WO2012096474A2 - Power generating apparatus using air pressure - Google Patents

Power generating apparatus using air pressure Download PDF

Info

Publication number
WO2012096474A2
WO2012096474A2 PCT/KR2012/000104 KR2012000104W WO2012096474A2 WO 2012096474 A2 WO2012096474 A2 WO 2012096474A2 KR 2012000104 W KR2012000104 W KR 2012000104W WO 2012096474 A2 WO2012096474 A2 WO 2012096474A2
Authority
WO
WIPO (PCT)
Prior art keywords
air
driving unit
compressed air
power
cylinder
Prior art date
Application number
PCT/KR2012/000104
Other languages
French (fr)
Korean (ko)
Other versions
WO2012096474A3 (en
Inventor
김형준
Original Assignee
Kim Hyung Jun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kim Hyung Jun filed Critical Kim Hyung Jun
Publication of WO2012096474A2 publication Critical patent/WO2012096474A2/en
Publication of WO2012096474A3 publication Critical patent/WO2012096474A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a power generator using air pressure, and more particularly, it can be effectively installed and used as a power source of a general home or various industrial transportation means, and using air pressure to produce electric energy at low cost. It relates to a power generator.
  • Hydrogen generators which are usually generated by using hydropower by blocking dams, are generated by burning anthracite or oil (petroleum) and natural gas.
  • Thermal power generators, nuclear power generators using nuclear reactions, wind power generators using wind, solar power generators using solar heat, and tidal power generators using seawater are widely known.
  • the thermal power generator that generates power by burning anthracite coal or oil (petroleum) and natural gas has a problem of exhausting resources due to fuel consumption and exhaust gas polluting the air.
  • hydroelectric generators and wind turbines are closely related to the natural environment and conditions, and thus have limitations and have a high cost of equipment.
  • the nuclear power generator is required to be a large-scale facility, the cost of the facility, as well as the pollution of the surrounding environment due to radiation leakage.
  • the conventional power generation methods have various problems such as high energy loss, large power generation facilities, and high installation costs.
  • the object of the present invention proposed to solve the problems of the prior art as described above is a small and simple structure of the power generating device is not limited to the installation environment, it is possible to produce electric energy at a low cost can be a general home or electric vehicle
  • the present invention provides a power generator using pneumatic pressure that can be easily used in various industrial transportation means such as ships, agricultural machinery, and the like.
  • a power generator comprising: a first driving unit configured to fill compressed air and periodically discharge it; A second driving unit for driving the blade by using the compressed air supplied from the first driving unit; A third driving part configured to supply compressed air by forming a plurality of pistons and cylinders cranked to the drive shaft of the second driving part to supply the first driving part; And a power generation unit connected to the output shaft of the third driving unit to generate electricity.
  • the present invention may further include a fourth driving unit which is connected to the output shaft of the third driving unit and is supplied with rotational force to operate the piston and the cylinder, thereby generating auxiliary compressed air provided to the first driving unit.
  • the first driving unit an air tank filled with compressed air; A pressure plate reciprocating in a forward direction from the rear of the air tank; A pressure rod extending in a rearward direction of the pressure plate; A spring member installed in the rear space of the air tank to elastically support the pressure plate and the air tank; A guide rail installed to slide guide the reciprocating motion of the pressure plate in the air tank; And a discharge valve installed at the front of the air tank and operable to open when the compressed air is above the set pressure.
  • the third driving unit may further include: an input shaft connected to the driving shaft of the second driving unit; A first crank shaft coupled to interlock with the input shaft; A shaft support installed to support the rotation center of the first crankshaft; A first piston coupled to the first crankshaft to reciprocate; A first cylinder configured to discharge compressed air by compression of the first piston; A first check valve installed at an intake side of the first cylinder; A second check valve installed at an exhaust side of the first cylinder; A first air pipe for providing a movement path of the compressed air in the first cylinder; And an output shaft connected to the crank shaft and receiving the rotational power.
  • the fourth driving unit may include: a power transmission shaft which is constantly rotated by receiving power from the output shaft of the third driving unit; A second crankshaft coupled to the power transmission shaft; A clutch unit installed on the power transmission shaft and interlocked with the pressure rod of the first driving unit to connect and block power transmission to the second crank shaft; A second piston coupled to the second crankshaft to reciprocate; A second cylinder configured to discharge air compressed by the second piston; A third check valve installed at an intake side of the second cylinder; A fourth check valve installed at an exhaust side of the second cylinder; It may be configured to include; and a second air engine for providing a movement path of the air compressed in the second cylinder.
  • a separate air pipe may be connected between the air tank and the first check valve to force the air discharged from the air tank into the first check valve.
  • the air pipe is branched from the discharge valve side pipe of the air tank may be installed to be connected to the first check valve side.
  • the blades are driven by using compressed air supplied from the first driving unit which fills compressed air and periodically discharges the compressed air, and a plurality of pistons and cylinders that are cranked to the drive shaft of the blade operate.
  • the structure is small and simple, and is not restricted by the installation environment, and thus various industrial transportation means such as general homes, electric vehicles, ships, agricultural machines, etc. It can be easily installed and used in the field, and it can produce electric energy at low cost, so it has an economic effect.
  • FIG. 1 is a conceptual diagram for explaining the principle of power generation of the power generating apparatus according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing a first drive unit of the power generating apparatus according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram showing a third drive unit of the power generating apparatus according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram showing a fourth drive unit of the power generating device according to an embodiment of the present invention.
  • FIG. 1 is a conceptual diagram illustrating a power generation principle of a power generator according to an embodiment of the present invention.
  • a power generating apparatus is largely based on a first driving unit 100, a second driving unit 200, a third driving unit 300, a fourth driving unit 400, and a power generation unit ( 500).
  • first driving unit 100 and the second driving unit 200 will be described in more detail with reference to FIG. 2.
  • FIG. 2 is a schematic view showing a first driving unit of a power generating apparatus according to an embodiment of the present invention.
  • the first driving unit 100 serves as a kind of pneumatic tank which is configured to fill compressed air and periodically discharge it.
  • the configuration of the first driving unit 100 is an air tank 110.
  • the pressure plate 120, the pressure rod 130, the spring member 140, the guide rail 160, and the discharge valve 150 may be formed.
  • the air tank 110 is filled with compressed air sucked from the outside through the intake valve 170, the compressed air filled therein is discharged by the pressure action of the pressure plate 120 installed therein It consists of a configuration to be discharged at a time through the, it serves as a kind of cylinder case.
  • the pressure plate 120 is installed in a straight reciprocating operation from the rear (right side of the figure) of the air tank 110 toward the front (left side of the figure).
  • the pressurized plate 120 When the pressurized plate 120 is filled with compressed air in the front space of the air tank 110 in a state in which the discharge valve 150 is closed, the pressure plate 120 is reversed by a pressure, and the specific time point at which the discharge valve 150 is opened.
  • the compressed air to the front of the air tank 110 serves to discharge the piston.
  • the pressure plate 120 may be manufactured in the shape of a plate, and the pressure plate 130 is formed at the rear of the pressure plate 120 to extend.
  • the pressure rod 130 is manufactured in the shape of a push rod for supporting the pressure plate 120, protrudes and extends to the rear of the body of the air tank 110, while being advanced back and forth with the pressure plate 120,
  • the clutch unit 430 of the four driving unit 400 is interlocked to operate.
  • a spring member 140 is installed between the rear space of the air tank 110, that is, the pressure plate 120 and the air tank 110.
  • the spring member 140 serves to elastically support the pressure plate 120 and the air tank 110. That is, when the pressure plate 120 is reversed, it is compressed and provides a driving force to push the pressure plate 120 to the front of the air tank 110 at a specific time when the discharge valve 150 is opened.
  • Such a spring member 140 may be used as a kind of compression spring, in this case, the spring member 140 is used to axially coupled to the pressure rod 130, or the outer circumference around the pressure rod 130 It can also be used by allowing many to be distributed at the same time.
  • a guide rail 160 may be installed to naturally slide the reciprocating motion of the pressure plate 120 in the air tank 110.
  • the guide rail 160 may be installed to traverse the interior of the air tank 110 in the longitudinal direction, the pressure plate 120 is coupled through the guide rail 160, so that the movement path is naturally guided. Can be.
  • the guide rail 160 preferably supports the outer circumference of the pressing plate 120 at uniform intervals to guide the pressing plate 120 as stably as possible, and at least two or more are installed.
  • the compression spring coupled to the guide rail 160 may be installed in the front space of the air tank 110, the compression spring acts to retract the pressing plate 120 when the compressed air is filled.
  • a discharge valve 150 is installed in front of the air tank 110, the discharge valve 150 is discharged by opening the outlet of the air tank 110 when the compressed air is more than the set pressure. It will play the role of making it possible.
  • the discharge valve 150 is opened only at a predetermined pressure or more, and a one-way check valve may be used to prevent backflow.
  • the inlet valve 170 for receiving compressed air in addition to the discharge valve 150 is formed on the front side of the air tank 110.
  • the suction valve 170 is supplied with compressed air from the outside to be filled in the air tank 110, a check valve to prevent backflow may be used.
  • one or more suction valves 170 may be installed.
  • the second driving part 200 driven by the compressed air supplied from the first driving part 100 is installed in front of the discharge valve 150 of the first driving part 100. do.
  • the second driving unit 200 includes a blade 210 rotated by the air pressure discharged from the discharge valve 150 of the air tank 110, and a drive shaft 220 coupled to the rotation axis of the blade 210. It is configured by.
  • the blade 210 is rotated by the impact of the compressed air discharged from the first drive unit 100, and rotates the drive shaft 220 connected to the center of the rotating shaft of the blade 210 together with the third driving unit ( 300).
  • FIG 3 is a schematic view showing a third driving unit of the power generating apparatus according to an embodiment of the present invention.
  • the third driving unit 300 forms compressed air by operation of a plurality of pistons and cylinders cranked to the drive shaft 220 of the second driving unit 200, and supplies the compressed air to the first driving unit 100 again. It has a configuration.
  • the third driving unit 300 for this configuration is the input shaft 310, the first crank shaft 320, the shaft support 330, the first piston 350, the first cylinder 360, the first check valve 371 ), The second check valve 372, the first air pipe 380 and the output shaft 390.
  • the input shaft 310 extends and is coupled to the driving shaft 220 of the blade 210 installed in the second driving unit 200, and the first crank shaft 320 is coupled to interlock with the input shaft 310.
  • the first crank shaft 320 is a component for converting the linear movement of the first piston 350 into the vertical movement by receiving the rotational movement of the input shaft 310, the rotation of the eccentric shaft to move the center of the axis in the vertical direction
  • the first piston 350 is coupled to the eccentric shaft to perform a reciprocating motion in the vertical direction.
  • the first crankshaft 320 may be installed by connecting one or more plurality in succession in the axial direction, each of the first crankshaft 320 is arranged so that the top dead center stroke and bottom dead center stroke alternately. Can be.
  • a shaft support 330 may be installed between the first crank shaft 320 and the first crank shaft 320 so that the center of rotation can be supported.
  • a bearing may be installed in the shaft support 330. .
  • each of the first crank shaft 320 may be connected to the gear coupling portion 340, the gear coupling portion 340 is the first crank shaft 320 of the previous step, when the inside Gear teeth of an installed key shape may be engaged to sequentially transmit power to the first crankshaft 320.
  • first pistons 350 are connected to the respective first crank shafts 320, reciprocating linear motions are performed.
  • the first piston 350 is coupled to the first cylinder 360 to be reciprocated, and sucks and compresses air in the first cylinder 360 to discharge it.
  • a first check valve 371 is installed at the lower intake side of the first cylinder 360, and the first check valve 371 opens the valve when the first piston 350 is raised to draw in outside air. Meanwhile, when the first piston 350 descends, the valve is blocked to prevent the compressed air inside from escaping to the outside.
  • the present invention can be configured to allow the external air to naturally supply to the first check valve 371 during the ascending operation of the first piston 350 as described above, in another way, the air of the first driving unit 100 A separate air pipe (not shown) is connected between the tank 110 and the first check valve 371 so that the air pressure discharged from the air tank 110 during the ascending operation of the first piston 350 opens the air pipe. It may be configured to be forcibly supplied to the first cylinder 360 through the first check valve 371.
  • the first check valve 371 by branching the air pipe on the discharge valve 150 side of the air tank 110 It may be configured by connecting to) or by making an air pressure discharge port directly on the air tank 110 may be configured by connecting an air pipe between the discharge port and the first check valve 371. At this time, it is preferable to separately install another check valve on the air pipe connected as described above.
  • a second check valve 372 is installed on an exhaust side formed near the intake side of the first cylinder 360, and the second check valve 372 opens the valve when the first piston 350 descends. By opening the compressed air to move to the next path, at the same time, the valve is blocked when the first piston 350 moves up to block the compressed air from flowing backward.
  • the air compressed in the first cylinder 360 of the previous stage is supplied to the first cylinder 360 of the next stage, and at this time, it is supplied to the first cylinder 360 of the next stage after being compressed again.
  • high pressure compressed air can be generated.
  • FIG. 3 illustrates a process of compressing a total of six stages of a cylinder, but this is only an example for helping the description of the present invention, but is not limited thereto. That is, the cylinder compression process may be performed only one step, or may be subjected to a compression process of six or more steps.
  • a first air engine 380 providing a movement path of the compressed air is connected, and a second check on the first air engine 380.
  • the valve 372 can be provided.
  • the air that has undergone the multi-stage compression process in the third driving unit 300 is supplied through the intake valve 170 of the air tank 110 of the first driving unit 100 to supply compressed air to the inside of the air tank 110. It is filled.
  • the rotational power of the first crank shaft 320 is transmitted to the output shaft 390
  • the rotational power of the output shaft 390 is transmitted to the power generation unit 500, driving the power generation unit 500 to drive electrical energy
  • the electrical energy generated through the power generation unit 500 can be used to charge the storage battery.
  • the rotational power may be branched from the output shaft 390 of the third driver 300 to be transmitted to the fourth driver 400.
  • FIG. 4 is a schematic view showing a fourth driving unit of the power generating apparatus according to an embodiment of the present invention.
  • the fourth driving unit 400 includes a power transmission shaft 410, a second crank shaft 420, a clutch unit 430, a second piston 450, a second cylinder 460,
  • the third check valve 471, the fourth check valve 472, and the second air engine 480 may be configured to include a configuration.
  • the power transmission shaft 410 is constantly rotated by receiving power from the output shaft 390 of the third driving unit 300, the output shaft 390 and the fourth driving unit 400 of the third driving unit 300.
  • a belt and a pulley may be connected between the power transmission shafts 410 to receive power. At this time, not only the connection of the belt and the pulley, but also may be configured to receive power through the coupling of gears or chain gears.
  • the second crankshaft 420 is coupled to the power transmission shaft 410 so as to interlock when the power transmission shaft 410 rotates.
  • the second crankshaft 420 is a component for receiving the rotational movement of the power transmission shaft 410 and converts it into a linear movement of the second piston 450.
  • the second piston 450 is coupled to the eccentric shaft to perform reciprocating motion in the vertical direction.
  • the second crankshaft 420 may be installed by continuously connecting one or more plurality in the axial direction, and each of the second crankshafts 420 may be arranged to alternately operate the top dead center stroke and the bottom dead center stroke. Can be.
  • An axis support may be installed between the second crankshaft 420 and the second crankshaft 420 so that the center of rotation may be supported.
  • a bearing may be installed in the shaft support.
  • the second piston 450 is coupled to the second cylinder 460 to reciprocate, and sucks and compresses air in the second cylinder 460 to discharge it.
  • a third check valve 471 is installed at the lower intake side of the second cylinder 460.
  • the third check valve 471 opens the valve when the second piston 450 is raised to draw in outside air. Meanwhile, when the second piston 450 descends, the valve is blocked to prevent the compressed air inside from escaping to the outside.
  • a fourth check valve 472 is installed at an exhaust side formed near the intake side of the second cylinder 460, and the fourth check valve 472 opens the valve when the second piston 450 descends. Opening the compressed air is moved to the next path, and at the same time, the valve is blocked when the second piston 450 moves up to block the compressed air from flowing backward.
  • the fourth check valve 472 is connected to the suction valve 170 of the air tank 110, respectively (a, b, c, d port of Figure 1), the compressed air generated in the second cylinder 460 Is supplied through the intake valve 170 of the first driving unit 100 to fill the inside of the air tank (110).
  • the compressed air in the second cylinder 460 is connected to the intake valve 170 of the air tank 110 through the second air pipe 480.
  • the clutch unit 430 may be formed to connect and block power transmission on the power transmission shaft 410 of the fourth driving unit 400, wherein the clutch unit 430 is the first driving unit 100. It is operated in conjunction with the pressure rod 130.
  • the reason why the clutch unit 430 is formed is that when the compressed air is filled in the air tank 110 by a predetermined value or more, the power transmission between the third driving unit 300 and the fourth driving unit 400 is temporarily blocked. This is to prevent the generation and supply of auxiliary compressed air in the fourth driving unit 400.
  • the clutch of the clutch unit 430 may be applied to many examples. However, the clutch may be configured as follows.
  • the clutch member 433 is a rotating body splined to rotate on the power transmission shaft 410
  • the clutch arm 431 is a structure for supporting the outer diameter of the clutch member 433 in a state capable of slipping. It can be configured to have.
  • the compressed air discharged from the discharge valve 150 of the first driving unit 100 to fill the compressed air and periodically discharge the compressed air is discharged using the second driving unit 200.
  • Blade 210 is rotated and driven, and a plurality of pistons and cylinders of the third driving unit 300 cranked to the drive shaft 220 of the blade 210 produces compressed air as a power source at the same time.
  • the power generation By configuring the power generation to be continuous, it can be used as a power source for electric vehicles, ships, agricultural machinery using the generator power generated through the power generator.
  • Such a power generator of the present invention has the advantage that it can be easily installed and used in general homes or various industrial transportation means because the structure is small and simple, but is not limited to the installation environment, and can continuously produce electric energy at low cost. There is an excellent advantage to that.
  • the power generator of the present invention by connecting a separate air pipe between the air tank 110 and the first check valve 371 of the first drive unit 100 in the air tank (1) during the lifting operation of the first piston (350) Compressed air discharged from the 110 is forced to flow into the first check valve 371, so that the compressed air discharged from the air tank 110 even if a pressure drop occurs due to energy loss in the third driving part 300. Is forced to flow into the first cylinder 360 to compensate for the pressure drop in the cylinder and to allow each cylinder to operate smoothly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

The present invention relates to a power generating apparatus using air pressure. The power generating apparatus includes: a first driving part for filling compressed air to periodically discharge the compressed air; a second driving part for driving a blade using the compressed air supplied from the first driving part; a third driving part compressing air by operating a plurality of pistons crank-coupled to a driving shaft of the second driving part and a plurality of cylinders to supply the compressed air to the first driving part; and a power generation part connected to an output shaft of the third driving part to generate power. The power generating apparatus using air pressure may have a simplified and small structure and not be affected by an environment in which it is installed. Thus, the power generating apparatus may be easily installed and used as a power source for a transport unit in general homes or various industrial fields. In addition, the power generating apparatus may generate electric energy at low cost to increase economic effects.

Description

공기압을 이용한 동력 발생장치Pneumatic Power Generator
본 발명은 공기압을 이용한 동력발생장치에 관한 것으로서, 보다 상세하게는, 일반가정이나 각종 산업용 운송수단의 동력원으로 효과적으로 설치하여 사용할 수 있을 뿐 아니라, 저렴한 비용으로 전기에너지를 생산할 수 있도록 된 공기압을 이용한 동력 발생장치에 관한 것이다.The present invention relates to a power generator using air pressure, and more particularly, it can be effectively installed and used as a power source of a general home or various industrial transportation means, and using air pressure to produce electric energy at low cost. It relates to a power generator.
일반적으로 전기에너지를 얻을 수 있는 발전기는 여러 종류가 있으며 그 방법 또한 여러 가지가 알려져 있는데, 통상적으로 댐을 막아서 수력을 이용해서 발전하는 수력발전기, 무연탄이나 기름(석유) 및 천연가스를 연소시켜서 발전하는 화력발전기, 핵반응을 이용해서 발전하는 원자력발전기, 바람을 이용해서 발전하는 풍력발전기, 태양열을 이용해서 발전하는 태양열발전기, 바닷물을 이용해서 발전하는 조력발전기 등이 널리 알려져 있다.In general, there are many kinds of generators that can obtain electric energy, and many methods are known. Hydrogen generators, which are usually generated by using hydropower by blocking dams, are generated by burning anthracite or oil (petroleum) and natural gas. Thermal power generators, nuclear power generators using nuclear reactions, wind power generators using wind, solar power generators using solar heat, and tidal power generators using seawater are widely known.
그런데, 상기 무연탄이나 기름(석유) 및 천연가스를 연소시켜 발전하는 화력발전기는 연료소모에 따른 자원고갈 문제와 더불어 연료연소에 따른 배기가스가 대기를 오염시키는 문제가 있었다.By the way, the thermal power generator that generates power by burning anthracite coal or oil (petroleum) and natural gas has a problem of exhausting resources due to fuel consumption and exhaust gas polluting the air.
또한, 수력발전기나 풍력발전기는 자연환경 및 조건과 밀접한 관계가 있어 제한 조건이 따르며, 설비비용이 많이 소요되는 문제가 있었다.In addition, hydroelectric generators and wind turbines are closely related to the natural environment and conditions, and thus have limitations and have a high cost of equipment.
또한, 원자력 발전기는 대형 설비를 필요로 하게 되는 것으로서, 설비비용이 많이 소요되는 것은 물론, 방사능 누출에 따른 주변 환경의 오염문제가 있었다.In addition, the nuclear power generator is required to be a large-scale facility, the cost of the facility, as well as the pollution of the surrounding environment due to radiation leakage.
이러한 문제들로 인해 태양열, 풍력, 수력, 조력 등이 대체에너지로 개발 및 사용하고 있으나, 이 또한 자연적인 설치조건과 설비비용에서 큰 부담을 갖게 되는 문제가 있었다. Due to these problems, solar, wind, hydro, tidal, etc. have been developed and used as alternative energy, but this also has a problem in that they have a large burden on natural installation conditions and equipment costs.
이와 같이, 종래의 발전방법들은 에너지 손실이 크고, 발전설비가 커지고 설치비용이 많이 드는 여러 가지 문제가 있었다.As described above, the conventional power generation methods have various problems such as high energy loss, large power generation facilities, and high installation costs.
상기한 바와 같은 종래기술의 문제점을 해결하기 위해 제안된 본 발명의 목적은 동력발생장치의 구조가 작고 간단하면서도 설치환경에 제한을 받지 않으며, 저렴한 비용으로 전기에너지를 생산할 수 있어 일반 가정이나 전기자동차, 선박, 농업용 기계 등 각종 산업용 운송수단 등에 쉽게 사용할 수 있도록 하는 공기압을 이용한 동력발생장치를 제공하는데 있다.The object of the present invention proposed to solve the problems of the prior art as described above is a small and simple structure of the power generating device is not limited to the installation environment, it is possible to produce electric energy at a low cost can be a general home or electric vehicle The present invention provides a power generator using pneumatic pressure that can be easily used in various industrial transportation means such as ships, agricultural machinery, and the like.
상기한 기술적 과제를 해결하기 위한 본 발명에 따른 동력발생장치는, 압축공기를 충진시켜 이를 주기적으로 방출하도록 된 제1구동부; 상기 제1구동부로부터 공급되는 압축공기를 이용해 블레이드가 구동되도록 하는 제2구동부; 상기 제2구동부의 구동축에 크랭크 연결되는 다수의 피스톤 및 실린더 작동에 의해 압축공기를 형성시켜 제1구동부에 공급하도록 된 제3구동부; 및 상기 제3구동부의 출력축에 연결되어 전기를 생성하도록 된 발전부;를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a power generator, comprising: a first driving unit configured to fill compressed air and periodically discharge it; A second driving unit for driving the blade by using the compressed air supplied from the first driving unit; A third driving part configured to supply compressed air by forming a plurality of pistons and cylinders cranked to the drive shaft of the second driving part to supply the first driving part; And a power generation unit connected to the output shaft of the third driving unit to generate electricity.
여기서, 본 발명은 상기 제3구동부의 출력축에 연결되어 회전동력을 제공받아 피스톤 및 실린더 작동됨으로써, 제1구동부에 제공되는 보조 압축공기를 생성하도록 된 제4구동부를 더 포함할 수 있다.Here, the present invention may further include a fourth driving unit which is connected to the output shaft of the third driving unit and is supplied with rotational force to operate the piston and the cylinder, thereby generating auxiliary compressed air provided to the first driving unit.
이때, 상기 제1구동부는, 압축공기가 충진되는 에어탱크; 상기 에어탱크의 후방에서 전방 쪽 방향으로 왕복 작동되는 가압플레이트; 상기 가압플레이트의 진행방향의 후방으로 연장되는 가압로드; 상기 에어탱크의 후방공간에 설치됨으로써, 가압플레이트와 에어탱크 사이가 탄력 지지되도록 하는 스프링부재; 상기 에어탱크 내에서 가압플레이트의 왕복 운동을 슬라이드 안내하도록 설치되는 가이드레일; 및 상기 에어탱크의 전방에 설치되어 압축공기가 설정압력 이상일 때에 개방되도록 작동하는 토출밸브;를 포함하여 구성될 수 있다.At this time, the first driving unit, an air tank filled with compressed air; A pressure plate reciprocating in a forward direction from the rear of the air tank; A pressure rod extending in a rearward direction of the pressure plate; A spring member installed in the rear space of the air tank to elastically support the pressure plate and the air tank; A guide rail installed to slide guide the reciprocating motion of the pressure plate in the air tank; And a discharge valve installed at the front of the air tank and operable to open when the compressed air is above the set pressure.
또한, 상기 제3구동부는, 제2구동부의 구동축에 연결되는 입력축; 상기 입력축에 연동되도록 결합되는 제1크랭크축; 상기 제1크랭크축의 회전중심이 지지되도록 설치되는 축지지대; 상기 제1크랭크축에 결합되어 왕복 운동되는 제1피스톤; 상기 제1피스톤의 압축에 의해 압축된 공기를 토출하도록 된 제1실린더; 상기 제1실린더의 흡기측에 설치되는 제1체크밸브; 상기 제1실린더의 배기측에 설치되는 제2체크밸브; 상기 제1실린더에서 압축된 공기의 이동경로를 제공하는 제1공기관; 및 상기 크랭크축과 축 연결되어 회전동력을 전달받는 출력축;을 포함하여 구성될 수 있다.The third driving unit may further include: an input shaft connected to the driving shaft of the second driving unit; A first crank shaft coupled to interlock with the input shaft; A shaft support installed to support the rotation center of the first crankshaft; A first piston coupled to the first crankshaft to reciprocate; A first cylinder configured to discharge compressed air by compression of the first piston; A first check valve installed at an intake side of the first cylinder; A second check valve installed at an exhaust side of the first cylinder; A first air pipe for providing a movement path of the compressed air in the first cylinder; And an output shaft connected to the crank shaft and receiving the rotational power.
또한, 상기 제4구동부는, 제3구동부의 출력축으로부터 동력을 전달받아 상시 회전되는 동력 전달축; 상기 동력전달축에 축 연결되는 제2크랭크축; 상기 동력전달축 상에 설치되어 제1구동부의 가압로드에 연동됨으로써, 제2크랭크축으로의 동력전달을 연결 및 차단하도록 된 클러치부; 상기 제2크랭크축에 결합되어 왕복 운동되는 제2피스톤; 상기 제2피스톤에 의해 압축된 공기를 토출하도록 된 제2실린더; 상기 제2실린더의 흡기측에 설치되는 제3체크밸브; 상기 제2실린더의 배기측에 설치되는 제4체크밸브; 및 상기 제2실린더에서 압축된 공기의 이동경로를 제공하는 제2공기관;을 포함하여 구성될 수 있다.The fourth driving unit may include: a power transmission shaft which is constantly rotated by receiving power from the output shaft of the third driving unit; A second crankshaft coupled to the power transmission shaft; A clutch unit installed on the power transmission shaft and interlocked with the pressure rod of the first driving unit to connect and block power transmission to the second crank shaft; A second piston coupled to the second crankshaft to reciprocate; A second cylinder configured to discharge air compressed by the second piston; A third check valve installed at an intake side of the second cylinder; A fourth check valve installed at an exhaust side of the second cylinder; It may be configured to include; and a second air engine for providing a movement path of the air compressed in the second cylinder.
한편, 상기 에어탱크와 제1체크밸브 사이에는 에어탱크로부터 토출되는 공기를 제1체크밸브로 강제 유입시킬 수 있도록 별도의 공기관이 연결 설치될 수 있다.Meanwhile, a separate air pipe may be connected between the air tank and the first check valve to force the air discharged from the air tank into the first check valve.
이때, 상기 공기관은 상기 에어탱크의 토출밸브 측 관으로부터 분기되어 상기 제1체크밸브 측에 연결되도록 설치될 수 있다.At this time, the air pipe is branched from the discharge valve side pipe of the air tank may be installed to be connected to the first check valve side.
본 발명의 일실시예에 따르면, 압축공기를 충진시켜 이를 주기적으로 방출하도록 된 제1구동부로부터 공급되는 압축공기를 이용해 블레이드가 구동되도록 하고, 상기 블레이드의 구동축에 크랭크 연결되는 다수의 피스톤 및 실린더 작동에 의해 동력원인 압축공기를 생산하는 동시에 전기발전이 이루어지도록 구성된 동력발생장치를 제공함으로써, 구조가 작고 간단하면서도 설치환경에 제한을 받지 않아 일반가정이나 전기자동차, 선박, 농업용 기계 등 각종 산업용 운송수단에 쉽게 설치하여 사용할 수 있고, 저렴한 비용으로 전기에너지를 생산할 수 있어 경제적인 효과를 갖는다.According to one embodiment of the present invention, the blades are driven by using compressed air supplied from the first driving unit which fills compressed air and periodically discharges the compressed air, and a plurality of pistons and cylinders that are cranked to the drive shaft of the blade operate. Providing a power generating device configured to produce compressed air as a power source and to generate electricity at the same time, the structure is small and simple, and is not restricted by the installation environment, and thus various industrial transportation means such as general homes, electric vehicles, ships, agricultural machines, etc. It can be easily installed and used in the field, and it can produce electric energy at low cost, so it has an economic effect.
도 1은 본 발명의 일실시예에 따른 동력발생장치의 발전원리를 설명하기 위한 개념도.1 is a conceptual diagram for explaining the principle of power generation of the power generating apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 동력발생장치의 제1구동부를 도시한 개략도.Figure 2 is a schematic diagram showing a first drive unit of the power generating apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 동력발생장치의 제3구동부를 도시한 개략도.Figure 3 is a schematic diagram showing a third drive unit of the power generating apparatus according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 동력발생장치의 제4구동부를 도시한 개략도.Figure 4 is a schematic diagram showing a fourth drive unit of the power generating device according to an embodiment of the present invention.
이하, 본 발명의 바람직한 실시예에 대해 첨부된 도면을 참조하여 자세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일실시예에 따른 동력발생장치의 발전원리를 설명하기 위한 개념도이다.1 is a conceptual diagram illustrating a power generation principle of a power generator according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 동력발생장치는 크게 제1구동부(100), 제2구동부(200), 제3구동부(300), 제4구동부(400) 및 발전부(500)로 구성된다.Referring to FIG. 1, a power generating apparatus according to an embodiment of the present invention is largely based on a first driving unit 100, a second driving unit 200, a third driving unit 300, a fourth driving unit 400, and a power generation unit ( 500).
이하, 도 2를 참조하여 제1구동부(100) 및 제2구동부(200)에 대해 보다 구체적으로 설명한다.Hereinafter, the first driving unit 100 and the second driving unit 200 will be described in more detail with reference to FIG. 2.
도 2는 본 발명의 일 실시예에 따른 동력발생장치의 제1구동부를 도시한 개략도이다.2 is a schematic view showing a first driving unit of a power generating apparatus according to an embodiment of the present invention.
도 2를 참조하면, 제1구동부(100)는 압축공기를 충진시켜 이를 주기적으로 방출하도록 된 일종의 공압탱크로서의 역할을 수행하게 되는데, 이와 같은 제1구동부(100)의 구성은 에어탱크(110), 가압플레이트(120), 가압로드(130), 스프링부재(140), 가이드레일(160), 토출밸브(150)를 포함하는 구성으로 이루어지게 된다. Referring to FIG. 2, the first driving unit 100 serves as a kind of pneumatic tank which is configured to fill compressed air and periodically discharge it. The configuration of the first driving unit 100 is an air tank 110. The pressure plate 120, the pressure rod 130, the spring member 140, the guide rail 160, and the discharge valve 150 may be formed.
상기 에어탱크(110)는 흡입밸브(170)를 통해 외부로부터 흡입된 압축공기가 충진되고, 그 내부에 충진된 압축공기는 내부에 설치된 가압플레이트(120)의 가압작용에 의해 토출밸브(150)를 통해 일시에 토출되도록 하는 구성으로 이루어져 있는데, 일종의 실린더 케이스 역할을 수행하게 된다.The air tank 110 is filled with compressed air sucked from the outside through the intake valve 170, the compressed air filled therein is discharged by the pressure action of the pressure plate 120 installed therein It consists of a configuration to be discharged at a time through the, it serves as a kind of cylinder case.
상기 에어탱크(110) 내부에는 에어탱크(110)의 후방(도면의 우측)에서 전방(도면의 좌측) 쪽 방향으로 직선왕복 작동되는 가압플레이트(120)가 설치된다.Inside the air tank 110, the pressure plate 120 is installed in a straight reciprocating operation from the rear (right side of the figure) of the air tank 110 toward the front (left side of the figure).
상기 가압플레이트(120)는 토출밸브(150)가 폐쇄된 상태에서 에어탱크(110)의 전방공간에 압축공기가 채워지게 되면 압력에 의해 후진되었다가, 상기 토출밸브(150)가 개방되는 특정시점에 압축공기를 에어탱크(110)의 전방쪽으로 밀어서 토출시키는 피스톤의 역할을 수행하게 된다.When the pressurized plate 120 is filled with compressed air in the front space of the air tank 110 in a state in which the discharge valve 150 is closed, the pressure plate 120 is reversed by a pressure, and the specific time point at which the discharge valve 150 is opened. The compressed air to the front of the air tank 110 serves to discharge the piston.
*이와 같은 가압플레이트(120)는 판체형상으로 제작될 수 있고, 상기 가압플레이트(120)의 후방에는 가압로드(130)가 연장 설치된 구조를 형성하고 있다.* The pressure plate 120 may be manufactured in the shape of a plate, and the pressure plate 130 is formed at the rear of the pressure plate 120 to extend.
상기 가압로드(130)는 가압플레이트(120)를 지지하는 밀대 형상으로 제작되는데, 에어탱크(110)의 몸체 후방으로 돌출 연장되어 있고, 가압플레이트(120)와 함께 전후진 되면서, 후술하게 될 제4구동부(400)의 클러치부(430)를 연동시켜 조작하는 역할을 수행하게 된다.The pressure rod 130 is manufactured in the shape of a push rod for supporting the pressure plate 120, protrudes and extends to the rear of the body of the air tank 110, while being advanced back and forth with the pressure plate 120, The clutch unit 430 of the four driving unit 400 is interlocked to operate.
또한, 상기 에어탱크(110)의 후방공간 즉, 가압플레이트(120)와 에어탱크(110) 사이에는 스프링부재(140)가 설치된다.In addition, a spring member 140 is installed between the rear space of the air tank 110, that is, the pressure plate 120 and the air tank 110.
상기 스프링부재(140)는 가압플레이트(120)와 에어탱크(110) 사이가 탄력 지지되도록 하는 역할을 수행하게 된다. 즉, 가압플레이트(120)가 후진할 때, 압축되었다가 토출밸브(150)가 개방되는 특정시점에서 가압플레이트(120)를 에어탱크(110)의 전방쪽으로 밀어서 전진시키는 추진력을 제공하게 된다.The spring member 140 serves to elastically support the pressure plate 120 and the air tank 110. That is, when the pressure plate 120 is reversed, it is compressed and provides a driving force to push the pressure plate 120 to the front of the air tank 110 at a specific time when the discharge valve 150 is opened.
이와 같은 스프링부재(140)는 일종의 압축 스프링이 사용될 수 있는데, 이 경우, 스프링부재(140)를 가압로드(130)에 축 결합시켜 사용하거나, 상기 가압로드(130)를 중심으로 그 외주연에 다수가 동시에 분산 설치되도록 하여 사용할 수도 있다.Such a spring member 140 may be used as a kind of compression spring, in this case, the spring member 140 is used to axially coupled to the pressure rod 130, or the outer circumference around the pressure rod 130 It can also be used by allowing many to be distributed at the same time.
또한, 상기 에어탱크(110) 내에서 가압플레이트(120)의 왕복 운동을 자연스럽게 슬라이드 안내시키기 위한 가이드레일(160)이 설치될 수 있다.In addition, a guide rail 160 may be installed to naturally slide the reciprocating motion of the pressure plate 120 in the air tank 110.
상기 가이드레일(160)은 에어탱크(110) 내부를 길이방향으로 가로지르도록 설치될 수 있고, 상기 가이드레일(160) 상에 가압플레이트(120)가 관통 결합됨으로써, 이동경로가 자연스럽게 안내되도록 할 수 있다. The guide rail 160 may be installed to traverse the interior of the air tank 110 in the longitudinal direction, the pressure plate 120 is coupled through the guide rail 160, so that the movement path is naturally guided. Can be.
이때, 상기 가이드레일(160)은 가압플레이트(120)를 최대한 안정적으로 가이드하기 위해 가압플레이트(120)의 외주연을 균일한 간격으로 관통하여 지지하는 것이 바람직하며, 적어도 2개 이상이 설치되도록 한다. 이때, 상기 가이드레일(160)에 축 결합되는 압축스프링을 에어탱크(110) 전방공간에 설치할 수도 있는데, 상기 압축스프링은 압축공기의 충진시 가압플레이트(120)를 후퇴시키는 작용을 하게 된다. In this case, the guide rail 160 preferably supports the outer circumference of the pressing plate 120 at uniform intervals to guide the pressing plate 120 as stably as possible, and at least two or more are installed. . At this time, the compression spring coupled to the guide rail 160 may be installed in the front space of the air tank 110, the compression spring acts to retract the pressing plate 120 when the compressed air is filled.
또한, 상기 에어탱크(110)의 전방에는 토출밸브(150)가 설치되는데, 상기 토출밸브(150)는 압축공기가 설정압력 이상이 되었을 때에 에어탱크(110)의 출구를 개방시켜 압축공기가 배출되도록 하는 역할을 수행하게 된다.In addition, a discharge valve 150 is installed in front of the air tank 110, the discharge valve 150 is discharged by opening the outlet of the air tank 110 when the compressed air is more than the set pressure. It will play the role of making it possible.
이와 같은 토출밸브(150)는 일정 압력이상에서만 개방되며, 역류가 방지되는 일방향 체크밸브가 사용될 수 있다.The discharge valve 150 is opened only at a predetermined pressure or more, and a one-way check valve may be used to prevent backflow.
또한, 상기 에어탱크(110)의 전방 쪽에는 토출밸브(150) 외에 압축공기를 공급받기 위한 흡입밸브(170)를 형성하게 된다.In addition, the inlet valve 170 for receiving compressed air in addition to the discharge valve 150 is formed on the front side of the air tank 110.
이때, 상기 흡입밸브(170)는 외부에서 압축공기를 공급받아 에어탱크(110) 내에 충진되도록 하되, 역류가 방지되도록 한 체크밸브가 사용될 수 있다.At this time, the suction valve 170 is supplied with compressed air from the outside to be filled in the air tank 110, a check valve to prevent backflow may be used.
이때, 상기 흡입밸브(170)는 하나 이상 다수개가 설치될 수 있다.In this case, one or more suction valves 170 may be installed.
한편, 도 1 및 도 2에 도시된 바와 같이, 제1구동부(100)의 토출밸브(150) 전방에는 제1구동부(100)로부터 공급되는 압축공기를 통해 구동되는 제2구동부(200)가 설치된다.Meanwhile, as shown in FIGS. 1 and 2, the second driving part 200 driven by the compressed air supplied from the first driving part 100 is installed in front of the discharge valve 150 of the first driving part 100. do.
상기 제2구동부(200)는 에어탱크(110)의 토출밸브(150)에서 토출되는 공기압에 의해 회전되는 블레이드(210)와, 상기 블레이드(210)의 회전축상에 결합된 구동축(220)을 포함하여 구성된다.The second driving unit 200 includes a blade 210 rotated by the air pressure discharged from the discharge valve 150 of the air tank 110, and a drive shaft 220 coupled to the rotation axis of the blade 210. It is configured by.
상기 블레이드(210)는 제1구동부(100)에서 토출되는 압축공기의 충격에 의해 회전하게 되고, 상기 블레이드(210)의 회전축 중심에 연결된 구동축(220)을 함께 회전시켜서 회전동력을 제3구동부(300)에 제공하게 된다.The blade 210 is rotated by the impact of the compressed air discharged from the first drive unit 100, and rotates the drive shaft 220 connected to the center of the rotating shaft of the blade 210 together with the third driving unit ( 300).
도 3은 본 발명의 일 실시예에 따른 동력발생장치의 제3구동부를 도시한 개략도이다.3 is a schematic view showing a third driving unit of the power generating apparatus according to an embodiment of the present invention.
도 3을 참조하면, 제3구동부(300)는 제2구동부(200)의 구동축(220)에 크랭크 연결되는 다수의 피스톤 및 실린더 작동에 의해 압축공기를 형성시켜 다시 제1구동부(100)에 공급하는 구성을 갖는다.Referring to FIG. 3, the third driving unit 300 forms compressed air by operation of a plurality of pistons and cylinders cranked to the drive shaft 220 of the second driving unit 200, and supplies the compressed air to the first driving unit 100 again. It has a configuration.
이를 위한 제3구동부(300)의 구성은 입력축(310), 제1크랭크축(320), 축지지대(330), 제1피스톤(350), 제1실린더(360), 제1체크밸브(371), 제2체크밸브(372), 제1공기관(380) 및 출력축(390)을 포함하는 구성으로 이루어지게 된다.The third driving unit 300 for this configuration is the input shaft 310, the first crank shaft 320, the shaft support 330, the first piston 350, the first cylinder 360, the first check valve 371 ), The second check valve 372, the first air pipe 380 and the output shaft 390.
상기 입력축(310)은 제2구동부(200)에 설치된 블레이드(210)의 구동축(220)에 연장 결합되며, 상기 입력축(310)에 연동되도록 제1크랭크축(320)이 결합된다.The input shaft 310 extends and is coupled to the driving shaft 220 of the blade 210 installed in the second driving unit 200, and the first crank shaft 320 is coupled to interlock with the input shaft 310.
상기 제1크랭크축(320)은 입력축(310)의 회전운동을 전달받아 제1피스톤(350)의 상하방향 직선운동으로 변환시키기 위한 구성요소로서, 회전시 상하 방향으로 축 중심이 이동되는 편심축을 형성하고 있고, 상기 편심축 상에 제1피스톤(350)이 결합되어 상하 방향의 왕복운동을 수행하게 된다.The first crank shaft 320 is a component for converting the linear movement of the first piston 350 into the vertical movement by receiving the rotational movement of the input shaft 310, the rotation of the eccentric shaft to move the center of the axis in the vertical direction The first piston 350 is coupled to the eccentric shaft to perform a reciprocating motion in the vertical direction.
이때, 상기 제1크랭크축(320)은 그 축 방향으로 1개 이상의 다수 개를 연속해서 연결하여 설치할 수 있고, 각각의 제1크랭크축(320) 들은 상사점 행정과 하사점 행정이 교번 작동되도록 배치될 수 있다.At this time, the first crankshaft 320 may be installed by connecting one or more plurality in succession in the axial direction, each of the first crankshaft 320 is arranged so that the top dead center stroke and bottom dead center stroke alternately. Can be.
상기 제1크랭크축(320)과 제1크랭크축(320) 사이에는 회전중심이 지지될 수 있도록 축지지대(330)가 설치될 수 있는데, 이와 같은 축지지대(330)에는 베어링이 설치될 수 있다.A shaft support 330 may be installed between the first crank shaft 320 and the first crank shaft 320 so that the center of rotation can be supported. A bearing may be installed in the shaft support 330. .
이때, 각각의 제1크랭크축(320) 사이를 기어결합부(340)로 연결할 수 있는데, 상기 기어결합부(340)는 앞 단계의 제1크랭크축(320)이 1회전하는 경우, 내부에 설치된 키형태의 기어이빨이 맞물려 다음 단계의 제1크랭크축(320)에 동력이 순차적으로 전달되도록 할 수 있다.At this time, each of the first crank shaft 320 may be connected to the gear coupling portion 340, the gear coupling portion 340 is the first crank shaft 320 of the previous step, when the inside Gear teeth of an installed key shape may be engaged to sequentially transmit power to the first crankshaft 320.
또한, 상기 각각의 제1크랭크축(320)에는 제1피스톤(350)들이 각각 연결됨으로써, 왕복 직선운동이 이루어지게 된다.In addition, since the first pistons 350 are connected to the respective first crank shafts 320, reciprocating linear motions are performed.
상기 제1피스톤(350)은 제1실린더(360) 내에 결합되어 왕복운동되는 것으로서, 제1실린더(360) 내에 공기를 흡입 및 압축시켜 토출하게 된다.The first piston 350 is coupled to the first cylinder 360 to be reciprocated, and sucks and compresses air in the first cylinder 360 to discharge it.
상기 제1실린더(360)의 하부 흡기측에는 제1체크밸브(371)가 설치되는데, 상기 제1체크밸브(371)는 제1피스톤(350)의 상승시 밸브를 개방시켜 외부 공기를 끌어들이는 한편, 제1피스톤(350)의 하강시에는 밸브를 차단시켜 내부의 압축공기가 외부로 빠져나가는 것을 방지하게 된다.A first check valve 371 is installed at the lower intake side of the first cylinder 360, and the first check valve 371 opens the valve when the first piston 350 is raised to draw in outside air. Meanwhile, when the first piston 350 descends, the valve is blocked to prevent the compressed air inside from escaping to the outside.
이때, 본 발명은 상기와 같이 제1피스톤(350)의 상승 동작시 제1체크밸브(371)로 외부공기가 자연 공급되도록 구성할 수 있지만, 다른 방법으로, 상기 제1구동부(100)의 에어탱크(110)와 상기 제1체크밸브(371) 사이에 별도의 공기관(미도시)을 연결하여 상기 제1피스톤(350)의 상승 동작시 상기 에어탱크(110)로부터 토출되는 공기압이 상기 공기관을 거쳐 제1체크밸브(371)를 통해 제1실린더(360) 내부로 강제 공급되도록 구성할 수도 있다.At this time, the present invention can be configured to allow the external air to naturally supply to the first check valve 371 during the ascending operation of the first piston 350 as described above, in another way, the air of the first driving unit 100 A separate air pipe (not shown) is connected between the tank 110 and the first check valve 371 so that the air pressure discharged from the air tank 110 during the ascending operation of the first piston 350 opens the air pipe. It may be configured to be forcibly supplied to the first cylinder 360 through the first check valve 371.
여기서, 상기 에어탱크(110)와 상기 제1체크밸브(371) 사이에 공기관을 연결하는 경우, 상기 에어탱크(110)의 토출밸브(150)측에 공기관을 분기하여 상기 제1체크밸브(371)에 연결시켜 구성할 수도 있고, 또는 상기 에어탱크(110)상에 직접 공기압 토출구를 만든 후 상기 토출구와 상기 제1체크밸브(371) 사이에 공기관을 연결시켜 구성할 수도 있다. 이때, 상기처럼 연결되는 공기관 상에는 또 하나의 체크밸브를 별도 설치하는 것이 바람직하다. Here, when the air pipe is connected between the air tank 110 and the first check valve 371, the first check valve 371 by branching the air pipe on the discharge valve 150 side of the air tank 110 It may be configured by connecting to) or by making an air pressure discharge port directly on the air tank 110 may be configured by connecting an air pipe between the discharge port and the first check valve 371. At this time, it is preferable to separately install another check valve on the air pipe connected as described above.
이와 같이, 에어탱크(110)와 제1체크밸브(371) 사이에 별도의 공기관을 연결하여 제1피스톤(350)의 상승 동작시 상기 에어탱크(110)로부터 토출되는 압축 공기가 상기 제1체크밸브(371)로 강제 유입되어 제1실린더(360) 내부로 직접 공급되도록 함으로써, 제3구동부(300) 내에서 에너지 손실에 따른 압력강하가 발생하여도 에어탱크(110)로부터 토출되는 압축 공기가 제1실린더(360) 내부로 강제 유입되도록 하여실린더 내부에서 압력이 강하되는 것을 보상해주고 각 실린더가 원활하게 작동될 수 있도록 할 수 있다.In this way, by connecting a separate air pipe between the air tank 110 and the first check valve 371, the compressed air discharged from the air tank 110 during the lifting operation of the first piston 350 is the first check By forcibly flowing into the valve 371 so as to be directly supplied into the first cylinder 360, the compressed air discharged from the air tank 110, even if a pressure drop occurs due to energy loss in the third driving unit 300 Forcibly introduced into the first cylinder 360 to compensate for the pressure drop in the cylinder and to allow each cylinder to operate smoothly.
또한, 상기 제1실린더(360)의 흡기측과 근접하여 형성되는 배기측에는 제2체크밸브(372)가 설치되는데, 상기 제2체크밸브(372)는 제1피스톤(350)의 하강시 밸브를 개방시켜 압축공기가 다음 경로로 이동되도록 하는 동시에, 제1피스톤(350)의 승강시 밸브를 차단시켜 압축공기가 역류되는 것을 차단하게 된다.In addition, a second check valve 372 is installed on an exhaust side formed near the intake side of the first cylinder 360, and the second check valve 372 opens the valve when the first piston 350 descends. By opening the compressed air to move to the next path, at the same time, the valve is blocked when the first piston 350 moves up to block the compressed air from flowing backward.
즉, 전단계의 제1실린더(360)에서 압축된 공기는 다음단계의 제1실린더(360)로 공급되고, 이때, 재차 압축되는 과정을 거쳐 그 다음단계의 제1실린더(360)로 공급되고, 이와 같은 공정을 반복함으로써, 높은 압력의 압축공기를 생성할 있게 된다.That is, the air compressed in the first cylinder 360 of the previous stage is supplied to the first cylinder 360 of the next stage, and at this time, it is supplied to the first cylinder 360 of the next stage after being compressed again. By repeating this process, high pressure compressed air can be generated.
도 3에서는 총 6단계의 실린더 압축과정을 거치는 것을 도시하고 있으나, 이는 본 발명의 설명을 돕기 위한 일 예를 도시한 것일 뿐 이에 한정되는 것은 아니다. 즉, 실린더 압축공정은 1단계만 수행되도록 할 수도 있고, 6단계 이상의 압축공정을 거치게 할 수도 있는 것이다.3 illustrates a process of compressing a total of six stages of a cylinder, but this is only an example for helping the description of the present invention, but is not limited thereto. That is, the cylinder compression process may be performed only one step, or may be subjected to a compression process of six or more steps.
서로 이웃하는 제1실린더(360)와 제1실린더(360) 사이에는 압축된 공기의 이동경로를 제공하는 제1공기관(380)이 연결되어 있고, 상기 제1공기관(380) 상에 제2체크밸브(372)를 설치할 수 있다.Between the first cylinder 360 and the first cylinder 360 adjacent to each other, a first air engine 380 providing a movement path of the compressed air is connected, and a second check on the first air engine 380. The valve 372 can be provided.
상기한 바와 같이 제3구동부(300)에서 다단계 압축공정을 거친 공기는 제1구동부(100)의 에어탱크(110)의 흡입밸브(170)를 통해 공급되어 에어탱크(110) 내부에 압축공기를 충진시키게 된다.As described above, the air that has undergone the multi-stage compression process in the third driving unit 300 is supplied through the intake valve 170 of the air tank 110 of the first driving unit 100 to supply compressed air to the inside of the air tank 110. It is filled.
한편, 상기 제1크랭크축(320)의 회전동력은 출력축(390)으로 전달되고, 상기 출력축(390)의 회전동력은 발전부(500)로 전달되어, 발전부(500)를 구동시켜 전기 에너지를 생성하게 되고, 발전부(500)를 통해 생성된 전기에너지는 축전지에 충전시켜 사용할 수 있게 된다.On the other hand, the rotational power of the first crank shaft 320 is transmitted to the output shaft 390, the rotational power of the output shaft 390 is transmitted to the power generation unit 500, driving the power generation unit 500 to drive electrical energy To generate the, the electrical energy generated through the power generation unit 500 can be used to charge the storage battery.
한편, 상기 제3구동부(300)의 출력축(390)으로부터 회전동력을 분기하여 제4구동부(400)에 전달되도록 할 수 있다.Meanwhile, the rotational power may be branched from the output shaft 390 of the third driver 300 to be transmitted to the fourth driver 400.
도 4는 본 발명의 일 실시예에 따른 동력발생장치의 제4구동부를 도시한 개략도이다.4 is a schematic view showing a fourth driving unit of the power generating apparatus according to an embodiment of the present invention.
도 4를 참조하면, 상기 제4구동부(400)는 크게 동력전달축(410), 제2크랭크축(420), 클러치부(430), 제2피스톤(450), 제2실린더(460), 제3체크밸브(471), 제4체크밸브(472), 및 제2공기관(480)을 포함하는 구성으로 이루어진다.Referring to FIG. 4, the fourth driving unit 400 includes a power transmission shaft 410, a second crank shaft 420, a clutch unit 430, a second piston 450, a second cylinder 460, The third check valve 471, the fourth check valve 472, and the second air engine 480 may be configured to include a configuration.
먼저, 상기 동력전달축(410)은 제3구동부(300)의 출력축(390)으로부터 동력을 전달받아 상시 회전되는데, 상기 제3구동부(300)의 출력축(390)과 제4구동부(400)의 동력전달축(410) 사이에 벨트 및 풀리 연결시켜 동력을 전달받도록 할 수 있다. 이때, 상기 벨트 및 풀리의 연결 뿐만 아니라, 기어결합 또는 체인기어의 결합을 통해서도 동력을 전달받을 수 있도록 구성할 수도 있다.First, the power transmission shaft 410 is constantly rotated by receiving power from the output shaft 390 of the third driving unit 300, the output shaft 390 and the fourth driving unit 400 of the third driving unit 300. A belt and a pulley may be connected between the power transmission shafts 410 to receive power. At this time, not only the connection of the belt and the pulley, but also may be configured to receive power through the coupling of gears or chain gears.
다음으로, 상기 동력전달축(410)에는 상기 동력전달축(410)의 회전시 연동되도록 제2크랭크축(420)이 결합된다.Next, the second crankshaft 420 is coupled to the power transmission shaft 410 so as to interlock when the power transmission shaft 410 rotates.
상기 제2크랭크축(420)은 동력전달축(410)의 회전운동을 전달받아 제2피스톤(450)의 직선운동으로 변환시키기 위한 구성요소로서, 회전시 상하 방향으로 축 중심이 이동되는 편심축을 형성하고 있고, 상기 편심축 상에 제2피스톤(450)이 결합되어 상하 방향의 왕복운동을 수행하게 된다.The second crankshaft 420 is a component for receiving the rotational movement of the power transmission shaft 410 and converts it into a linear movement of the second piston 450. The second piston 450 is coupled to the eccentric shaft to perform reciprocating motion in the vertical direction.
이때, 상기 제2크랭크축(420)은 축방향으로 1개 이상의 다수 개를 연속해서 연결하여 설치할 수 있고, 각각의 제2크랭크축(420) 들은 상사점 행정과 하사점 행정이 교번 작동되도록 배치될 수 있다.In this case, the second crankshaft 420 may be installed by continuously connecting one or more plurality in the axial direction, and each of the second crankshafts 420 may be arranged to alternately operate the top dead center stroke and the bottom dead center stroke. Can be.
상기 제2크랭크축(420)과 제2크랭크축(420) 사이에는 회전중심이 지지될 수 있도록 축지지대가 설치될 수 있는데, 이와 같은 축지지대에는 베어링이 설치될 수도 있다.An axis support may be installed between the second crankshaft 420 and the second crankshaft 420 so that the center of rotation may be supported. A bearing may be installed in the shaft support.
또한, 상기 각각의 제2크랭크축(420)에는 제2피스톤(450)들이 각각 연결됨으로써, 왕복 직선운동이 이루어지게 된다.In addition, since the second pistons 450 are connected to the respective second crank shafts 420, reciprocating linear motions are performed.
상기 제2피스톤(450)은 제2실린더(460) 내에 결합되어 왕복운동되는 것으로서, 제2실린더(460) 내에 공기를 흡입 및 압축시켜 토출하게 된다.The second piston 450 is coupled to the second cylinder 460 to reciprocate, and sucks and compresses air in the second cylinder 460 to discharge it.
상기 제2실린더(460)의 하부 흡기측에는 제3체크밸브(471)가 설치되는데, 상기 제3체크밸브(471)는 제2피스톤(450)의 상승시 밸브를 개방시켜 외부 공기를 끌어들이는 한편, 제2피스톤(450)의 하강시에는 밸브를 차단시켜 내부의 압축공기가 외부로 빠져나가는 것을 방지하게 된다.A third check valve 471 is installed at the lower intake side of the second cylinder 460. The third check valve 471 opens the valve when the second piston 450 is raised to draw in outside air. Meanwhile, when the second piston 450 descends, the valve is blocked to prevent the compressed air inside from escaping to the outside.
또한, 상기 제2실린더(460)의 흡기측과 근접하여 형성되는 배기측에는 제4체크밸브(472)가 설치되는데, 상기 제4체크밸브(472)는 제2피스톤(450)의 하강시 밸브를 개방시켜 압축공기가 다음 경로로 이동되도록 하는 동시에, 제2피스톤(450)의 승강시 밸브를 차단시켜 압축공기가 역류되는 것을 차단하게 된다.In addition, a fourth check valve 472 is installed at an exhaust side formed near the intake side of the second cylinder 460, and the fourth check valve 472 opens the valve when the second piston 450 descends. Opening the compressed air is moved to the next path, and at the same time, the valve is blocked when the second piston 450 moves up to block the compressed air from flowing backward.
이러한 제4체크밸브(472)는 에어탱크(110)의 흡입밸브(170)에 각각 연결되는데(도 1의 a,b,c,d 포트), 상기 제2실린더(460)에서 생성된 압축공기는 제1구동부(100)의 흡입밸브(170)를 통해 공급되어, 에어탱크(110) 내부를 충진시키게 된다.The fourth check valve 472 is connected to the suction valve 170 of the air tank 110, respectively (a, b, c, d port of Figure 1), the compressed air generated in the second cylinder 460 Is supplied through the intake valve 170 of the first driving unit 100 to fill the inside of the air tank (110).
이때, 상기 제2실린더(460)에서 압축된 공기는 제2공기관(480)을 통해 에어탱크(110)의 흡입밸브(170)에 연결되도록 한다.At this time, the compressed air in the second cylinder 460 is connected to the intake valve 170 of the air tank 110 through the second air pipe 480.
여기서, 상기 제4구동부(400)의 동력전달축(410) 상에 동력전달을 연결 및 차단할 수 있도록 클러치부(430)를 형성할 수 있는데, 상기 클러치부(430)는 제1구동부(100)의 가압로드(130)에 연동하여 작동하게 된다.Here, the clutch unit 430 may be formed to connect and block power transmission on the power transmission shaft 410 of the fourth driving unit 400, wherein the clutch unit 430 is the first driving unit 100. It is operated in conjunction with the pressure rod 130.
상기 클러치부(430)를 형성하는 이유는 에어탱크(110) 내부에 압축공기가 일정치 이상 채워지게 되면, 제3구동부(300)와 제4구동부(400) 사이의 동력전달을 일시적으로 차단함으로써 제4구동부(400)에서 보조 압축공기의 생성 및 공급이 차단되도록 하기 위함이다.The reason why the clutch unit 430 is formed is that when the compressed air is filled in the air tank 110 by a predetermined value or more, the power transmission between the third driving unit 300 and the fourth driving unit 400 is temporarily blocked. This is to prevent the generation and supply of auxiliary compressed air in the fourth driving unit 400.
이와 같은 클러치부(430)의 클러치의 형태는 많은 예가 적용될 수 있겠으나, 일 예를 들어서 설명하면 다음과 같은 구성이 있을 수 있다.The clutch of the clutch unit 430 may be applied to many examples. However, the clutch may be configured as follows.
예컨대, 제1구동부(100)의 에어탱크(110) 내에 압축공기가 점차 충진됨에 따라 가압플레이트(120) 및 이에 연장된 가압로드(130)가 후퇴하게 될 때, 상기 가압로드(130)에 연동되어 함께 전 후진되는 클러치아암(431)을 형성하고, 상기 클러치아암(431)은 2개로 분리된 동력전달축(410) 사이를 축방향으로 이동하도록 된 클러치부재(433)와 연결되도록 함으로써, 동력을 전달 및 차단하는 것이다.For example, when the pressure plate 120 and the pressure rod 130 extending therefrom retreat as the compressed air is gradually filled in the air tank 110 of the first driving unit 100, it interlocks with the pressure rod 130. And form a clutch arm 431 to be moved forward and backward together, and the clutch arm 431 is connected to the clutch member 433 which is axially moved between the two separate power transmission shafts 410, To pass and block.
이때, 상기 클러치부재(433)는 동력전달축(410) 상에 스플라인 결합되어 회전하는 회전체이며, 상기 클러치아암(431)은 상기 클러치부재(433)의 외경을 슬립이 가능한 상태로 지지하는 구조를 갖도록 구성할 수 있다.At this time, the clutch member 433 is a rotating body splined to rotate on the power transmission shaft 410, the clutch arm 431 is a structure for supporting the outer diameter of the clutch member 433 in a state capable of slipping. It can be configured to have.
상술한 바와 같이, 본 발명의 동력발생장치는 압축공기를 충진시켜 이를 주기적으로 방출하도록 된 제1구동부(100)의 토출밸브(150)에서 토출되는 압축공기이 토출압을 이용하여 제2구동부(200)의 블레이드(210)가 회전 구동되도록 하고, 상기 블레이드(210)의 구동축(220)에 크랭크 연결되는 제3구동부(300)의 다수의 피스톤 및 실린더 작동에 의해 동력원인 압축공기를 생산하는 동시에 전기발전이 연속적으로 이루어지도록 구성함으로써, 상기 동력발생장치를 통해 생성된 발전기 전원을 이용하여 전기자동차, 선박, 농업용 기계 동력원으로 사용 할 수 있다. 이와 같은 본 발명의 동력발생장치는 그 구조가 작고 간단하면서도 설치환경에 제한을 받지 않기 때문에 일반가정이나 각종 산업용 운송수단 등에 손쉽게 설치하여 사용할 수 있는 장점이 있고, 저렴한 비용으로 전기에너지를 연속적으로 생산할 수 있는 우수한 장점이 있다.As described above, in the power generator of the present invention, the compressed air discharged from the discharge valve 150 of the first driving unit 100 to fill the compressed air and periodically discharge the compressed air is discharged using the second driving unit 200. Blade 210 is rotated and driven, and a plurality of pistons and cylinders of the third driving unit 300 cranked to the drive shaft 220 of the blade 210 produces compressed air as a power source at the same time. By configuring the power generation to be continuous, it can be used as a power source for electric vehicles, ships, agricultural machinery using the generator power generated through the power generator. Such a power generator of the present invention has the advantage that it can be easily installed and used in general homes or various industrial transportation means because the structure is small and simple, but is not limited to the installation environment, and can continuously produce electric energy at low cost. There is an excellent advantage to that.
아울러, 본 발명의 동력발생장치는 제1구동부(100)의 에어탱크(110)와 제1체크밸브(371) 사이에 별도의 공기관을 연결하여 제1피스톤(350)의 상승 동작시 에어탱크(110)로부터 토출되는 압축 공기가 상기 제1체크밸브(371)로 강제 유입되도록 함으로써, 제3구동부(300) 내에서 에너지 손실에 따른 압력강하가 발생하여도 에어탱크(110)로부터 토출되는 압축 공기가 제1실린더(360) 내부로 강제 유입되도록 하여실린더 내부에서 압력이 강하되는 것을 보상해주고 각 실린더가 원활하게 작동될 수 있도록 할 수 있다.In addition, the power generator of the present invention by connecting a separate air pipe between the air tank 110 and the first check valve 371 of the first drive unit 100 in the air tank (1) during the lifting operation of the first piston (350) Compressed air discharged from the 110 is forced to flow into the first check valve 371, so that the compressed air discharged from the air tank 110 even if a pressure drop occurs due to energy loss in the third driving part 300. Is forced to flow into the first cylinder 360 to compensate for the pressure drop in the cylinder and to allow each cylinder to operate smoothly.

Claims (7)

  1. 압축공기를 충진시켜 이를 주기적으로 방출하도록 된 제1구동부(100);A first driving part 100 configured to fill compressed air and periodically discharge the compressed air;
    상기 제1구동부(100)로부터 공급되는 압축공기를 이용해 블레이드(210)가 구동되도록 하는 제2구동부(200);A second driving unit 200 for driving the blade 210 by using the compressed air supplied from the first driving unit 100;
    상기 제2구동부(200)의 구동축(220)에 크랭크 연결되는 다수의 피스톤 및 실린더 작동에 의해 압축공기를 형성시켜 제1구동부(100)에 공급하도록 된 제3구동부(300); 및 A third driving part 300 configured to supply compressed air to the first driving part 100 by the operation of a plurality of pistons and cylinders cranked to the drive shaft 220 of the second driving part 200; And
    상기 제3구동부(300)의 출력축(390)에 연결되어 전기를 생성하도록 된 발전부(500);A power generation unit 500 connected to the output shaft 390 of the third driving unit 300 to generate electricity;
    를 포함하는 것을 특징으로 하는 공기압을 이용한 동력발생장치.Power generating device using air pressure, characterized in that it comprises a.
  2. 제1항에 있어서, The method of claim 1,
    상기 제3구동부(300)의 출력축(390)에 연결되어 회전동력을 제공받아 피스톤 및 실린더 작동됨으로써, 제1구동부(100)에 제공되는 보조 압축공기를 생성하도록 된 제4구동부(400)를 더 포함하는 것을 특징으로 하는 공기압을 이용한 동력발생장치.The fourth driving unit 400 is further connected to the output shaft 390 of the third driving unit 300 to receive the rotational power to operate the piston and the cylinder, thereby generating auxiliary compressed air provided to the first driving unit 100. Power generator using air pressure, characterized in that it comprises a.
  3. 제1항 또는 2항 중 어느 한 항에 있어서, The method according to claim 1 or 2,
    상기 제1구동부(100)는, The first driving unit 100,
    압축공기가 충진되는 에어탱크(110);Air tank 110 is filled with compressed air;
    상기 에어탱크(110)의 후방에서 전방 쪽 방향으로 왕복 작동되는 가압플레이트(120);A pressure plate 120 reciprocating in a forward direction from the rear of the air tank 110;
    상기 가압플레이트(120)의 진행방향의 후방으로 연장되는 가압로드(130);A pressure rod 130 extending rearward in the traveling direction of the pressure plate 120;
    상기 에어탱크(110)의 후방공간에 설치됨으로써, 가압플레이트(120)와 에어탱크(110) 사이가 탄력 지지되도록 하는 스프링부재(140);A spring member 140 installed in the rear space of the air tank 110 to elastically support the pressure plate 120 and the air tank 110;
    상기 에어탱크(110) 내에서 가압플레이트(120)의 왕복 운동을 슬라이드 안내하도록 설치되는 가이드레일(160); 및A guide rail 160 installed to slide guide the reciprocating motion of the pressure plate 120 in the air tank 110; And
    상기 에어탱크(110)의 전방에 설치되어 압축공기가 설정압력 이상일 때에 개방되도록 하는 토출밸브(150);A discharge valve 150 installed at the front of the air tank 110 to open when the compressed air is above a set pressure;
    를 포함하는 것을 특징으로 하는 공기압을 이용한 동력발생장치.Power generating device using air pressure, characterized in that it comprises a.
  4. 제3항에 있어서, The method of claim 3,
    상기 제3구동부(300)는, The third driving unit 300,
    제2구동부(200)의 구동축(220)에 연결되는 입력축(310);An input shaft 310 connected to the drive shaft 220 of the second driver 200;
    상기 입력축(310)에 연동되도록 결합되는 제1크랭크축(320);A first crank shaft 320 coupled to be interlocked with the input shaft 310;
    상기 제1크랭크축(320)의 회전중심이 지지되도록 설치되는 축지지대(330);An axis supporter 330 installed to support the rotation center of the first crankshaft 320;
    상기 제1크랭크축(320)에 결합되어 왕복 운동되는 제1피스톤(350);A first piston 350 coupled to the first crankshaft 320 to reciprocate;
    상기 제1피스톤(350)의 압축에 의해 압축된 공기를 토출하도록 된 제1실린더(360);A first cylinder 360 configured to discharge compressed air by compression of the first piston 350;
    상기 제1실린더(360)의 흡기측에 설치되는 제1체크밸브(371);A first check valve 371 installed at an intake side of the first cylinder 360;
    상기 제1실린더(360)의 배기측에 설치되는 제2체크밸브(372);A second check valve 372 installed at an exhaust side of the first cylinder 360;
    상기 제1실린더(360)에서 압축된 공기의 이동경로를 제공하는 제1공기관(380); 및A first air pipe 380 providing a movement path of the compressed air in the first cylinder 360; And
    상기 제1크랭크축(320)과 축 연결되어 회전동력을 전달받는 출력축(390);An output shaft 390 connected to the first crank shaft 320 to receive rotation power;
    을 포함하는 것을 특징으로 하는 공기압을 이용한 동력발생장치.Power generating device using air pressure, characterized in that it comprises a.
  5. 제2항에 있어서,The method of claim 2,
    상기 제4구동부(400)는,The fourth driving unit 400,
    제3구동부(300)의 출력축(390)으로부터 동력을 전달받아 상시 회전되는 동력전달축(410);A power transmission shaft 410 which is constantly rotated by receiving power from the output shaft 390 of the third driving unit 300;
    상기 동력전달축(410)에 축 연결되는 제2크랭크축(420);A second crank shaft 420 coupled to the power transmission shaft 410;
    상기 동력전달축(410) 상에 설치되어 제1구동부(100)의 가압로드(130)에 연동됨으로써, 제2크랭크축(420)으로의 동력전달을 연결 및 차단하도록 된 클러치부(430); A clutch unit 430 installed on the power transmission shaft 410 and interlocked with the pressure rod 130 of the first driving unit 100 to connect and block power transmission to the second crank shaft 420;
    상기 제2크랭크축(420)에 결합되어 왕복 운동되는 제2피스톤(450);A second piston 450 coupled to the second crankshaft 420 to reciprocate;
    상기 제2피스톤(450)에 의해 압축된 공기를 토출하도록 된 제2실린더(460);A second cylinder 460 configured to discharge air compressed by the second piston 450;
    상기 제2실린더(460)의 흡기측에 설치되는 제3체크밸브(471);A third check valve 471 installed at an intake side of the second cylinder 460;
    상기 제2실린더(460)의 배기측에 설치되는 제4체크밸브(472); 및A fourth check valve 472 installed at an exhaust side of the second cylinder 460; And
    상기 제2실린더(460)에서 압축된 공기의 이동경로를 제공하는 제2공기관(480);A second air engine (480) for providing a movement path of the compressed air in the second cylinder (460);
    을 포함하는 것을 특징으로 하는 공기압을 이용한 동력발생장치.Power generating device using air pressure, characterized in that it comprises a.
  6. 제4항에 있어서, 상기 에어탱크(110)와 제1체크밸브(371) 사이에는 에어탱크(110)로부터 토출되는 공기를 제1체크밸브(371)로 강제 유입시킬 수 있도록 별도의 공기관이 연결 설치된 것을 특징으로 하는 공기압을 이용한 동력발생장치.According to claim 4, A separate air pipe is connected between the air tank 110 and the first check valve 371 so as to force the air discharged from the air tank 110 into the first check valve 371. Power generator using air pressure, characterized in that installed.
  7. 제6항에 있어서, 상기 공기관은 상기 에어탱크(110)의 토출밸브(150) 측 관으로부터 분기되어 상기 제1체크밸브(371) 측에 연결 설치된 것을 특징으로 하는 공기압을 이용한 동력발생장치.The power generator using air pressure according to claim 6, wherein the air pipe is branched from the discharge valve 150 side pipe of the air tank 110 and connected to the first check valve 371 side.
PCT/KR2012/000104 2011-01-12 2012-01-05 Power generating apparatus using air pressure WO2012096474A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110003051A KR101060040B1 (en) 2011-01-12 2011-01-12 Power generating apparatus using air pressure
KR10-2011-0003051 2011-01-12

Publications (2)

Publication Number Publication Date
WO2012096474A2 true WO2012096474A2 (en) 2012-07-19
WO2012096474A3 WO2012096474A3 (en) 2012-11-29

Family

ID=44933872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000104 WO2012096474A2 (en) 2011-01-12 2012-01-05 Power generating apparatus using air pressure

Country Status (2)

Country Link
KR (1) KR101060040B1 (en)
WO (1) WO2012096474A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018076081A1 (en) * 2016-10-24 2018-05-03 Duarte Roberto Saturnino Pneumatic motor for generating electricity
CN110513249A (en) * 2019-09-06 2019-11-29 杭州德飙新能源科技有限公司 A kind of wind generator system of adaptive rate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200290723Y1 (en) * 2002-05-29 2002-10-04 박정훈 Power generator using air pressure
KR20080046617A (en) * 2008-05-02 2008-05-27 강황국 Uses the road and on air and the method which produces a war potential stably unlimtedly
KR20090027085A (en) * 2007-09-11 2009-03-16 이정원 Apparatus for generating compressed air
KR20100006508A (en) * 2008-07-09 2010-01-19 최성철 Independent electric power method and device using compressed air

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200290723Y1 (en) * 2002-05-29 2002-10-04 박정훈 Power generator using air pressure
KR20090027085A (en) * 2007-09-11 2009-03-16 이정원 Apparatus for generating compressed air
KR20080046617A (en) * 2008-05-02 2008-05-27 강황국 Uses the road and on air and the method which produces a war potential stably unlimtedly
KR20100006508A (en) * 2008-07-09 2010-01-19 최성철 Independent electric power method and device using compressed air

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018076081A1 (en) * 2016-10-24 2018-05-03 Duarte Roberto Saturnino Pneumatic motor for generating electricity
CN110513249A (en) * 2019-09-06 2019-11-29 杭州德飙新能源科技有限公司 A kind of wind generator system of adaptive rate

Also Published As

Publication number Publication date
KR101060040B1 (en) 2011-08-26
WO2012096474A3 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
WO2012015146A1 (en) Apparatus for generating electricity using wave power
JP5678209B2 (en) Electromagnetic booster air power generator system
CN101413403A (en) Air power engine assembly
CN101280722B (en) Multi-energy source straight shaft hybrid power engine
WO2009088144A1 (en) Engine using permanent magnet
CN103221644A (en) Power plant line having a variable-peed pump
CN102797649A (en) Potential energy converting device of novel hydraulic piston pump
WO2012096474A2 (en) Power generating apparatus using air pressure
US20090249775A1 (en) Drive device using charged air pressure
CN110778392B (en) Free piston type internal combustion engine generator
CN100501153C (en) sea wave generating set
WO2015083933A1 (en) Vane turbine engine using recovery of operation fluid and generation device having same
CN112324607A (en) Sea wave power generation device with multi-stage differential assembly shaft
CN2310861Y (en) Spiral rotor engine
CN110138138A (en) A kind of power generating apparatus of engine
CN102562999B (en) Speed increasing device and wind generating set
CN201169214Y (en) Engineering machinery vehicle with generating set
CN213063823U (en) Water gravity power generation system
CN108571570B (en) Hydraulic machine
CN111113019A (en) Engine disassembling process
CN103437818A (en) Air energy power device
CN113137357A (en) Electric energy power generation system
KR101201644B1 (en) The electric drive engine which uses natural energy
CN217477840U (en) Integrated lock pin structure of engine packing box
CN200940543Y (en) Novel sea wave generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734742

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07-11-2013)

122 Ep: pct application non-entry in european phase

Ref document number: 12734742

Country of ref document: EP

Kind code of ref document: A2