WO2012097519A1 - 一种并联电池组保护电路 - Google Patents

一种并联电池组保护电路 Download PDF

Info

Publication number
WO2012097519A1
WO2012097519A1 PCT/CN2011/070455 CN2011070455W WO2012097519A1 WO 2012097519 A1 WO2012097519 A1 WO 2012097519A1 CN 2011070455 W CN2011070455 W CN 2011070455W WO 2012097519 A1 WO2012097519 A1 WO 2012097519A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
protection circuit
impedance element
terminal
parallel
Prior art date
Application number
PCT/CN2011/070455
Other languages
English (en)
French (fr)
Inventor
杨渊洲
许明宗
张杨斌
Original Assignee
东协金属科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东协金属科技(深圳)有限公司 filed Critical 东协金属科技(深圳)有限公司
Priority to PCT/CN2011/070455 priority Critical patent/WO2012097519A1/zh
Publication of WO2012097519A1 publication Critical patent/WO2012097519A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • H02H3/202Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage for dc systems

Definitions

  • the utility model belongs to the technical field of power sources, and particularly relates to a parallel battery pack protection circuit.
  • the main technical problem to be solved by the utility model is to provide a parallel battery pack protection circuit, so that when the battery packs are connected in parallel, the parallel battery packs are balanced to avoid large currents and high temperature phenomena.
  • the present invention provides a parallel battery pack protection circuit, including a first switch unit, a second switch unit, a reference unit, a voltage sampling unit, a comparison unit, and a current sampling unit, wherein the first switching unit Connected between the positive pole of the parallel battery pack and the positive terminal of the protection circuit, the second switch unit is connected between the negative pole of the parallel battery pack and the negative terminal of the protection circuit; one end of the voltage sampling unit and the positive terminal of the protection circuit Connected, the other end is connected to the input end of the comparison unit; one end of the current sampling unit is connected to the negative end of the protection circuit, and the other end is connected to the input end of the comparison unit; the input end of the comparison unit is also connected to the reference unit, and the output end is respectively And connecting to the control ends of the first switch unit and the second switch unit.
  • the first switching unit and the second switching unit are thyristors.
  • the current sampling unit includes a filter circuit, a detection impedance element, and an amplification circuit, wherein one end of the detection impedance element is connected to a negative input end of the protection circuit, and the other end thereof is connected to the second switch unit; Connected to one end of the detecting impedance element, the other end of which is connected to the non-inverting input end of the amplifying circuit; the other input end of the amplifying circuit is connected to one end of the detecting impedance element, and the output end thereof is connected to the input end of the comparing unit.
  • the amplifying circuit includes an operational amplifier, a first impedance element, a second impedance element, and a first resistor; one end of the first impedance element is connected to the inverting input end of the operational amplifier, and the other end is opposite to the detecting impedance element. One end is connected; the second impedance element is connected between the inverting input terminal and the output terminal of the operational amplifier; the first resistor is connected to the output end of the operational amplifier, and the output end of the operational amplifier is compared with the The inputs of the unit are connected.
  • the filter circuit includes a second resistor, a third resistor, and a capacitor, wherein one end of the second resistor is coupled to one end of the sense impedance element, and the other end of the second resistor is coupled to the non-inverting input of the operational amplifier.
  • the capacitor is connected between the other end of the second resistor and the ground, and the third resistor and the capacitor are connected in parallel.
  • the sense impedance element is a resistive element.
  • the detecting impedance element is formed by connecting a resistive element and a capacitive element in parallel.
  • the first impedance element and the second impedance element are resistive elements.
  • the reference voltage reference unit is a power supply that provides a rated voltage.
  • the parallel battery pack is a rechargeable battery pack.
  • the utility model connects a protection circuit at both ends of the parallel battery pack, so that when the battery packs are connected in parallel, the parallel battery packs are balanced to avoid large currents and high temperature phenomena, which effectively solves the problem.
  • the prior art when the battery packs are used in parallel, since there is a pressure difference between the parallel battery packs, if the pressure difference is too large, an excessive current is generated, thereby generating a high temperature and causing damage to the load.
  • FIG. 1 is a block diagram of a parallel battery pack protection circuit system according to an embodiment of the present invention.
  • FIG. 2 is a schematic circuit diagram of a current sampling unit according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of test results of the parallel battery pack of the present invention after using the protection circuit
  • FIG. 4 is a schematic diagram of test results of the parallel battery pack of the present invention after using the protection circuit.
  • the parallel battery pack protection circuit includes a first switch unit 1, a second switch unit 2, a reference unit 3, a voltage sampling unit 4, a comparison unit 5, and a current sampling unit 6.
  • the first switching unit 1 is connected between the positive pole of the parallel battery pack 7 and the positive terminal of the protection circuit
  • the second switching unit 2 is connected between the negative pole of the parallel battery pack 7 and the negative terminal of the protection circuit.
  • the first switch unit 1 and the second switch unit 2 are thyristors.
  • the reference unit 3 and the comparison unit 5 are connected. One end of the voltage sampling unit 4 is connected to the positive terminal, and the other end is connected to the input terminal of the comparison unit 5 for detecting whether there is a voltage in the circuit, and if there is a voltage, notifying the comparison unit 5.
  • One of the output terminals of the comparison unit 5 is connected to the control terminal of the first switching unit 1, and the comparison unit 5 compares the loop voltage with a reference voltage supplied from the reference unit 3, and if the loop voltage is less than or equal to the reference voltage, it is turned on.
  • the first switching unit 1 does not turn on or off the first switching unit 1 otherwise.
  • the current sampling unit 6 is connected to the negative terminal, and the other end is connected to the input end of the comparison unit 5.
  • the current sampling unit 6 is used to detect the magnitude of the loop current.
  • the other output of the comparison unit 5 is connected to the control terminal of the second switching unit 2.
  • the comparing unit 5 compares the current on the current sampling unit 6 with the reference current supplied from the reference unit 3, and turns on or off the second switching unit 2 according to the comparison result, if the current on the current sampling unit 6 is less than or equal to the reference current, Then, the second switching unit 2 is turned on; otherwise, if the current on the current sampling unit 6 is greater than the reference current, the second switching unit 2 that has been turned on is not turned on or off.
  • FIG. 2 is a schematic circuit diagram of a current sampling unit 6 according to an embodiment of the present invention.
  • the current sampling unit 6 includes a filter circuit 8, a detection impedance element Z, and an amplification circuit 9.
  • the one end of the detecting impedance element Z is connected to the negative input terminal of the protection circuit, and the other end Zb is connected to the second switching unit 2 for detecting the current flowing through the second switching unit 2.
  • One end of the filter circuit 8 is connected to one end Zb of the detecting impedance element Z, and the other end thereof is connected to the non-inverting input end of the amplifying circuit 9; the other input end of the amplifying circuit 9 is connected to one end Za of the detecting impedance element Z for amplifying the detecting impedance
  • the current signal detected by the component Z is connected to an input of the comparison unit 5 at its output.
  • the amplifier circuit 9 includes an operational amplifier A, a first impedance element Z1, a second impedance element Z2, and a first resistor R1.
  • One end of the first impedance element Z1 is connected to the inverting input terminal of the operational amplifier A.
  • the other end is connected to one end Za of the detecting impedance element Z;
  • the second impedance element Z2 is connected between the inverting input terminal and the output terminal of the operational amplifier A;
  • the first resistor R3 is connected to the output terminal of the operational amplifier A
  • the output of the operational amplifier A is connected to an input of the comparison unit 5.
  • the filter circuit 8 includes a second resistor R2, a third resistor R3, and a capacitor C.
  • One end of the second resistor R2 is connected to one end Zb of the detecting impedance element Z, and the other end is connected to the operation.
  • the non-inverting input of the amplifier A is connected, the capacitor C is connected between the other end of the second resistor R2 and the ground, and the third resistor R3 and the capacitor C are connected in parallel.
  • the second resistor R2 and the capacitor C constitute a low-pass filter for filtering high-frequency components in the circuit signal, and the third resistor R3 and the capacitor C are connected in parallel for adjusting the voltage of the non-inverting input terminal of the operational amplifier A.
  • the detecting impedance element Z is a resistive element. In other embodiments, the detecting impedance element Z may also be formed by connecting the resistive element and the capacitive element in parallel.
  • the voltage reference reference unit 3 is a power supply that supplies a rated voltage.
  • the parallel battery pack 7 is a rechargeable battery pack.
  • the protection circuit After the protection circuit and the parallel battery pack are connected, when the voltage difference between the battery packs is too large, when the excessive current occurs, the protection circuit can disconnect the circuit, and the parallel battery packs are mutually charged, thereby achieving a balanced effect. . Since the current generated during the mutual charging process does not pass through the protection circuit loop, the temperature of the conduction load is not increased, and the high temperature phenomenon is avoided, which does not affect the load.
  • FIG. 3 and FIG. 4 are schematic diagrams showing test results of the parallel battery pack of the present invention after using the protection circuit.
  • the capacity is The 100% and 50% battery packs, that is, the battery packs with differential pressure, are connected in parallel.
  • the load is not connected, and the battery pack with 100% capacity will have a capacity of 50%.
  • the battery pack is charged; when the load is discharged, the discharge current is higher than the capacity of 50% of the battery pack due to the higher voltage of the 100% battery pack; as the discharge time is longer, the later time
  • the voltage of the 100% battery pack will be smaller than the 50% battery pack, and the discharge current value will be relatively small.
  • the 100% battery pack and the 50% battery pack will be cut off evenly. The cutoff voltage between them is not much different.

Landscapes

  • Protection Of Static Devices (AREA)

Description

一种并联电池组保护电路 技术领域
本实用新型属于电源技术领域,具体涉及一种并联电池组保护电路。
背景技术
现有大多数电子产品都采用电池组提供电源,为了提高电子产品的可靠性,电池组通常都是并联使用。电池组并联使用时,各个并联的电池组之间存在压差,如果压差过大则会产生过大的电流,对并联的电池组造成损坏。 现有技术中通常是使用单向导通组件,诸如二极管或开关,和电池组充电板连接在一起,达到保护电池组的目的,该方法只可用于较小的充电电流,因为当充电电流较大时,电流流经二极管或开关时,由于单向导通组件有电流流过时,会产生热量致使温度逐渐升高,当充电电流愈大时温度愈高,负载很容易因为温度过高而损坏。
技术问题
本实用新型要解决的主要技术问题是提供一种并联电池组保护电路,使得在电池组并联时,使并联电池组之间达到均衡,避免产生大电流,产生高温现象。
技术解决方案
为解决上述技术问题,本实用新型提供一种并联电池组保护电路,包括第一开关单元、第二开关单元、基准单元、电压取样单元、比较单元和电流取样单元,其中所述第一开关单元连接在并联电池组的正极和保护电路的正极端之间,所述第二开关单元连接在并联电池组的负极和保护电路的负极端之间;所述电压取样单元一端与保护电路的正极端连接,另一端与比较单元的输入端连接;电流取样单元一端和保护电路的负极端连接,另一端和比较单元的输入端连接;所述比较单元的输入端还与基准单元连接,输出端分别和所述第一开关单元、第二开关单元的控制端连接。
一实施例中,所述第一开关单元和第二开关单元为可控硅。
一实施例中,所述电流取样单元包括滤波电路、探测阻抗元件以及放大电路,其中所述探测阻抗元件一端与保护电路的负极输入端连接,其另一端与第二开关单元连接;滤波电路一端与探测阻抗元件一端连接,其另一端与放大电路的同相输入端连接;所述放大电路的另一输入端与探测阻抗元件一端连接,其输出端与所述比较单元的输入端连接。
一实施例中,所述放大电路包括运算放大器、第一阻抗元件、第二阻抗元件和第一电阻;第一阻抗元件的一端与运算放大器的反相输入端连接,其另一端与探测阻抗元件的一端连接;所述第二阻抗元件连接于运算放大器的反相输入端和输出端之间;所述第一电阻连接于运算放大器的输出端上,所述运算放大器的输出端与所述比较单元的输入端连接。
一实施例中,所述滤波电路包括第二电阻、第三电阻以及电容,其中第二电阻的一端与所述探测阻抗元件的一端连接,其另一端与所述运算放大器的同相输入端连接,电容连接于第二电阻的另一端与地之间,第三电阻和所述电容并行连接。
一实施例中,所述探测阻抗元件为电阻元件。
一实施例中,所述探测阻抗元件为电阻元件与电容元件并联构成。
一实施例中,第一阻抗元件和第二阻抗元件为电阻元件。
一实施例中,所述参考电压基准单元为一提供额定电压的电源。
一实施例中,所述并联电池组为可充电电池组。
有益效果
与现有技术相比,本实用新型通过在并联电池组两端连接一保护电路,使得在电池组并联时,使并联电池组之间达到均衡,避免产生大电流,产生高温现象,有效解决了现有技术中电池组并联使用时,由于并联的电池组之间存在压差,如果压差过大则会产生过大的电流,从而产生高温,对负载造成损坏的问题。
附图说明
图1为本实用新型实施例提供的一种并联电池组保护电路系统框图;
图2为本实施例提供的一种电流取样单元电路原理图;
图3为本实用新型并联电池组使用该保护电路后的测试结果示意图;
图4为本实用新型并联电池组使用该保护电路后的测试结果示意图。
本发明的实施方式
下面通过具体实施方式结合附图对本实用新型作进一步详细说明。
请参阅图1所示,本实用新型提供的并联电池组保护电路包括第一开关单元1、第二开关单元2、基准单元3、电压取样单元4、比较单元5和电流取样单元6。
其中,第一开关单元1连接在并联电池组7的正极和保护电路的正极端之间,第二开关单元2连接在并联电池组7的负极和保护电路的负极端之间。本实施例中,第一开关单元1、第二开关单元2为可控硅。基准单元3和比较单元5连接。电压取样单元4一端与正极端子连接,另一端与比较单元5的输入端连接,其用于检测回路是否存在电压,如果存在电压,则通知比较单元5。比较单元5的其中一输出端和第一开关单元1的控制端连接,所述比较单元5将回路电压和基准单元3提供的参考电压相比较,如果回路电压小于或者等于基准电压,则导通第一开关单元1,否则不导通或者关断第一开关单元1。
电流取样单元6一端和负极端子连接,另一端和比较单元5的输入端连接,电流取样单元6用于检测回路电流的大小。比较单元5的另一输出端和第二开关单元2的控制端连接。比较单元5将电流取样单元6上的电流和基准单元3提供的参考电流相比较,并根据比较结果导通或者断开第二开关单元2,如果电流取样单元6上的电流小于等于基准电流,则导通第二开关单元2;否则,如果电流取样单元6上的电流大于基准电流,则不导通或者关断已导通的第二开关单元2。
请参阅图2所示,图2为本实施例提供的一种电流取样单元6电路原理图。所述电流取样单元6包括滤波电路8、探测阻抗元件Z以及放大电路9。其中,探测阻抗元件Z一端Za与保护电路的负极输入端连接,其另一端Zb与第二开关单元2连接,用于探测流经第二开关单元2的电流。滤波电路8一端与探测阻抗元件Z一端Zb连接,其另一端与放大电路9的同相输入端连接;所述放大电路9的另一输入端与探测阻抗元件Z一端Za连接,用于放大探测阻抗元件Z探测的电流信号,其输出端与比较单元5的一输入端连接。
请参阅图2所示,放大电路9包括运算放大器A、第一阻抗元件Z1、第二阻抗元件Z2和第一电阻R1;第一阻抗元件Z1的一端与运算放大器A的反相输入端连接,其另一端与探测阻抗元件Z的一端Za连接;所述第二阻抗元件Z2连接于运算放大器A的反相输入端和输出端之间;所述第一电阻R3连接于运算放大器A的输出端上,所述运算放大器A的输出端与比较单元5的一输入端连接。
请参阅图3所示,滤波电路8包括第二电阻R2、第三电阻R3以及电容C,其中第二电阻R2的一端与所述探测阻抗元件Z的一端Zb连接,其另一端与所述运算放大器A的同相输入端连接,电容C连接于第二电阻R2的另一端与地之间,第三电阻R3和所述电容C并行连接。第二电阻R2和电容C构成低通滤波器,用于滤除电路信号中的高频成分,第三电阻R3和电容C并行连接,用于调整运算放大器A的同相输入端的电压。
本实施例中,所述探测阻抗元件Z为电阻元件。其他实施例中,所述探测阻抗元件Z也可为电阻元件与电容元件并联构成。
本实施例中,所述电压参考基准单元3为一提供额定电压的电源。所述并联电池组7为可充电电池组。
该保护电路和并联电池组连接后,当电池组之间压差过大,出现过大电流时,该保护电路能够将回路断开,使并联的电池组之间相互充电,从而达到均衡的效果。互充电过程中产生的电流由于没有经过保护电路回路,不会导负载温度升高,避免高温现象,对负载不会造成任何影响。
请参阅图3和图4所示,图3和图4为本实用新型并联电池组使用该保护电路后的测试结果示意图。将容量分别为 100% 和 50% 的电池组,也就是有压差的电池组,以并联的方式连接在一起。初期时未接负载,容量100% 的电池组会对容量50% 的电池组进行充电;当一接上负载进行放电时,由于容量100%电池组的电压较高,因此其放电电流,比容量50%电池组为大;随着放电时间的加长,到后期时,容量100%电池组的电压,会比容量50%电池组小,其放电电流值相对变小;到了最后阶段,容量100%电池组和容量50%电池组,会均衡的切断,两者之间的切断电压相差不大。
以上内容是结合具体的实施方式对本实用新型所作的进一步详细说明,不能认定本实用新型的具体实施只局限于这些说明。对于本实用新型所属技术领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本实用新型的保护范围。

Claims (10)

  1. 一种并联电池组保护电路,其特征在于,包括第一开关单元(1)、第二开关单元(2)、基准单元(3)、电压取样单元(4)、比较单元(5)和电流取样单元(6),其中所述第一开关单元(1)连接在并联电池组(7)的正极和保护电路的正极端之间,所述第二开关单元(2)连接在并联电池组(7)的负极和保护电路的负极端之间;所述电压取样单元(4)一端与保护电路的正极端连接,另一端与比较单元(5)的一输入端连接;电流取样单元(6)一端和保护电路的负极端连接,另一端和比较单元(5)的一输入端连接;所述比较单元(5)的输入端还与所述基准单元(3)连接,输出端分别和所述第一开关单元(1)、第二开关单元(2)的控制端连接。
  2. 根据权利要求1所述的保护电路,其特征在于,所述第一开关单元(1)和第二开关单元(2)为可控硅。
  3. 根据权利要求1所述的保护电路,其特征在于,所述电流取样单元(6)包括滤波电路(8)、探测阻抗元件(Z)以及放大电路(9),其中所述探测阻抗元件(Z)一端(Za)与保护电路的负极输入端连接,其另一端(Zb)与第二开关单元(2)连接;滤波电路(8)一端与探测阻抗元件(Z)一端(Zb)连接,其另一端与放大电路(9)的同相输入端连接;所述放大电路(9)的另一输入端与探测阻抗元件(Z)一端(Za)连接,其输出端与所述比较单元(5)的输入端连接。
  4. 根据权利要求3所述的保护电路,其特征在于,所述放大电路(9)包括运算放大器(A)、第一阻抗元件(Z1)、第二阻抗元件(Z2)和第一电阻(R1);第一阻抗元件(Z1)的一端与第一放大器(A1)的反相输入端连接,其另一端与探测阻抗元件(Z)的一端(Za)连接;所述第二阻抗元件(Z2)连接于第一放大器(A1)的反相输入端和输出端之间;所述第一电阻(R1)连接于第一放大器(A1)的输出端上,所述第一放大器(A1)的输出端与所述比较单元(5)的输入端连接。
  5. 根据权利要求3所述的保护电路,其特征在于,所述滤波电路(8)包括第二电阻(R2)、第三电阻(R3)以及电容(C),其中第二电阻(R2)的一端与所述探测阻抗元件(Z)的一端(Zb)连接,其另一端与所述第一放大器(A1)的同相输入端连接,电容(C)连接于第三电阻(R3)的另一端与地之间,第三电阻(R3)和所述电容(C)并行连接。
  6. 根据权利要求3所述的保护电路,其特征在于,所述探测阻抗元件(Z)为电阻元件。
  7. 根据权利要求3所述的保护电路,其特征在于,所述探测阻抗元件(Z)为电阻元件与电容元件并联构成。
  8. 根据权利要求4所述的保护电路, 其特征在于,第一阻抗元件(Z1)和第二阻抗元件(Z2)为电阻元件。
  9. 根据权利要求1所述的保护电路,其特征在于,所述基准单元(3)为一提供额定电压的电源。
  10. 根据权利要求1所述的保护电路,其特征在于,所述并联电池组(7)为可充电电池组。
PCT/CN2011/070455 2011-01-21 2011-01-21 一种并联电池组保护电路 WO2012097519A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/070455 WO2012097519A1 (zh) 2011-01-21 2011-01-21 一种并联电池组保护电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/070455 WO2012097519A1 (zh) 2011-01-21 2011-01-21 一种并联电池组保护电路

Publications (1)

Publication Number Publication Date
WO2012097519A1 true WO2012097519A1 (zh) 2012-07-26

Family

ID=46515098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070455 WO2012097519A1 (zh) 2011-01-21 2011-01-21 一种并联电池组保护电路

Country Status (1)

Country Link
WO (1) WO2012097519A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112557936A (zh) * 2020-12-27 2021-03-26 深圳市德兰明海科技有限公司 一种电池组内外部总电压检测系统和电池组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312445A (ja) * 1999-04-26 2000-11-07 Sekisui Chem Co Ltd 電力貯蔵システム
JP2004032881A (ja) * 2002-06-25 2004-01-29 Nec Corp バッテリ装置およびその制御方法
CN2762422Y (zh) * 2003-05-02 2006-03-01 美国凹凸微系有限公司 结合于一体的电池组和电池充电放电电路
CN101174773A (zh) * 2007-05-15 2008-05-07 北京恒基伟业投资发展有限公司 具有非对称蓄电池组的太阳能电池及其充电放电方法
CN101814724A (zh) * 2009-02-24 2010-08-25 三星Sdi株式会社 电池组及其过放电保护方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312445A (ja) * 1999-04-26 2000-11-07 Sekisui Chem Co Ltd 電力貯蔵システム
JP2004032881A (ja) * 2002-06-25 2004-01-29 Nec Corp バッテリ装置およびその制御方法
CN2762422Y (zh) * 2003-05-02 2006-03-01 美国凹凸微系有限公司 结合于一体的电池组和电池充电放电电路
CN101174773A (zh) * 2007-05-15 2008-05-07 北京恒基伟业投资发展有限公司 具有非对称蓄电池组的太阳能电池及其充电放电方法
CN101814724A (zh) * 2009-02-24 2010-08-25 三星Sdi株式会社 电池组及其过放电保护方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112557936A (zh) * 2020-12-27 2021-03-26 深圳市德兰明海科技有限公司 一种电池组内外部总电压检测系统和电池组

Similar Documents

Publication Publication Date Title
EP3512067B1 (en) Battery, terminal, and charging system
CN207518263U (zh) 一种过流保护电路
CN201584745U (zh) 一种具有延时功能的过压和欠压保护装置
WO2012167677A1 (zh) 一种通过usb接口通信并为外部设备充电的装置及方法
CN106646248A (zh) 一种bms电流检测及过流保护电路
CN101630854A (zh) 不间断电源及不间断电源的旁路故障检测方法
WO2017201740A1 (zh) 电池保护板、电池和移动终端
CN106532627A (zh) 电流保护电路及系统
CN209690401U (zh) 一种交流电压直流分量检测电路
CN102662095A (zh) 三相电压采样电路
WO2021063288A1 (zh) 一种电池及汽车诊断平板
CN109950881A (zh) 一种可嵌入型设备预检保护电路
CN207114731U (zh) 一种bms电流检测及过流保护电路
WO2012013046A1 (zh) 一种移动终端
CN110879350A (zh) 一种电池均衡电路的检测方法及电池管理系统
CN106160071B (zh) 短路保护电路
WO2012097519A1 (zh) 一种并联电池组保护电路
WO2013177976A1 (zh) 一种电荷放大器
TWM518824U (zh) 主動式平衡充電裝置
CN202870174U (zh) 一种低能耗的直流母线绝缘电阻检测电路
CN205283091U (zh) 一种a型低压漏电保护器专用集成电路
CN106877283A (zh) 一种电子设备及其电源保护电路
CN201289502Y (zh) 一种电能计量装置零线干扰处理装置
CN103236679A (zh) 交流断路器电子式后备保护装置
CN207408480U (zh) 一种直流充电桩检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.11.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11856003

Country of ref document: EP

Kind code of ref document: A1