WO2012098647A1 - Semiconductor device and system using same - Google Patents

Semiconductor device and system using same Download PDF

Info

Publication number
WO2012098647A1
WO2012098647A1 PCT/JP2011/050772 JP2011050772W WO2012098647A1 WO 2012098647 A1 WO2012098647 A1 WO 2012098647A1 JP 2011050772 W JP2011050772 W JP 2011050772W WO 2012098647 A1 WO2012098647 A1 WO 2012098647A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
semiconductor
semiconductor film
piezoelectric body
film
Prior art date
Application number
PCT/JP2011/050772
Other languages
French (fr)
Japanese (ja)
Inventor
正成 藤森
小島 恭子
龍崎 大介
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2012553496A priority Critical patent/JP5608759B2/en
Priority to PCT/JP2011/050772 priority patent/WO2012098647A1/en
Publication of WO2012098647A1 publication Critical patent/WO2012098647A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices

Definitions

  • the present invention relates to charge separation of photogenerated carriers involved in the generation of energy, decomposition of substances, and synthesis by applying oxidation / reduction reactions such as solar cells, water, and carbon dioxide.
  • this binding energy is small, and excitons dissociate at room temperature.
  • the excited electrons and holes generated by the light irradiation are diffused and uniformly distributed in the light irradiated region. After that, electrons and holes recombine within the lifetime determined according to the semiconductor type and defect density, impurity type and concentration, energy level, surface condition, etc. Disappears.
  • each electrode is prepared so as to function as a reduction electrode and an oxidation electrode, and an oxidation / reduction reaction is caused on each electrode to obtain a material serving as an energy source. Therefore, it is the same as that of a solar cell until light energy is converted into electric energy.
  • the difference from a solar cell is that chemical energy is obtained in the form of a substance by using electric energy obtained by converting light energy for a chemical reaction.
  • the part that converts light energy into electrical energy can use the structure of the solar cell as it is.
  • the method using solar cells is the most efficient method for conversion from light to electricity and has great advantages.
  • making the solar cell structure itself is a costly method requiring a complex process.
  • a method of converting light into electric energy by a simpler method is often used.
  • a semiconductor single layer and a metal are joined, and each of them is used as an oxidation / reduction electrode, and conversion of light into electric energy can be performed in the semiconductor single layer.
  • the probability that the carriers generated by light recombine before reaching the oxidation / reduction electrode by diffusion is higher than that of the pn junction. That is, there is a problem that carriers generated by light are not used for oxidation / reduction reactions and are lost. This problem deteriorates the conversion efficiency of light energy into a product by oxidation / reduction reaction.
  • One solution is to adopt a structure in which the diffusion length is short so that the carriers are taken into the electrode before recombining.
  • the most typical example is a method using semiconductor fine particles.
  • the diffusion length of the carriers generated by light is at most about the fine particle size.
  • Patent Document 1 discloses an example of such a method.
  • Patent Document 2 discloses that organic substance decomposition is performed using a composite of a piezoelectric body and a semiconductor.
  • Patent Document 3 discloses a structure in which manganese oxide particles are arranged on titanium oxide for the purpose of reducing the recombination rate of photogenerated electrons and holes.
  • a thin film or a bulk semiconductor is used for carrier generation.
  • the method using fine particles disclosed in Patent Document 1 can increase the surface area per volume as compared with the case of using a thin film or a bulk semiconductor, and therefore it is easy to increase the frequency at which oxidation / reduction reactions occur.
  • it is often used by being dispersed in water, which has the advantage of increasing the absorption probability due to irregular reflection of light.
  • carriers are not separated into the semiconductor film surface and the substrate interface as in the present invention, and recombination of carriers across fine particles is likely to occur due to contact between the fine particles, and it is difficult to prevent them. Also, the period during which the oxidation / reduction reaction can be maintained is short.
  • Patent Document 2 is formed by sintering powder, and the electric polarization axis of the piezoelectric body faces a random direction. Therefore, only a local charge separation effect can be expected, and carrier recombination tends to occur.
  • Patent Document 3 does not separate carriers on the surface of the semiconductor film and the substrate interface as in Patent Document 1, and the effect of suppressing the recombination of carriers only affects locally.
  • the semiconductor device includes a substrate, a semiconductor film formed in contact with the substrate on the first surface and generating carriers by light irradiation, and a piezoelectric body disposed in the semiconductor film.
  • Semiconductor device in which the electric polarization axis of the piezoelectric body is aligned with respect to the film thickness direction of the semiconductor film, and is arranged so as to be continuously distributed between the first surface and the second surface facing the first surface It is.
  • the substrate when a strain is applied to the piezoelectric body, the substrate has a semiconductor film formed in contact with the substrate on the first surface and generates a carrier by light irradiation, and a piezoelectric body disposed in the semiconductor film.
  • the direction of the electric field generated around the piezoelectric body and between the first surface of the semiconductor film and the second surface facing the first surface is the film thickness direction of the semiconductor film.
  • a semiconductor device that includes a semiconductor device that generates carriers by light irradiation and a container having a translucency and a structure that fills the periphery of the semiconductor device with a fluid, and extracts a product generated by a redox reaction by the carriers
  • the semiconductor device includes a substrate, a semiconductor film formed in contact with the substrate on a first surface and generating carriers, and a piezoelectric body disposed in the semiconductor film, and the piezoelectric body is a first surface of the semiconductor film. And the second surface facing the first surface are arranged so as to be continuously distributed, and the electric polarization axis of the piezoelectric body is aligned with the film thickness direction of the semiconductor film.
  • recombination of carriers generated by irradiating light to a thin film or a bulk semiconductor can be suppressed, and the film can be easily taken out to the electrode.
  • FIG. 1 is a diagram illustrating an example of a semiconductor device according to a first embodiment. It is a figure which shows the cross-sectional structure of Fig.1 (a).
  • FIG. 6 is a diagram illustrating an example of a semiconductor device according to a second embodiment.
  • FIG. 6 is a diagram illustrating an example of a semiconductor device according to a third embodiment.
  • FIG. 6 is a diagram illustrating an example of a semiconductor device according to a third embodiment. It is a schematic diagram of the energy band in the film thickness direction inside the semiconductor (position A in FIG. 1B) in a state where strain is applied. It is a schematic diagram of the energy band in the film thickness direction inside the semiconductor (position A in FIG. 1B) when no strain is applied.
  • FIG. 1B It is a schematic diagram of the energy band of the in-film parallel direction in the semiconductor (position A in FIG. 1B) when a piezoelectric body is present. It is a schematic diagram of the energy band in the in-film parallel direction inside the semiconductor (position B in FIG. 1B) when there is no piezoelectric body. It is a figure which shows an example of the state which formed the piezoelectric material thin film on the board
  • FIG. 6 is a schematic view of a photomask pattern that realizes a semiconductor device according to Example 3.
  • FIG. 6 is a schematic view of a photomask pattern that realizes a semiconductor device according to Example 3.
  • FIG. 6 It is a conceptual diagram which shows an example of the system using the semiconductor device of a present Example.
  • Example 1 In this embodiment, a structure in which a one-dimensional columnar piezoelectric body, which is one embodiment of the present invention, is embedded in a semiconductor responsible for generating optical carriers is described.
  • a structure in which an electrostatic potential is spontaneously applied to a semiconductor that generates carriers by light irradiation is added, thereby providing a mechanism in which positive and negative carriers drift in directions opposite to each other.
  • the main feature is the structure that can.
  • spontaneous is used to mean that energy is not consciously supplied from the outside.
  • FIG. 1A is a diagram showing a state in which a columnar piezoelectric body 12 is embedded in a semiconductor film 11 that generates optical carriers on a substrate 10.
  • FIG.1 (b) is sectional drawing in the surface containing a piezoelectric material of Fig.1 (a).
  • the piezoelectric body 12 may have a shape that completely penetrates the semiconductor film 11, or the surface of the piezoelectric body 12 and the surface of the semiconductor film 11 may coincide with each other. Furthermore, the surface of the piezoelectric body 12 may be in a state where it is buried to some extent inside the semiconductor film 11.
  • “a certain degree” means a distance such that the surface affects the inside of the semiconductor film 11 and is characterized as a range in which the energy band of the semiconductor is bent due to the influence of the surface.
  • one of the features of the columnar piezoelectric body is that the electric polarization axes are aligned.
  • strain is applied to the substrate in such a state
  • strain is applied to the columnar piezoelectric body via the substrate or the thin film, and positive and negative charges are generated on the end surfaces of the columnar piezoelectric body.
  • the piezoelectric body By arranging the piezoelectric body so that the end face where the charge is generated corresponds to the surface of the semiconductor film 11 and the substrate interface, an electric field is applied between the surface of the film and the substrate interface around the piezoelectric body.
  • the electric field direction between the surface of the semiconductor thin film and the interface can be obtained by aligning the electric polarization axes of the piezoelectric body. Can be unified. Although the intensity varies with time, an electric field is generated in the film thickness direction of the semiconductor film, and electrons and holes drift in the determined directions, so that positive and negative carriers can be easily taken out by the determined electrodes.
  • FIG. 4A is a diagram for explaining this situation, and shows an energy band of the semiconductor film 11 in a state where a strain at a position A in FIG. 1B is applied.
  • the horizontal axis represents the position in the depth direction indicated by A in FIG. 1B, and the vertical axis represents energy.
  • the conduction band 13 and the valence band 15 are bent by the positive and negative charges generated at both ends of the columnar piezoelectric body, and the bottom 20 of the conduction band and the upper end 21 of the valence band are in the depth direction of the film. Therefore, the electrons 16 and the holes 17 which are carriers generated by light are separated from each other on the left and right in the drawing according to the inclination of the band.
  • Reference numeral 14 in the figure indicates a forbidden band in the semiconductor.
  • FIG. 5 (a) is a diagram for explaining this situation, and shows an energy band at a position B in FIG. 1 (b).
  • the vertical axis represents energy
  • the horizontal axis represents the position in the horizontal direction. Since the conduction band 13 and the valence band 15 are bent near the interface 19 between the semiconductor film 11 and the piezoelectric body 12, the electrons 16 and the holes 17 generated in the vicinity of the semiconductor film 11 and the valence band 15 are in directions opposite to each other depending on whether the charge is positive or negative. You will receive power.
  • FIG. 5 (b) depicts an energy band at the same location when there is no piezoelectric body. Since the uniform semiconductor layer continues, the conduction band 13 and the valence band 15 do not bend.
  • the piezoelectric material is arranged so as to be continuously distributed between the surface of the semiconductor film and the substrate interface, and the electric polarization axis is aligned with respect to the film thickness direction, so that strain is applied.
  • the electrons and holes generated by the absorption of light are each subjected to a force in the opposite direction, and are distributed in a spatially separated state. To do. Thereby, it becomes easy to take out to an electrode, suppressing recombination of a carrier.
  • the form of the piezoelectric body is not limited to the columnar shape. Any structure may be used as long as the electric polarization axes are aligned and continuously exist between the surface of the semiconductor thin film responsible for light generation and the substrate interface.
  • a zinc oxide (ZnO) thin film 22 is formed as a piezoelectric body on a substrate 10 made of silicon (Si) (FIG. 6A).
  • ZnO with a film thickness of about 100 nm can be formed by reactive RF magnetron sputtering in a mixed atmosphere of oxygen and argon using Zn as a target.
  • a ZnO film 12 oriented in the c-axis direction is formed on this thin film by a hydrothermal synthesis method (FIG. 6B).
  • a 4 wt% aqueous ammonia solution is added to an aqueous solution in which 20 mM zinc chloride (ZnCl 2 ) and 20 mM hexamethylenetetramine are dissolved, and the temperature is maintained at 95 ° C.
  • the previous substrate is brought into contact therewith with the ZnO surface facing downward, and is held for about 1 hour to obtain a ZnO thin film having a film thickness of about 1 ⁇ m and oriented on the c-axis.
  • the ZnO film is patterned by photolithography to form a one-dimensional cylindrical ZnO that stands upright in the direction perpendicular to the substrate.
  • a resist thin film 23 is applied to the substrate by spin coating and baked by a hot plate (FIG. 6C). It exposes with the photomask which has a pattern in which a circular resist remains periodically, and develops suitably.
  • FIG. 6D a pattern of the circular island-shaped resist thin film 23 remains on the ZnO film.
  • phosphoric acid H 3 PO 4
  • cylindrical ZnO as shown in FIG. 6E is formed on the substrate 10. Thereafter, as shown in FIG.
  • titanium dioxide (TiO 2 ) 28 is sputtered to embed cylindrical ZnO in TiO 2 .
  • the remaining resist is removed by wet etching to lift off the TiO 2 formed on the cylindrical ZnO. In this way, a desired structure as shown in FIG. In this state, the columnar ZnO may be completely embedded by further forming a film of TiO 2 .
  • the aluminum is deposited on the back surface of the structure to the substrate, a tin-doped indium oxide (ITO) as a transparent electrode on the surface while the deposition, although the TiO 2 is absorbed irradiated with 365nm light absorption is small with respect to ITO
  • ITO indium oxide
  • the photocurrent was measured.
  • the photocurrent was measured by applying light to a substrate having the same film thickness and the like. The former had more photocurrent for the same intensity of light. It was confirmed that it could be taken out.
  • the structure in which the piezoelectric body is cylindrical is suitable for a structure in which the piezoelectric body grows in a nanowire shape.
  • Examples thereof include ZnO crystal growth on a GaN or sapphire substrate.
  • the film can be grown by direct hydrothermal synthesis without sputter deposition. Furthermore, there is a great advantage that molding by photolithography is unnecessary.
  • ZnO was used as the piezoelectric body, but quartz, potassium phosphate, barium titanate, zinc titanate zirconate, Rochelle salt, zinc oxide, lithium niobate, lithium tantalate, lithium tetraborate, langasite, Other piezoelectric materials such as aluminum nitride, tourmaline, and sodium nitrite may be used.
  • Necessary structures can be configured in the same manner with glass, plastic plastic substrates, and metal substrates.
  • the semiconductor that generates the optical carriers is not limited to TiO 2 , and SiC, GaN, GaP, GaAs, CdSe, CdS, Fe 2 O 3 , SrTiO 3 , Bi 2 O 3 , FeTiO 3 , MnTiO 3 , Any type of semiconductor may be used as long as it has absorption near visible light, such as BaTiO 3 , KTaO 3 , WO 3 , SnO 2 , NbO 2 , and Nb 2 O 3 .
  • FIG. 2 shows a semiconductor device according to Embodiment 2 of the present invention.
  • This embodiment is characterized by having a prismatic piezoelectric structure.
  • a prismatic piezoelectric structure can be obtained by changing the photomask pattern with respect to the semiconductor device manufacturing method described in the first embodiment.
  • Example 3 In the first embodiment, an example in which the piezoelectric body has a columnar structure has been described. In this embodiment, an example using a piezoelectric body having a plate-like structure as shown in FIG. 3 will be described.
  • the manufacturing method of the semiconductor device of this example is exactly the same as the method disclosed in Example 1 until the piezoelectric ZnO is grown by the hydrothermal synthesis method and the resist is applied.
  • the piezoelectric body 12 is unidirectional within the plane of the semiconductor film 11 A structure extending linearly is obtained.
  • the piezoelectric bodies are continuously distributed, there is an advantage that the influence of the potential due to strain is widely spread when the piezoelectric bodies are arranged with the same period as compared with the columnar shape.
  • the area of the interface between the semiconductor and the piezoelectric body is widened, there is an advantage that the effect of bending the energy band due to the interface is more widely spread.
  • the arrangement of continuous piezoelectric bodies is not limited to that shown in FIG.
  • the structure as shown in FIG. 3B and the piezoelectric body 12 divide the semiconductor film 11 into a lattice shape in the same manner as the method disclosed in the first embodiment.
  • a structure arranged in this manner can be obtained.
  • Such a structure has an advantage that the influence of electric charges generated by strain is stronger and extends to the semiconductor layer as compared with FIG. Furthermore, there is an advantage that the influence of the interface extends over a wider area.
  • the configuration shown in FIG. 3A has an advantage that light easily hits a wide range as compared with FIG. This advantage is more conspicuous in the configurations of FIGS. 1A and 2 than in the configurations of FIGS. 3A and 3B.
  • Example 4 In this embodiment, a system using a semiconductor device that efficiently extracts photogenerated carriers described in Embodiments 1 to 3 will be described with reference to FIG.
  • the semiconductor device 24 as described in the first to third embodiments is fixed inside the installation box 25.
  • the installation box 25 has a structure that fills the periphery of the semiconductor device 24 by introducing a fluid such as gas or liquid.
  • Reference numeral 26 in the figure is an inlet for introducing a fluid
  • reference numeral 27 is an outlet for extracting the fluid from the installation box.
  • At least the upper surface of the installation box 25 is formed of a transparent surface so that light can be taken inside.
  • the semiconductor device 24 is mechanically fixed in the installation box. As a result, thermal strain due to heat due to sunlight irradiation, mechanical strain due to installation with mechanical stress applied, and strain due to film strain at the time of thin film deposition are introduced.
  • a solution in which carbon dioxide is dissolved at a high concentration is introduced to fill the inside of the installation box 25, and sunlight is irradiated from the upper surface.
  • Light incident from the surface of the semiconductor device 24 is absorbed in the semiconductor and generates photocarriers (a pair of electrons and holes).
  • the generated photocarriers efficiently separate electrons and holes as described in the first embodiment and reach the front surface and the back surface of the semiconductor device 24, respectively. .
  • These carriers oxidize and reduce carbon dioxide or a dissolved product thereof on each surface of the semiconductor device 24 to generate decomposition products.
  • the product is a gas
  • a gas outlet is provided on the upper surface of the installation box and is taken out to the outside. In the case of liquid, it is carried out from the outlet.

Abstract

The purpose of the present invention is to provide a structure wherein recombination of carriers arising with irradiation of thin-film or bulk semiconductors by light can be suppressed and extraction to electrodes is made easy. Therefore, a semiconductor film is formed on a substrate, and the axis of electrical polarization of a piezoelectric body is disposed so as to pass through the semiconductor film in a state of alignment with the direction of film thickness of the semiconductor.

Description

半導体装置及びそれを用いたシステムSemiconductor device and system using the same
 本発明は、太陽電池や、水、二酸化炭素などの酸化・還元反応を応用したエネルギーの生成や物質の分解、合成に関わる光生成キャリアの電荷分離に関するものである。 The present invention relates to charge separation of photogenerated carriers involved in the generation of energy, decomposition of substances, and synthesis by applying oxidation / reduction reactions such as solar cells, water, and carbon dioxide.
 半導体物質に光が入射すると、光が半導体物質中を通過する距離及び入射した光のエネルギーに対する物質固有の吸収率に応じて、光は半導体に吸収される。光を吸収する実態は半導体の電子やフォノンである。太陽から発せられる光を電気として利用する場合、電気エネルギーの生成には電子による光の吸収が重要となる。太陽光の持つエネルギースケールでは、光は価電子帯の電子によって吸収され、伝導帯へと電子を励起する。価電子帯には電子が抜けた為に正孔が形成される。電子はマイナス符号、正孔はプラス符号の電荷を持っており、結晶の誘電定数によってスクリーニングされたクーロン力により緩やかに束縛された状態をとる(励起子)。通常の無機半導体ではこの束縛エネルギーが小さく、室温において励起子は解離する。この場合、光の照射により発生した励起電子と正孔は、光照射された領域内で拡散し均等に分布する。その後、半導体の種類や欠陥密度、不純物の種類と濃度及びそのエネルギー準位、表面の状態などに応じて決まる寿命以内に電子と正孔は再結合し、電子は価電子帯に落ち、正孔は消滅する。 When light is incident on the semiconductor material, the light is absorbed by the semiconductor in accordance with the distance that the light passes through the semiconductor material and the absorption rate specific to the material with respect to the energy of the incident light. The reality of absorbing light is semiconductor electrons and phonons. When light emitted from the sun is used as electricity, absorption of light by electrons is important for generating electrical energy. On the energy scale of sunlight, light is absorbed by electrons in the valence band and excites the electrons into the conduction band. Holes are formed in the valence band because electrons are lost. Electrons have a minus sign and holes have a plus sign, and are loosely bound by the Coulomb force screened by the dielectric constant of the crystal (exciton). In ordinary inorganic semiconductors, this binding energy is small, and excitons dissociate at room temperature. In this case, the excited electrons and holes generated by the light irradiation are diffused and uniformly distributed in the light irradiated region. After that, electrons and holes recombine within the lifetime determined according to the semiconductor type and defect density, impurity type and concentration, energy level, surface condition, etc. Disappears.
 太陽光エネルギーを電気エネルギーに変換する場合、電子と正孔が再結合する前に空間的に異なる領域に分離して外部に取出す必要がある。一般的な太陽電池は、色素増感型を除き、pn接合により電子と正孔(キャリア)の分布に偏りを持たせる。光吸収により生成した少数キャリア(p型領域内の電子とn型領域内の正孔)を電気化学ポテンシャルの勾配によりpn接合方向へ拡散させ、上記の寿命時間以内に多数キャリア領域まで到達したキャリアを電気として取り出して利用する。 When converting solar energy into electrical energy, it is necessary to separate the space into different regions before taking out electrons and holes before recombining them. In general solar cells, except for the dye-sensitized type, the distribution of electrons and holes (carriers) is biased by a pn junction. Minority carriers generated by light absorption (electrons in the p-type region and holes in the n-type region) are diffused toward the pn junction by the gradient of the electrochemical potential, and reach the majority carrier region within the lifetime described above. Is used as electricity.
 水や二酸化炭素などを酸化・還元反応により分解して水素やメタン、アルコールなどエネルギー源となる物質を得る場合、まず、半導体の光吸収により発生した電子・正孔を分離し、各々異なる電極に取り出す。夫々の電極は還元電極及び酸化電極として働くよう準備しておき、各電極上で酸化・還元反応を起こしてエネルギー源となる物質を得る。従って、光エネルギーを電気エネルギーに変換するところまでは太陽電池と同様である。太陽電池との違いは光エネルギーを変換して得た電気エネルギーを化学反応に用いて化学的エネルギーを物質の形態として得ることにある。 When water, carbon dioxide, etc. are decomposed by oxidation / reduction reactions to obtain substances that become energy sources such as hydrogen, methane, alcohol, etc., first, the electrons and holes generated by the light absorption of the semiconductor are separated, and then separated into different electrodes Take out. Each electrode is prepared so as to function as a reduction electrode and an oxidation electrode, and an oxidation / reduction reaction is caused on each electrode to obtain a material serving as an energy source. Therefore, it is the same as that of a solar cell until light energy is converted into electric energy. The difference from a solar cell is that chemical energy is obtained in the form of a substance by using electric energy obtained by converting light energy for a chemical reaction.
 光エネルギーを電気エネルギーに変換する部分は太陽電池の構造をそのまま用いることが可能である。太陽電池を用いる方法は光から電気への変換に関して最も効率のよい方法であり、大きな利点を有する。しかし、太陽電池構造を作ること自体が複雑なプロセスを必要としコストのかかる方法である。このため、光を用いてエネルギー源となる化学物質を生成する場合は、より単純な方法で光を電気エネルギーに変換する方法が用いられることが多い。例えば半導体単層と金属を接合し、夫々を酸化・還元電極として用いて光の電気エネルギーへの変換は半導体単層で行うこともできる。この場合、光によって生成したキャリアが拡散により夫々酸化・還元電極へ到達するまでの間に再結合する確率は、pn接合に比較して高くなる。即ち、光により生成したキャリアが酸化・還元反応に使われず、失われてしまうという課題がある。この課題により光エネルギーの、酸化・還元反応による生成物への転換効率が悪くなる。 The part that converts light energy into electrical energy can use the structure of the solar cell as it is. The method using solar cells is the most efficient method for conversion from light to electricity and has great advantages. However, making the solar cell structure itself is a costly method requiring a complex process. For this reason, when a chemical substance that is an energy source is generated using light, a method of converting light into electric energy by a simpler method is often used. For example, a semiconductor single layer and a metal are joined, and each of them is used as an oxidation / reduction electrode, and conversion of light into electric energy can be performed in the semiconductor single layer. In this case, the probability that the carriers generated by light recombine before reaching the oxidation / reduction electrode by diffusion is higher than that of the pn junction. That is, there is a problem that carriers generated by light are not used for oxidation / reduction reactions and are lost. This problem deteriorates the conversion efficiency of light energy into a product by oxidation / reduction reaction.
 一つの解決方法は、キャリアが再結合する前に電極に取り込まれるよう、拡散長が短くて済むような構造を採用することである。最も代表的な例は半導体微粒子を用いる方法である。半導体微粒子の表面に金属微粒子を接合し、半導体部分と金属部分を夫々酸化・還元電極とすることにより、光によって生成したキャリアの拡散長が高々微粒子径程度で済む。例えば特許文献1でこうした方法の例が開示されている。 One solution is to adopt a structure in which the diffusion length is short so that the carriers are taken into the electrode before recombining. The most typical example is a method using semiconductor fine particles. By bonding metal fine particles to the surface of the semiconductor fine particles and using the semiconductor portion and the metal portion as oxidation / reduction electrodes, respectively, the diffusion length of the carriers generated by light is at most about the fine particle size. For example, Patent Document 1 discloses an example of such a method.
 また、特許文献2には圧電体と半導体の複合体を用いて有機物分解等を行うことが開示されている。 Further, Patent Document 2 discloses that organic substance decomposition is performed using a composite of a piezoelectric body and a semiconductor.
 また、特許文献3には光生成した電子及び正孔の再結合速度を低下させる効果を狙って酸化チタン上に酸化マンガン粒子を配置した構成について開示している。 Patent Document 3 discloses a structure in which manganese oxide particles are arranged on titanium oxide for the purpose of reducing the recombination rate of photogenerated electrons and holes.
特開2009-062321号公報JP 2009-063221 A 特開2002-079068号公報JP 2002-079068 A 特開2006-528055号公報JP 2006-528055 A
 本発明では、キャリアの生成に薄膜やバルクの半導体を用いる。一方で、特許文献1に開示される微粒子を用いる方法は、薄膜やバルクの半導体を用いる場合に比べて、体積当たりの表面積を大きくできるため、酸化・還元反応が生じる頻度を上げやすい。また、水中に分散させて用いることが多く、光の乱反射による吸収確率を上げられる利点を持つ。しかしながら、本発明のように半導体膜表面と基板界面にキャリアを分離するものではなく、微粒子同士の接触による微粒子間を跨ったキャリアの再結合が起きやすく、その防止が難しい。また、酸化・還元反応を維持できる期間も短い。 In the present invention, a thin film or a bulk semiconductor is used for carrier generation. On the other hand, the method using fine particles disclosed in Patent Document 1 can increase the surface area per volume as compared with the case of using a thin film or a bulk semiconductor, and therefore it is easy to increase the frequency at which oxidation / reduction reactions occur. In addition, it is often used by being dispersed in water, which has the advantage of increasing the absorption probability due to irregular reflection of light. However, carriers are not separated into the semiconductor film surface and the substrate interface as in the present invention, and recombination of carriers across fine particles is likely to occur due to contact between the fine particles, and it is difficult to prevent them. Also, the period during which the oxidation / reduction reaction can be maintained is short.
 また、特許文献2に開示される複合体は、粉体を焼結して形成されており、圧電体の電気分極軸はランダムな方向を向く。そのため、局所的な電荷分離効果しか期待できず、キャリアの再結合が生じやすくなってしまう。 Further, the composite disclosed in Patent Document 2 is formed by sintering powder, and the electric polarization axis of the piezoelectric body faces a random direction. Therefore, only a local charge separation effect can be expected, and carrier recombination tends to occur.
 さらに、特許文献3に開示される構成は、特許文献1と同様、半導体膜表面と基板界面にキャリアを分離するものではなく、キャリアの再結合抑止効果が局所的にしか及ばない。 Furthermore, the configuration disclosed in Patent Document 3 does not separate carriers on the surface of the semiconductor film and the substrate interface as in Patent Document 1, and the effect of suppressing the recombination of carriers only affects locally.
 このような事情に鑑み、本願は、薄膜やバルクの半導体に光を照射して生成したキャリアの再結合を抑止して電極へ取り出し易くすることを可能にする構造を提供することを目的とする。 In view of such circumstances, it is an object of the present application to provide a structure that makes it easy to take out to an electrode by suppressing recombination of carriers generated by irradiating light to a thin film or a bulk semiconductor. .
 本願において開示される発明のうち代表的なものを簡単に説明すれば、次のとおりである。すなわち、基板と、基板と第1の面で接して形成され光照射によりキャリアを生成する半導体膜と、半導体膜中に配置される圧電体とを有し、圧電体は、半導体膜の第1の面と第1の面に対向する第2の面との間に、連続的に分布するように配置され、圧電体の電気分極軸が半導体膜の膜厚方向に対して揃っている半導体装置である。 A typical one of the inventions disclosed in the present application will be briefly described as follows. That is, the semiconductor device includes a substrate, a semiconductor film formed in contact with the substrate on the first surface and generating carriers by light irradiation, and a piezoelectric body disposed in the semiconductor film. Semiconductor device in which the electric polarization axis of the piezoelectric body is aligned with respect to the film thickness direction of the semiconductor film, and is arranged so as to be continuously distributed between the first surface and the second surface facing the first surface It is.
 また、基板と、基板と第1の面で接して形成され光照射によりキャリアを生成する半導体膜と、半導体膜中に配置される圧電体とを有し、圧電体に歪みが印加された場合、圧電体の周囲であって半導体膜の第1の面と第1の面に対向する第2の面との間に発生する電場の向きが、半導体膜の膜厚方向となる半導体装置である。 In addition, when a strain is applied to the piezoelectric body, the substrate has a semiconductor film formed in contact with the substrate on the first surface and generates a carrier by light irradiation, and a piezoelectric body disposed in the semiconductor film. In the semiconductor device, the direction of the electric field generated around the piezoelectric body and between the first surface of the semiconductor film and the second surface facing the first surface is the film thickness direction of the semiconductor film. .
 また、光照射によりキャリアを生成する半導体装置と、透光性を有し半導体装置の周囲を流体で満たす構造を有する容器とを備え、キャリアによる酸化還元反応により生成される生成物を取り出す、半導体装置を用いたシステムである。半導体装置は、基板と、基板と第1の面で接して形成されキャリアを生成する半導体膜と、半導体膜中に配置される圧電体とを有し、圧電体は半導体膜の第1の面と第1の面に対向する第2の面との間に、連続的に分布するように配置され、圧電体の電気分極軸は半導体膜の膜厚方向に対して揃っている。 A semiconductor device that includes a semiconductor device that generates carriers by light irradiation and a container having a translucency and a structure that fills the periphery of the semiconductor device with a fluid, and extracts a product generated by a redox reaction by the carriers This is a system using a device. The semiconductor device includes a substrate, a semiconductor film formed in contact with the substrate on a first surface and generating carriers, and a piezoelectric body disposed in the semiconductor film, and the piezoelectric body is a first surface of the semiconductor film. And the second surface facing the first surface are arranged so as to be continuously distributed, and the electric polarization axis of the piezoelectric body is aligned with the film thickness direction of the semiconductor film.
 本発明によれば、薄膜やバルクの半導体に光を照射して生成したキャリアの再結合を抑止して電極へ取り出し易くすることができる。 According to the present invention, recombination of carriers generated by irradiating light to a thin film or a bulk semiconductor can be suppressed, and the film can be easily taken out to the electrode.
実施例1に係る半導体装置の一例を示す図である。1 is a diagram illustrating an example of a semiconductor device according to a first embodiment. 図1(a)の断面構造を示す図である。It is a figure which shows the cross-sectional structure of Fig.1 (a). 実施例2に係る半導体装置の一例を示す図である。FIG. 6 is a diagram illustrating an example of a semiconductor device according to a second embodiment. 実施例3に係る半導体装置の一例を示す図である。FIG. 6 is a diagram illustrating an example of a semiconductor device according to a third embodiment. 実施例3に係る半導体装置の一例を示す図である。FIG. 6 is a diagram illustrating an example of a semiconductor device according to a third embodiment. 歪が印加されている状態での、半導体内部(図1(b)中Aの位置)における膜厚方向でのエネルギーバンドの模式図である。It is a schematic diagram of the energy band in the film thickness direction inside the semiconductor (position A in FIG. 1B) in a state where strain is applied. 歪が印加されていない状態での、半導体内部(図1(b)中Aの位置)における膜厚方向でのエネルギーバンドの模式図である。It is a schematic diagram of the energy band in the film thickness direction inside the semiconductor (position A in FIG. 1B) when no strain is applied. 圧電体が存在する場合の半導体内部(図1(b)中Aの位置)における膜面内平行方向のエネルギーバンドの模式図である。It is a schematic diagram of the energy band of the in-film parallel direction in the semiconductor (position A in FIG. 1B) when a piezoelectric body is present. 圧電体がない場合の半導体内部(図1(b)中Bの位置)における膜面内平行方向のエネルギーバンドの模式図である。It is a schematic diagram of the energy band in the in-film parallel direction inside the semiconductor (position B in FIG. 1B) when there is no piezoelectric body. 基板上に圧電体薄膜を成膜した状態の一例を示す図である。It is a figure which shows an example of the state which formed the piezoelectric material thin film on the board | substrate. 圧電体薄膜上に圧電体を成長させた状態の一例を示す図である。It is a figure which shows an example of the state which made the piezoelectric material grow on the piezoelectric material thin film. 圧電体上に、圧電体をパターニングする為のレジストを塗布した状態の一例を示す図である。It is a figure which shows an example of the state which apply | coated the resist for patterning a piezoelectric material on a piezoelectric material. レジストをパターニングした状態の一例を示す図である。It is a figure which shows an example of the state which patterned the resist. エッチングにより圧電体をパターニングした状態の一例を示す図である。It is a figure which shows an example of the state which patterned the piezoelectric material by the etching. 基板上に半導体を成膜した状態の一例を示す図である。It is a figure which shows an example of the state which formed the semiconductor film on the board | substrate. レジストをエッチングし、柱状圧電体上に残る半導体をリフトオフした状態の一例を示す図である。It is a figure which shows an example of the state which etched the resist and lifted off the semiconductor which remains on a columnar piezoelectric material. 実施例3に係る半導体装置を実現するフォトマスクパターンの概略図である。6 is a schematic view of a photomask pattern that realizes a semiconductor device according to Example 3. FIG. 実施例3に係る半導体装置を実現するフォトマスクパターンの概略図である。6 is a schematic view of a photomask pattern that realizes a semiconductor device according to Example 3. FIG. 本実施例の半導体装置を利用したシステムの一例を示す概念図である。It is a conceptual diagram which shows an example of the system using the semiconductor device of a present Example.
 (実施例1)
 本実施例では本発明の一形態である一次元柱状圧電体を、光キャリア生成を担う半導体中に埋め込んだ構成について述べる。
Example 1
In this embodiment, a structure in which a one-dimensional columnar piezoelectric body, which is one embodiment of the present invention, is embedded in a semiconductor responsible for generating optical carriers is described.
 本実施例は光照射によりキャリアを生成する半導体に、自発的に静電ポテンシャルが印加されるような構成を付加することにより、正負のキャリア夫々がお互いに対向する方向へドリフトする機構を付与することができる構造を主要な特徴とする。尚、ここで「自発的」とは、外部から意識的にエネルギーの供給をすることなしに、という意味で用いる。 In this embodiment, a structure in which an electrostatic potential is spontaneously applied to a semiconductor that generates carriers by light irradiation is added, thereby providing a mechanism in which positive and negative carriers drift in directions opposite to each other. The main feature is the structure that can. Here, “spontaneous” is used to mean that energy is not consciously supplied from the outside.
 図1(a)は、基板10上に柱状の圧電体12が光キャリアを生成する半導体膜11に埋め込まれた状態を示す図である。図1(b)は、図1(a)の、圧電体を含む面での断面図である。 FIG. 1A is a diagram showing a state in which a columnar piezoelectric body 12 is embedded in a semiconductor film 11 that generates optical carriers on a substrate 10. FIG.1 (b) is sectional drawing in the surface containing a piezoelectric material of Fig.1 (a).
 柱状の圧電体12は、半導体膜11をほぼ貫く様に配置されていることが特徴の一つである。この圧電体12は半導体膜11を完全に貫いた形状になっていても良く、また、圧電体12の表面と半導体膜11の表面が一致した状態でもよい。更に、圧電体12の表面が半導体膜11の内部にある程度埋もれた状態になっていても良い。ここで「ある程度」とは、表面が半導体膜11の内部に影響を及ぼす程度の距離を言い、半導体のエネルギーバンドが表面の影響により曲がる範囲として特徴づけられる。 One of the features of the columnar piezoelectric body 12 is that it is arranged so as to penetrate the semiconductor film 11 almost. The piezoelectric body 12 may have a shape that completely penetrates the semiconductor film 11, or the surface of the piezoelectric body 12 and the surface of the semiconductor film 11 may coincide with each other. Furthermore, the surface of the piezoelectric body 12 may be in a state where it is buried to some extent inside the semiconductor film 11. Here, “a certain degree” means a distance such that the surface affects the inside of the semiconductor film 11 and is characterized as a range in which the energy band of the semiconductor is bent due to the influence of the surface.
 また、柱状の圧電体は、電気分極軸がそろっていることが特徴の一つである。このような状態で基板に歪が印加されると、基板や薄膜を介して柱状の圧電体に歪が印加され、柱状の圧電体の端面に正負の電荷が発生する。電荷が発生する端面が半導体膜11の表面と基板界面に相当するよう圧電体を配置しておくことにより、圧電体周辺では膜の表面と基板界面間に電場が印加される。半導体薄膜に印加される圧力が膜内で同種(引っ張り若しくは圧縮応力のいずれか)であれば、圧電体の電気分極軸を揃えておくことにより、半導体薄膜の表面と界面の間で電場の向きを統一することができる。強度に時間的変動はあるものの、電場が半導体膜の膜厚方向に発生し、電子と正孔は夫々が決まった方向にドリフトするため、正負のキャリアをそれぞれ決まった電極で取出し易くなる。 Also, one of the features of the columnar piezoelectric body is that the electric polarization axes are aligned. When strain is applied to the substrate in such a state, strain is applied to the columnar piezoelectric body via the substrate or the thin film, and positive and negative charges are generated on the end surfaces of the columnar piezoelectric body. By arranging the piezoelectric body so that the end face where the charge is generated corresponds to the surface of the semiconductor film 11 and the substrate interface, an electric field is applied between the surface of the film and the substrate interface around the piezoelectric body. If the pressure applied to the semiconductor thin film is the same type (either tensile or compressive stress) within the film, the electric field direction between the surface of the semiconductor thin film and the interface can be obtained by aligning the electric polarization axes of the piezoelectric body. Can be unified. Although the intensity varies with time, an electric field is generated in the film thickness direction of the semiconductor film, and electrons and holes drift in the determined directions, so that positive and negative carriers can be easily taken out by the determined electrodes.
 図4(a)は、この状況を説明する図で、図1(b)中Aの位置での歪が印加された状態での半導体膜11のエネルギーバンドを示している。横軸は図1(b)のAで示される深さ方向の位置を表し、縦軸がエネルギーを示す。歪が印加された状態では柱状の圧電体の両端に発生する正負の電荷により、伝導帯13及び価電子帯15が曲がり、伝導帯の底20及び価電子帯の上端21が膜の深さ方向に対して傾くため、光により生成したキャリアである電子16及び正孔17はバンドの傾きに応じて図中左右に夫々が分離される。なお、図中の符号14は半導体中の禁制帯を示す。 FIG. 4A is a diagram for explaining this situation, and shows an energy band of the semiconductor film 11 in a state where a strain at a position A in FIG. 1B is applied. The horizontal axis represents the position in the depth direction indicated by A in FIG. 1B, and the vertical axis represents energy. In a state where strain is applied, the conduction band 13 and the valence band 15 are bent by the positive and negative charges generated at both ends of the columnar piezoelectric body, and the bottom 20 of the conduction band and the upper end 21 of the valence band are in the depth direction of the film. Therefore, the electrons 16 and the holes 17 which are carriers generated by light are separated from each other on the left and right in the drawing according to the inclination of the band. Reference numeral 14 in the figure indicates a forbidden band in the semiconductor.
 一方、歪が印加されていない状態では、エネルギーバンドは半導体膜表面の影響のみにより表面近傍だけが曲がる。その結果、図4(b)に示されるように半導体膜表面18近傍で吸収された光により生成した電子16、正孔17はバンドの曲がりにより分離されるが、その効果は半導体膜表面18の近傍に限定される。 On the other hand, in the state where no strain is applied, the energy band is bent only in the vicinity of the surface only by the influence of the semiconductor film surface. As a result, as shown in FIG. 4B, the electrons 16 and the holes 17 generated by the light absorbed in the vicinity of the semiconductor film surface 18 are separated by the bending of the band. Limited to the vicinity.
 また、半導体内部では、歪が印加されていなくとも、半導体と圧電体のフェルミエネルギーが一致しない限り半導体と圧電体の界面でエネルギーバンドの曲がりが生じる。その結果、半導体と圧電体の界面近傍では、光の吸収により生成された電子・正孔対は、お互いに異なる方向に力を受けるようエネルギーバンドの曲がりの影響を受け、夫々空間的に距離を持つようドリフト運動を生ずる。その結果、電子と正孔は空間的に異なる分布を持ち易くなり、再結合頻度が低下する。 In addition, even if no strain is applied inside the semiconductor, an energy band bends at the interface between the semiconductor and the piezoelectric body as long as the Fermi energy of the semiconductor and the piezoelectric body does not match. As a result, in the vicinity of the interface between the semiconductor and the piezoelectric material, the electron-hole pairs generated by light absorption are affected by the bending of the energy band so that they receive forces in different directions, and the distance between them is spatially reduced. A drift motion is generated to hold. As a result, electrons and holes tend to have spatially different distributions, and the recombination frequency decreases.
 図5(a)はこの状況を説明した図で、図1(b)中Bの位置でのエネルギーバンドを示したものである。縦軸はエネルギーを示し、横軸は横方向の位置を示す。半導体膜11と圧電体12の界面19近傍で、伝導帯13及び価電子帯15が曲がるため、この付近で生成した電子16及び正孔17は電荷の正負に応じてお互いに逆向きの方向に力を受けることになる。 FIG. 5 (a) is a diagram for explaining this situation, and shows an energy band at a position B in FIG. 1 (b). The vertical axis represents energy, and the horizontal axis represents the position in the horizontal direction. Since the conduction band 13 and the valence band 15 are bent near the interface 19 between the semiconductor film 11 and the piezoelectric body 12, the electrons 16 and the holes 17 generated in the vicinity of the semiconductor film 11 and the valence band 15 are in directions opposite to each other depending on whether the charge is positive or negative. You will receive power.
 図5(b)は、仮に圧電体がない場合の同じ場所でのエネルギーバンドを描いたもので、均一な半導体層が続くため、伝導帯13及び価電子帯15の曲がりは生じない。 FIG. 5 (b) depicts an energy band at the same location when there is no piezoelectric body. Since the uniform semiconductor layer continues, the conduction band 13 and the valence band 15 do not bend.
 以上のように、半導体膜の表面と基板界面との間で圧電体が連続的に分布するように配置され、電気分極軸が膜厚方向に対して揃っていることにより、歪が印加されている場合と緩和している状態で程度の差はあるものの、光の吸収で発生した電子と正孔は、各々逆向きの方向に力を受けることになり、空間的に分離した状態へと分布する。これにより、キャリアの再結合を抑制して電極へ取り出しやすくなる。 As described above, the piezoelectric material is arranged so as to be continuously distributed between the surface of the semiconductor film and the substrate interface, and the electric polarization axis is aligned with respect to the film thickness direction, so that strain is applied. Although there is a difference between the relaxed state and the relaxed state, the electrons and holes generated by the absorption of light are each subjected to a force in the opposite direction, and are distributed in a spatially separated state. To do. Thereby, it becomes easy to take out to an electrode, suppressing recombination of a carrier.
 なお、後述するが、圧電体の形態は柱状に限るものではない。電気分極軸が揃っており、光生成を担う半導体薄膜の表面と基板界面間に連続的に存在する構造であればよい。 As will be described later, the form of the piezoelectric body is not limited to the columnar shape. Any structure may be used as long as the electric polarization axes are aligned and continuously exist between the surface of the semiconductor thin film responsible for light generation and the substrate interface.
 本構造を実現するプロセスの一例を、図6を用いて説明する。まずシリコン(Si)からなる基板10上に圧電体として酸化亜鉛(ZnO)薄膜22を成膜する(図6(a))。例えば、Znをターゲットとし、酸素とアルゴンの混合雰囲気中で反応性RFマグネトロンスパッターにより膜厚およそ100nmのZnOを成膜できる。この薄膜上に水熱合成法によりc軸方向に配向したZnO膜12を形成する(図6(b))。20mMの塩化亜鉛(ZnCl)と20mMのヘキサメチレンテトラミンを溶かした水溶液に4wt%のアンモニア水溶液を加え95℃に保持する。そこに先ほどの基板をZnO面を下向きにして接触させ、1時間ほど保持することにより膜厚およそ1μmのc軸に配向したZnO薄膜を得る。 An example of a process for realizing this structure will be described with reference to FIG. First, a zinc oxide (ZnO) thin film 22 is formed as a piezoelectric body on a substrate 10 made of silicon (Si) (FIG. 6A). For example, ZnO with a film thickness of about 100 nm can be formed by reactive RF magnetron sputtering in a mixed atmosphere of oxygen and argon using Zn as a target. A ZnO film 12 oriented in the c-axis direction is formed on this thin film by a hydrothermal synthesis method (FIG. 6B). A 4 wt% aqueous ammonia solution is added to an aqueous solution in which 20 mM zinc chloride (ZnCl 2 ) and 20 mM hexamethylenetetramine are dissolved, and the temperature is maintained at 95 ° C. The previous substrate is brought into contact therewith with the ZnO surface facing downward, and is held for about 1 hour to obtain a ZnO thin film having a film thickness of about 1 μm and oriented on the c-axis.
 次に、フォトリソグラフィによりZnO膜のパターニングを行い、基板に垂直方向に直立した一次元円柱状ZnOを形成する。上記基板にレジスト薄膜23をスピンコートにより塗布し、ホットプレートによりベークする(図6(c))。円形のレジストが周期的に残るようなパターンを持つフォトマスクで露光し、適宜現像する。その結果、図6(d)に示す様にZnO膜上に円形の島状のレジスト薄膜23のパターンが残る。この基板をリン酸(HPO)によりエッチングすることにより、図6(e)に示すような円柱状のZnOを基板10上に形成する。その後、図6(f)に示すように二酸化チタン(TiO)28をスパッタし、円柱状ZnOをTiO中に埋め込む。残存するレジストをウェットエッチングで除去することにより、円柱状ZnO上に成膜されたTiOをリフトオフする。こうして図6(g)に示すような所望の構造を得る。この状態で更にTiOを成膜することにより、円柱状ZnOを完全に埋め込んでも良い。 Next, the ZnO film is patterned by photolithography to form a one-dimensional cylindrical ZnO that stands upright in the direction perpendicular to the substrate. A resist thin film 23 is applied to the substrate by spin coating and baked by a hot plate (FIG. 6C). It exposes with the photomask which has a pattern in which a circular resist remains periodically, and develops suitably. As a result, as shown in FIG. 6D, a pattern of the circular island-shaped resist thin film 23 remains on the ZnO film. By etching this substrate with phosphoric acid (H 3 PO 4 ), cylindrical ZnO as shown in FIG. 6E is formed on the substrate 10. Thereafter, as shown in FIG. 6F, titanium dioxide (TiO 2 ) 28 is sputtered to embed cylindrical ZnO in TiO 2 . The remaining resist is removed by wet etching to lift off the TiO 2 formed on the cylindrical ZnO. In this way, a desired structure as shown in FIG. In this state, the columnar ZnO may be completely embedded by further forming a film of TiO 2 .
 ここでは、パターニングの詳細は省き概要のみ記したが、成膜やエッチング、レジストの塗布・ベーク条件やレジストのネガポジに応じたマスクの反転パターンの選択の必要性などを始めとしたフォトリソグラフィの詳細など、当業者には明らかであろう。 Here, the details of patterning are omitted, but only the outline is described, but details of photolithography including the necessity of selecting a mask inversion pattern according to the film forming and etching, resist coating / baking conditions, and resist negative / positive, etc. It will be apparent to those skilled in the art.
 こうして構成した基板の裏面にアルミを蒸着し、表面に透明電極として錫ドープした酸化インジウム(ITO)を成膜した状態で、TiOには吸収されるがITOに対する吸収は小さい365nmの光を照射して光電流を計測した。比較の為、円柱状ZnOがないことを除き、膜厚等を同じにして構成した基板に光をあてて光電流を計測したところ、同じ強度の光に対して前者の方が光電流を多く取り出せることを確認した。 Thus the aluminum is deposited on the back surface of the structure to the substrate, a tin-doped indium oxide (ITO) as a transparent electrode on the surface while the deposition, although the TiO 2 is absorbed irradiated with 365nm light absorption is small with respect to ITO The photocurrent was measured. For comparison, except that there is no cylindrical ZnO, the photocurrent was measured by applying light to a substrate having the same film thickness and the like. The former had more photocurrent for the same intensity of light. It was confirmed that it could be taken out.
 また、圧電体が円柱状の構造は、圧電体がナノワイヤー状に結晶成長するようなものに対して適している。そのような例としてGaNやサファイア基板上でのZnO結晶成長などがあげられる。この場合、格子定数が整合するため、スパッタ成膜せず直接水熱合成により膜を成長させることができる。さらには、フォトリソグラフィによる成形が不要となる大きな利点がある。 Also, the structure in which the piezoelectric body is cylindrical is suitable for a structure in which the piezoelectric body grows in a nanowire shape. Examples thereof include ZnO crystal growth on a GaN or sapphire substrate. In this case, since the lattice constants are matched, the film can be grown by direct hydrothermal synthesis without sputter deposition. Furthermore, there is a great advantage that molding by photolithography is unnecessary.
 本実施例では圧電体としてZnOを用いたが、水晶、リン酸カリウム、チタン酸バリウム、チタン酸ジルコン酸亜鉛、ロッシェル塩、酸化亜鉛、ニオブ酸リチウム、タンタル酸リチウム、リチウムテトラボレート、ランガサイト、窒化アルミニウム、トルマリン、亜硝酸ナトリウムなど、その他の圧電体を用いても構わない。 In this example, ZnO was used as the piezoelectric body, but quartz, potassium phosphate, barium titanate, zinc titanate zirconate, Rochelle salt, zinc oxide, lithium niobate, lithium tantalate, lithium tetraborate, langasite, Other piezoelectric materials such as aluminum nitride, tourmaline, and sodium nitrite may be used.
 また、基板はSiを用いたが、それに限るものではない。ガラスや可塑性をもつプラスチック基板、金属基板でも同様にして必要な構造を構成することができる。 Further, although Si is used for the substrate, it is not limited thereto. Necessary structures can be configured in the same manner with glass, plastic plastic substrates, and metal substrates.
 更に、光キャリアを生成する半導体についても、TiOに限るものでなく、SiCやGaN、GaP、GaAs、CdSe、CdS、Fe、SrTiO、Bi、FeTiO、MnTiO、BaTiO、KTaO、WO、SnO、NbO、Nbなど、可視光付近に吸収を持つ半導体であれば種類を問わない。 Furthermore, the semiconductor that generates the optical carriers is not limited to TiO 2 , and SiC, GaN, GaP, GaAs, CdSe, CdS, Fe 2 O 3 , SrTiO 3 , Bi 2 O 3 , FeTiO 3 , MnTiO 3 , Any type of semiconductor may be used as long as it has absorption near visible light, such as BaTiO 3 , KTaO 3 , WO 3 , SnO 2 , NbO 2 , and Nb 2 O 3 .
 (実施例2)
 図2は、本発明の実施例2に係る半導体装置を示すものである。本実施例では、角柱状の圧電体構造を有することを特徴とする。本実施例では、実施例1で説明した半導体装置の製造方法に対して、フォトマスクのパターンを変更することにより角柱状の圧電体構造を得ることができる。
(Example 2)
FIG. 2 shows a semiconductor device according to Embodiment 2 of the present invention. This embodiment is characterized by having a prismatic piezoelectric structure. In this embodiment, a prismatic piezoelectric structure can be obtained by changing the photomask pattern with respect to the semiconductor device manufacturing method described in the first embodiment.
 (実施例3)
 実施例1では圧電体を柱状構造とした例をあげたが、本実施例では図3に示すような板状構造の圧電体を用いた例について記載する。本実施例の半導体装置の製造方法は、圧電体ZnOを水熱合成法により成長させ、レジストを塗布するところまでは、実施例1に開示した方法と全く同様である。
(Example 3)
In the first embodiment, an example in which the piezoelectric body has a columnar structure has been described. In this embodiment, an example using a piezoelectric body having a plate-like structure as shown in FIG. 3 will be described. The manufacturing method of the semiconductor device of this example is exactly the same as the method disclosed in Example 1 until the piezoelectric ZnO is grown by the hydrothermal synthesis method and the resist is applied.
 その後、図7(a)に示すような、スリットが周期的に並んだパターンを持つフォトマスクを用いて露光する。以降実施例1と同様にしてエッチング、半導体の成膜、リフトオフ、必要であれば再度成膜し、図3(a)に示すような構造、圧電体12が半導体膜11の面内で一方向に線状に伸びた構造を得る。この構造は圧電体が連続的に分布しているため、柱状と比較し、同じ周期で圧電体を配置した場合、歪によるポテンシャルの影響が広く及ぶ利点がある。更に、半導体と圧電体の界面の面積が広くなるため、界面によるエネルギーバンドの曲がりの効果がより広く及ぶ利点もある。 Thereafter, exposure is performed using a photomask having a pattern in which slits are periodically arranged as shown in FIG. Thereafter, in the same manner as in Example 1, etching, semiconductor film formation, lift-off, film formation again if necessary, the structure as shown in FIG. 3A, the piezoelectric body 12 is unidirectional within the plane of the semiconductor film 11 A structure extending linearly is obtained. In this structure, since the piezoelectric bodies are continuously distributed, there is an advantage that the influence of the potential due to strain is widely spread when the piezoelectric bodies are arranged with the same period as compared with the columnar shape. Furthermore, since the area of the interface between the semiconductor and the piezoelectric body is widened, there is an advantage that the effect of bending the energy band due to the interface is more widely spread.
 連続的な圧電体の配置も図3(a)に限るものではない。例えば図7(b)に示すようなフォトマスクを用いて、実施例1に開示した方法と同様にして図3(b)のような構造、圧電体12が半導体膜11を格子状に分割するように配置される構造を得ることができる。このような構造は、図3(a)に比べて、歪により発生する電荷の影響がより強く半導体層に及ぶ利点を有する。更に、界面の影響もより広い領域に及ぶ利点がある。一方、図3(a)の構成は、図3(b)に比べ光が広範囲に当たり易くなる利点を有する。この利点は図3(a)、(b)の構成に比べた場合の図1(a)、図2の構成についてより顕著である。 The arrangement of continuous piezoelectric bodies is not limited to that shown in FIG. For example, using a photomask as shown in FIG. 7B, the structure as shown in FIG. 3B and the piezoelectric body 12 divide the semiconductor film 11 into a lattice shape in the same manner as the method disclosed in the first embodiment. A structure arranged in this manner can be obtained. Such a structure has an advantage that the influence of electric charges generated by strain is stronger and extends to the semiconductor layer as compared with FIG. Furthermore, there is an advantage that the influence of the interface extends over a wider area. On the other hand, the configuration shown in FIG. 3A has an advantage that light easily hits a wide range as compared with FIG. This advantage is more conspicuous in the configurations of FIGS. 1A and 2 than in the configurations of FIGS. 3A and 3B.
 (実施例4)
 本実施例では実施例1から3に記載した光生成キャリアを効率的に取り出す半導体装置を用いたシステムについて、図8を用いて記述する。
Example 4
In this embodiment, a system using a semiconductor device that efficiently extracts photogenerated carriers described in Embodiments 1 to 3 will be described with reference to FIG.
 実施例1から3に記載したような半導体装置24を設置箱25の内部に固定する。設置箱25は気体もしくは液体の様な流体を導入し、半導体装置24の周囲を満たす構造を持つ。図中の符号26は流体を導入する導入口で、符号27は流体を設置箱から導出する為の導出口である。設置箱25の少なくとも上面は光を内部に取り込めるよう、透明な面で構成される。半導体装置24は、設置箱内に機械的に固定される。その結果、太陽光照射による熱に起因した熱歪、機械的ストレスを印加した状態で設置することによる機械的歪、薄膜成膜時の膜歪などによる歪が導入される。 The semiconductor device 24 as described in the first to third embodiments is fixed inside the installation box 25. The installation box 25 has a structure that fills the periphery of the semiconductor device 24 by introducing a fluid such as gas or liquid. Reference numeral 26 in the figure is an inlet for introducing a fluid, and reference numeral 27 is an outlet for extracting the fluid from the installation box. At least the upper surface of the installation box 25 is formed of a transparent surface so that light can be taken inside. The semiconductor device 24 is mechanically fixed in the installation box. As a result, thermal strain due to heat due to sunlight irradiation, mechanical strain due to installation with mechanical stress applied, and strain due to film strain at the time of thin film deposition are introduced.
 導入口26から、例えば二酸化炭素を高濃度に溶解させた溶液を導入して設置箱25内を満たし、上面から太陽光を照射する。半導体装置24の表面から入射した光は半導体中で吸収され光キャリア(電子と正孔のペア)を生成する。圧電体に上述の歪みが印加されることにより、生成された光キャリアは、実施例1で記載したように電子と正孔が効率的に分離して夫々半導体装置24の表面と裏面に到達する。それらのキャリアは半導体装置24の夫々の表面で二酸化炭素若しくはその溶解生成物の酸化と還元を行い、分解物を生成する。生成物が気体の場合、設置箱の上面にガス取出し口を設けておいて外部へ取り出す。液体の場合、導出口から搬出される。 From the inlet 26, for example, a solution in which carbon dioxide is dissolved at a high concentration is introduced to fill the inside of the installation box 25, and sunlight is irradiated from the upper surface. Light incident from the surface of the semiconductor device 24 is absorbed in the semiconductor and generates photocarriers (a pair of electrons and holes). When the above-described strain is applied to the piezoelectric body, the generated photocarriers efficiently separate electrons and holes as described in the first embodiment and reach the front surface and the back surface of the semiconductor device 24, respectively. . These carriers oxidize and reduce carbon dioxide or a dissolved product thereof on each surface of the semiconductor device 24 to generate decomposition products. When the product is a gas, a gas outlet is provided on the upper surface of the installation box and is taken out to the outside. In the case of liquid, it is carried out from the outlet.
 以上のように、実施例1から3において説明した半導体装置を用いることにより、キャリアの再結合を抑止して取り出しやすくなり、その結果、キャリアによる酸化還元反応による分解物を効率的に生成し取り出すことが可能となる。 As described above, by using the semiconductor device described in the first to third embodiments, carrier recombination is suppressed and it is easy to take out, and as a result, a decomposition product due to oxidation-reduction reaction by the carrier is efficiently generated and taken out. It becomes possible.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、種々変形実施可能であり、上述した各実施形態を適宜組み合わせることが可能であることは当業者に理解されよう。 The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made. Those skilled in the art can appropriately combine the above-described embodiments. Will be understood.
 10 基板
 11 半導体膜
 12 圧電体
 13 伝導帯
 14 禁制帯
 15 価電子帯
 16 電子
 17 正孔
 18 半導体膜表面
 19 界面
 20 伝導帯の底
 21 価電子帯の上端
 22 酸化亜鉛薄膜
 23 レジスト薄膜
 24 半導体装置
 25 設置箱
 26 導入口
 27 導出口
 28 二酸化チタン
DESCRIPTION OF SYMBOLS 10 Substrate 11 Semiconductor film 12 Piezoelectric 13 Conductive band 14 Forbidden band 15 Valence band 16 Electron 17 Hole 18 Semiconductor film surface 19 Interface 20 Bottom of conduction band 21 Upper end of valence band 22 Zinc oxide thin film 23 Resist thin film 24 Semiconductor device 25 Installation box 26 Inlet 27 Outlet 28 Titanium dioxide

Claims (15)

  1.  基板と、
     前記基板と第1の面で接して形成され、光照射によりキャリアを生成する半導体膜と、
     前記半導体膜中に配置される圧電体と、を有し、
     前記圧電体は、前記半導体膜の前記第1の面と前記第1の面に対向する第2の面との間に、連続的に分布するように配置され、
     前記圧電体の電気分極軸が前記半導体膜の膜厚方向に対して揃っている半導体装置。
    A substrate,
    A semiconductor film formed in contact with the substrate on the first surface and generating carriers by light irradiation;
    A piezoelectric body disposed in the semiconductor film,
    The piezoelectric body is disposed so as to be continuously distributed between the first surface of the semiconductor film and a second surface facing the first surface,
    A semiconductor device in which an electric polarization axis of the piezoelectric body is aligned with a film thickness direction of the semiconductor film.
  2.  請求項1に記載の半導体装置において、
     前記圧電体は前記半導体膜を貫くように配置される半導体装置。
    The semiconductor device according to claim 1,
    A semiconductor device in which the piezoelectric body is disposed so as to penetrate the semiconductor film.
  3.  請求項1に記載の半導体装置において、
     前記圧電体が水晶、リン酸カリウム、チタン酸バリウム、チタン酸ジルコン酸亜鉛、ロッシェル塩、酸化亜鉛、ニオブ酸リチウム、タンタル酸リチウム、リチウムテトラボレート、ランガサイト、窒化アルミニウム、トルマリン、亜硝酸ナトリウムのいずれかからなる半導体装置。
    The semiconductor device according to claim 1,
    The piezoelectric body is made of quartz, potassium phosphate, barium titanate, zinc zirconate titanate, Rochelle salt, zinc oxide, lithium niobate, lithium tantalate, lithium tetraborate, langasite, aluminum nitride, tourmaline, sodium nitrite. A semiconductor device made of either.
  4.  請求項1に記載の半導体装置において、
     前記半導体膜は、TiO、SiC、GaN、GaP、GaAs、CdSe、CdS、Fe、SrTiO、Bi、FeTiO、MnTiO、BaTiO、KTaO、WO、SnO、NbO、Nbのいずれかからなる半導体装置。
    The semiconductor device according to claim 1,
    The semiconductor film is made of TiO 2 , SiC, GaN, GaP, GaAs, CdSe, CdS, Fe 2 O 3 , SrTiO 3 , Bi 2 O 3 , FeTiO 3 , MnTiO 3 , BaTiO 3 , KTaO 3 , WO 3 , SnO 2. , NbO 2 , or Nb 2 O 3 .
  5.  請求項1に記載の半導体装置において、
     複数の前記圧電体がそれぞれ独立して、前記半導体膜中に配置される半導体装置。
    The semiconductor device according to claim 1,
    A semiconductor device in which a plurality of the piezoelectric bodies are independently arranged in the semiconductor film.
  6.  請求項5に記載の半導体装置において、
     前記半導体膜の面内方向における前記圧電体の断面形状が、円形または四角の形状である半導体装置。
    The semiconductor device according to claim 5,
    A semiconductor device in which a cross-sectional shape of the piezoelectric body in an in-plane direction of the semiconductor film is a circular or square shape.
  7.  請求項1に記載の半導体装置において、
     前記圧電体は、前記半導体膜の面内で一方向に線状に伸びた構造を有する半導体装置。
    The semiconductor device according to claim 1,
    The piezoelectric device is a semiconductor device having a structure extending linearly in one direction within the surface of the semiconductor film.
  8.  請求項1に記載の半導体装置において、
     前記圧電体は、前記半導体膜を格子状に分割するように配置される半導体装置。
    The semiconductor device according to claim 1,
    The piezoelectric device is a semiconductor device arranged to divide the semiconductor film into a lattice shape.
  9.  基板と、
     前記基板と第1の面で接して形成され、光照射によりキャリアを生成する半導体膜と、
     前記半導体膜中に配置される圧電体と、を有し、
     前記圧電体に歪みが印加された場合、前記圧電体の周囲であって前記半導体膜の前記第1の面と前記第1の面に対向する第2の面との間に発生する電場の向きが、前記半導体膜の膜厚方向となる半導体装置。
    A substrate,
    A semiconductor film formed in contact with the substrate on the first surface and generating carriers by light irradiation;
    A piezoelectric body disposed in the semiconductor film,
    The direction of the electric field generated between the first surface of the semiconductor film and the second surface facing the first surface when the strain is applied to the piezoelectric material Is a semiconductor device in the thickness direction of the semiconductor film.
  10.  請求項9に記載の半導体装置において、
     前記圧電体が水晶、リン酸カリウム、チタン酸バリウム、チタン酸ジルコン酸亜鉛、ロッシェル塩、酸化亜鉛、ニオブ酸リチウム、タンタル酸リチウム、リチウムテトラボレート、ランガサイト、窒化アルミニウム、トルマリン、亜硝酸ナトリウムのいずれかからなる半導体装置。
    The semiconductor device according to claim 9.
    The piezoelectric body is made of quartz, potassium phosphate, barium titanate, zinc zirconate titanate, Rochelle salt, zinc oxide, lithium niobate, lithium tantalate, lithium tetraborate, langasite, aluminum nitride, tourmaline, sodium nitrite. A semiconductor device made of either.
  11.  請求項9に記載の半導体装置において、
     前記半導体膜は、TiO、SiC、GaN、GaP、GaAs、CdSe、CdS、Fe、SrTiO、Bi、FeTiO、MnTiO、BaTiO、KTaO、WO、SnO、NbO、Nbのいずれかからなる半導体装置。
    The semiconductor device according to claim 9.
    The semiconductor film is made of TiO 2 , SiC, GaN, GaP, GaAs, CdSe, CdS, Fe 2 O 3 , SrTiO 3 , Bi 2 O 3 , FeTiO 3 , MnTiO 3 , BaTiO 3 , KTaO 3 , WO 3 , SnO 2. , NbO 2 , or Nb 2 O 3 .
  12.  請求項9に記載の半導体装置において、
     複数の前記圧電体がそれぞれ独立して前記半導体膜中に配置され、
     前記半導体膜の面内方向における前記圧電体の断面形状が、円形または四角の形状である半導体装置。
    The semiconductor device according to claim 9.
    A plurality of the piezoelectric bodies are independently arranged in the semiconductor film,
    A semiconductor device in which a cross-sectional shape of the piezoelectric body in an in-plane direction of the semiconductor film is a circular or square shape.
  13.  請求項9に記載の半導体装置において、
     前記圧電体は、前記半導体膜の面内で一方向に線状に伸びた構造を有する半導体装置。
    The semiconductor device according to claim 9.
    The piezoelectric device is a semiconductor device having a structure extending linearly in one direction within the surface of the semiconductor film.
  14.  請求項9に記載の半導体装置において、
     前記圧電体は、前記半導体膜を格子状に分割するように配置される半導体装置。
    The semiconductor device according to claim 9.
    The piezoelectric device is a semiconductor device arranged to divide the semiconductor film into a lattice shape.
  15.  光照射によりキャリアを生成する半導体装置と、透光性を有し前記半導体装置の周囲を流体で満たす構造を有する容器とを備え、前記キャリアによる酸化還元反応により生成される生成物を取り出すシステムであって、
     前記半導体装置は、
     基板と、
     前記基板と第1の面で接して形成され、前記キャリアを生成する半導体膜と、
     前記半導体膜中に配置される圧電体と、を有し、
     前記圧電体は、前記半導体膜の前記第1の面と前記第1の面に対向する第2の面との間に、連続的に分布するように配置され、
     前記圧電体の電気分極軸が前記半導体膜の膜厚方向に対して揃っている、半導体装置を用いたシステム。
    A system that includes a semiconductor device that generates carriers by light irradiation, and a container that has translucency and has a structure that fills the periphery of the semiconductor device with a fluid, and that extracts a product generated by an oxidation-reduction reaction by the carriers. There,
    The semiconductor device includes:
    A substrate,
    A semiconductor film formed in contact with the substrate at a first surface and generating the carrier;
    A piezoelectric body disposed in the semiconductor film,
    The piezoelectric body is disposed so as to be continuously distributed between the first surface of the semiconductor film and a second surface facing the first surface,
    A system using a semiconductor device, wherein the electric polarization axis of the piezoelectric body is aligned with the film thickness direction of the semiconductor film.
PCT/JP2011/050772 2011-01-18 2011-01-18 Semiconductor device and system using same WO2012098647A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012553496A JP5608759B2 (en) 2011-01-18 2011-01-18 Semiconductor device and system using the same
PCT/JP2011/050772 WO2012098647A1 (en) 2011-01-18 2011-01-18 Semiconductor device and system using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/050772 WO2012098647A1 (en) 2011-01-18 2011-01-18 Semiconductor device and system using same

Publications (1)

Publication Number Publication Date
WO2012098647A1 true WO2012098647A1 (en) 2012-07-26

Family

ID=46515299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050772 WO2012098647A1 (en) 2011-01-18 2011-01-18 Semiconductor device and system using same

Country Status (2)

Country Link
JP (1) JP5608759B2 (en)
WO (1) WO2012098647A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291142A (en) * 2016-09-19 2017-01-04 郑州大学 Piezoelectric ceramics and piezoelectric semiconductor's test specimen multiformity polarization experiment system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079068A (en) * 2000-09-11 2002-03-19 Mikio Kobayashi Apparatus for dispersing gas-liquid mixed fluid
JP2006528055A (en) * 2003-06-19 2006-12-14 キャリア コーポレイション Bifunctional manganese oxide / titanium dioxide photocatalyst / thermal catalyst
JP2009062321A (en) * 2007-09-06 2009-03-26 Ihi Corp Method and device for reducing carbon dioxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079068A (en) * 2000-09-11 2002-03-19 Mikio Kobayashi Apparatus for dispersing gas-liquid mixed fluid
JP2006528055A (en) * 2003-06-19 2006-12-14 キャリア コーポレイション Bifunctional manganese oxide / titanium dioxide photocatalyst / thermal catalyst
JP2009062321A (en) * 2007-09-06 2009-03-26 Ihi Corp Method and device for reducing carbon dioxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DUNN STEVE: "Functional materials fuel photon power", MATERIALS WORLD, vol. 18, no. 12, December 2010 (2010-12-01), pages 23 - 25 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291142A (en) * 2016-09-19 2017-01-04 郑州大学 Piezoelectric ceramics and piezoelectric semiconductor's test specimen multiformity polarization experiment system
CN106291142B (en) * 2016-09-19 2022-04-29 河南感联智能科技有限公司 Piezoelectric ceramic and piezoelectric semiconductor test piece diversity polarization experimental system

Also Published As

Publication number Publication date
JP5608759B2 (en) 2014-10-15
JPWO2012098647A1 (en) 2014-06-09

Similar Documents

Publication Publication Date Title
Li et al. High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets
Jiang et al. Enhanced solar cell conversion efficiency of InGaN/GaN multiple quantum wells by piezo-phototronic effect
Lai et al. Piezo-phototronic effect enhanced photodetector based on CH3NH3PbI3 single crystals
Woods et al. One-step synthesis of MoS2/WS2 layered heterostructures and catalytic activity of defective transition metal dichalcogenide films
Czaban et al. GaAs core− shell nanowires for photovoltaic applications
US9059345B2 (en) Solar cell using p-i-n nanowire
JP5743039B2 (en) PHOTOSEMICONDUCTOR ELECTRODE AND METHOD FOR PHOTOLYZING WATER USING PHOTOELECTROCHEMICAL CELL INCLUDING
US8624105B2 (en) Energy conversion device with support member having pore channels
Guo et al. Strain-induced ferroelectric heterostructure catalysts of hydrogen production through piezophototronic and piezoelectrocatalytic system
KR101575733B1 (en) wavelength converting structure for near-infrared rays and solar cell comprising the same
US20140318596A1 (en) Devices, systems and methods for electromagnetic energy collection
Jiang et al. Enhanced photocurrent in InGaN/GaN MQWs solar cells by coupling plasmonic with piezo-phototronic effect
US11251723B2 (en) Systems for driving the generation of products using quantum vacuum fluctuations
Zhang et al. Modulating photovoltaic conversion efficiency of BiFeO3-based ferroelectric films by the introduction of electron transport layers
US9496434B2 (en) Solar cell and method for producing solar cell
Singh et al. Growth of doped SrTiO3 ferroelectric nanoporous thin films and tuning of photoelectrochemical properties with switchable ferroelectric polarization
WO2013030935A1 (en) Solar cell
Liu et al. Recent progress of heterostructures based on two dimensional materials and wide bandgap semiconductors
Valente et al. Light-emitting GaAs nanowires on a flexible substrate
CN106816511B (en) A kind of chip of light emitting diode and preparation method thereof
Smerdov et al. Nanostructured porous silicon and graphene-based materials for PETE electrode synthesys
Murillo et al. Selective area growth of high-quality ZnO nanosheets assisted by patternable AlN seed layer for wafer-level integration
KR101179823B1 (en) Functional element having nanorod and method for fabricating the same
Wang et al. Transferable high-quality inorganic perovskites for optoelectronic devices by weak interaction heteroepitaxy
JP5608759B2 (en) Semiconductor device and system using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553496

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856527

Country of ref document: EP

Kind code of ref document: A1