WO2012096410A1 - Optical lens comprising aromatic-aliphatic polycarbonate resin - Google Patents

Optical lens comprising aromatic-aliphatic polycarbonate resin Download PDF

Info

Publication number
WO2012096410A1
WO2012096410A1 PCT/JP2012/051009 JP2012051009W WO2012096410A1 WO 2012096410 A1 WO2012096410 A1 WO 2012096410A1 JP 2012051009 W JP2012051009 W JP 2012051009W WO 2012096410 A1 WO2012096410 A1 WO 2012096410A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
optical lens
bis
lens
weight
Prior art date
Application number
PCT/JP2012/051009
Other languages
French (fr)
Japanese (ja)
Inventor
輝幸 重松
学 松井
丹藤 和志
和徳 布目
Original Assignee
帝人化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人化成株式会社 filed Critical 帝人化成株式会社
Priority to KR1020137016272A priority Critical patent/KR101881616B1/en
Priority to CN201280004501.6A priority patent/CN103339531B/en
Priority to JP2012552780A priority patent/JP5688101B2/en
Publication of WO2012096410A1 publication Critical patent/WO2012096410A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the present invention relates to an optical lens made of an aromatic-aliphatic polycarbonate resin having a high Abbe number and having both practically sufficient heat resistance and high molding fluidity.
  • Optical glass or optical transparent resin is used as a material for optical elements used in optical systems of various cameras such as cameras, film-integrated cameras, and video cameras.
  • Optical glass is excellent in heat resistance, transparency, dimensional stability, chemical resistance, etc., and there are many types of materials with various refractive indexes and Abbe numbers, but the material cost is high and moldability is high. However, there is a problem that productivity is low.
  • optical lenses made of transparent optical resins, especially thermoplastic transparent resins have the advantage that they can be mass-produced by injection molding, and are currently used for many lenses, including camera lenses. ing.
  • polycarbonate resin obtained from 2,2-bis (4-hydroxyphenyl) propane (commonly known as bisphenol A) has excellent properties such as transparency and heat resistance, and mechanical properties such as impact resistance. Many are used in optical lenses.
  • the polycarbonate resin made of bisphenol A has a disadvantage that the refractive index and the Abbe number are poor because the refractive index is as high as 1.585 but the Abbe number is as low as 30, so that the problem of chromatic aberration tends to occur.
  • the resin used for the optical lens also requires molding fluidity in order to reduce optical distortion generated during injection molding or to mold a thin object.
  • Patent Document 1 a polycarbonate composed of cyclohexanedimethanol and aromatic bisphenol is studied. When the ratio of cyclohexanedimethanol is high, the Abbe number is high, but the heat resistance is low. Conversely, when the ratio of cyclohexanedimethanol is low, the heat resistance is high, but the Abbe number is low.
  • An object of the present invention is to provide an optical lens made of an aromatic-aliphatic polycarbonate resin having a high Abbe number and having both practically sufficient heat resistance and high molding fluidity.
  • the present inventor has found that when an aromatic-aliphatic polycarbonate resin having a specific molecular structure is used, an optical lens excellent in Abbe number and heat resistance can be obtained. Further, the present inventors have found that the polycarbonate resin is excellent in molding fluidity and can precisely mold a fine optical lens, thereby completing the present invention. That is, the object of the present invention is achieved by the following invention. 1.
  • Formula (I) A structural unit (I) represented by the formula (II) And the proportion of the structural unit (II) is 55 to 35 mol% with respect to the total of the structural units (I) and (II), 0.7 g of the polycarbonate resin is dissolved in 100 ml of methylene chloride, and the specific viscosity measured at 20 ° C. is 0.12 to 0.298.
  • the optical lens according to item 1 wherein the polycarbonate resin has a photoelastic coefficient of 50 ⁇ 10 ⁇ 12 Pa ⁇ 1 to 30 ⁇ 10 ⁇ 12 Pa ⁇ 1 . 5.
  • the diffractive lens has a thickness of 0.05 to 3.0 mm, a ring-shaped diffraction grating depth of 5 to 20 ⁇ m, a lens portion effective radius of 1.0 to 20.0 mm, a ring zone number of 5 to 30 and a minimum ring zone pitch of 5 to 20 ⁇ m 7.
  • FIG. 1 is a proton NMR chart of Example 2 (cyclohexanedimethanol in polycarbonate resin (hereinafter sometimes referred to as “CHDM”.
  • CHDM is a compound represented by the following formula (IV).
  • Component and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane hereinafter sometimes referred to as “Bis-TMC”.
  • Bis-TMC is represented by the above formula (III). The component ratio is 50:50).
  • FIG. 2 is an enlarged view of the proton NMR chart (FIG. 1) of Example 2.
  • the polycarbonate resin is composed of a structural unit (I) that is a 1,4-cyclohexanedimethanol residue and a structural unit (II that is a 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane residue. )including.
  • the proportion of the structural unit (II) is 55 to 35 mol% with respect to the total of the structural units (I) and (II).
  • the proportion of the structural unit (II) is lower than 35 mol%, the entanglement effect of molecular chains by 3,3,5-trimethylcyclohexane, which is a side chain, decreases, and the heat resistance of the resin decreases. As a result, a molded product satisfying heat resistance may not be obtained.
  • the proportion of the structural unit (II) is higher than 55% by mole, the 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane having an aromatic ring has an influence on the aromatic ring and is in the resin.
  • the proportion of the structural unit (II) is preferably 50 to 40 mol% with respect to the total of the structural units (I) and (II).
  • the polycarbonate resin substantially consists of the structural units (I) and (II). As long as the object of the present invention is not impaired, a known copolymer component other than (I) and (II) may be included.
  • the polycarbonate resin has 0.70 g dissolved in 100 cc of methylene chloride, and the specific viscosity measured at 20 ° C. is in the range of 0.12 to 0.298.
  • the specific viscosity is preferably in the range of 0.15 to 0.295, more preferably 0.20 to 0.29.
  • the content of 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane represented by the following formula (III) is preferably 50 to 300 ppm / g, more preferably 70. It is ⁇ 250 ppm / g, more preferably 100 to 200 ppm / g.
  • the content of the compound represented by the formula (III) can be adjusted by increasing the vacuum, that is, the reaction time at 1 Torr or less.
  • the reaction When the reaction is not performed at a vacuum level of 1 Torr or less, the content of the compound represented by the formula (III) increases. Moreover, when reaction time is too long, it will distill too much from in resin. More specifically, in order to bring the content of the compound represented by the formula (III) within this range, the reaction time under the condition of 240 ° C. or higher and 1 Torr or lower, which is the final condition of the polymerization reaction, is 0 minute. It is necessary to make it 1 hour or less. When the content of the compound represented by the formula (III) is within the above range, molding fluidity can be improved without impairing the Abbe number and heat resistance of the polycarbonate resin.
  • the glass transition temperature (Tg) of the polycarbonate resin measured at a heating rate of 20 ° C./min is preferably 115 to 160 ° C., more preferably 120 to 155 ° C. If the Tg is less than 115 ° C, the heat resistance of the optical lens formed using the copolymer is not sufficient. On the other hand, if the Tg exceeds 160 ° C, the melt viscosity becomes high, and handling for forming a molded body is difficult. Is not preferable because it becomes difficult.
  • the Abbe number of the polycarbonate resin at 25 ° C. is preferably in the range of 43 to 35, more preferably 43 to 38. If it is smaller than 35, the chromatic aberration increases, which is not preferable for an optical lens.
  • the refractive index of the polycarbonate resin at 25 ° C. and a wavelength of 589 nm is preferably 1.53 to 1.55, more preferably 1.540 to 1.545. If it is smaller than 1.53, the lens needs a thickness, which is not preferable.
  • the photoelastic coefficient of the polycarbonate resin is preferably 50 ⁇ 10 -12 Pa -1 ⁇ 30 ⁇ 10 -12 Pa -1 , More preferably 45 ⁇ 10 -12 Pa -1 ⁇ 30 ⁇ 10 -12 Pa -1 It is.
  • Photoelasticity is 50 ⁇ 10 -12 Pa -1 If it is larger, birefringence occurs in the molded product, which is not preferable.
  • a method for producing the polycarbonate resin a method used for producing a normal polycarbonate resin is arbitrarily adopted. For example, a reaction between diol and phosgene or a transesterification reaction between diol and carbonate is preferably employed. In the reaction of diol and phosgene, the reaction is performed in the presence of an acid binder and a solvent in a non-aqueous system. Examples of the acid binder include pyridine, dimethylaminopyridine, tertiary amine and the like.
  • halogenated hydrocarbons such as methylene chloride and chlorobenzene are used. It is desirable to use a terminal terminator such as phenol or p-tert-butylphenol as the molecular weight regulator.
  • the reaction temperature is usually 0 to 40 ° C., and the reaction time is preferably several minutes to 5 hours.
  • the diol is stirred in the presence of an inert gas, and the reaction is usually performed at 120 to 350 ° C., preferably 150 to 300 ° C. under reduced pressure. The degree of vacuum is changed stepwise, and finally the alcohols produced at 1 mmHg or less are distilled out of the system.
  • the reaction time is usually about 1 to 4 hours.
  • a polymerization catalyst can be used to promote the reaction.
  • an alkali metal compound, an alkaline earth metal compound or a heavy metal compound may be used as a main component, and a nitrogen-containing basic compound may be used as a subsidiary component if necessary.
  • the alkali metal compound include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium acetate, potassium acetate, lithium acetate, sodium stearate.
  • Alkaline earth metal compounds include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium bicarbonate, barium bicarbonate, magnesium bicarbonate, strontium bicarbonate, calcium carbonate, barium carbonate, magnesium carbonate, strontium carbonate , Calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, strontium stearate and the like, among which sodium hydroxide and sodium bicarbonate are preferred.
  • nitrogen-containing basic compound examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylamine, triethylamine, dimethylbenzylamine, triphenylamine, dimethylaminopyridine and the like. Of these, tetramethylammonium hydroxide is preferred.
  • Other transesterification catalysts include zinc, tin, zirconium, lead, titanium, germanium, antimony, osmium, and aluminum salts.
  • tin (II) chloride tin (IV) chloride
  • tin (II) acetate tin (IV) acetate
  • dibutyltin dilaurate dibutyltin oxide
  • dibutyltin dimethoxide Zirconium acetylacetonate
  • zirconium oxyacetate zirconium tetrabutoxide
  • lead (II) acetate, lead (IV) titanium tetrabutoxide (IV) and the like are used.
  • These catalysts may be used alone or in combination of two or more.
  • the amount of these polymerization catalysts used is 10 with respect to 1 mol of the diol in total. -9 ⁇ 10 -3 Used in molar ratios. These may be used alone or in combination of two or more.
  • a diaryl carbonate having an electron-withdrawing substituent may be added at a later stage or after completion of the polycondensation reaction in order to reduce the hydroxy end group.
  • an antioxidant or a heat stabilizer may be added to improve the hue.
  • the catalyst may be removed or deactivated after the polymerization reaction in order to maintain thermal stability and hydrolysis stability.
  • a method of deactivating a catalyst by adding a known acidic substance is preferably carried out.
  • these substances include esters such as butyl benzoate, aromatic sulfonic acids such as p-toluenesulfonic acid, and aromatic sulfonic acids such as butyl p-toluenesulfonate and hexyl p-toluenesulfonate.
  • Esters phosphoric acids such as phosphorous acid, phosphoric acid, phosphonic acid, triphenyl phosphite, monophenyl phosphite, diphenyl phosphite, diethyl phosphite, di-n-propyl phosphite, phosphorous acid Phosphorous esters such as di-n-butyl, di-n-hexyl phosphite, dioctyl phosphite, monooctyl phosphite, triphenyl phosphate, diphenyl phosphate, monophenyl phosphate, dibutyl phosphate, phosphorus Phosphate esters such as dioctyl acid and monooctyl phosphate, phosphones such as diphenylphosphonic acid, dioctylphosphonic acid and dibutylphosphonic acid , Phosphonic acid esters such as diethyl phenylphospho
  • tetrabutylphosphonium salt of dodecylbenzenesulfonate is preferable.
  • These deactivators are used in an amount of 0.01 to 50 times mol, preferably 0.3 to 20 times mol for the amount of catalyst. When the amount is less than 0.01 times the amount of the catalyst, the deactivation effect is insufficient, which is not preferable. Moreover, when it is more than 50 times mole with respect to the amount of catalyst, since heat resistance falls and it becomes easy to color a molded object, it is unpreferable.
  • the optical lens of the present invention is molded by an arbitrary method such as an injection molding method, a compression molding method, an injection compression molding method, or a casting method.
  • the cylinder temperature exceeds 300 ° C.
  • the resin is decomposed and colored, and when it is less than 230 ° C., the melt viscosity is high and cannot be molded.
  • the mold temperature exceeds 150 ° C. the resin is not cured and the molded piece cannot be taken out from the mold.
  • the optical lens of the present invention is preferably an aspheric lens. Since an aspheric lens can substantially eliminate spherical aberration with a single lens, there is no need to remove spherical aberration with a combination of a plurality of spherical lenses, thus reducing weight and reducing production costs. It becomes possible. Therefore, the aspherical lens is particularly useful as a camera lens among optical lenses.
  • the polycarbonate resin is particularly useful as a material for an optical lens having a thin, small and complicated shape because of its high molding fluidity.
  • the thickness of the central portion is 0.05 to 3.0 mm, more preferably 0.05 to 2.0 mm, and still more preferably 0.1 to 2.0 mm.
  • the diameter is 1.0 mm to 30.0 mm, more preferably 1.0 to 20.0 mm, and still more preferably 3.0 to 10.0 mm.
  • it is preferably a meniscus lens having a convex surface on one side and a concave surface on the other side.
  • the aspherical lens of the present invention includes a diffractive lens, a Fresnel lens, an f ⁇ lens, a cylinder lens, a collimator lens and the like in addition to the meniscus lens.
  • the diffractive lens of the present invention is molded by any method such as mold forming, cutting, polishing, laser processing, electric discharge processing, and edging. Furthermore, mold molding is more preferable.
  • a sawtooth diffraction grating is formed concentrically on the surface of the lens substrate.
  • an optical adjustment layer may be formed as a protective film so as to cover the diffraction grating. The shape of the optical adjustment layer opposite to the surface in contact with the lens substrate is formed so as to be substantially the same as the envelope surface passing through the grooves of the diffraction grating.
  • the optical adjustment layer is formed so as to have substantially the same shape as the envelope surface passing through the grooves of the diffraction grating, whereby the light condensing property is improved and the MTF characteristic is improved.
  • the envelope surface passing through the grooves of the diffraction grating can take a spherical shape, an aspherical shape, a cylindrical shape, or the like.
  • a configuration in which the envelope surface is designed to be aspherical is preferable because it is possible to correct lens aberration that could not be corrected in the case of a spherical shape.
  • the “aspherical surface” is a curved surface that satisfies the following formula.
  • the above expression represents an aspherical surface when rotated about the Z axis perpendicular to the XY plane, where c is the central curvature, and A, B, C, and D are deviations from the quadric surface. It is a coefficient to represent. Further, depending on the value of K, the following aspheric surface is obtained.
  • the diffraction grating and the optical adjustment layer may be formed on one side or both sides of the lens.
  • the diffraction gratings on both sides do not necessarily have the same depth and shape.
  • the annular zone pitch in the diffraction grating need not be the same.
  • the shape of the lens may be a convex surface on which at least one surface is formed with a diffraction grating shape and an optical adjustment layer, and may be a concave surface, a convex surface, a biconvex surface, or the like in addition to a flat surface and a convex surface.
  • the aspherical diffractive lens has a thickness of 0.05 to 3.0 mm, a ring-shaped diffraction grating depth of 5 to 20 ⁇ m, a lens portion effective radius of 1.0 to 20.0 mm, a ring number of 5 to 25, and a minimum ring zone pitch of 5. It is preferably an aspherical diffractive lens having a diameter of 0.0 to 20.0 ⁇ m, a concave curvature radius of 0.1 to 10.0 mm, and a diameter of 1.0 to 30.0 mm.
  • the thickness of the aspherical diffractive lens is more preferably 0.1 to 2.0 mm. More preferably, the depth of the annular diffraction grating is 10 to 20 ⁇ m. More preferably, the effective radius of the lens portion is 2 to 15.0 mm. More preferably, the number of ring zones is 10 to 20. More preferably, the minimum annular zone pitch is 8.0 to 15.0 ⁇ m. More preferably, the concave curvature radius is 0.1 to 5.0 mm. More preferably, the diameter is 2.0 to 20.0 mm.
  • the optical adjustment layer of the diffractive lens of the present invention is preferably a resin having a lower refractive index wavelength dispersion than the lens, that is, a resin having an Abbe number larger than that of the lens.
  • the optical adjustment layer is easy to manufacture and is easy to handle and stable after formation. Further, from the viewpoint of optical selection range and ease of manufacture, it is preferable to use a resin that can be cured on a lens diffraction grating and then cured to obtain a stable optical adjustment layer. Furthermore, in order to reduce the influence on the lens when forming the optical adjustment layer, it is preferable to use a photocurable resin such as an ultraviolet curable resin that can be produced with low energy and has a short production time. From such a viewpoint, the optical adjustment layer is preferably an ultraviolet curable acrylic resin or epoxy resin. Various additives can be used for the optical lens of the present invention in order to impart various characteristics within a range not impairing the object of the present invention.
  • Additives include mold release agents, heat stabilizers, UV absorbers, bluing agents, antistatic agents, flame retardants, heat ray shielding agents, fluorescent dyes (including fluorescent whitening agents), pigments, light diffusing agents, and reinforcing fillers. Other resins and elastomers can be blended.
  • a mold release agent that whose 90 weight% or more consists of ester of alcohol and a fatty acid is preferable.
  • Specific examples of the ester of alcohol and fatty acid include monohydric alcohol and fatty acid ester and / or partial ester or total ester of polyhydric alcohol and fatty acid.
  • the monohydric alcohol and fatty acid ester is preferably an ester of a monohydric alcohol having 1 to 20 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms.
  • the partial ester or total ester of a polyhydric alcohol and a fatty acid is preferably a partial ester or total ester of a polyhydric alcohol having 1 to 25 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms.
  • Specific examples of the monohydric alcohol, saturated fatty acid and ester include stearyl stearate, palmityl palmitate, butyl stearate, methyl laurate, isopropyl palmitate and the like, and stearyl stearate is preferable.
  • partial esters or total esters of polyhydric alcohols and saturated fatty acids include stearic acid monoglyceride, stearic acid diglyceride, stearic acid triglyceride, stearic acid monosorbate, behenic acid monoglyceride, pentaerythritol monostearate, pentaerythritol tetra Full or partial esters of dipentaerythritol such as stearate, pentaerythritol tetrapelargonate, propylene glycol monostearate, biphenyl biphenate, sorbitan monostearate, 2-ethylhexyl stearate, dipentaerythritol hexastearate, etc.
  • esters stearic acid monoglyceride, stearic acid triglyceride, pentaerythritol tetrastearate, and a mixture of stearic acid triglyceride and stearyl stearate are preferably used.
  • the amount of the ester in the release agent is preferably 90% by weight or more, and more preferably 95% by weight or more when the release agent is 100% by weight.
  • the content of the release agent in the polycarbonate resin granules is preferably in the range of 0.005 to 2.0 parts by weight with respect to 100 parts by weight of the polycarbonate resin granules, and 0.01 to 0.6 parts by weight.
  • the heat stabilizer examples include a phosphorus heat stabilizer, a sulfur heat stabilizer, and a hindered phenol heat stabilizer.
  • the phosphorous heat stabilizer examples include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof.
  • triphenyl phosphite tris (nonylphenyl) phosphite, tris ( 2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite Phyto, dioctyl monophenyl phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) penta Erisrito Diphos
  • tris (2,4-di-tert-butylphenyl) phosphite tris (2,6-di-tert-butylphenyl) phosphite, tetrakis (2,4-di-tert-butylphenyl) -4 , 4′-biphenylenediphosphonite, tetrakis (2,4-di-t-butylphenyl) -4,3′-biphenylenediphosphonite, tetrakis (2,4-di-t-butylphenyl) -3,3 '-Biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite and bis (2,4-di-tert-butylphenyl) -3-phenyl-phenylphosphonite , (6- (3- (3-t-butyl-4-hydroxy-5-methyl) prop
  • the content of the phosphorous heat stabilizer in the polycarbonate resin particles is preferably 0.001 to 0.2 parts by weight with respect to 100 parts by weight of the polycarbonate resin particles.
  • pentaerythritol-tetrakis (3-laurylthiopropionate), pentaerythritol-tetrakis (3-myristylthiopropionate), pentaerythritol-tetrakis (3-stearylthiopropionate)
  • Examples include dilauryl-3, 3′-thiodipropionate, dimyristyl-3, 3′-thiodipropionate, distearyl-3, 3′-thiodipropionate.
  • pentaerythritol-tetrakis (3-laurylthiopropionate), pentaerythritol-tetrakis (3-myristylthiopropionate), dilauryl-3, 3′-thiodipropionate, dimyristyl-3, 3′-thio Dipropionate is preferred.
  • pentaerythritol-tetrakis (3-laurylthiopropionate).
  • the thioether compounds are commercially available from Sumitomo Chemical Co., Ltd. as Sumilizer TP-D (trade name), Sumilizer TPM (trade name), and the like, and can be easily used.
  • the content of the sulfur-based heat stabilizer in the polycarbonate resin particles is preferably 0.001 to 0.2 parts by weight with respect to 100 parts by weight of the polycarbonate resin particles.
  • the hindered phenol heat stabilizer include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionate], pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3 5-di-tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, N, N-hexamethylene bis (3,5-d
  • Octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate is particularly preferably used.
  • the content of the hindered phenol heat stabilizer in the polycarbonate resin granules is preferably 0.001 to 0.3 parts by weight with respect to 100 parts by weight of the polycarbonate resin granules.
  • the UV absorber at least one UV absorber selected from the group consisting of benzotriazole UV absorbers, benzophenone UV absorbers, triazine UV absorbers, cyclic imino ester UV absorbers, and cyanoacrylates Is preferred.
  • benzotriazole ultraviolet absorber examples include 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-Dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′-methylenebis [4- (1,1,3 , 3-tetramethylbutyl) -6- (2N-benzotriazol-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, 2- (2-hydroxy -3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy- 3,5-di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octyl
  • 2- (2-hydroxy-5-methylphenyl) benzotriazole 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3,5-dicumylphenyl) Phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) ) -6- (2N-benzotriazol-2-yl) phenol], 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimidomethyl) -5-methylphenyl] benzotriazole.
  • 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2N-benzo Triazol-2-yl) phenol].
  • benzophenone-based ultraviolet absorbers examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4- Methoxy-5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydridolate benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5-benzoyl-4-hydroxy-2- Methoxyphenyl) methane, 2-hy Examples include droxy-4-n-dodecyloxybenzophenone and 2-hydroxy-4-methoxy-2′-carboxybenzophenone.
  • Examples of the triazine ultraviolet absorber include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol, 2- (4,6-bis ( And 2.4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-[(octyl) oxy] -phenol.
  • Examples of cyclic imino ester UV absorbers include 2,2′-bis (3,1-benzoxazin-4-one) and 2,2′-p-phenylenebis (3,1-benzoxazin-4-one).
  • 2,2′-m-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) bis (3,1-benzoxazin-4-one), 2,2 ′-(2,6-naphthalene) bis (3,1-benzoxazin-4-one), 2,2 ′-(1,5-naphthalene) bis (3,1-benzoxazin-4-one) ), 2,2 ′-(2-methyl-p-phenylene) bis (3,1-benzoxazin-4-one), 2,2 ′-(2-nitro-p-phenylene) bis (3,1- Benzoxazin-4-one) and 2,2 ′-(2-chloro-p-phenylene) bis (3,1-benzoxazin-4-one) and the like are exemplified.
  • 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) bis (3,1-benzoxazin-4-one) And 2,2 ′-(2,6-naphthalene) bis (3,1-benzoxazin-4-one) are preferred, especially 2,2′-p-phenylenebis (3,1-benzoxazine-4 -On) is preferred.
  • Such a compound is commercially available from Takemoto Yushi Co., Ltd. as CEi-P (trade name) and can be easily used.
  • cyanoacrylate ultraviolet absorber 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2-cyano-3,3-diphenyl) Examples include acryloyl) oxy] methyl) propane and 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene.
  • the blending amount of the ultraviolet absorber is preferably 0.01 to 3.0 parts by weight, more preferably 0.02 to 1.0 parts by weight, even more preferably 100 parts by weight of the polycarbonate resin granules. Is 0.05 to 0.8 part by weight.
  • the bluing agent examples include Macrolex Violet B and Macrolex Blue RR manufactured by Bayer and polysynthremble-RLS manufactured by Clariant.
  • the bluing agent is effective for eliminating the yellow color of the polycarbonate resin particles.
  • a certain amount of UV absorber is blended, so there is a reality that the polycarbonate resin molded product tends to be yellowish due to the "action and color of the UV absorber".
  • the blending of a bluing agent is very effective for imparting a natural transparency to a sheet or lens.
  • An evaluation sample was prepared by the following method.
  • a lens having a thickness of 0.6 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a ⁇ 5 mm using a SE30DU injection molding machine manufactured by Sumitomo Heavy Industries, Ltd. at a molding temperature of Tg + 110 ° C. and a mold temperature of Tg-10 ° C. Was injection molded.
  • (C) Aspherical diffractive lens Similar to (b) above, the thickness is 0.3 mm, the ring-shaped diffraction grating is 15 ⁇ m deep, the lens portion has an effective radius of 0.865 mm, the number of ring zones is 19, the minimum ring zone pitch is 14 ⁇ m, the concave curvature radius is 0.1 mm, and ⁇ 6 mm An aspherical diffractive lens was injection molded.
  • (D) Molded plate In the same manner as (b) above, a molded plate having a width of 2.5 cm, a length of 5 cm, and a thickness of 3 mm was injection molded. 2. Evaluation was based on the following method.
  • Photoelastic coefficient The cast film having a thickness of 100 ⁇ m formed in the above (a) was measured for phase difference (Re) at 589 nm using an ellipsometer M-220 manufactured by JASCO Corporation, and the photoelastic coefficient was obtained from the inverse sine function. .
  • the surface shape is evaluated by the depth of the annular diffraction grating, the number of zones, etc., and the probability of being a defective product is less than 1% ( ⁇ 1), 1% to less than 5% ( ⁇ ) 5% to less than 20% ( ⁇ ), classified by 20% or more ( ⁇ ).
  • (8) Content of unreacted Bis-TMC The content of Bis-TMC represented by the formula (III) in the resin was eluted with a column of Develosil ODS-7 manufactured by Nomura Chemical, acetonitrile / 0.2% acetic acid. Using a mixed solution of water and acetonitrile, HPLC analysis was performed with a gradient program at a column temperature of 30 ° C. and a detector of 277 nm.
  • Example 1 CHDM 38.91 parts by weight, Bis-TMC 102.36 parts by weight, diphenyl carbonate (hereinafter sometimes abbreviated as “DPC”) 132.39 parts by weight, sodium hydroxide 0.24 mg and tetramethylammonium hydroxide 27.3 mg
  • DPC diphenyl carbonate
  • Example 2 A polyester carbonate copolymer was prepared in the same manner as in Example 1 except that the amount of CHDM used in Example 1 was 43.26 parts by weight, the amount of Bis-TMC used was 93.12 parts by weight, and DPC 132.39 parts by weight. Synthesized.
  • the polycarbonate resin had a CHDM to Bis-TMC ratio of 50:50 in molar ratio and a specific viscosity of 0.255.
  • the content of unreacted Bis-TMC was 180 ppm / g.
  • An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin.
  • Example 3 A polyester carbonate copolymer was prepared in the same manner as in Example 1 except that the amount of CHDM used in Example 1 was 47.59 parts by weight, the amount of Bis-TMC used was 83.08 parts by weight, and DPC 132.39 parts by weight. Synthesized.
  • the polycarbonate resin had a molar ratio of CHDM to Bis-TMC of 55:55 and a specific viscosity of 0.232.
  • Example 4 A polyester carbonate copolymer was prepared in the same manner as in Example 1 except that the amount of CHDM used in Example 1 was 56.24 parts by weight, the amount of Bis-TMC used was 65.18 parts by weight, and DPC 132.39 parts by weight. Synthesized.
  • the polycarbonate resin had a molar ratio of CHDM to Bis-TMC of 65:35 and a specific viscosity of 0.298.
  • the content of unreacted Bis-TMC was 80 ppm / g.
  • An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin.
  • Comparative Example 1 25.96 parts by weight of CHDM, 130.37 parts by weight of Bis-TMC, 132.39 parts by weight of DPC, 0.24 mg of sodium hydroxide and 27.3 mg of tetramethylammonium hydroxide were placed in a reaction kettle equipped with a stirrer and a distiller, and nitrogen was added. The mixture was heated to 180 ° C. under an atmosphere of 760 Torr and stirred for 20 minutes. Thereafter, the degree of vacuum was adjusted to 13.4 kPa over 20 minutes, the temperature was raised to 200 ° C. at a rate of 60 ° C./hr, and held for 40 minutes.
  • the polycarbonate resin had a molar ratio of CHDM to Bis-TMC of 30:70 and a specific viscosity of 0.435.
  • Comparative Example 2 The amount of CHDM used in Comparative Example 1 was 60.57 parts by weight, the amount of Bis-TMC used was 55.87 parts by weight, DPC 132.39 parts by weight, and the polymerization reaction time was not performed under the conditions of 240 ° C. and 1 Torr or less.
  • a polycarbonate resin was synthesized. The polycarbonate resin had a molar ratio of CHDM to Bis-TMC of 70:30 and a specific viscosity of 0.100.
  • the content of unreacted Bis-TMC was 550 ppm / g.
  • An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin.
  • Comparative Example 3 The same procedure as in Example 1 was performed except that the amount of CHDM used was 43.37 parts by weight, the amount of bisphenol A (hereinafter sometimes referred to as “BPA”) was 68.67 parts by weight, and DPC 132.39 parts by weight. Thus, a polycarbonate resin was synthesized. The polycarbonate resin had a CHDM to BPA ratio of 50:50 in molar ratio and a specific viscosity of 0.280.
  • An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin.
  • Comparative Example 4 The amount of CHDM used was 43.37 parts by weight, the amount of 1,1-bis (4-hydroxyphenyl) cyclohexane (hereinafter sometimes abbreviated as “Bis-Z”) was 80.51 parts by weight, and DPC 132.39.
  • a polycarbonate resin was synthesized in the same manner as in Comparative Example 1 except that the polymerization reaction time under the conditions of parts by weight, 240 ° C. and 1 Torr or less was 1.5 hours.
  • the polycarbonate resin had a molar ratio of CHDM to Bis-Z of 50:50 and a specific viscosity of 0.374.
  • An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin.
  • Comparative Example 5 The amount of CHDM used in Comparative Example 3 was 43.33 parts by weight, the amount of BPA used was 54.88 parts by weight, Bis-TMC was 18.66 parts by weight, and DPC 132.39 parts by weight, at 240 ° C. and 1 Torr or less.
  • a polycarbonate resin was synthesized in the same manner as in Comparative Example 1 except that the reaction time was 4 hours.
  • the polycarbonate resin had a molar ratio of CHDM, BPA and Bis-TMC of 50:40:10, and a specific viscosity of 0.468.
  • An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin.
  • Comparative Example 6 The amount of CHDM used in Comparative Example 3 was 43.33 parts by weight, the amount of BPA used was 54.88 parts by weight, Bis-TMC was 18.66 parts by weight, DPC 132.39 parts by weight, 240 ° C., 1 Torr or less.
  • a polycarbonate resin was synthesized in the same manner as in Example 1 except that the polymerization reaction time was 30 minutes. The polycarbonate resin had a molar ratio of CHDM, BPA and Bis-TMC of 50:40:10, and a specific viscosity of 0.285.
  • An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin. Table 1 shows the results of Examples 1 to 4 and Comparative Examples 1 to 6.
  • Tg is in an appropriate range, a lens can be molded, the Abbe number is high, and it is suitable as an optical lens.
  • Comparative Example 1 has a low Abbe number and, under the above molding conditions, the specific viscosity is high, resulting in poor moldability.
  • the molding temperature is Tg + 110 ° C. or higher, the resin decomposes and the lens cannot be molded.
  • Comparative Example 2 although the Abbe number is high, the Tg is low and the heat resistance is insufficient, and the molded lens is brittle because the specific viscosity is low.
  • Comparative Example 3 has a low Tg, the heat resistance is insufficient, and the resin is hard to solidify and cannot be molded under the above molding conditions.
  • Comparative Example 4 has a low Tg and poor heat resistance. Further, under the above molding conditions, the specific viscosity is high and the transferability is poor.
  • Comparative Example 5 has a low Tg, poor heat resistance, and a large photoelastic coefficient.
  • Comparative Example 6 has a low Tg and a large photoelastic coefficient. Further, under the above molding conditions, the mold release is poor and the moldability is poor. For these reasons, Comparative Examples 1 to 6 cannot be used for optical lenses, or the range of use is limited. Effects of the Invention
  • the optical lens of the present invention has a high Abbe number, and further has both heat resistance sufficient for practical use and high molding fluidity.
  • the optical lens of the present invention can be suitably used in the field of expensive glass lenses.
  • the optical lens of the present invention has a high Abbe number, and further has practically sufficient heat resistance and high molding fluidity. it can.

Abstract

The purpose of the present invention is to provide an optical lens which comprises an aromatic-aliphatic polycarbonate resin that has a large Abbe number and combines practically sufficient heat resistance with high molding flowability. This optical lens comprises a polycarbonate resin characterized in that the polycarbonate resin comprises constituent units (I) represented by formula (I) and constituent units (II) represented by formula (II), the proportion of the constituent units (II) to the sum of the constituent units (I) and (II) being 55-35 mol%, and that a solution obtained by dissolving 0.7 g of the polycarbonate resin in 100 mL of methylene chloride has a specific viscosity measured at 20ºC of 0.12-0.298.

Description

芳香族−脂肪族ポリカーボネート樹脂からなる光学レンズOptical lens made of aromatic-aliphatic polycarbonate resin
 本発明は、高いアッベ数を有し、さらに実用十分な耐熱性と、高い成形流動性を併せ持つ芳香族−脂肪族ポリカーボネート樹脂からなる光学レンズに関する。 The present invention relates to an optical lens made of an aromatic-aliphatic polycarbonate resin having a high Abbe number and having both practically sufficient heat resistance and high molding fluidity.
 カメラ、フィルム一体型カメラ、ビデオカメラ等の各種カメラの光学系に使用される光学素子の材料として、光学ガラスあるいは光学用透明樹脂が使用されている。光学ガラスは、耐熱性や透明性、寸法安定性、耐薬品性等に優れ、様々な屈折率やアッベ数を有する多種類の材料が存在しているが、材料コストが高い上、成形加工性が悪く、また生産性が低いという問題点を有している。
 一方、光学用透明樹脂、中でも熱可塑性透明樹脂からなる光学レンズは、射出成形により大量生産が可能であるという利点を有しており、現在カメラ用レンズ用途等を始め、多くのレンズに使用されている。その中でも2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)より得られるポリカーボネート樹脂は、透明性、耐熱性に優れ、また耐衝撃性等の機械特性に優れた性質を有することから多く光学レンズに用いられている。
 しかしながら、ビスフェノールAからなるポリカーボネート樹脂は、屈折率は1.585と高いがアッベ数が30と低いため、色収差の問題が出やすく、屈折率とアッベ数のバランスが悪いという欠点を有する。また光学レンズに用いる樹脂には、射出成形の際生じる光学歪みを小さくする為、もしくは、薄物を成形する為、成形流動性も必要となる。
 このようなポリカーボネート樹脂の欠点を解決する為に、ビスフェノールと脂肪族ジオールとの共重合ポリカーボネート樹脂がいくつか提案されている。
 特許文献1には、シクロヘキサンジメタノールと芳香族ビスフェノールからなるポリカーボネートが検討されているが、シクロヘキサンジメタノールの割合が高い場合は、高いアッベ数とはなるが、耐熱性は低くなる。逆にシクロヘキサンジメタノールの割合が低い場合は、耐熱性は高くなるが、逆にアッベ数は低くなる。また、芳香族ビスフェノールにおいても、ビスフェノールAや1,1−ビス(4−ヒドロキシフェニル)シクロヘキサンでは、高いアッベ数が得られるが、耐熱性が劣る傾向があり、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンでは、耐熱性が付与されるが、アッベ数が小さくなる。
 また、光学レンズでは、上記の耐熱性やアッベ数の特性以外にも光学レンズに成形する際の成形性も求められる。
 上記の理由により、高いアッベ数、耐熱性、成形性の特性を欠くことがない樹脂からなる光学レンズを提供するには、未だ改善の余地がある。
特開2003−90901号公報
Optical glass or optical transparent resin is used as a material for optical elements used in optical systems of various cameras such as cameras, film-integrated cameras, and video cameras. Optical glass is excellent in heat resistance, transparency, dimensional stability, chemical resistance, etc., and there are many types of materials with various refractive indexes and Abbe numbers, but the material cost is high and moldability is high. However, there is a problem that productivity is low.
On the other hand, optical lenses made of transparent optical resins, especially thermoplastic transparent resins, have the advantage that they can be mass-produced by injection molding, and are currently used for many lenses, including camera lenses. ing. Among them, polycarbonate resin obtained from 2,2-bis (4-hydroxyphenyl) propane (commonly known as bisphenol A) has excellent properties such as transparency and heat resistance, and mechanical properties such as impact resistance. Many are used in optical lenses.
However, the polycarbonate resin made of bisphenol A has a disadvantage that the refractive index and the Abbe number are poor because the refractive index is as high as 1.585 but the Abbe number is as low as 30, so that the problem of chromatic aberration tends to occur. In addition, the resin used for the optical lens also requires molding fluidity in order to reduce optical distortion generated during injection molding or to mold a thin object.
In order to solve such drawbacks of the polycarbonate resin, several copolymer polycarbonate resins of bisphenol and aliphatic diol have been proposed.
In Patent Document 1, a polycarbonate composed of cyclohexanedimethanol and aromatic bisphenol is studied. When the ratio of cyclohexanedimethanol is high, the Abbe number is high, but the heat resistance is low. Conversely, when the ratio of cyclohexanedimethanol is low, the heat resistance is high, but the Abbe number is low. As for aromatic bisphenols, bisphenol A and 1,1-bis (4-hydroxyphenyl) cyclohexane give high Abbe numbers, but tend to be inferior in heat resistance, and 9,9-bis (4-hydroxy -3-Methylphenyl) fluorene imparts heat resistance but reduces the Abbe number.
In addition to the above heat resistance and Abbe number characteristics, the optical lens is also required to have moldability when molded into an optical lens.
For the reasons described above, there is still room for improvement in providing an optical lens made of a resin that does not lack high Abbe number, heat resistance, and moldability.
JP 2003-90901 A
 本発明の目的は、高いアッベ数を有し、さらに実用十分な耐熱性と高い成形流動性を併せ持つ芳香族−脂肪族ポリカーボネート樹脂からなる光学レンズを提供することにある。
 本発明者は、特定の分子構造を有する芳香族−脂肪族ポリカーボネート樹脂を用いると、アッベ数および耐熱性に優れた光学レンズが得られることを見出した。また該ポリカーボネート樹脂は成形流動性に優れ微細な光学レンズを精密に成形できることを見出し、本発明を完成した。
 すなわち本発明の目的は、以下の発明により達成される。
1. 下記式(I)
Figure JPOXMLDOC01-appb-I000004
で表される構成単位(I)および下記式(II)
Figure JPOXMLDOC01-appb-I000005
で表される構成単位(II)を含み、構成単位(II)の割合が構成単位(I)および(II)の合計に対して55~35モル%であり、
該ポリカーボネート樹脂0.7gを100mlの塩化メチレンに溶解し、20℃で測定した比粘度が0.12~0.298である、
ことを特徴とするポリカーボネート樹脂からなる光学レンズ。
2. ポリカーボネート樹脂中の下記式(III)で表される化合物の含有量が50~300ppm/gである前項1記載の光学レンズ。
Figure JPOXMLDOC01-appb-I000006
3. ポリカーボネート樹脂のガラス転移点が115~160℃であり、かつアッベ数が43~35である前項1記載の光学レンズ。
4. ポリカーボネート樹脂の光弾性係数が50×10−12Pa−1~30×10−12Pa−1である前項1記載の光学レンズ。
5. ポリカーボネート樹脂の屈折率が1.53~1.55である前項1記載の光学レンズ。
6. 回折レンズである前項1記載の光学レンズ。
7. 回折レンズは、厚さ0.05~3.0mm、輪状回折格子深さ5~20μm、レンズ部有効半径1.0~20.0mm、輪帯数5~30本、最小輪帯ピッチ5~20μm、凹面曲率半径0.1~10.0mm、直径1.0~30.0mmの非球面回折レンズである前項6記載の光学レンズ。
An object of the present invention is to provide an optical lens made of an aromatic-aliphatic polycarbonate resin having a high Abbe number and having both practically sufficient heat resistance and high molding fluidity.
The present inventor has found that when an aromatic-aliphatic polycarbonate resin having a specific molecular structure is used, an optical lens excellent in Abbe number and heat resistance can be obtained. Further, the present inventors have found that the polycarbonate resin is excellent in molding fluidity and can precisely mold a fine optical lens, thereby completing the present invention.
That is, the object of the present invention is achieved by the following invention.
1. Formula (I)
Figure JPOXMLDOC01-appb-I000004
A structural unit (I) represented by the formula (II)
Figure JPOXMLDOC01-appb-I000005
And the proportion of the structural unit (II) is 55 to 35 mol% with respect to the total of the structural units (I) and (II),
0.7 g of the polycarbonate resin is dissolved in 100 ml of methylene chloride, and the specific viscosity measured at 20 ° C. is 0.12 to 0.298.
An optical lens made of a polycarbonate resin.
2. 2. The optical lens according to item 1, wherein the content of the compound represented by the following formula (III) in the polycarbonate resin is 50 to 300 ppm / g.
Figure JPOXMLDOC01-appb-I000006
3. 2. The optical lens according to item 1, wherein the polycarbonate resin has a glass transition point of 115 to 160 ° C. and an Abbe number of 43 to 35.
4). 2. The optical lens according to item 1 , wherein the polycarbonate resin has a photoelastic coefficient of 50 × 10 −12 Pa −1 to 30 × 10 −12 Pa −1 .
5. 2. The optical lens according to item 1, wherein the polycarbonate resin has a refractive index of 1.53 to 1.55.
6). 2. The optical lens according to item 1, which is a diffractive lens.
7. The diffractive lens has a thickness of 0.05 to 3.0 mm, a ring-shaped diffraction grating depth of 5 to 20 μm, a lens portion effective radius of 1.0 to 20.0 mm, a ring zone number of 5 to 30 and a minimum ring zone pitch of 5 to 20 μm 7. The optical lens according to item 6, which is an aspherical diffractive lens having a concave curvature radius of 0.1 to 10.0 mm and a diameter of 1.0 to 30.0 mm.
 図1は、実施例2のプロトンNMRチャートである(ポリカーボネート樹脂中のシクロヘキサンジメタノール(以降、“CHDM”と省略することがある。CHDMは下記式(IV)で表される、化合物である。)成分と1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン(以降、“Bis−TMC”と省略することがある。Bis−TMCは上記式(III)で表される化合物である。)成分の比がモル比で50:50)。
 図2は、実施例2のプロトンNMRチャート(図1)の拡大図である。
Figure JPOXMLDOC01-appb-I000007
FIG. 1 is a proton NMR chart of Example 2 (cyclohexanedimethanol in polycarbonate resin (hereinafter sometimes referred to as “CHDM”. CHDM is a compound represented by the following formula (IV). ) Component and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (hereinafter sometimes referred to as “Bis-TMC”. Bis-TMC is represented by the above formula (III). The component ratio is 50:50).
FIG. 2 is an enlarged view of the proton NMR chart (FIG. 1) of Example 2.
Figure JPOXMLDOC01-appb-I000007
 ポリカーボネート樹脂は、1,4−シクロヘキサンジメタノール残基である構成単位(I)と、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン残基である構成単位(II)を含む。
 構成単位(II)の割合は、構成単位(I)および(II)の合計に対して55~35モル%である。構成単位(II)の割合が35モル%より低い場合、側鎖である3,3,5−トリメチルシクロヘキサンによる分子鎖の絡み合い効果が減少し、樹脂の耐熱性が低下する。それにより耐熱性を満足する成形物が得られない場合がある。構成単位(II)の割合が55モル%より高い場合、芳香環を有する1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンの芳香環上Π電子の影響で樹脂中の分極率が大きくなる。それに伴いアッベ数が低下する。構成単位(II)の割合は、構成単位(I)および(II)の合計に対して好ましくは50~40モル%である。
 ポリカーボネート樹脂は、実質的に構成単位(I)と(II)からなる。本発明の目的を損なわない範囲で、(I)および(II)以外の公知の共重合成分を含んでも良い。そのような観点から、ポリカーボネート樹脂全体の構成単位の90モル%以上が構成単位(I)および(II)であることが好ましく、さらに95モル%以上が構成単位(I)および(II)であることがより好ましい。
 ポリカーボネート樹脂は、その0.70gを100ccの塩化メチレンに溶解し、20℃で測定した比粘度が0.12~0.298の範囲である。比粘度は、好ましくは0.15~0.295、より好ましくは0.20~0.29の範囲である。比粘度が0.12未満では成形品が脆くなり、0.298より高くなると溶融粘度および溶液粘度が高くなり、取扱いが困難になる。
 ポリカーボネート樹脂は、下記式(III)で表される1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンの含有量が、好ましくは50~300ppm/g、より好ましくは70~250ppm/g、さらに好ましくは100~200ppm/gである。
Figure JPOXMLDOC01-appb-I000008
 式(III)で表される化合物の含有量は、高真空化つまり1Torr以下での反応時間により調整できる。1Torr以下の真空度での反応を行わない場合は、式(III)で表される化合物の含有量が多くなる。また、反応時間が長すぎると、樹脂中より留去しすぎてしまう。
 さらに詳しくは、式(III)で表される化合物の含有量を該範囲内にするためには、重合反応の最後の条件である240℃以上、1Torr以下の条件下での反応時間を0分間以上、1時間以下にする必要がある。
 式(III)で表される化合物の含有量は、上記範囲にあると、ポリカーボネート樹脂のアッベ数および耐熱性を損なうことなく、成形流動性を向上させる事ができる。しかし、300ppm以上となると射出成形時に金型汚染がひどくなり好ましくなく、50ppm以下では、成形流動性に劣り好ましくない。
 ポリカーボネート樹脂の、昇温速度20℃/minにて測定したガラス転移温度(Tg)は、好ましくは115~160℃、さらに好ましくは120℃~155℃である。Tgが115℃未満では、該共重合体を用いて形成した光学レンズの耐熱性が十分でなく、一方Tgが160℃を超える場合は溶融粘度が高くなり、成形体を形成する上での取扱いが困難となるので好ましくない。
 ポリカーボネート樹脂の25℃におけるアッベ数は、好ましくは43~35、より好ましくは43~38の範囲にある。35より小さくなると色収差が大きくなり、光学レンズに好ましくない。
 ポリカーボネート樹脂の25℃、波長589nmにおける屈折率は、好ましくは1.53~1.55、より好ましくは1.540~1.545の範囲にある。1.53より小さくなるとレンズに厚みが必要となり好ましくない。
 ポリカーボネート樹脂の光弾性係数は、好ましくは50×10−12Pa−1~30×10−12Pa−1、より好ましくは45×10−12Pa−1~30×10−12Pa−1である。光弾性が、50×10−12Pa−1より大きくなると、成形物に複屈折が生じ好ましくない。
(ポリカーボネート樹脂の製造)
 ポリカーボネート樹脂を製造する方法としては、通常のポリカーボネート樹脂の製造に用いる方法が任意に採用される。例えばジオールとホスゲンとの反応、またはジオールとカーボネートとのエステル交換反応が好ましく採用される。
 ジオールとホスゲンとの反応では、非水系で酸結合剤および溶媒の存在下に反応を行う。酸結合剤としては例えばピリジン、ジメチルアミノピリジン、第三級アミン等が用いられる。溶媒としては例えば塩化メチレンやクロロベンゼン等のハロゲン化炭化水素が用いられる。分子量調節剤として例えばフェノールやp−tert−ブチルフェノール等の末端停止剤を用いることが望ましい。反応温度は通常0~40℃、反応時間は数分~5時間が好ましい。
 エステル交換反応では、不活性ガス存在下にジオールを攪拌し、減圧下、通常120~350℃、好ましくは150~300℃で反応させる。減圧度は段階的に変化させ、最終的には1mmHg以下にして生成したアルコール類を系外に留去させる。反応時間は通常1~4時間程度である。また、エステル交換反応では反応促進のために重合触媒を用いることができる。このような重合触媒としてはアルカリ金属化合物またはアルカリ土類金属化合物または重金属化合物を主成分として用い、必要に応じて含窒素塩基性化合物を従成分として用いても良い。
 アルカリ金属化合物としては水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ビスフェノールAのナトリウム塩、カリウム塩、リチウム塩、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム等が挙げられる。アルカリ土類金属化合物としては水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸ストロンチウム等が挙げられ、中でも水酸化ナトリウム、炭酸水素ナトリウムが好ましい。
 含窒素塩基性化合物としてはテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルアミン、トリエチルアミン、ジメチルベンジルアミン、トリフェニルアミン、ジメチルアミノピリジン等が挙げられる。中でもがテトラメチルアンモニウムヒドロキシドが好ましい。
 その他のエステル交換触媒としては亜鉛、スズ、ジルコニウム、鉛、チタン、ゲルマニウム、アンチモン、オスミウム、アルミニウムの塩が挙げられる。例えば、酢酸亜鉛、安息香酸亜鉛、2−エチルヘキサン酸亜鉛、塩化スズ(II)、塩化スズ(IV)、酢酸スズ(II)、酢酸スズ(IV)、ジブチルスズジラウレート、ジブチルスズオキサイド、ジブチルスズジメトキシド、ジルコニウムアセチルアセトナート、オキシ酢酸ジルコニウム、ジルコニウムテトラブトキシド、酢酸鉛(II)、酢酸鉛(IV)チタンテトラブトキシド(IV)等が用いられる。
 これらの触媒は単独で用いても、二種以上併用してもよく、これらの重合触媒の使用量はジオールの合計1モルに対して、10−9~10−3モルの比率で用いられる。これらは単独で用いても、二種以上併用してもよい。また、エステル交換反応ではヒドロキシ末端基を減少するために重縮合反応の後期または終了後に電子吸引性の置換基を持ったジアリールカーボネートを加えも良い。更に、色相改善のために酸化防止剤や熱安定剤等を加えてもよい。
 ポリカーボネート樹脂は、重合反応終了後、熱安定性および加水分解安定性を保持するために、触媒を除去もしくは失活させてもよい。アルカリ金属化合物またはアルカリ土類金属化合物については、一般的に、公知の酸性物質の添加による触媒の失活を行う方法が好適に実施される。
 これらの物質としては、具体的には、安息香酸ブチル等のエステル類、p−トルエンスルホン酸等の芳香族スルホン酸類、p−トルエンスルホン酸ブチル、p−トルエンスルホン酸ヘキシル等の芳香族スルホン酸エステル類、亜リン酸、リン酸、ホスホン酸等のリン酸類、亜リン酸トリフェニル、亜リン酸モノフェニル、亜リン酸ジフェニル、亜リン酸ジエチル、亜リン酸ジn−プロピル、亜リン酸ジn−ブチル、亜リン酸ジn−ヘキシル、亜リン酸ジオクチル、亜リン酸モノオクチル等の亜リン酸エステル類、リン酸トリフェニル、リン酸ジフェニル、リン酸モノフェニル、リン酸ジブチル、リン酸ジオクチル、リン酸モノオクチル等のリン酸エステル類、ジフェニルホスホン酸、ジオクチルホスホン酸、ジブチルホスホン酸等のホスホン酸類、フェニルホスホン酸ジエチル等のホスホン酸エステル類、トリフェニルホスフィン、ビス(ジフェニルホスフィノ)エタン等のホスフィン類、ホウ酸、フェニルホウ酸等のホウ酸類、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩等の芳香族スルホン酸塩類、ステアリン酸クロライド、塩化ベンゾイル、p−トルエンスルホン酸クロライド等の有機ハロゲン化物、ジメチル硫酸等のアルキル硫酸、塩化ベンジル等の有機ハロゲン化物等が好適に用いられる。中でもドデシルベンゼンスルホン酸テトラブチルホスホニウム塩が好ましい。これらの失活剤は、触媒量に対して0.01~50倍モル、好ましくは0.3~20倍モル使用される。触媒量に対して0.01倍モルより少ないと、失活効果が不充分となり好ましくない。また、触媒量に対して50倍モルより多いと、耐熱性が低下し、成形体が着色しやすくなるため好ましくない。
(光学レンズ)
 本発明の光学レンズは、例えば射出成形法、圧縮成形法、射出圧縮成形法、キャスティング法など任意の方法により成形される。
 射出成形で製造する場合、シリンダー温度230~300℃、金型温度90~150℃の条件にて成形することが好ましい。さらに好ましくは、シリンダー温度240~280℃、金型温度100~140℃の条件にて成形することが好ましい。シリンダー温度が300℃を超えると、樹脂が分解着色し、230℃未満では、溶融粘度が高く成形できない。また金型温度が150℃を超えると、樹脂が硬化せず金型から成形片を取り出せない。更には、90℃未満では、成形時に金型内で樹脂が早く固まり成形片を得ることができない、もしくは、金型賦型を転写できない。
 本発明の光学レンズは、非球面レンズであることが好ましい。非球面レンズは、1枚のレンズで球面収差を実質的にゼロとすることが可能であるため、複数の球面レンズの組み合わせで球面収差を取り除く必要がなく、軽量化および生産コストの低減化が可能になる。従って、非球面レンズは、光学レンズの中でも特にカメラレンズとして有用である。
 また本発明においてポリカーボネート樹脂は、成形流動性が高いため、薄肉小型で複雑な形状である光学レンズの材料として特に有用である。具体的なレンズサイズとして、中心部の厚みが0.05~3.0mm、より好ましくは0.05~2.0mm、さらに好ましくは0.1~2.0mmである。また、直径が1.0mm~30.0mm、より好ましくは1.0~20.0mm、さらに好ましくは3.0~10.0mmである。また、その形状として片面が凸、片面が凹であるメニスカスレンズであることが好ましい。
 さらに、本発明の非球面レンズには、メニスカスレンズ以外に、回折レンズ、フレネルレンズ、fθレンズ、シリンダーレンズ、コリメータレンズ等が含まれる。中でも、該ポリカーボネート樹脂の成形性が良好であるため、転写性が必要な回折レンズに適している。
 本発明の回折レンズは、金型成形、切削、研磨、レーザー加工、放電加工、エッジングなど任意の方法により成形される。さらには、金型成形がより好ましい。
 本発明の回折レンズは、レンズ基材表面には鋸歯状の回折格子が同心円形状に形成される。また、回折格子を覆うように保護膜として光学調整層を形成してもよい。この光学調整層の、レンズ基材に接した面と反対面の形状は、回折格子の溝を通る包絡面とほぼ同じ形状となるように、形成される。
 本発明の回折レンズは、回折格子の溝を通る包絡面とほぼ同じ形状となるように光学調整層を形成することにより、集光性が向上しMTF特性が向上する。
 なお、回折格子の溝を通る包絡面は、球面形状、非球面形状、シリンドリカル形状等の形状をとることができる。特に包絡面が非球面形状に設計されている構成においては、球面形状の場合に補正できなかったレンズ収差を補正することが可能になるので好ましい。なお、前記「非球面形状」の面とは、下記式を満足する曲面である。
Figure JPOXMLDOC01-appb-I000009
 上記式は、X−Y平面に垂直なZ軸の周りに回転させた場合の非球面を表す式であって、cは中心曲率、A,B,C,Dは2次曲面からのずれを表す係数である。また、Kの値によって、以下のような非球面となる。
 0>Kの場合、短径を光軸とする楕円面
 −1<K<0の場合、長軸を光軸とする楕円面
 K=−1の場合、放物面
 K<−1の場合、双曲面
 本発明の回折レンズは、回折格子ならびに光学調整層は、レンズのいずれか片面に形成されていても、両面に形成されていてもよい。両面に形成される場合においては、両面の回折格子は必ずしも同じ深さ、形状である必要はない。また、回折格子内の輪帯ピッチは同じである必要はない。また、レンズの形状については、少なくとも片面が回折格子形状ならびに光学調整層を形成した凸面であればよく、平面と凸面以外に、凹面と凸面、両凸面等でもよい。また、金型加工の容易さと、レンズ性能面での回折格子形状の寄与、および周辺温度に対する安定性を確保するには回折格子の深さを20μm以下にすることが望ましい。数十μmを越える深さの回折格子形状に対しては加工精度の高い金型加工が困難である。なぜなら、一般に金型加工はバイトを用いて行うが、回折格子の深さが深いと加工量が増え、バイト先端が磨耗するため、加工精度が劣化する。同時に回折格子の深さが深くなると回折格子のピッチを狭くすることができない。回折格子が深くなると先端の曲率半径の大きなバイトで金型を加工する必要があり、その結果、ある程度回折格子のピッチを広げないと回折格子の加工ができないためである。これにより回折格子の深さが深いほど回折格子形状の設計自由度がなくなり、回折格子による収差低減効果がほとんどなくなっていく。
 非球面回折レンズは、厚さ0.05~3.0mm、輪状回折格子深さ5~20μm、レンズ部有効半径1.0~20.0mm、輪帯数5~25本、最小輪帯ピッチ5.0~20.0μm、凹面曲率半径0.1~10.0mm、直径1.0~30.0mmの非球面回折レンズであることが好ましい。
 非球面回折レンズの厚さは、0.1~2.0mmであることがより好ましい。輪状回折格子深さ10~20μmであることがより好ましい。レンズ部有効半径2~15.0mmであることがより好ましい。輪帯数10~20本であることがより好ましい。最小輪帯ピッチ8.0~15.0μmであることがより好ましい。凹面曲率半径0.1~5.0mmであることがより好ましい。直径2.0~20.0mmのであることがより好ましい。
 本発明の回折レンズの光学調整層には、レンズよりも屈折率の波長分散性が低い、すなわちレンズよりも大きいアッベ数を有する樹脂が好ましい。更には、光学調整層の製造の容易さから、取り扱い性がよく、形成後に安定していることが好ましい。更には、光学的な選択の幅や、製造の容易さの観点から、レンズの回折格子上に形成した後に樹脂を硬化して安定した光学調整層を得ることができる樹脂を用いるのが好ましい。更には、光学調整層の形成時にレンズへの影響を少なくするために、低エネルギーで製造できる上、製造時間が短い紫外線硬化性樹脂等の光硬化性樹脂を用いることが好ましい。そのような観点から光学調整層には、紫外線硬化性のアクリル系樹脂やエポキシ系樹脂が好ましい。
 本発明の光学レンズには、本発明の目的を損なわない範囲で各種特性を付与する為に、各種添加剤を使用することができる。添加剤としては離型剤、熱安定剤、紫外線吸収剤、ブルーイング剤、帯電防止剤、難燃剤、熱線遮蔽剤、蛍光染料(蛍光増白剤含む)、顔料、光拡散剤、強化充填剤、他の樹脂やエラストマー等を配合することができる。
 離型剤としては、その90重量%以上がアルコールと脂肪酸のエステルからなるものが好ましい。アルコールと脂肪酸のエステルとしては、具体的には一価アルコールと脂肪酸のエステルおよび/または多価アルコールと脂肪酸との部分エステルあるいは全エステルが挙げられる。前記一価アルコールと脂肪酸のエステルとは、炭素原子数1~20の一価アルコールと炭素原子数10~30の飽和脂肪酸とのエステルが好ましい。また、多価アルコールと脂肪酸との部分エステルあるいは全エステルとは、炭素原子数1~25の多価アルコールと炭素原子数10~30の飽和脂肪酸との部分エステルまたは全エステルが好ましい。
 具体的に一価アルコールと飽和脂肪酸とエステルとしては、ステアリルステアレート、パルミチルパルミテート、ブチルステアレート、メチルラウレート、イソプロピルパルミテート等があげられ、ステアリルステアレートが好ましい。
 具体的に多価アルコールと飽和脂肪酸との部分エステルまたは全エステルとしては、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸モノソルビテート、ベヘニン酸モノグリセリド、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラステアレート、ペンタエリスリトールテトラペラルゴネート、プロピレングリコールモノステアレート、ビフェニルビフェネート、ソルビタンモノステアレート、2−エチルヘキシルステアレート、ジペンタエリスリトールヘキサステアレート等のジペンタエリスルトールの全エステルまたは部分エステル等が挙げられる。これらのエステルのなかでも、ステアリン酸モノグリセリド、ステアリン酸トリグリセリド、ペンタエリスリトールテトラステアレート、ステアリン酸トリグリセリドとステアリルステアレートの混合物が好ましく用いられる。
 離型剤中の前記エステルの量は、離型剤を100重量%とした時、90重量%以上が好ましく、95重量%以上がより好ましい。
 ポリカーボネート樹脂粉粒体中の離型剤の含有量としては、ポリカーボネート樹脂粉粒体100重量部に対して0.005~2.0重量部の範囲が好ましく、0.01~0.6重量部の範囲がより好ましく、0.02~0.5重量部の範囲がさらに好ましい。
 熱安定剤としては、リン系熱安定剤、硫黄系熱安定剤およびヒンダードフェノール系熱安定剤が挙げられる。
 リン系熱安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル等が挙げられ、具体的には、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、ベンゼンホスホン酸ジプロピル、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、および(6−(3−(3−t−ブチル−4−ヒドロキシ−5−メチル)プロポキシ)−2,4,8,10−テトラ−t−ブチルジベンズ(d,f)(1,3,2)−ジオキサホスフィピン等が挙げられる。
 なかでも、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイトおよびビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、(6−(3−(3−t−ブチル−4−ヒドロキシ−5−メチル)プロポキシ)−2,4,8,10−テトラ−t−ブチルジベンズ(d,f)(1,3,2)−ジオキサホスフィピンが使用される
 特に好ましくはテトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、(6−(3−(3−t−ブチル−4−ヒドロキシ−5−メチル)プロポキシ)−2,4,8,10−テトラ−t−ブチルジベンズ(d,f)(1,3,2)−ジオキサホスフィピンが使用される。該リン系化合物は住友化学工業(株)スミライザーP−16からスミライザーGP(商品名)等として市販されており、容易に利用できる。
 ポリカーボネート樹脂粉粒体中のリン系熱安定剤の含有量は、ポリカーボネート樹脂粉粒体100重量部に対して0.001~0.2重量部であることが好ましい。
 硫黄系熱安定剤としては、ペンタエリスリトール−テトラキス(3−ラウリルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ミリスチルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ステアリルチオプロピオネート)、ジラウリル−3、3’−チオジプロピオネート、ジミリスチル−3、3’−チオジプロピオネート、ジステアリル−3、3’−チオジプロピオネート等が挙げられる。なかでもペンタエリスリトール−テトラキス(3−ラウリルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ミリスチルチオプロピオネート)、ジラウリル−3、3’−チオジプロピオネート、ジミリスチル−3、3’−チオジプロピオネートが好ましい。特に好ましくはペンタエリスリトール−テトラキス(3−ラウリルチオプロピオネート)である。該チオエーテル系化合物は住友化学工業(株)からスミライザーTP−D(商品名)およびスミライザーTPM(商品名)等として市販されており、容易に利用できる。
 ポリカーボネート樹脂粉粒体中の硫黄系熱安定剤の含有量としては、ポリカーボネート樹脂粉粒体100重量部に対して0.001~0.2重量部が好ましい。
 ヒンダードフェノール系熱安定剤としては、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、N,N−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルホスホネート−ジエチルエステル、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレートおよび3,9−ビス{1,1−ジメチル−2−[β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}−2,4,8,10−テトラオキサスピロ(5,5)ウンデカンなどが挙げられる。オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートが特に好ましく用いられる。
 ポリカーボネート樹脂粉粒体中のヒンダードフェノール系熱安定剤の含有量としては、ポリカーボネート樹脂粉粒体100重量部に対して0.001~0.3重量部が好ましい。
 紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤、環状イミノエステル系紫外線吸収剤およびシアノアクリレート系からなる群より選ばれた少なくとも1種の紫外線吸収剤が好ましい。
 ベンゾトリアゾール系紫外線吸収剤としては、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2N−ベンゾトリアゾール−2−イル)フェノール]、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−アミルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−5−tert−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾール、2,2’−メチレンビス(4−クミル−6−ベンゾトリアゾールフェニル)、2,2’−p−フェニレンビス(1,3−ベンゾオキサジン−4−オン)、2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾールが挙げられる。これらを単独あるいは2種以上の混合物で用いることができる。好ましくは、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2N−ベンゾトリアゾール−2−イル)フェノール]、2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾールが挙げられる。より好ましくは、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2N−ベンゾトリアゾール−2−イル)フェノール]が挙げられる。
 ベンゾフェノン系紫外線吸収剤としては、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシトリハイドライドレイトベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2−ヒドロキシ−4−n−ドデシルオキシベンソフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン等が挙げられる。
 トリアジン系紫外線吸収剤としては、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−[(ヘキシル)オキシ]−フェノール、2−(4,6−ビス(2.4−ジメチルフェニル)−1,3,5−トリアジン−2−イル)−5−[(オクチル)オキシ]−フェノール等が挙げられる。
 環状イミノエステル系紫外線吸収剤としては、2,2’−ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−m−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2,6−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(1,5−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2−メチル−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2−ニトロ−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)および2,2’−(2−クロロ−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)などが例示される。なかでも2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)および2,2’−(2,6−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)が好適であり、特に2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)が好適である。かかる化合物は竹本油脂(株)からCEi−P(商品名)として市販されており、容易に利用できる。
 シアノアクリレート系紫外線吸収剤としては、1,3−ビス−[(2’−シアノ−3’,3’−ジフェニルアクリロイル)オキシ]−2,2−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3−ビス−[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。
 紫外線吸収剤の配合量は、ポリカーボネート樹脂粉粒体100重量部に対して好ましくは0.01~3.0重量部であり、より好ましくは0.02~1.0重量部であり、さらに好ましくは0.05~0.8重量部である。かかる配合量の範囲であれば、用途に応じ、ポリカーボネート樹脂成形品に十分な耐候性を付与することが可能である。
 ブルーイング剤としては、バイエル社のマクロレックスバイオレットBおよびマクロレックスブルーRR並びにクラリアント社のポリシンスレンブル−RLS等が挙げられる。ブルーイング剤は、ポリカーボネート樹脂粉粒体の黄色味を消すために有効である。特に耐候性を付与したポリカーボネート樹脂粉粒体の場合は、一定量の紫外線吸収剤が配合されているため「紫外線吸収剤の作用や色」によってポリカーボネート樹脂成形品が黄色味を帯びやすい現実があり、特にシートやレンズに自然な透明感を付与するためにはブルーイング剤の配合は非常に有効である。
The polycarbonate resin is composed of a structural unit (I) that is a 1,4-cyclohexanedimethanol residue and a structural unit (II that is a 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane residue. )including.
The proportion of the structural unit (II) is 55 to 35 mol% with respect to the total of the structural units (I) and (II). When the proportion of the structural unit (II) is lower than 35 mol%, the entanglement effect of molecular chains by 3,3,5-trimethylcyclohexane, which is a side chain, decreases, and the heat resistance of the resin decreases. As a result, a molded product satisfying heat resistance may not be obtained. When the proportion of the structural unit (II) is higher than 55% by mole, the 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane having an aromatic ring has an influence on the aromatic ring and is in the resin. The polarizability of increases. Accordingly, the Abbe number decreases. The proportion of the structural unit (II) is preferably 50 to 40 mol% with respect to the total of the structural units (I) and (II).
The polycarbonate resin substantially consists of the structural units (I) and (II). As long as the object of the present invention is not impaired, a known copolymer component other than (I) and (II) may be included. From such a viewpoint, it is preferable that 90 mol% or more of the structural units of the entire polycarbonate resin are the structural units (I) and (II), and further 95 mol% or more are the structural units (I) and (II). It is more preferable.
The polycarbonate resin has 0.70 g dissolved in 100 cc of methylene chloride, and the specific viscosity measured at 20 ° C. is in the range of 0.12 to 0.298. The specific viscosity is preferably in the range of 0.15 to 0.295, more preferably 0.20 to 0.29. When the specific viscosity is less than 0.12, the molded product becomes brittle, and when it is higher than 0.298, the melt viscosity and the solution viscosity become high and handling becomes difficult.
In the polycarbonate resin, the content of 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane represented by the following formula (III) is preferably 50 to 300 ppm / g, more preferably 70. It is ˜250 ppm / g, more preferably 100 to 200 ppm / g.
Figure JPOXMLDOC01-appb-I000008
The content of the compound represented by the formula (III) can be adjusted by increasing the vacuum, that is, the reaction time at 1 Torr or less. When the reaction is not performed at a vacuum level of 1 Torr or less, the content of the compound represented by the formula (III) increases. Moreover, when reaction time is too long, it will distill too much from in resin.
More specifically, in order to bring the content of the compound represented by the formula (III) within this range, the reaction time under the condition of 240 ° C. or higher and 1 Torr or lower, which is the final condition of the polymerization reaction, is 0 minute. It is necessary to make it 1 hour or less.
When the content of the compound represented by the formula (III) is within the above range, molding fluidity can be improved without impairing the Abbe number and heat resistance of the polycarbonate resin. However, if it is 300 ppm or more, the mold contamination becomes severe at the time of injection molding, which is not preferable, and if it is 50 ppm or less, the molding fluidity is inferior.
The glass transition temperature (Tg) of the polycarbonate resin measured at a heating rate of 20 ° C./min is preferably 115 to 160 ° C., more preferably 120 to 155 ° C. If the Tg is less than 115 ° C, the heat resistance of the optical lens formed using the copolymer is not sufficient. On the other hand, if the Tg exceeds 160 ° C, the melt viscosity becomes high, and handling for forming a molded body is difficult. Is not preferable because it becomes difficult.
The Abbe number of the polycarbonate resin at 25 ° C. is preferably in the range of 43 to 35, more preferably 43 to 38. If it is smaller than 35, the chromatic aberration increases, which is not preferable for an optical lens.
The refractive index of the polycarbonate resin at 25 ° C. and a wavelength of 589 nm is preferably 1.53 to 1.55, more preferably 1.540 to 1.545. If it is smaller than 1.53, the lens needs a thickness, which is not preferable.
The photoelastic coefficient of the polycarbonate resin is preferably 50 × 10 -12 Pa -1 ~ 30 × 10 -12 Pa -1 , More preferably 45 × 10 -12 Pa -1 ~ 30 × 10 -12 Pa -1 It is. Photoelasticity is 50 × 10 -12 Pa -1 If it is larger, birefringence occurs in the molded product, which is not preferable.
(Manufacture of polycarbonate resin)
As a method for producing the polycarbonate resin, a method used for producing a normal polycarbonate resin is arbitrarily adopted. For example, a reaction between diol and phosgene or a transesterification reaction between diol and carbonate is preferably employed.
In the reaction of diol and phosgene, the reaction is performed in the presence of an acid binder and a solvent in a non-aqueous system. Examples of the acid binder include pyridine, dimethylaminopyridine, tertiary amine and the like. As the solvent, for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used. It is desirable to use a terminal terminator such as phenol or p-tert-butylphenol as the molecular weight regulator. The reaction temperature is usually 0 to 40 ° C., and the reaction time is preferably several minutes to 5 hours.
In the transesterification reaction, the diol is stirred in the presence of an inert gas, and the reaction is usually performed at 120 to 350 ° C., preferably 150 to 300 ° C. under reduced pressure. The degree of vacuum is changed stepwise, and finally the alcohols produced at 1 mmHg or less are distilled out of the system. The reaction time is usually about 1 to 4 hours. In the transesterification reaction, a polymerization catalyst can be used to promote the reaction. As such a polymerization catalyst, an alkali metal compound, an alkaline earth metal compound or a heavy metal compound may be used as a main component, and a nitrogen-containing basic compound may be used as a subsidiary component if necessary.
Examples of the alkali metal compound include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium acetate, potassium acetate, lithium acetate, sodium stearate. , Potassium stearate, lithium stearate, sodium salt of bisphenol A, potassium salt, lithium salt, sodium benzoate, potassium benzoate, lithium benzoate and the like. Alkaline earth metal compounds include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium bicarbonate, barium bicarbonate, magnesium bicarbonate, strontium bicarbonate, calcium carbonate, barium carbonate, magnesium carbonate, strontium carbonate , Calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, strontium stearate and the like, among which sodium hydroxide and sodium bicarbonate are preferred.
Examples of the nitrogen-containing basic compound include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylamine, triethylamine, dimethylbenzylamine, triphenylamine, dimethylaminopyridine and the like. Of these, tetramethylammonium hydroxide is preferred.
Other transesterification catalysts include zinc, tin, zirconium, lead, titanium, germanium, antimony, osmium, and aluminum salts. For example, zinc acetate, zinc benzoate, zinc 2-ethylhexanoate, tin (II) chloride, tin (IV) chloride, tin (II) acetate, tin (IV) acetate, dibutyltin dilaurate, dibutyltin oxide, dibutyltin dimethoxide, Zirconium acetylacetonate, zirconium oxyacetate, zirconium tetrabutoxide, lead (II) acetate, lead (IV) titanium tetrabutoxide (IV) and the like are used.
These catalysts may be used alone or in combination of two or more. The amount of these polymerization catalysts used is 10 with respect to 1 mol of the diol in total. -9 ~ 10 -3 Used in molar ratios. These may be used alone or in combination of two or more. In the transesterification reaction, a diaryl carbonate having an electron-withdrawing substituent may be added at a later stage or after completion of the polycondensation reaction in order to reduce the hydroxy end group. Furthermore, an antioxidant or a heat stabilizer may be added to improve the hue.
In the polycarbonate resin, the catalyst may be removed or deactivated after the polymerization reaction in order to maintain thermal stability and hydrolysis stability. For alkali metal compounds or alkaline earth metal compounds, generally, a method of deactivating a catalyst by adding a known acidic substance is preferably carried out.
Specific examples of these substances include esters such as butyl benzoate, aromatic sulfonic acids such as p-toluenesulfonic acid, and aromatic sulfonic acids such as butyl p-toluenesulfonate and hexyl p-toluenesulfonate. Esters, phosphoric acids such as phosphorous acid, phosphoric acid, phosphonic acid, triphenyl phosphite, monophenyl phosphite, diphenyl phosphite, diethyl phosphite, di-n-propyl phosphite, phosphorous acid Phosphorous esters such as di-n-butyl, di-n-hexyl phosphite, dioctyl phosphite, monooctyl phosphite, triphenyl phosphate, diphenyl phosphate, monophenyl phosphate, dibutyl phosphate, phosphorus Phosphate esters such as dioctyl acid and monooctyl phosphate, phosphones such as diphenylphosphonic acid, dioctylphosphonic acid and dibutylphosphonic acid , Phosphonic acid esters such as diethyl phenylphosphonate, phosphines such as triphenylphosphine and bis (diphenylphosphino) ethane, boric acids such as boric acid and phenylboric acid, and aromatics such as tetrabutylphosphonium dodecylbenzenesulfonate Organic halides such as aromatic sulfonates, stearic acid chloride, benzoyl chloride, p-toluenesulfonic acid chloride, alkyl sulfuric acids such as dimethyl sulfate, and organic halides such as benzyl chloride are preferably used. Of these, tetrabutylphosphonium salt of dodecylbenzenesulfonate is preferable. These deactivators are used in an amount of 0.01 to 50 times mol, preferably 0.3 to 20 times mol for the amount of catalyst. When the amount is less than 0.01 times the amount of the catalyst, the deactivation effect is insufficient, which is not preferable. Moreover, when it is more than 50 times mole with respect to the amount of catalyst, since heat resistance falls and it becomes easy to color a molded object, it is unpreferable.
(Optical lens)
The optical lens of the present invention is molded by an arbitrary method such as an injection molding method, a compression molding method, an injection compression molding method, or a casting method.
When manufacturing by injection molding, it is preferable to mold under conditions of a cylinder temperature of 230 to 300 ° C and a mold temperature of 90 to 150 ° C. More preferably, molding is performed under conditions of a cylinder temperature of 240 to 280 ° C. and a mold temperature of 100 to 140 ° C. When the cylinder temperature exceeds 300 ° C., the resin is decomposed and colored, and when it is less than 230 ° C., the melt viscosity is high and cannot be molded. When the mold temperature exceeds 150 ° C., the resin is not cured and the molded piece cannot be taken out from the mold. Furthermore, if it is less than 90 ° C., the resin quickly hardens in the mold during molding, and a molded piece cannot be obtained, or the mold molding cannot be transferred.
The optical lens of the present invention is preferably an aspheric lens. Since an aspheric lens can substantially eliminate spherical aberration with a single lens, there is no need to remove spherical aberration with a combination of a plurality of spherical lenses, thus reducing weight and reducing production costs. It becomes possible. Therefore, the aspherical lens is particularly useful as a camera lens among optical lenses.
In the present invention, the polycarbonate resin is particularly useful as a material for an optical lens having a thin, small and complicated shape because of its high molding fluidity. As a specific lens size, the thickness of the central portion is 0.05 to 3.0 mm, more preferably 0.05 to 2.0 mm, and still more preferably 0.1 to 2.0 mm. The diameter is 1.0 mm to 30.0 mm, more preferably 1.0 to 20.0 mm, and still more preferably 3.0 to 10.0 mm. In addition, it is preferably a meniscus lens having a convex surface on one side and a concave surface on the other side.
Furthermore, the aspherical lens of the present invention includes a diffractive lens, a Fresnel lens, an fθ lens, a cylinder lens, a collimator lens and the like in addition to the meniscus lens. Especially, since the moldability of the polycarbonate resin is good, it is suitable for a diffractive lens that requires transferability.
The diffractive lens of the present invention is molded by any method such as mold forming, cutting, polishing, laser processing, electric discharge processing, and edging. Furthermore, mold molding is more preferable.
In the diffractive lens of the present invention, a sawtooth diffraction grating is formed concentrically on the surface of the lens substrate. Further, an optical adjustment layer may be formed as a protective film so as to cover the diffraction grating. The shape of the optical adjustment layer opposite to the surface in contact with the lens substrate is formed so as to be substantially the same as the envelope surface passing through the grooves of the diffraction grating.
In the diffractive lens of the present invention, the optical adjustment layer is formed so as to have substantially the same shape as the envelope surface passing through the grooves of the diffraction grating, whereby the light condensing property is improved and the MTF characteristic is improved.
Note that the envelope surface passing through the grooves of the diffraction grating can take a spherical shape, an aspherical shape, a cylindrical shape, or the like. In particular, a configuration in which the envelope surface is designed to be aspherical is preferable because it is possible to correct lens aberration that could not be corrected in the case of a spherical shape. The “aspherical surface” is a curved surface that satisfies the following formula.
Figure JPOXMLDOC01-appb-I000009
The above expression represents an aspherical surface when rotated about the Z axis perpendicular to the XY plane, where c is the central curvature, and A, B, C, and D are deviations from the quadric surface. It is a coefficient to represent. Further, depending on the value of K, the following aspheric surface is obtained.
When 0> K, an ellipsoid whose minor axis is the optical axis
When -1 <K <0, the ellipsoid whose major axis is the optical axis
When K = -1, paraboloid
When K <-1, hyperboloid
In the diffractive lens of the present invention, the diffraction grating and the optical adjustment layer may be formed on one side or both sides of the lens. When formed on both sides, the diffraction gratings on both sides do not necessarily have the same depth and shape. Also, the annular zone pitch in the diffraction grating need not be the same. Further, the shape of the lens may be a convex surface on which at least one surface is formed with a diffraction grating shape and an optical adjustment layer, and may be a concave surface, a convex surface, a biconvex surface, or the like in addition to a flat surface and a convex surface. Further, it is desirable to set the depth of the diffraction grating to 20 μm or less in order to ensure the ease of mold processing, the contribution of the diffraction grating shape in terms of lens performance, and the stability to the ambient temperature. For a diffraction grating shape having a depth exceeding several tens of μm, it is difficult to mold with high processing accuracy. This is because die machining is generally performed using a cutting tool, but if the depth of the diffraction grating is deep, the amount of processing increases and the tip of the cutting tool wears, so that the processing accuracy deteriorates. At the same time, when the depth of the diffraction grating is increased, the pitch of the diffraction grating cannot be reduced. This is because when the diffraction grating becomes deep, it is necessary to process the die with a tool having a large curvature radius at the tip, and as a result, the diffraction grating cannot be processed unless the pitch of the diffraction grating is widened to some extent. As a result, as the depth of the diffraction grating increases, the degree of freedom in designing the diffraction grating shape disappears, and the aberration reduction effect by the diffraction grating almost disappears.
The aspherical diffractive lens has a thickness of 0.05 to 3.0 mm, a ring-shaped diffraction grating depth of 5 to 20 μm, a lens portion effective radius of 1.0 to 20.0 mm, a ring number of 5 to 25, and a minimum ring zone pitch of 5. It is preferably an aspherical diffractive lens having a diameter of 0.0 to 20.0 μm, a concave curvature radius of 0.1 to 10.0 mm, and a diameter of 1.0 to 30.0 mm.
The thickness of the aspherical diffractive lens is more preferably 0.1 to 2.0 mm. More preferably, the depth of the annular diffraction grating is 10 to 20 μm. More preferably, the effective radius of the lens portion is 2 to 15.0 mm. More preferably, the number of ring zones is 10 to 20. More preferably, the minimum annular zone pitch is 8.0 to 15.0 μm. More preferably, the concave curvature radius is 0.1 to 5.0 mm. More preferably, the diameter is 2.0 to 20.0 mm.
The optical adjustment layer of the diffractive lens of the present invention is preferably a resin having a lower refractive index wavelength dispersion than the lens, that is, a resin having an Abbe number larger than that of the lens. Furthermore, it is preferable that the optical adjustment layer is easy to manufacture and is easy to handle and stable after formation. Further, from the viewpoint of optical selection range and ease of manufacture, it is preferable to use a resin that can be cured on a lens diffraction grating and then cured to obtain a stable optical adjustment layer. Furthermore, in order to reduce the influence on the lens when forming the optical adjustment layer, it is preferable to use a photocurable resin such as an ultraviolet curable resin that can be produced with low energy and has a short production time. From such a viewpoint, the optical adjustment layer is preferably an ultraviolet curable acrylic resin or epoxy resin.
Various additives can be used for the optical lens of the present invention in order to impart various characteristics within a range not impairing the object of the present invention. Additives include mold release agents, heat stabilizers, UV absorbers, bluing agents, antistatic agents, flame retardants, heat ray shielding agents, fluorescent dyes (including fluorescent whitening agents), pigments, light diffusing agents, and reinforcing fillers. Other resins and elastomers can be blended.
As a mold release agent, that whose 90 weight% or more consists of ester of alcohol and a fatty acid is preferable. Specific examples of the ester of alcohol and fatty acid include monohydric alcohol and fatty acid ester and / or partial ester or total ester of polyhydric alcohol and fatty acid. The monohydric alcohol and fatty acid ester is preferably an ester of a monohydric alcohol having 1 to 20 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms. The partial ester or total ester of a polyhydric alcohol and a fatty acid is preferably a partial ester or total ester of a polyhydric alcohol having 1 to 25 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms.
Specific examples of the monohydric alcohol, saturated fatty acid and ester include stearyl stearate, palmityl palmitate, butyl stearate, methyl laurate, isopropyl palmitate and the like, and stearyl stearate is preferable.
Specific examples of partial esters or total esters of polyhydric alcohols and saturated fatty acids include stearic acid monoglyceride, stearic acid diglyceride, stearic acid triglyceride, stearic acid monosorbate, behenic acid monoglyceride, pentaerythritol monostearate, pentaerythritol tetra Full or partial esters of dipentaerythritol such as stearate, pentaerythritol tetrapelargonate, propylene glycol monostearate, biphenyl biphenate, sorbitan monostearate, 2-ethylhexyl stearate, dipentaerythritol hexastearate, etc. Is mentioned. Among these esters, stearic acid monoglyceride, stearic acid triglyceride, pentaerythritol tetrastearate, and a mixture of stearic acid triglyceride and stearyl stearate are preferably used.
The amount of the ester in the release agent is preferably 90% by weight or more, and more preferably 95% by weight or more when the release agent is 100% by weight.
The content of the release agent in the polycarbonate resin granules is preferably in the range of 0.005 to 2.0 parts by weight with respect to 100 parts by weight of the polycarbonate resin granules, and 0.01 to 0.6 parts by weight. Is more preferable, and a range of 0.02 to 0.5 parts by weight is even more preferable.
Examples of the heat stabilizer include a phosphorus heat stabilizer, a sulfur heat stabilizer, and a hindered phenol heat stabilizer.
Examples of the phosphorous heat stabilizer include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof. Specifically, triphenyl phosphite, tris (nonylphenyl) phosphite, tris ( 2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite Phyto, dioctyl monophenyl phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) penta Erisrito Diphosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, bis (nonylphenyl) pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol di Phosphite, distearyl pentaerythritol diphosphite, tributyl phosphate, triethyl phosphate, trimethyl phosphate, triphenyl phosphate, diphenyl monoorthoxenyl phosphate, dibutyl phosphate, dioctyl phosphate, diisopropyl phosphate, dimethyl benzenephosphonate, diethyl benzenephosphonate, Dipropyl benzenephosphonate, tetrakis (2,4-di-t-butylphenyl) -4,4'-biphenylenediphosphonite Tetrakis (2,4-di-t-butylphenyl) -4,3′-biphenylenediphosphonite, tetrakis (2,4-di-t-butylphenyl) -3,3′-biphenylenediphosphonite, bis ( 2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,4-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, and (6- (3- ( 3-t-butyl-4-hydroxy-5-methyl) propoxy) -2,4,8,10-tetra-t-butyldibenz (d, f) (1,3,2) -dioxaphosphipine Can be mentioned.
Among them, tris (2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, tetrakis (2,4-di-tert-butylphenyl) -4 , 4′-biphenylenediphosphonite, tetrakis (2,4-di-t-butylphenyl) -4,3′-biphenylenediphosphonite, tetrakis (2,4-di-t-butylphenyl) -3,3 '-Biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite and bis (2,4-di-tert-butylphenyl) -3-phenyl-phenylphosphonite , (6- (3- (3-t-butyl-4-hydroxy-5-methyl) propoxy) -2,4,8,10-tetra-t-butyldibenz (d f) (1,3,2) - di oxa phosphinothricin pins are used
Particularly preferred is tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, (6- (3- (3-t-butyl-4-hydroxy-5-methyl) propoxy) -2,4,8,10-tetra-t-butyldibenz (d, f) (1,3,2) -dioxaphosphipine is used, and the phosphorus compound is Sumitomo Chemical Co., Ltd. Since -16, it is marketed as Sumilizer GP (trade name), etc., and can be easily used.
The content of the phosphorous heat stabilizer in the polycarbonate resin particles is preferably 0.001 to 0.2 parts by weight with respect to 100 parts by weight of the polycarbonate resin particles.
As the sulfur-based heat stabilizer, pentaerythritol-tetrakis (3-laurylthiopropionate), pentaerythritol-tetrakis (3-myristylthiopropionate), pentaerythritol-tetrakis (3-stearylthiopropionate), Examples include dilauryl-3, 3′-thiodipropionate, dimyristyl-3, 3′-thiodipropionate, distearyl-3, 3′-thiodipropionate. Among them, pentaerythritol-tetrakis (3-laurylthiopropionate), pentaerythritol-tetrakis (3-myristylthiopropionate), dilauryl-3, 3′-thiodipropionate, dimyristyl-3, 3′-thio Dipropionate is preferred. Particularly preferred is pentaerythritol-tetrakis (3-laurylthiopropionate). The thioether compounds are commercially available from Sumitomo Chemical Co., Ltd. as Sumilizer TP-D (trade name), Sumilizer TPM (trade name), and the like, and can be easily used.
The content of the sulfur-based heat stabilizer in the polycarbonate resin particles is preferably 0.001 to 0.2 parts by weight with respect to 100 parts by weight of the polycarbonate resin particles.
Examples of the hindered phenol heat stabilizer include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionate], pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3 5-di-tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, N, N-hexamethylene bis (3,5-di-tert-butyl-4-hydroxy-hydrocinnamide) 3,5-di-tert-butyl-4-hydroxy-benzylphosphonate-diethyl ester, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate and 3,9-bis {1,1- And dimethyl-2- [β- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl} -2,4,8,10-tetraoxaspiro (5,5) undecane. . Octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate is particularly preferably used.
The content of the hindered phenol heat stabilizer in the polycarbonate resin granules is preferably 0.001 to 0.3 parts by weight with respect to 100 parts by weight of the polycarbonate resin granules.
As the UV absorber, at least one UV absorber selected from the group consisting of benzotriazole UV absorbers, benzophenone UV absorbers, triazine UV absorbers, cyclic imino ester UV absorbers, and cyanoacrylates Is preferred.
Examples of the benzotriazole ultraviolet absorber include 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-Dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′-methylenebis [4- (1,1,3 , 3-tetramethylbutyl) -6- (2N-benzotriazol-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, 2- (2-hydroxy -3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy- 3,5-di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole, 2- (2-hydroxy-4-octoxyphenyl) benzotriazole, 2,2′-methylenebis (4-cumyl-6-benzotriazolephenyl), 2,2′-p-phenylenebis (1,3-benzoxazine-4 -One), 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimidomethyl) -5-methylphenyl] benzotriazole. These can be used alone or in a mixture of two or more. Preferably, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3,5-dicumylphenyl) Phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) ) -6- (2N-benzotriazol-2-yl) phenol], 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimidomethyl) -5-methylphenyl] benzotriazole. . More preferably, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2N-benzo Triazol-2-yl) phenol].
Examples of benzophenone-based ultraviolet absorbers include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4- Methoxy-5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydridolate benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5-benzoyl-4-hydroxy-2- Methoxyphenyl) methane, 2-hy Examples include droxy-4-n-dodecyloxybenzophenone and 2-hydroxy-4-methoxy-2′-carboxybenzophenone.
Examples of the triazine ultraviolet absorber include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol, 2- (4,6-bis ( And 2.4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-[(octyl) oxy] -phenol.
Examples of cyclic imino ester UV absorbers include 2,2′-bis (3,1-benzoxazin-4-one) and 2,2′-p-phenylenebis (3,1-benzoxazin-4-one). 2,2′-m-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) bis (3,1-benzoxazin-4-one), 2,2 ′-(2,6-naphthalene) bis (3,1-benzoxazin-4-one), 2,2 ′-(1,5-naphthalene) bis (3,1-benzoxazin-4-one) ), 2,2 ′-(2-methyl-p-phenylene) bis (3,1-benzoxazin-4-one), 2,2 ′-(2-nitro-p-phenylene) bis (3,1- Benzoxazin-4-one) and 2,2 ′-(2-chloro-p-phenylene) bis (3,1-benzoxazin-4-one) and the like are exemplified. Among them, 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) bis (3,1-benzoxazin-4-one) And 2,2 ′-(2,6-naphthalene) bis (3,1-benzoxazin-4-one) are preferred, especially 2,2′-p-phenylenebis (3,1-benzoxazine-4 -On) is preferred. Such a compound is commercially available from Takemoto Yushi Co., Ltd. as CEi-P (trade name) and can be easily used.
As the cyanoacrylate ultraviolet absorber, 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2-cyano-3,3-diphenyl) Examples include acryloyl) oxy] methyl) propane and 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene.
The blending amount of the ultraviolet absorber is preferably 0.01 to 3.0 parts by weight, more preferably 0.02 to 1.0 parts by weight, even more preferably 100 parts by weight of the polycarbonate resin granules. Is 0.05 to 0.8 part by weight. If it is the range of this compounding quantity, it is possible to provide sufficient weather resistance to a polycarbonate resin molded product according to a use.
Examples of the bluing agent include Macrolex Violet B and Macrolex Blue RR manufactured by Bayer and polysynthremble-RLS manufactured by Clariant. The bluing agent is effective for eliminating the yellow color of the polycarbonate resin particles. In particular, in the case of polycarbonate resin granules with weather resistance, a certain amount of UV absorber is blended, so there is a reality that the polycarbonate resin molded product tends to be yellowish due to the "action and color of the UV absorber". In particular, the blending of a bluing agent is very effective for imparting a natural transparency to a sheet or lens.
 以下に実施例を挙げて本発明をさらに説明する。
1.評価用サンプルは以下の方法で調製した。
(a)キャストフィルム:
 得られたポリカーボネート樹脂5gを塩化メチレン50mlに溶解させ、ガラスシャーレ上にキャストする。室温にて十分に乾燥させた後、該ポリカーボネート樹脂のTgから20℃以下の温度にて8時間乾燥して。キャストフィルムを作成した。
(b)非球面レンズ:
 得られたポリカーボネート樹脂を100℃で4時間真空乾燥した後、ベント付きΦ30mm二軸押出機を用いてペレット化し、100℃にて8時間加熱乾燥した。その後、成形温度Tg+110℃、金型温度Tg−10℃にて、住友重機械(株)製SE30DU射出成形機を用いて厚さ0.6mm、凸面曲率半径5mm、凹面曲率半径4mm、Φ5mmのレンズを射出成形した。
(c)非球面回折レンズ:
 上記(b)と同様に、厚さ0.3mm、輪状回折格子深さ15μm、レンズ部有効半径0.865mm、輪帯数19本、最小輪帯ピッチ14μm、凹面曲率半径0.1mm、Φ6mmの非球面回折レンズを射出成形した。
(d)成形板
 上記(b)と同様に、幅2.5cm、長さ5cm、厚みが3mmの成形板を射出成形した。
2.評価は下記の方法によった。
(1)比粘度:
 該ポリカーボネート樹脂を十分に乾燥し、該ポリカーボネート樹脂0.7gを塩化メチレン100mlに溶解した溶液から、その溶液の20℃における比粘度(ηsp)を測定した。
(2)共重合比:
 該ポリカーボネート樹脂を日本電子社製JNM−AL400のプロトンNMRを用いて測定した。
(3)ガラス転移点(Tg):
 該ポリカーボネート樹脂をデュポン社製910型DSCにより測定した。
(4)屈折率(n)、アッベ数(v):
 上記(d)で成形した厚さ3mmの成形板を島津製作所(株)カルニュー精密屈折計KPR−2000を用いて測定した。
 v=(n−1)/(n−n)   v:アッベ数
 n:d線(587.6nm)の屈折率
 n:F線(486.1nm)の屈折率
 n:C線(656.3nm)の屈折率
(5)光弾性係数:
 上記(a)で成形した厚さ100μmのキャストフィルムを、日本分光(株)製エリプソメーターM−220を用いて589nmにおける位相差(Re)を測定し、逆正弦関数より光弾性係数を求めた。
(6)成形性:
 上記(b)で成形した非球面レンズの充填不良、各成形不良、レンズの脆さ等を目視にて確認した。評価は、成形時に欠陥品となる確率が、1%未満(◎)、1%以上~5%未満(○)5%以上~20%未満(△)、20%以上(×)で分類した。
(7)転写性:
 上記(c)で成形した非球面回折レンズをKEYENCE製カラー3Dレーザー顕微鏡VK−9710を用いて表面形状を測定した。表面形状は、輪状回折格子深さ、輪帯数等により評価し、欠陥品となる確率が、1%未満(◎)、1%以上~5%未満(○)5%以上~20%未満(△)、20%以上(×)で分類した。
(8)未反応のBis−TMCの含有量
 式(III)で表されるBis−TMCの樹脂中の含有量を野村化学製Develosil ODS−7のカラムにて溶離液アセトニトリル/0.2%酢酸水とアセトニトリルとの混合液を用いて、カラム温度30℃、検出器277nmでグラジエントプログラムにてHPLC分析した。測定は、概ポリカーボネート樹脂を1.5gを塩化メチレン15mlに溶解させた後、アセトニトリル135mlを加え攪拌し、エバポレーターで濃縮した後、0.2μmフィルターでろ過し、この測定溶液10μlを注入して行った。
 実施例1
 CHDM38.91重量部、Bis−TMC102.36重量部、ジフェニルカーボネート(以下“DPC”と省略することがある)132.39重量部、水酸化ナトリウム0.24mgおよびテトラメチルアンモニウムヒドロキシド27.3mgを、攪拌機および留出装置付きの反応釜に入れ、窒素雰囲気760Torrの下、180℃に加熱し、20分間撹拌した。その後、20分かけて減圧度を13.4kPaに調整し、60℃/hrの速度で200℃まで昇温し、40分保持した。その後、60分かけて240℃まで昇温し、エステル交換反応を行った。その後、80分かけて1Torr以下まで減圧し、240℃、1Torr以下の条件下で30分間攪拌下重合反応を行った。失活剤として、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩を14.06mg添加後、240℃、1.33×10Paで20分攪拌後、生成したポリカーボネート樹脂をペレタイズしながら抜き出した。
 該ポリカーボネート樹脂はCHDMとBis−TMCとの構成単位の比がモル比で45:55であり、比粘度は0.281であった。未反応のBis−TMCの含有量は120ppm/gであった。得られたポリカーボネート樹脂を用いて上述の(a)~(d)の方法にて評価用サンプルを調製した。
 実施例2
 実施例1のCHDMの使用量を43.26重量部、Bis−TMCの使用量を93.12重量部、DPC132.39重量部とする以外は実施例1と同様にしてポリエステルカーボネート共重合体を合成した。
 該ポリカーボネート樹脂はCHDMとBis−TMC比がモル比で50:50であり、比粘度は0.255であった。未反応のBis−TMCの含有量は180ppm/gであった。得られたポリカーボネート樹脂を用いて上述の(a)~(d)の方法にて評価用サンプルを調製した。
 実施例3
 実施例1のCHDMの使用量を47.59重量部、Bis−TMCの使用量を83.08重量部、DPC132.39重量部とする以外は実施例1と同様にしてポリエステルカーボネート共重合体を合成した。
 該ポリカーボネート樹脂はCHDMとBis−TMC比がモル比で55:55であり、比粘度は0.232であった。未反応のBis−TMCの含有量は220ppm/gであった。得られたポリカーボネート樹脂を用いて上述の(a)~(d)の方法にて評価用サンプルを調製した。
 実施例4
 実施例1のCHDMの使用量を56.24重量部、Bis−TMCの使用量を65.18重量部、DPC132.39重量部とする以外は実施例1と同様にしてポリエステルカーボネート共重合体を合成した。
 該ポリカーボネート樹脂はCHDMとBis−TMCの比がモル比で65:35であり、比粘度は0.298であった。未反応のBis−TMCの含有量は80ppm/gであった。得られたポリカーボネート樹脂を用いて上述の(a)~(d)の方法にて評価用サンプルを調製した。
 比較例1
 CHDM25.96重量部、Bis−TMC130.37重量部、DPC132.39重量部、水酸化ナトリウム0.24mgおよびテトラメチルアンモニウムヒドロキシド27.3mgを、攪拌機および留出装置付きの反応釜に入れ、窒素雰囲気760Torrの下、180℃に加熱し、20分間撹拌した。その後、20分かけて減圧度を13.4kPaに調整し、60℃/hrの速度で200℃まで昇温し、40分保持した。その後、60分かけて240℃まで昇温し、エステル交換反応を行った。その後、80分かけて1Torr以下まで減圧し、240℃、1Torr以下の条件下で2時間攪拌下重合反応を行った。その後、失活剤として、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩を14.06mg添加後、240℃、1.33×10Paで20分攪拌後、生成したポリカーボネート樹脂をペレタイズしながら抜き出した。
 該ポリカーボネート樹脂はCHDMとBis−TMCの比がモル比で30:70であり、比粘度は0.435であった。未反応のBis−TMCの含有量は20ppm/gであった。得られたポリカーボネート樹脂を用いて上述の(a)~(d)の方法にて評価用サンプルを調製した。
 比較例2
 比較例1のCHDMの使用量を60.57重量部、Bis−TMCの使用量を55.87重量部、DPC132.39重量部、240℃、1Torr以下の条件での重合反応時間を行わない以外は、比較例1と同様にしてポリカーボネート樹脂を合成した。
 該ポリカーボネート樹脂はCHDMとBis−TMCの比がモル比で70:30であり、比粘度は0.100であった。未反応のBis−TMCの含有量は550ppm/gであった。得られたポリカーボネート樹脂を用いて上述の(a)~(d)の方法にて評価用サンプルを調製した。
 比較例3
 CHDMの使用量を43.37重量部、ビスフェノールA(以下“BPA”と省略することがある)の使用量を68.67重量部、DPC132.39重量部とする以外は実施例1と同様にしてポリカーボネート樹脂を合成した。
 該ポリカーボネート樹脂はCHDMとBPAの比がモル比で50:50であり、比粘度は0.280であった。得られたポリカーボネート樹脂を用いて上述の(a)~(d)の方法にて評価用サンプルを調製した。
 比較例4
 CHDMの使用量を43.37重量部、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン(以下“Bis−Z”と省略することがある)の使用量を80.51重量部、DPC132.39重量部、240℃、1Torr以下の条件での重合反応時間を1.5時間とする以外は比較例1と同様にしてポリカーボネート樹脂を合成した。
 該ポリカーボネート樹脂はCHDMとBis−Zの比がモル比で50:50であり、比粘度は0.374であった。得られたポリカーボネート樹脂を用いて上述の(a)~(d)の方法にて評価用サンプルを調製した。
 比較例5
 比較例3のCHDMの使用量を43.33重量部、BPAの使用量を54.88重量部、Bis−TMCを18.66重量部、DPC132.39重量部とし、240℃、1Torr以下の条件での反応時間を4時間とする以外は比較例1と同様にしてポリカーボネート樹脂を合成した。
 該ポリカーボネート樹脂はCHDMとBPAとBis−TMCの比がモル比で50:40:10であり、比粘度は0.468であった。得られたポリカーボネート樹脂を用いて上述の(a)~(d)の方法にて評価用サンプルを調製した。
 比較例6
 比較例3のCHDMの使用量を43.33重量部、BPAの使用量を54.88重量部、Bis−TMCを18.66重量部、DPC132.39重量部、240℃、1Torr以下の条件での重合反応時間を30分間とする以外は、実施例1と同様にしてポリカーボネート樹脂を合成した。
 該ポリカーボネート樹脂はCHDMとBPAとBis−TMCの比がモル比で50:40:10であり、比粘度は0.285であった。得られたポリカーボネート樹脂を用いて上述の(a)~(d)の方法にて評価用サンプルを調製した。
 これら実施例1~4および比較例1~6の結果を表1に示す。
 なお、実施例1~4はTgが適切な範囲であり、レンズを成形することが可能で、アッベ数も高く光学レンズとして適している。これに対して、比較例1はアッベ数が低く、さらに上記成形条件では、比粘度が高い為成形性に乏しく、成形温度をTg+110℃以上では、樹脂が分解し、レンズを成形することができない。また、比較例2は、アッベ数は高いが、Tgが低く耐熱性が不十分であり、また比粘度が低い為成形したレンズが脆い。比較例3は、Tgが低いため、耐熱性不十分であり、上記成形条件では、樹脂が固化しにくく成形性できない。比較例4は、Tgが低く耐熱性に劣る。また、上記成形条件では、比粘度が高く転写性に劣る。比較例5は、Tgが低く耐熱性に劣り、光弾性係数も大きい。比較例6は、Tgが低く、光弾性係数も大きい。また、上記成形条件では、型離れが悪く成形性に劣る。これらの理由により比較例1~6では、光学レンズに使用できない、もしくは、使用範囲が限られる。
Figure JPOXMLDOC01-appb-T000010
発明の効果
 本発明の光学レンズは、高いアッベ数を有し、さらに実用十分な耐熱性と、高い成形流動性を併せ持つ。本発明の光学レンズは、高価なガラスレンズの分野に好適に利用できる。
The following examples further illustrate the present invention.
1. An evaluation sample was prepared by the following method.
(A) Cast film:
5 g of the obtained polycarbonate resin is dissolved in 50 ml of methylene chloride and cast on a glass petri dish. After sufficiently drying at room temperature, it was dried for 8 hours at a temperature of 20 ° C. or less from the Tg of the polycarbonate resin. A cast film was created.
(B) Aspheric lens:
The obtained polycarbonate resin was vacuum-dried at 100 ° C. for 4 hours, then pelletized using a Φ30 mm twin screw extruder with a vent, and heat-dried at 100 ° C. for 8 hours. Thereafter, a lens having a thickness of 0.6 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a Φ5 mm using a SE30DU injection molding machine manufactured by Sumitomo Heavy Industries, Ltd. at a molding temperature of Tg + 110 ° C. and a mold temperature of Tg-10 ° C. Was injection molded.
(C) Aspherical diffractive lens:
Similar to (b) above, the thickness is 0.3 mm, the ring-shaped diffraction grating is 15 μm deep, the lens portion has an effective radius of 0.865 mm, the number of ring zones is 19, the minimum ring zone pitch is 14 μm, the concave curvature radius is 0.1 mm, and Φ6 mm An aspherical diffractive lens was injection molded.
(D) Molded plate In the same manner as (b) above, a molded plate having a width of 2.5 cm, a length of 5 cm, and a thickness of 3 mm was injection molded.
2. Evaluation was based on the following method.
(1) Specific viscosity:
The polycarbonate resin was sufficiently dried, and the specific viscosity (η sp ) at 20 ° C. of the solution was measured from a solution in which 0.7 g of the polycarbonate resin was dissolved in 100 ml of methylene chloride.
(2) Copolymerization ratio:
The polycarbonate resin was measured using proton NMR of JNM-AL400 manufactured by JEOL.
(3) Glass transition point (Tg):
The polycarbonate resin was measured by DuPont 910 type DSC.
(4) Refractive index ( nd ), Abbe number (v):
The 3 mm-thick molded plate molded in the above (d) was measured using a Shimadzu Corp. Kalnew precision refractometer KPR-2000.
v = (n d −1) / (n f −n c ) v: Abbe number n d : refractive index of d line (587.6 nm) n f : refractive index of F line (486.1 nm) n c : C Refractive index of line (656.3 nm) (5) Photoelastic coefficient:
The cast film having a thickness of 100 μm formed in the above (a) was measured for phase difference (Re) at 589 nm using an ellipsometer M-220 manufactured by JASCO Corporation, and the photoelastic coefficient was obtained from the inverse sine function. .
(6) Formability:
The aspherical lens molded in the above (b) was visually checked for filling defects, molding defects, lens brittleness, and the like. Evaluation was classified according to the probability of being defective during molding, less than 1% (◎), 1% or more to less than 5% (5), 5% to less than 20% (Δ), or 20% or more (x).
(7) Transferability:
The surface shape of the aspherical diffraction lens molded in the above (c) was measured using a color 3D laser microscope VK-9710 manufactured by KEYENCE. The surface shape is evaluated by the depth of the annular diffraction grating, the number of zones, etc., and the probability of being a defective product is less than 1% (、 1), 1% to less than 5% (○) 5% to less than 20% ( Δ), classified by 20% or more (×).
(8) Content of unreacted Bis-TMC The content of Bis-TMC represented by the formula (III) in the resin was eluted with a column of Develosil ODS-7 manufactured by Nomura Chemical, acetonitrile / 0.2% acetic acid. Using a mixed solution of water and acetonitrile, HPLC analysis was performed with a gradient program at a column temperature of 30 ° C. and a detector of 277 nm. The measurement was carried out by dissolving 1.5 g of polycarbonate resin in 15 ml of methylene chloride, adding 135 ml of acetonitrile, stirring, concentrating with an evaporator, filtering with a 0.2 μm filter, and injecting 10 μl of this measurement solution. It was.
Example 1
CHDM 38.91 parts by weight, Bis-TMC 102.36 parts by weight, diphenyl carbonate (hereinafter sometimes abbreviated as “DPC”) 132.39 parts by weight, sodium hydroxide 0.24 mg and tetramethylammonium hydroxide 27.3 mg The mixture was placed in a reaction kettle equipped with a stirrer and a distillation apparatus, heated to 180 ° C. under a nitrogen atmosphere of 760 Torr, and stirred for 20 minutes. Thereafter, the degree of vacuum was adjusted to 13.4 kPa over 20 minutes, the temperature was raised to 200 ° C. at a rate of 60 ° C./hr, and held for 40 minutes. Then, it heated up to 240 degreeC over 60 minutes, and transesterification was performed. Thereafter, the pressure was reduced to 1 Torr or less over 80 minutes, and the polymerization reaction was carried out with stirring for 30 minutes under the conditions of 240 ° C. and 1 Torr or less. After adding 14.06 mg of dodecylbenzenesulfonic acid tetrabutylphosphonium salt as a deactivator and stirring at 240 ° C. and 1.33 × 10 4 Pa for 20 minutes, the produced polycarbonate resin was extracted while pelletizing.
The polycarbonate resin had a molar ratio of CHDM to Bis-TMC of 45:55 and a specific viscosity of 0.281. The content of unreacted Bis-TMC was 120 ppm / g. An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin.
Example 2
A polyester carbonate copolymer was prepared in the same manner as in Example 1 except that the amount of CHDM used in Example 1 was 43.26 parts by weight, the amount of Bis-TMC used was 93.12 parts by weight, and DPC 132.39 parts by weight. Synthesized.
The polycarbonate resin had a CHDM to Bis-TMC ratio of 50:50 in molar ratio and a specific viscosity of 0.255. The content of unreacted Bis-TMC was 180 ppm / g. An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin.
Example 3
A polyester carbonate copolymer was prepared in the same manner as in Example 1 except that the amount of CHDM used in Example 1 was 47.59 parts by weight, the amount of Bis-TMC used was 83.08 parts by weight, and DPC 132.39 parts by weight. Synthesized.
The polycarbonate resin had a molar ratio of CHDM to Bis-TMC of 55:55 and a specific viscosity of 0.232. The content of unreacted Bis-TMC was 220 ppm / g. An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin.
Example 4
A polyester carbonate copolymer was prepared in the same manner as in Example 1 except that the amount of CHDM used in Example 1 was 56.24 parts by weight, the amount of Bis-TMC used was 65.18 parts by weight, and DPC 132.39 parts by weight. Synthesized.
The polycarbonate resin had a molar ratio of CHDM to Bis-TMC of 65:35 and a specific viscosity of 0.298. The content of unreacted Bis-TMC was 80 ppm / g. An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin.
Comparative Example 1
25.96 parts by weight of CHDM, 130.37 parts by weight of Bis-TMC, 132.39 parts by weight of DPC, 0.24 mg of sodium hydroxide and 27.3 mg of tetramethylammonium hydroxide were placed in a reaction kettle equipped with a stirrer and a distiller, and nitrogen was added. The mixture was heated to 180 ° C. under an atmosphere of 760 Torr and stirred for 20 minutes. Thereafter, the degree of vacuum was adjusted to 13.4 kPa over 20 minutes, the temperature was raised to 200 ° C. at a rate of 60 ° C./hr, and held for 40 minutes. Then, it heated up to 240 degreeC over 60 minutes, and transesterification was performed. Thereafter, the pressure was reduced to 1 Torr or less over 80 minutes, and the polymerization reaction was carried out with stirring for 2 hours under the conditions of 240 ° C. and 1 Torr or less. Then, after adding 14.06 mg of dodecylbenzenesulfonic acid tetrabutylphosphonium salt as a deactivator and stirring at 240 ° C. and 1.33 × 10 4 Pa for 20 minutes, the produced polycarbonate resin was extracted while pelletizing.
The polycarbonate resin had a molar ratio of CHDM to Bis-TMC of 30:70 and a specific viscosity of 0.435. The content of unreacted Bis-TMC was 20 ppm / g. An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin.
Comparative Example 2
The amount of CHDM used in Comparative Example 1 was 60.57 parts by weight, the amount of Bis-TMC used was 55.87 parts by weight, DPC 132.39 parts by weight, and the polymerization reaction time was not performed under the conditions of 240 ° C. and 1 Torr or less. In the same manner as in Comparative Example 1, a polycarbonate resin was synthesized.
The polycarbonate resin had a molar ratio of CHDM to Bis-TMC of 70:30 and a specific viscosity of 0.100. The content of unreacted Bis-TMC was 550 ppm / g. An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin.
Comparative Example 3
The same procedure as in Example 1 was performed except that the amount of CHDM used was 43.37 parts by weight, the amount of bisphenol A (hereinafter sometimes referred to as “BPA”) was 68.67 parts by weight, and DPC 132.39 parts by weight. Thus, a polycarbonate resin was synthesized.
The polycarbonate resin had a CHDM to BPA ratio of 50:50 in molar ratio and a specific viscosity of 0.280. An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin.
Comparative Example 4
The amount of CHDM used was 43.37 parts by weight, the amount of 1,1-bis (4-hydroxyphenyl) cyclohexane (hereinafter sometimes abbreviated as “Bis-Z”) was 80.51 parts by weight, and DPC 132.39. A polycarbonate resin was synthesized in the same manner as in Comparative Example 1 except that the polymerization reaction time under the conditions of parts by weight, 240 ° C. and 1 Torr or less was 1.5 hours.
The polycarbonate resin had a molar ratio of CHDM to Bis-Z of 50:50 and a specific viscosity of 0.374. An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin.
Comparative Example 5
The amount of CHDM used in Comparative Example 3 was 43.33 parts by weight, the amount of BPA used was 54.88 parts by weight, Bis-TMC was 18.66 parts by weight, and DPC 132.39 parts by weight, at 240 ° C. and 1 Torr or less. A polycarbonate resin was synthesized in the same manner as in Comparative Example 1 except that the reaction time was 4 hours.
The polycarbonate resin had a molar ratio of CHDM, BPA and Bis-TMC of 50:40:10, and a specific viscosity of 0.468. An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin.
Comparative Example 6
The amount of CHDM used in Comparative Example 3 was 43.33 parts by weight, the amount of BPA used was 54.88 parts by weight, Bis-TMC was 18.66 parts by weight, DPC 132.39 parts by weight, 240 ° C., 1 Torr or less. A polycarbonate resin was synthesized in the same manner as in Example 1 except that the polymerization reaction time was 30 minutes.
The polycarbonate resin had a molar ratio of CHDM, BPA and Bis-TMC of 50:40:10, and a specific viscosity of 0.285. An evaluation sample was prepared by the methods (a) to (d) described above using the obtained polycarbonate resin.
Table 1 shows the results of Examples 1 to 4 and Comparative Examples 1 to 6.
In Examples 1 to 4, Tg is in an appropriate range, a lens can be molded, the Abbe number is high, and it is suitable as an optical lens. On the other hand, Comparative Example 1 has a low Abbe number and, under the above molding conditions, the specific viscosity is high, resulting in poor moldability. When the molding temperature is Tg + 110 ° C. or higher, the resin decomposes and the lens cannot be molded. . In Comparative Example 2, although the Abbe number is high, the Tg is low and the heat resistance is insufficient, and the molded lens is brittle because the specific viscosity is low. Since Comparative Example 3 has a low Tg, the heat resistance is insufficient, and the resin is hard to solidify and cannot be molded under the above molding conditions. Comparative Example 4 has a low Tg and poor heat resistance. Further, under the above molding conditions, the specific viscosity is high and the transferability is poor. Comparative Example 5 has a low Tg, poor heat resistance, and a large photoelastic coefficient. Comparative Example 6 has a low Tg and a large photoelastic coefficient. Further, under the above molding conditions, the mold release is poor and the moldability is poor. For these reasons, Comparative Examples 1 to 6 cannot be used for optical lenses, or the range of use is limited.
Figure JPOXMLDOC01-appb-T000010
Effects of the Invention The optical lens of the present invention has a high Abbe number, and further has both heat resistance sufficient for practical use and high molding fluidity. The optical lens of the present invention can be suitably used in the field of expensive glass lenses.
 本発明の光学レンズは、高いアッベ数を有し、さらに実用十分な耐熱性と、高い成形流動性を併せ持つため、カメラレンズ、プロジェクターレンズ、ピックアップレンズ、回折レンズなどの各種光学レンズに好適に利用できる。 The optical lens of the present invention has a high Abbe number, and further has practically sufficient heat resistance and high molding fluidity. it can.

Claims (7)

  1.  下記式(I)
    Figure JPOXMLDOC01-appb-I000001
    で表される構成単位(I)および下記式(II)
    Figure JPOXMLDOC01-appb-I000002
    で表される構成単位(II)を含み、構成単位(II)の割合が構成単位(I)および(II)の合計に対して55~35モル%であり、
    該ポリカーボネート樹脂0.7gを100mlの塩化メチレンに溶解し、20℃で測定した比粘度が0.12~0.298である、
    ことを特徴とするポリカーボネート樹脂からなる光学レンズ。
    Formula (I)
    Figure JPOXMLDOC01-appb-I000001
    A structural unit (I) represented by the formula (II)
    Figure JPOXMLDOC01-appb-I000002
    And the proportion of the structural unit (II) is 55 to 35 mol% with respect to the total of the structural units (I) and (II),
    0.7 g of the polycarbonate resin is dissolved in 100 ml of methylene chloride, and the specific viscosity measured at 20 ° C. is 0.12 to 0.298.
    An optical lens made of a polycarbonate resin.
  2.  ポリカーボネート樹脂中の下記式(III)で表される化合物の含有量が50~300ppm/gである請求項1記載の光学レンズ。
    Figure JPOXMLDOC01-appb-I000003
    2. The optical lens according to claim 1, wherein the content of the compound represented by the following formula (III) in the polycarbonate resin is 50 to 300 ppm / g.
    Figure JPOXMLDOC01-appb-I000003
  3.  ポリカーボネート樹脂のガラス転移点が115~160℃であり、かつアッベ数が43~35である請求項1記載の光学レンズ。 The optical lens according to claim 1, wherein the polycarbonate resin has a glass transition point of 115 to 160 ° C and an Abbe number of 43 to 35.
  4.  ポリカーボネート樹脂の光弾性係数が50×10−12Pa−1~30×10−12Pa−1である請求項1記載の光学レンズ。 The optical lens according to claim 1 , wherein the polycarbonate resin has a photoelastic coefficient of 50 × 10 −12 Pa −1 to 30 × 10 −12 Pa −1 .
  5.  ポリカーボネート樹脂の屈折率が1.53~1.55である請求項1記載の光学レンズ。 2. The optical lens according to claim 1, wherein the refractive index of the polycarbonate resin is 1.53 to 1.55.
  6.  回折レンズである請求項1記載の光学レンズ。 The optical lens according to claim 1, which is a diffractive lens.
  7.  回折レンズは、厚さ0.05~3.0mm、輪状回折格子深さ5~20μm、レンズ部有効半径1.0~20.0mm、輪帯数5~25本、最小輪帯ピッチ5~20μm、凹面曲率半径0.1~10.0mm、直径1.0~30.0mmの非球面回折レンズである請求項6記載の光学レンズ。 The diffractive lens has a thickness of 0.05 to 3.0 mm, an annular diffraction grating depth of 5 to 20 μm, an effective radius of the lens portion of 1.0 to 20.0 mm, a number of ring zones of 5 to 25, and a minimum ring zone pitch of 5 to 20 μm. The optical lens according to claim 6, which is an aspherical diffractive lens having a concave curvature radius of 0.1 to 10.0 mm and a diameter of 1.0 to 30.0 mm.
PCT/JP2012/051009 2011-01-14 2012-01-12 Optical lens comprising aromatic-aliphatic polycarbonate resin WO2012096410A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137016272A KR101881616B1 (en) 2011-01-14 2012-01-12 Optical lens comprising aromatic-aliphatic polycarbonate resin
CN201280004501.6A CN103339531B (en) 2011-01-14 2012-01-12 The optical lens being formed by aromatic-aliphatic polycarbonate resin
JP2012552780A JP5688101B2 (en) 2011-01-14 2012-01-12 Optical lens made of aromatic-aliphatic polycarbonate resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-005982 2011-01-14
JP2011005982 2011-01-14

Publications (1)

Publication Number Publication Date
WO2012096410A1 true WO2012096410A1 (en) 2012-07-19

Family

ID=46507286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051009 WO2012096410A1 (en) 2011-01-14 2012-01-12 Optical lens comprising aromatic-aliphatic polycarbonate resin

Country Status (5)

Country Link
JP (1) JP5688101B2 (en)
KR (1) KR101881616B1 (en)
CN (1) CN103339531B (en)
TW (1) TWI515223B (en)
WO (1) WO2012096410A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019768A1 (en) * 2013-08-06 2015-02-12 コニカミノルタ株式会社 Lens array, lens array stack, and method for fabrication thereof
US20150291767A1 (en) * 2012-11-05 2015-10-15 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded article
JP6014788B1 (en) * 2015-04-20 2016-10-25 住化スタイロンポリカーボネート株式会社 Polycarbonate resin composition and molded product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102394019B1 (en) * 2016-07-21 2022-05-03 미츠비시 가스 가가쿠 가부시키가이샤 Monomer composition, and method for producing polycarbonate resin
KR102362026B1 (en) * 2017-08-30 2022-02-10 데이진 가부시키가이샤 Thermoplastic resin and optical member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090501A (en) * 2000-07-11 2002-03-27 Teijin Chem Ltd Plastic lens
JP2002293911A (en) * 2001-03-28 2002-10-09 Teijin Chem Ltd Copolymerized polycarbonate resin
JP2003090901A (en) * 2001-07-09 2003-03-28 Teijin Chem Ltd Plastic lens

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW500740B (en) * 1999-09-22 2002-09-01 Teijin Ltd Method of crystallizing low-molecular polycarbonate and process for producing polycarbonate resin from the same
EP1302785B1 (en) * 2000-07-11 2008-08-27 Teijin Chemicals, Ltd. Plastic lens
CN1205268C (en) * 2001-10-02 2005-06-08 帝人株式会社 Polycarbonate composition with excellent releasability from mold
CN101300286B (en) * 2005-11-10 2011-03-30 帝人化成株式会社 Optical device and achromatic lens
JP2009300507A (en) * 2008-06-10 2009-12-24 Panasonic Corp Diffraction lens, method and apparatus of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090501A (en) * 2000-07-11 2002-03-27 Teijin Chem Ltd Plastic lens
JP2002293911A (en) * 2001-03-28 2002-10-09 Teijin Chem Ltd Copolymerized polycarbonate resin
JP2003090901A (en) * 2001-07-09 2003-03-28 Teijin Chem Ltd Plastic lens

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150291767A1 (en) * 2012-11-05 2015-10-15 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded article
US9896569B2 (en) * 2012-11-05 2018-02-20 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded article
WO2015019768A1 (en) * 2013-08-06 2015-02-12 コニカミノルタ株式会社 Lens array, lens array stack, and method for fabrication thereof
JPWO2015019768A1 (en) * 2013-08-06 2017-03-02 コニカミノルタ株式会社 LENS ARRAY, LENS ARRAY LAMINATE, AND MANUFACTURING METHOD THEREOF
JP6014788B1 (en) * 2015-04-20 2016-10-25 住化スタイロンポリカーボネート株式会社 Polycarbonate resin composition and molded product

Also Published As

Publication number Publication date
CN103339531B (en) 2016-05-25
TWI515223B (en) 2016-01-01
JPWO2012096410A1 (en) 2014-06-09
CN103339531A (en) 2013-10-02
TW201245275A (en) 2012-11-16
KR20140006810A (en) 2014-01-16
KR101881616B1 (en) 2018-07-24
JP5688101B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP6464227B2 (en) Optical lens comprising polycarbonate copolymer resin composition
KR102314910B1 (en) Polycarbonate resin, manufacturing method thereof, and optical lens
KR102191076B1 (en) Polycarbonate resin, production method therefor, and optical molded body
KR102478201B1 (en) Polycarbonate resin composition and optical lens using the same
KR102255780B1 (en) Polycarbonate resin composition, and optical material and optical lens each manufactured using same
KR102245600B1 (en) Thermoplastic resin
JP5808959B2 (en) High refractive index polycarbonate copolymer and optical lens
JP2019131824A (en) Method for producing thermoplastic resin
WO2017175693A1 (en) Polycarbonate copolymer, optical lens and film in which said polycarbonate copolymer is used, and method for producing said copolymer
JP5688101B2 (en) Optical lens made of aromatic-aliphatic polycarbonate resin
KR20230009871A (en) Polycarbonate resin, optical lens and optical film using the same
JP5808960B2 (en) Polycarbonate copolymer and optical lens having high refractive index and excellent heat resistance
JP2010256621A (en) Optical lens comprising high-refractive index polycarbonate copolymer
JP5808961B2 (en) Polycarbonate copolymer for optical lens and optical lens comprising the polycarbonate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12733882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012552780

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137016272

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12733882

Country of ref document: EP

Kind code of ref document: A1