scan electrode SCn until reaching the discharge cell in the n-th row, and the address period Tw1 of the subfield SF1 ends. In this manner, in the address period Tw1, address discharge is selectively generated in the discharge cells to emit light, and wall charges for sustain discharge are formed in the discharge cells.
 なお、初期化期間Ti1の後半に維持電極SU1~維持電極SUnに印加する電圧Veと、書込み期間Tw1に維持電極SU1~維持電極SUnに印加する電圧Veとは互いに異なる電圧値であってもよい。 Note that voltage Ve applied to sustain electrode SU1 through sustain electrode SUn in the second half of initialization period Ti1 and voltage Ve applied to sustain electrode SU1 through sustain electrode SUn in address period Tw1 may have different voltage values. .
 サブフィールドSF1の維持期間Ts1では、まず維持電極SU1~維持電極SUnに電圧0(V)を印加する。そして、走査電極SC1~走査電極SCnに正の電圧Vsの維持パルスを印加する。 In the sustain period Ts1 of the subfield SF1, first, the voltage 0 (V) is applied to the sustain electrodes SU1 to SUn. Then, sustain pulse of positive voltage Vs is applied to scan electrode SC1 through scan electrode SCn.
 この維持パルスの印加により、書込み期間Tw1に書込み放電を発生した放電セルでは、走査電極SCiと維持電極SUiとの電圧差が放電開始電圧を超え、走査電極SCiと維持電極SUiとの間に維持放電が発生する。そして、この維持放電により発生した紫外線により、維持放電が発生した放電セルの蛍光体層25が発光する。また、この維持放電により、走査電極SCi上に負の壁電圧が蓄積され、維持電極SUi上に正の壁電圧が蓄積される。さらに、データ電極Dk上にも正の壁電圧が蓄積される。ただし、書込み期間Tw1において書込み放電が発生しなかった放電セルでは維持放電は発生しない。 In the discharge cell in which the address discharge is generated in the address period Tw1 by the application of the sustain pulse, the voltage difference between the scan electrode SCi and the sustain electrode SUi exceeds the discharge start voltage, and is maintained between the scan electrode SCi and the sustain electrode SUi. Discharge occurs. The phosphor layer 25 of the discharge cell in which the sustain discharge has occurred emits light by the ultraviolet rays generated by the sustain discharge. In addition, due to the sustain discharge, a negative wall voltage is accumulated on scan electrode SCi, and a positive wall voltage is accumulated on sustain electrode SUi. Furthermore, a positive wall voltage is also accumulated on the data electrode Dk. However, the sustain discharge does not occur in the discharge cells in which the address discharge has not occurred in the address period Tw1.
 続いて、走査電極SC1~走査電極SCnに電圧0(V)を印加し、維持電極SU1~維持電極SUnに電圧Vsの維持パルスを印加する。直前に維持放電を発生した放電セルでは再び維持放電が発生し、維持電極SUi上に負の壁電圧が蓄積され、走査電極SCi上に正の壁電圧が蓄積される。 Subsequently, voltage 0 (V) is applied to scan electrode SC1 through scan electrode SCn, and a sustain pulse of voltage Vs is applied to sustain electrode SU1 through sustain electrode SUn. In the discharge cell that has generated a sustain discharge immediately before, a sustain discharge occurs again, a negative wall voltage is accumulated on sustain electrode SUi, and a positive wall voltage is accumulated on scan electrode SCi.
 以降同様に、走査電極SC1~走査電極SCnと維持電極SU1~維持電極SUnとに、階調重みに所定の輝度倍数を乗じた数の維持パルスを交互に印加する。こうして、書込み期間において書込み放電を発生した放電セルは、階調重みに応じた回数の維持放電を発生し、階調重みに応じた輝度で発光する。 Thereafter, similarly, the sustain pulses of the number obtained by multiplying the gradation weight by a predetermined luminance multiple are alternately applied to scan electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn. Thus, the discharge cells that have generated the address discharge in the address period generate the sustain discharges the number of times corresponding to the gradation weight, and emit light with the luminance corresponding to the gradation weight.
 そして、維持期間Ts1における維持パルスの発生後(維持期間の最後)に、維持電極SU1~維持電極SUnおよびデータ電極D1~データ電極Dmに電圧0(V)を印加したまま、走査電極SC1~走査電極SCnに電圧0(V)から電圧Vrまで緩やかに上昇する上り傾斜波形電圧を印加する。 After generation of the sustain pulse in sustain period Ts1 (the end of the sustain period), scan electrode SC1 to scan are performed while voltage 0 (V) is applied to sustain electrode SU1 to sustain electrode SUn and data electrode D1 to data electrode Dm. An upward ramp waveform voltage that gradually rises from voltage 0 (V) to voltage Vr is applied to electrode SCn.
 電圧Vrを放電開始電圧を超える電圧に設定することで、走査電極SC1~走査電極SCnへ印加する上り傾斜波形電圧が放電開始電圧を超えて上昇する間に、維持放電を発生した放電セルの維持電極SUiと走査電極SCiとの間に、微弱な放電(消去放電)が持続して発生する。 By setting the voltage Vr to a voltage exceeding the discharge start voltage, the sustain of the discharge cell that has generated the sustain discharge is maintained while the rising ramp waveform voltage applied to scan electrode SC1 through scan electrode SCn exceeds the discharge start voltage. A weak discharge (erase discharge) is continuously generated between the electrode SUi and the scan electrode SCi.
 この微弱な放電で発生した荷電粒子は、維持電極SUiと走査電極SCiとの間の電圧差を緩和するように、維持電極SUi上および走査電極SCi上に壁電荷となって蓄積される。これにより、データ電極Dk上の正の壁電圧を残したまま、走査電極SCi上の壁電圧および維持電極SUi上の壁電圧が弱められる。こうして、放電セル内における不要な壁電荷が消去される。 The charged particles generated by this weak discharge are accumulated as wall charges on the sustain electrode SUi and the scan electrode SCi so as to reduce the voltage difference between the sustain electrode SUi and the scan electrode SCi. Thereby, the wall voltage on scan electrode SCi and the wall voltage on sustain electrode SUi are weakened while the positive wall voltage on data electrode Dk remains. Thus, unnecessary wall charges in the discharge cell are erased.
 走査電極SC1~走査電極SCnに印加する電圧が電圧Vrに到達したら、走査電極SC1~走査電極SCnへの印加電圧を電圧0(V)まで下降する。こうして、サブフィールドSF1の維持期間Ts1における維持動作が終了する。 When the voltage applied to scan electrode SC1 through scan electrode SCn reaches voltage Vr, the voltage applied to scan electrode SC1 through scan electrode SCn is lowered to voltage 0 (V). Thus, the sustain operation in subfield SF1 during sustain period Ts1 ends.
 以上により、サブフィールドSF1が終了する。 Thus, subfield SF1 is completed.
 次に、選択初期化サブフィールドについてサブフィールドSF2を例に挙げて説明する。 Next, the selective initialization subfield will be described by taking the subfield SF2 as an example.
 サブフィールドSF2の初期化期間Ti2では、データ電極D1~データ電極Dmに電圧0(V)を印加し、維持電極SU1~維持電極SUnには正の電圧Veを印加する。 In the initialization period Ti2 of the subfield SF2, the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the positive voltage Ve is applied to the sustain electrodes SU1 to SUn.
 走査電極SC1~走査電極SCnには放電開始電圧未満となる電圧(例えば、電圧0(V))から負の電圧Vi4に向かって、初期化期間Ti1で発生した下り傾斜波形電圧と同じ勾配で下降する下り傾斜波形電圧を印加する。電圧Vi4は、放電開始電圧を超える電圧に設定する。 Scan electrode SC1 to scan electrode SCn decrease from a voltage lower than the discharge start voltage (for example, voltage 0 (V)) toward negative voltage Vi4 at the same gradient as the downward ramp waveform voltage generated in initialization period Ti1. Apply a downward ramp waveform voltage. The voltage Vi4 is set to a voltage exceeding the discharge start voltage.
 この下り傾斜波形電圧を走査電極SC1~走査電極SCnに印加する間に、直前のサブフィールド(図3では、サブフィールドSF1)の維持期間Ts1に維持放電を発生した放電セルでは、走査電極SCiと維持電極SUiとの間、および走査電極SCiとデータ電極Dkとの間でそれぞれ微弱な初期化放電が発生する。 In the discharge cell in which the sustain discharge is generated in the sustain period Ts1 of the immediately preceding subfield (subfield SF1 in FIG. 3) while the downward ramp waveform voltage is applied to scan electrode SC1 through scan electrode SCn, scan electrode SCi and A weak initializing discharge is generated between sustain electrode SUi and between scan electrode SCi and data electrode Dk.
 そして、この初期化放電により、走査電極SCi上の負の壁電圧および維持電極SUi上の正の壁電圧が弱められる。また、データ電極Dk上の正の壁電圧の過剰な部分が放電される。こうして、放電セル内の壁電圧は書込み期間Tw2における書込み動作に適した壁電圧に調整される。 And, by this initializing discharge, the negative wall voltage on scan electrode SCi and the positive wall voltage on sustain electrode SUi are weakened. In addition, an excessive portion of the positive wall voltage on the data electrode Dk is discharged. Thus, the wall voltage in the discharge cell is adjusted to a wall voltage suitable for the address operation in the address period Tw2.
 一方、直前のサブフィールド(サブフィールドSF1)の維持期間Ts1に維持放電を発生しなかった放電セルでは、初期化放電は発生せず、それ以前の壁電圧が保たれる。 On the other hand, in the discharge cells that did not generate the sustain discharge in the sustain period Ts1 of the immediately preceding subfield (subfield SF1), the initializing discharge does not occur and the previous wall voltage is maintained.
 上述の電圧波形が、直前のサブフィールドの書込み期間(ここでは、書込み期間Tw1)で書込み動作を行った放電セルで選択的に初期化放電を発生する選択初期化波形である。そして、選択初期化波形を走査電極12に印加する動作が選択初期化動作である。 The voltage waveform described above is a selective initialization waveform in which an initializing discharge is selectively generated in a discharge cell that has performed an address operation in the address period (here, address period Tw1) of the immediately preceding subfield. The operation of applying the selective initialization waveform to the scan electrode 12 is the selective initialization operation.
 以上により、選択初期化サブフィールドであるサブフィールドSF2の初期化期間Ti2における選択初期化動作が終了する。 Thus, the selective initialization operation in the initialization period Ti2 of the subfield SF2, which is the selective initialization subfield, is completed.
 サブフィールドSF2の書込み期間Tw2では、サブフィールドSF1の書込み期間Tw1と同様の駆動電圧波形を各電極に印加する。続く維持期間Ts2も、サブフィールドSF1の維持期間Ts1と同様に、階調重みに応じた数の維持パルスを走査電極SC1~走査電極SCnと維持電極SU1~維持電極SUnとに交互に印加する。 In the address period Tw2 of the subfield SF2, the same drive voltage waveform as that in the address period Tw1 of the subfield SF1 is applied to each electrode. In the subsequent sustain period Ts2, similarly to the sustain period Ts1 of the subfield SF1, the number of sustain pulses corresponding to the gradation weights are alternately applied to the scan electrodes SC1 to SCn and the sustain electrodes SU1 to SUn.
 サブフィールドSF3以降の各サブフィールドでは、維持期間に発生する維持パルスの数を除き、サブフィールドSF2と同様の駆動電圧波形を各電極に印加する。 In each subfield after subfield SF3, the same drive voltage waveform as in subfield SF2 is applied to each electrode except for the number of sustain pulses generated in the sustain period.
 以上が、本実施の形態においてパネル10の各電極に印加する駆動電圧波形の概要である。 The above is the outline of the drive voltage waveform applied to each electrode of panel 10 in the present embodiment.
 なお、本実施の形態において各電極に印加する電圧値は、例えば、電圧Vi1=140(V)、電圧Vi2=340(V)、電圧Vi3=200(V)、電圧Vi4=-190(V)、電圧Vc=-60(V)、電圧Va=-200(V)、電圧Vs=200(V)、電圧Vr=200(V)、電圧Ve=130(V)、電圧Vd=70(V)である。また、初期化期間Ti1に発生する上り傾斜波形電圧の勾配は約1.3V/μsecであり、各維持期間に発生する上り傾斜波形電圧の勾配は約10V/μsecであり、各初期化期間に発生する下り傾斜波形電圧の勾配は約-1.5V/μsecである。 In this embodiment, the voltage values applied to the electrodes are, for example, the voltage Vi1 = 140 (V), the voltage Vi2 = 340 (V), the voltage Vi3 = 200 (V), and the voltage Vi4 = −190 (V). , Voltage Vc = −60 (V), voltage Va = −200 (V), voltage Vs = 200 (V), voltage Vr = 200 (V), voltage Ve = 130 (V), voltage Vd = 70 (V) It is. Further, the gradient of the rising ramp waveform voltage generated in the initialization period Ti1 is about 1.3 V / μsec, and the gradient of the rising ramp waveform voltage generated in each sustain period is about 10 V / μsec. The gradient of the generated downward ramp waveform voltage is about −1.5 V / μsec.
 なお、本実施の形態において、上述した電圧値や勾配等の具体的な数値は単なる一例に過ぎず、本発明は、各電圧値や勾配等が上述した数値に限定されるものではない。各電圧値や勾配等は、パネルの放電特性やプラズマディスプレイ装置の仕様等にもとづき最適に設定することが望ましい。 In the present embodiment, the specific numerical values such as the voltage value and the gradient described above are merely examples, and the present invention is not limited to the numerical values described above for each voltage value and the gradient. Each voltage value, gradient, and the like are preferably set optimally based on the discharge characteristics of the panel and the specifications of the plasma display device.
 なお、本実施の形態では、サブフィールドSF1を強制初期化動作を行う強制初期化サブフィールドとし、他のサブフィールド(サブフィールドSF2以降のサブフィールド)を選択初期化動作を行う選択初期化サブフィールドとしたが、本発明は何らこの構成に限定されるものではない。例えば、サブフィールドSF1を選択初期化サブフィールドにして他のサブフィールドを強制初期化サブフィールドにしたり、あるいは複数のサブフィールドを強制初期化サブフィールドとしてもよい。 In the present embodiment, subfield SF1 is a forced initialization subfield for performing a forced initialization operation, and other subfields (subfields subsequent to subfield SF2) are a selective initialization subfield for performing a selective initialization operation. However, the present invention is not limited to this configuration. For example, the subfield SF1 may be a selective initialization subfield and other subfields may be forced initialization subfields, or a plurality of subfields may be forced initialization subfields.
 上述したように、サブフィールド法では、あらかじめ階調重みを定めた複数のサブフィールドで1フィールドを構成する。そして、点灯するサブフィールド(点灯サブフィールド)と点灯しないサブフィールド(非点灯サブフィールド)とを組み合わせて、各放電セルを、画像信号にもとづく階調値の大きさに応じた発光輝度で発光する。 As described above, in the subfield method, one field is composed of a plurality of subfields in which gradation weights are determined in advance. Then, by combining a subfield that is lit (lighting subfield) and a subfield that is not lit (non-lighting subfield), each discharge cell emits light with a light emission luminance corresponding to the magnitude of the gradation value based on the image signal. .
 以下、点灯サブフィールドと非点灯サブフィールドの組合せを「サブフィールドコード」または単に「コード」と呼称し、複数のサブフィールドコードの集合を「コードセット」と呼称する。 Hereinafter, a combination of a lighting subfield and a non-lighting subfield is referred to as a “subfield code” or simply “code”, and a set of a plurality of subfield codes is referred to as a “code set”.
 本実施の形態では、コードセットを構成する複数のサブフィールドコードの中から、階調値に応じてサブフィールドコードを選択する。そして、サブフィールドコードにもとづき各サブフィールドの発光・非発光を制御し、放電セルを階調値の大きさに応じた輝度で発光させて、パネル10に画像を表示する。 In this embodiment, a subfield code is selected from a plurality of subfield codes constituting a code set according to a gradation value. Then, light emission / non-light emission of each subfield is controlled based on the subfield code, and the discharge cell is caused to emit light with a luminance corresponding to the magnitude of the gradation value, and an image is displayed on the panel 10.
 次に、本実施の形態において用いるコードセットについて説明する。 Next, a code set used in this embodiment will be described.
 なお、以下の説明では、黒を表示するときの階調値(維持放電が発生しないときの階調値)を「0」とする。また、階調重み「N」に対応する階調値を階調値「N」と表記する。 In the following description, the gradation value when displaying black (the gradation value when no sustain discharge occurs) is assumed to be “0”. A gradation value corresponding to the gradation weight “N” is expressed as a gradation value “N”.
 したがって、例えば、階調重み「1」のサブフィールドSF1だけが発光する放電セルが表示する階調値は階調値「1」となる。また、階調重み「1」のサブフィールドSF1と階調重み「2」のサブフィールドSF2だけが発光する放電セルが表示する階調値は、1+2=3なので階調値「3」となる。 Therefore, for example, the gradation value displayed by the discharge cells that emit light only in the subfield SF1 having the gradation weight “1” is the gradation value “1”. The gradation value displayed by the discharge cells that emit light only in the subfield SF1 having the gradation weight “1” and the subfield SF2 having the gradation weight “2” is 1 + 2 = 3, so the gradation value is “3”.
 図4は、1フィールドを8個のサブフィールドで構成するときのコードセットの一例を示す図である。 FIG. 4 is a diagram showing an example of a code set when one field is composed of eight subfields.
 なお、以降の図面では、「階調重み」を単に「重み」と記し、「階調値」を単に「階調」と記す。 In the following drawings, “gradation weight” is simply referred to as “weight”, and “gradation value” is simply referred to as “gradation”.
 図4に示すコードセットにおいて各サブフィールドを示す表記の直下に記された数値は、各サブフィールドの階調重みを表す。 In the code set shown in FIG. 4, the numerical value shown immediately below the notation indicating each subfield represents the gradation weight of each subfield.
 なお、図4には、サブフィールドSF1からサブフィールドSF8までの8つのサブフィールドを1フィールドに有し、各サブフィールドはそれぞれ「1」、「2」、「3」、「5」、「8」、「13」、「21」、「34」の階調重みを有するコードセットを示す。 FIG. 4 includes eight subfields SF1 to SF8 in one field, and each subfield is “1”, “2”, “3”, “5”, “8”, respectively. ”,“ 13 ”,“ 21 ”, and“ 34 ”indicate code sets having gradation weights.
 図4に示すコードセットには、発光するサブフィールドを「1」、非発光のサブフィールドを空欄で示し、最も左の列には、各サブフィールドコードにおいて表示する階調値を表す。 In the code set shown in FIG. 4, the light emitting subfield is indicated by “1”, the non-light emitting subfield is indicated by a blank, and the leftmost column indicates the gradation value to be displayed in each subfield code.
 例えば、図4に示すコードセットにもとづけば、階調値「2」に対応するサブフィールドコードは「01000000」である。 For example, based on the code set shown in FIG. 4, the subfield code corresponding to the gradation value “2” is “01000000”.
 したがって、階調値「2」を表示する放電セルではサブフィールドSF2だけが発光する。 Therefore, only the subfield SF2 emits light in the discharge cell displaying the gradation value “2”.
 なお、このサブフィールドコードは、左からサブフィールドSF1、サブフィールドSF2、サブフィールドSF3、サブフィールドSF4、サブフィールドSF5、サブフィールドSF6、サブフィールドSF7、サブフィールドSF8の順に0または1のデータが並んでいるものとする。また、以下、サブフィールドコードとして示す2値の数値は、左からサブフィールドSF1、サブフィールドSF2、サブフィールドSF3、・・・・の順にデータが並んでいるものとする。 In this subfield code, data 0 or 1 is arranged in the order of subfield SF1, subfield SF2, subfield SF3, subfield SF4, subfield SF5, subfield SF6, subfield SF7, and subfield SF8 from the left. Suppose that In the following description, it is assumed that binary numerical values shown as subfield codes are arranged in the order of subfield SF1, subfield SF2, subfield SF3,.
 また、図4に示すコードセットにもとづけば、階調値「14」に対応するサブフィールドコードは「11101000」である。したがって、階調値「14」を表示する放電セルではサブフィールドSF1、サブフィールドSF2、サブフィールドSF3およびサブフィールドSF5が発光する。 Further, based on the code set shown in FIG. 4, the subfield code corresponding to the gradation value “14” is “11101000”. Accordingly, in the discharge cell displaying the gradation value “14”, the subfield SF1, the subfield SF2, the subfield SF3, and the subfield SF5 emit light.
 次に、本実施の形態におけるプラズマディスプレイ装置の構成について説明する。 Next, the configuration of the plasma display device in the present embodiment will be described.
 図5は、本発明の一実施の形態における画像表示装置30を構成する回路ブロックの一例を概略的に示す図である。 FIG. 5 is a diagram schematically showing an example of a circuit block constituting the image display device 30 according to the embodiment of the present invention.
 画像表示装置30は、パネル10と、パネル10を駆動する駆動回路とを備えている。駆動回路は、画像信号処理回路31、データ電極駆動回路32、走査電極駆動回路33、維持電極駆動回路34、タイミング発生回路35および各回路ブロックに必要な電源を供給する電源回路(図示せず)を備えている。 The image display device 30 includes a panel 10 and a drive circuit that drives the panel 10. The drive circuit includes an image signal processing circuit 31, a data electrode drive circuit 32, a scan electrode drive circuit 33, a sustain electrode drive circuit 34, a timing generation circuit 35, and a power supply circuit (not shown) that supplies necessary power to each circuit block. It has.
 画像信号処理回路31に入力される画像信号は、赤の画像信号、緑の画像信号、青の画像信号である。画像信号処理回路31は、赤の画像信号、緑の画像信号、青の画像信号にもとづき、各放電セルに赤、緑、青の各階調値(1フィールドで表現される階調値)を設定する。なお、画像信号処理回路31は、入力される画像信号が輝度信号(Y信号)および彩度信号(C信号、またはR-Y信号およびB-Y信号、またはu信号およびv信号等)を含むときには、その輝度信号および彩度信号にもとづき赤の画像信号、緑の画像信号、青の画像信号を算出し、その後、各放電セルに赤、緑、青の各階調値を設定する。そして、各放電セルに設定した赤、緑、青の階調値を、サブフィールド毎の点灯・非点灯を示すサブフィールドコード(発光・非発光をデジタル信号の「1」、「0」に対応させたデータのこと)に変換し、そのサブフィールドコードを表示コードとして出力する。すなわち、画像信号処理回路31は、赤の画像信号、緑の画像信号、青の画像信号を、赤の表示コード、緑の表示コード、青の表示コードに変換して出力する。 The image signals input to the image signal processing circuit 31 are a red image signal, a green image signal, and a blue image signal. Based on the red image signal, the green image signal, and the blue image signal, the image signal processing circuit 31 sets each gradation value of red, green, and blue (a gradation value expressed by one field) to each discharge cell. To do. In the image signal processing circuit 31, the input image signal includes a luminance signal (Y signal) and a saturation signal (C signal, or RY signal and BY signal, or u signal and v signal, etc.). In some cases, a red image signal, a green image signal, and a blue image signal are calculated based on the luminance signal and the saturation signal, and then, each gradation value of red, green, and blue is set in each discharge cell. The red, green, and blue gradation values set for each discharge cell are subfield codes indicating lighting / non-lighting for each subfield (light emission / non-light emission corresponds to digital signals “1” and “0”). The subfield code is output as a display code. That is, the image signal processing circuit 31 converts the red image signal, the green image signal, and the blue image signal into a red display code, a green display code, and a blue display code and outputs the converted signals.
 なお、本実施の形態において、画像信号処理回路31は、変換テーブルを用いて画像信号をサブフィールドコードへ変換するのではなく、論理演算によって画像信号をサブフィールドコードへ変換する。この詳細は後述する。 In the present embodiment, the image signal processing circuit 31 does not convert an image signal into a subfield code using a conversion table, but converts the image signal into a subfield code by a logical operation. Details of this will be described later.
 タイミング発生回路35は、水平同期信号および垂直同期信号にもとづき、各回路ブロックの動作を制御する各種のタイミング信号を発生する。そして、発生したタイミング信号をそれぞれの回路ブロック(データ電極駆動回路32、走査電極駆動回路33、維持電極駆動回路34、および画像信号処理回路31等)へ供給する。 The timing generation circuit 35 generates various timing signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal. The generated timing signal is supplied to each circuit block (data electrode drive circuit 32, scan electrode drive circuit 33, sustain electrode drive circuit 34, image signal processing circuit 31, etc.).
 走査電極駆動回路33は、傾斜波形発生部、維持パルス発生部、走査パルス発生部(図5には示さず)を備え、タイミング発生回路35から供給されるタイミング信号にもとづいて駆動電圧波形を作成し、走査電極SC1~走査電極SCnのそれぞれに印加する。傾斜波形発生部は、タイミング信号にもとづき、初期化期間に走査電極SC1~走査電極SCnに印加する強制初期化波形および選択初期化波形を発生する。維持パルス発生部は、タイミング信号にもとづき、維持期間に走査電極SC1~走査電極SCnに印加する維持パルスを発生する。走査パルス発生部は、複数の走査電極駆動IC(走査IC)を備え、タイミング信号にもとづき、書込み期間に走査電極SC1~走査電極SCnに印加する走査パルスを発生する。 Scan electrode drive circuit 33 includes a ramp waveform generation unit, a sustain pulse generation unit, and a scan pulse generation unit (not shown in FIG. 5), and generates a drive voltage waveform based on a timing signal supplied from timing generation circuit 35. Then, the voltage is applied to each of scan electrode SC1 to scan electrode SCn. The ramp waveform generator generates a forced initialization waveform and a selective initialization waveform to be applied to scan electrode SC1 through scan electrode SCn during the initialization period based on the timing signal. The sustain pulse generator generates a sustain pulse to be applied to scan electrode SC1 through scan electrode SCn during the sustain period based on the timing signal. The scan pulse generator includes a plurality of scan electrode drive ICs (scan ICs), and generates scan pulses to be applied to scan electrode SC1 through scan electrode SCn during the address period based on the timing signal.
 維持電極駆動回路34は、維持パルス発生部、電圧Veを発生する回路(図5には示さず)を備え、タイミング発生回路35から供給されるタイミング信号にもとづいて駆動電圧波形を作成し、維持電極SU1~維持電極SUnのそれぞれに印加する。維持期間では、タイミング信号にもとづいて維持パルスを発生し、維持電極SU1~維持電極SUnに印加する。初期化期間および書込み期間では、タイミング信号にもとづいて電圧Veを発生し、維持電極SU1~維持電極SUnに印加する。 Sustain electrode drive circuit 34 includes a sustain pulse generation unit and a circuit (not shown in FIG. 5) for generating voltage Ve, and generates and maintains a drive voltage waveform based on the timing signal supplied from timing generation circuit 35. The voltage is applied to each of electrode SU1 through sustain electrode SUn. In the sustain period, a sustain pulse is generated based on the timing signal and applied to sustain electrode SU1 through sustain electrode SUn. In the initialization period and the address period, voltage Ve is generated based on the timing signal and applied to sustain electrode SU1 through sustain electrode SUn.
 データ電極駆動回路32は、データ電極22と同数のスイッチ回路36を備える。本実施の形態においてデータ電極22の本数は「m」であるので、データ電極駆動回路32は、m個のスイッチ回路36(スイッチ回路36(1)~スイッチ回路36(m))を有する。そして、m個のスイッチ回路36(1)~スイッチ回路36(m)のそれぞれは、m本のデータ電極D1~データ電極Dmのそれぞれに対応している。 The data electrode drive circuit 32 includes the same number of switch circuits 36 as the data electrodes 22. In this embodiment, since the number of data electrodes 22 is “m”, the data electrode drive circuit 32 includes m switch circuits 36 (switch circuit 36 (1) to switch circuit 36 (m)). Each of the m switch circuits 36 (1) to 36 (m) corresponds to each of the m data electrodes D1 to Dm.
 データ電極駆動回路32は、画像信号処理回路31から出力される各色の表示コードおよびタイミング発生回路35から供給されるタイミング信号にもとづき、各データ電極D1~データ電極Dmに対応する書込みパルスを発生する。そして、データ電極駆動回路32は、書込み期間に、スイッチ回路36(1)~スイッチ回路36(m)のそれぞれからデータ電極D1~データ電極Dmのそれぞれに書込みパルス(書込みパルス電圧Vdまたは0(V))を印加する。 The data electrode drive circuit 32 generates an address pulse corresponding to each of the data electrodes D1 to Dm based on the display code of each color output from the image signal processing circuit 31 and the timing signal supplied from the timing generation circuit 35. . The data electrode drive circuit 32 then writes a write pulse (write pulse voltage Vd or 0 (V) from the switch circuit 36 (1) to the switch circuit 36 (m) to the data electrode D1 to the data electrode Dm during the write period. )) Is applied.
 なお、データ電極駆動回路32は、複数個のスイッチ回路36を集積化した集積回路(専用IC)を複数用いて構成されている。例えば、画素数が1920×1080個のパネルでは、m=1920×3となる。したがって、そのような多数のデータ電極22に書込みパルスを印加するためには、データ電極駆動回路32を構成する回路素子も膨大な数になる。しかし、それらの回路を集積化して専用ICにすることにより、データ電極駆動回路32を小型化することができる。その結果、データ電極駆動回路32を回路基板に実装するときの実装面積を縮小し、画像表示装置30の製造にかかる費用を低減することができる。 The data electrode drive circuit 32 is configured by using a plurality of integrated circuits (dedicated ICs) in which a plurality of switch circuits 36 are integrated. For example, in a panel having 1920 × 1080 pixels, m = 1920 × 3. Therefore, in order to apply the write pulse to such a large number of data electrodes 22, the number of circuit elements constituting the data electrode driving circuit 32 is enormous. However, the data electrode drive circuit 32 can be reduced in size by integrating these circuits into a dedicated IC. As a result, the mounting area when the data electrode driving circuit 32 is mounted on the circuit board can be reduced, and the cost for manufacturing the image display device 30 can be reduced.
 専用ICを正常に動作させるためには、消費電力や温度等を、専用ICの規格としてあらかじめ定められた範囲内に納める必要がある。例えば、消費電力が、あらかじめ定められた消費電力の上限(許容損失:Allowable power dissipation)を超えると、専用ICは異常動作を起こすおそれがある。したがって、画像表示装置30において、データ電極駆動回路32は、専用ICの消費電力があらかじめ定められた上限を超えないように動作する必要がある。 In order for the dedicated IC to operate normally, it is necessary to keep the power consumption, temperature, etc. within the predetermined range as the standard for the dedicated IC. For example, if the power consumption exceeds a predetermined upper limit of power consumption (allowable power loss), the dedicated IC may cause an abnormal operation. Therefore, in the image display device 30, the data electrode drive circuit 32 needs to operate so that the power consumption of the dedicated IC does not exceed a predetermined upper limit.
 そして、本実施の形態では、データ電極駆動回路32の消費電力を低減するように表示コードを発生する。表示コードの発生の詳細は後述する。 In this embodiment, a display code is generated so as to reduce the power consumption of the data electrode drive circuit 32. Details of generation of the display code will be described later.
 次に、画像信号処理回路31の詳細とその動作について説明する。 Next, details of the image signal processing circuit 31 and its operation will be described.
 図6は、本発明の一実施の形態における画像表示装置30の画像信号処理回路31を構成する回路ブロックの一例を概略的に示す図である。 FIG. 6 is a diagram schematically showing an example of a circuit block constituting the image signal processing circuit 31 of the image display device 30 according to the embodiment of the present invention.
 画像信号処理回路31は、属性検出部41、振幅制限部46、基底コード生成部50、ルール生成部61、上下コード生成部70、および表示コード選択部80を有する。 The image signal processing circuit 31 includes an attribute detection unit 41, an amplitude limiting unit 46, a base code generation unit 50, a rule generation unit 61, an upper and lower code generation unit 70, and a display code selection unit 80.
 属性検出部41は、画像信号とその画像信号を表示する画素の位置との関係を特定する。また、各画素に対応する画像信号の時間微分(同一画素に関して、現フィールドと次フィールドとの間で画像信号の変化を検出すること)によって、各画素が動画領域にあるのか、静止画領域にあるのかの検出を行う。また、画像信号の空間微分(隣接する画素間で画像信号の変化を検出すること)によって明るさの変化を検出し、各画素が画像の輪郭部にあたるのかどうかの検出を行う。そして、それらの検出結果を各画素に対応する画像信号の属性として出力する。 The attribute detection unit 41 specifies the relationship between the image signal and the position of the pixel displaying the image signal. In addition, the time differentiation of the image signal corresponding to each pixel (detecting a change in the image signal between the current field and the next field with respect to the same pixel) determines whether each pixel is in the moving image area or the still image area. Detect if there is any. Further, a change in brightness is detected by spatial differentiation of the image signal (detecting a change in the image signal between adjacent pixels), and it is detected whether or not each pixel corresponds to the contour portion of the image. Then, those detection results are output as attributes of the image signal corresponding to each pixel.
 振幅制限部46は、基底コード生成部50から出力される増幅率Aを画像信号に乗算し、乗算後の画像信号を出力する。本実施の形態において、増幅率Aは「1」以下の数値である。したがって、振幅制限部46は、増幅率Aにもとづき画像信号の振幅を縮小する。増幅率Aの詳細は後述する。 The amplitude limiter 46 multiplies the image signal by the amplification factor A output from the base code generator 50, and outputs the multiplied image signal. In the present embodiment, the amplification factor A is a numerical value of “1” or less. Therefore, the amplitude limiting unit 46 reduces the amplitude of the image signal based on the amplification factor A. Details of the amplification factor A will be described later.
 本実施の形態では、以降の信号処理において基本となるサブフィールドコードを「基底コード」と呼称し、基底コードから成るコードセットを「基底コードセット」と呼称する。基底コードは、階調重みの小さいサブフィールドから順に1つずつまたは2つずつ点灯させて生成したサブフィールドコードである。したがって、基底コードは、発光するサブフィールドのうち最も階調重みが大きいサブフィールドと、そのサブフィールドよりも小さい階調重みを有する全てのサブフィールドが発光するサブフィールドコードである。 In the present embodiment, a subfield code that is basic in subsequent signal processing is referred to as a “basic code”, and a code set including the base code is referred to as a “basic code set”. The base code is a subfield code generated by lighting one by one or two in order from the subfield having the smallest gradation weight. Therefore, the base code is a subfield code in which a subfield having the largest gradation weight among the subfields to emit light and all subfields having a gradation weight smaller than that subfield emit light.
 そして、基底コード生成部50は、電力制御信号Cntにもとづき、基底コードセットの特定のサブフィールドを非発光のサブフィールドにした削除済み基底コードを発生する。そして、複数の削除済み基底コードから成る削除済み基底コードセットの中から、画像信号処理回路31に入力された画像信号の階調値(以下、「入力階調」と呼称する)にもとづき、「上階調基底コード」を選択する。 Based on the power control signal Cnt, the base code generation unit 50 generates a deleted base code with a specific subfield of the base code set as a non-light-emitting subfield. Then, based on the gradation value (hereinafter referred to as “input gradation”) of the image signal input to the image signal processing circuit 31 from the deleted base code set including a plurality of deleted base codes, “ Select "Upper gradation basis code".
 上階調基底コードは、電力制御信号Cntにもとづき特定のサブフィールドを非点灯サブフィールドにしたサブフィールドコードであって、入力階調よりも大きい階調値であり、かつ入力階調に最も近い階調値を有するサブフィールドコードである。したがって、上階調基底コードは、点灯サブフィールドのうち最も階調重みの大きいサブフィールドと、そのサブフィールドよりも階調重みが小さいサブフィールドであって電力制御信号Cntにもとづく特定のサブフィールドを除くサブフィールドが点灯サブフィールドとなる。 The upper gradation base code is a subfield code in which a specific subfield is set to a non-lighting subfield based on the power control signal Cnt, and has a gradation value larger than the input gradation and closest to the input gradation. This is a subfield code having a gradation value. Therefore, the upper gradation base code includes a subfield having the largest gradation weight among the lighting subfields and a specific subfield having a gradation weight smaller than that subfield and based on the power control signal Cnt. Except for the subfield, the lighting subfield is used.
 電力制御信号Cntは電力推定部(図示せず)において発生する。電力推定部は、画像信号や温度等にもとづき、画像表示装置30における消費電力を推定する。そして、電力推定部は、消費電力の推定値が大きければ電力制御信号Cntの数値を大きくし、消費電力の推定値が小さければ電力制御信号Cntの数値を小さくして、電力制御信号Cntを出力する。電力推定部において消費電力を推定する方法は、一般に知られた電力推定方法でかまわない。例えば、画像の図柄を検出し、図柄が細かければ消費電力の推定値を大きくし、図柄の変化が少なければ消費電力の推定値を小さくする、といった方法や、画像が明るければ消費電力の推定値を大きくする、といった方法、あるいは、画像表示装置30の温度が上昇すれば消費電力の推定値を大きくする、といった方法でもかまわない。 The power control signal Cnt is generated in a power estimation unit (not shown). The power estimation unit estimates power consumption in the image display device 30 based on the image signal, temperature, and the like. The power estimation unit outputs the power control signal Cnt by increasing the value of the power control signal Cnt if the estimated value of power consumption is large, and decreasing the value of the power control signal Cnt if the estimated value of power consumption is small. To do. The method for estimating the power consumption in the power estimation unit may be a generally known power estimation method. For example, if the design of an image is detected, the estimated power consumption is increased if the design is fine, and the estimated power consumption is decreased if the design is small. A method of increasing the value or a method of increasing the estimated value of power consumption when the temperature of the image display device 30 rises may be used.
 なお、本実施の形態において、電力制御信号Cntは、「0」以上の実数であり、画像信号の変化に応じて連続的に変化するものとする。しかし、電力制御信号Cntは何らこれに限定されるものではない。 In the present embodiment, the power control signal Cnt is a real number equal to or greater than “0” and is continuously changed according to the change of the image signal. However, the power control signal Cnt is not limited to this.
 このように、基底コード生成部50は、入力階調よりも大きく、かつ入力階調に最も近い階調値を有する削除済み基底コードを選択し、それを上階調基底コードとして出力する。 As described above, the base code generation unit 50 selects a deleted base code having a gradation value larger than the input gradation and closest to the input gradation, and outputs it as an upper gradation base code.
 以下、基底コードセットの一例を図面を用いて説明する。 Hereinafter, an example of the base code set will be described with reference to the drawings.
 図7Aは、本発明の一実施の形態における画像表示装置30に用いる基底コードセットの一例を示す図である。 FIG. 7A is a diagram illustrating an example of a base code set used in the image display device 30 according to an embodiment of the present invention.
 図7Bは、本発明の一実施の形態における画像表示装置30に用いる基底コードセットの他の一例を示す図である。 FIG. 7B is a diagram showing another example of the base code set used in the image display device 30 according to the embodiment of the present invention.
 図7Cは、本発明の一実施の形態における画像表示装置30に用いる基底コードセットの他の一例を示す図である。 FIG. 7C is a diagram showing another example of the base code set used in the image display device 30 according to the embodiment of the present invention.
 図7A、図7B、図7Cに示す基底コードセットには、発光するサブフィールドを「1」、非発光のサブフィールドを空欄で示し、左から2番目の列には、各サブフィールドコード(基底コード)において表示する階調値を表す。また、各基底コードセットにおいて各サブフィールドを示す表記の直下に記された数値は、各サブフィールドの階調重みを表す。 In the base code set shown in FIGS. 7A, 7B, and 7C, the light-emitting subfield is “1”, the non-light-emitting subfield is blank, and each subfield code (base) is displayed in the second column from the left. Code) represents the gradation value to be displayed. Also, the numerical value written immediately below the notation indicating each subfield in each base code set represents the gradation weight of each subfield.
 図7Aには、NTSC規格で用いられることが多い基底コードセットの一例を示す。図7Aに示す基底コードセットは、1フィールドを8個のサブフィールドで構成し、各サブフィールドは、サブフィールドSF1から順に、それぞれ「1」、「2」、「3」、「5」、「8」、「13」、「21」、「34」の階調重みを有する。 FIG. 7A shows an example of a base code set often used in the NTSC standard. The base code set shown in FIG. 7A is composed of 8 subfields, and each subfield is “1”, “2”, “3”, “5”, “ It has gradation weights of “8”, “13”, “21”, and “34”.
 図7Aに示す基底コードセットでは、1フィールドの先頭サブフィールド(サブフィールドSF1)を階調重みが最も小さいサブフィールドにし、それ以降は、順次階調重みが大きくなるように各サブフィールドを配列する。そして、階調重みが最も小さいサブフィールドから順に1つずつ点灯サブフィールドとする。したがってこの基底コードセットに含まれる基底コードの数は、(1フィールドを構成するサブフィールドの数+1)である。例えば、図7Aに示す基底コードセットの例では、基底コードの数は9となる。 In the base code set shown in FIG. 7A, the first subfield (subfield SF1) of one field is set to the subfield having the smallest gradation weight, and thereafter, the subfields are arranged so that the gradation weight is sequentially increased. . And it is set as a lighting subfield one by one in an order from the subfield with the smallest gradation weight. Therefore, the number of base codes included in this base code set is (the number of subfields constituting one field + 1). For example, in the example of the base code set shown in FIG. 7A, the number of base codes is nine.
 図7Bには、PAL規格で用いられることが多い基底コードセットの一例を示す。図7Bに示す基底コードセットは、1フィールドを12個のサブフィールドで構成し、各サブフィールドは、サブフィールドSF1から順に、それぞれ「1」、「2」、「4」、「9」、「18」、「36」、「65」、「5」、「7」、「15」、「33」、「60」の階調重みを有する。 FIG. 7B shows an example of a base code set often used in the PAL standard. In the base code set shown in FIG. 7B, one field is composed of 12 subfields, and each subfield is “1”, “2”, “4”, “9”, “9” in order from the subfield SF1. It has gradation weights of “18”, “36”, “65”, “5”, “7”, “15”, “33”, “60”.
 図7Bに示す基底コードセットは、2つのサブフィールド群を有する。1つ目のサブフィールド群はサブフィールドSF1~サブフィールドSF7で構成され、2つ目のサブフィールド群はサブフィールドSF8~サブフィールドSF12で構成される。 The base code set shown in FIG. 7B has two subfield groups. The first subfield group is composed of subfields SF1 to SF7, and the second subfield group is composed of subfields SF8 to SF12.
 それぞれのサブフィールド群は、各サブフィールド群の先頭サブフィールド(図7Bに示す例では、サブフィールドSF1とサブフィールドSF8)を、それぞれのサブフィールド群で階調重みが最も小さいサブフィールドにし、それ以降は、順次階調重みが大きくなるように各サブフィールドを配列する。そして、それぞれのサブフィールド群で、階調重みが最も小さいサブフィールドから順に1つずつまたは2つずつ点灯サブフィールドとする。したがってこの基底コードセットに含まれる基底コードの数は、(1フィールドを構成するサブフィールドの数+1)以下である。例えば、図7Bに示す基底コードセットの例では、基底コードの数は10となる。 Each subfield group has the first subfield of each subfield group (subfield SF1 and subfield SF8 in the example shown in FIG. 7B) as the subfield having the smallest gradation weight in each subfield group. Thereafter, the subfields are arranged so that the gradation weights are sequentially increased. In each subfield group, one or two lighting subfields are set in order from the subfield having the smallest gradation weight. Therefore, the number of base codes included in this base code set is equal to or less than (the number of subfields constituting one field + 1). For example, in the example of the base code set shown in FIG. 7B, the number of base codes is 10.
 図7Cには、3D用ディスプレイ装置(立体視用ディスプレイ装置)で用いられる基底コードセットの一例を示す。図7Cに示す基底コードセットは、1フィールドを5個のサブフィールドで構成し、各サブフィールドは、サブフィールドSF1から順に、それぞれ「1」、「16」、「8」、「4」、「2」の階調重みを有する。 FIG. 7C shows an example of a base code set used in a 3D display device (stereoscopic display device). In the base code set shown in FIG. 7C, one field is composed of five subfields, and each subfield is “1”, “16”, “8”, “4”, “ 2 "gradation weight.
 図7Cに示す基底コードセットでは、1フィールドの先頭サブフィールド(サブフィールドSF1)を階調重みが最も小さいサブフィールドにし、2番目のサブフィールド(サブフィールドSF2)を階調重みが最も大きいサブフィールドにし、それ以降は、順次階調重みが小さくなるように各サブフィールドを配列する。そして、階調重みが最も小さいサブフィールドから順に1つずつ点灯サブフィールドとする。したがってこの基底コードセットに含まれる基底コードの数は、(1フィールドを構成するサブフィールドの数+1)である。例えば、図7Cに示す基底コードセットの例では、基底コードの数は6となる。 In the base code set shown in FIG. 7C, the first subfield (subfield SF1) of one field is the subfield having the smallest gradation weight, and the second subfield (subfield SF2) is the subfield having the largest gradation weight. After that, the subfields are arranged so that the gradation weights are sequentially reduced. And it is set as a lighting subfield one by one in an order from the subfield with the smallest gradation weight. Therefore, the number of base codes included in this base code set is (the number of subfields constituting one field + 1). For example, in the example of the base code set shown in FIG. 7C, the number of base codes is 6.
 本実施の形態における画像表示装置30は、以上のような基底コードセットにもとづき新たなコードセットを生成し、そのコードセットを用いて入力階調をサブフィールドコードに変換する。 The image display device 30 in the present embodiment generates a new code set based on the base code set as described above, and converts the input gradation into a subfield code using the code set.
 基底コード生成部50は、基底コード記憶部52、サブフィールド削除部53、および基底コード選択部54を有する。 The base code generation unit 50 includes a base code storage unit 52, a subfield deletion unit 53, and a base code selection unit 54.
 基底コード記憶部52は、基底コードセットと、基底コードセットを構成する複数の基底コードの各階調値を記憶する。各基底コードと、基底コードの各階調値とは互いに関連付けされて基底コード記憶部52に記憶される。 The base code storage unit 52 stores a base code set and gradation values of a plurality of base codes constituting the base code set. Each base code and each gradation value of the base code are stored in the base code storage unit 52 in association with each other.
 サブフィールド削除部53は、基底コード記憶部52から出力される基底コードセットにおいて、電力制御信号Cntにもとづく特定のサブフィールドを非点灯サブフィールドにする。そして、こうして得られたサブフィールドコードセットを削除済み基底コードセットとして出力する。 The subfield deleting unit 53 sets a specific subfield based on the power control signal Cnt in the base code set output from the base code storage unit 52 as a non-lighting subfield. The subfield code set obtained in this way is output as a deleted base code set.
 基底コードから、電力制御信号Cntにもとづく特定のサブフィールドを非点灯サブフィールドにして得られるサブフィールドコードが「削除済み基底コード」である。また、基底コードセットから、電力制御信号Cntにもとづく特定のサブフィールドを非点灯サブフィールドにして得られるサブフィールドコードセットが「削除済み基底コードセット」である。 The sub-field code obtained from the base code by making a specific sub-field based on the power control signal Cnt a non-lighting sub-field is “deleted base code”. A subfield code set obtained from a base code set by using a specific subfield based on the power control signal Cnt as a non-lighting subfield is a “deleted base code set”.
 したがって、基底コード生成部50は、削除済み基底コードセットの中で、入力階調よりも大きく、かつ入力階調に最も近い階調値を有する削除済み基底コードを選択し、それを上階調基底コードとして出力する。 Accordingly, the base code generation unit 50 selects a deleted base code having a gradation value that is larger than the input gradation and closest to the input gradation in the deleted base code set, and uses the deleted base code as the upper gradation. Output as base code.
 本実施の形態では、電力制御信号Cntにもとづき、特定のサブフィールドの書込み動作を禁止して特定のサブフィールドを非点灯サブフィールドにした「削除済み基底コードセット」を用いて表示コードを発生する。これにより、データ電極駆動回路32の消費電力を制限する。また、電力制御信号Cntにもとづき画像信号の振幅を調整する。これにより、データ電極駆動回路32の消費電力を制限するために特定のサブフィールドの書込み動作を禁止した場合であっても、表示画像のダイナミックレンジを確保する。なお、電力制御信号Cntは「0」以上の実数である。 In the present embodiment, based on the power control signal Cnt, the display code is generated using the “deleted base code set” in which the write operation of the specific subfield is prohibited and the specific subfield is set to the non-lighting subfield. . Thereby, the power consumption of the data electrode driving circuit 32 is limited. Further, the amplitude of the image signal is adjusted based on the power control signal Cnt. As a result, the dynamic range of the display image is ensured even when the write operation of a specific subfield is prohibited in order to limit the power consumption of the data electrode drive circuit 32. The power control signal Cnt is a real number equal to or greater than “0”.
 サブフィールド削除部53は、電力制御信号Cntの小数点以下を切捨てた値を、書込み動作を禁止するサブフィールド数Ndとする。すなわち、書込み動作を禁止するサブフィールド数Ndは次のようになる。
Nd=INT(Cnt)
 そして、基底コード記憶部52に記憶されている基底コードセットにおいて、あらかじめ定められたサブフィールドの順番で、順にNd個のサブフィールドを非点灯サブフィールドにする。こうして、削除済み基底コードセットを新たに作成する。
The subfield deletion unit 53 sets the value obtained by discarding the decimal part of the power control signal Cnt as the number Nd of subfields that prohibit the write operation. That is, the number Nd of subfields that prohibit the write operation is as follows.
Nd = INT (Cnt)
Then, in the base code set stored in the base code storage unit 52, Nd subfields are sequentially turned into non-lighting subfields in the predetermined subfield order. In this way, a new deleted base code set is created.
 本実施の形態においては、階調重みが最も小さいサブフィールド、階調重みが2番目に小さいサブフィールド、階調重みが3番目に小さいサブフィールド、・・・という順番で、Nd個のサブフィールドを非点灯サブフィールドにする。すなわち、階調重みが最も小さいサブフィールドから、階調重みが小さい順にNd個のサブフィールドを非点灯サブフィールドにして削除済み基底コードセットを新たに作成する。例えば、Nd=1であれば、最も階調重みの小さいサブフィールドでの書込み動作を禁止して、最も階調重みの小さいサブフィールドを非点灯サブフィールドにする。Nd=2であれば、最も階調重みの小さいサブフィールドおよび2番目に階調重みの小さいサブフィールドでの書込み動作を禁止して、それら2つのサブフィールドを非点灯サブフィールドにする。Nd=3であれば、最も階調重みの小さいサブフィールド、2番目に階調重みの小さいサブフィールドおよび3番目に階調重みの小さいサブフィールドでの書込み動作を禁止して、それら3つのサブフィールドを非点灯サブフィールドにする。 In the present embodiment, Nd subfields in the order of subfield having the smallest gradation weight, subfield having the second smallest gradation weight, subfield having the third smallest gradation weight, and so on. To a non-lit subfield. That is, a deleted base code set is newly created by setting Nd subfields from the subfield with the smallest gradation weight in the order of decreasing gradation weight to the non-lighting subfield. For example, if Nd = 1, the write operation in the subfield having the smallest gradation weight is prohibited, and the subfield having the smallest gradation weight is set as a non-lighting subfield. If Nd = 2, the write operation in the subfield with the smallest gradation weight and the second subfield with the second smallest gradation weight is prohibited, and these two subfields are made non-lighting subfields. If Nd = 3, the write operation is prohibited in the subfield having the smallest gradation weight, the second subfield having the smallest gradation weight, and the third subfield having the smallest gradation weight, and the three sub-fields are prohibited. Make the field a non-lit subfield.
 図7Dは、本発明の一実施の形態における画像表示装置30のサブフィールド削除部53が新たに作成した削除済み基底コードセットの一例を示す図である。 FIG. 7D is a diagram illustrating an example of a deleted base code set newly created by the subfield deletion unit 53 of the image display device 30 according to the embodiment of the present invention.
 図7Eは、本発明の一実施の形態における画像表示装置30のサブフィールド削除部53が新たに作成した削除済み基底コードセットの他の一例を示す図である。 FIG. 7E is a diagram showing another example of the deleted base code set newly created by the subfield deletion unit 53 of the image display device 30 according to the embodiment of the present invention.
 図7D、図7Eに示す削除済み基底コードセットには、発光するサブフィールドを「1」、非発光のサブフィールドを空欄で示し、左から2番目の列には、各サブフィールドコードにおいて表示する階調値を表す。また、各削除済み基底コードセットにおいて各サブフィールドを示す表記の直下に記された数値は、各サブフィールドの階調重みを表す。 In the deleted base code set shown in FIGS. 7D and 7E, the light emitting subfield is “1”, the non-light emitting subfield is blank, and the second column from the left is displayed in each subfield code. Represents a gradation value. Also, the numerical value written immediately below the notation indicating each subfield in each deleted base code set represents the gradation weight of each subfield.
 図7Dに示す削除済み基底コードセットは、図7Aに示した基底コードセットから、最も階調重みが小さいサブフィールドSF1を非点灯サブフィールドにして作成した削除済み基底コードセットである。 The deleted base code set shown in FIG. 7D is a deleted base code set created from the base code set shown in FIG. 7A using the subfield SF1 having the smallest gradation weight as a non-lighting subfield.
 図7Eに示す削除済み基底コードセットは、図7Aに示した基底コードセットから、最も階調重みが小さいサブフィールドSF1、2番目に階調重みが小さいサブフィールドSF2、3番目に階調重みが小さいサブフィールドSF3の3個のサブフィールドを非点灯サブフィールドにして作成した削除済み基底コードセットである。 The deleted base code set shown in FIG. 7E is subfield SF1 having the smallest tone weight, subfield SF2 having the second lowest tone weight, and third tone weight from the base code set shown in FIG. 7A. This is a deleted base code set created by making the three subfields of the small subfield SF3 non-lighting subfields.
 図7D、図7Eに示すように、サブフィールド削除部53は、書込み動作を禁止するサブフィールド設けることで、基底コード記憶部52に記憶されている基底コードセットから削除済み基底コードセットを新たに作成する。 As shown in FIGS. 7D and 7E, the subfield deletion unit 53 newly provides a deleted base code set from the base code set stored in the base code storage unit 52 by providing a subfield that prohibits the write operation. create.
 なお、書込み動作を禁止するサブフィールドを設けると、削除済み基底コードセットにおける最大の階調値は、基底コードセットにおける最大の階調値よりも、書込み動作を禁止したサブフィールドの階調重みの分だけ階調値が低下する。そして、パネル10に表示できる階調値の最大値が低下すると、その低下分だけ高階調領域での階調表示ができなくなり、いわゆる「白つぶれ」現象が発生する。「白つぶれ」現象とは、表示画像において輝度の高い領域の階調が低下する現象のことである。 If a subfield for prohibiting the write operation is provided, the maximum gradation value in the deleted base code set is higher than the maximum gradation value in the base code set by the gradation weight of the subfield for which the write operation is prohibited. The gradation value decreases by that amount. When the maximum gradation value that can be displayed on the panel 10 is reduced, gradation display in the high gradation region cannot be performed by that amount, and a so-called “white-out” phenomenon occurs. The “white-out” phenomenon is a phenomenon in which the gradation of a high luminance region in the display image is lowered.
 この白つぶれ現象の発生を防ぐために、本実施の形態におけるサブフィールド削除部53は、電力制御信号Cntにもとづき、画像信号の振幅を調整するための増幅率Aを算出し、振幅制限部46に出力する。 In order to prevent the occurrence of the white-out phenomenon, the subfield deletion unit 53 in the present embodiment calculates the amplification factor A for adjusting the amplitude of the image signal based on the power control signal Cnt, and sends it to the amplitude limiting unit 46. Output.
 以下、図7Aに示した基底コードセットにもとづき説明する。図7Aに示した基底コードセットでは、パネル10に表示することができる最大の階調値は「87」である。 Hereinafter, description will be made based on the base code set shown in FIG. 7A. In the base code set shown in FIG. 7A, the maximum gradation value that can be displayed on the panel 10 is “87”.
 例えば、電力制御信号Cntが「0」であれば、書込み動作を禁止するサブフィールドは設けない。したがって、電力制御信号Cntが「0」のときは、パネル10に表示することができる最大の階調値は「87」のまま変化しない。そのため、サブフィールド削除部53は、「87」を「87」で除算して得られる数値「1」を増幅率Aとして出力する。 For example, if the power control signal Cnt is “0”, the subfield for prohibiting the write operation is not provided. Therefore, when the power control signal Cnt is “0”, the maximum gradation value that can be displayed on the panel 10 remains “87”. Therefore, the subfield deleting unit 53 outputs a numerical value “1” obtained by dividing “87” by “87” as the amplification factor A.
 電力制御信号Cntが「1」であれば、図7Dの削除済み基底コードセットに示すように、サブフィールドSF1での書込み動作が禁止される。したがって、電力制御信号Cntが「1」のときは、パネル10に表示することができる最大の階調値は、図7Dの削除済み基底コードセットでは「86」となる。そのため、サブフィールド削除部53は、「86」を「87」で除算して得られる数値「0.99」を増幅率Aとして出力する。 If the power control signal Cnt is “1”, the write operation in the subfield SF1 is prohibited as shown in the deleted base code set in FIG. 7D. Therefore, when the power control signal Cnt is “1”, the maximum gradation value that can be displayed on the panel 10 is “86” in the deleted base code set of FIG. 7D. Therefore, the subfield deleting unit 53 outputs a numerical value “0.99” obtained by dividing “86” by “87” as the amplification factor A.
 電力制御信号Cntが「3」であれば、図7Eの削除済み基底コードセットに示すように、サブフィールドSF1、サブフィールドSF2、およびサブフィールドSF3での書込み動作が禁止される。したがって、電力制御信号Cntが「3」のときは、パネル10に表示することができる最大の階調値は、図7Eの削除済み基底コードセットでは「81」となる。そのため、サブフィールド削除部53は、「81」を「87」で除算して得られる数値「0.93」を増幅率Aとして出力する。 If the power control signal Cnt is “3”, as shown in the deleted base code set in FIG. 7E, the write operation in the subfield SF1, subfield SF2, and subfield SF3 is prohibited. Therefore, when the power control signal Cnt is “3”, the maximum gradation value that can be displayed on the panel 10 is “81” in the deleted base code set of FIG. 7E. Therefore, the subfield deleting unit 53 outputs the numerical value “0.93” obtained by dividing “81” by “87” as the amplification factor A.
 そして、振幅制限部46は、増幅率Aを画像信号に乗算する。すなわち、振幅制限部46は、削除済み基底コードセットの中で最も大きい階調値を有する削除済み基底コードの階調値を、基底コードセットの中で最も大きい階調値を有する基底コードの階調値で除算することで得られる増幅率Aを画像信号に乗算する。そして、本実施の形態における画像表示装置30は、この乗算後の画像信号にもとづき、パネル10に画像を表示する。 Then, the amplitude limiter 46 multiplies the image signal by the amplification factor A. That is, the amplitude limiter 46 determines the gradation value of the deleted base code having the largest gradation value in the deleted base code set as the base code level having the largest gradation value in the base code set. The image signal is multiplied by an amplification factor A obtained by dividing by the tone value. The image display device 30 in the present embodiment displays an image on the panel 10 based on the multiplied image signal.
 電力制御信号Cntは、実数であり、画像信号の変化に応じて連続的に変化する。したがって、本実施の形態では、増幅率Aを、電力制御信号Cntに応じて連続的に変化するように、下記の式にもとづき算出する。
A=(Cnt-Nd)×(A(Nd+1)-A(Nd))+A(Nd)
ただし、A(整数N)は、N個のサブフィールドでの書込み動作を禁止したときの削除済み基底コードセットの中で最も大きい階調値を有する削除済み基底コードの階調値と、基底コードセットの中で最も大きい階調値を有する基底コードの階調値との比率を表す。
The power control signal Cnt is a real number and continuously changes according to the change of the image signal. Therefore, in the present embodiment, amplification factor A is calculated based on the following equation so as to change continuously according to power control signal Cnt.
A = (Cnt−Nd) × (A (Nd + 1) −A (Nd)) + A (Nd)
However, A (integer N) is the gradation value of the deleted base code having the largest gradation value in the deleted base code set when the write operation in N subfields is prohibited, and the base code It represents the ratio with the gradation value of the base code having the largest gradation value in the set.
 基底コード選択部54は、削除済み基底コードセットを構成する削除済み基底コードの各階調値と入力階調とを比較する。そして、入力階調より大きく、かつ入力階調に最も近い階調値を有する削除済み基底コードを選択する。そして、選択した削除済み基底コードを上階調基底コードとして出力する。 The base code selection unit 54 compares each gradation value of the deleted base code constituting the deleted base code set with the input gradation. Then, a deleted base code having a gradation value larger than the input gradation and closest to the input gradation is selected. Then, the selected deleted base code is output as an upper gradation base code.
 なお、書込み動作を禁止するサブフィールドが発生しないときには、削除済み基底コードセットは、元の基底コードセットに等しい。 Note that when no subfield for prohibiting the write operation occurs, the deleted base code set is equal to the original base code set.
 本実施の形態では、画像信号処理回路31に入力された画像信号にもとづき、上階調基底コードにおける点灯サブフィールドを非点灯サブフィールドに変更することで、削除済み基底コードセットに含まれない新たなサブフィールドコードを生成する。ルール生成部61では、この新たなサブフィールドコードを生成するためのルールを生成する。 In the present embodiment, based on the image signal input to the image signal processing circuit 31, a lighting subfield in the upper gradation base code is changed to a non-lighting subfield, so that a new base code set that is not included in the deleted base code set is used. Generate a subfield code. The rule generation unit 61 generates a rule for generating this new subfield code.
 すなわち、ルール生成部61は、画像の表示に用いるサブフィールドコードの数を増やすために、画像信号、および属性検出部41において検出された属性(画像信号に付随する属性)にもとづき、基底コード生成部50において選択された上階調基底コードにおける点灯サブフィールドを非点灯サブフィールドに変更するときのルールを生成する。 That is, the rule generation unit 61 generates a base code based on the image signal and the attribute (attribute associated with the image signal) detected by the attribute detection unit 41 in order to increase the number of subfield codes used for image display. A rule for changing the lighting subfield in the upper gradation base code selected in the unit 50 to the non-lighting subfield is generated.
 言い換えると、本実施の形態においてルール生成部61で生成されるルールは、上階調基底コードにおける点灯サブフィールドを非点灯サブフィールドに変更する法則を規定したものである。 In other words, in the present embodiment, the rule generated by the rule generation unit 61 defines a rule for changing the lighting subfield in the upper gradation base code to the non-lighting subfield.
 ルール生成部61で生成するルールでは、上階調基底コードにおいて点灯から非点灯に変更するサブフィールドを制限する。これは、上階調基底コードにおいて点灯サブフィールドを非点灯サブフィールドに変更して作成した新たなサブフィールドコードの階調値が、その上階調基底コードよりも小さい削除済み基底コードの階調値を下回らないようにするためである。 The rule generated by the rule generation unit 61 restricts subfields to be changed from lighting to non-lighting in the upper gradation base code. This is because the gradation value of the deleted base code in which the gradation value of the new subfield code created by changing the lighting subfield to the non-lighting subfield in the upper gradation base code is smaller than that of the upper gradation base code This is so as not to fall below the value.
 例えば、上階調基底コードにおいて点灯から非点灯に変更するサブフィールドを無制限に許可すると、全ての点灯サブフィールドが非点灯サブフィールドとなり、階調値が「0」となるサブフィールドコードが生成されることもあり得るためである。 For example, if the upper gradation base code allows unlimited subfields to change from lighting to non-lighting, all lighting subfields become non-lighting subfields, and subfield codes with a gradation value of “0” are generated. This is because there is a possibility that it may occur.
 ルール生成部61においては、ルールにもとづき生成されるサブフィールドコードが次の階調値を有するようにルールを生成する。
1)上階調基底コードの階調値以下の階調値。
2)下階調基底コードの階調値以上の階調値。
なお、「下階調基底コード」とは、入力階調以下であり、かつ入力階調に最も近い階調値を有する削除済み基底コードのことである。
The rule generation unit 61 generates a rule so that the subfield code generated based on the rule has the next gradation value.
1) A gradation value equal to or lower than the gradation value of the upper gradation base code.
2) A gradation value equal to or higher than the gradation value of the lower gradation base code.
The “lower gradation base code” is a deleted base code having a gradation value that is equal to or lower than the input gradation and closest to the input gradation.
 具体的には、ルール生成部61で生成されるルールは、次の3つのルールのうちの1つもしくは複数から成る。
1)点灯サブフィールドから非点灯サブフィールドに変更する1つ目のサブフィールドを設定するときのルール。
2)点灯サブフィールドから非点灯サブフィールドに変更する2つ目のサブフィールドを設定するときのルール。
3)非点灯となることを禁止するサブフィールドを設定するときのルール。
これらのルールの詳細は後述する。
Specifically, the rule generated by the rule generation unit 61 is composed of one or more of the following three rules.
1) A rule for setting the first subfield to be changed from the lighting subfield to the non-lighting subfield.
2) A rule for setting the second subfield to be changed from the lighting subfield to the non-lighting subfield.
3) A rule for setting a sub-field that prohibits non-lighting.
Details of these rules will be described later.
 上下コード生成部70は、基底コード生成部50から出力される上階調基底コードに、ルール生成部61で生成したルールを適用して、上階調コードと下階調コードとを生成する。 The upper / lower code generation unit 70 applies the rule generated by the rule generation unit 61 to the upper gradation base code output from the base code generation unit 50 to generate an upper gradation code and a lower gradation code.
 上階調コードとは、ルール生成部61において生成されたルールにもとづいて新たに生成することができるサブフィールドコードの中で、入力階調より大きくかつ入力階調に最も近い階調値を有するサブフィールドコードのことである。 The upper gradation code has a gradation value larger than the input gradation and closest to the input gradation among subfield codes that can be newly generated based on the rule generated by the rule generation unit 61. It is a subfield code.
 下階調コードとは、ルール生成部61において生成されたルールにもとづいて新たに生成することができるサブフィールドコードの中で、入力階調以下でありかつ入力階調に最も近い階調値を有するサブフィールドコードのことである。 The lower gradation code is a gradation value that is lower than the input gradation and closest to the input gradation among the subfield codes that can be newly generated based on the rule generated by the rule generation unit 61. It is a subfield code having.
 上下コード生成部70は、中間コード生成部72、および上下コード選択部74を有する。 The upper / lower code generation unit 70 includes an intermediate code generation unit 72 and an upper / lower code selection unit 74.
 中間コード生成部72は、ルール生成部61において生成されたルールにもとづき、上階調基底コードにおける点灯サブフィールドを非点灯サブフィールドに変更して新たなサブフィールドコードを生成する。以下、新たに生成されたサブフィールドコードを「中間コード」と呼称する。また、それらの中間コードに元の上階調基底コードを加えた集合を「中間コードセット」と呼称する。本実施の形態において、中間コードは、パネル10に画像を表示する際に使用するサブフィールドコードである。したがって、パネル10の各放電セルは、中間コードにもとづく階調値の輝度で発光する。 Based on the rules generated by the rule generation unit 61, the intermediate code generation unit 72 changes the lighting subfield in the upper gradation base code to the non-lighting subfield and generates a new subfield code. Hereinafter, the newly generated subfield code is referred to as “intermediate code”. A set obtained by adding the original upper tone base code to these intermediate codes is referred to as an “intermediate code set”. In the present embodiment, the intermediate code is a subfield code used when displaying an image on panel 10. Therefore, each discharge cell of panel 10 emits light with a luminance of a gradation value based on the intermediate code.
 以下、中間コードの一例を図面を用いて説明する。 Hereinafter, an example of the intermediate code will be described with reference to the drawings.
 図8Aは、本発明の一実施の形態における画像表示装置30のルール生成部61において生成されたルールにより生成される中間コードセットの一例を示す図である。 FIG. 8A is a diagram illustrating an example of an intermediate code set generated by the rules generated by the rule generation unit 61 of the image display device 30 according to the embodiment of the present invention.
 図8Bは、本発明の一実施の形態における画像表示装置30のルール生成部61において生成されたルールにより生成される中間コードセットの他の一例を示す図である。 FIG. 8B is a diagram illustrating another example of the intermediate code set generated by the rules generated by the rule generation unit 61 of the image display device 30 according to the embodiment of the present invention.
 図8Cは、本発明の一実施の形態における画像表示装置30のルール生成部61において生成されたルールにより生成される中間コードセットの他の一例を示す図である。 FIG. 8C is a diagram illustrating another example of the intermediate code set generated by the rules generated by the rule generation unit 61 of the image display device 30 according to the embodiment of the present invention.
 図8Dは、本発明の一実施の形態における画像表示装置30のルール生成部61において生成されたルールにより生成される中間コードセットの他の一例を示す図である。 FIG. 8D is a diagram illustrating another example of the intermediate code set generated by the rules generated by the rule generation unit 61 of the image display device 30 according to the embodiment of the present invention.
 図8A、図8B、図8C、図8Dに示す中間コードセットには、発光するサブフィールドを「1」、非発光のサブフィールドを空欄で示し、左から2番目の列には、各サブフィールドコード(中間コード)において表示する階調値を表す。また、各中間コードセットにおいて各サブフィールドを示す表記の直下に記された数値は、各サブフィールドの階調重みを表す。 In the intermediate code set shown in FIGS. 8A, 8B, 8C, and 8D, the light emitting subfield is indicated by “1”, the non-light emitting subfield is indicated by a blank, and the second column from the left indicates each subfield. The gradation value displayed in the code (intermediate code) is represented. Also, the numerical value written immediately below the notation indicating each subfield in each intermediate code set represents the gradation weight of each subfield.
 図8A、図8B、図8C、図8Dに示す中間コードセットは、1フィールドを8個のサブフィールドで構成し、各サブフィールドは、サブフィールドSF1から順に、それぞれ「1」、「2」、「3」、「5」、「8」、「13」、「21」、「34」の階調重みを有する。 The intermediate code set shown in FIGS. 8A, 8B, 8C, and 8D includes one field composed of 8 subfields, and each subfield is “1”, “2”, It has gradation weights of “3”, “5”, “8”, “13”, “21”, “34”.
 図8Aには、中間コードセットの一例として、上述した「1)点灯サブフィールドから非点灯サブフィールドに変更する1つ目のサブフィールドを設定するときのルール」を、図7Dに示した階調値「31」の削除済み基底コード「01111100」に適用して生成した中間コードセットを示す。 In FIG. 8A, as an example of the intermediate code set, the above-described “1) Rule for setting the first subfield to be changed from the lighting subfield to the non-lighting subfield” is shown in FIG. An intermediate code set generated by applying to the deleted base code “01111100” having the value “31” is shown.
 この「1)点灯サブフィールドから非点灯サブフィールドに変更する1つ目のサブフィールドを設定するときのルール」は、「点灯サブフィールドのいずれか1つを非点灯サブフィールドに変更する」というルール(以下、「ルール1」と記す)である。 This “1) rule for setting the first subfield to be changed from a lighting subfield to a non-lighting subfield” is a rule that “one of the lighting subfields is changed to a non-lighting subfield”. (Hereinafter referred to as “rule 1”).
 図7Dに示した階調値「31」の削除済み基底コード「01111100」(順序.6)では、サブフィールドSF2からサブフィールドSF6までの5つのサブフィールドが点灯サブフィールドとなる。 In the deleted base code “01111100” (order 6) with the gradation value “31” shown in FIG. 7D, five subfields from subfield SF2 to subfield SF6 are lighting subfields.
 したがって、ルール1にもとづき、これら5つの点灯サブフィールドのいずれか1つを非点灯サブフィールドに変更することによって、図8Aに示すように、5個のサブフィールドコード、「01111000」、「01110100」、「01101100」、「01011100」、「00111100」を生成することができる。 Therefore, by changing any one of these five lighting subfields to a non-lighting subfield based on rule 1, as shown in FIG. 8A, five subfield codes “01111000”, “01110100” , “01101100”, “01011100”, and “00111100” can be generated.
 ただし、サブフィールドSF6を非点灯サブフィールドに変更したサブフィールドコード「01111000」は、図7Dに示した階調値「18」の削除済み基底コード(順序.5)に等しい。したがって、サブフィールドコード「01111000」を除く4個のサブフィールドコードが新たに生成された中間コードとなる。 However, the subfield code “01111000” obtained by changing the subfield SF6 to the non-lighting subfield is equal to the deleted base code (order .5) of the gradation value “18” illustrated in FIG. 7D. Therefore, four subfield codes excluding the subfield code “01111000” are newly generated intermediate codes.
 すなわち、上述したルール1を、図7Dに示した階調値「31」の削除済み基底コード「01111100」に適用すれば、新たに4個のサブフィールドコードを中間コードとして生成することができる。 That is, if the above-described rule 1 is applied to the deleted base code “01111100” having the gradation value “31” shown in FIG. 7D, four new subfield codes can be generated as intermediate codes.
 図8Bには、中間コードセットの一例として、上述したルール1に加え、「2)点灯サブフィールドから非点灯サブフィールドに変更する2つ目のサブフィールドを設定するときのルール」を、図7Dに示した階調値「31」の削除済み基底コード「01111100」に適用して生成した中間コードセットを示す。 In FIG. 8B, as an example of the intermediate code set, in addition to the above-described rule 1, “2) a rule for setting the second subfield to be changed from the lighting subfield to the non-lighting subfield” is shown in FIG. An intermediate code set generated by applying to the deleted base code “01111100” having the gradation value “31” shown in FIG.
 この「2)点灯サブフィールドから非点灯サブフィールドに変更する2つ目のサブフィールドを設定するときのルール」は、「新たに生成された中間コードのうち階調値が最も小さいサブフィールドコードのサブフィールドSF2を非点灯サブフィールドにする」というルール(以下、「ルール2」と記す)である。 This “2) Rule for setting the second subfield to be changed from the lighting subfield to the non-lighting subfield” is “the subfield code having the smallest gradation value among the newly generated intermediate codes”. The sub-field SF2 is a non-lighting sub-field ”(hereinafter referred to as“ rule 2 ”).
 図7Dに示した階調値「31」の削除済み基底コード「01111100」(順序.6)にルール1を適用することで、図8Aに示したように、新たに4個のサブフィールドコードが生成される。これら4個のサブフィールドコードのうち「新たに生成された中間コードのうち階調値が最も小さいサブフィールドコード」は、階調値「23」のサブフィールドコード「01110100」である。 By applying rule 1 to the deleted base code “01111100” (order .6) with the gradation value “31” shown in FIG. 7D, four new subfield codes are obtained as shown in FIG. 8A. Generated. Among these four subfield codes, the “subfield code having the smallest gradation value among the newly generated intermediate codes” is the subfield code “01110100” having the gradation value “23”.
 したがって、ルール2にもとづき、階調値「23」のサブフィールドコードのサブフィールドSF2を非点灯サブフィールドに変更することによって、図8Bに示すように、新たに階調値「21」のサブフィールドコード「00110100」を生成することができる。 Accordingly, by changing the subfield SF2 of the subfield code of the gradation value “23” to the non-lighting subfield based on the rule 2, as shown in FIG. 8B, a new subfield of the gradation value “21” is obtained. The code “00110100” can be generated.
 すなわち、上述したルール1およびルール2を、図7Dに示した階調値「31」の削除済み基底コード「01111100」に適用すれば、新たに5個のサブフィールドコードを中間コードとして生成することができる。 That is, if rule 1 and rule 2 described above are applied to the deleted base code “01111100” having the gradation value “31” shown in FIG. 7D, five new subfield codes are generated as intermediate codes. Can do.
 図8Cには、中間コードセットの一例として、上述したルール1に加え、「3)非点灯となることを禁止するサブフィールドを設定するときのルール」を、図7Dに示した階調値「31」の削除済み基底コード「11111100」に適用して生成した中間コードセットを示す。 In FIG. 8C, as an example of the intermediate code set, in addition to the above-described rule 1, “3) a rule for setting a subfield that prohibits non-lighting” is shown in the gradation value “ The intermediate code set generated by applying to the deleted base code “11111100” of “31” is shown.
 この「3)非点灯となることを禁止するサブフィールドを設定するときのルール」は、「サブフィールドSF1、サブフィールドSF2を非点灯サブフィールドにすることを禁止する」というルール(以下、「ルール3」と記す)である。 This “3) rule for setting a subfield that prohibits non-lighting” is a rule that “subfield SF1 and subfield SF2 are prohibited from being non-lighting subfield” (hereinafter “rule”). 3 ”).
 なお、図7Dに示した削除済み基底コードでは、サブフィールドSF1が非点灯サブフィールドとなる。したがって、上述のルール3において、「サブフィールドSF1を非点灯サブフィールドにすることを禁止する」は無視される。したがって、上述のルール3は、「サブフィールドSF2を非点灯サブフィールドにすることを禁止する」となる。 In the deleted base code shown in FIG. 7D, the subfield SF1 is a non-lighting subfield. Therefore, in the above-mentioned rule 3, “prohibiting subfield SF1 from being a non-lighting subfield” is ignored. Therefore, the above-mentioned rule 3 is “inhibiting the subfield SF2 from being a non-lighting subfield”.
 図7Dに示した階調値「31」の削除済み基底コード「11111100」(順序.6)にルール1を適用することで、図8Aに示したように、新たに4個のサブフィールドコードが生成される。これら4個のサブフィールドコードのうち「サブフィールドSF2が非点灯サブフィールドであるサブフィールドコード」は、階調値「29」のサブフィールドコード「00111100」である。 By applying the rule 1 to the deleted base code “11111100” (order 6) of the gradation value “31” shown in FIG. 7D, four new subfield codes are obtained as shown in FIG. 8A. Generated. Of these four subfield codes, the “subfield code whose subfield SF2 is a non-lighting subfield” is a subfield code “00111100” having a gradation value of “29”.
 したがって、ルール3にもとづくことで、階調値「29」のサブフィールドコードは、中間コードセットから除外される。 Therefore, based on the rule 3, the subfield code having the gradation value “29” is excluded from the intermediate code set.
 すなわち、上述したルール1およびルール3を、図7Dに示した階調値「31」の削除済み基底コード「11111100」に適用すれば、新たに3個のサブフィールドコードを中間コードとして生成することができる。 That is, if the above-described rule 1 and rule 3 are applied to the deleted base code “11111100” having the gradation value “31” shown in FIG. 7D, three new subfield codes are generated as intermediate codes. Can do.
 図8Dには、中間コードセットの一例として、上述した「1)点灯サブフィールドから非点灯サブフィールドに変更する1つ目のサブフィールドを設定するときのルール」(ルール1)を、図7Eに示した階調値「26」の削除済み基底コード「00011100」に適用して生成した中間コードセットを示す。 FIG. 8D shows, as an example of the intermediate code set, “1) Rule when setting the first subfield to be changed from the lighting subfield to the non-lighting subfield” (rule 1) in FIG. An intermediate code set generated by applying to the deleted base code “00011100” having the gradation value “26” shown is shown.
 このルール1は、「点灯サブフィールドのいずれか1つを非点灯サブフィールドに変更する」というルールである。 This rule 1 is a rule that “one of the lighting subfields is changed to a non-lighting subfield”.
 図7Eに示した階調値「26」の削除済み基底コード「00011100」(順序.4)では、サブフィールドSF4からサブフィールドSF6までの3つのサブフィールドが点灯サブフィールドとなる。 In the deleted base code “00011100” (order 4) with the gradation value “26” shown in FIG. 7E, three subfields from subfield SF4 to subfield SF6 are lighting subfields.
 したがって、ルール1にもとづき、これら3つの点灯サブフィールドのいずれか1つを非点灯サブフィールドに変更することによって、図8Dに示すように、3個のサブフィールドコード、「00011000」、「00010100」、「00001100」を生成することができる。 Therefore, by changing any one of these three lighting subfields to a non-lighting subfield based on rule 1, as shown in FIG. 8D, three subfield codes “00011000”, “00010100” , “00001100” can be generated.
 ただし、サブフィールドSF6を非点灯サブフィールドに変更したサブフィールドコード「00011000」は、図7Eに示した階調値「13」の削除済み基底コード(順序.3)に等しい。したがって、サブフィールドコード「00011000」を除く2個のサブフィールドコードが新たに生成された中間コードとなる。 However, the subfield code “00011000” obtained by changing the subfield SF6 to the non-lighting subfield is equal to the deleted base code (order .3) of the gradation value “13” illustrated in FIG. 7E. Accordingly, two subfield codes excluding the subfield code “00011000” are newly generated intermediate codes.
 すなわち、上述したルール1を、図7Eに示した階調値「26」の削除済み基底コード「00011100」に適用すれば、新たに2個のサブフィールドコードを中間コードとして生成することができる。 That is, if the above-described rule 1 is applied to the deleted base code “00011100” having the gradation value “26” shown in FIG. 7E, two new subfield codes can be generated as intermediate codes.
 このように、中間コード生成部72は、基底コード生成部50から出力される上階調基底コードに、ルール生成部61で生成されたルールを適用して、中間コードを生成し、中間コードセットを生成する。 As described above, the intermediate code generation unit 72 applies the rule generated by the rule generation unit 61 to the upper gradation base code output from the base code generation unit 50 to generate an intermediate code, and the intermediate code set Is generated.
 なお、以下では、中間コードを生成する際にルール1とルール3を用いる例を説明するが、中間コードの生成数を増やしたいときには、中間コードを生成する際にルール2を追加すればよい。例えば、画像表示装置30において、消費電力が比較的少ない画像が表示されるときや、動画擬似輪郭の発生が比較的少ない画像が表示されるとき等は、中間コードの生成数を増やすことが可能である。そして、中間コードの生成数を増やすことで、より滑らかな階調の変化で画像を表示することができる。 In the following, an example in which rule 1 and rule 3 are used when generating intermediate code will be described. However, if the number of intermediate codes to be generated is increased, rule 2 may be added when generating intermediate code. For example, when the image display device 30 displays an image with relatively low power consumption, or when an image with relatively little occurrence of moving image pseudo contour is displayed, the number of intermediate codes generated can be increased. It is. Then, by increasing the number of intermediate codes generated, an image can be displayed with a smoother gradation change.
 上下コード選択部74は、中間コード生成部72で生成した中間コードセットを構成するサブフィールドコードの各階調値と、入力階調とを比較する。そして、上下コード選択部74は、入力階調より大きく、かつ入力階調に最も近い階調値を有するサブフィールドコードを選択し、それを上階調コードとして出力する。また、上下コード選択部74は、入力階調以下で、かつ入力階調に最も近い階調値を有するサブフィールドコードを選択し、それを下階調コードとして出力する。 The upper / lower code selection unit 74 compares each gradation value of the subfield code constituting the intermediate code set generated by the intermediate code generation unit 72 with the input gradation. Then, the upper / lower code selection unit 74 selects a subfield code having a gradation value larger than the input gradation and closest to the input gradation, and outputs it as an upper gradation code. In addition, the upper / lower code selection unit 74 selects a subfield code having a gradation value equal to or lower than the input gradation and closest to the input gradation, and outputs it as a lower gradation code.
 表示コード選択部80は、入力階調に所定の値を加算して、注目画素に表示すべき階調値を算出する。そして、表示コード選択部80は、上階調コードおよび下階調コードのうち、注目画素に表示すべき階調値により近い階調値を有する方を選択し、それを表示コードとして出力する。 The display code selection unit 80 calculates a gradation value to be displayed on the target pixel by adding a predetermined value to the input gradation. Then, the display code selection unit 80 selects one of the upper gradation code and the lower gradation code that has a gradation value closer to the gradation value to be displayed on the target pixel, and outputs it as a display code.
 なお、注目画素とは、その時点で階調値の演算の対象となっている画素のことである。 Note that the pixel of interest is a pixel that is a target of calculation of a gradation value at that time.
 本実施の形態において、入力階調に加算する上述した所定の値は、誤差拡散処理により拡散される誤差およびディザ処理により算出されるディザ値である。したがって、表示コード選択部80は、入力階調に、誤差およびディザ値を加算して、注目画素に表示すべき階調値を算出し、上階調コードおよび下階調コードのうち、注目画素に表示すべき階調値により近い階調値を有する方を表示コードとして選択する。さらに、表示コード選択部80は、注目画素に表示すべき階調値と表示コードの階調値との差を算出し、その差を誤差として周辺画素に拡散する。 In the present embodiment, the above-described predetermined value added to the input gradation is an error diffused by the error diffusion process and a dither value calculated by the dither process. Therefore, the display code selection unit 80 adds the error and the dither value to the input gradation to calculate the gradation value to be displayed on the target pixel, and selects the target pixel from the upper gradation code and the lower gradation code. The one having a gradation value closer to the gradation value to be displayed is selected as a display code. Further, the display code selection unit 80 calculates the difference between the gradation value to be displayed on the target pixel and the gradation value of the display code, and diffuses the difference as an error to surrounding pixels.
 表示コード選択部80は、ディザ選択部82、誤差拡散部84、および表示コード決定部86を有する。 The display code selection unit 80 includes a dither selection unit 82, an error diffusion unit 84, and a display code determination unit 86.
 ディザ選択部82は、複数のディザパターンを記憶している。そして、記憶している複数のディザパターンの中から、画像信号および属性検出部41において検出された属性にもとづき1つのディザパターンを選択する。 The dither selection unit 82 stores a plurality of dither patterns. Then, one dither pattern is selected from a plurality of stored dither patterns based on the image signal and the attribute detected by the attribute detection unit 41.
 また、ディザ選択部82は、その画像信号を表示する画素の位置にもとづき、選択したディザパターンから、その画素の位置に対応するディザ要素を選択する。さらに、ディザ選択部82は、選択したディザ要素に、上階調コードの階調値と下階調コードの階調値との差分を乗算してディザ値を算出する。 Also, the dither selection unit 82 selects a dither element corresponding to the position of the pixel from the selected dither pattern based on the position of the pixel displaying the image signal. Further, the dither selection unit 82 calculates the dither value by multiplying the selected dither element by the difference between the gradation value of the upper gradation code and the gradation value of the lower gradation code.
 これらの動作の一例を、図面を用いて説明する。 An example of these operations will be described with reference to the drawings.
 図9Aは、本発明の一実施の形態における画像表示装置30で使用するディザパターンの一例を示す図である。 FIG. 9A is a diagram showing an example of a dither pattern used in the image display device 30 according to the embodiment of the present invention.
 図9Bは、本発明の一実施の形態における画像表示装置30で使用するディザパターンの他の一例を示す図である。 FIG. 9B is a diagram showing another example of the dither pattern used in the image display device 30 according to the embodiment of the present invention.
 なお、図9A、図9Bにおいて、1つの欄は1つの画素を表している。 In FIGS. 9A and 9B, one column represents one pixel.
 図9Aは最も単純な2値ディザを示した図であり、図9Aではディザ要素として「+0.25」と「-0.25」とが市松状に配列されている。また、図9Bは4値ディザの一例を示した図であり、図9Bでは2画素×2画素で構成された1つのブロックの各画素にディザ要素「+0.375」、「+0.125」、「-0.375」、および「-0.125」が配列されている。 FIG. 9A shows the simplest binary dither. In FIG. 9A, “+0.25” and “−0.25” are arranged in a checkered pattern as dither elements. FIG. 9B is a diagram showing an example of a four-value dither. In FIG. 9B, dither elements “+0.375”, “+0.125”, “−0.375” and “−0.125” are arranged.
 誤差拡散部84は、注目画素に加算するための誤差を表示コード決定部86に出力するとともに、表示コード決定部86から出力される誤差を注目画素の周辺画素に拡散する。 The error diffusion unit 84 outputs an error to be added to the target pixel to the display code determination unit 86 and diffuses the error output from the display code determination unit 86 to the peripheral pixels of the target pixel.
 そして、ディザ選択部82は、例えば、図9A、図9Bに示した2種類のディザパターンを記憶し、画像信号および属性検出部41において検出された属性にもとづきいずれか一方のディザパターンを選択する。図9Aに示すディザパターンが選択されたときには、ディザ要素は「+0.25」および「-0.25」のいずれかであり、図9Bに示すディザパターンが選択されたときには、ディザ要素は「+0.375」、「+0.125」、「-0.375」、および「-0.125」のいずれかである。 Then, the dither selection unit 82 stores, for example, two types of dither patterns shown in FIGS. 9A and 9B, and selects one of the dither patterns based on the image signal and the attribute detected by the attribute detection unit 41. . When the dither pattern shown in FIG. 9A is selected, the dither element is either “+0.25” or “−0.25”. When the dither pattern shown in FIG. 9B is selected, the dither element is “+0”. .375 ”,“ +0.125 ”,“ −0.375 ”, and“ −0.125 ”.
 そして、ディザ選択部82は、これらのディザ要素のいずれか1つを、画像信号を表示する画素の位置にもとづき選択する。さらに、選択したディザ要素に、上階調コードの階調値と下階調コードの階調値との差分を乗算してディザ値を算出する。そして、算出されたディザ値は、表示コード選択部80において、入力階調に加算される。 Then, the dither selection unit 82 selects any one of these dither elements based on the position of the pixel displaying the image signal. Further, the dither value is calculated by multiplying the selected dither element by the difference between the tone value of the upper tone code and the tone value of the lower tone code. The calculated dither value is added to the input gradation in the display code selection unit 80.
 図10は、本発明の実施の形態における画像表示装置30の誤差拡散部84の誤差拡散係数を示す図である。 FIG. 10 is a diagram showing error diffusion coefficients of the error diffusion unit 84 of the image display device 30 in the embodiment of the present invention.
 図10において、1つの欄は1つの画素を表している。そして、図10における中央の欄は誤差拡散処理の対象となる画素(注目画素)を表す。 In FIG. 10, one column represents one pixel. The middle column in FIG. 10 represents a pixel (target pixel) that is a target of error diffusion processing.
 誤差拡散部84は、注目画素に、注目画素の左上に配置された画素で発生した誤差に拡散係数k1を乗算した値を拡散(加算)する。また、誤差拡散部84は、注目画素に、注目画素の上に配置された画素で発生した誤差に拡散係数k2を乗算した値を拡散(加算)する。また、誤差拡散部84は、注目画素に、注目画素の右上に配置された画素で発生した誤差に拡散係数k3を乗算した値を拡散(加算)する。また、誤差拡散部84は、注目画素に、注目画素の左に配置された画素で発生した誤差に拡散係数k4を乗算した値を拡散(加算)する。 The error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the pixel arranged at the upper left of the target pixel by the diffusion coefficient k1 to the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the pixel arranged on the target pixel by the diffusion coefficient k2 to the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the pixel arranged at the upper right of the target pixel by the diffusion coefficient k3 to the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the pixel arranged on the left of the target pixel by the diffusion coefficient k4 to the target pixel.
 そして、誤差拡散部84は、注目画素で発生した誤差に拡散係数k4を乗算した値を、注目画素の右に配置された画素に拡散(加算)する。また、誤差拡散部84は、注目画素で発生した誤差に拡散係数k3を乗算した値を、注目画素の左下に配置された画素に拡散(加算)する。また、誤差拡散部84は、注目画素で発生した誤差に拡散係数k2を乗算した値を、注目画素の下に配置された画素に拡散(加算)する。また、誤差拡散部84は、注目画素で発生した誤差に拡散係数k1を乗算した値を、注目画素の右下に配置された画素に拡散(加算)する。 Then, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the target pixel by the diffusion coefficient k4 to the pixel arranged on the right side of the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the target pixel by the diffusion coefficient k3 to the pixel arranged at the lower left of the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the target pixel by the diffusion coefficient k2 to the pixel arranged below the target pixel. Further, the error diffusion unit 84 diffuses (adds) a value obtained by multiplying the error generated in the target pixel by the diffusion coefficient k1 to the pixel arranged at the lower right of the target pixel.
 本実施の形態において、各拡散係数は、k1=1/16、k2=4/16、k3=3/16、およびk4=8/16とする。または、k1=3/16、k2=4/16、k3=1/16、およびk4=8/16とする。本実施の形態では、どちらの拡散係数を選択するかを、乱数発生器(図示せず)によって発生する乱数を用いて決定している。 In this embodiment, the diffusion coefficients are k1 = 1/16, k2 = 4/16, k3 = 3/16, and k4 = 8/16. Alternatively, k1 = 3/16, k2 = 4/16, k3 = 1/16, and k4 = 8/16. In the present embodiment, which diffusion coefficient is selected is determined using a random number generated by a random number generator (not shown).
 表示コード決定部86は、入力階調、ディザ選択部82から出力されたディザ値、および誤差拡散部84から出力された誤差にもとづき、画像の表示に実際に用いる表示コードを、上階調コードまたは下階調コードのいずれかに決定する。 Based on the input gradation, the dither value output from the dither selection section 82, and the error output from the error diffusion section 84, the display code determination section 86 converts the display code actually used for image display into the upper gradation code. Alternatively, it is determined as one of the lower gradation codes.
 具体的には、表示コード決定部86は、入力階調に、ディザ値および誤差を加算して、注目画素に表示すべき階調値を算出する。そして、上階調コードおよび下階調コードのうち、注目画素に表示すべき階調値により近い階調値を有する方を表示コードとして選択する。 Specifically, the display code determination unit 86 calculates a gradation value to be displayed on the target pixel by adding the dither value and the error to the input gradation. Of the upper gradation code and the lower gradation code, the one having the gradation value closer to the gradation value to be displayed on the target pixel is selected as the display code.
 そして、表示コード決定部86は、注目画素に表示すべき階調値と表示コードの階調値との差分を算出し、その差分を、新しく発生した誤差として誤差拡散部84に出力する。 Then, the display code determination unit 86 calculates the difference between the gradation value to be displayed on the target pixel and the gradation value of the display code, and outputs the difference to the error diffusion unit 84 as a newly generated error.
 次に、画像信号処理回路31の動作について説明する。なお、以下では、次の条件にもとづき画像信号処理回路31が動作するものとして、説明を行う。
1)基底コードセットとして、図7Aに示した基底コードセットを使用する。
2)図8Aの説明に用いたルールを使用する。すなわち「点灯サブフィールドのいずれか1つを非点灯サブフィールドに変更する」というルール1を使用する。
3)画像信号に付随する属性にもとづき、「非点灯となることを禁止するサブフィールドを設定するときのルール」(ルール3)をルール1に追加する。
Next, the operation of the image signal processing circuit 31 will be described. In the following description, it is assumed that the image signal processing circuit 31 operates based on the following conditions.
1) The base code set shown in FIG. 7A is used as the base code set.
2) The rules used in the description of FIG. 8A are used. That is, rule 1 “change any one of the lighting subfields to a non-lighting subfield” is used.
3) Based on the attribute accompanying the image signal, “Rule for setting sub-field forbidden to turn off” (rule 3) is added to rule 1.
 図11は、本発明の一実施の形態における画像表示装置30の画像信号処理回路31の動作を示すフローチャートである。 FIG. 11 is a flowchart showing the operation of the image signal processing circuit 31 of the image display device 30 according to the embodiment of the present invention.
 画像信号処理回路31は、次の一連のステップを実行する。 The image signal processing circuit 31 executes the following series of steps.
 (ステップS41)
画像信号処理回路31に、1つの画素(注目画素)に対応する画像信号が入力される。属性検出部41は、その画像信号に付随する属性を検出する。
(Step S41)
An image signal corresponding to one pixel (target pixel) is input to the image signal processing circuit 31. The attribute detection unit 41 detects an attribute associated with the image signal.
 以下、注目画素に対応する画像信号は階調値(入力階調)が「25」であり、属性検出部41において、その画像信号に付随する属性は動画であり輪郭部であるという検出結果が得られたものとして説明を行う。 Hereinafter, the image signal corresponding to the target pixel has a gradation value (input gradation) of “25”, and the attribute detection unit 41 detects that the attribute associated with the image signal is a moving image and a contour portion. The description will be given on the assumption that it was obtained.
 (ステップS53)
サブフィールド削除部53は、電力制御信号Cntの小数点以下を切捨てて、書込み動作を禁止するサブフィールド数Ndを算出する。そして、基底コード記憶部52に記憶されている基底コードセットにおいて、階調重みが最も小さいサブフィールド、階調重みが2番目に小さいサブフィールド、階調重みが3番目に小さいサブフィールド、・・・という順番で、Nd個のサブフィールドを非点灯サブフィールドにする。こうして、削除済み基底コードセットを作成する。
(Step S53)
The sub-field deletion unit 53 calculates the number Nd of sub-fields that prohibit the write operation by truncating the power control signal Cnt after the decimal point. Then, in the base code set stored in the base code storage unit 52, the subfield having the smallest gradation weight, the subfield having the second smallest gradation weight, the subfield having the third smallest gradation weight,... In order, Nd subfields are made non-lighting subfields. In this way, a deleted base code set is created.
 例えば、電力制御信号Cntが「3.3」であれば、「3.3」から小数点以下の「0.3」を切捨てた「3」が、書込み動作を禁止するサブフィールド数Ndの値となる。したがって、サブフィールド削除部53は、最も階調重みの小さいサブフィールド、2番目に階調重みの小さいサブフィールドおよび3番目に階調重みの小さいサブフィールドでの書込み動作を禁止して、それら3つのサブフィールドを非点灯サブフィールドにする。このようにして作成された削除済み基底コードセットが、例えば、図7Eに示した削除済み基底コードセットである。 For example, if the power control signal Cnt is “3.3”, “3” obtained by discarding “0.3” below the decimal point from “3.3” is the value of the number Nd of subfields that prohibit the write operation. Become. Therefore, the subfield deleting unit 53 prohibits the write operation in the subfield having the smallest gradation weight, the second subfield having the smallest gradation weight, and the third subfield having the smallest gradation weight, and Make one subfield unlit. The deleted base code set created in this way is, for example, the deleted base code set shown in FIG. 7E.
 また、サブフィールド削除部53は、画像信号の振幅を調整するための増幅率Aを算出する。 Also, the subfield deletion unit 53 calculates an amplification factor A for adjusting the amplitude of the image signal.
 図7Aに示した基底コードセットにおいて最も大きい階調値は「87」である。また、図7Eに示した削除済み基底コードセットにおいて最も大きい階調値は「81」である。
したがって、
A(3)=81/87≒0.93
となる。また、図示はしていないが、Nd=4のときには、最も階調重みの小さいサブフィールドから4番目に階調重みの小さいサブフィールドまでの全てのサブフィールドでの書込み動作がサブフィールド削除部53において禁止される。そのときの削除済み基底コードセットにおいて最も大きい階調値は「76」である。したがって、
A(4)=76/87=0.87
となる。
The largest gradation value in the base code set shown in FIG. 7A is “87”. In the deleted base code set shown in FIG. 7E, the largest gradation value is “81”.
Therefore,
A (3) = 81 / 87≈0.93
It becomes. Although not shown, when Nd = 4, the write operation in all subfields from the subfield with the smallest gradation weight to the subfield with the fourth smallest gradation weight is performed in the subfield deletion unit 53. Is prohibited. The largest gradation value in the deleted base code set at that time is “76”. Therefore,
A (4) = 76/87 = 0.87
It becomes.
 したがって、増幅率Aは以下のようになる。
A=(Cnt-Nd)×(A(Nd+1)-A(Nd))+A(Nd)
=0.3×(0.87-0.93)+0.93
=0.91
 すなわち、サブフィールド削除部53は、「0.91」を増幅率Aとして振幅制限部46に出力する。
Therefore, the amplification factor A is as follows.
A = (Cnt−Nd) × (A (Nd + 1) −A (Nd)) + A (Nd)
= 0.3 x (0.87-0.93) + 0.93
= 0.91
That is, the subfield deleting unit 53 outputs “0.91” as the amplification factor A to the amplitude limiting unit 46.
 (ステップS54)
基底コード生成部50は、注目画素の画像信号に対応する上階調基底コードを選択する。
(Step S54)
The base code generation unit 50 selects the upper gradation base code corresponding to the image signal of the target pixel.
 すなわち、ステップS54では、削除済み基底コードセットの中から、注目画素における画像信号の階調値よりも大きく、かつ注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを上階調基底コードとして選択する。 That is, in step S54, a subfield code having a gradation value that is larger than the gradation value of the image signal at the target pixel and closest to the gradation value of the image signal at the target pixel is selected from the deleted base code set. Select as the upper tone base code.
 具体的には、基底コード生成部50は、サブフィールド削除部53が作成した削除済み基底コードセットを構成する削除済み基底コードの各階調と入力階調とを比較する。そして、入力階調よりも大きく、かつ入力階調に最も近い階調値を有する削除済み基底コードを選択し、それを上階調基底コードとして出力する。 More specifically, the base code generation unit 50 compares each gradation of the deleted base code constituting the deleted base code set created by the subfield deletion unit 53 with the input gradation. Then, a deleted base code having a gradation value larger than the input gradation and closest to the input gradation is selected and output as an upper gradation base code.
 例えば、入力階調が階調値「25」であれば、図7Eに示した削除済み基底コードセットにおいて、階調値「25」よりも大きく、かつ階調値「25」に最も近い階調値を有する削除済み基底コードは、階調値「26」の削除済み基底コードである。したがって、基底コード生成部50は、階調値「26」の削除済み基底コード「00011100」を選択し、それを上階調基底コードとして出力する。 For example, if the input gradation is the gradation value “25”, the gradation that is larger than the gradation value “25” and closest to the gradation value “25” in the deleted base code set shown in FIG. 7E. The deleted base code having a value is a deleted base code having a gradation value of “26”. Therefore, the base code generation unit 50 selects the deleted base code “00011100” having the gradation value “26” and outputs it as the upper gradation base code.
 (ステップS61)
ルール生成部61は、中間コードセット生成のためのルールを生成する。
(Step S61)
The rule generation unit 61 generates a rule for generating an intermediate code set.
 すなわち、ステップS61では、注目画素における画像信号にもとづき、上階調基底コードにおける発光するサブフィールドを非発光のサブフィールドに変更して新たなサブフィールドコードを生成するためのルールを生成する。 That is, in step S61, a rule for generating a new subfield code by changing the light emitting subfield in the upper gradation base code to a non-light emitting subfield is generated based on the image signal at the target pixel.
 具体的には、ルール生成部61は、画像信号に付随する属性が静止画であれば、「点灯サブフィールドのいずれか1つを非点灯サブフィールドに変更する」という基本的なルール(ルール1)を生成する。 Specifically, the rule generation unit 61 performs a basic rule (rule 1) “change any one of the lighting subfields to the non-lighting subfield” if the attribute attached to the image signal is a still image. ) Is generated.
 ルール生成部61は、画像信号に付随する属性が動画であれば、動画擬似輪郭を抑制するために、画像の表示に使用することができるサブフィールドコードを制限する。 If the attribute attached to the image signal is a moving image, the rule generation unit 61 restricts the subfield codes that can be used for displaying the image in order to suppress the moving image pseudo contour.
 パネル10を用いた画像表示装置30では、動画像をパネル10に表示する際に、元の画像信号には含まれない偽の輪郭が使用者に観測されることがある。この偽の輪郭が動画擬似輪郭である。そして、サブフィールドコードには、動画擬似輪郭を抑制する効果が高いものとそうでないものとがある。例えば、図7Aから図7Cに示した基底コードは動画擬似輪郭を抑制する効果が高いサブフィールドコードである。 In the image display device 30 using the panel 10, when a moving image is displayed on the panel 10, a false contour that is not included in the original image signal may be observed by the user. This false contour is a moving image pseudo contour. The subfield codes include those that have a high effect of suppressing moving image pseudo contours and those that do not. For example, the base codes shown in FIGS. 7A to 7C are subfield codes that have a high effect of suppressing the moving image pseudo contour.
 すなわち、動画擬似輪郭の見え方は、画像の表示に使用することができるサブフィールドコードに依存しており、動画擬似輪郭を抑制する効果が高いサブフィールドコードを用いて画像の表示を行うことで、動画擬似輪郭を抑制することができる。その場合、画像の表示に使用することができるサブフィールドコードは、動画擬似輪郭の抑制が不要な場合と比較して、制限される。これが、ルール生成部61において、動画擬似輪郭を抑制するために、画像の表示に使用することができるサブフィールドコードを制限する理由である。 In other words, the appearance of the moving image pseudo contour depends on the subfield code that can be used to display the image, and the image is displayed using the subfield code that is highly effective in suppressing the moving image pseudo contour. The moving image pseudo contour can be suppressed. In that case, the subfield code that can be used for displaying an image is limited as compared with the case where the suppression of the moving image pseudo contour is unnecessary. This is the reason why the rule generation unit 61 restricts the subfield codes that can be used for image display in order to suppress the moving image pseudo contour.
 そして、画像信号に付随する属性が動画であれば、ルール生成部61は、動画擬似輪郭を抑制するために、基本となるルール1に、「非点灯となることを禁止するサブフィールドを設定するときのルール」を追加する。この追加ルールは、例えば、図8Cを用いて説明した「サブフィールドSF1、サブフィールドSF2を非点灯サブフィールドにすることを禁止する」というルール3である。これにより、ルール生成部61は、画像の表示に使用することができるサブフィールドコードを制限する。 Then, if the attribute attached to the image signal is a moving image, the rule generating unit 61 sets “a subfield that prohibits non-lighting” in the basic rule 1 in order to suppress the moving image pseudo contour. Add “When the rule”. This additional rule is, for example, rule 3 described with reference to FIG. 8C, which is “prohibiting subfield SF1 and subfield SF2 from being turned off”. As a result, the rule generation unit 61 limits the subfield codes that can be used for displaying an image.
 したがって、画像信号に付随する属性が動画であるとき(すなわち、注目画素における画像信号が動画であるとき)にルール生成部61が生成するルールは、画像信号に付随する属性が静止画であるとき(すなわち、注目画素における画像信号が静止画であるとき)にルール生成部61が生成するルールを包含する。 Therefore, when the attribute attached to the image signal is a moving image (that is, when the image signal at the target pixel is a moving image), the rule generated by the rule generation unit 61 is that the attribute attached to the image signal is a still image. The rule generation unit 61 includes a rule that is generated when the image signal at the target pixel is a still image.
 (ステップS72)
中間コード生成部72は、中間コードセットを生成する。
(Step S72)
The intermediate code generation unit 72 generates an intermediate code set.
 中間コード生成部72は、ルール生成部61が生成したルールにもとづき、上階調基底コードから中間コードを生成する。 The intermediate code generation unit 72 generates an intermediate code from the upper gradation base code based on the rules generated by the rule generation unit 61.
 例えば、ステップS50において選択された上階調基底コードが階調値「26」の削除済み基底コード「00011100」であり、ルール生成部61が生成したルールがルール1およびルール3であれば、中間コード生成部72は、この削除済み基底コード「00011100」にルール生成部61が生成したルール1およびルール3を適用し、新たな中間コードを生成する。 For example, if the upper gradation base code selected in step S50 is the deleted base code “00011100” with the gradation value “26” and the rules generated by the rule generation unit 61 are rule 1 and rule 3, The code generation unit 72 applies the rules 1 and 3 generated by the rule generation unit 61 to the deleted base code “00011100” to generate a new intermediate code.
 なお、図7Eに示した削除済み基底コードセットにおいて、サブフィールドSF1とサブフィールドSF2とは既に非点灯サブフィールドである。したがって、「サブフィールドSF1、サブフィールドSF2を非点灯サブフィールドにすることを禁止する」というルール3は、この場合には無視される。 In the deleted base code set shown in FIG. 7E, subfield SF1 and subfield SF2 are already non-lighting subfields. Therefore, rule 3 “prohibiting subfield SF1 and subfield SF2 from being turned off” is ignored in this case.
 したがって、削除済み基底コード「00011100」の点灯サブフィールドであるサブフィールドSF4からサブフィールドSF6が、ルール1にもとづく非点灯サブフィールドへの置き換えの対象となる。そして、ルール1にもとづき、サブフィールドSF4からサブフィールドSF6の各サブフィールドをそれぞれ非点灯サブフィールドにする。こうして、中間コード生成部72は、3つの中間コード「00011000」、「00010100」および「00001100」を生成する。このようにして得られた中間コードセットは、例えば、図8Dに示した中間コードセットである。 Therefore, the subfield SF6 to the subfield SF6, which is the lighting subfield of the deleted base code “00011100”, is a target of replacement with the non-lighting subfield based on the rule 1. Then, based on rule 1, the subfields SF4 to SF6 are set to non-lighting subfields. In this way, the intermediate code generating unit 72 generates three intermediate codes “00011000”, “00010100”, and “000001100”. The intermediate code set thus obtained is, for example, the intermediate code set shown in FIG. 8D.
 (ステップS74)
上下コード選択部74は、上階調コードと下階調コードを選択する。
(Step S74)
The upper / lower code selection unit 74 selects an upper gradation code and a lower gradation code.
 すなわち、ステップS74では、上階調基底コードに上述のルールを適用して生成される中間コードセットの中から、注目画素における画像信号の階調値より大きく注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを上階調コードとして選択し、かつ、注目画素における画像信号の階調値以下で注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを下階調コードとして選択する。 That is, in step S74, the tone value of the image signal at the target pixel is larger than the tone value of the image signal at the target pixel from the intermediate code set generated by applying the above-described rule to the upper tone base code. The subfield code having the closest gradation value is selected as the upper gradation code, and the subfield code having the gradation value closest to the gradation value of the image signal at the target pixel is equal to or smaller than the gradation value of the image signal at the target pixel. Select the field code as the lower gradation code.
 具体的には、上下コード選択部74は、中間コードセットを構成するサブフィールドコードの各階調値と入力階調とを比較する。そして、入力階調よりも大きく、かつ入力階調に最も近い階調値を有するサブフィールドコードを選択し、それを上階調コードとして出力する。また、入力階調以下で、かつ入力階調に最も近い階調値を有するサブフィールドコードを選択し、それを下階調コードとして出力する。 Specifically, the upper / lower code selection unit 74 compares each gradation value of the subfield code constituting the intermediate code set with the input gradation. Then, a subfield code having a gradation value larger than the input gradation and closest to the input gradation is selected and output as an upper gradation code. Also, a subfield code having a gradation value that is equal to or lower than the input gradation and closest to the input gradation is selected, and is output as a lower gradation code.
 例えば、入力階調が階調値「25」であり、ステップS72において生成された中間コードセットが図8Dに示した中間コードセットであれば、上階調コードに該当するサブフィールドコードは階調値「26」のサブフィールドコードである。また、下階調コードに該当するサブフィールドコードは階調値「21」のサブフィールドコードである。したがって、上下コード選択部74は、上階調コードとして階調値「26」を有するサブフィールドコード「00011100」を選択し、下階調コードとして階調値「21」を有するサブフィールドコード「00001100」を選択する。 For example, if the input gradation is the gradation value “25” and the intermediate code set generated in step S72 is the intermediate code set shown in FIG. 8D, the subfield code corresponding to the upper gradation code is gradation. It is a subfield code of the value “26”. The subfield code corresponding to the lower gradation code is a subfield code having a gradation value of “21”. Therefore, the upper / lower code selection unit 74 selects the subfield code “00011100” having the gradation value “26” as the upper gradation code and the subfield code “00001100” having the gradation value “21” as the lower gradation code. ”Is selected.
 (ステップS82)
ディザ選択部82は、画像信号の属性にもとづきディザ要素を選択する。
(Step S82)
The dither selection unit 82 selects a dither element based on the attribute of the image signal.
 例えば、ディザ選択部82に、図9Aに示したディザパターンと、図9Bに示したディザパターンとが記憶されていれば、ディザ選択部82は、画像信号および属性検出部41において検出された属性にもとづき、いずれか一方のディザパターンを選択する。 For example, if the dither pattern shown in FIG. 9A and the dither pattern shown in FIG. 9B are stored in the dither selection unit 82, the dither selection unit 82 uses the attribute detected by the image signal and attribute detection unit 41. Based on the above, one of the dither patterns is selected.
 そして、画像信号に付随する属性が輪郭部であれば図9Aに示したディザパターンを選択し、画像信号に付随する属性が輪郭部でなければ図9Bに示したディザパターンを選択するようにディザ選択部82が設定してあれば、画像信号に付随する属性が輪郭部のときには、ディザ選択部82は、図9Aに示したディザパターンを選択する。そして、ディザ選択部82は、注目画素の位置にもとづき、ディザパターンに設定されたディザ要素の中からいずれか1つを選択する。例えば、ディザ選択部82は、図9Aに示したディザパターンにもとづき、ディザ要素として「0.25」を選択する。 If the attribute attached to the image signal is a contour portion, the dither pattern shown in FIG. 9A is selected. If the attribute attached to the image signal is not a contour portion, the dither pattern shown in FIG. 9B is selected. If the selection unit 82 is set, when the attribute attached to the image signal is a contour portion, the dither selection unit 82 selects the dither pattern shown in FIG. 9A. Then, the dither selection unit 82 selects one of the dither elements set in the dither pattern based on the position of the target pixel. For example, the dither selection unit 82 selects “0.25” as the dither element based on the dither pattern shown in FIG. 9A.
 (ステップS83)
ディザ選択部82は、ディザ値を算出する。
(Step S83)
The dither selector 82 calculates a dither value.
 ディザ選択部82は、選択したディザ要素に、上階調コードの階調値と下階調コードの階調値との差分を乗算してディザ値を算出する。 The dither selection unit 82 calculates the dither value by multiplying the selected dither element by the difference between the tone value of the upper tone code and the tone value of the lower tone code.
 例えば、ステップS74において選択された上階調コードが階調値「26」であり、ステップS74において選択された下階調コードの階調値が「21」であり、ステップS82において選択されたディザ要素が「0.25」であれば、ディザ選択部82は、上階調コードの階調値と下階調コードの階調値との差分「5」にディザ要素「0.25」を乗算してディザ値「1.25」を算出する。 For example, the upper gradation code selected in step S74 is the gradation value “26”, the gradation value of the lower gradation code selected in step S74 is “21”, and the dither selected in step S82. If the element is “0.25”, the dither selection unit 82 multiplies the difference “5” between the gradation value of the upper gradation code and the gradation value of the lower gradation code by the dither element “0.25”. Then, the dither value “1.25” is calculated.
 (ステップS86)
表示コード決定部86は、注目画素に表示すべき階調値を算出する。
(Step S86)
The display code determination unit 86 calculates a gradation value to be displayed on the target pixel.
 すなわち、ステップS86では、注目画素における画像信号の階調値に所定の値を加算して注目画素に表示すべき階調値を算出する。 That is, in step S86, a predetermined value is added to the gradation value of the image signal at the target pixel to calculate the gradation value to be displayed on the target pixel.
 具体的には、表示コード決定部86は、入力階調に、ステップS83において算出されたディザ値を加算し、さらに、ステップS88における算出結果にもとづき誤差拡散部84から出力される誤差を加算して、注目画素に表示すべき階調値を算出する。したがって、上述の所定の値は、ディザ選択部82から出力されるディザ値と、誤差拡散部84から出力される誤差とを加算した数値である。 Specifically, the display code determination unit 86 adds the dither value calculated in step S83 to the input gradation, and further adds the error output from the error diffusion unit 84 based on the calculation result in step S88. Thus, the gradation value to be displayed on the target pixel is calculated. Therefore, the predetermined value is a numerical value obtained by adding the dither value output from the dither selection unit 82 and the error output from the error diffusion unit 84.
 例えば、入力階調が階調値「25」であり、ステップS83において算出されたディザ値が「1.25」であり、ステップS88における算出結果にもとづき誤差拡散部84から出力される誤差が「-3.4」であれば、25+1.25-3.4=22.85となる。したがって、注目画素に表示すべき階調値は「22.85」となる。 For example, the input gradation is the gradation value “25”, the dither value calculated in step S83 is “1.25”, and the error output from the error diffusion unit 84 based on the calculation result in step S88 is “ −3.4 ”, 25 + 1.25−3.4 = 22.85. Therefore, the gradation value to be displayed on the target pixel is “22.85”.
 あるいは、入力階調が階調値「25」であり、ステップS83において算出されたディザ値が「1.25」であり、ステップS88における算出結果にもとづき誤差拡散部84から出力される誤差が「1.4」であれば、25+1.25+1.4=27.65となる。したがって、注目画素に表示すべき階調値は「27.65」となる。 Alternatively, the input gradation is the gradation value “25”, the dither value calculated in step S83 is “1.25”, and the error output from the error diffusion unit 84 based on the calculation result in step S88 is “ 1.4 "is 25 + 1.25 + 1.4 = 27.65. Therefore, the gradation value to be displayed on the target pixel is “27.65”.
 (ステップS87)
表示コード決定部86は、注目画素に階調値を表示する際に使用する表示コードを決定する。
(Step S87)
The display code determining unit 86 determines a display code to be used when displaying the gradation value on the target pixel.
 すなわち、ステップS87では、上階調コードおよび下階調コードのうち注目画素に表示すべき階調値により近い階調値を有する方を表示コードとして選択する。 That is, in step S87, the upper gradation code and the lower gradation code having the gradation value closer to the gradation value to be displayed on the target pixel is selected as the display code.
 具体的には、表示コード決定部86は、注目画素に表示すべき階調値と、上階調コードの階調値および下階調コードの階調値とを比較する。そして注目画素に表示すべき階調値が下階調コードの階調値よりも上階調コードの階調値の方に近い場合は、注目画素に階調値を表示する際に使用する表示コードとして上階調コードを選択し、それを出力する。また、注目画素に表示すべき階調値が上階調コードの階調値よりも下階調コードの階調値の方に近い場合は、注目画素に階調値を表示する際に使用する表示コードとして下階調コードを選択し、それを出力する。 Specifically, the display code determination unit 86 compares the gradation value to be displayed on the target pixel with the gradation value of the upper gradation code and the gradation value of the lower gradation code. If the gradation value to be displayed on the target pixel is closer to the gradation value of the upper gradation code than the gradation value of the lower gradation code, the display used when displaying the gradation value on the attention pixel Select the upper gradation code as the code and output it. Further, when the gradation value to be displayed on the target pixel is closer to the gradation value of the lower gradation code than the gradation value of the upper gradation code, it is used when displaying the gradation value on the attention pixel. The lower gradation code is selected as the display code and is output.
 例えば、上階調コードの階調値が「26」であり、下階調コードの階調値が「21」であり、注目画素に表示すべき階調値が「22.85」であれば、上階調コードの階調値と注目画素に表示すべき階調値との差分は「3.15」となり、下階調コードの階調値と注目画素に表示すべき階調値との差分は「1.85」となる。したがって、この場合、表示コード決定部86は、階調値「21」を有する下階調コード「00001100」を表示コードとして出力する。 For example, if the gradation value of the upper gradation code is “26”, the gradation value of the lower gradation code is “21”, and the gradation value to be displayed on the target pixel is “22.85”. The difference between the gradation value of the upper gradation code and the gradation value to be displayed on the target pixel is “3.15”, and the difference between the gradation value of the lower gradation code and the gradation value to be displayed on the target pixel is The difference is “1.85”. Therefore, in this case, the display code determination unit 86 outputs the lower gradation code “00001100” having the gradation value “21” as the display code.
 また、上階調コードの階調値が「26」であり、下階調コードの階調値が「21」であり、注目画素に表示すべき階調値が「24.65」であれば、上階調コードの階調値と注目画素に表示すべき階調値との差分は「1.35」となり、下階調コードの階調値と注目画素に表示すべき階調値との差分は「3.65」となる。したがって、この場合、表示コード決定部86は、階調値「26」を有する上階調コード「00011100」を表示コードとして出力する。 Further, if the gradation value of the upper gradation code is “26”, the gradation value of the lower gradation code is “21”, and the gradation value to be displayed on the target pixel is “24.65”. The difference between the gradation value of the upper gradation code and the gradation value to be displayed on the target pixel is “1.35”, and the difference between the gradation value of the lower gradation code and the gradation value to be displayed on the target pixel is The difference is “3.65”. Therefore, in this case, the display code determination unit 86 outputs the upper gradation code “00011100” having the gradation value “26” as the display code.
 (ステップS88)
表示コード決定部86は、誤差を算出して誤差拡散部84に出力する。
(Step S88)
The display code determination unit 86 calculates the error and outputs it to the error diffusion unit 84.
 表示コード決定部86は、注目画素に表示すべき階調値から表示コードの階調値を減算し、その減算結果を新たに発生した誤差として誤差拡散部84に出力する。 The display code determination unit 86 subtracts the gradation value of the display code from the gradation value to be displayed on the target pixel, and outputs the subtraction result to the error diffusion unit 84 as a newly generated error.
 例えば、注目画素に表示すべき階調値が「22.85」であり、表示コードの階調値が「21」であれば、22.85-21=1.85である。したがって、表示コード決定部86は、この「1.85」を誤差として誤差拡散部84に出力する。 For example, if the gradation value to be displayed on the target pixel is “22.85” and the gradation value of the display code is “21”, 22.85-21 = 1.85. Therefore, the display code determination unit 86 outputs this “1.85” as an error to the error diffusion unit 84.
 あるいは、注目画素に表示すべき階調値が「27.65」であり、表示コードの階調値が「26」であれば、27.65-26=1.65である。したがって、表示コード決定部86は、この「1.65」を誤差として誤差拡散部84に出力する。 Or, if the gradation value to be displayed on the target pixel is “27.65” and the gradation value of the display code is “26”, 27.65−26 = 1.65. Therefore, the display code determination unit 86 outputs this “1.65” to the error diffusion unit 84 as an error.
 ステップS88が終了したら、ステップS41に戻る。こうして、ステップS41からステップS88までの一連のステップを繰り返し実行する。 When step S88 is completed, the process returns to step S41. In this way, a series of steps from step S41 to step S88 are repeatedly executed.
 このように、本実施の形態における画像信号処理回路31は、基底コード生成部50、ルール生成部61、上下コード生成部70、および表示コード選択部80を備えている。 As described above, the image signal processing circuit 31 in the present embodiment includes the base code generation unit 50, the rule generation unit 61, the upper and lower code generation unit 70, and the display code selection unit 80.
 基底コード生成部50は、基底コードセットから、電力制御信号Cntにもとづく特定のサブフィールドを非点灯サブフィールドにした削除済み基底コードセットを作成する。そして、削除済み基底コードセットを構成する複数の削除済み基底コードの中から、入力階調よりも大きく、かつ入力階調に最も近い階調値を有する削除済み基底コードを選択して上階調基底コードとし、それを出力する。 The base code generation unit 50 creates a deleted base code set in which a specific subfield based on the power control signal Cnt is a non-lighting subfield from the base code set. Then, from among a plurality of deleted base codes constituting the deleted base code set, a deleted base code having a gradation value that is larger than the input gradation and closest to the input gradation is selected and the upper gradation is selected. Set to base code and output it.
 ルール生成部61は、画像の表示に用いる中間コードを生成するために、画像信号、および属性検出部41において検出された属性(画像信号に付随する属性)にもとづき、上階調基底コードにおける点灯サブフィールドを非点灯サブフィールドに変更するときのルールを生成する。 The rule generation unit 61 illuminates the upper gradation base code based on the image signal and the attribute (attribute associated with the image signal) detected by the attribute detection unit 41 in order to generate an intermediate code used for image display. Generate a rule for changing a subfield to a non-lit subfield.
 上下コード生成部70は、基底コード生成部50から出力される上階調基底コードにルール生成部61で生成したルールを適用して中間コードを生成する。そして、入力階調より大きく、かつ入力階調に最も近い階調値を有する上階調コードと、入力階調以下で、かつ入力階調に最も近い階調値を有する下階調コードのそれぞれを中間コードから選択し、出力する。 The upper / lower code generation unit 70 applies the rule generated by the rule generation unit 61 to the upper gradation base code output from the base code generation unit 50 to generate an intermediate code. An upper gradation code having a gradation value larger than the input gradation and closest to the input gradation, and a lower gradation code having a gradation value equal to or lower than the input gradation and closest to the input gradation Is selected from the intermediate code and output.
 表示コード選択部80は、入力階調に誤差およびディザ値を加算して、注目画素に表示すべき階調値を算出する。そして、上階調コードおよび下階調コードのうち、注目画素に表示すべき階調値により近い階調値を有する方を選択し、それを表示コードとして出力する。さらに、表示コード選択部80は、注目画素に表示すべき階調値と表示コードの階調値との差分を算出し、その差分を誤差として周辺画素に拡散する。 The display code selection unit 80 adds an error and a dither value to the input gradation, and calculates a gradation value to be displayed on the target pixel. Then, of the upper gradation code and the lower gradation code, the one having a gradation value closer to the gradation value to be displayed on the target pixel is selected and output as a display code. Further, the display code selection unit 80 calculates a difference between the gradation value to be displayed on the target pixel and the gradation value of the display code, and diffuses the difference as an error to surrounding pixels.
 本実施の形態では、このように画像信号処理回路31を構成することで、画像信号から表示コード(サブフィールドコード)への変換を、多数のサブフィールドコードから成る変換テーブルを用いて行うのではなく、演算回路によって行うことができる。 In this embodiment, by configuring the image signal processing circuit 31 in this manner, conversion from an image signal to a display code (subfield code) is not performed using a conversion table including a number of subfield codes. And can be performed by an arithmetic circuit.
 すなわち、本実施の形態では、パネルの大画面化、高精細度化、画像表示品質の向上、放送方式の多様化、3D画像の表示機能等の多機能化、等への対応が必要な画像表示装置において、様々な条件に応じて膨大な数の変換テーブルの中から最適な1つを選択するように画像信号処理回路を構成する必要がなくなる。本実施の形態によれば、画像信号から表示コード(サブフィールドコード)への変換を、演算回路を用いて演算によって行うことができる。したがって、そのような画像表示装置においても、膨大な数の変換テーブルを備える必要はなく、必要最小限のテーブル(例えば、図7A、図7B、図7Cに示した基底コードセット)と、画像信号から表示コードへの変換のための演算回路を備えるだけでよい。 In other words, in this embodiment, an image that needs to cope with an increase in the screen size of the panel, higher definition, improvement in image display quality, diversification of broadcasting methods, multi-functionality such as a 3D image display function, and the like. In the display device, it is not necessary to configure an image signal processing circuit so as to select an optimum one from a vast number of conversion tables according to various conditions. According to the present embodiment, conversion from an image signal to a display code (subfield code) can be performed by calculation using an arithmetic circuit. Therefore, even in such an image display apparatus, it is not necessary to provide a huge number of conversion tables, and a minimum necessary table (for example, the base code set shown in FIGS. 7A, 7B, and 7C) and an image signal It is only necessary to provide an arithmetic circuit for converting from to display code.
 また、電力制御信号Cntにもとづき特定のサブフィールドの書込み動作を禁止するので、データ電極駆動回路32の消費電力を制限することができる。 In addition, since the write operation of a specific subfield is prohibited based on the power control signal Cnt, the power consumption of the data electrode drive circuit 32 can be limited.
 また上述したように本実施の形態においては、電力制御信号Cntにもとづき画像信号の振幅を調整するための増幅率Aを算出し、この増幅率Aによって画像信号の振幅を調整している。これにより、電力制御信号Cntにもとづき特定のサブフィールドの書込み動作を禁止した場合であっても、白つぶれ現象を防ぐことができる。また、この増幅率Aは、固定された値ではなく、電力制御信号Cntの変化に応じて連続的に変化する。したがって、増幅率Aによって画像信号の振幅を調整しするときに、画像の表示輝度も連続的に変化する。そのため、書込み動作を禁止するサブフィールドが増減した場合であっても、その変化が使用者に視認され難い。 As described above, in the present embodiment, the amplification factor A for adjusting the amplitude of the image signal is calculated based on the power control signal Cnt, and the amplitude of the image signal is adjusted by the amplification factor A. Thereby, even if the write operation of a specific subfield is prohibited based on the power control signal Cnt, the whiteout phenomenon can be prevented. Further, the amplification factor A is not a fixed value, but continuously changes according to the change of the power control signal Cnt. Therefore, when the amplitude of the image signal is adjusted by the amplification factor A, the display luminance of the image also changes continuously. Therefore, even when the number of subfields that prohibit the write operation is increased or decreased, the change is not easily seen by the user.
 なお、本実施の形態においては、書込み動作を禁止するサブフィールドを設定した後にディザ処理および誤差拡散処理を行う。そのため、制限された数のサブフィールドコードを有する中間コードセットから表示コードを選択して画像の表示に用いる画像表示装置30においても、画像表示品質の低下を防止することができる。 In the present embodiment, dither processing and error diffusion processing are performed after setting a subfield for prohibiting the write operation. Therefore, even in the image display device 30 that selects a display code from an intermediate code set having a limited number of subfield codes and uses it to display an image, it is possible to prevent a decrease in image display quality.
 このように、本実施の形態によれば、画像表示装置30において、画像信号からサブフィールドコードへの変換を論理演算によって行うことができ、画像表示品質の低下を防止しつつ、データ電極駆動回路32における消費電力を抑制することができる。 As described above, according to the present embodiment, in the image display device 30, the conversion from the image signal to the subfield code can be performed by the logical operation, and the data electrode drive circuit is prevented while preventing the image display quality from being deteriorated. The power consumption in 32 can be suppressed.
 なお、本実施の形態では、サブフィールド削除部53は、基底コード記憶部52に記憶されている基底コードセットにもとづき、階調重みが最も小さいサブフィールドから、階調重みが小さい順にNd個のサブフィールドを非点灯サブフィールドにして削除済み基底コードセットを新たに作成する例を説明した。 In the present embodiment, the subfield deletion unit 53 is based on the basis code set stored in the basis code storage unit 52, and starts from the subfield with the smallest tone weight, in order of Nd number of tone weights. An example has been described in which a deleted base code set is newly created by setting a subfield as a non-lighting subfield.
 しかし、本発明は、非点灯サブフィールドを設定する順序がこれに限定されるものではない。非点灯サブフィールドを設定する順序は任意に設定してもよく、例えば、書込み放電の安定性を考慮して、フィールドの最初に配置されたサブフィールドSF1を非点灯サブフィールドにする対象から外してもよい。 However, in the present invention, the order of setting the non-lighting subfield is not limited to this. The order in which the non-lighting subfields are set may be arbitrarily set. For example, in consideration of the stability of the address discharge, the subfield SF1 arranged at the beginning of the field is excluded from the target of non-lighting subfields. Also good.
 また、誤放電の発生を防止するために、非点灯サブフィールドができるだけ連続しないように、非点灯サブフィールドを設定する順序を設定してもよい。例えば、Nd=1のときは、サブフィールドSF2を非点灯サブフィールドにする。Nd=2のときは、サブフィールドSF2、サブフィールドSF4を非点灯サブフィールドにする。Nd=3のときはサブフィールドSF2、サブフィールドSF4、サブフィールドSF6を非点灯サブフィールドにする。Nd=4のときは、サブフィールドSF2、サブフィールドSF4、サブフィールドSF6、サブフィールドSF8を非点灯サブフィールドにする。このような順番で非点灯サブフィールドを設定してもよい。 Also, in order to prevent the occurrence of erroneous discharge, the order of setting the non-lighting subfields may be set so that the non-lighting subfields are not continuous as much as possible. For example, when Nd = 1, the subfield SF2 is set as a non-lighting subfield. When Nd = 2, the subfield SF2 and the subfield SF4 are set as non-lighting subfields. When Nd = 3, the subfield SF2, the subfield SF4, and the subfield SF6 are set as non-lighting subfields. When Nd = 4, the subfield SF2, the subfield SF4, the subfield SF6, and the subfield SF8 are set as non-lighting subfields. The non-lighting subfield may be set in this order.
 なお、本実施の形態では、基底コード生成部50は基底コード記憶部52を有し、基底コード記憶部52には基底コードセットがあらかじめ記憶されている、という構成を説明した。しかし、本発明は何らこの構成に限定されるものではない。例えば、基底コードを生成するルールをあらかじめ定めておき、そのルールにもとづき基底コードを生成する構成であってもよい。 In the present embodiment, the configuration in which the base code generation unit 50 has the base code storage unit 52 and the base code set is stored in advance in the base code storage unit 52 has been described. However, the present invention is not limited to this configuration. For example, a configuration may be adopted in which a rule for generating a base code is determined in advance and the base code is generated based on the rule.
 また、本実施の形態では、上下コード生成部70は、中間コード生成部72で中間コードセットを生成した後に、上下コード選択部74で上階調コードおよび下階調コードを選択する、という構成を説明した。しかし、本発明は何らこの構成に限定されるものではない。例えば、階調値が大きくなる順に中間コードを生成し、それと同時に中間コードと入力階調とを逐次比較することで上階調コードおよび下階調コードを選択する構成であってもよい。 In the present embodiment, the upper and lower code generation unit 70 selects the upper gradation code and the lower gradation code by the upper and lower code selection unit 74 after the intermediate code set is generated by the intermediate code generation unit 72. Explained. However, the present invention is not limited to this configuration. For example, an intermediate code is generated in order of increasing gradation value, and at the same time, the intermediate code and the input gradation are sequentially compared to select the upper gradation code and the lower gradation code.
 なお、本実施の形態では、表示コード選択部80がディザ選択部82と誤差拡散部84とを有する構成を説明した。しかし、本発明は何らこの構成に限定されるものではない。例えば、ディザ処理を行わない場合には、ディザ選択部82を省略することができる。また、誤差拡散処理を行わない場合には、誤差拡散部84を省略することができる。ただし、誤差拡散処理を省略すると、画像表示品質が低下する恐れがあるため、注意が必要である。 In the present embodiment, the configuration in which the display code selection unit 80 includes the dither selection unit 82 and the error diffusion unit 84 has been described. However, the present invention is not limited to this configuration. For example, when the dither process is not performed, the dither selection unit 82 can be omitted. Further, when the error diffusion process is not performed, the error diffusion unit 84 can be omitted. However, if the error diffusion process is omitted, the image display quality may be lowered, so care must be taken.
 なお、本発明は1フィールドを構成するサブフィールドの数、強制初期化サブフィールドとするサブフィールド、各サブフィールドが有する階調重み等が上述した数値に限定されるものではない。また、画像信号等にもとづいてサブフィールド構成を切り換える構成であってもよい。 In the present invention, the number of subfields constituting one field, the subfields that are forced initialization subfields, the gradation weights of each subfield, and the like are not limited to the above-described numerical values. Moreover, the structure which switches a subfield structure based on an image signal etc. may be sufficient.
 なお、図3に示した駆動電圧波形は本発明の実施の形態における一例を示したものに過ぎず、本発明は何らこの駆動電圧波形に限定されるものではない。 The drive voltage waveform shown in FIG. 3 is merely an example in the embodiment of the present invention, and the present invention is not limited to this drive voltage waveform.
 また、図5、図6に示した回路構成も本発明の実施の形態における一例を示したものに過ぎず、本発明は何らこれらの回路構成に限定されるものではない。 Also, the circuit configurations shown in FIGS. 5 and 6 are merely examples in the embodiment of the present invention, and the present invention is not limited to these circuit configurations.
 なお、本発明における実施の形態に示した各回路ブロックは、実施の形態に示した各動作を行う電気回路として構成されてもよく、あるいは、同様の動作をするようにプログラミングされたマイクロコンピュータ等を用いて構成されてもよい。 Note that each circuit block shown in the embodiment of the present invention may be configured as an electric circuit that performs each operation shown in the embodiment, or a microcomputer that is programmed to perform the same operation. May be used.
 なお、本発明における実施の形態では、1つのフィールドを、5個のサブフィールドで構成する例、8個のサブフィールドで構成する例、および12個のサブフィールドで構成する例を説明した。しかし、本発明は1フィールドを構成するサブフィールドの数が何ら上記の数に限定されるものではない。例えば、サブフィールドの数をより多くすることで、パネル10に表示できる階調の数をさらに増加することができる。あるいは、サブフィールドの数をより少なくすることで、パネル10の駆動に要する時間を短縮することができる。 In the embodiment of the present invention, an example in which one field is composed of five subfields, an example composed of eight subfields, and an example composed of twelve subfields has been described. However, in the present invention, the number of subfields constituting one field is not limited to the above number. For example, by increasing the number of subfields, the number of gradations that can be displayed on the panel 10 can be further increased. Alternatively, the time required for driving panel 10 can be shortened by reducing the number of subfields.
 なお、本発明における実施の形態では、1画素を赤、緑、青の3色の放電セルで構成する例を説明したが、1画素を4色あるいはそれ以上の色の放電セルで構成するパネルにおいても、本発明における実施の形態に示した構成を適用することは可能であり、同様の効果を得ることができる。 In the embodiment of the present invention, an example in which one pixel is constituted by discharge cells of three colors of red, green, and blue has been described. However, a panel in which one pixel is constituted by discharge cells of four colors or more. However, it is possible to apply the configuration shown in the embodiment of the present invention, and the same effect can be obtained.
 なお、本発明の実施の形態において示した具体的な数値は、画面サイズが50インチ、表示電極対14の数が1024のパネル10の特性にもとづき設定したものであって、単に実施の形態における一例を示したものに過ぎない。本発明はこれらの数値に何ら限定されるものではなく、各数値はパネルの仕様やパネルの特性、およびプラズマディスプレイ装置の仕様等にあわせて最適に設定することが望ましい。また、これらの各数値は、上述した効果を得られる範囲でのばらつきを許容するものとする。また、1フィールドを構成するサブフィールドの数や各サブフィールドの階調重み等も本発明における実施の形態に示した値に限定されるものではなく、また、画像信号等にもとづいてサブフィールド構成を切り換える構成であってもよい。 The specific numerical values shown in the embodiment of the present invention are set based on the characteristics of the panel 10 having a screen size of 50 inches and the number of display electrode pairs 14 of 1024. It is just an example. The present invention is not limited to these numerical values, and each numerical value is desirably set optimally in accordance with panel specifications, panel characteristics, plasma display device specifications, and the like. Each of these numerical values is allowed to vary within a range where the above-described effect can be obtained. Further, the number of subfields constituting one field, the gradation weight of each subfield, and the like are not limited to the values shown in the embodiment of the present invention, and the subfield configuration is based on an image signal or the like. May be configured to switch.
 本発明は、画像信号からサブフィールドコードへの変換を演算によって行うことができるので、多数のサブフィールドコードから成る変換テーブルを用いる必要がなく、かつ、画像表示品質の低下を抑制しつつ消費電力を抑制することができるので、画素を構成する発光素子における発光と非発光との2値制御を組み合わせて画像表示領域に画像を表示する画像表示装置および画像表示装置の駆動方法として有用である。 According to the present invention, since conversion from an image signal to a subfield code can be performed by calculation, it is not necessary to use a conversion table composed of a large number of subfield codes, and power consumption is suppressed while suppressing a decrease in image display quality. Therefore, the present invention is useful as an image display device that displays an image in an image display region by combining binary control of light emission and non-light emission in a light emitting element that constitutes a pixel, and a driving method of the image display device.
 10  パネル
 11  前面基板
 12  走査電極
 13  維持電極
 14  表示電極対
 15,23  誘電体層
 16  保護層
 21  背面基板
 22  データ電極
 24  隔壁
 25,25R,25G,25B  蛍光体層
 30  画像表示装置
 31  画像信号処理回路
 32  データ電極駆動回路
 33  走査電極駆動回路
 34  維持電極駆動回路
 35  タイミング発生回路
 36  スイッチ回路
 41  属性検出部
 46  振幅制限部
 50  基底コード生成部
 52  基底コード記憶部
 53  サブフィールド削除部
 54  基底コード選択部
 61  ルール生成部
 70  上下コード生成部
 72  中間コード生成部
 74  上下コード選択部
 80  表示コード選択部
 82  ディザ選択部
 84  誤差拡散部
 86  表示コード決定部
DESCRIPTION OF SYMBOLS 10 Panel 11 Front substrate 12 Scan electrode 13 Sustain electrode 14 Display electrode pair 15, 23 Dielectric layer 16 Protective layer 21 Back substrate 22 Data electrode 24 Partition 25, 25R, 25G, 25B Phosphor layer 30 Image display device 31 Image signal processing Circuit 32 Data electrode drive circuit 33 Scan electrode drive circuit 34 Sustain electrode drive circuit 35 Timing generation circuit 36 Switch circuit 41 Attribute detection unit 46 Amplitude limiting unit 50 Base code generation unit 52 Base code storage unit 53 Subfield deletion unit 54 Base code selection Unit 61 Rule generation unit 70 Upper / lower code generation unit 72 Intermediate code generation unit 74 Upper / lower code selection unit 80 Display code selection unit 82 Dither selection unit 84 Error diffusion unit 86 Display code determination unit

Claims (5)

  1. 階調重みが定められた複数のサブフィールドで1フィールドを構成し、前記複数のサブフィールドのそれぞれにおける発光と非発光との組合せを示すサブフィールドコードを用いて前記複数のサブフィールドのそれぞれの発光と非発光とを制御して、画像表示領域を構成する複数の画素のそれぞれに画像信号にもとづく階調値を表示して前記画像表示領域に画像を表示する画像表示装置であって、
    前記画像信号にもとづく階調値を前記画素に表示するためのサブフィールドコードである表示コードを出力する画像信号処理回路を備え、
    前記画像信号処理回路は、
    複数の基本となるサブフィールドコードにおいて、電力制御信号にもとづく特定のサブフィールドを非発光のサブフィールドにした削除済み基底コードを発生し、複数の前記削除済み基底コードの中から、注目画素における画像信号の階調値よりも大きく、かつ前記注目画素における画像信号の階調値に最も近い階調値を有する削除済み基底コードを上階調基底コードとして選択する基底コード生成部と、
    前記注目画素における画像信号にもとづき、前記上階調基底コードにおける発光するサブフィールドを非発光のサブフィールドに変更して新たなサブフィールドコードを生成するためのルールを生成するルール生成部と、
    前記上階調基底コードに前記ルールを適用して新たに生成されるサブフィールドコードの中から、前記注目画素における画像信号の階調値より大きく前記注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを上階調コードとして選択し、かつ、前記注目画素における画像信号の階調値以下で前記注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを下階調コードとして選択する上下コード生成部と、
    前記注目画素における画像信号の階調値に所定の値を加算して前記注目画素に表示すべき階調値を算出し、前記上階調コードおよび前記下階調コードのうち前記注目画素に表示すべき階調値により近い階調値を有する方を前記表示コードとして選択する表示コード選択部とを有する
    ことを特徴とする画像表示装置。
    Each of the plurality of subfields is formed using a subfield code indicating a combination of light emission and non-light emission in each of the plurality of subfields. An image display device that controls non-light emission and displays a gradation value based on an image signal on each of a plurality of pixels constituting the image display region and displays an image in the image display region,
    An image signal processing circuit that outputs a display code that is a subfield code for displaying a gradation value based on the image signal on the pixel;
    The image signal processing circuit includes:
    In a plurality of basic subfield codes, a deleted base code in which a specific subfield based on a power control signal is set to a non-light-emitting subfield is generated, and an image at a target pixel is selected from the plurality of deleted base codes. A base code generation unit that selects a deleted base code having a gradation value that is greater than the gradation value of the signal and that is closest to the gradation value of the image signal at the target pixel as an upper gradation basis code;
    A rule generation unit that generates a rule for generating a new subfield code by changing a light-emitting subfield in the upper gradation base code to a non-light-emitting subfield based on an image signal in the target pixel;
    Among sub-field codes newly generated by applying the rule to the upper gradation base code, the gradation value of the image signal at the target pixel is greater than the gradation value of the image signal at the target pixel and is closest A sub-field code having a gradation value is selected as an upper gradation code, and a sub-field code having a gradation value which is equal to or smaller than the gradation value of the image signal at the target pixel and which is equal to or smaller than the gradation value of the image signal at the target pixel. An upper / lower code generator for selecting a field code as a lower gradation code;
    A predetermined value is added to the gradation value of the image signal in the pixel of interest to calculate a gradation value to be displayed on the pixel of interest, and is displayed on the pixel of interest among the upper gradation code and the lower gradation code An image display apparatus comprising: a display code selection unit that selects a display code having a gradation value closer to a gradation value to be used as the display code.
  2. 前記複数の基本となるサブフィールドコードは、発光するサブフィールドのうち最も階調重みが大きいサブフィールドと、前記最も階調重みが大きいサブフィールドよりも小さい階調重みを有する全てのサブフィールドが発光するサブフィールドコードである
    ことを特徴とする請求項1に記載の画像表示装置。
    The plurality of basic subfield codes emit light from subfields having the largest gradation weight among the subfields to emit light and all subfields having gradation weights smaller than the subfield having the largest gradation weight. The image display device according to claim 1, wherein the image display device is a subfield code.
  3. 前記所定の値は、誤差拡散処理により発生する誤差およびディザ処理により発生するディザ値である
    ことを特徴とする請求項1に記載の画像表示装置。
    The image display apparatus according to claim 1, wherein the predetermined value is an error generated by error diffusion processing and a dither value generated by dither processing.
  4. 前記画像信号処理回路は、
    前記複数の基本となるサブフィールドコードの中で最も大きい階調値を有するサブフィールドコードの階調値と、
    複数の前記削除済み基底コードの中で最も大きい階調値を有する削除済み基底コードの階調値との比率を算出し、算出した前記比率を前記画像信号に乗算する振幅制限部を有する
    ことを特徴とする請求項1に記載の画像表示装置。
    The image signal processing circuit includes:
    A gradation value of a subfield code having the largest gradation value among the plurality of basic subfield codes;
    It has an amplitude limiter that calculates a ratio with the gradation value of the deleted base code having the largest gradation value among the plurality of deleted base codes, and multiplies the image signal by the calculated ratio. The image display device according to claim 1, wherein
  5. 階調重みが定められた複数のサブフィールドで1フィールドを構成し、前記複数のサブフィールドのそれぞれにおける発光と非発光との組合せを示すサブフィールドコードを用いて前記複数のサブフィールドのそれぞれの発光と非発光とを制御して、画像表示領域を構成する複数の画素のそれぞれに画像信号にもとづく階調値を表示して前記画像表示領域に画像を表示する画像表示装置の駆動方法であって、
    複数の基本となるサブフィールドコードにおいて、電力制御信号にもとづく特定のサブフィールドを非発光のサブフィールドにした削除済み基底コードを発生し、複数の前記削除済み基底コードの中から、注目画素における画像信号の階調値よりも大きく、かつ前記注目画素における画像信号の階調値に最も近い階調値を有する削除済み基底コードを上階調基底コードとして選択するステップと、
    前記注目画素における画像信号にもとづき、前記上階調基底コードにおける発光するサブフィールドを非発光のサブフィールドに変更して新たなサブフィールドコードを生成するためのルールを生成するステップと、
    前記上階調基底コードに前記ルールを適用して新たに生成されるサブフィールドコードの中から、前記注目画素における画像信号の階調値より大きく前記注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを上階調コードとして選択し、かつ、前記注目画素における画像信号の階調値以下で前記注目画素における画像信号の階調値に最も近い階調値を有するサブフィールドコードを下階調コードとして選択するステップと、
    前記注目画素における画像信号の階調値に所定の値を加算して前記注目画素に表示すべき階調値を算出するステップと、
    前記上階調コードおよび前記下階調コードのうち前記注目画素に表示すべき階調値により近い階調値を有する方を、画像信号にもとづく階調値を前記注目画素に表示するためのサブフィールドコードである表示コードとして選択するステップとを有する
    ことを特徴とする画像表示装置の駆動方法。
    Each of the plurality of subfields is formed using a subfield code indicating a combination of light emission and non-light emission in each of the plurality of subfields. And a method of driving an image display device that controls gradation and non-light emission, displays a gradation value based on an image signal on each of a plurality of pixels constituting the image display area, and displays an image in the image display area. ,
    In a plurality of basic subfield codes, a deleted base code in which a specific subfield based on a power control signal is made a non-light-emitting subfield is generated, and an image at a pixel of interest is selected from the plurality of deleted base codes. Selecting a deleted base code having a grayscale value that is greater than the grayscale value of the signal and closest to the grayscale value of the image signal at the target pixel as an upper grayscale basis code;
    Generating a rule for generating a new subfield code by changing a light-emitting subfield in the upper gradation base code to a non-light-emitting subfield based on an image signal in the target pixel;
    Among sub-field codes newly generated by applying the rule to the upper gradation base code, the gradation value of the image signal at the target pixel is greater than the gradation value of the image signal at the target pixel and is closest A sub-field code having a gradation value is selected as an upper gradation code, and a sub-field code having a gradation value which is equal to or smaller than the gradation value of the image signal at the target pixel and which is equal to or smaller than the gradation value of the image signal at the target pixel. Selecting a field code as a lower gradation code;
    Calculating a gradation value to be displayed on the target pixel by adding a predetermined value to the gradation value of the image signal in the target pixel;
    Of the upper gradation code and the lower gradation code, the one having a gradation value closer to the gradation value to be displayed on the target pixel is displayed on the subpixel for displaying the gradation value based on the image signal on the target pixel. And a step of selecting as a display code which is a field code.
PCT/JP2012/000296 2011-01-20 2012-01-19 Image display device and drive method for image display device WO2012098885A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-009639 2011-01-20
JP2011009639 2011-01-20

Publications (1)

Publication Number Publication Date
WO2012098885A1 true WO2012098885A1 (en) 2012-07-26

Family

ID=46515520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000296 WO2012098885A1 (en) 2011-01-20 2012-01-19 Image display device and drive method for image display device

Country Status (1)

Country Link
WO (1) WO2012098885A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231827A (en) * 1997-07-24 1999-08-27 Matsushita Electric Ind Co Ltd Image display device and image evaluating device
JP2002023692A (en) * 2000-07-04 2002-01-23 Matsushita Electric Ind Co Ltd Display device and display method
JP2003173161A (en) * 2001-12-05 2003-06-20 Matsushita Electric Ind Co Ltd Plasma display device
JP2003228319A (en) * 2002-02-01 2003-08-15 Pioneer Electronic Corp Method for driving display panel
JP2004021166A (en) * 2002-06-20 2004-01-22 Matsushita Electric Ind Co Ltd Plasma display device
JP2005301273A (en) * 2004-04-09 2005-10-27 Samsung Electronics Co Ltd Display apparatus and control method thereof
JP2005321775A (en) * 2004-05-01 2005-11-17 Samsung Electronics Co Ltd Display device
JP2008051949A (en) * 2006-08-23 2008-03-06 Fujitsu Hitachi Plasma Display Ltd Gradation display processing method and plasma display device
JP2008083564A (en) * 2006-09-28 2008-04-10 Fujitsu Hitachi Plasma Display Ltd Multi-gradation display method and apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231827A (en) * 1997-07-24 1999-08-27 Matsushita Electric Ind Co Ltd Image display device and image evaluating device
JP2002023692A (en) * 2000-07-04 2002-01-23 Matsushita Electric Ind Co Ltd Display device and display method
JP2003173161A (en) * 2001-12-05 2003-06-20 Matsushita Electric Ind Co Ltd Plasma display device
JP2003228319A (en) * 2002-02-01 2003-08-15 Pioneer Electronic Corp Method for driving display panel
JP2004021166A (en) * 2002-06-20 2004-01-22 Matsushita Electric Ind Co Ltd Plasma display device
JP2005301273A (en) * 2004-04-09 2005-10-27 Samsung Electronics Co Ltd Display apparatus and control method thereof
JP2005321775A (en) * 2004-05-01 2005-11-17 Samsung Electronics Co Ltd Display device
JP2008051949A (en) * 2006-08-23 2008-03-06 Fujitsu Hitachi Plasma Display Ltd Gradation display processing method and plasma display device
JP2008083564A (en) * 2006-09-28 2008-04-10 Fujitsu Hitachi Plasma Display Ltd Multi-gradation display method and apparatus

Similar Documents

Publication Publication Date Title
KR101232575B1 (en) Plasma display device and plasma display panel driving method
JP4867170B2 (en) Image display method
KR101246434B1 (en) Plasma display device and plasma display panel driving method
JP5234192B2 (en) Plasma display apparatus and driving method of plasma display panel
WO2012098885A1 (en) Image display device and drive method for image display device
JP5170322B2 (en) Plasma display apparatus and driving method of plasma display panel
WO2012098888A1 (en) Image display device and drive method for image display device
WO2012098884A1 (en) Image display device and drive method for image display device
WO2012098887A1 (en) Image display device and drive method for image display device
WO2012098886A1 (en) Image display device and drive method for image display device
WO2012105227A1 (en) Plasma display device and method for driving plasma display device
WO2012098902A1 (en) Image display device and drive method for image display device
WO2012098903A1 (en) Image display device and drive method for image display device
WO2012098904A1 (en) Image display device and drive method for image display device
WO2011074251A1 (en) Plasma display device and method for driving plasma display panel
WO2012073516A1 (en) Method of driving plasma display device and plasma display device
WO2011096220A1 (en) Plasma display device and method for driving a plasma display panel
JP2014016441A (en) Plasma display device
JP2009192648A (en) Plasma display device and method of driving the same
JPWO2012090451A1 (en) Plasma display panel driving method and plasma display device
WO2012049839A1 (en) Plasma display device drive method and plasma display device
WO2012049841A1 (en) Plasma display device drive method and plasma display device
JP2009186807A (en) Plasma display device and driving method for plasma display panel
JP2010197905A (en) Method for driving plasma display panel
JP2009192647A (en) Plasma display device and method of driving the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP