WO2012098586A1 - Magnesium battery - Google Patents

Magnesium battery Download PDF

Info

Publication number
WO2012098586A1
WO2012098586A1 PCT/JP2011/000309 JP2011000309W WO2012098586A1 WO 2012098586 A1 WO2012098586 A1 WO 2012098586A1 JP 2011000309 W JP2011000309 W JP 2011000309W WO 2012098586 A1 WO2012098586 A1 WO 2012098586A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
magnesium
positive electrode
battery
piezoelectric body
Prior art date
Application number
PCT/JP2011/000309
Other languages
French (fr)
Japanese (ja)
Inventor
周三 阪元
Original Assignee
株式会社東洋製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東洋製作所 filed Critical 株式会社東洋製作所
Priority to PCT/JP2011/000309 priority Critical patent/WO2012098586A1/en
Publication of WO2012098586A1 publication Critical patent/WO2012098586A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/32Deferred-action cells activated through external addition of electrolyte or of electrolyte components
    • H01M6/34Immersion cells, e.g. sea-water cells

Definitions

  • the present invention relates to a magnesium battery in which the negative electrode is made of magnesium or a magnesium alloy.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a magnesium battery that can be used continuously for a long time.
  • a magnesium battery of the present invention has a negative electrode made of magnesium or a magnesium alloy, and a positive electrode disposed to face the negative electrode, and the negative electrode and the positive electrode are immersed in an electrolytic solution.
  • the negative electrode is ultrasonically vibrated in a direction in which the negative electrode and the positive electrode substantially face each other.
  • a piezoelectric body is attached to the opposite surface of the negative electrode facing the positive electrode, and an AC voltage having a frequency corresponding to the ultrasonic vibration is applied to the piezoelectric body.
  • the piezoelectric body may be configured to expand and contract in a direction in which the negative electrode and the positive electrode face each other.
  • the present invention has an effect that it can provide a magnesium battery having the above-described configuration and capable of being used continuously for a long time.
  • FIG.1 (a) is the schematic which shows an example of the magnesium battery of embodiment of this invention
  • FIG.1 (b) is the figure which looked at the negative electrode of the magnesium battery from one direction.
  • FIG. 2A is a diagram showing the measurement result of the voltage characteristic (V1) in the case of the embodiment of the present invention and the measurement result of the voltage characteristic (V2) in the comparative example
  • FIG. It is a figure which shows the measurement result of the electric current characteristic (I1) in the case of embodiment of invention, and the measurement result of the electric current characteristic (I2) in a comparative example
  • FIG. 3 is a schematic diagram showing a bubble generation state in the embodiment of the present invention.
  • FIG.1 (a) is the schematic which shows an example of the magnesium battery of embodiment of this invention
  • FIG.1 (b) is the figure which looked at the negative electrode of the magnesium battery from the arrow A direction of Fig.1 (a). It is.
  • the positive electrode 1 and the negative electrode 2 are arranged to face each other, and are held by a plurality of holding members 3 made of an insulator (for example, resin).
  • the positive electrode 1 is made of, for example, a copper plate and connected to a lead wire L1.
  • the negative electrode 2 is made of, for example, a magnesium plate.
  • Each holding member 3 includes a holding body 3a and stoppers 3b and 3c.
  • the end portions 3ab and 3ac on both sides of the holding main body portion 3a have a small diameter, and one end portion 3ab is inserted into a hole (not shown) provided in the positive electrode 1 and is fastened by a bolt-shaped stopper 3b.
  • the positive electrode 1 is fixed to the holding body 3a.
  • the other end 3ac is inserted into a hole (not shown) provided in the negative electrode 2, and the negative electrode 2 is held by the holding main body 3a by a bolt-type stopper 3c.
  • the negative electrode 2 is held so that it can vibrate in the thickness direction (arrow B direction).
  • the holding member 3 is held so as to be fixed to the positive electrode 1 and is held so as to vibrate (ultrasonic vibration) in the direction indicated by the arrow B with respect to the negative electrode 2.
  • a copper layer 9 on which copper is deposited is formed on the surface opposite to the surface facing the positive electrode 1 of the negative electrode 2, and a piezoelectric body 4 made of, for example, a PZT (lead zirconate titanate) layer is formed on the surface. Further, a transparent resin layer 5 that covers the copper layer 9 and the piezoelectric body 4 is formed. Then, the lead wire L ⁇ b> 2 is soldered to the end portion of the copper layer 9 and pulled out to the outside of the resin layer 5. A lead wire L3 is soldered to the surface of the piezoelectric body 4 and is drawn out of the resin layer 5. The lead wire L2 and the lead wire 3 are connected to the ultrasonic oscillator 6, and the lead wire L2 is fixed to the ground potential. In this example, the positive electrode 1 and the negative electrode 2 are accommodated in the container 7.
  • the load 8 is connected between the lead wire L1 and the lead wire L2, and sodium chloride aqueous solution, such as water, seawater, or salt solution, is put into the container 7 as the electrolyte solution 10.
  • sodium chloride aqueous solution such as water, seawater, or salt solution
  • the structure which immerses the positive electrode 1, the negative electrode 2, etc. in water (lake) or seawater (ocean) is also possible.
  • the ultrasonic oscillator 6 applies an AC voltage having a predetermined frequency f1 to the piezoelectric body 4 within a range of 20 kHz to 200 kHz.
  • the piezoelectric body 4 is formed to expand and contract in the direction indicated by the arrow B.
  • the negative electrode 2 is ultrasonicated in the direction indicated by the arrow B. Vibrated.
  • This ultrasonic vibration is a vibration whose vibration frequency is the frequency f1 in the ultrasonic region.
  • the frequency f1 of the AC voltage is desirably set to a resonance frequency at which the negative electrode portion including the negative electrode 2, the copper layer 9, the piezoelectric body 4, and the resin layer 5 causes natural vibration or a frequency close thereto.
  • FIGS. 2 (a) and 2 (b) are diagram illustrating the measurement result of the voltage characteristic (V1) in the case of the present embodiment and the measurement result of the voltage characteristic (V2) in the comparative example
  • FIG. 2B is a diagram illustrating the present embodiment. It is a figure which shows the measurement result of the current characteristic (I1) in the case of, and the measurement result of the current characteristic (I2) in the comparative example.
  • the voltage characteristics (V1) and current characteristics (I1) in the case of the present embodiment are the change over time of the voltage applied to the load 8 and the change over time of the current flowing through the load 8 in the magnesium battery shown in FIG. Show.
  • the battery is configured using the same positive electrode 1 and negative electrode 2 as the magnesium battery shown in FIG. 1A, and the negative electrode 2 is not subjected to ultrasonic vibration.
  • V2 voltage characteristic
  • I2 current characteristic
  • a magnesium battery that prevents the formation of a magnesium hydroxide film on the surface of the negative electrode 2 and can be used continuously for a long time by ultrasonically vibrating the negative electrode 2 made of magnesium. realizable.
  • a magnesium hydroxide film can be prevented by a cavitation effect or the like, almost similar to the mechanism of ultrasonic cleaning. That is, when ultrasonic waves are applied to the electrolyte 10 by ultrasonically vibrating the negative electrode 2, a locally high pressure portion and a low pressure portion are formed, and a small vacuum cavity is generated in the liquid at a low pressure portion. Then, the gas dissolved in the liquid is taken into the cavity and becomes a bubble 11 (see FIG. 3). When the pressure rises again, the bubbles are crushed and a shock wave is generated at that time. Due to this shock wave, the magnesium hydroxide film formed on the surface of the negative electrode 2 is peeled off (cavitation effect). The peeled magnesium hydroxide film is peeled off by a large acceleration when the liquid particles vibrate, and is considered to be dispersed by a straight flow generated by ultrasonic irradiation.
  • FIG. 3 is a schematic diagram showing a state where bubbles are generated.
  • the power consumption of the load 8 is much larger than the power consumption of the ultrasonic oscillator 6, for example, 10 times or more the power consumption of the ultrasonic oscillator 6.
  • the negative electrode 2 is made of magnesium (magnesium plate), but may be made of a magnesium alloy (an alloy containing magnesium as a main component, for example, an alloy containing magnesium as a main component and containing aluminum). Good.
  • the piezoelectric body 4 may be provided directly on the surface of the negative electrode 2 without providing the copper layer 9 between the negative electrode 2 and the piezoelectric body 4.
  • the lead wire L2 only needs to be connected to the negative electrode 2, for example.
  • a conductor layer serving as a flat electrode may be formed on the surface of the piezoelectric body 4 opposite to the negative electrode 2, and the lead wire L3 may be connected to the conductor layer.
  • the piezoelectric body 4 is not limited to the PZT layer, and may be composed of other piezoelectric materials.
  • the positive electrode 1 is made of copper (copper plate), the present invention is not limited to this, and may be made of a material (eg, silver, platinum, gold, etc.) having a smaller ionization tendency than magnesium constituting the negative electrode 2.
  • a plurality of sets of the positive electrode 1 and the negative electrode 1 equipped with the piezoelectric body 4 may be connected in series or in parallel.
  • the present invention is useful as a magnesium battery that can be used continuously for a long time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is a magnesium battery which can be continuously used for a long period of time. The magnesium battery of the present invention comprises: a negative pole (2) comprising magnesium or a magnesium alloy; and a positive pole (1) arranged opposite the negative pole (2). The magnesium battery is constructed in such a way that, in a state in which the negative pole (2) and positive pole (1) are immersed in electrolyte, ultrasonic vibration is applied to the negative pole (2) in a direction in which the negative pole (2) and positive pole (1) are substantially opposite.

Description

マグネシウム電池Magnesium battery
 本発明は、負極がマグネシウムまたはマグネシウム合金から構成されるマグネシウム電池に関する。 The present invention relates to a magnesium battery in which the negative electrode is made of magnesium or a magnesium alloy.
 近年、電解液として水または海水を用いた電池が知られている(例えば特許文献1参照)。このような電池では、高い起電力を得るために負極にはイオン化傾向の大きな電極材料を用いる必要があり、イオン化傾向の大きな電極材料としては、マグネシウムが最適である。また、マグネシウムは埋蔵量が豊富であるという利点もある。 Recently, a battery using water or seawater as an electrolytic solution is known (for example, see Patent Document 1). In such a battery, in order to obtain a high electromotive force, it is necessary to use an electrode material having a large ionization tendency for the negative electrode, and magnesium is optimal as an electrode material having a large ionization tendency. Magnesium also has the advantage of abundant reserves.
特開平9-320614号公報JP-A-9-320614
 しかしながら、負極にマグネシウムを用いると、負極の表面に水酸化マグネシウムの被膜が形成されて起電力の低下が著しく、長時間使用することができないという欠点がある。水酸化マグネシウムの被膜を除去することにより、起電力は回復するが、上記被膜を除去する間は電池として使用することができず、実用性に乏しい。 However, when magnesium is used for the negative electrode, a film of magnesium hydroxide is formed on the surface of the negative electrode, so that the electromotive force is remarkably lowered and there is a disadvantage that it cannot be used for a long time. Although the electromotive force is recovered by removing the magnesium hydroxide film, it cannot be used as a battery during the removal of the film, which is not practical.
 本発明は上記のような課題を解決するためになされたもので、長時間の連続使用が可能となるマグネシウム電池を提供することを目的としている。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a magnesium battery that can be used continuously for a long time.
 上記目的を達成するために、本発明のマグネシウム電池は、マグネシウムまたはマグネシウム合金からなる負極と、前記負極と対向して配置される正極とを有し、前記負極及び前記正極を電解液に浸した状態で、実質的に前記負極と前記正極とが対向する方向に前記負極を超音波振動させるように構成されている。 In order to achieve the above object, a magnesium battery of the present invention has a negative electrode made of magnesium or a magnesium alloy, and a positive electrode disposed to face the negative electrode, and the negative electrode and the positive electrode are immersed in an electrolytic solution. In the state, the negative electrode is ultrasonically vibrated in a direction in which the negative electrode and the positive electrode substantially face each other.
 この構成によれば、負極を超音波振動させることにより、負極表面における水酸化マグネシウムの被膜の形成を防止し、長時間の連続使用が可能となるマグネシウム電池を実現できる。

 また、前記負極を超音波振動させるために、前記負極の前記正極と対向する反対側の面に圧電体を取り付け、前記圧電体に前記超音波振動に応じた周波数の交流電圧を印加することにより前記圧電体が前記負極と前記正極とが対向する方向に伸縮するように構成されていてもよい。
According to this configuration, by oscillating the negative electrode ultrasonically, formation of a magnesium hydroxide coating on the negative electrode surface can be prevented, and a magnesium battery that can be used continuously for a long time can be realized.

Further, in order to ultrasonically vibrate the negative electrode, a piezoelectric body is attached to the opposite surface of the negative electrode facing the positive electrode, and an AC voltage having a frequency corresponding to the ultrasonic vibration is applied to the piezoelectric body. The piezoelectric body may be configured to expand and contract in a direction in which the negative electrode and the positive electrode face each other.
 本発明は、以上に説明した構成を有し、長時間の連続使用が可能となるマグネシウム電池を提供することができるという効果を奏する。 The present invention has an effect that it can provide a magnesium battery having the above-described configuration and capable of being used continuously for a long time.
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。 The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
図1(a)は、本発明の実施形態のマグネシウム電池の一例を示す概略図であり、図1(b)は、同マグネシウム電池の負極を一方向から視た図である。Fig.1 (a) is the schematic which shows an example of the magnesium battery of embodiment of this invention, FIG.1 (b) is the figure which looked at the negative electrode of the magnesium battery from one direction. 図2(a)は、本発明の実施形態の場合における電圧特性(V1)の測定結果と、比較例における電圧特性(V2)の測定結果を示す図であり、図2(b)は、本発明の実施形態の場合における電流特性(I1)の測定結果と、比較例における電流特性(I2)の測定結果とを示す図である。FIG. 2A is a diagram showing the measurement result of the voltage characteristic (V1) in the case of the embodiment of the present invention and the measurement result of the voltage characteristic (V2) in the comparative example, and FIG. It is a figure which shows the measurement result of the electric current characteristic (I1) in the case of embodiment of invention, and the measurement result of the electric current characteristic (I2) in a comparative example. 図3は、本発明の実施形態において気泡の発生状態を示す模式図である。FIG. 3 is a schematic diagram showing a bubble generation state in the embodiment of the present invention.
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、本発明は、以下の実施形態に限定されない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiment.
 (実施形態)
 図1(a)は、本発明の実施形態のマグネシウム電池の一例を示す概略図であり、図1(b)は、同マグネシウム電池の負極を図1(a)の矢印A方向から視た図である。
(Embodiment)
Fig.1 (a) is the schematic which shows an example of the magnesium battery of embodiment of this invention, FIG.1 (b) is the figure which looked at the negative electrode of the magnesium battery from the arrow A direction of Fig.1 (a). It is.
 このマグネシウム電池は、正極1と負極2とは対向して配置され、絶縁物(例えば樹脂)からなる複数の保持部材3によって保持されている。正極1は、例えば銅板で構成され、リード線L1が接続されている。負極2は、例えばマグネシウム板で構成されている。 In this magnesium battery, the positive electrode 1 and the negative electrode 2 are arranged to face each other, and are held by a plurality of holding members 3 made of an insulator (for example, resin). The positive electrode 1 is made of, for example, a copper plate and connected to a lead wire L1. The negative electrode 2 is made of, for example, a magnesium plate.
 各保持部材3は、保持本体部3aと止め具3b、3cとで構成されている。保持本体部3aの両側の端部3ab、3acは径が小さくなっており、その一方の端部3abは正極1に設けられた穴(図示せず)に挿入され、ボルト型の止め具3bによって正極1が保持本体部3aに固定されている。他方の端部3acは負極2に設けられた穴(図示せず)に挿入され、ボルト型の止め具3cによって負極2が保持本体部3aに保持されている。ここで負極2はその厚み方向(矢印B方向)に振動可能なように保持されている。このように、保持部材3は、正極1に対しては固定するように保持し、負極2に対しては矢印Bで示す方向に振動(超音波振動)できるように保持している。 Each holding member 3 includes a holding body 3a and stoppers 3b and 3c. The end portions 3ab and 3ac on both sides of the holding main body portion 3a have a small diameter, and one end portion 3ab is inserted into a hole (not shown) provided in the positive electrode 1 and is fastened by a bolt-shaped stopper 3b. The positive electrode 1 is fixed to the holding body 3a. The other end 3ac is inserted into a hole (not shown) provided in the negative electrode 2, and the negative electrode 2 is held by the holding main body 3a by a bolt-type stopper 3c. Here, the negative electrode 2 is held so that it can vibrate in the thickness direction (arrow B direction). As described above, the holding member 3 is held so as to be fixed to the positive electrode 1 and is held so as to vibrate (ultrasonic vibration) in the direction indicated by the arrow B with respect to the negative electrode 2.
 そして、負極2の正極1と対向する面の反対側の面には、銅を溶着した銅層9を形成し、その表面に例えばPZT(チタン酸ジルコン酸鉛)層からなる圧電体4を形成し、さらに銅層9及び圧電体4を被覆する透明な樹脂層5を形成している。そして、銅層9の端部にリード線L2がはんだ付けされて、樹脂層5の外部へ引き出されている。また、圧電体4の表面には、リード線L3がはんだ付けされて、樹脂層5の外部へ引き出されている。リード線L2及びリード線3は超音波発振器6に接続され、リード線L2は接地電位に固定されている。また、本例では、正極1及び負極2等が容器7に収納されている。 A copper layer 9 on which copper is deposited is formed on the surface opposite to the surface facing the positive electrode 1 of the negative electrode 2, and a piezoelectric body 4 made of, for example, a PZT (lead zirconate titanate) layer is formed on the surface. Further, a transparent resin layer 5 that covers the copper layer 9 and the piezoelectric body 4 is formed. Then, the lead wire L <b> 2 is soldered to the end portion of the copper layer 9 and pulled out to the outside of the resin layer 5. A lead wire L3 is soldered to the surface of the piezoelectric body 4 and is drawn out of the resin layer 5. The lead wire L2 and the lead wire 3 are connected to the ultrasonic oscillator 6, and the lead wire L2 is fixed to the ground potential. In this example, the positive electrode 1 and the negative electrode 2 are accommodated in the container 7.
 そして、電池として使用する時には、リード線L1とリード線L2との間に負荷8を接続し、容器7に電解液10として水、海水、または食塩水等の塩化ナトリウム水溶液を入れる。電池として使用する前までは、容器7に電解液10を入れないことで長期保存が可能になる。なお、容器7を設けずに、電池として使用する時に、正極1及び負極2等を水(湖沼)または海水(海洋)に浸すようにする構成も可能である。 And when using as a battery, the load 8 is connected between the lead wire L1 and the lead wire L2, and sodium chloride aqueous solution, such as water, seawater, or salt solution, is put into the container 7 as the electrolyte solution 10. FIG. Until it is used as a battery, long-term storage is possible by not putting the electrolyte solution 10 in the container 7. In addition, when using as a battery, without providing the container 7, the structure which immerses the positive electrode 1, the negative electrode 2, etc. in water (lake) or seawater (ocean) is also possible.
 超音波発振器6は、20kHz~200kHzの範囲内で所定の周波数f1の交流電圧を圧電体4へ印加する。このような交流電圧が印加されることにより、圧電体4は矢印Bで示す方向に伸縮するように形成されており、圧電体4が伸縮することにより負極2は矢印Bで示す方向に超音波振動させられる。この超音波振動は、振動周波数が超音波領域の上記周波数f1となる振動である。上記交流電圧の周波数f1は、負極2と銅層9と圧電体4と樹脂層5とからなる負極部分が固有振動を起こす共振周波数あるいはそれに近い周波数とすることが望ましい。 The ultrasonic oscillator 6 applies an AC voltage having a predetermined frequency f1 to the piezoelectric body 4 within a range of 20 kHz to 200 kHz. When such an AC voltage is applied, the piezoelectric body 4 is formed to expand and contract in the direction indicated by the arrow B. When the piezoelectric body 4 expands and contracts, the negative electrode 2 is ultrasonicated in the direction indicated by the arrow B. Vibrated. This ultrasonic vibration is a vibration whose vibration frequency is the frequency f1 in the ultrasonic region. The frequency f1 of the AC voltage is desirably set to a resonance frequency at which the negative electrode portion including the negative electrode 2, the copper layer 9, the piezoelectric body 4, and the resin layer 5 causes natural vibration or a frequency close thereto.
 本実施形態の場合と比較例の場合とにおいて、それぞれの電圧特性と電流特性を調べる実験を行った。この実験結果を図2(a)、図2(b)に示す。図2(a)は、本実施形態の場合における電圧特性(V1)の測定結果と、比較例における電圧特性(V2)の測定結果を示す図であり、図2(b)は、本実施形態の場合における電流特性(I1)の測定結果と、比較例における電流特性(I2)の測定結果とを示す図である。 In the case of this embodiment and the case of the comparative example, an experiment was conducted to examine the respective voltage characteristics and current characteristics. The experimental results are shown in FIGS. 2 (a) and 2 (b). FIG. 2A is a diagram illustrating the measurement result of the voltage characteristic (V1) in the case of the present embodiment and the measurement result of the voltage characteristic (V2) in the comparative example, and FIG. 2B is a diagram illustrating the present embodiment. It is a figure which shows the measurement result of the current characteristic (I1) in the case of, and the measurement result of the current characteristic (I2) in the comparative example.
 本実施形態の場合における電圧特性(V1)及び電流特性(I1)は、図1(a)に示すマグネシウム電池において、負荷8に印加される電圧の経時変化及び負荷8に流れる電流の経時変化を示す。また、比較例では、図1(a)に示すマグネシウム電池と同様の正極1及び負極2を用いて電池を構成しており、負極2を超音波振動させない構成である。この比較例において、正極1と負極2との間に負荷8を接続した場合の負荷8に印加される電圧の経時変化を電圧特性(V2)として示し、負荷8に流れる電流の経時変化を電流特性(I2)として示している。 The voltage characteristics (V1) and current characteristics (I1) in the case of the present embodiment are the change over time of the voltage applied to the load 8 and the change over time of the current flowing through the load 8 in the magnesium battery shown in FIG. Show. Further, in the comparative example, the battery is configured using the same positive electrode 1 and negative electrode 2 as the magnesium battery shown in FIG. 1A, and the negative electrode 2 is not subjected to ultrasonic vibration. In this comparative example, the change with time of the voltage applied to the load 8 when the load 8 is connected between the positive electrode 1 and the negative electrode 2 is shown as a voltage characteristic (V2), and the change with time of the current flowing through the load 8 is expressed as current. This is shown as characteristic (I2).
 図2(a)、(b)より、比較例よりも本実施形態の場合の方が、高い電圧を維持し、大きな電流を流せることがわかる。 2 (a) and 2 (b), it can be seen that a higher current can be maintained and a larger current can flow in the present embodiment than in the comparative example.
 すなわち本実施形態のように、マグネシウムで構成される負極2を超音波振動させることにより、負極2表面における水酸化マグネシウムの被膜の形成を防止し、長時間の連続使用が可能となるマグネシウム電池を実現できる。 That is, as in this embodiment, a magnesium battery that prevents the formation of a magnesium hydroxide film on the surface of the negative electrode 2 and can be used continuously for a long time by ultrasonically vibrating the negative electrode 2 made of magnesium. realizable.
 本実施形態では、超音波洗浄のメカニズムとほぼ同様に、キャビテーション効果などによって水酸化マグネシウムの被膜の形成を防止できると考えられる。すなわち、負極2を超音波振動させることにより電解液10中に超音波を照射すると、局所的に圧力が高い部分と低い部分とができ、圧力が低い部分では液中に小さな真空の空洞が発生し、その空洞に液中に溶け込んでいる気体が取り込まれて気泡11(図3参照)となる。再び圧力が高くなると、気泡が押しつぶされ、そのときに衝撃波が発生する。この衝撃波によって、負極2表面に形成される水酸化マグネシウム膜が剥離する(キャビテーション効果)。そして、剥離した水酸化マグネシウム膜は、液粒子の振動する際の大きな加速度により引き剥がされ、超音波照射により発生する直進流により分散させられると考えられる。 In this embodiment, it is considered that the formation of a magnesium hydroxide film can be prevented by a cavitation effect or the like, almost similar to the mechanism of ultrasonic cleaning. That is, when ultrasonic waves are applied to the electrolyte 10 by ultrasonically vibrating the negative electrode 2, a locally high pressure portion and a low pressure portion are formed, and a small vacuum cavity is generated in the liquid at a low pressure portion. Then, the gas dissolved in the liquid is taken into the cavity and becomes a bubble 11 (see FIG. 3). When the pressure rises again, the bubbles are crushed and a shock wave is generated at that time. Due to this shock wave, the magnesium hydroxide film formed on the surface of the negative electrode 2 is peeled off (cavitation effect). The peeled magnesium hydroxide film is peeled off by a large acceleration when the liquid particles vibrate, and is considered to be dispersed by a straight flow generated by ultrasonic irradiation.
 本実施形態の場合には、例えば図3に示すように、正極1と対向する負極2表面の近傍に気泡11が発生し、この発生した気泡11は負極2から正極1の方向(矢印Cの方向)へ進行しながら消滅する状況を確認することができた。また、水酸化マグネシウム膜(図示せず)が負極2から正極1へ向かって分散される状況も確認することができた。図3は、気泡の発生状態を示す模式図である。 In the case of this embodiment, for example, as shown in FIG. 3, bubbles 11 are generated in the vicinity of the surface of the negative electrode 2 facing the positive electrode 1, and the generated bubbles 11 are directed from the negative electrode 2 to the positive electrode 1 (in the direction of the arrow C). We were able to confirm the situation of disappearing while proceeding in the direction). In addition, it was also possible to confirm that the magnesium hydroxide film (not shown) was dispersed from the negative electrode 2 toward the positive electrode 1. FIG. 3 is a schematic diagram showing a state where bubbles are generated.
 また、本実施形態において、負荷8の消費電力は、超音波発振器6の消費電力に比べてはるかに大きく、例えば、超音波発振器6の消費電力の10倍以上である。 In this embodiment, the power consumption of the load 8 is much larger than the power consumption of the ultrasonic oscillator 6, for example, 10 times or more the power consumption of the ultrasonic oscillator 6.
 なお、本実施形態では負極2をマグネシウム(マグネシウム板)で構成したが、マグネシウム合金(マグネシウムを主成分とする合金であり、例えばマグネシウムを主成分としアルミニウム等を含有する合金)で構成してもよい。 In this embodiment, the negative electrode 2 is made of magnesium (magnesium plate), but may be made of a magnesium alloy (an alloy containing magnesium as a main component, for example, an alloy containing magnesium as a main component and containing aluminum). Good.
 また、負極2と圧電体4との間の銅層9を設けずに、負極2の表面に直接、圧電体4が設けられてあってもよい。この場合、リード線L2は例えば負極2に接続されてあればよい。また、圧電体4の負極2とは反対側の面に平板状の電極となる導電体層を形成し、その導電体層にリード線L3を接続するようにしてもよい。 Alternatively, the piezoelectric body 4 may be provided directly on the surface of the negative electrode 2 without providing the copper layer 9 between the negative electrode 2 and the piezoelectric body 4. In this case, the lead wire L2 only needs to be connected to the negative electrode 2, for example. Alternatively, a conductor layer serving as a flat electrode may be formed on the surface of the piezoelectric body 4 opposite to the negative electrode 2, and the lead wire L3 may be connected to the conductor layer.
 また、圧電体4はPZT層に限られるものではなく、他の圧電体材料で構成されていてもよい。 Further, the piezoelectric body 4 is not limited to the PZT layer, and may be composed of other piezoelectric materials.
 また、正極1を銅(銅板)で構成したが、これに限られるものではなく、負極2を構成するマグネシウムよりイオン化傾向の小さい物質(例えば、銀、白金、金等)で構成すればよい。 Further, although the positive electrode 1 is made of copper (copper plate), the present invention is not limited to this, and may be made of a material (eg, silver, platinum, gold, etc.) having a smaller ionization tendency than magnesium constituting the negative electrode 2.
 また、正極1と圧電体4を装着した負極1とからなる組を、複数組直列あるいは並列に接続した構成としてもよい。 Alternatively, a plurality of sets of the positive electrode 1 and the negative electrode 1 equipped with the piezoelectric body 4 may be connected in series or in parallel.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
 本発明は、長時間の連続使用が可能となるマグネシウム電池等として有用である。 The present invention is useful as a magnesium battery that can be used continuously for a long time.
1 正極
2 負極
3 保持部材
4 圧電体
5 樹脂層
6 超音波発振器
7 容器
8 負荷
9 銅層
10 電解液
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Holding member 4 Piezoelectric body 5 Resin layer 6 Ultrasonic oscillator 7 Container 8 Load 9 Copper layer 10 Electrolyte

Claims (2)

  1.  マグネシウムまたはマグネシウム合金からなる負極と、
     前記負極と対向して配置される正極とを有し、
     前記負極及び前記正極を電解液に浸した状態で、実質的に前記負極と前記正極とが対向する方向に前記負極を超音波振動させるように構成された、マグネシウム電池。
    A negative electrode made of magnesium or a magnesium alloy;
    A positive electrode disposed opposite to the negative electrode;
    A magnesium battery configured to ultrasonically vibrate the negative electrode in a direction in which the negative electrode and the positive electrode face each other in a state where the negative electrode and the positive electrode are immersed in an electrolytic solution.
  2.  前記負極を超音波振動させるために、前記負極の前記正極と対向する反対側の面に圧電体を取り付け、前記圧電体に前記超音波振動に応じた周波数の交流電圧を印加することにより前記圧電体が前記負極と前記正極とが対向する方向に伸縮するように構成された、請求項1に記載のマグネシウム電池。 To ultrasonically vibrate the negative electrode, a piezoelectric body is attached to the opposite surface of the negative electrode facing the positive electrode, and an AC voltage having a frequency corresponding to the ultrasonic vibration is applied to the piezoelectric body. The magnesium battery according to claim 1, wherein the body is configured to expand and contract in a direction in which the negative electrode and the positive electrode face each other.
PCT/JP2011/000309 2011-01-21 2011-01-21 Magnesium battery WO2012098586A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000309 WO2012098586A1 (en) 2011-01-21 2011-01-21 Magnesium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000309 WO2012098586A1 (en) 2011-01-21 2011-01-21 Magnesium battery

Publications (1)

Publication Number Publication Date
WO2012098586A1 true WO2012098586A1 (en) 2012-07-26

Family

ID=46515242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000309 WO2012098586A1 (en) 2011-01-21 2011-01-21 Magnesium battery

Country Status (1)

Country Link
WO (1) WO2012098586A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400974A (en) * 2013-08-09 2013-11-20 重庆大学 Application of vanadium oxide in serving as magnesium secondary battery cathode material and sol-gel preparation method thereof
JP5379941B1 (en) * 2012-10-31 2013-12-25 和之 豊郷 Separated interlayer magnesium battery
JP5451923B1 (en) * 2013-04-10 2014-03-26 三嶋電子株式会社 Water battery
JP2018517252A (en) * 2015-05-26 2018-06-28 ユニスト(ウルサン ナショナル インスティテュート オブ サイエンス アンド テクノロジー) Coin-type secondary battery, method for manufacturing the same, and coin-type secondary battery charge / discharge device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182676A (en) * 1984-09-28 1986-04-26 Shin Kobe Electric Mach Co Ltd Sea water battery
JPH0648886U (en) * 1992-12-07 1994-07-05 九州日立マクセル株式会社 Water purifier with vibration function
JPH0817446A (en) * 1994-06-28 1996-01-19 Yuasa Corp Sea water cell system
JP2004131787A (en) * 2002-10-10 2004-04-30 Tsumoto Yoshihiro Gas generator by electrolysis
JP2004298754A (en) * 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd Electrolyzer and washing machine equipped with the electrolyzer
JP2009295314A (en) * 2008-06-03 2009-12-17 Electron Spring Kk Device for improving torque and output of engine
JP2010182435A (en) * 2009-02-03 2010-08-19 Suzuki Senkei Magnesium cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182676A (en) * 1984-09-28 1986-04-26 Shin Kobe Electric Mach Co Ltd Sea water battery
JPH0648886U (en) * 1992-12-07 1994-07-05 九州日立マクセル株式会社 Water purifier with vibration function
JPH0817446A (en) * 1994-06-28 1996-01-19 Yuasa Corp Sea water cell system
JP2004131787A (en) * 2002-10-10 2004-04-30 Tsumoto Yoshihiro Gas generator by electrolysis
JP2004298754A (en) * 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd Electrolyzer and washing machine equipped with the electrolyzer
JP2009295314A (en) * 2008-06-03 2009-12-17 Electron Spring Kk Device for improving torque and output of engine
JP2010182435A (en) * 2009-02-03 2010-08-19 Suzuki Senkei Magnesium cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5379941B1 (en) * 2012-10-31 2013-12-25 和之 豊郷 Separated interlayer magnesium battery
JP5451923B1 (en) * 2013-04-10 2014-03-26 三嶋電子株式会社 Water battery
WO2014168155A1 (en) * 2013-04-10 2014-10-16 三嶋電子株式会社 Water battery
CN103400974A (en) * 2013-08-09 2013-11-20 重庆大学 Application of vanadium oxide in serving as magnesium secondary battery cathode material and sol-gel preparation method thereof
JP2018517252A (en) * 2015-05-26 2018-06-28 ユニスト(ウルサン ナショナル インスティテュート オブ サイエンス アンド テクノロジー) Coin-type secondary battery, method for manufacturing the same, and coin-type secondary battery charge / discharge device

Similar Documents

Publication Publication Date Title
JP2020524361A5 (en)
WO2012098586A1 (en) Magnesium battery
US5552656A (en) Self-powered anti-fouling device for watercraft
RU2016146388A (en) Antenna configured to change configuration
US11705586B2 (en) Acoustic wave based dendrite prevention for rechargeable batteries
US8717849B1 (en) Slotted cylinder acoustic transducer
JP2009278859A (en) Battery alternative power generation unit
Ucar Patch-based piezoelectric energy harvesting on a marine boat exposed to wave-induced loads
CN106973350B (en) Infrasonic wave sounder for driving jellyfish
CN105882359A (en) Ultrasonic vehicle window and functional component thereof
JP6758654B2 (en) Capacitive sound wave generator, capacitive sound wave generator and capacitive speaker
WO2014173745A3 (en) Method for controlling an acoustic cell
KR101932854B1 (en) Apparatus and method for energy harvesting
CN103567136B (en) Nanometer ultrasonic generator and preparation method thereof and electro-ionic osmosis device
KR101231569B1 (en) Energy Harvesting System Using Piezoelectric Nanorod Arrays and Method for Manufacturing the Same
CN207009075U (en) The passive piezoelectric buzzer of paster
JP2014209421A (en) Magnesium battery
JP2010062660A (en) Ultrasonic vibration element and method of manufacturing the same, and ultrasonic cleaning device
KR101411999B1 (en) Micro-fluidic power generation using liquid droplet
WO2022149486A1 (en) Ultrasound device, impedance matching layer, and electrostatic drive device
JP2012029081A (en) Electronic apparatus and oscillation device
Gavrilov et al. Study of the vibration-sensitive piezoelectric element based on ZnO nanowires and porous electrode
Yang et al. Tunable acoustic energy harvester using Helmholtz resonator and dual piezoelectric cantilever beams
KR20230044599A (en) Triboelectric generator comprising ferroelectric composites drived by ultrasonic waves
KR101636891B1 (en) Micro power generator and power generation method using liquid droplet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP