WO2012097627A1 - 一种bbu、rru以及rru的组网方法及组网系统 - Google Patents

一种bbu、rru以及rru的组网方法及组网系统 Download PDF

Info

Publication number
WO2012097627A1
WO2012097627A1 PCT/CN2011/081871 CN2011081871W WO2012097627A1 WO 2012097627 A1 WO2012097627 A1 WO 2012097627A1 CN 2011081871 W CN2011081871 W CN 2011081871W WO 2012097627 A1 WO2012097627 A1 WO 2012097627A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical port
rru
physical control
bbu
control word
Prior art date
Application number
PCT/CN2011/081871
Other languages
English (en)
French (fr)
Inventor
曾向阳
冯卫东
庄荣海
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012097627A1 publication Critical patent/WO2012097627A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to a technology for networking a remote radio unit (RRU) and a baseband processing unit (BBU) in the communication field, and specifically relates to an RRU, a BBU, a networking method, and a networking system.
  • RRU remote radio unit
  • BBU baseband processing unit
  • the time division synchronous code division multiple access (TD-SCDMA) network uses a distributed base station architecture in a large amount, and the BBUs are placed in a centralized manner, and the RRUs are remotely connected in a network manner, and the optical fibers are connected between the BBUs and the RRUs.
  • a BBU can support multiple RRUs.
  • the networking modes of the RRU are: chain type and star type. These networking modes only have a pair of optical fibers connected to the BBU and do not have the fiber protection function.
  • the distance between the BBU and the RRU is several tens of kilometers. Usually, the RRU cannot provide services due to external damage.
  • the interface between the BBU and the RRU uses the IR interface protocol.
  • the RRU can only establish a link from an optical port due to the different uplink and downlink frame structure and the RRU hardware resources in the Ir interface protocol. It is not possible to establish two links simultaneously from two optical ports.
  • a 2.5G optical module carries 48AxC (antenna carrier) data
  • a 6G optical module carries 120 AxC (antenna carrier) data.
  • a technical problem to be solved by the present invention is to provide a networking method for an RRU to improve the service carrying capacity of the network.
  • the present invention provides a remote radio unit (RRU) networking method, which is applicable to a ring-connected baseband processing unit (BBU) and an RRU, and the method includes: Determine the number of RRUs controlled by the BBU master optical port and the number of RRUs controlled by the optical port. Configure the first physical control word according to the number of RRUs controlled by the primary optical port. Two physical control words;
  • the first physical control word is sent from the main optical port, and the second physical control word is sent from the optical port.
  • Each RRU in the ring network determines its own uplink optical port according to the received physical control word, and the upper optical port and the BBU are connected. Build the link, or switch the established link to the determined uplink port.
  • the method further includes: sending the primary optical ports to the primary optical port. Antenna carrier data of the RRU of the optical port; the antenna carrier data of the RRU belonging to the optical port is delivered from the optical port.
  • the RRU controlled by the primary optical port refers to the RRU on the RRU sub-chain connected to the primary optical interface; the RRU controlled by the optical interface is the RRU on the RRU sub-chain connected to the optical interface; The RRU sub-chain connected to the main optical port and the RRU sub-chain connected to the optical port are connected to form an RRU chain in the ring network.
  • the RRU controlled by the primary optical port refers to all RRUs in the pre-failure stage; when an alarm occurs in the ring network, the RRU controlled by the optical port refers to a post-fault level. All RRUs.
  • the first physical control word includes: identifier information of the first RRU connected to the primary optical port, RRU range information controlled by the primary optical port, and transmission direction information from the primary optical port to the optical port;
  • the second physical control word includes: identification information of the first RRU connected to the optical port, RRU range information controlled by the optical port, and transmission direction information from the optical port to the main optical port.
  • the step of determining, by the RRUs in the ring network, the uplink optical ports of the RRUs according to the received physical control words includes: determining, by the RRU, the received physical control words, if the following conditions are met, setting the physical control words to be received
  • the optical port is the uplink optical port: the transmission direction information is from the main optical port to the optical port, and the current RRU belongs to the RRU range controlled by the primary optical port; or the transmission direction information is from the optical port to the main light. Port, and the current RRU belongs to the RRU range of the optical port control.
  • Another technical problem to be solved by the present invention is to provide a networking system and provide a network capable of improving service carrying capacity.
  • the present invention provides a networking system, where the group network includes a ring-connected baseband processing unit (BBU) and an RRU, and the system includes:
  • a first device configured to determine the number of RRUs controlled by the primary optical port of the BBU, and the number of RRUs controlled by the optical port;
  • a second device configured to configure a first physical control word according to the number of RRUs controlled by the primary optical port, and configure a second physical control word according to the number of RRUs controlled by the optical port;
  • a third device configured to send a first physical control word from the primary optical port, and send a second physical control word from the optical port;
  • the fourth device is located on the RRU, and is configured to determine, according to the received physical control word, the uplink optical port of the RRU, establish a link from the uplink optical port and the BBU, or switch the established link to the determined uplink.
  • Optical port The system further includes a fifth device, configured to send antenna carrier data of the RRU belonging to the primary optical port from the primary optical port, and transmit the antenna carrier data of the RRU belonging to the optical backup port from the optical port.
  • the fourth device is configured to determine the uplink optical port according to the received physical control word in the following manner: determining that the optical port receiving the physical control word is an uplink optical port if the following condition is met
  • the information about the transmission direction is from the main optical port to the optical port, and the current RRU belongs to the RRU range controlled by the primary optical port; or the information about the transmission direction is from the optical port to the main optical port, and the current RRU is in the standby state.
  • the RRU range of the optical port control is configured to determine the uplink optical port according to the received physical control word in the following manner: determining that the optical port receiving the physical control word is an uplink optical port if the following condition is met
  • the information about the transmission direction is from the main optical port to the optical port, and the current RRU belongs to the RRU range controlled by the primary optical port; or the information about the transmission direction is from the optical port to the main optical port, and the current RRU is in the standby state.
  • the RRU range of the optical port control is configured to determine the
  • BBU provides a BBU that can implement ring networking.
  • the present invention provides a baseband processing unit (BBU) for implementing networking, including a number determining module, a physical control word configuration module, and a physical control word sending module, where:
  • the number determining module is configured to determine the number of RRUs controlled by the BBU main optical port and the number of RRUs controlled by the optical port;
  • the physical control word configuration module is configured to configure a first physical control word according to the number of RRUs controlled by the primary optical port, and configure a second physical control word according to the number of RRUs controlled by the optical port;
  • the physical control word sending module is configured to send a first physical control word from the primary optical port, and send a second physical control word from the optical standby port.
  • the BBU further includes a data sending module, configured to send the antenna carrier data of the RRU belonging to the primary optical port from the primary optical port, and send the antenna carrier data of the RRU belonging to the optical standby port from the optical port.
  • RRU remote radio unit
  • the present invention provides a remote radio unit (RRU) for implementing networking, including a receiving module, an uplink optical port determining module, and a chain building module, where:
  • the receiving module is configured to receive a physical control word sent by a baseband processing unit (BBU); the uplink optical port determining module is configured to determine, according to the physical control word received by the receiving module, the uplink light of the RRU mouth;
  • BBU baseband processing unit
  • the chain building module is configured to establish a chain from the determined uplink optical port and the BBU, or switch the established link to the determined uplink optical port.
  • the first physical control word includes: identifier information of the first RRU connected to the primary optical port, RRU range information controlled by the primary optical port, and transmission direction information from the primary optical port to the optical port;
  • the second physical control word includes: identification information of the first RRU connected to the optical port, RRU range information controlled by the optical port, and transmission direction information from the optical port to the main optical port.
  • the uplink optical interface determining module is configured to determine the uplink optical port of the RRU according to the physical control word received by the receiving module in the following manner:
  • the optical port that receives the physical control word is an uplink optical port: the transmission direction information is from the primary optical port to the optical port, and the current RRU belongs to the RRU range controlled by the primary optical port; Or the transmission direction information is from the optical port to the main optical port, and the current RRU belongs to the RRU range of the optical port control.
  • a networking method is applicable to a ring network composed of a baseband processing unit (BBU) and a plurality of remote radio units (RRUs), and the method includes: Determining the number of RRUs controlled by the primary optical port of the BBU and the number of RRUs controlled by the optical port of the BBU;
  • Each RRU in the ring network determines its own uplink optical port according to the received first physical control word and the second physical control word, and establishes a chain from the upper optical port and the BBU, or The link is switched to the uplink optical port.
  • the method further includes:
  • the RRUs in the ring network are connected to the BBU from the uplink optical port, or after the link is switched to the uplink optical port, the RRUs are sent from the main optical port to the main optical port.
  • Antenna carrier data of the RRU; the antenna carrier data of the RRU belonging to the optical port is delivered from the optical port.
  • the RRU controlled by the primary optical port refers to the RRU on the RRU sub-chain connected to the primary optical port; the RRU controlled by the optical interface is the RRU on the RRU sub-chain connected to the optical interface; An RRU sub-chain connected to the main optical port and an RRU sub-chain connected to the optical port are connected to an RRU chain in the ring network.
  • the number of RRUs controlled by the primary optical port is calculated by the following formula (1):
  • MainRruNum [CfgRruNum/2+0.5]; (1) The number of RRUs controlled by the optical port is calculated by the following formula (2):
  • SlaveRruNum [CfgRruNum/2]; (2) where CfgRruNum is the number of RRUs on the ring network, and [] indicates rounding.
  • the RRU controlled by the primary optical port refers to all RRUs of the pre-failure level
  • the RRU controlled by the optical port refers to all RRUs in the later stage of the fault. among them:
  • the first physical control word includes: identifier information of the first RRU connected to the main optical port, RRU range information controlled by the main optical port, and a transmission direction from the main optical port to the optical port Information
  • the second physical control word includes: identifier information of the first RRU connected to the optical port, RRU range information controlled by the optical port, and a transmission direction from the optical port to the main optical port information.
  • the step of determining, by each RRU in the ring network, the uplink optical port according to the received first physical control word and the second physical control word includes:
  • the RRUs in the ring network determine, according to the received first physical control word and the second physical control word, that if the following conditions are met, it is determined that the optical port that receives the physical control word is an uplink optical port: the transmission direction information is From the main optical port to the optical port, and the current RRU belongs to the RRU range controlled by the main optical port; or
  • the transmission direction information is from the optical port to the main optical port, and the current RRU belongs to the RRU range controlled by the optical port.
  • a baseband processing unit (BBU) for implementing networking includes a number determining module, a physical control word configuration module, and a physical control word sending module, wherein:
  • the number determining module is configured to: determine the number of RRUs controlled by the BBU main optical port, and the number of RRUs controlled by the BBU optical port;
  • the physical control word configuration module is configured to: configure a first physical control word according to the number of RRUs controlled by the primary optical port, and configure a second physical control word according to the number of RRUs controlled by the optical port;
  • the word sending module is configured to: send the first physical control word from the main optical port, and send the second physical control word from the optical port.
  • the BBU further includes a data sending module, where:
  • the data sending module is configured to: deliver antenna carrier data of an RRU belonging to the main optical port from the main optical port; and send an antenna carrier of the RRU belonging to the optical port from the optical port data.
  • the RRU controlled by the primary optical port refers to the RRU on the RRU sub-chain connected to the primary optical port; the RRU controlled by the optical interface is the RRU on the RRU sub-chain connected to the optical interface; An RRU sub-chain connected to the main optical port and an RRU sub-chain connected to the optical port are connected to an RRU chain in the ring network.
  • the RRU controlled by the primary optical port refers to all RRUs of the pre-failure level
  • the RRU controlled by the optical port refers to all RRUs in the post-fault stage.
  • a remote radio unit (RRU) for implementing networking includes a receiving module, an uplink optical port determining module, and a chain building module, where:
  • the receiving module is configured to: receive a first physical control word and a second physical control word sent by a baseband processing unit (BBU); the uplink optical interface determining module is configured to: according to the first physical control word and the Second thing Control the control word to determine the uplink optical port of the RRU;
  • BBU baseband processing unit
  • the chain building module is configured to: establish a chain with the BBU from the upper optical port, or switch the established link to the upper optical port.
  • the first physical control word includes: identifier information of the first RRU connected to the main optical port, RRU range information controlled by the main optical port, and a transmission direction from the main optical port to the optical port Information
  • the second physical control word includes: identifier information of the first RRU connected to the optical port, RRU range information controlled by the optical port, and a transmission direction from the optical port to the main optical port information.
  • the uplink optical port determining module is configured to: determine the uplink optical port of the RRU according to the first physical control word and the second physical control word in the following manner:
  • the optical port that receives the physical control word is an uplink optical port if the following conditions are met: the transmission direction information is the slave optical port to the optical port, and the current RRU belongs to the main optical port. RRU range; or,
  • the transmission direction information is from the optical port to the main optical port, and the current RRU belongs to the RRU range controlled by the optical port.
  • a networking system comprising a baseband processing unit (BBU) according to any one of claims 9-13 and a remote radio unit (RRU) according to any one of claims 14-17.
  • the new RRU networking mode of the embodiment of the present invention is: a ring network, that is, the RRU is connected to the BBU through two pairs of optical fibers, and the ring network is used to carry services in two directions, thereby maximizing the bearer service.
  • the fiber of one end of the RRU is faulty, it can be adaptively re-networked to ensure service implementation.
  • FIG. 1 is a schematic diagram of a three-level RRU ring networking in Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of the failure of the optical fiber 3 in the three-stage RRU ring network according to the second embodiment of the present invention
  • FIG. 4 is a schematic diagram of the failure of the optical fiber 7 in the three-stage RRU ring network according to the third embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of an RRU for implementing a ring network according to Embodiment 5 of the present invention.
  • the ring network includes a BBU and a plurality of RRUs, and a plurality of RRUs are connected in sequence to form an RRU chain.
  • One end of the RRU chain is connected to the main optical port of the BBU, and the other end of the RRU chain is the RRU and the BBU.
  • the optical ports are connected, and the BBU is connected to a plurality of the RRUs to form a ring structure.
  • An RRU connected to the primary optical interface of the BBU can be called a primary RRU.
  • the RRU connected to the optical interface of the BBU can be called a final RRU.
  • the direction of the main optical port is the front direction, and the direction of the optical port is the rear direction.
  • optical port 0 and optical port 1 on RRU-A, RRU-B, and RRU-C are optical port numbers of RRU; fiber 1, fiber 2, fiber 3, etc. are fiber number; arrow indicates fiber receiving point Rx, arrow The tail indicates the fiber transmission point Tx.
  • Figure 1 is only an example of a three-level RRU. In other embodiments, the RRU is not limited. There are only three, which can be N-level RRUs, N > 1 and N is a positive integer, that is, N RRUs can be included in the ring network.
  • the BBU networking method is as shown in Figure 2, including:
  • Step 210 Determine the number of RRUs controlled by the primary optical port of the BBU, and the number of RRUs controlled by the optical port of the BBU.
  • the RRU controlled by the primary optical interface of the BBU refers to the RRU on the RRU sub-chain connected to the primary optical interface.
  • the RRU controlled by the optical interface of the BBU refers to the RRU on the RRU sub-chain connected to the optical interface.
  • the RRU sub-chain connected to the main optical port of the BBU and the RRU sub-chain connected to the optical port of the BBU are connected to the RRU chain in the ring network. That is, the RRU chain in the ring network is divided into two sub-chains.
  • the term "dividing" as used herein refers to virtual partitioning, not disconnecting links, and RRUs on a sub-chain connected to the main optical port of the BBU.
  • RRU tributary optical port On another sub-chain connected to the optical port of the BBU.
  • RRUs There is no restriction on the number of RRUs on the sub-chain. It can be one RRU, two or more RRUs, or zero RRUs.
  • the sub-chains are divided by means of an even distribution to achieve a better load sharing effect.
  • there are N RRUs in the ring network and the sub-chain 1 of the N/2 RRUs is controlled by the primary optical port of the BBU, and the sub-chain 2 of the other N/2 RRUs is controlled by the optical port of the BBU.
  • the total number of RRUs is an odd number, an extra RRU can be assigned to the primary optical port of the BBU or to the optical port of the BBU.
  • the number of RRUs that belong to the BBU is calculated by the following formula (1):
  • MainRruNum [CfgRruNum/2+0.5]; (1) The number of RSUs to be assigned to the BBU is calculated by the following formula (2):
  • SlaveRruNum [CfgRruNum/2]; (2) where CfgRruNum is the number of RRUs on the ring, and [] indicates rounding.
  • the allocation may be performed in an equal manner, and may be configured as needed. For example, there are five RRUs on the ring network, and one of the RRUs is assigned to the primary optical port of the BBU. The sub-chains of the four RRUs belong to the optical port of the BBU.
  • the AxC data of the RRU of the optical port will be sent from the optical port.
  • the AxC data of the RRU that belongs to the optical port of the BBU will be sent from the optical port.
  • Step 220 Configure a first physical control word according to the number of RRUs controlled by the primary optical port of the BBU, and configure a second physical control word according to the number of RRUs controlled by the optical port of the BBU;
  • the physical control words configured for the main optical port of the BBU include: The first one connected to the main optical port of the BBU.
  • the RRU information, the RRU range information controlled by the BBU's main optical port, and the transmission direction information from the main optical port of the BBU to the optical port of the BBU can be expressed by the following formula:
  • the physical control words configured for the optical interface of the BBU include: the identification information of the first RRU connected to the optical interface of the BBU, the RRU range information controlled by the optical interface of the BBU, and the transmission direction from the optical interface to the optical interface.
  • Information which can be expressed by the following formula:
  • the RRU identifier consists of 8-bit binary numbers, where the upper 4 bits are the BBU optical port number and the lower 4 bits are the RRU series.
  • the RRU has a maximum of 15 levels.
  • the first RRU (that is, the first-level RRU) connected to the main optical port of the BBU has a level of 1, and the first RRU (that is, the last-level RRU) connected to the optical port of the BBU.
  • the number is 15.
  • Step 230 The first physical control word configured for the primary optical port is sent from the primary optical interface of the BBU, and the second physical control word configured for the optical interface is sent from the optical port of the BBU.
  • Step 240 Each RRU determines a respective uplink optical port according to the received physical control word, establishes a link with the BBU from the determined uplink optical port, or switches the established link to the newly determined uplink optical port.
  • the chaining described herein refers to the RRU establishing a link with the BBU in communication.
  • Each RRU receives a physical control word from two optical ports, including the physical control word of the primary optical port. And the physical control word of the light port.
  • the RRU controlled by the primary optical port of the BBU receives the first physical control word configured for the primary optical port of the BBU, and the RRU 4 controlled by the primary optical port of the BBU determines its own uplink optical port according to the first physical control word;
  • the RRU that is controlled by the optical port of the BBU receives the second physical control word configured for the optical port of the BBU.
  • the RRU controlled by the optical port of the BBU determines its own uplink optical port according to the second physical control word.
  • the RRU determines, according to the received physical control word, that the optical port that receives the physical control word is an uplink optical port if the following conditions are met: the transmission direction information indicates that the optical port is transmitted from the main optical port of the BBU to the optical port, and The current RRU belongs to the RRU range controlled by the primary optical interface of the BBU. Alternatively, the information about the transmission direction is transmitted from the optical interface of the BBU to the optical interface, and the current RRU belongs to the RRU range controlled by the optical interface of the BBU.
  • the RRU determines the uplink optical port to establish a link with the BBU from the upper optical port.
  • the RRU may also determine the lower optical port first. After determining the lower optical port, the other optical port is the upper optical port.
  • the RRU determines the downlink optical port in the following manner: The RRU determines, according to the received physical control word, that the optical port that receives the physical control word is the lower optical port if the following conditions are met: the transmission direction information indicates the master of the slave BBU. The optical interface is transmitted to the optical interface, and the current RRU does not belong to the RRU range controlled by the primary optical interface of the BBU. Alternatively, the transmission direction information indicates that the optical interface is transmitted from the optical interface of the BBU to the primary optical interface, and the current RRU does not belong to the BBU. RRU range of the optical port control.
  • the RRU determines that the optical port that receives the physical control word is the uplink optical port if the following conditions are met:
  • Link Ind is incremented by 1 and the current RRU ID (RRU ID) ⁇ BBU's primary optical port RRU ID RANGE; or Link Ind is decremented by 1 and the current RRU ID > BBU's optical port RRU ID RANGE;
  • the RRU determines that the optical port that receives the physical control word is the downlink optical port if the following conditions are met:
  • the Link Ind is incremented by 1 and the current RRU ID is the primary optical port RRU ID RANGE of the BBU. Alternatively, the Link Ind is decremented by 1, and the current RRU ID is the BRU's optical port RRU ID RANGE. If the RRU is already built, the RRU switches the link to the new uplink port; if the RRU is not built, the RRU is chained to the new uplink port.
  • the uplink optical port is the RRU's link optical port, which is also used to carry AxC data. The lower optical port is used for transparent transmission.
  • the BBU will reconfigure the ARU switching configuration and fiber delay value for the RRU on the new link-building optical port.
  • Embodiment 2 is applicable to a scenario in which all fiber nodes on the ring are fault-free, or a ring network at initial power-on.
  • the method for determining the number of RRUs that are controlled by the main optical port and the optical port on the BBU is different.
  • the description in Embodiment 2 is as follows.
  • This embodiment is based on a scenario in which an alarm is detected by a BBU or an RRU.
  • the method of re-networking is similar to the procedure in the first embodiment. The difference is that the number of RRUs controlled by the main optical port and the optical port on the BBU is determined by the above formula (1). And the calculation of the formula (2), but the faulty fiber or the faulty node is taken as the virtual splitting point, that is, the number of RRUs controlled by the main optical port and the standby optical port is determined by the fault location.
  • the RRU of the faulty level belongs to the main optical port, and the RRU of the faulty level belongs to the optical port.
  • the RRU-A is connected to the main optical port of the BBU through the optical fiber.
  • the RRU-A, RRU-B, and RRU-C are connected by optical fibers.
  • the RRU-C is connected to the optical port of the BBU through the optical fiber.
  • the main optical port number and the standby optical port number of the BBU are 0.
  • Step 310 Calculate and determine the number of RRUs controlled by the main optical port and the optical port of the BBU:
  • Step 320 Perform physical control word configuration on the master and backup optical ports respectively:
  • the optical port number of the main optical port of the BBU is 0, and the optical port number of the optical port is also 0.
  • Step 330 Send a first physical control word configured as a primary optical port from the primary optical port, and send a second physical control word configured as a standby optical port from the optical port.
  • Step 340 Each RRU determines the respective uplink optical port according to the received physical control word, and establishes a link from the uplink optical port and the BBU:
  • RRU A receives the physical control word from optical port 0, determines that Link Ind is incremented by 1, and its RRU ID ( 1 ) ⁇ RRU ID RANGE ( 2 ), then RRU_A optical port 0 is the uplink optical port, the optical port 0 and BBU build chain; RRU A adds 1 to the RRU ID, and forwards the new physical control word to RRU-B;
  • RRU B receives the physical control word from optical port 0, determines that Link Ind is incremented by 1, and its RRU ID ( 2 ) ⁇ RRU ID RANGE ( 2 ), then RRU_B sets optical port 0 as the uplink optical port, and the optical port 0 and BBU build chain;
  • RRU_C receives the physical control word from optical port 1, determines that Link Ind is minus 1, and its RRU
  • RRU_C light port 1 is the upper optical port, and the optical port 1 is connected to the BBU.
  • Step 410 Recalculate and determine the number of RRUs controlled by the primary optical port and the standby optical port on the BBU:
  • the RRU controlled by the primary optical port refers to all RRUs in the pre-fault stage; the RRU controlled by the optical port refers to all RRUs in the later stage of the fault.
  • the fault includes a fiber failure or an RRU failure.
  • the alarms in the ring network include LOP alarms caused by fiber faults and communication link alarms caused by RRU node failures.
  • Step 420 Perform the physical control word configuration of the active and standby optical interfaces:
  • Step 430 The physical control word configured as the optical port is sent from the optical port, and the physical control word configured as the optical port is sent from the optical port.
  • Step 440 Each RRU determines the respective uplink optical port according to the received physical control word, and establishes a chain from the uplink optical port and the BBU:
  • RRU-A receives the physical control word from optical port 0, judges that Link lnd is incremented by 1, and its RRU ID ( 1 ) ⁇ RRU ID RANGE ( 1 ), then RRU_A light port 0 is the uplink optical port, the light is from the light The port 0 and the BBU are chained, which is consistent with the previous link slogan;
  • RRU_C receives the physical control word from optical port 1, determines that Link Ind is decremented by 1, and its RRU ID ( 15 ) > RRU ID RANGE ( 14 ), then RRU_C optical port 1 is the uplink optical port, from optical port 1 Establish a chain with the BBU, consistent with the previous link optical port number; RRU-C decrements the RRU ID and forwards the new physical control word to RRU-B;
  • RRU B receives the physical control word from optical port 1, determines that Link Ind is decremented by 1, and its RRU ID ( 14 ) > RRU ID RANGE ( 14 ), then RRU B sets optical port 1 as the uplink optical port, from the light Port 1 and BBU are chained, which is inconsistent with the previous link optical port 0. RRU-B switches the link and service to optical port 1.
  • Step 450 The BBU reconfigures the AxC switching configuration and the fiber delay value for the RRU-A, the RRU-B, and the RRU-C.
  • the BBU After detecting the LOP alarm, the BBU re-establishes the network, calculates a new virtual split point, and determines the RRUs that are controlled by the primary optical port and the standby optical port on the BBU.
  • the network includes a ring-connected BBU and an RRU.
  • the system includes: a first device, a second device, a third device, and a fourth device, where:
  • the first device is configured to: determine the number of RRUs controlled by the BBU main optical port, and the number of RRUs controlled by the BBU optical port;
  • the second device is configured to: configure a first physical control word according to the number of RRUs controlled by the BBU main optical port, and configure a second physical control word according to the number of RRUs controlled by the BBU optical port;
  • the third device is configured to: send a first physical control word from the primary optical port of the BBU, and send a second physical control word from the optical port of the BBU;
  • the fourth device is configured to: be located on the RRU, determine the uplink optical port of the RRU according to the received physical control word, establish a link from the uplink optical port and the BBU, or switch the established link to the determined The upper link.
  • the system further includes a fifth device, where the fifth device is configured to: deliver the antenna carrier data of the RRU belonging to the BBU main optical port from the BBU main optical port; and deliver the BBU optical port from the BBU optical port Antenna carrier data for the RRU.
  • the fourth device is configured to determine its own uplink optical port based on receiving the physical control word in the following manner:
  • the optical port that receives the physical control word is an uplink optical port: the transmission direction information is from the BBU main optical port to the optical port, and the current RRU belongs to the RRU controlled by the BBU main optical port.
  • the range of the transmission direction is from the BBU optical port to the main optical port, and the current RRU belongs to the RRU range controlled by the BBU optical port.
  • This embodiment describes a BBU that implements a ring network.
  • the method includes a number determining module, a physical control word configuration module, and a physical control word sending module, where:
  • the number determining module is configured to: determine the number of RRUs controlled by the BBU main optical port, and the number of RRUs controlled by the BBU optical port;
  • the physical control word configuration module is configured to: configure a first physical control word according to the number of RRUs controlled by the BBU main optical port, and configure a second physical control word according to the number of RRUs controlled by the BBU optical port;
  • the module is configured to: send a first physical control word from the BBU main optical port, and send a second physical control word from the BBU optical port.
  • the BBU further includes a data sending module, configured to: send antenna carrier data of the RRU belonging to the primary optical port from the primary optical port of the BBU; and send the antenna of the RRU belonging to the optical port from the BBU optical port Carrier data.
  • a data sending module configured to: send antenna carrier data of the RRU belonging to the primary optical port from the primary optical port of the BBU; and send the antenna of the RRU belonging to the optical port from the BBU optical port Carrier data.
  • the above-mentioned number determining module, physical control word configuration module, physical control word transmitting module, and data transmitting module are the same as the first device, the second device, the third device, and the fifth device of Embodiment 4, respectively.
  • the RRU of the BBU is the RRU of the RRU sub-link connected to the BBU main optical port.
  • the RRU controlled by the BBU optical port is the RRU on the RRU sub-chain connected to the BBU optical port.
  • the RRU sub-chain connected to the main optical port and the RRU sub-chain connected to the optical port of the BBU are connected to form an RRU chain in the ring network.
  • the RRU controlled by the BBU main optical port refers to all the fault pre-levels.
  • the RRU controlled by the BBU optical port refers to all RRUs in the post-fault stage.
  • the embodiment describes an RRU that implements a ring network, including a receiving module, an uplink optical port determining module, and a chain building module, where:
  • the receiving module is configured to: receive a physical control word sent by the BBU;
  • the uplink optical interface determining module is configured to: according to the physical control word received by the receiving module, Determining the upper optical port of the RRU;
  • the chain building module is configured to: establish a chain from the determined uplink optical port and the BBU, or switch the established link to the determined uplink optical port.
  • the receiving module, the upper optical port determining module and the chain building module together constitute the fourth device described in Embodiment 4.
  • the first physical control word includes: identifier information of the first RRU connected to the main optical port, RRU range information controlled by the main optical port, and transmission direction information from the main optical port to the optical port; second physical control word
  • the information includes: the identifier information of the first RRU connected to the optical port, the RRU range information controlled by the optical port, and the transmission direction information from the optical port to the main optical port.
  • the uplink optical port determining module is configured to determine the uplink optical port of the RRU according to the physical control word received by the receiving module in the following manner:
  • the optical port that receives the physical control word is an uplink optical port: the transmission direction information is from the primary optical port to the optical port, and the current RRU belongs to the RRU range controlled by the primary optical port; Or the transmission direction information is from the optical port to the main optical port, and the current RRU belongs to the RRU range of the optical port control.
  • the uplink optical port determining module may also determine the lower optical port of the RRU, and then determine the uplink optical port of the RRU according to the lower optical port. For details, refer to the description of the method embodiment, which is not described herein.
  • the RRU can be hot-backed, and the virtual splitting point is used in the case that the entire ring is fault-free, so that the RRU can establish a bearer and bearer service from both sides of the BBU, and load-bearing is implemented by load sharing. Maximize business capacity.
  • the method proposed by the present invention can be easily extended to other types of radio frequency unit networking.
  • the significance of the invention is that the TD-SCDMA RRU can be hot-supplied simply and effectively, and the capacity of the bearer can be maximized by means of load sharing.
  • the new RRU networking mode of the embodiment of the present invention is: a ring network, that is, the RRU is connected to the BBU through two pairs of optical fibers, and the ring network can be used to carry services from two directions to maximize the bearer service.
  • the fiber of one end of the RRU is faulty, it can be adaptively re-networked to ensure service realization. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种组网方法和系统,适用于基带处理单元(BBU)和若干远端射频单元(RRU)组成的环网,所述方法包括:确定所述BBU的主光口控制的RRU的个数,以及BBU的备光口控制的RRU的个数;根据所述主光口控制的RRU个数配置第一物理控制字,根据所述备光口控制的RRU个数配置第二物理控制字;从所述主光口发送所述第一物理控制字,从所述备光口发送所述第二物理控制字;环网中各RRU根据接收到的所述第一物理控制字和所述第二物理控制字,确定自己的上联光口,从所述上联光口与所述BBU建链,或将已建链路切换到所述上联光口。采用上述环形网络,可从两个方向承载业务,从而达到承载业务最大化。另外,当RRU的一端光纤故障时,可以自适应重新组网,保证业务实现。

Description

一种 BBU、 RRU以及 RRU的组网方法及组网系统
技术领域
本发明涉及通讯领域中远端射频单元(RRU )与基带处理单元(BBU, Building Base band Unite )组网的技术, 具体涉及一种 RRU、 BBU以及组网 方法及组网系统。
背景技术
时分同步码分多址(TD-SCDMA ) 网络大量使用分布式基站架构, BBU 集中放置, RRU异地拉远的组网方式, BBU和 RRU之间釆用光纤连接。 一 个 BBU可以支持多个 RRU。 RRU的组网方式有: 链型、 星型, 这些组网方 式只有一对光纤跟 BBU连接, 不具备光纤保护功能。 BBU和 RRU之间的距 离有的达到几十公里,通常因为光纤受外界破坏而导致 RRU无法正常提供业 务。
在 TD-SCDMA 网络中, BBU与 RRU之间的接口釆用的是 IR接口协议
( «2GHz TD-SCDMA数字蜂窝移动通信网分布式基站的 Ir接口技术要求》 ), 由于 Ir接口协议里面上下行帧结构不一样及其 RRU硬件资源原因, RRU只 能从一个光口建立链路, 不能从两个光口同时建立两条链路。
一个 2.5G光模块承载的容量是 48AxC (天线载波)数据, 一个 6G光模 块承载的容量是 120 AxC (天线载波)数据。 随着技术的发展, RRU容量越 来越大, 现在 TD-SCDMA RRU最大的容量可以达到 168 AxC。 一个光口的 容量远不能满足需求。 发明内容
本发明要解决的一个技术问题是提供一种 RRU的组网方法,提高网络的 业务承载能力。
为解决上述技术问题, 本发明提供了一种远端射频单元(RRU ) 的组网 方法, 适用于环形连接的基带处理单元(BBU )和 RRU, 所述方法包括: 确定 BBU主光口控制的 RRU的个数, 以及备光口控制的 RRU的个数; 根据主光口控制的 RRU个数配置第一物理控制字, 根据备光口控制的 RRU个数配置第二物理控制字;
从主光口发送第一物理控制字, 从备光口发送第二物理控制字; 环网中各 RRU根据接收到的物理控制字,确定自己的上联光口,从上联 光口与 BBU建链, 或将已建链路切换到所确定的上联光口。
其中, 所述环网中各 RRU从上联光口与 BBU建链或将已建链路切换到 所确定的上联光口后, 所述方法还包括: 从主光口下发归属于主光口的 RRU 的天线载波数据; 从备光口下发归属于备光口的 RRU的天线载波数据。
其中,所述主光口控制的 RRU是指与主光口相连的 RRU子链上的 RRU; 所述备光口控制的 RRU是指与备光口相连的 RRU子链上的 RRU; 所述与主 光口相连的 RRU子链以及所述与备光口相连的 RRU子链连接成环网中的 RRU链。
其中, 所述环网中出现告警时, 所述主光口控制的 RRU是指故障前级的 所有 RRU; 所述环网中出现告警时, 所述备光口控制的 RRU是指故障后级 的所有 RRU。
其中, 所述第一物理控制字包括: 与所述主光口连接的首个 RRU的标识 信息, 主光口控制的 RRU范围信息、 从主光口到备光口的传输方向信息; 所 述第二物理控制字包括: 与所述备光口连接的首个 RRU的标识信息,备光口 控制的 RRU范围信息、 从备光口到主光口的传输方向信息。
其中, 所述环网中各 RRU根据接收到物理控制字,确定自己的上联光口 的步骤包括: RRU根据接收到的物理控制字判断如果满足以下条件, 则设置 接收到该物理控制字的光口为上联光口: 所述传输方向信息为从主光口到备 光口, 且当前 RRU属于主光口控制的 RRU范围; 或者, 所述传输方向信息 为从备光口到主光口, 且当前 RRU属于备光口控制的 RRU范围。
本发明要解决的另一个技术问题是提供一种组网系统, 提供一种能提高 业务承载能力的网络。 为解决上述技术问题, 本发明提供了一种组网系统, 所组网络包括环形 连接的基带处理单元(BBU )和 RRU, 所述系统包括:
第一装置, 用于确定 BBU主光口控制的 RRU的个数, 以及备光口控制 的 RRU的个数;
第二装置, 用于根据主光口控制的 RRU个数配置第一物理控制字,根据 备光口控制的 RRU个数配置第二物理控制字;
第三装置, 用于从主光口发送第一物理控制字, 从备光口发送第二物理 控制字;
第四装置, 位于 RRU上, 用于根据接收到的物理控制字, 确定该 RRU 的上联光口,从上联光口与 BBU建链, 或将已建链路切换到所确定的上联光 口。 其中, 所述系统还包括第五装置, 用于从主光口下发归属于主光口的 RRU的天线载波数据; 从备光口下发归属于备光口的 RRU的天线载波数据。
其中, 所述第四装置是用于釆用以下方式根据接收到物理控制字确定自 己的上联光口: 判断如果满足以下条件, 则设置接收到该物理控制字的光口 为上联光口: 所述传输方向信息为从主光口到备光口, 且当前 RRU属于主光 口控制的 RRU范围; 或者, 所述传输方向信息为从备光口到主光口, 且当前 RRU属于备光口控制的 RRU范围。
本发明要解决的另一个技术问题是提供一种实现组网的基带处理单元
( BBU ) , 提供一种能实现环形组网的 BBU。
为解决上述技术问题, 本发明提供了一种实现组网的基带处理单元 ( BBU ) , 包括个数确定模块、 物理控制字配置模块以及物理控制字发送模 块, 其中:
所述个数确定模块, 用于确定 BBU主光口控制的 RRU的个数, 以及备 光口控制的 RRU的个数;
所述物理控制字配置模块,用于根据主光口控制的 RRU个数配置第一物 理控制字, 根据备光口控制的 RRU个数配置第二物理控制字; 所述物理控制字发送模块, 用于从主光口发送第一物理控制字, 从备光 口发送第二物理控制字。
其中, 所述 BBU还包括数据发送模块, 其用于从主光口下发归属于主光 口的 RRU的天线载波数据; 从备光口下发归属于备光口的 RRU的天线载波 数据。
本发明要解决的另一个技术问题是提供一种实现组网的远端射频单元 ( RRU ) , 提供一种能实现环形组网的 RRU。
为解决上述技术问题, 本发明提供了一种实现组网的远端射频单元 ( RRU ) , 包括接收模块、 上联光口确定模块以及建链模块, 其中:
所述接收模块, 用于接收基带处理单元(BBU )发送的物理控制字; 所述上联光口确定模块, 用于根据所述接收模块接收到的物理控制字, 确定本 RRU的上联光口;
所述建链模块, 用于从所确定的上联光口与 BBU建链, 或将已建链路切 换到所确定的上联光口。
其中, 所述第一物理控制字包括: 与所述主光口连接的首个 RRU的标识 信息, 主光口控制的 RRU范围信息、 从主光口到备光口的传输方向信息; 所 述第二物理控制字包括: 与所述备光口连接的首个 RRU的标识信息,备光口 控制的 RRU范围信息、 从备光口到主光口的传输方向信息。
其中, 所述上联光口确定模块是用于釆用以下方式根据所述接收模块接 收到的物理控制字, 确定本 RRU的上联光口:
判断如果满足以下条件,则设置接收到该物理控制字的光口为上联光口: 所述传输方向信息为从主光口到备光口,且当前 RRU属于主光口控制的 RRU 范围; 或者, 所述传输方向信息为从备光口到主光口, 且当前 RRU属于备光 口控制的 RRU范围。
一种组网方法,适用于基带处理单元( BBU )和若干远端射频单元( RRU ) 组成的环网, 所述方法包括: 确定所述 BBU的主光口控制的 RRU的个数,以及 BBU的备光口控制的 RRU的个数;
根据所述主光口控制的 RRU个数配置第一物理控制字,根据所述备光口 控制的 RRU个数配置第二物理控制字;
从所述主光口发送所述第一物理控制字, 从所述备光口发送所述第二物 理控制字;
环网中各 RRU根据接收到的所述第一物理控制字和所述第二物理控制 字, 确定自己的上联光口, 从所述上联光口与所述 BBU建链, 或将已建链路 切换到所述上联光口。
所述方法还包括:
环网中各 RRU从所述上联光口与所述 BBU建链或将已建链路切换到所 述上联光口后, 从所述主光口下发归属于所述主光口的 RRU 的天线载波数 据; 从所述备光口下发归属于所述备光口的 RRU的天线载波数据。
其中:
所述主光口控制的 RRU是指与所述主光口相连的 RRU子链上的 RRU; 所述备光口控制的 RRU是指与所述备光口相连的 RRU子链上的 RRU; 与所述主光口相连的 RRU子链以及与所述备光口相连的 RRU子链连接 成所述环网中的 RRU链。
其中: 所述主光口控制的 RRU的个数由以下公式(1 )计算获得:
MainRruNum=[CfgRruNum/2+0.5]; ( 1 ) 所述备光口控制的 RRU的个数由以下公式(2 )计算获得:
SlaveRruNum=[CfgRruNum/2]; ( 2 ) 其中, CfgRruNum为所述环网上 RRU的个数, []表示取整。
其中: 当所述环网中出现告警时,
所述主光口控制的 RRU是指故障前级的所有 RRU;
所述备光口控制的 RRU是指故障后级的所有 RRU。 其中:
所述第一物理控制字包括: 与所述主光口连接的首个 RRU的标识信息, 所述主光口控制的 RRU范围信息、从所述主光口到所述备光口的传输方向信 息;
所述第二物理控制字包括: 与所述备光口连接的首个 RRU的标识信息, 所述备光口控制的 RRU范围信息、从所述备光口到所述主光口的传输方向信 息。
其中: 其中: 与所述主光口连接的首个 RRU的标识信息 =所述主光口光 口号 *16+1; 所述主光口控制的 RRU范围 =与所述主光口连接的首个 RRU的 标识信息 + 所述主光口控制的 RRU的个数 -1 ;从所述主光口到所述备光口的 传输方向信息为加 1 ;
与 BBU的备光口连接的首个 RRU标识信息=所述备光口光口号 *16+所 述环网中 RRU总级数; 所述备光口控制的 RRU范围 = 与所述备光口连接的 首个 RRU的标识信息 +1-所述备光口控制的 RRU的个数; 从所述备光口到 所述主光口的传输方向信息为减 1。
其中:环网中各 RRU根据接收到的所述第一物理控制字和所述第二物理 控制字, 确定自己的上联光口的步骤包括:
环网中各 RRU根据接收到的所述第一物理控制字和所述第二物理控制 字判断如果满足以下条件, 则确定接收到物理控制字的光口为上联光口: 传输方向信息为从所述主光口到所述备光口,且当前 RRU属于所述主光 口控制的 RRU范围; 或者,
传输方向信息为从所述备光口到所述主光口,且当前 RRU属于所述备光 口控制的 RRU范围。
一种实现组网的基带处理单元(BBU ) , 包括个数确定模块、 物理控制 字配置模块以及物理控制字发送模块, 其中:
所述个数确定模块设置成: 确定 BBU主光口控制的 RRU的个数, 以及 BBU备光口控制的 RRU的个数; 所述物理控制字配置模块设置成:根据所述主光口控制的 RRU个数配置 第一物理控制字, 根据所述备光口控制的 RRU个数配置第二物理控制字; 所述物理控制字发送模块设置成: 从所述主光口发送所述第一物理控制 字, 从所述备光口发送所述第二物理控制字。
所述 BBU还包括数据发送模块, 其中:
所述数据发送模块设置成: 从所述主光口下发归属于所述主光口的 RRU 的天线载波数据;从所述备光口下发归属于所述备光口的 RRU的天线载波数 据。
其中:
所述主光口控制的 RRU是指与所述主光口相连的 RRU子链上的 RRU; 所述备光口控制的 RRU是指与所述备光口相连的 RRU子链上的 RRU; 与所述主光口相连的 RRU子链以及与所述备光口相连的 RRU子链连接 成所述环网中的 RRU链。
其中: 所述个数确定模块设置成按照以下公式确定所述主光口控制的 RRU的个数: MainRruNum=[CfgRruNum/2+0.5];
所述个数确定模块设置成按照以下公式确定所述备光口控制的 RRU 的 个数: SlaveRruNum=[CfgRruNum/2]; ( 2 ) 其中, CfgRruNum为所述环网上 RRU的个数, []表示取整。
其中: 当所述环网中出现告警时,
所述主光口控制的 RRU是指故障前级的所有 RRU;
所述备光口控制的 RRU是指故障后级的所有 RRU。
一种实现组网的远端射频单元(RRU ) , 包括接收模块、 上联光口确定 模块以及建链模块, 其中:
所述接收模块设置成: 接收基带处理单元(BBU )发送的第一物理控制 字和第二物理控制字; 所述上联光口确定模块设置成: 根据所述第一物理控制字和所述第二物 理控制字, 确定本 RRU的上联光口;
所述建链模块设置成: 从所述上联光口与所述 BBU建链, 或将已建链路 切换到所述上联光口。
其中:
所述第一物理控制字包括: 与所述主光口连接的首个 RRU的标识信息, 所述主光口控制的 RRU范围信息、从所述主光口到所述备光口的传输方向信 息;
所述第二物理控制字包括: 与所述备光口连接的首个 RRU的标识信息, 所述备光口控制的 RRU范围信息、从所述备光口到所述主光口的传输方向信 息。
其中: 与所述主光口连接的首个 RRU 的标识信息 = 所述主光口光口号 *16+1; 所述主光口控制的 RRU范围 =与所述主光口连接的首个 RRU的标识 信息 + 所述主光口控制的 RRU的个数 -1 ;从所述主光口到所述备光口的传输 方向信息为力口 1 ;
与 BBU的备光口连接的首个 RRU标识信息=所述备光口光口号 *16+所 述环网中 RRU总级数; 所述备光口控制的 RRU范围 = 与所述备光口连接的 首个 RRU的标识信息 +1-所述备光口控制的 RRU的个数; 从所述备光口到 所述主光口的传输方向信息为减 1。
其中: 所述上联光口确定模块设置成: 釆用以下方式根据所述第一物理 控制字和所述第二物理控制字, 确定本 RRU的上联光口:
判断如果满足以下条件, 则确定接收到物理控制字的光口为上联光口: 传输方向信息为所述从主光口到所述备光口,且当前 RRU属于所述主光 口控制的 RRU范围; 或者,
传输方向信息为从所述备光口到所述主光口,且当前 RRU属于所述备光 口控制的 RRU范围。
一种组网系统, 包括如权利要求 9-13 中任一项所述的基带处理单元 ( BBU )和如权利要求 14-17中任一项所述的远端射频单元(RRU ) 。 本发明实施例的 RRU新型组网方式: 环形组网, 即 RRU通过两对光纤 与 BBU连接, 釆用上述环形网络, 可从两个方向承载业务, 从而达到承载业 务最大化。 另外, 当 RRU的一端光纤故障时, 可以自适应重新组网, 保证业 务实现。 附图概述
图 1为本发明实施例 1的 3级 RRU环形组网示意图;
图 2为本发明实施例 1的组网流程图;
图 3为本发明实施例 2的 3级 RRU环网中光纤 3故障示意图; 图 4为本发明实施例 3的 3级 RRU环网中光纤 7故障示意图; 图 5为本发明实施例 4的实现环形组网的 BBU的结构示意图; 图 6为本发明实施例 5的实现环形组网的 RRU的结构示意图。 本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
实施例 1
如图 1所示, 环网中包括 BBU和若干 RRU, 其中若干 RRU逐级顺序连 接形成一条 RRU链, 该 RRU链的一端 RRU与 BBU的主光口相连, 该 RRU 链的另一端 RRU与 BBU的备光口相连, BBU与若干该 RRU连接成一环状 结构。 与 BBU的主光口相连的 RRU可称为首级 RRU, 与 BBU的备光口相 连的 RRU可称为末级 RRU。 主光口方向为前级方向, 备光口方向为后级方 向。
图中, RRU— A、 RRU— B、 RRU— C上的光口 0和光口 1是 RRU的光口编 号; 光纤 1、 光纤 2、 光纤 3等是光纤编号; 箭头表示光纤接收点 Rx, 箭尾 表示光纤发送点 Tx。 图 1仅以 3级 RRU为例, 在其他实施例中, RRU不限 于只有 3个, 可以是 N级 RRU, N > 1且 N为正整数, 即环网中可包含 N个 RRU„
基于上述连接方式的环网, BBU组网方法如图 2所示, 包括:
步骤 210, 确定 BBU的主光口控制的 RRU的个数, 以及 BBU的备光口 控制的 RRU的个数;
其中, BBU的主光口控制的 RRU是指与主光口相连的 RRU子链上的 RRU; BBU的备光口控制的 RRU是指与备光口相连的 RRU子链上的 RRU。 与 BBU的主光口相连的 RRU子链以及与 BBU的备光口相连的 RRU子链连 接成环网中的 RRU链。 也就是说, 将环网中的 RRU链划分为两条子链, 此 处所述的 "划分"是指虚拟划分, 并非断开链路, 与 BBU的主光口连接的一 条子链上的 RRU归属主光口控制, 与 BBU的备光口连接的另一条子链上的 RRU归属备光口控制。 对子链上的 RRU数量不做限制, 可以是一个 RRU, 可以是两个以上 RRU, 也可以是零个 RRU。
优选釆用平均分配的方式划分子链, 以达到更好的负荷分担的效果。 例 如环网中有 N个 RRU,将其中 N/2个 RRU组成的子链 1归属 BBU的主光口 控制,将另外 N/2个 RRU组成的子链 2归属 BBU的备光口控制。 当 RRU总 数为奇数时, 多出的一个 RRU可以归属给 BBU的主光口控制, 也可归属给 BBU的备光口控制。
在本实施例中釆用以下公式进行计算确定:
归属 BBU的主光口控制 RRU的个数由以下公式( 1 )计算获得:
MainRruNum=[CfgRruNum/2+0.5]; ( 1 ) 归属 BBU的备光口控制 RRU的个数由以下公式(2 )计算获得:
SlaveRruNum=[CfgRruNum/2]; ( 2 ) 其中, CfgRruNum为环上 RRU的个数, []表示取整。
在其他实施例中也可以不釆用均分的方式进行分配, 可根据需要随意配 置, 例如环网上有 5个 RRU, 将其中 1个 RRU组成的子链归属 BBU的主光 口控制, 将其中 4个 RRU组成的子链归属 BBU的备光口控制。
在确定 BBU主光口和备光口各自控制的 RRU的个数后,归属于 BBU主 光口的 RRU的 AxC数据将从主光口下发,归属于 BBU备光口的 RRU的 AxC 数据将从备光口下发。
步骤 220, 根据 BBU的主光口控制的 RRU个数配置第一物理控制字, 根据 BBU的备光口控制的 RRU个数配置第二物理控制字;
为 BBU的主光口配置的物理控制字包括: 与 BBU的主光口连接的首个
RRU的标识信息, BBU的主光口控制的 RRU范围信息、从 BBU的主光口到 BBU的备光口的传输方向信息, 可用以下算式表示:
与 BBU的主光口连接的首个 RRU标识( Start RRU ID ) = BBU主光口 光口号 *16+1 ; BBU的主光口控制的 RRU范围( RRU ID RANGE )= Start RRU ID + MainRruNum-1; 链路指示 ( Link Ind ) 即传输方向信息为加 1;
为 BBU的备光口配置的物理控制字包括: 与 BBU的备光口连接的首个 RRU的标识信息, BBU的备光口控制的 RRU范围信息、 从备光口到主光口 的传输方向信息, 可用以下算式表示:
与 BBU的备光口连接的首个 RRU标识( Start RRU ID ) =BBU备光口光 口号 * 16+环网中 RRU总级数(例如 15 ); BBU的备光口控制的 RRU范围( RRU ID RANGE ) = Start RRU ID +l-SlaveRruNum; 链路指示 ( Link Ind ) 即传输 方向信息为减 1。
根据标准中的规定, RRU标识由 8位二进制数组成, 其中高 4位为 BBU 光口号, 低四位为 RRU的级数。 通常, RRU最多有 15级, 与 BBU的主光 口连接的首个 RRU (即首级 RRU ) 的级数为 1 , 与 BBU的备光口连接的首 个 RRU (即末级 RRU ) 的级数为 15。
上述算式中以十进制为单位进行计算。
步骤 230, 从 BBU的主光口发送为该主光口配置的第一物理控制字, 从 BBU的备光口发送为该备光口配置的第二物理控制字;
步骤 240, 各 RRU根据接收到的物理控制字, 确定各自的上联光口, 从 所确定的上联光口与 BBU建链, 或者将已建链路切换到新确定的上联光口; 本文所述建链是指 RRU与 BBU在通讯上建立链路。
每个 RRU都会从两个光口接收到物理控制字,包括主光口的物理控制字 和备光口的物理控制字。
BBU的主光口控制的 RRU接收到的是为 BBU的主光口配置的第一物理 控制字, BBU的主光口控制的 RRU 4艮据第一物理控制字确定自己的上联光 口; BBU的备光口控制的 RRU接收到的是为 BBU的备光口配置的第二物理 控制字, BBU的备光口控制的 RRU根据第二物理控制字确定自己的上联光 口。
RRU根据接收到的物理控制字判断如果满足以下条件, 则设置接收到该 物理控制字的光口为上联光口:所述传输方向信息表示从 BBU的主光口向备 光口传输, 且当前 RRU属于 BBU的主光口控制的 RRU范围; 或者, 所述传 输方向信息表示从 BBU的备光口向主光口传输,且当前 RRU属于 BBU的备 光口控制的 RRU范围。
RRU确定上联光口是为了从上联光口与 BBU建链。 在其他实施例中, RRU也可以先确定下联光口,在确定下联光口后,另一个光口即为上联光口。
RRU釆用以下方式确定下联光口: RRU根据接收到的物理控制字判断如 果满足以下条件, 则设置接收到该物理控制字的光口为下联光口: 所述传输 方向信息表示从 BBU的主光口向备光口传输,且当前 RRU不属于 BBU的主 光口控制的 RRU范围; 或者, 所述传输方向信息表示从 BBU的备光口向主 光口传输, 且当前 RRU不属于 BBU的备光口控制的 RRU范围。
在本实施例中, 可釆用如下算式:
RRU判断如果满足以下条件, 则设置接收到该物理控制字的光口为上联 光口:
Link Ind为加 1 , 且当前 RRU标识( RRU ID ) < BBU的主光口 RRU ID RANGE; 或者, Link Ind为减 1 , 且当前 RRU ID > BBU的备光口 RRU ID RANGE;
RRU判断如果满足以下条件, 则设置接收到该物理控制字的光口为下联 光口:
Link Ind为加 1 ,且当前 RRU ID>BBU的主光口 RRU ID RANGE; 或者, Link Ind为减 1 , 且当前 RRU ID < BBU的备光口 RRU ID RANGE。 如果 RRU已经建链,则 RRU把链路切换到新的上联光口;如果 RRU未 建链, 则 RRU在新的上联光口建链。 上联光口为 RRU的建链光口, 还用于 承载 AxC数据; 下联光口用于透传。
在上述建链过程结束后, BBU将在新的建链光口上给 RRU重新配置 AxC 交换配置和光纤时延值。
本实施例适用于环上所有光纤节点均无故障的场景, 或者初始上电时的 环网。 当出现告警时的组网方法与上述组网方法的区别在于步骤 110中确定 BBU上主光口和备光口各自控制的 RRU的个数的计算方法不同, 参见实施 例 2中的描述。
实施例 2
本实施例基于 BBU或者 RRU检测到告警的场景。 当出现告警时, 重新 组网的方法与实施例 1中的流程类似, 区别在于, 在确定 BBU上主光口和备 光口各自控制的 RRU的个数时, 不依赖于上述公式( 1 )和公式(2 )的计算, 而是将故障光纤或故障节点作为虚分裂点, 即由故障位置来确定主光口和备 光口各自控制的 RRU的个数。故障前级的 RRU归属主光口 ,故障后级的 RRU 归属备光口。
如图 3所示 , RRU— A通过光纤连接 BBU的主光口, RRU— A、 RRU— B、 RRU— C之间通过光纤连接起来, RRU— C通过光纤连接 BBU的备光口。 BBU 的主光口号和备光口号都为 0。
*在整个环上的所有光纤节点都无故障的情况下, 进行组网, 包括: 步骤 310, 计算确定 BBU的主光口和备光口各自控制的 RRU的个数:
CfgRruNum=3 , 则 : 归 属 主 光 口 的 RRU 个 数 MainRruNum=[CfgRruNum/2+0.5]=2 ; 归 属 备 光 口 的 RRU 个 数 SlaveRruNum=[CfgRruNum/2]=l。
步骤 320, 分别对主备光口进行物理控制字配置:
在本实施例中, BBU主光口的光口号为 0, 备光口的光口号也为 0。 主光口的物理控制字配置: Start RRU ID=1 , RRU ID RANGE=2 , LinK Ind为力口 1 ;
备光口的物理控制字配置: Start RRU ID=15 , RRU ID RANGE=15 , LinK Ind为减 1。
步骤 330, 从主光口发送为主光口配置的第一物理控制字, 从备光口发 送为备光口配置的第二物理控制字;
步骤 340, 各 RRU根据接收到物理控制字, 确定各自的上联光口, 从上 联光口与 BBU建链:
RRU A从光口 0接收到物理控制字, 判断 Link Ind为加 1 , 且它的 RRU ID ( 1 ) < RRU ID RANGE ( 2 ) , 则 RRU_A 置光口 0为上联光口, 从光 口 0跟 BBU建链; RRU A对 RRU ID进行加 1后 , 把新的物理控制字转发 给 RRU— B;
RRU B从光口 0接收到物理控制字, 判断 Link Ind为加 1 , 且它的 RRU ID ( 2 ) < RRU ID RANGE ( 2 ) , 则 RRU_B设置光口 0为上联光口, 从光 口 0跟 BBU建链;
RRU_C从光口 1接收到物理控制字, 判断 Link Ind为减 1 , 且它的 RRU
ID ( 15 ) > RRU ID RANGE ( 15 ) , 则 RRU_C 置光口 1为上联光口 , 从 光口 1跟 BBU建链。
•当光纤 3故障, RRU—B检测到指示光纤 3故障的光功率丟失(LOP ) 告警时, 将告警上 ^J BBU, BBU重新进行组网, 包括:
步骤 410, 重新计算确定 BBU上主光口和备光口各自控制的 RRU的个 数:
当环网中出现告警时, 主光口控制的 RRU是指故障前级的所有 RRU; 备光口控制的 RRU是指故障后级的所有 RRU。
所述故障包括光纤故障或 RRU故障。上述环网中的告警包括光纤故障导 致的 LOP告警, 以及 RRU节点故障导致的通信链路告警。
光纤 3前级的 RRU— A将归属于主光口, 即 MainRruNum=l ; 光纤 3后级 的 RRU— B和 RRU— C将归属于备光口, 即 SlaveRruNum=2。 步骤 420, 重新进行主备光口物理控制字配置:
主光口的物理控制字配置: Start RRU ID=1 , RRU ID RANGE=1 , Link Ind为力口 1 ;
备光口的物理控制字配置: Start RRU ID=15, RRU ID RANGE=14, Link Ind为减 1。
步骤 430, 从主光口发送为主光口配置的物理控制字, 从备光口发送为 备光口配置的物理控制字;
步骤 440, 各 RRU根据接收到物理控制字, 确定各自的上联光口, 从上 联光口与 BBU建链:
RRU— A从光口 0接收到物理控制字, 判断 Link lnd为加 1 , 且它的 RRU ID ( 1 ) < RRU ID RANGE ( 1 ) , 则 RRU_A 置光口 0为上联光口, 从光 口 0跟 BBU建链, 与之前的建链光口号一致;
RRU_C从光口 1接收到物理控制字, 判断 Link Ind为减 1 , 且它的 RRU ID ( 15 ) > RRU ID RANGE ( 14 ) , 则 RRU_C 置光口 1为上联光口 , 从 光口 1跟 BBU建链, 与之前的建链光口号一致; RRU— C对 RRU ID进行减 1 后, 把新的物理控制字转发给 RRU— B;
RRU B从光口 1接收到物理控制字 , 判断 Link Ind为减 1 , 且它的 RRU ID ( 14 ) > RRU ID RANGE ( 14 ) , 则 RRU B设置光口 1为上联光口, 从 光口 1跟 BBU建链, 与之前的建链光口 0不一致, RRU— B把链路和业务切 换到光口 1。
步骤 450, BBU给 RRU— A、 RRU— B、 RRU— C重新配置 AxC交换配置和 光纤时延值。
实施例 3
本实施例以另一光纤故障为例进行说明。 如图 4所示, 当光纤 7故障时,
BBU检测到 LOP告警后, 重新进行组网, 计算新的虚分裂点, 确定 BBU上 主光口和备光口各自控制的 RRU:光纤 7前级的 RRU— A、 RRU B和 RRU— C 将归属于主光口,即 MainRruNum=3;光纤 7后级无 RRU,即 SlaveRruNum=0。 其余流程同上, 此处不再赘述。
实施例 4
本实施例描述实现上述实施例方法的组网系统, 该网络包括环形连接的 BBU和 RRU, 该系统包括: 第一装置、 第二装置、 第三装置及第四装置, 其 中:
所述第一装置设置成: 确定 BBU主光口控制的 RRU的个数, 以及 BBU 备光口控制的 RRU的个数;
所述第二装置设置成: 根据 BBU主光口控制的 RRU个数配置第一物理 控制字, 根据 BBU备光口控制的 RRU个数配置第二物理控制字;
所述第三装置设置成: 从 BBU主光口发送第一物理控制字, 从 BBU备 光口发送第二物理控制字;
所述第四装置设置成: 位于 RRU上, 根据接收到的物理控制字, 确定所 在的 RRU的上联光口, 从上联光口与 BBU建链, 或将已建链路切换到所确 定的上联光口。
优选地 ,
所述系统还包括第五装置, 所述第五装置设置成: 从 BBU主光口下发归 属于 BBU主光口的 RRU的天线载波数据; 从 BBU备光口下发归属于 BBU 备光口的 RRU的天线载波数据。
优选地,
所述第四装置设置成釆用以下方式根据接收到物理控制字确定自己的上 联光口:
判断如果满足以下条件,则设置接收到该物理控制字的光口为上联光口: 所述传输方向信息为从 BBU主光口到备光口,且当前 RRU属于 BBU主光口 控制的 RRU范围; 或者, 所述传输方向信息为从 BBU备光口到主光口, 且 当前 RRU属于 BBU备光口控制的 RRU范围。 实施例 5
本实施例描述实现环形组网的 BBU, 如图 5所示, 包括个数确定模块、 物理控制字配置模块以及物理控制字发送模块, 其中:
所述个数确定模块设置成: 确定 BBU主光口控制的 RRU的个数, 以及 BBU备光口控制的 RRU的个数;
所述物理控制字配置模块设置成: 根据 BBU主光口控制的 RRU个数配 置第一物理控制字,根据 BBU备光口控制的 RRU个数配置第二物理控制字; 所述物理控制字发送模块设置成: 从 BBU主光口发送第一物理控制字, 从 BBU备光口发送第二物理控制字。
优选地, 上述 BBU还包括数据发送模块, 其设置成: 从 BBU主光口下 发归属于主光口的 RRU的天线载波数据; 从 BBU备光口下发归属于备光口 的 RRU的天线载波数据。
上述个数确定模块、 物理控制字配置模块、 物理控制字发送模块、 数据 发送模块, 分别与实施例 4的第一装置、 第二装置、 第三装置和第五装置相 同。
上 BBU述主光口控制的 RRU是指与 BBU主光口相连的 RRU子链上的 RRU; BBU备光口控制的 RRU是指与 BBU备光口相连的 RRU子链上的 RRU; 与 BBU主光口相连的 RRU子链以及与 BBU备光口相连的 RRU子链 连接成环网中的 RRU链。
当环网中出现告警时, BBU主光口控制的 RRU是指故障前级的所有
RRU; BBU备光口控制的 RRU是指故障后级的所有 RRU。
实施例 6
实施例描述实现环形组网的 RRU, 包括接收模块、 上联光口确定模块以 及建链模块, 其中:
所述接收模块设置成: 接收 BBU发送的物理控制字;
所述上联光口确定模块设置成:根据所述接收模块接收到的物理控制字, 确定本 RRU的上联光口;
所述建链模块设置成: 从所确定的上联光口与 BBU建链, 或将已建链路 切换到所确定的上联光口。
上述接收模块、 上联光口确定模块以及建链模块共同组成实施例 4中所 述的第四装置。
上述第一物理控制字包括: 与所述主光口连接的首个 RRU的标识信息, 主光口控制的 RRU范围信息、从主光口到备光口的传输方向信息; 第二物理 控制字包括:与所述备光口连接的首个 RRU的标识信息,备光口控制的 RRU 范围信息、 从备光口到主光口的传输方向信息。
上述上联光口确定模块设置成釆用以下方式根据所述接收模块接收到的 物理控制字, 确定本 RRU的上联光口:
判断如果满足以下条件,则设置接收到该物理控制字的光口为上联光口: 所述传输方向信息为从主光口到备光口,且当前 RRU属于主光口控制的 RRU 范围; 或者, 所述传输方向信息为从备光口到主光口, 且当前 RRU属于备光 口控制的 RRU范围。
在其他实施例中, 上联光口确定模块也可以先确定 RRU的下联光口,再 根据下联光口确定 RRU的上联光口, 可参见方法实施例的描述, 此处不在赘 述。
使用本发明的方法, 能够使 RRU做到热备份, 并且在整个环都无故障情 况下, 使用虚分裂点, 让 RRU从 BBU主备两边建链和承载业务, 通过负荷 分担的方式达到承载的业务容量最大化。
本发明提出的方法很容易扩展到其它制式的射频单元组网。
本发明的意义在于简单有效地解决了 TD-SCDMA RRU 能够做到热备 份, 并且能够通过负荷分担的方式达到承载的业务容量最大化。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业实用性
本发明实施例的 RRU新型组网方式: 环形组网 , 即 RRU通过两对光纤 与 BBU连接, 釆用上述环形网络, 可从两个方向承载业务, 从而达到承载业 务最大化。 另外, 当 RRU的一端光纤故障时, 可以自适应重新组网, 保证业 务实现。 因此本发明具有很强的工业实用性。

Claims

权 利 要 求 书
1、 一种组网方法, 适用于基带处理单元(BBU )和若干远端射频单元 ( RRU )组成的环网, 所述方法包括:
确定所述 BBU的主光口控制的 RRU的个数,以及 BBU的备光口控制的 RRU的个数;
根据所述主光口控制的 RRU个数配置第一物理控制字,根据所述备光口 控制的 RRU个数配置第二物理控制字;
从所述主光口发送所述第一物理控制字, 从所述备光口发送所述第二物 理控制字;
环网中各 RRU根据接收到的所述第一物理控制字和所述第二物理控制 字, 确定自己的上联光口, 从所述上联光口与所述 BBU建链, 或将已建链路 切换到所述上联光口。
2、 如权利要求 1所述的组网方法, 所述方法还包括:
环网中各 RRU从所述上联光口与所述 BBU建链或将已建链路切换到所 述上联光口后, 从所述主光口下发归属于所述主光口的 RRU 的天线载波数 据; 从所述备光口下发归属于所述备光口的 RRU的天线载波数据。
3、 如权利要求 1所述的组网方法, 其中:
所述主光口控制的 RRU是指与所述主光口相连的 RRU子链上的 RRU; 所述备光口控制的 RRU是指与所述备光口相连的 RRU子链上的 RRU; 与所述主光口相连的 RRU子链以及与所述备光口相连的 RRU子链连接 成所述环网中的 RRU链。
4、 如权利要求 3所述的组网方法, 其中: 所述主光口控制的 RRU的个 数由以下公式(1 )计算获得:
MainRruNum=[CfgRruNum/2+0.5]; ( 1 ) 所述备光口控制的 RRU的个数由以下公式( 2 )计算获得:
SlaveRruNum=[CfgRruNum/2]; ( 2 ) 其中, CfgRruNum为所述环网上 RRU的个数, []表示取整。
5、 如权利要求 1所述的组网方法, 其中: 当所述环网中出现告警时, 所述主光口控制的 RRU是指故障前级的所有 RRU;
所述备光口控制的 RRU是指故障后级的所有 RRU。
6、 如权利要求 1-5中任一项所述的组网方法, 其中:
所述第一物理控制字包括: 与所述主光口连接的首个 RRU的标识信息, 所述主光口控制的 RRU范围信息、从所述主光口到所述备光口的传输方向信 息;
所述第二物理控制字包括: 与所述备光口连接的首个 RRU的标识信息, 所述备光口控制的 RRU范围信息、从所述备光口到所述主光口的传输方向信 息。
7、 如权利要求 6所述的组网方法, 其中: 其中: 与所述主光口连接的首 个 RRU的标识信息 = 所述主光口光口号 *16+1; 所述主光口控制的 RRU范 围=与所述主光口连接的首个 RRU的标识信息 + 所述主光口控制的 RRU的 个数 -1 ; 从所述主光口到所述备光口的传输方向信息为加 1 ;
与 BBU的备光口连接的首个 RRU标识信息=所述备光口光口号 *16+所 述环网中 RRU总级数; 所述备光口控制的 RRU范围 = 与所述备光口连接的 首个 RRU的标识信息 +1-所述备光口控制的 RRU的个数; 从所述备光口到 所述主光口的传输方向信息为减 1。
8、 如权利要求 6所述的组网方法, 其中: 环网中各 RRU根据接收到的 所述第一物理控制字和所述第二物理控制字, 确定自己的上联光口的步骤包 括:
环网中各 RRU根据接收到的所述第一物理控制字和所述第二物理控制 字判断如果满足以下条件, 则确定接收到物理控制字的光口为上联光口: 传输方向信息为从所述主光口到所述备光口,且当前 RRU属于所述主光 口控制的 RRU范围; 或者,
传输方向信息为从所述备光口到所述主光口,且当前 RRU属于所述备光 口控制的 RRU范围。
9、 一种实现组网的基带处理单元(BBU ) , 包括个数确定模块、 物理控 制字配置模块以及物理控制字发送模块, 其中:
所述个数确定模块设置成: 确定 BBU主光口控制的 RRU的个数, 以及 BBU备光口控制的 RRU的个数;
所述物理控制字配置模块设置成:根据所述主光口控制的 RRU个数配置 第一物理控制字, 根据所述备光口控制的 RRU个数配置第二物理控制字; 所述物理控制字发送模块设置成: 从所述主光口发送所述第一物理控制 字, 从所述备光口发送所述第二物理控制字。
10、 如权利要求 9所述的 BBU, 所述 BBU还包括数据发送模块, 其中: 所述数据发送模块设置成: 从所述主光口下发归属于所述主光口的 RRU 的天线载波数据;从所述备光口下发归属于所述备光口的 RRU的天线载波数 据。
11、 如权利要求 9所述的 BBU, 其中:
所述主光口控制的 RRU是指与所述主光口相连的 RRU子链上的 RRU; 所述备光口控制的 RRU是指与所述备光口相连的 RRU子链上的 RRU; 与所述主光口相连的 RRU子链以及与所述备光口相连的 RRU子链连接 成所述环网中的 RRU链。
12、 如权利要求 9所述的 BBU, 其中: 所述个数确定模块设置成按照以 下 公 式 确 定 所 述 主 光 口 控 制 的 RRU 的 个 数 : MainRruNum=[CfgRruNum/2+0.5];
所述个数确定模块设置成按照以下公式确定所述备光口控制的 RRU 的 个数: SlaveRruNum=[CfgRruNum/2]; ( 2 ) 其中, CfgRruNum为所述环网上 RRU的个数, []表示取整。
13、 如权利要求 9所述的 BBU, 其中: 当所述环网中出现告警时, 所述主光口控制的 RRU是指故障前级的所有 RRU;
所述备光口控制的 RRU是指故障后级的所有 RRU。
14、 一种实现组网的远端射频单元(RRU ) , 包括接收模块、 上联光口 确定模块以及建链模块, 其中: 所述接收模块设置成: 接收基带处理单元(BBU )发送的第一物理控制 字和第二物理控制字; 所述上联光口确定模块设置成: 根据所述第一物理控制字和所述第二物 理控制字, 确定本 RRU的上联光口;
所述建链模块设置成: 从所述上联光口与所述 BBU建链, 或将已建链路 切换到所述上联光口。
15、 如权利要求 14所述的 RRU, 其中:
所述第一物理控制字包括: 与所述主光口连接的首个 RRU的标识信息, 所述主光口控制的 RRU范围信息、从所述主光口到所述备光口的传输方向信 息;
所述第二物理控制字包括: 与所述备光口连接的首个 RRU的标识信息, 所述备光口控制的 RRU范围信息、从所述备光口到所述主光口的传输方向信 息。
16、 如权利要求 15所述的 RRU, 其中: 与所述主光口连接的首个 RRU 的标识信息 = 所述主光口光口号 *16+1; 所述主光口控制的 RRU 范围 =与所 述主光口连接的首个 RRU的标识信息 + 所述主光口控制的 RRU的个数 -1 ; 从所述主光口到所述备光口的传输方向信息为加 1 ;
与 BBU的备光口连接的首个 RRU标识信息=所述备光口光口号 *16+所 述环网中 RRU总级数; 所述备光口控制的 RRU范围 = 与所述备光口连接的 首个 RRU的标识信息 +1-所述备光口控制的 RRU的个数; 从所述备光口到 所述主光口的传输方向信息为减 1。
17、 如权利要求 15所述的 RRU, 其中: 所述上联光口确定模块设置成: 釆用以下方式根据所述第一物理控制字和所述第二物理控制字, 确定本 RRU 的上联光口:
判断如果满足以下条件, 则确定接收到物理控制字的光口为上联光口: 传输方向信息为所述从主光口到所述备光口,且当前 RRU属于所述主光 口控制的 RRU范围; 或者,
传输方向信息为从所述备光口到所述主光口,且当前 RRU属于所述备光 口控制的 RRU范围。
18、 一种组网系统, 包括如权利要求 9-13中任一项所述的基带处理单元 (BBU)和如权利要求 14-17中任一项所述的远端射频单元(RRU) 。
PCT/CN2011/081871 2011-01-21 2011-11-07 一种bbu、rru以及rru的组网方法及组网系统 WO2012097627A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100245043A CN102611492A (zh) 2011-01-21 2011-01-21 一种bbu、rru以及rru的组网方法及组网系统
CN201110024504.3 2011-01-21

Publications (1)

Publication Number Publication Date
WO2012097627A1 true WO2012097627A1 (zh) 2012-07-26

Family

ID=46515124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081871 WO2012097627A1 (zh) 2011-01-21 2011-11-07 一种bbu、rru以及rru的组网方法及组网系统

Country Status (2)

Country Link
CN (1) CN102611492A (zh)
WO (1) WO2012097627A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201965A1 (en) * 2013-06-20 2014-12-24 Huawei Technologies Co., Ltd. System and method for an agile cloud radio access network
CN108768507A (zh) * 2018-06-01 2018-11-06 武汉虹信通信技术有限责任公司 一种rru环形组网的链路切换方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103905115B (zh) * 2012-12-29 2017-03-22 中国移动通信集团安徽有限公司 Rru与bbu之间业务传输的实现方法、系统及bbu
CN106454907B (zh) * 2015-08-05 2020-05-05 普天信息技术有限公司 一种环形组网系统及故障检测和恢复方法
CN107733522B (zh) * 2017-10-19 2020-12-15 北京全路通信信号研究设计院集团有限公司 一种lte-r环形网络系统
CN113259009B (zh) * 2020-02-10 2022-08-05 大唐移动通信设备有限公司 Rhub、bbu、rhub级联式负荷分担系统和方法
CN113613179B (zh) * 2021-07-31 2022-05-03 深圳市佳贤通信设备有限公司 一种网元识别方法、系统、计算机设备及存储介质
CN116566491B (zh) * 2023-07-11 2024-01-12 南京典格通信科技有限公司 一种光纤直放站自适应时延调整方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1652520A (zh) * 2004-02-02 2005-08-10 华为技术有限公司 一种分布式基站的组网方法
CN101730088A (zh) * 2008-10-15 2010-06-09 京信通信系统(中国)有限公司 自动获取射频拉远单元连接关系的方法
CN101753244A (zh) * 2008-12-05 2010-06-23 大唐移动通信设备有限公司 一种rru环形组网中的业务传输方法及系统
CN101873168A (zh) * 2009-04-23 2010-10-27 大唐移动通信设备有限公司 一种业务数据传输方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330118C (zh) * 2004-02-23 2007-08-01 华为技术有限公司 分布式基站系统及数据交互方法
CN101826916A (zh) * 2009-03-02 2010-09-08 大唐移动通信设备有限公司 Ir口主备倒换方法、系统及设备
CN102547806B (zh) * 2010-12-10 2015-08-19 中国移动通信集团广东有限公司 一种分布式基站系统及其链路保护方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1652520A (zh) * 2004-02-02 2005-08-10 华为技术有限公司 一种分布式基站的组网方法
CN101730088A (zh) * 2008-10-15 2010-06-09 京信通信系统(中国)有限公司 自动获取射频拉远单元连接关系的方法
CN101753244A (zh) * 2008-12-05 2010-06-23 大唐移动通信设备有限公司 一种rru环形组网中的业务传输方法及系统
CN101873168A (zh) * 2009-04-23 2010-10-27 大唐移动通信设备有限公司 一种业务数据传输方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9258629B2 (en) 2012-12-11 2016-02-09 Huawei Technologies Co., Ltd. System and method for an agile cloud radio access network
WO2014201965A1 (en) * 2013-06-20 2014-12-24 Huawei Technologies Co., Ltd. System and method for an agile cloud radio access network
JP2016527760A (ja) * 2013-06-20 2016-09-08 ホアウェイ・テクノロジーズ・カンパニー・リミテッド アジャイルクラウド無線アクセスネットワークのためのシステムおよび方法
CN108768507A (zh) * 2018-06-01 2018-11-06 武汉虹信通信技术有限责任公司 一种rru环形组网的链路切换方法及系统

Also Published As

Publication number Publication date
CN102611492A (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
WO2012097627A1 (zh) 一种bbu、rru以及rru的组网方法及组网系统
US7639605B2 (en) System and method for detecting and recovering from virtual switch link failures
US11246022B2 (en) Bluetooth headset device and communication method for the same
AU2017276424A1 (en) System and method for cell switching
CN108512751B (zh) 一种端口状态处理方法以及网络设备
EP2850787A1 (en) Methods and apparatus for detecting and handling split brain issues in a link aggregation group
CN102724030A (zh) 一种高可靠性的堆叠系统
KR20140002033A (ko) 포트 확장 토폴로지 정보를 취득하는 방법, 시스템 및 제어 브리지
WO2010048875A1 (zh) 一种集群系统扩容方法、装置及集群系统
US20220322140A1 (en) Communication method and apparatus
CN113795003A (zh) 用于5g室内无线通信的多rru扩展系统及实现方法
WO2012097657A1 (zh) 环网系统及环网组网方法
CN101883117A (zh) 接口业务集中处理方法和系统
CN110011912A (zh) 机箱式交换设备上行链路切换方法及装置
US20160173574A1 (en) Radio access method, apparatus, and system
WO2012159570A1 (zh) 链路倒换方法和装置
WO2011140873A1 (zh) 光传输层的数据传输方法及装置
WO2018098696A1 (zh) 一种综合接入系统
CN101420351B (zh) 一种实现弹性分组环上业务保护的装置及方法
US10944625B2 (en) Bearer configuration method and related products
CN102427381A (zh) 一种卫星基站系统
US11502945B2 (en) High-availability networking as a service via Wi-Fi
JP6562574B2 (ja) データ伝送方法および装置
CN114342489B (zh) 一种通信方法、通信装置、终端设备及用户面网元
WO2021109821A1 (zh) 网络结构、网络中网元之间的报文发送方法及接收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856518

Country of ref document: EP

Kind code of ref document: A1