WO2012096478A2 - Pixel design for improving the fill factor in a microbolometer - Google Patents

Pixel design for improving the fill factor in a microbolometer Download PDF

Info

Publication number
WO2012096478A2
WO2012096478A2 PCT/KR2012/000135 KR2012000135W WO2012096478A2 WO 2012096478 A2 WO2012096478 A2 WO 2012096478A2 KR 2012000135 W KR2012000135 W KR 2012000135W WO 2012096478 A2 WO2012096478 A2 WO 2012096478A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
bolometer
microbolometer
fill factor
pixels
Prior art date
Application number
PCT/KR2012/000135
Other languages
French (fr)
Korean (ko)
Other versions
WO2012096478A3 (en
Inventor
김희연
김경민
김병일
박재홍
이귀로
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2012096478A2 publication Critical patent/WO2012096478A2/en
Publication of WO2012096478A3 publication Critical patent/WO2012096478A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices

Definitions

  • the present invention relates to a pixel design for increasing the fill factor in a microbolometer, and more particularly, to a microbolometer having four anchors in a microbolometer having four pixels sharing with each other and having a fill factor of 70% or more.
  • Infrared sensors can be divided into two types according to the principle of operation: cooling type, which obtains an electrical signal generated by the interaction of photons in the infrared with electrons in the material, and non-cooling type, which senses temperature changes generated by the absorption of infrared light into the material.
  • the cooling type is mainly made of semiconductor materials, has the advantage of low noise and fast response characteristics, but has the disadvantage of operating at liquid nitrogen temperature (-193 °C), whereas uncooled materials have a little performance compared to semiconductors. It has a merit that it operates at room temperature.
  • cooling materials that require cooling are mainly studied for military purposes, and uncooled materials are mainly used for civil purposes.
  • Uncooled infrared sensors can be broadly classified into three types: bolometer, thermocouple, and pyroelectric type. Pyroelectric sensors have good detection power but limited production, while bolometers and thermocouples have lower detection power than Pyroelectric type, but are produced monolithically on silicon wafers with detector circuitry, which is widely developed for civilian use because of their high productivity. Among them, the bolometer-type infrared sensor detects infrared rays by absorbing the infrared rays emitted from the object and using the change in electrical resistance due to the temperature rise when the thermal energy is converted into thermal energy.
  • Korean Patent Publication No. 2000-0007216, Korean Patent Publication No. 2000-0046517, Korean Patent Registration No. 10-0299642 and US Patent No. 6,448,557 disclose a three-layer bolometer-type infrared sensor having an infrared reflecting layer.
  • U.S. Patent No. 5,367,167 describes a cell array having a large conductive path
  • U.S. Patent No. 6,441,374 discloses an infrared sensor having a heat separation structure and a high absorption rate to increase the sensitivity and absorption area of an infrared sensor. Research is ongoing.
  • one pixel is connected to two anchors, but in the present invention, one anchor is shared by four pixels, and the purpose of the fill factor is 70% or more.
  • a pixel design for increasing the fill factor in the microbolometer including a reflective metal layer on the substrate; A cavity above the bottom layer; An upper layer comprising a bolometer layer over the cavity and a transmissive metal layer thereon; An insulating layer for insulating the lower layer and the upper layer; And an array of bolometer pixels each comprising an anchor supporting the top layer, wherein the four bolometer pixels share one of the anchors.
  • the bolometer layer is made of amorphous silicon and the transmission metal layer is a titanium or titanium compound (eg, titanium nitride, titanium oxide, etc.). Characterized in that consists of.
  • the upper layer is characterized in that a resistance line is formed by etching the transmissive metal layer into any one of a L-shaped, a straight, and a square.
  • the ballometer array is characterized by using a focal plane array.
  • the above design increases the fill factor of the microbolometer to increase the final output signal voltage value, which improves response and temperature resolution (NETD), which are important evaluation factors for the manufactured microbolometer. Let's do it.
  • the structural stability of the microbolometer is increased, and the chip size including the manufactured microbolometer is reduced, thereby improving productivity and lowering the manufacturing cost.
  • 1 and 2 show the design of a microbolometer with a pattern of r-shaped resistance lines in which one anchor shares four pixels.
  • FIG. 3 is a conceptual diagram illustrating pixels of a microbolometer.
  • 5 is a design of a microbolometer with a pattern of square resistance lines.
  • the present invention relates to a pixel design for increasing the fill factor in the design of a microbolometer.
  • the incident infrared ray heats the bolometer layer 140 of the thermal isolation structure, and the ROIC connected to the microbolometer reads the resistance change of the bolometer layer 140 according to the temperature change and outputs the voltage value.
  • the ROIC connected to the microbolometer reads the resistance change of the bolometer layer 140 according to the temperature change and outputs the voltage value.
  • it In order to increase the efficiency of the microbolometer, it must be designed to have a high fill factor.
  • one anchor 160 is required for one pixel.
  • the area capable of absorbing infrared rays increases, so that a fill factor value can be obtained at 70% or more.
  • the microbolometer manufactured based on the above design increases the fill factor to increase the final output signal voltage value, which is an important evaluation factor of the manufactured microbolometer, responsivity and temperature resolution (NETD: Noise Equivalent Temperature). Improve Difference
  • the structural stability of the microbolometer increases, and the chip size including the manufactured microbolometer is reduced, thereby improving productivity and lowering the manufacturing cost.
  • 1 and 2 are 3D designs of microbolometers in which one anchor 160 shares four pixels. Each pixel is connected to the anchor 160 via a bridge.
  • the electrical signal processing relates to the metal layer of the bridge that is connected to the pixel, and the electrical signal is transmitted to the anchor 160 through the bridge where the metal remains.
  • 1 and 2 show a case where the pattern of the r-shaped resistance line is modified.
  • FIG. 3 is a conceptual diagram illustrating pixels of a microbolometer.
  • the bolometer layer 140 is made of doped amorphous silicon, the thickness is preferably about 500 to 3000A.
  • the transmissive metal layer 150 is made of titanium as a layer that transmits infrared rays, and the thickness thereof is preferably about 20 to 100A.
  • the reflective metal layer 120 is made of aluminum or gold and allows infrared rays to be reflected.
  • the thickness of the cavity 130 is designed so that the distance from the bolometer layer 140 to the reflective metal layer 120 is ⁇ / 4 ( ⁇ : wavelength of infrared rays) so that infrared rays are resonance absorbed.

Abstract

According to one embodiment of the present invention, a bolometer array, having an arrangement of bolometer pixels and a pixel design for improving fill factor in a microbolometer, comprises: a lower layer including a reflective metal layer formed on a substrate; a cavity formed in the lower layer; an upper layer including a bolometer layer formed on the cavity and a permeable metal layer formed on the bolometer layer; an insulation layer for insulating the lower layer and the upper layer; and an anchor for supporting the upper layer, wherein four pixels of the bolometer share said single anchor.

Description

마이크로 볼로미터에서 필 팩터를 높이기 위한 픽셀 디자인Pixel design to increase fill factor in microbolometers
본 발명은 마이크로 볼로미터에서 필 팩터를 높이기 위한 픽셀 디자인에 관한 것으로, 더욱 상세하게는 마이크로 볼로미터에서 한 개의 앵커를 네 개의 픽셀이 서로 공유하여 필 팩터가 70% 이상인 특성을 가지는 마이크로 볼로미터에 관한 것이다.The present invention relates to a pixel design for increasing the fill factor in a microbolometer, and more particularly, to a microbolometer having four anchors in a microbolometer having four pixels sharing with each other and having a fill factor of 70% or more.
적외선 센서는 작동 원리에 따라 크게 적외선의 광양자(photon)와 물질 내의 전자의 상호작용에 의해 생기는 전기적 신호를 얻어내는 냉각형과 적외선이 물질에 흡수되어 생성되는 온도 변화를 감지하는 비냉각형으로 나눌 수 있는데, 냉각형은 주로 반도체 재료가 사용되며 노이즈가 적으며 빠른 응답 특성을 보이는 장점이 있으나 액체 질소 온도(-193℃)에서 작용한다는 단점이 있는 반면에, 비냉각형 재료들은 반도체에 비해 성능은 다소 떨어지지만 상온에서 동작한다는 장점이 있다.Infrared sensors can be divided into two types according to the principle of operation: cooling type, which obtains an electrical signal generated by the interaction of photons in the infrared with electrons in the material, and non-cooling type, which senses temperature changes generated by the absorption of infrared light into the material. The cooling type is mainly made of semiconductor materials, has the advantage of low noise and fast response characteristics, but has the disadvantage of operating at liquid nitrogen temperature (-193 ℃), whereas uncooled materials have a little performance compared to semiconductors. It has a merit that it operates at room temperature.
따라서 냉각이 필요한 냉각형 재료들은 주로 군수용의 목적으로 연구되고 있으며, 비냉각형 재료들은 민수용으로 주로 사용되고 있다.Therefore, cooling materials that require cooling are mainly studied for military purposes, and uncooled materials are mainly used for civil purposes.
비냉각형 적외선 센서는 크게 볼로미터(Bolometer), 열전쌍(Thermocouple), 초전기(Pyroelectric)형의 3가지 형태로 나눌 수 있다. 초전기 센서는 검출력은 좋지만 생산량이 제한적이고, 볼로미터와 열전쌍은 초전기형보다는 검출력이 낮지만 검출기 회로와 함께 실리콘 웨이퍼 상에 모노리틱(Monolithic)으로 제조되므로 생산성이 좋기 때문에 민수용으로 널리 개발되고 있다. 이 중에서 볼로미터형 적외선 센서는 물체에서 방사되는 적외선을 흡수하여 열에너지로 바뀔 때 그로 인한 온도 상승으로 전기저항이 변화하는 것을 이용하여 적외선을 검출한다.Uncooled infrared sensors can be broadly classified into three types: bolometer, thermocouple, and pyroelectric type. Pyroelectric sensors have good detection power but limited production, while bolometers and thermocouples have lower detection power than Pyroelectric type, but are produced monolithically on silicon wafers with detector circuitry, which is widely developed for civilian use because of their high productivity. Among them, the bolometer-type infrared sensor detects infrared rays by absorbing the infrared rays emitted from the object and using the change in electrical resistance due to the temperature rise when the thermal energy is converted into thermal energy.
종래의 볼로미터는 미국특허 제5,300,915호에 도시된 것과 같이 통상적으로 부상된 검출레벨과 이를 지지하는 지지레벨 및 하부레벨로 이루어져 있다. 그러나 검출레벨에 지지역할을 하는 지지레벨이 함께 형성되어 있어서 적외선을 흡수하는 전체면적이 줄어들게 되므로 최대의 흡수면적(fill factor)을 얻을 수 없었다.Conventional bolometers typically consist of a raised level of detection as shown in US Pat. No. 5,300,915, a support level and a lower level to support it. However, since the support level to support the detection level is formed together, the total area absorbing infrared rays is reduced, so that the maximum absorption factor (fill factor) could not be obtained.
이에 따라 한국공개특허 제2000-0007216호, 한국공개특허 제2000-0046517호, 한국등록특허 제10-0299642호 및 미국특허 제6,448,557호에서는 적외선 반사층이 존재하는 3층 구조의 볼로미터형 적외선 센서를 개시하였고, 미국특허 제5,367,167호에서는 큰 도전 통로를 가지는 셀 어레이를 기술하였으며, 미국특허 제6,441,374호에서는 열 분리 구조를 가지며 흡수율이 높은 적외선 센서에 대해 개시하는 등 적외선 센서의 감도 및 흡수면적을 높이기 위한 연구가 계속 진행되고 있다.Accordingly, Korean Patent Publication No. 2000-0007216, Korean Patent Publication No. 2000-0046517, Korean Patent Registration No. 10-0299642 and US Patent No. 6,448,557 disclose a three-layer bolometer-type infrared sensor having an infrared reflecting layer. U.S. Patent No. 5,367,167 describes a cell array having a large conductive path, and U.S. Patent No. 6,441,374 discloses an infrared sensor having a heat separation structure and a high absorption rate to increase the sensitivity and absorption area of an infrared sensor. Research is ongoing.
픽셀의 크기가 줄어듬에 따라 레그와 앵커가 차지하는 면적이 상대적으로 커지게 되고 이로 인해 필 팩터가 낮아지게 된다. 따라서 필 팩터를 높일 수 있는 디자인 및 방법이 필요하다. 기존에는 두 개의 앵커에 한 개의 픽셀이 연결되는 구조를 가지고 있으나 본 발명에서는 한 개의 앵커를 네 개의 픽셀이 공유하여 필 팩터가 70% 이상인 것을 목적으로 한다.As the size of the pixels decreases, the area occupied by the legs and anchors becomes relatively large, which results in a lower fill factor. Therefore, there is a need for a design and method that can increase the fill factor. Conventionally, one pixel is connected to two anchors, but in the present invention, one anchor is shared by four pixels, and the purpose of the fill factor is 70% or more.
상기의 목적을 이루고 종래기술의 문제점을 해결하기 위하여, 본 발명의 일실시예에 따른 마이크로 볼로미터에서 필 팩터를 높이기 위한 픽셀 디자인은, 기판상부의 반사 금속층을 포함하는 하부층; 상기 하부층 상부의 공동; 상기 공동 상부의 볼로미터층과 그 위의 투과 금속층을 포함하는 상부층; 상기 하부층 및 상기 상부층의 절연을 위한 절연층; 및 상기 상부층을 지지하는 앵커를 포함하는 각 볼로미터 픽셀들의 배열로 이루어진 볼로미터 어레이에 있어서, 상기 볼로미터 픽셀 네 개가 상기 앵커 하나를 공유하는 것을 특징으로 한다.In order to achieve the above object and to solve the problems of the prior art, a pixel design for increasing the fill factor in the microbolometer according to an embodiment of the present invention, the lower layer including a reflective metal layer on the substrate; A cavity above the bottom layer; An upper layer comprising a bolometer layer over the cavity and a transmissive metal layer thereon; An insulating layer for insulating the lower layer and the upper layer; And an array of bolometer pixels each comprising an anchor supporting the top layer, wherein the four bolometer pixels share one of the anchors.
또한, 본 발명의 일실시예에 따른 마이크로 볼로미터에서 필 팩터를 높이기 위한 픽셀 디자인에서 상기 볼로미터층은 비정질 실리콘으로 이루어지고 상기 투과 금속층은 티타늄 또는 티타늄 화합물(예를 들어, 티타늄 질화물, 티타늄 산화물 등)으로 이루어지는 것을 특징으로 한다.In addition, in the pixel design for increasing the fill factor in the microbolometer according to an embodiment of the present invention, the bolometer layer is made of amorphous silicon and the transmission metal layer is a titanium or titanium compound (eg, titanium nitride, titanium oxide, etc.). Characterized in that consists of.
또한, 본 발명의 일실시예에 따른 마이크로 볼로미터에서 필 팩터를 높이기 위한 픽셀 디자인에서 상기 상부층에는 상기 투과 금속층을 ㄹ자형, 일자형, 및 사각형 중 어느 하나로 에칭한 저항 노선이 형성되는 것을 특징으로 한다.In addition, in the pixel design for increasing the fill factor in the microbolometer according to an embodiment of the present invention, the upper layer is characterized in that a resistance line is formed by etching the transmissive metal layer into any one of a L-shaped, a straight, and a square.
또한, 본 발명의 일실시예에 따른 마이크로 볼로미터에서 필 팩터를 높이기 위한 픽셀 디자인에서 상기 볼로미터 어레이는 포컬 플레인 어레이를 사용하는 것을 특징으로 한다.In addition, in the pixel design for increasing the fill factor in the microbolometer according to an embodiment of the present invention, the ballometer array is characterized by using a focal plane array.
기존 마이크로 볼로미터는 하나의 픽셀에 두 개의 앵커를 가지고 있으나 본 발명에서는 한 개의 앵커를 네 개의 픽셀이 공유하여 640×480 포컬 플레인 어레이(Focal Plane Array; FPA)를 적용하게 되면 한 개의 픽셀에 한 개의 앵커가 필요하도록 디자인하였다.Conventional microbolometers have two anchors in one pixel, but in the present invention, if one anchor is shared by four pixels and a 640 × 480 focal plane array (FPA) is applied, one pixel per pixel Designed to require anchors.
위와 같은 디자인은 마이크로 볼로미터의 필 팩터를 증가시켜서 최종 출력 신호인 전압값을 높이게 되고 이는 제작되어지는 마이크로 볼로미터의 중요한 평가요소인 응답도(Responsivity) 및 온도분해능(NETD:Noise Equivalent Temperature Difference)을 향상시킨다.The above design increases the fill factor of the microbolometer to increase the final output signal voltage value, which improves response and temperature resolution (NETD), which are important evaluation factors for the manufactured microbolometer. Let's do it.
또한, 하나의 앵커를 네 개의 픽셀이 공유함으로써 마이크로 볼로미터의 구조적인 안정성이 높아지게 되고 제작되어지는 마이크로 볼로미터를 포함하는 칩(chip) 사이즈가 줄어들어 생산성이 향상되고 제작 단가를 낮출 수 있다.In addition, by sharing four anchors with one pixel, the structural stability of the microbolometer is increased, and the chip size including the manufactured microbolometer is reduced, thereby improving productivity and lowering the manufacturing cost.
도 1 및 도 2는 한 개의 앵커가 네 개의 픽셀을 공유하는 ㄹ자형의 저항 노선의 패턴을 가진 마이크로 볼로미터의 디자인.1 and 2 show the design of a microbolometer with a pattern of r-shaped resistance lines in which one anchor shares four pixels.
도 3은 마이크로 볼로미터의 픽셀을 나타낸 개념도.3 is a conceptual diagram illustrating pixels of a microbolometer.
도 4는 일자형의 저항 노선의 패턴을 가진 마이크로 볼로미터의 디자인.4 is a design of a microbolometer with a pattern of straight resistance lines.
도 5는 사각형의 저항 노선의 패턴을 가진 마이크로 볼로미터의 디자인.5 is a design of a microbolometer with a pattern of square resistance lines.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention;
본 발명은 마이크로 볼로미터의 디자인 시에 필 팩터를 높이기 위한 픽셀 디자인에 관한 발명이다. 입사되어진 적외선이 열적 고립 구조의 볼로미터층(140)을 가열시키고, 마이크로 볼로미터와 연결된 ROIC는 온도 변화에 따른 볼로미터층(140)의 저항 변화를 읽어내어 전압값으로 출력하게 된다. 이 때 마이크로 볼로미터의 효율성을 증가시키기 위해서는 높은 필 팩터를 가지도록 디자인해야 한다.The present invention relates to a pixel design for increasing the fill factor in the design of a microbolometer. The incident infrared ray heats the bolometer layer 140 of the thermal isolation structure, and the ROIC connected to the microbolometer reads the resistance change of the bolometer layer 140 according to the temperature change and outputs the voltage value. In order to increase the efficiency of the microbolometer, it must be designed to have a high fill factor.
마이크로 볼로미터의 픽셀 디자인에서 한 개의 앵커(160)를 네 개의 픽셀이 공유하여 640x480 FPA(Focal Plane Array)를 적용하게 되면 한 개의 픽셀에 한 개의 앵커(160)가 필요하게 된다. 픽셀을 지지하는 앵커(160)의 수가 줄어듬에 따라서 적외선을 흡수할 수 있는 면적이 늘어나게 되어 필 팩터의 값은 70% 이상 획득 가능하다.In the pixel design of the microbolometer, when one anchor 160 is shared by four pixels to apply a 640 × 480 focal plane array (FPA), one anchor 160 is required for one pixel. As the number of anchors 160 supporting the pixels decreases, the area capable of absorbing infrared rays increases, so that a fill factor value can be obtained at 70% or more.
위의 디자인을 바탕으로 제작되어진 마이크로 볼로미터는 필 팩터를 증가되어 최종 출력 신호인 전압값을 높이게 되고 이는 제작되어지는 마이크로 볼로미터의 중요한 평가 요소인 응답도(Responsivity) 및 온도분해능(NETD:Noise Equivalent Temperature Difference)을 향상시킨다.The microbolometer manufactured based on the above design increases the fill factor to increase the final output signal voltage value, which is an important evaluation factor of the manufactured microbolometer, responsivity and temperature resolution (NETD: Noise Equivalent Temperature). Improve Difference
또한 하나의 앵커(160)를 네 개의 픽셀이 공유함으로써 마이크로 볼로미터의 구조적인 안정성이 높아지게 되고, 제작되어지는 마이크로 볼로미터를 포함하는 칩(chip) 사이즈가 줄어들어 생산성이 향상되고 제작 단가를 낮출 수 있다.In addition, by sharing the four anchors of one anchor 160, the structural stability of the microbolometer increases, and the chip size including the manufactured microbolometer is reduced, thereby improving productivity and lowering the manufacturing cost.
도 1 및 도 2는 한 개의 앵커(160)가 네 개의 픽셀을 공유하는 마이크로 볼로미터의 3D 디자인이다. 각 픽셀은 다리를 통해 앵커(160)와 연결이 된다. 전기적 신호처리는 픽셀과 연결되어 있는 다리의 금속층과 관계있으며, 전기적 신호는 금속이 남아 있는 다리를 통해서 앵커(160)로 전달된다. 도 1 및 도 2는 ㄹ자형의 저항 노선의 패턴이 변형된 경우를 나타낸 것이다.1 and 2 are 3D designs of microbolometers in which one anchor 160 shares four pixels. Each pixel is connected to the anchor 160 via a bridge. The electrical signal processing relates to the metal layer of the bridge that is connected to the pixel, and the electrical signal is transmitted to the anchor 160 through the bridge where the metal remains. 1 and 2 show a case where the pattern of the r-shaped resistance line is modified.
도 4 및 도 5는 일자형 및 사각형의 저항 노선의 패턴을 나타낸 것이다.4 and 5 show patterns of straight and square resistance lines.
도 3은 마이크로 볼로미터의 픽셀을 나타낸 개념도이다.3 is a conceptual diagram illustrating pixels of a microbolometer.
볼로미터층(140)은 도핑된 비정질 실리콘으로 이루어지며 그 두께는 500 내지 3000A 정도가 바람직하다. 그리고 투과 금속층(150)은 적외선을 투과하는 층으로서 티타늄으로 이루어지며 그 두께는 20 내지 100A 정도가 바람직하다.The bolometer layer 140 is made of doped amorphous silicon, the thickness is preferably about 500 to 3000A. The transmissive metal layer 150 is made of titanium as a layer that transmits infrared rays, and the thickness thereof is preferably about 20 to 100A.
CMOS 기판과 같은 기판(110)의 상부에는 반사 금속층(120)이 있다. 반사 금속층(120)은 알루미늄 또는 금으로 이루어지며 적외선이 반사되도록 한다. 볼로미터층(140)에서 반사 금속층(120)까지의 거리가 λ/4(λ: 적외선의 파장)가 되도록 공동(130)의 두께를 설계하여 적외선이 공명 흡수되도록 한다.There is a reflective metal layer 120 on top of the substrate 110, such as a CMOS substrate. The reflective metal layer 120 is made of aluminum or gold and allows infrared rays to be reflected. The thickness of the cavity 130 is designed so that the distance from the bolometer layer 140 to the reflective metal layer 120 is λ / 4 (λ: wavelength of infrared rays) so that infrared rays are resonance absorbed.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명 사상은 아래에 기재된 특허청구범위에 의해서만 파악되어야 하고, 이의 균등 또는 등가적 변형 모두는 본 발명 사상의 범주에 속한다고 할 것이다.As described above, the present invention has been described by way of limited embodiments and drawings, but the present invention is not limited to the above-described embodiments, which can be variously modified and modified by those skilled in the art to which the present invention pertains. Modifications are possible. Accordingly, the spirit of the present invention should be understood only by the claims set forth below, and all equivalent or equivalent modifications thereof will belong to the scope of the present invention.

Claims (4)

  1. 기판 상부의 반사 금속층을 포함하는 하부층; 상기 하부층 상부의 공동; 상기 공동 상부의 볼로미터층과 그 위의 투과 금속층을 포함하는 상부층; 상기 하부층 및 상기 상부층을 절연하기 위한 절연층; 및 상기 상부층을 지지하는 앵커를 포함하는 각 볼로미터 픽셀들의 배열로 이루어진 볼로미터 어레이에 있어서, 상기 볼로미터 픽셀 네 개가 상기 앵커 하나를 공유하는 것을 특징으로 하는 볼로미터 어레이.A lower layer including a reflective metal layer over the substrate; A cavity above the bottom layer; An upper layer comprising a bolometer layer over the cavity and a transmissive metal layer thereon; An insulating layer for insulating the lower layer and the upper layer; And an array of bolometer pixels each comprising an anchor supporting the top layer, wherein the four bolometer pixels share one of the anchors.
  2. 제1항에 있어서,The method of claim 1,
    상기 볼로미터층은 비정질 실리콘으로 이루어지고 상기 투과 금속층은 티타늄으로 이루어지는 것을 특징으로 하는 볼로미터 어레이.And the bolometer layer is made of amorphous silicon and the transmission metal layer is made of titanium.
  3. 제1항에 있어서,The method of claim 1,
    상기 상부층에는 상기 투과 금속층을 ㄹ자형, 일자형, 및 사각형 중 어느 하나로 에칭한 저항 노선이 형성되는 것을 특징으로 하는 볼로미터 어레이.The upper layer is a bolometer array, characterized in that the resistance line is formed by etching the transmission metal layer to any one of the letter-shaped, straight, and square.
  4. 제1항에 있어서,The method of claim 1,
    상기 볼로미터 어레이는 포컬 플레인 어레이를 사용하는 것을 특징으로 하는 볼로미터 어레이.And the bolometer array uses a focal plane array.
PCT/KR2012/000135 2011-01-10 2012-01-06 Pixel design for improving the fill factor in a microbolometer WO2012096478A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0002456 2011-01-10
KR1020110002456A KR101180647B1 (en) 2011-01-10 2011-01-10 Design of pixel for more higher fill factor wherein microbolometer

Publications (2)

Publication Number Publication Date
WO2012096478A2 true WO2012096478A2 (en) 2012-07-19
WO2012096478A3 WO2012096478A3 (en) 2012-11-29

Family

ID=46507550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000135 WO2012096478A2 (en) 2011-01-10 2012-01-06 Pixel design for improving the fill factor in a microbolometer

Country Status (2)

Country Link
KR (1) KR101180647B1 (en)
WO (1) WO2012096478A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088209A (en) * 2021-03-26 2022-02-25 北京北方高业科技有限公司 Infrared detector based on CMOS (complementary Metal oxide semiconductor) process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101551094B1 (en) 2014-05-29 2015-09-07 현대자동차주식회사 Panelless cargo screen and vehicle having the same
KR102046086B1 (en) 2018-09-13 2019-12-02 세종공업 주식회사 Inclined micro bolometer array

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206526A (en) * 1991-09-30 1993-08-13 Texas Instr Inc <Ti> Bolometer and its manufacture
JPH07111371B2 (en) * 1989-06-21 1995-11-29 ヒューズ・エアクラフト・カンパニー Electromagnetic radiation detector and two-dimensional electron radiation sensing array
KR0135119B1 (en) * 1988-08-12 1998-04-20 앤. 라이스 머레트 Infrared detector
JP2001255203A (en) * 2000-03-10 2001-09-21 Nec Corp Thermal infrared detector having thermally separating structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7111371B2 (en) 2017-04-18 2022-08-02 株式会社トクヤマデンタル Dental curable composition and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0135119B1 (en) * 1988-08-12 1998-04-20 앤. 라이스 머레트 Infrared detector
JPH07111371B2 (en) * 1989-06-21 1995-11-29 ヒューズ・エアクラフト・カンパニー Electromagnetic radiation detector and two-dimensional electron radiation sensing array
JPH05206526A (en) * 1991-09-30 1993-08-13 Texas Instr Inc <Ti> Bolometer and its manufacture
JP2001255203A (en) * 2000-03-10 2001-09-21 Nec Corp Thermal infrared detector having thermally separating structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088209A (en) * 2021-03-26 2022-02-25 北京北方高业科技有限公司 Infrared detector based on CMOS (complementary Metal oxide semiconductor) process

Also Published As

Publication number Publication date
WO2012096478A3 (en) 2012-11-29
KR101180647B1 (en) 2012-09-19
KR20120080965A (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4677044B2 (en) Dual band imaging device having a visible or SWIR detector combined with an uncooled LWIR detector
KR101910575B1 (en) Infrared detector and infrared image sensor
US7491937B2 (en) Two-wavelength image sensor picking up both visible and infrared images
US7491938B2 (en) Multi-spectral uncooled microbolometer detectors
AU2001278843B2 (en) Microbolometer and method for forming
US7262413B2 (en) Photoconductive bolometer infrared detector
US9227839B2 (en) Wafer level packaged infrared (IR) focal plane array (FPA) with evanescent wave coupling
US8809786B2 (en) Microbolometer detector with centrally-located support structure
JP2010507806A5 (en)
CN102692276A (en) Non-refrigeration infrared detector
JP2001215151A (en) Thermal infrared detector and its manufacturing method
US9784623B2 (en) Bolometric detector with MIM structures of different dimensions
US8426815B2 (en) Bolometer pixel provided with a MIM integration capacitor
Radford et al. Third generation FPA development status at Raytheon Vision Systems
WO2012096478A2 (en) Pixel design for improving the fill factor in a microbolometer
CN202924718U (en) Double-material micro-cantilever and electromagnetic radiation detector
JP5728978B2 (en) Thermal photodetector, thermal photodetector, and electronic device
KR100539395B1 (en) Uncooled infrared sensor with two-layer structure
KR101677717B1 (en) The MEMS thermopile sensor and Method of fabricating the same
KR101180592B1 (en) Integrated Visible and Long Wavelength Infrared Image Detectors
US20150136984A1 (en) Infrared imaging element, imaging device, and imaging system
CA2791933C (en) Microbolometer detector with centrally-located support structure
KR20130039654A (en) Infrared thermal detector and method for manufacturing the same
WO2011121706A1 (en) Infrared ray imaging element and infrared ray imaging device
JPH11326039A (en) Thermal infrared image pick up device and thermal infrared light receiving element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734275

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12734275

Country of ref document: EP

Kind code of ref document: A2