WO2012097598A1 - 煤加氢热解与气化耦合的方法及其系统 - Google Patents

煤加氢热解与气化耦合的方法及其系统 Download PDF

Info

Publication number
WO2012097598A1
WO2012097598A1 PCT/CN2011/079252 CN2011079252W WO2012097598A1 WO 2012097598 A1 WO2012097598 A1 WO 2012097598A1 CN 2011079252 W CN2011079252 W CN 2011079252W WO 2012097598 A1 WO2012097598 A1 WO 2012097598A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
furnace
pyrolysis
gasification
gas
Prior art date
Application number
PCT/CN2011/079252
Other languages
English (en)
French (fr)
Inventor
吴道洪
王五一
王其成
Original Assignee
北京神雾环境能源科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京神雾环境能源科技集团股份有限公司 filed Critical 北京神雾环境能源科技集团股份有限公司
Publication of WO2012097598A1 publication Critical patent/WO2012097598A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • C10B49/04Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated
    • C10B49/08Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated in dispersed form
    • C10B49/10Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated in dispersed form according to the "fluidised bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/04Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of powdered coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/62Processes with separate withdrawal of the distillation products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal

Definitions

  • the invention relates to a coal utilization method and a system thereof, in particular to a coal chemical hydrogenation pyrolysis and gasification coupling method and system thereof. Background technique
  • coal In the 21st century, with the rapid economic growth, the demand for chemical raw materials has also increased sharply. In the chemical raw material structure, coal accounts for more than half. "Developing coal chemical industry, developing and promoting clean coal technology” has become an industry and Kirsus. In order to achieve the high-efficiency utilization of coal resources, the academic community has proposed a process of “coal plucking” to fully extract gas, liquid fuel and fine chemicals from coal.
  • the coal pyrolysis technology has a low tar yield and a light component content; the rapid hydrogenation pyrolysis technology of coal can increase the tar yield while obtaining a high calorific value gas rich in decane, but the raw material A part of the carbon in the coal still exists in the form of low added value semi-coke, and the total carbon utilization of the raw materials is low.
  • Coal gasification technology can obtain different syngas with different gas components by selecting different gasifying agents. However, for a specific gasification medium, the syngas composition is relatively simple, and it is also impossible to extract naphthalene, benzene, phenol, etc. The value of coal chemical products. Summary of the invention
  • the invention provides a method and a system for coupling coal hydrothermal pyrolysis and gasification with high total carbon utilization rate of raw materials.
  • a method for coupling coal hydrothermal pyrolysis and gasification which achieves one of the objects of the present invention comprises the following steps: (1) drying and preheating raw coal having a particle size of less than or equal to 2 mm in a coal drying preheating system;
  • the preheating temperature of the step (1) is 250-350 ° C, and the total moisture after drying is less than or equal to 8%.
  • the step (2) is subjected to hydropyrolysis under the conditions of a pressure of 1.0 to 3.0 MPa and a temperature of 550 to 680 °C.
  • the step (3) is carried out under the conditions of a pressure of 1.0 to 3.0 MPa and a temperature of 327 to 427 °C.
  • the step (4) is carried out under the conditions of a pressure of 1.0 to 3.0 MPa and a temperature of 900 to 1500 °C.
  • the fluidized reaction gas in the coal hydropyrolysis process of the step (2) is a partially purified pyrolysis gas and a hydrogen-rich gas from the hydrogen-rich generator; the coke hydrogenation process of the step (3)
  • the fluidized reaction gas in the middle is a partially purified pyrolysis gas.
  • a coal hydrogenation pyrolysis and gasification coupling system embodying the second object of the present invention comprising a dry preheating system, a coal hydropyrolysis furnace connected to the dry preheating system, and the coal hydropyrolysis furnace a connected coke gasification furnace, a hydrogen-rich generator respectively connected to the dry preheating system and the coke plus hydrogenation furnace, wherein the gas phase product outlet of the coal hydropyrolysis furnace is connected with a pyrolysis gas purification separation system, The gas phase product outlet of the coke plus hydrogenation furnace is connected to a gasification gas purification system, and the hydrogen passage of the hydrogen rich generator is connected to the coal hydropyrolysis furnace.
  • the pyrolysis gas outlet of the pyrolysis gas purification separation system is further divided into two passages respectively connected to the hydrogen passage of the hydrogen-rich generator and the coke plus hydrogenation furnace.
  • the coal hydropyrolysis furnace and the coke plus hydrogenation furnace are fluidized bed reactors; and the hydrogen rich generator is a cyclone reactor.
  • the slag outlet of the hydrogen-rich generator is connected to a slag removal system.
  • the method and system for coupling coal pyrolysis and gasification of the invention combines coal hydrothermal pyrolysis, semi-coke hydrogenation and coke hydrogen production to fully extract gas, liquid fuel and fine chemistry in coal Products, combining the advantages of coal pyrolysis technology and coal gasification technology, effectively improve the tar yield and light component content, and at the same time obtain decane-pyrolysis gas and gasification gas and high value-added naphthalene, benzene, phenol, etc. Coal chemical production mouth.
  • Figure 1 is a schematic view showing the structure of a coal hydrogenation pyrolysis and gasification coupling system of the present invention. detailed description
  • the coal hydrogenation pyrolysis and gasification coupling system of the present invention comprises a dry preheating system, a coal hydropyrolysis furnace connected to the dry preheating system, and a coke hydrogenation connected to the coal hydropyrolysis furnace a hydrogen-rich generator connected to the dry preheating system and the coke plus hydrogenation furnace, wherein the gas phase product outlet of the coal hydropyrolysis furnace is connected with a pyrolysis gas purification separation system, and the coke is hydrogenated
  • the gas phase product outlet of the furnace is connected to a gasification gas purification system, and the hydrogen passage of the hydrogen-rich generator is connected to the coal hydropyrolysis furnace.
  • the coal hydrogenation pyrolysis and gasification coupling system of the present invention comprises a dry preheating system 1, a coal hydrothermal pyrolysis furnace 2 connected to the dry preheating system 1, and a a coke-added hydrogenation furnace 3 connected to the coal hydropyrolysis furnace 2, a hydrogen-rich generator 4 connected to the dry preheating system 1 and the coke plus hydrogenation furnace 3, respectively, the coal hydrogenation pyrolysis furnace 2
  • the gas phase product outlet is connected to a pyrolysis gas purification separation system 5, and the gas phase product outlet of the coke plus hydrogenation furnace 3 is connected with a gasification gas purification system 6, a hydrogen passage of the hydrogen-rich generator 4 and the coal addition
  • the hydrogen pyrolysis furnace 2 is connected.
  • the slag discharge port of the hydrogen-rich generator 4 is connected to a slag removal system 7.
  • the pyrolysis gas purification separation system 5 separates pyrolysis gas, tar, and naphthalene, benzene, and phenol.
  • the pyrolysis gas outlet is further divided into two passages respectively connected to the hydrogen passage of the hydrogen-rich generator 4 and the coke plus hydrogenation furnace 3.
  • the coal hydrothermal pyrolysis furnace 2 and the coke plus hydrogenation furnace 3 are fluidized bed reactors; and the hydrogen rich generator 4 is a cyclone reactor.
  • the industrial analysis before and after upgrading of raw coal is shown in Table 1.
  • the preheating temperature is 270 ° C, wherein 60 wt% of the raw coal first enters the coal hydropyrolysis furnace 2 at a pressure of l.
  • the pyrolysis gas phase product enters the pyrolysis gas purification separation system 5 for purification and separation, wherein the pyrolysis gas yield is 19.68% (including decane gas 52%), tar yield 14.63%, naphthalene, benzene, phenol and other yields of 4%; solid product semi-coke all enter the coke hydrogenation furnace 3, hydrogenation at a pressure of 1.0 MPa and a temperature of 327 ° C, gasification of gaseous products into the gas Chemical gas purification system 6, the purified gasification gas components are shown in Table 2; coke plus hydrogenation furnace (3) remaining coke after gasification and 40% of the original The coal feeds into the hydrogen-rich generator 4 under the combined action of oxygen and steam mixed gasification agent, further gasification reaction under the conditions of pressure of 1.0 MPa and temperature of 1000 ° C, and the production of hydrogen-rich gas components See Table 3, where the ash treatment is completed in the slag removal system 7.
  • the industrial analysis before and after upgrading of raw coal is shown in Table 4.
  • the preheating temperature is 350 ° C, wherein 60 wt% of the raw coal first enters the coal hydropyrolysis furnace 2 at a pressure of 3.0
  • the hydrothermal pyrolysis is carried out under the conditions of MPa and temperature 550 °C, and the pyrolysis gas phase product enters the pyrolysis gas purification separation system 5 for purification and separation, wherein the pyrolysis gas yield is 20.09% (containing 53.1% of decane gas), and the tar yield 22.93%, naphthalene, benzene, phenol and other yields of 4.5%; solid product semi-coke all enter the coke plus hydrogenation furnace 3, hydrogenation at a pressure of 3.0MPa and a temperature of 377 °C, gasification of gaseous
  • the industrial analysis before and after upgrading of raw coal is shown in Table 7.
  • the preheating temperature is 250 ° C, wherein 60 wt% of the raw coal first enters the coal hydropyrolysis furnace 2 at a pressure of 2.0.
  • Hydrogenation pyrolysis under MPa and temperature 680 °C pyrolysis gas phase product into pyrolysis gas purification separation system 5 for purification separation, wherein pyrolysis gas yield is 18.09% (including decane gas 51.5%), tar yield 17.93%, naphthalene, benzene, phenol, etc.
  • the invention integrates the process modules of coal hydrogenation pyrolysis, semi-coke hydrogenation, coke hydrogen production, etc., realizes the effective extension of the product chain and the comprehensive utilization of raw coal, and can also hydrogenate the coal according to market demand. Different combinations of pyrolysis, semi-coke plus hydrogenation and coke-forming hydrogen process modules;
  • the invention can obtain high value-added CH 4 pyrolysis gas through the hydropyrolysis process, and can effectively improve the tar yield and the light component content;
  • the gasification gas produced by the hydrogenation process of the present invention is rich in CH 4 gas and can be used as an alternative natural gas;
  • the hydrogen-rich generator of the present invention uses a mixture of porous, loose high-temperature coke particles and a part of raw coal formed by coal hydrogenation pyrolysis and hydrogenation to prepare a hydrogen-rich gas as a solid raw material, and has high reaction efficiency and total carbon. The conversion rate is large.

Description

煤加氢热解与气化耦合的方法及其系统
技术领域
本发明涉及一种煤炭利用方法及其系统, 尤其涉及一种煤加氢热解与气化 耦合的方法及其系统。 背景技术
进入 21世纪, 随着经济的高速增长, 对化工原料的需求也急剧增加, 在 化工原料结构中, 煤炭占一半以上, "发展煤化工, 开发和推广洁净煤技术"已 经成为产业界和学术界的共识。 为了实现煤炭资源的分级高效利用, 学术界提 出了"煤拔头"的工艺设想, 充分在煤中提取气体、 液体燃料和精细化学品。
现有技术中, 煤热解技术的焦油产率较低, 并且轻组分含量较少; 煤的快 速加氢热解技术能够提高焦油产率, 同时得到富曱烷的高热值煤气, 但是原料 煤中仍有一部分碳以低附加值的半焦形式存在, 原料总碳利用率较低。 煤气化 技术可以通过选择不同的气化剂来获得气体组分不同的合成气,但就特定气化 介质而言, 其合成气组分比较单一, 同时也无法提取萘、 苯、 酚等更有价值的 煤化工产品。 发明内容
本发明提供了一种原料总碳利用率较高的煤加氢热解与气化耦合的方法 及其系统。
实现本发明的目的之一的煤加氢热解与气化耦合的方法, 包括如下步骤: ( 1 )将粒度小于或等于 2mm的原料煤在煤干燥预热系统内进行干燥和预 热;
( 2 )干燥和预热后的原料煤 60wt%-80wt%进入煤加氢热解炉, 进行加氢 热解, 热解气相产物进入热解煤气净化分离系统进行分离;
( 3 )所述煤加氢热解炉生产的半焦全部进入焦加氢气化炉, 进行加氢气 化, 气化气相产物进入气化煤气净化分离系统, 分离出富含曱烷的气化煤气; ( 4 )干燥和预热后的原料煤 20wt%-40wt%与来自所述焦加氢气化炉的高 温焦粒在氧气和水蒸汽混合气化剂的共同作用下进入富氢发生器, 进行气化反 应, 生产的富氢气体作为所述煤加氢热解炉的流化反应气体使用。
所述步骤( 1 ) 的预热温度为 250-350°C , 干燥后全水分小于或等于 8%。 所述步骤(2 )在压力 1.0-3.0MPa和温度 550-680°C条件下进行加氢热解。 所述步骤(3 )在压力 1.0-3.0MPa和温度 327-427°C条件下进行加氢气化。 所述步骤( 4 )在压力 1.0-3.0MPa和温度 900- 1500 °C条件下进行气化反应。 所述步骤(2 ) 的煤加氢热解过程中的流化反应气体为部分净化后的热解 煤气和来自富氢发生器的富氢气体; 所述步骤(3 ) 的焦加氢气化过程中的流 化反应气体为部分净化后的热解煤气。
实现本发明的目的之二的煤加氢热解与气化耦合系统, 包括干燥预热系 统, 与所述干燥预热系统相连的煤加氢热解炉, 与所述煤加氢热解炉相连的焦 加氢气化炉, 分别与所述干燥预热系统和焦加氢气化炉相连的富氢发生器, 所 述煤加氢热解炉的气相产物出口连接有热解煤气净化分离系统, 所述焦加氢气 化炉的气相产物出口连接有气化煤气净化系统, 所述富氢发生器的氢气通道与 所述煤加氢热解炉相连。
所述热解煤气净化分离系统的热解煤气出口另分出两条通道分别与所述 富氢发生器的氢气通道和焦加氢气化炉相连。
所述煤加氢热解炉和焦加氢气化炉为流化床反应器; 所述的富氢发生器为 旋流床反应器。
所述富氢发生器的出渣口连接有除渣系统。
本发明的煤加氢热解与气化耦合的方法及其系统, 将煤加氢热解、 半焦加 氢气化和焦粒制氢相结合, 充分在煤中提取气体、 液体燃料和精细化学品, 综 合了煤热解技术和煤气化技术的优点, 有效提高了焦油产率和轻组分含量, 同 时可以获得富曱烷热解煤气和气化煤气以及高附加值的萘、 苯、 酚等煤化工产 口口。 附图说明
图 1为本发明煤加氢热解与气化耦合系统的结构示意图。 具体实施方式
下面结合附图更详细地说明本发明。
本发明的煤加氢热解与气化耦合系统, 包括干燥预热系统, 与所述干燥预 热系统相连的煤加氢热解炉, 与所述煤加氢热解炉相连的焦加氢气化炉, 分别 与所述干燥预热系统和焦加氢气化炉相连的富氢发生器, 所述煤加氢热解炉的 气相产物出口连接有热解煤气净化分离系统, 所述焦加氢气化炉的气相产物出 口连接有气化煤气净化系统, 所述富氢发生器的氢气通道与所述煤加氢热解炉 相连。
具体地, 如图 1所示, 本发明的煤加氢热解与气化耦合系统, 包括干燥预 热系统 1 , 与所述干燥预热系统 1相连的煤加氢热解炉 2, 与所述煤加氢热解 炉 2相连的焦加氢气化炉 3 , 分别与所述干燥预热系统 1和焦加氢气化炉 3相 连的富氢发生器 4, 所述煤加氢热解炉 2的气相产物出口连接有热解煤气净化 分离系统 5, 所述焦加氢气化炉 3的气相产物出口连接有气化煤气净化系统 6, 所述富氢发生器 4的氢气通道与所述煤加氢热解炉 2相连。 所述富氢发生器 4 的出渣口连接有除渣系统 7。
所述热解煤气净化分离系统 5分离出热解煤气, 焦油, 和萘、 苯、 酚。其 热解煤气出口另分出两条通道分别与所述富氢发生器 4的氢气通道和焦加氢气 化炉 3相连。
所述煤加氢热解炉 2和焦加氢气化炉 3为流化床反应器; 所述的富氢发生 器 4为旋流床反应器。
本发明的煤加氢热解与气化耦合的方法实施例如下:
实施例 1
以煤处理量 2t/h的生产规模为例, 原料煤的提质前后的工业分析见表 1。 平均粒度 0.6mm的原料煤在煤干燥预热系统 1内进行干燥和预热后,预热温度 为 270°C ,其中 60wt%的原料煤先进入煤加氢热解炉 2,在压力 l.OMPa和温度 600°C条件下进行加氢热解, 热解气相产物进入热解煤气净化分离系统 5进行 净化分离, 其中热解煤气产率 19.68% (含曱烷气体 52% )、 焦油产率 14.63%、 萘、苯、酚等产率 4%; 固体产物半焦全部进入焦加氢气化炉 3 ,在压力 l.OMPa 和温度 327°C条件下进行加氢气化, 气化气相产物进入气化煤气净化系统 6, 净化后的气化煤气组分见表 2; 焦加氢气化炉 (3)气化后剩余的焦粒与 40%的原 料煤在氧气和水蒸汽混合气化剂的共同作用下分上下两路进入富氢发生器 4, 在压力 l.OMPa和温度 1000°C条件下进一步气化反应, 生产的富氢气体组分见 表 3 , 其灰渣处理在除渣系统 7内完成。
表 1 原料煤提质前后工业分析结果(%)
Figure imgf000006_0001
表 2加氢气化炉生产的气化煤气组
序号 化学名称 含量% ( v/v )
1 氢气 28.6
2 二氧化碳 13.4
3 一氧化碳 32.0
4 曱烷 26.0 表 3 富氢发生器生产的气体组分
序号 化学名称 含量% ( v/v )
1 氢气 35.0
2 二氧化碳 15.0
3 一氧化碳 47.0
4 不饱和烯烃 2.0
5 氮气 1.0 实施例 2
以煤处理量 2t/h的生产规模为例, 原料煤的提质前后的工业分析见表 4。 粒度小于或等于 2mm的原料煤在煤干燥预热系统 1内进行干燥和预热后, 预 热温度为 350°C , 其中 60wt%的原料煤先进入煤加氢热解炉 2, 在压力 3.0MPa 和温度 550°C条件下进行加氢热解, 热解气相产物进入热解煤气净化分离系统 5进行净化分离, 其中热解煤气产率 20.09% (含曱烷气体 53.1% )、 焦油产率 22.93%、 萘、 苯、 酚等产率 4.5%; 固体产物半焦全部进入焦加氢气化炉 3 ,在 压力 3.0MPa和温度 377°C条件下进行加氢气化, 气化气相产物进入气化煤气 净化系统 6, 净化后的气化煤气组分见表 5; 焦加氢气化炉 (3)气化后剩余的焦 粒与 40%的原料煤在氧气和水蒸汽混合气化剂的共同作用下分上下两路进入 富氢发生器 4, 在压力 3.0MPa和温度 900°C条件下进一步气化反应, 生产的富 氢气体组分见表 6, 其灰渣处理在除渣系统 7内完成。
表 4 原料煤提质前后工业分析结果(%)
Figure imgf000007_0001
表 5 加氢气化炉生产的气化煤气组
序号 化学名称 含量% ( v/v )
1 氢气 27.28
2 二氧化碳 12.61
3 一氧化碳 29.49
4 曱烷 30.62 表 6 富氢发生器生产的气体组
Figure imgf000008_0002
实施例 3
以煤处理量 2t/h的生产规模为例, 原料煤的提质前后的工业分析见表 7。 粒度小于或等于 2mm的原料煤在煤干燥预热系统 1内进行干燥和预热后, 预 热温度为 250°C , 其中 60wt%的原料煤先进入煤加氢热解炉 2, 在压力 2.0MPa 和温度 680°C条件下进行加氢热解, 热解气相产物进入热解煤气净化分离系统 5进行净化分离, 其中热解煤气产率 18.09% (含曱烷气体 51.5% )、 焦油产率 17.93%、 萘、 苯、 酚等产率 3.9%; 固体产物半焦全部进入焦加氢气化炉 3 ,在 压力 2.0MPa和温度 427°C条件下进行加氢气化, 气化气相产物进入气化煤气 净化系统 6, 净化后的气化煤气组分见表 8; 焦加氢气化炉 (3)气化后剩余的焦 粒与 40%的原料煤在氧气和水蒸汽混合气化剂的共同作用下分上下两路进入 富氢发生器 4, 在压力 2.0MPa和温度 1500°C条件下进一步气化反应, 生产的 富氢气体组分见表 9, 其灰渣处理在除渣系统 7内完成。
表 7 原料煤提质前后工业分析结果(%)
Figure imgf000008_0001
表 8加氢气化炉生产的气化煤气组
Figure imgf000009_0001
本发明煤加氢热解与气化耦合的方法及其系统的优点如下:
( 1 )本发明集成了煤加氢热解、 半焦加氢气化、 焦粒制氢等工艺模块, 实现了产品链的有效延伸和原料煤的综合利用,也可以根据市场需求将煤加氢 热解、 半焦加氢气化和焦粒制氢三个工艺模块进行不同的组合;
(2)本发明通过加氢热解工序可以获得高附加值的富 CH4热解煤气, 同 时能够有效提高焦油产率和轻组分含量;
(3)本发明的加氢气化工艺生产的气化煤气富含 CH4气体, 可以作为替 代天然气使用;
(4)本发明的富氢发生器利用煤加氢热解和加氢气化后形成的多孔、 疏 松的高温焦粒与部分原料煤的混合物作为固体原料制备富氢气体, 反应效率 高、 总碳转化率大。

Claims

权 利 要 求 书
1、 一种原料总碳利用率较高的煤加氢热解与气化耦合的方法, 包括如下 步骤:
( 1 )将粒度小于或等于 2mm的原料煤在煤干燥预热系统内进行干燥和预 热;
( 2 )干燥和预热后的原料煤 60wt%-80wt%进入煤加氢热解炉, 进行加氢 热解, 热解气相产物进入热解煤气净化分离系统进行分离;
( 3 )所述煤加氢热解炉生成的半焦产物全部进入焦加氢气化炉, 进行加 氢气化, 气化气相产物进入气化煤气净化分离系统, 分离出富含曱烷的气化煤
( 4 )干燥和预热后的原料煤 20wt%-40wt%与来自所述焦加氢气化炉的高 温焦粒在氧气和水蒸汽混合气化剂的共同作用下进入富氢发生器, 进行气化反 应, 生产的富氢气体作为所述煤加氢热解炉的流化反应气体使用。
2、 根据权利要求 1所述的煤加氢热解与气化耦合的方法, 其特征在于: 所述步骤(1 ) 的预热温度为 250-350°C , 干燥后全水分小于或等于 8%。
3、 根据权利要求 1所述的煤加氢热解与气化耦合的方法, 其特征在于: 所述步骤(2 )在压力 1.0-3.0MPa和温度 550-680°C条件下进行加氢热解。
4、 根据权利要求 1所述的煤加氢热解与气化耦合的方法, 其特征在于: 所述步骤(3 )在压力 1.0-3.0MPa和温度 327-427°C条件下进行加氢气化。
5、 根据权利要求 1所述的煤加氢热解与气化耦合的方法, 其特征在于: 所述步骤(4 )在压力 1.0-3.0MPa和温度 900-1500°C条件下进行气化反应。
6、 根据权利要求 1所述的煤加氢热解与气化耦合的方法, 其特征在于: 所述步骤(2 ) 的煤加氢热解过程中的流化反应气体为部分净化后的热解煤气 和来自富氢发生器的富氢气体; 所述步骤(3 ) 的焦加氢气化过程中的流化反 应气体为部分净化后的热解煤气。
7、 一种煤加氢热解与气化耦合系统, 包括干燥预热系统, 与所述干燥预 热系统相连的煤加氢热解炉, 与所述煤加氢热解炉相连的焦加氢气化炉, 分别 与所述干燥预热系统和焦加氢气化炉相连的富氢发生器, 所述煤加氢热解炉的 气相产物出口连接有热解煤气净化分离系统, 所述焦加氢气化炉的气相产物出 口连接有气化煤气净化系统, 所述富氢发生器的氢气通道与所述煤加氢热解炉 相连。
8、 根据权利要求 7所述的煤加氢热解与气化耦合系统, 其特征在于: 所 述热解煤气净化分离系统的热解煤气出口另分出两条通道分别与所述富氢发 生器的氢气通道和焦加氢气化炉相连。
9、 根据权利要求 7所述的煤加氢热解与气化耦合系统, 其特征在于: 所 述煤加氢热解炉和焦加氢气化炉为流化床反应器; 所述的富氢发生器为旋流床 反应器。
10、 根据权利要求 7所述的煤加氢热解与气化耦合系统, 其特征在于: 所 述富氢发生器的出渣口连接有除渣系统。
PCT/CN2011/079252 2011-01-19 2011-09-01 煤加氢热解与气化耦合的方法及其系统 WO2012097598A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110021674.6 2011-01-19
CN 201110021674 CN102061182B (zh) 2011-01-19 2011-01-19 煤加氢热解与气化耦合的方法

Publications (1)

Publication Number Publication Date
WO2012097598A1 true WO2012097598A1 (zh) 2012-07-26

Family

ID=43996690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079252 WO2012097598A1 (zh) 2011-01-19 2011-09-01 煤加氢热解与气化耦合的方法及其系统

Country Status (2)

Country Link
CN (1) CN102061182B (zh)
WO (1) WO2012097598A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160305A (zh) * 2013-03-29 2013-06-19 陕西煤业化工技术研究院有限责任公司 一种采用煤直接制备燃料油的系统及工艺

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102061182B (zh) * 2011-01-19 2013-01-09 北京华福工程有限公司 煤加氢热解与气化耦合的方法
CN102226111A (zh) * 2011-05-27 2011-10-26 吴道洪 旋流床粉煤气化方法
EP2679659B1 (en) * 2012-06-29 2016-08-24 Global Gateways Lux HoldCo S.A. Method and plant for production of a fuel gas from waste
CN102911756B (zh) * 2012-10-26 2013-09-18 太原理工大学 一种低阶煤制甲烷工艺
CN104342212B (zh) * 2013-08-01 2017-12-15 胜帮科技股份有限公司 粉煤流化床加氢热解与气化耦合方法
CN103911169B (zh) * 2014-04-18 2015-10-14 上海交通大学 一种油页岩增压加氢干馏制油系统及其工艺
CN105647552B (zh) * 2014-12-04 2018-06-15 中国石油化工股份有限公司 一种煤干馏与煤催化裂化组合工艺方法
CN104593037B (zh) * 2014-12-19 2016-06-08 中美新能源技术研发(山西)有限公司 一种复合式煤加氢炼油反应器及炼油的方法
CN104946282B (zh) * 2015-06-15 2017-05-31 宋军 一种末煤的处理工艺
CN105001890B (zh) * 2015-07-10 2018-01-19 常州市宏硕电子有限公司 一种煤化工加氢热解工艺及系统
CN105400548B (zh) * 2015-11-20 2018-07-10 新奥科技发展有限公司 一种煤加氢气化方法及系统
CN106350091A (zh) * 2016-09-28 2017-01-25 中石化宁波工程有限公司 煤加氢反应装置及反应方法
CN107189803B (zh) * 2017-05-27 2022-09-16 李大鹏 一种煤制lng联产低碳醇、燃料油品的系统及方法
CN107880942B (zh) * 2017-12-13 2020-05-12 新奥科技发展有限公司 一种气化炉和煤气化系统
CN110358585B (zh) * 2018-04-09 2021-06-22 成都聚实节能科技有限公司 一种分级制取富烃氢煤气与水煤气的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415431A (en) * 1982-07-14 1983-11-15 Cities Service Company Integrated oxygasification and hydropyrolysis process for producing liquid and gaseous hydrocarbons
CN101016482A (zh) * 2006-01-18 2007-08-15 董久明 以热解为第一级的粉煤分级洁净多联利用技术
CN101139532A (zh) * 2006-09-08 2008-03-12 中国科学院过程工程研究所 固体燃料解耦流化床气化方法及气化装置
CN102061182A (zh) * 2011-01-19 2011-05-18 吴道洪 煤加氢热解与气化耦合的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1974732A (zh) * 2006-12-13 2007-06-06 太原理工大学 气化煤气和热解煤气共制合成气工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415431A (en) * 1982-07-14 1983-11-15 Cities Service Company Integrated oxygasification and hydropyrolysis process for producing liquid and gaseous hydrocarbons
CN101016482A (zh) * 2006-01-18 2007-08-15 董久明 以热解为第一级的粉煤分级洁净多联利用技术
CN101139532A (zh) * 2006-09-08 2008-03-12 中国科学院过程工程研究所 固体燃料解耦流化床气化方法及气化装置
CN102061182A (zh) * 2011-01-19 2011-05-18 吴道洪 煤加氢热解与气化耦合的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160305A (zh) * 2013-03-29 2013-06-19 陕西煤业化工技术研究院有限责任公司 一种采用煤直接制备燃料油的系统及工艺

Also Published As

Publication number Publication date
CN102061182B (zh) 2013-01-09
CN102061182A (zh) 2011-05-18

Similar Documents

Publication Publication Date Title
WO2012097598A1 (zh) 煤加氢热解与气化耦合的方法及其系统
JP5959721B2 (ja) バイオマスのガス化およびメタン化に基づく高効率ガス−蒸気コジェネレーション方法およびシステム
CN103045307B (zh) 一种制备无焦油富氢气体的热解气化方法及热解气化装置
CN102965131B (zh) 一种高挥发性年轻煤种的高效、清洁利用工艺
WO2013127215A1 (zh) 一种生物油催化转化制备含氧液体燃料的装置和方法
WO2011116689A1 (zh) 一种通过热解将生物质制造合成气的工艺方法及系统
CN102079685A (zh) 两级气化炉煤气化制甲烷的方法
CN105154121A (zh) 低阶煤分级利用多联产系统及方法
US10787620B2 (en) Method of biomass grading pyrolysis gasification in a circulating fluidized bed
CN108048140B (zh) 一种热解与气化耦合联产油气的方法和装置
CN108531220A (zh) 一种生物质微波热解高产气的系统和方法
CN1974732A (zh) 气化煤气和热解煤气共制合成气工艺
CN102849676A (zh) 一种固体燃料的高温水蒸气热解-裂解-气化装置及方法
JP2018500403A (ja) 原料をガス化する方法および装置ならびにガス状生成物
CN102839001B (zh) 一种生产轻质焦油的热解装置及方法
CN105062526A (zh) 一种煤热解气化多联产系统及其热解气化方法
CN105692551A (zh) 一种生物质高效制取富氢气体的方法和装置
WO2014094308A1 (zh) 一种制备无焦油富氢气体的热解气化方法及热解气化装置
CN205133505U (zh) 低阶煤分级利用多联产系统
CN106995728B (zh) 一种粉煤高效清洁制备油气产品的联合工艺
CN1970690A (zh) 煤流态化加氢液化方法
CN108913172B (zh) 一种海藻热解制油系统及其方法
CN203096004U (zh) 一种基于煤炭的碳氢组分分级转化的发电系统
CN108726833A (zh) 一种市政污泥原位催化气化制备高纯氢气的新工艺
CN105001890B (zh) 一种煤化工加氢热解工艺及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856393

Country of ref document: EP

Kind code of ref document: A1