WO2012096279A1 - Glass material and method for producing glass material - Google Patents

Glass material and method for producing glass material Download PDF

Info

Publication number
WO2012096279A1
WO2012096279A1 PCT/JP2012/050328 JP2012050328W WO2012096279A1 WO 2012096279 A1 WO2012096279 A1 WO 2012096279A1 JP 2012050328 W JP2012050328 W JP 2012050328W WO 2012096279 A1 WO2012096279 A1 WO 2012096279A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ppm
solution
glass material
less
Prior art date
Application number
PCT/JP2012/050328
Other languages
French (fr)
Japanese (ja)
Inventor
博章 木下
後藤 篤史
マーチン メニク
カステン シュミット
ヘルム シュミット
エルツグルル アルパッチ
エシン ブルンカヤ
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Publication of WO2012096279A1 publication Critical patent/WO2012096279A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass

Definitions

  • the present invention relates to a glass material for a light guide fiber for an endoscope and a method for producing the glass material for the fiber.
  • the light guide that transmits light has a configuration in which a large number of fibers are bundled.
  • one fiber 10 includes a core 11 that transmits light, and a cladding 12 that is provided outside the core 11 and reflects light so that the light does not leak outside.
  • the core 11 is made of high refractive index glass
  • the cladding 12 is made of glass having a lower refractive index than the core 11.
  • Lead glass is known as a high refractive index glass, but glass that does not contain lead (hereinafter, also referred to as “lead-free glass”) has been developed for environmental reasons.
  • lead-free glass glass that does not contain lead
  • Japanese Patent Application Laid-Open No. 2004-256389 discloses an aluminosilicate glass that does not contain lead.
  • both the fiber for endoscope and the optical fiber for optical communication have a function of guiding light, and the basic portions are similar.
  • the optical fiber for optical communication is called a single mode fiber, which transmits light of a predetermined narrow wavelength over a long distance of several kilometers or more
  • the optical fiber for an endoscope is called a multimode fiber, which is a wide visible light.
  • the structure and manufacturing method of the optical fiber for endoscope are basically similar to the structure and manufacturing method of the optical fiber for optical communication, but the manufacturing conditions and the like are greatly different.
  • the numerical aperture NA of the optical fiber for optical communication is about 0.1 to 0.2
  • the NA of the optical fiber for endoscope is 0.5 or more.
  • a to B means A to B.
  • a light guide that transmits light from a light source to the distal end of the endoscope is used for normal light observation by irradiation with white light (for example, a wavelength of 380 nm to 750 nm).
  • white light for example, a wavelength of 380 nm to 750 nm.
  • lead-free glass is more likely to have impurities mixed into the glass material than lead-containing glass. For this reason, it is not easy to obtain a light-gite fiber having a high light transmittance.
  • NBI Narrow Band Imaging
  • light in two narrow wavelength ranges (390 to 445 nm / 530 to 550 nm) that is easily absorbed by hemoglobin in the blood is irradiated, and Easily distinguish tumor tissue by highlighting capillaries and fine mucosal patterns.
  • AFI auto-fluorescence observation
  • the tissue is irradiated with narrow band light having a wavelength of 390 to 470 nm as excitation light.
  • the autofluorescence observation uses the characteristic that the autofluorescence generated by the excitation light is attenuated in the tumor tissue as compared with the normal tissue. For this reason, in particular, a high light transmittance for blue light (for example, a wavelength of 380 nm to 470 nm) is required for a glass for a light guide fiber for an endoscope.
  • an oxide such as silica or La 2 O 3 or a carbonate such as BaCO 3 is used as a raw material.
  • These raw materials have been highly purified and are commercially available from raw material manufacturers, but the amount of impurities such as Fe, Cr, Co, Ni, and Cu is several ppm to 100 ppm, and few are less than 1 ppm.
  • a raw material having an impurity amount of 0.1 ppm or less is not available at an industrial level.
  • ZrO 2 contains a relatively large amount of impurities because it is difficult to purify the raw material.
  • An object of the present invention is to provide a glass material capable of producing a light-gite fiber having a high light transmittance and a method for producing the glass material.
  • the glass material is a glass precursor called dry gel or xerogel.
  • the glass material of the embodiment of the present invention is a raw material for the core glass of the light guide fiber, and the main components SiO 2 and BaO are 20 to 55 wt% and 20 to 35 wt% Fe, respectively, and the impurity Cr. , Co, Ni, Cu, and Pt are made of a powdery xerogel containing 1 ppm or less and containing no Pb.
  • the manufacturing method of the glass material of the core glass of the fiber for light guides of another embodiment of this invention produces the 1st solution containing the metal alkoxide compound which has at least Si, and a nonaqueous solvent.
  • the second solution preparation step of preparing a second solution containing a plurality of metal element compounds and water, the first solution and the second solution, Fe , Cr, Co, Ni, Cu, and Pt are removed until the total content is 1 ppm or less, the first solution and the second solution are mixed, and a mixed solution containing no Pb is obtained.
  • the light guide fiber 10 has a cladding 12 made of low refractive index glass that reflects light so that light does not leak out from the side of the core on the outer periphery of the core 11 made of high refractive index glass that transmits light. Have.
  • An example of a method for manufacturing the light guide fiber 10 is a preform method.
  • a preform method first, a preform having a large clad diameter and core diameter is produced by a rod-in-tube method or a double crucible method.
  • the rod-in-tube method is a method of inserting a rod made of core glass into a hollow portion of a tube made of clad glass. A clad glass heated and imparted with flexibility to the outside of the core glass rod may be wound. Then, a part of the preform is drawn, that is, heated and stretched to obtain the light-gite fiber 10 having a desired diameter.
  • the core glass is melted in the center of the double crucible, the clad glass is melted around it, and the melted core glass and clad glass are simultaneously extruded from each nozzle and cooled to produce a fiber. is there.
  • the following conditions are required for the clad glass.
  • the refractive index is lower than that of the core glass.
  • Good chemical durability is close to that of the core glass.
  • Crystal does not precipitate during fiber drawing.
  • the clad glass material is selected from known lead-free glasses in consideration of compatibility with the core glass of the present invention described later.
  • SiO 2 41 to 46 wt%, B 2 O 3 ⁇ 14 wt%, Al 2 O 3 ⁇ 10 wt%, Na 2 O ⁇ 11 wt%, K 2 O ⁇ 14 wt%, Li 2 O ⁇ 1.5 wt%, F ⁇ 0.2 wt%, and conventional amounts of fining agents.
  • the glass of the composition which contains can be used.
  • the transmittance of glass is measured based on Japanese Optical Glass Industry Standard JPG 17-1982.
  • the transmittance is calculated by measuring the transmittance of two glass samples (3 mm, 10 mm) having different thicknesses and excluding the loss due to surface reflection, and is indicated by the transmittance (%) at 10 mm.
  • the above method using a 10 mm thick sample has insufficient measurement accuracy, so it cannot be judged pass / fail.
  • the length of the light guide of the medical endoscope is very long, for example, 3.6 m.
  • the transmittance of a light guide having a length of 3.6 m is 78% (78% / 3.6 m) or more, and the transmittance at a measurement length of 10 mm is 99.93% or more.
  • the transmittance measurement accuracy is only about ⁇ 0.1%. That is, the actual transmittance of a glass having a measured value of 99.93% / 10 mm may be in the range of 99.83 to 100.93% / 10 mm.
  • the transmittance range is 54.2 to 111.4% / 3.6 m, it is not possible to judge the quality of the glass. Therefore, a more accurate measurement method has been essential to determine whether glass is practically available.
  • the present inventor made a glass sample having a thickness of about 30 cm and a glass sample having a thickness of 1 cm (10 mm), and used a method of removing surface reflection by calculation. Furthermore, the light path of a normal commercial measuring instrument's focused beam changes depending on the refractive index and thickness, so the size of the image on the photocathode on the detector changes, resulting in a change in the measured value. there were. For this reason, a parallel light flux precisely controlled by a self-made jig was used for the measurement.
  • the glass bar having a length of approximately 30 cm, that is, a thickness of 30 cm, used for the measurement is a semi-finished product that is processed after the measurement and drawn into the fiber 10 by, for example, the rod-in-tube method. That is, in this measurement method, the quality of the glass can be determined during the production.
  • the transmittance at a measurement length of 30 cm of glass having 78% (78% / 3.6 m), for example, as the transmittance at a wavelength of 400 nm with the light guide having a length of 3.6 m is 97.95%. Even if the measurement accuracy is ⁇ 0.1%, it is only 12 to convert the transmittance with a measurement length of 30 cm into the transmittance with a measurement length of 3.6 m. As a result, the transmittance range is 79.99 to 78.95% / 3.6 m, so that the quality of the glass can be substantially judged.
  • the 30 cm long transmittance (T380-750) of light having a wavelength of 380 to 750 nm and the 30 cm long transmittance (T400) of wavelength 400 nm were measured by the above-described methods.
  • the transmittance (T380-750) was the average value of the transmittance of light in the wavelength range of 380 to 750 nm.
  • the main component composition was measured by EPMA, and the impurity content was measured by ICP-MS.
  • a composition etc. are shown, it means that the material which contains "0%" as a range of content is not an essential component but an arbitrary component.
  • “less than” means that the measurement limit is not exceeded.
  • the specific surface area of the glass material was calculated as a BET value by a gas adsorption method using nitrogen gas.
  • the glass material G1 manufactured by the sol-gel method is mixed by mixing a first solution containing a metal alkoxide compound and a non-aqueous solvent and a second solution containing a metal element compound and water. It is manufactured by.
  • the first solution includes, for example, a metal alkoxide compound having Si such as Si (OC 2 H 5 ) 4 (TEOS), and ethanol as a solvent.
  • a metal alkoxide compound having Si such as Si (OC 2 H 5 ) 4 (TEOS)
  • TEOS oxy 2 H 5
  • ethanol as a solvent.
  • the alkoxide compound is controlled so as to be substantially free of water because it is unstable in the presence of water and gels by hydrolysis and polycondensation reactions.
  • a state that does not substantially contain water refers to a state in which the gelation reaction does not proceed at a problem rate in production.
  • the non-aqueous solvent of the first solution is used after being sufficiently dehydrated.
  • the non-aqueous solvent alcohols such as methanol and propanol, ketones such as methyl ethyl ketone, and other known solvents can be used.
  • TEOS having Si that becomes SiO 2 which is the main component of the glass material G1 is used as an essential component because it is easily available.
  • the metal alkoxide compound having Si may be, for example, butyl silicate in which the carbon number of the alkoxy group is changed, or a compound in which the skeleton of the alkoxy group is changed.
  • the first solution which is a component of glass GG1, B 2 O 3, Al 2 O 3, a ZrO 2, B, Al, and Zr, may be mixed with the metal alkoxide compound containing, respectively. That is, the first solution includes a metal alkoxide compound having an element that is a component of the glass GG1.
  • Zr alkoxide compounds include tetramethoxy zirconium (Zr (OCH 3 ) 4 ), tetraethoxy (Et) zirconium (Zr (OC 2 H 5 ) 4 ), tetra-i-propoxy (Pr) zirconium (Zr (O -I-C 3 H 7 ) 4 ), tetra-n-propoxyzirconium (Zr (On-C 3 H 7 ) 4 ), tetra-i-butoxy (Bu) zirconium (Zr (Oi-C 4 H 9 ) 4 ), tetra-n-butoxyzirconium (Zr (On-C 4 H 9 ) 4 ), tetra-sec-butoxyzirconium (Zr (O-sec-C 4 H 9 ) 4 ), or tetra -T-butoxyzirconium (Zr (Ot-C 4 H 9 ) 4 ), etc. can be used.
  • a compound that is not a metal alkoxide compound may be mixed with the first solution as long as it contains the element of the glass GG1 element, dissolves in the solvent of the first solution, and does not contain moisture.
  • the phrase “not containing water” includes the case where the metal alkoxide has a minimum water content that does not cause hydrolysis and polycondensation.
  • the first solution has a composition having the following group A compounds.
  • the 2nd solution contains the compound used as the component of the glass material G1 which was not added to the 1st solution, and uses water as a solvent. Many elements can be added to the first solution as a metal alkoxide compound, but the alkoxide compound is expensive because it is difficult to alkoxide depending on the element. For this reason, a part of component of glass material G1 is added to a 2nd solution as an inexpensive metal salt. Note that an acid serving as a catalyst for the gelation reaction may be added to the second solution.
  • the second solution has a composition having the following group B compounds.
  • Each element that is a component of the glass material G1 may be included in at least one of the first solution and the second solution.
  • aluminum may be contained in the first solution as aluminum alkoxide as described above, or may be contained in the second solution as a metal salt such as aluminum nitrate, It may be included.
  • the metal salt contained in the second solution may be acetate.
  • transition elements such as Fe, Cr, Co, Ni, Cu, and Pt have a great influence on the transmittance of light having a wavelength of 380 nm to 750 nm.
  • the first solution and the second solution are subjected to distillation, column adsorption, or the like until the total content of the six kinds of metals of Fe, Cr, Co, Ni, Cu, and Pt becomes 1 ppm. It has been found that it is possible to obtain a light guide fiber having desired characteristics by purifying by the above method.
  • the first solution is purified to a total value of the metal content of 0.6 ppm or less
  • the second solution is purified to a total value of the metal content of 0.4 ppm or less.
  • the total content of the first solution and the second solution that is, the total content of the mixed solution can be 1 ppm or less.
  • platinum (Pt) is one of the transition elements based on the description in the physics and chemistry dictionary.
  • the compound in a liquid state for example, a metal alkoxide compound, before the preparation into the first solution or the second solution, may be purified in advance before the preparation.
  • Glass GG1 is a lead-free glass having desired characteristics, and thus is a multi-component containing many kinds of elements. Since each element has a different specific gravity and melting point, it is difficult to mix in a solid state. Even when heated and melted, uniform mixing is not easy. However, since the glass material G1 of the present embodiment is mixed in a solution state, it is easy to make uniform.
  • the glass material G1 of this embodiment is a powdery xerogel.
  • xerogel is a gel having a network structure and is one type of dry gel, but has a larger specific surface area than a normal dry gel obtained by drying a jelly-like gel.
  • the specific surface area of the glass material G1 is 500 to 1000 m 2 / g.
  • the density is 0.05 to 0.5 g / cm 3 .
  • the glass material G1 having a specific surface area within the above range has a low melting temperature and enables energy-saving production, and impurities from the container are hardly mixed at the time of melting.
  • the mixed solution of the glass material G1 is preferably made into a xerogel by gelling by a spray drying method and removing the solvent.
  • the mixed solution is ejected from the nozzle into a fine mist. Then, in the space heated to, for example, 200 ° C., the mist-like mixed solution becomes xerogel after the solvent is removed.
  • the gelation reaction starts when the first solution and the second solution are mixed. That is, when the mixed solution is allowed to stand for a predetermined time, it becomes a jelly-like gel containing a solvent. For this reason, a mixed solution is spray-dried immediately after preparation.
  • the mixed solution in a plastic container is sent to a spray drying device via a plastic tube, and the xerogel is collected in a plastic container. For this reason, the impurity content of the glass material G1 in the xerogel state is substantially the same as that in the mixed solution.
  • a dry gel dried at 130 ° C. for 48 hours may be used as a xerogel preparation process.
  • the dried gel obtained from the jelly-like gel is processed into powder by a pulverizer.
  • the powdery xerogel produced by the above method has a specific surface area as small as 100 to 500 m 2 / g and a density as large as 0.5 to 1.0 g / cm 3 as compared with the xerogel produced by the spray drying method.
  • ⁇ Xerogel melting process> A platinum / zirconia crucible was used to prepare a glass melt in which xerogel was melted, and stirring was performed with a high-purity quartz glass rod.
  • the composition of the glass GG1 is designed to have a relatively low melting point, and therefore, mixing of impurities from the crucible is also suppressed.
  • the glass material G1 is a powdery xerogel having a large specific surface area, when a bulk metal salt having the same composition is melted, the glass material G1 melts at about 1100 ° C. while heating at about 1400 ° C. is required. For this reason, the glass material G1 can suppress the mixing of impurities from the crucible during melting, particularly Pt. That is, the impurity Pt is mainly mixed in the melting step. Further, other impurities may increase in the melting process, but do not decrease. That is, the impurity content of the glass material G1 is smaller than the impurity content of the glass GG1.
  • the composition of glass GG1 shown below is the glass composition after melting. In general, about 0 to 0.5 wt% of Sb 2 O 3 is added as a clarifier to remove bubbles in the glass as necessary. However, since glass GG1 is easy to homogenize, the Sb 2 O 3 content is increased. It can be reduced. For example, “low” means 0.0001 wt% to 0.01 wt%. The amount of Sb 2 O 3 is not described in the following composition.
  • composition of the light GG fiber glass GG1 produced from the glass material G1 of the present embodiment is as follows.
  • SiO 2 and B 2 O 3 are glass-forming oxides.
  • B 2 O 3 0 to 10 wt% It is.
  • SiO 2 is an essential component for preventing crystallization of glass and improving X-ray resistance.
  • B 2 O 3 is an optional component for preventing crystallization of glass.
  • BaO is an essential component for obtaining a high refractive index and a high transmittance in the blue region, has an effect on meltability and stability, has an effect, and does not exhibit an adverse effect (hereinafter simply referred to as “effective”). ) Is (D) BaO: 20 to 35 wt%.
  • ZnO has high refractive index and high transmittance in the blue region, and is effective for melting and stability, but is not an essential component.
  • the effect of ZnO is (E) ZnO: ⁇ 30 wt%.
  • Al 2 O 3 is effective in improving meltability, stability, chemical resistance, heat resistance and hardness, and (G) Al 2 O 3 : 0.5 to 10 wt% is effective.
  • ZrO 2 is effective in stability, chemical resistance, and heat resistance, and (H) ZrO 2 : ⁇ 8 wt% is effective.
  • Alkali metal oxides have an effect on meltability, and (I) alkali metal oxides: ⁇ 10 wt% are effective.
  • La 2 O 3 is an important component for obtaining a high refractive index and a high transmittance, and it is effective that (F1) La 2 O 3 is 0.1 to 25 wt%, preferably It is 5 to 20 wt%, and more preferably 9 to 18 wt%. If the content of La 2 O 3 is not less than the above range, a desired NA can be obtained with a large refractive index, and if it is not more than the above range, the glass manufacturing difficulty is low, and the glass becomes yellow due to absorption in the blue region. There is no coloring. For this reason, in the composition range of the glass GG1 of the present embodiment, it is more preferable that the La 2 O 3 content is 9 to 18 wt%.
  • the glass material G1 of the glass GG1 has particularly low impurity content.
  • drawing was performed by a rod-in-tube method to produce a fiber 10.
  • melt spinning so-called “drawing” is performed in a state where a core-shaped rod-shaped core glass GG1 is inserted into a tube-shaped glass serving as a clad inside a heating furnace.
  • the endoscope fiber has a high ratio of the core diameter ⁇ C to the fiber diameter ⁇ F in order to guide a large amount of light.
  • a desired light quantity cannot be guided unless the core diameter ⁇ C of the optical fiber is 80% or more of the fiber diameter ⁇ F.
  • the core diameter ⁇ C is preferably 24 ⁇ m (80%) or more, and particularly preferably 27 ⁇ m (90%) or more.
  • the upper limit of the core diameter ⁇ C is, for example, 95% or less of the fiber diameter ⁇ F. If the upper limit is not more than the above range, the clad glass thickness necessary for reflection can be ensured.
  • the glass GG1 of the present embodiment exhibited excellent characteristics with a transmittance (T1000 @ 380 to 750 nm) of 99% / m and a transmittance (T1000 @ 400 nm) of 98% / m.
  • the transmittance (T1000 @ 380 to 750 nm) of the glass GG1 of this embodiment is 96% / m or more, and the transmittance (T1000 @ 400 nm) is 90% / m or more.
  • the transmittance (T1000 @ 400 nm) is 90% / m or more.
  • the glass GG1 has an impurity content of 0.5 ppm or less and a Cr content of 0.5 ppm or less. It is preferable that the content is 0.1 ppm or less, the Co content is 0.01 ppm or less, the Ni content is 0.1 ppm or less, and the Pt content is 0.2 ppm or less.
  • the manufacturing process of the fiber 10 is performed with particular attention not to cause contamination of impurities. For this reason, the impurity content of the glass GG1 after melting and the impurity content of the core glass 11 of the fiber 10 are only increased in the Pt content as compared with the glass material G1 in the xerogel state.
  • the glass GG1 has excellent X-ray exposure resistance.
  • the medical endoscope may be used while irradiating X-rays to confirm the position of the distal end portion of the endoscope after being inserted into the body of the subject. A part of the chemical bond is broken or distorted, resulting in coloring.
  • the glass GG1 exhibits high X-ray resistance in an accelerated test in which X-rays corresponding to several hundred doses of irradiation irradiated in one normal operation are performed at a time, and the X-ray resistance is good. It has been confirmed.
  • the glass material G1 is less apt to be volatilized at the time of melting because it contains less impurities, easily mixes and easily obtains a homogeneous composition, and has a predetermined chemical bond in the state before melting. It is characterized in that an alkali component or the like is easily retained and a glass having a desired composition is easily obtained, and that a glass having a homogeneous composition is easily obtained by preventing inhomogeneity due to a difference in specific gravity of glass components. For this reason, as shown in the above embodiment, it is easy to manufacture in units of “several tens of kg”.
  • the glass material G1 of the present embodiment can produce a light-gite fiber having a high light transmittance.

Abstract

A glass material (G1) is composed of a Pb-free xerogel in the form of a powder, said xerogel containing main components SiO2 and BaO respectively in amounts of 20-55 wt% and 20-35 wt% and impurities Fe, Cr, Co, Ni, Cu and Pt in an amount of 1 ppm or less in total. The glass material (G1) serves as a starting material for the core glass of a fiber for light guides.

Description

ガラス材料、およびガラス材料の製造方法Glass material and method for producing glass material
 本発明は、内視鏡用のライトガイトのファイバ用のガラス材料、および前記ファイバ用のガラス材料の製造方法に関する。 The present invention relates to a glass material for a light guide fiber for an endoscope and a method for producing the glass material for the fiber.
 光を伝送するライトガイトは、多数のファイバを束ねた構成を有している。図1に示すように1本のファイバ10は光を透過するコア11と、コア11の外部に設けられている、光が外へ漏れないように反射するクラッド12と、から構成されている。そして、コア11は高屈折率ガラスからなり、クラッド12にはコア11よりも屈折率の低いガラスからなる。 The light guide that transmits light has a configuration in which a large number of fibers are bundled. As shown in FIG. 1, one fiber 10 includes a core 11 that transmits light, and a cladding 12 that is provided outside the core 11 and reflects light so that the light does not leak outside. The core 11 is made of high refractive index glass, and the cladding 12 is made of glass having a lower refractive index than the core 11.
 高屈折率ガラスとしては鉛ガラスが知られているが、環境対応のため、鉛を含まないガラス(以下、「鉛フリーガラス」ともいう。)が開発されている。例えば、日本国特開2004-256389号公報には、鉛を含まないアルミノシリケートガラスが開示されている。 Lead glass is known as a high refractive index glass, but glass that does not contain lead (hereinafter, also referred to as “lead-free glass”) has been developed for environmental reasons. For example, Japanese Patent Application Laid-Open No. 2004-256389 discloses an aluminosilicate glass that does not contain lead.
 ここで、内視鏡用ファイバと光通信用光ファイバとは、共に光を導光する機能を有し、基本的部分は類似している。しかし光通信用光ファイバはシングルモードファイバといい、所定の狭い波長の光を数km以上という長距離伝送するのに対して、内視鏡用光ファイバはマルチモードファイバといい、可視光という広い波長範囲の光を数mという短距離だが大光量を導光する必要がある。このため、内視鏡用光ファイバの構造および製造方法は、光通信用光ファイバの構造および製造方法と基本的部分は類似しているが、製造条件等は大きく異なる。例えば、光通信用光ファイバの開口数NAが0.1~0.2程度であるのに対して、内視鏡用光ファイバのNAは0.5以上である。なお、「A~B」は、A以上B以下を意味するものとする。 Here, both the fiber for endoscope and the optical fiber for optical communication have a function of guiding light, and the basic portions are similar. However, the optical fiber for optical communication is called a single mode fiber, which transmits light of a predetermined narrow wavelength over a long distance of several kilometers or more, whereas the optical fiber for an endoscope is called a multimode fiber, which is a wide visible light. Although light in the wavelength range is a short distance of several meters, it is necessary to guide a large amount of light. For this reason, the structure and manufacturing method of the optical fiber for endoscope are basically similar to the structure and manufacturing method of the optical fiber for optical communication, but the manufacturing conditions and the like are greatly different. For example, the numerical aperture NA of the optical fiber for optical communication is about 0.1 to 0.2, whereas the NA of the optical fiber for endoscope is 0.5 or more. “A to B” means A to B.
 また、医療内視鏡では白色光(例えば波長380nm~750nm)の照射による通常光観察のために、光源からの光を内視鏡先端部まで伝送するライトガイトが用いられている。しかし、鉛フリーガラスは鉛含有ガラスに比べてガラス材料に不純物が混入しやすい。このため、高い光透過率のライトガイトファイバを得ることが容易ではなかった。 In addition, in a medical endoscope, a light guide that transmits light from a light source to the distal end of the endoscope is used for normal light observation by irradiation with white light (for example, a wavelength of 380 nm to 750 nm). However, lead-free glass is more likely to have impurities mixed into the glass material than lead-containing glass. For this reason, it is not easy to obtain a light-gite fiber having a high light transmittance.
 さらに、医療内視鏡では通常光観察だけでなく、照射光の波長特性を利用した種々の特殊光観察が行われる。例えば、狭帯域光観察(NBI:Narrow Band Imaging)では、血液中のヘモグロビンに吸収されやすい狭帯域化された2つの波長範囲(390~445nm/530~550nm)の光を照射し、粘膜表層の毛細血管および粘膜微細模様の強調表示することによって腫瘍組織を容易に見分ける。 Furthermore, in medical endoscopes, not only normal light observation but also various special light observations utilizing the wavelength characteristics of irradiation light are performed. For example, in narrowband light observation (NBI: Narrow Band Imaging), light in two narrow wavelength ranges (390 to 445 nm / 530 to 550 nm) that is easily absorbed by hemoglobin in the blood is irradiated, and Easily distinguish tumor tissue by highlighting capillaries and fine mucosal patterns.
 また、自家蛍光観察(AFI:Auto-Fluorescence Imaging)ではコラーゲンなどの生体組織に存在する蛍光物質からの自家蛍光を観察するために、波長390~470nmの狭帯域光を励起光として組織に照射する。自家蛍光観察は、腫瘍組織が正常組織に比べ励起光により発生する自家蛍光が減弱するという特性を利用している。このため特に、内視鏡用のライトガイトファイバ用ガラスには青色光(例えば波長380nm~470nm)に対する高い透過率が要求されている。 In auto-fluorescence observation (AFI), in order to observe autofluorescence from a fluorescent substance existing in a living tissue such as collagen, the tissue is irradiated with narrow band light having a wavelength of 390 to 470 nm as excitation light. . The autofluorescence observation uses the characteristic that the autofluorescence generated by the excitation light is attenuated in the tumor tissue as compared with the normal tissue. For this reason, in particular, a high light transmittance for blue light (for example, a wavelength of 380 nm to 470 nm) is required for a glass for a light guide fiber for an endoscope.
 ライトガイド用ガラスの製造には、ケイ石もしくはLaなどの酸化物、または、BaCOなどの炭酸塩が原料として使われる。これらの原料は、高純度化処理をされて原料メーカーから市販されているが、Fe、Cr、Co、Ni、およびCuなどの不純物量は、数ppm~100ppmであり、1ppm以下のものは少なく、不純物量が0.1ppm以下の原料は工業レベルでは入手不可能である。特に、ZrOは、原料の精製が難しいため不純物が比較的多く含まれる。 In the production of the light guide glass, an oxide such as silica or La 2 O 3 or a carbonate such as BaCO 3 is used as a raw material. These raw materials have been highly purified and are commercially available from raw material manufacturers, but the amount of impurities such as Fe, Cr, Co, Ni, and Cu is several ppm to 100 ppm, and few are less than 1 ppm. A raw material having an impurity amount of 0.1 ppm or less is not available at an industrial level. In particular, ZrO 2 contains a relatively large amount of impurities because it is difficult to purify the raw material.
 一方、日本国特開2009-137836号公報に示すように、ゾルゲル法により作製されたゲルを乾燥しキセロゲルとし、キセロゲルを焼結することでガラスを得ることが開示されている。しかし不純物とガラスの透過率についての検討は行われていない。 On the other hand, as disclosed in Japanese Patent Application Laid-Open No. 2009-137836, it is disclosed that a gel produced by a sol-gel method is dried to form xerogel and glass is obtained by sintering xerogel. However, no study has been conducted on the transmittance of impurities and glass.
 本発明は、高い光透過率のライトガイトのファイバを製造可能なガラス材料および前記ガラス材料の製造方法を提供することを目的とする。なお、ガラス材料とは、ドライゲルまたはキセロゲルと呼ばれるガラスの前駆体のことである。 An object of the present invention is to provide a glass material capable of producing a light-gite fiber having a high light transmittance and a method for producing the glass material. The glass material is a glass precursor called dry gel or xerogel.
 本発明の実施形態のガラス材料は、ライトガイド用のファイバのコアガラスの原料であり、主成分であるSiOおよびBaOがそれぞれ20~55wt%、20~35wt%Feであり、不純物であるCr、Co、Ni、Cu、およびPtの合計含有量が1ppm以下の、Pbを含有しない粉末状のキセロゲルからなる。 The glass material of the embodiment of the present invention is a raw material for the core glass of the light guide fiber, and the main components SiO 2 and BaO are 20 to 55 wt% and 20 to 35 wt% Fe, respectively, and the impurity Cr. , Co, Ni, Cu, and Pt are made of a powdery xerogel containing 1 ppm or less and containing no Pb.
 また、本発明の別の実施形態のライトガイド用のファイバのコアガラスのガラス材料の製造方法は、少なくともSiを有する金属アルコキシド化合物と、非水溶媒と、を含有する第1の溶液を作製する第1の溶液作製工程と、複数の金属元素化合物と、水と、を含有する第2の溶液を作製する第2の溶液作製工程と、前記第1の溶液および前記第2の溶液から、Fe、Cr、Co、Ni、Cu、およびPtの合計含有量が1ppm以下になるまで除去する精製工程と、前記第1の溶液と前記第2の溶液とを混合し、Pbを含有しない混合溶液を作製する溶液混合工程と、前記混合溶液をゲル化し溶媒を除去し粉末状のキセロゲルを作製するキセロゲル作製工程と、を具備する。 Moreover, the manufacturing method of the glass material of the core glass of the fiber for light guides of another embodiment of this invention produces the 1st solution containing the metal alkoxide compound which has at least Si, and a nonaqueous solvent. From the first solution preparation step, the second solution preparation step of preparing a second solution containing a plurality of metal element compounds and water, the first solution and the second solution, Fe , Cr, Co, Ni, Cu, and Pt are removed until the total content is 1 ppm or less, the first solution and the second solution are mixed, and a mixed solution containing no Pb is obtained. A solution mixing step to be prepared; and a xerogel preparation step in which the mixed solution is gelled to remove the solvent to prepare a powdery xerogel.
ライトガイトファイバの構造を説明するための模式図である。It is a schematic diagram for demonstrating the structure of a light guy fiber.
<ライトガイトファイバの製造方法>
 最初にライトガイトファイバの製造方法について簡単に説明する。すでに説明したようにライトガイトファイバ10は、光を透過する高屈折率ガラスからなるコア11の外周部に、光がコア側面から外へ漏れないように反射する低屈折率ガラスからなるクラッド12を有する。
<Method for producing light-gite fiber>
First, a method for manufacturing a light guide fiber will be briefly described. As already described, the light guide fiber 10 has a cladding 12 made of low refractive index glass that reflects light so that light does not leak out from the side of the core on the outer periphery of the core 11 made of high refractive index glass that transmits light. Have.
 ライトガイトファイバ10の製造方法の一例にプリフォーム法がある。プリフォーム法においては、最初に、クラッド径およびコア径の大きなプリフォームがロッドインチューブ法または二重るつぼ法等で作製される。ロッドインチューブ法はクラッドガラスからなるチューブの中空部にコアガラスからなるロッドを挿入する方法である。コアガラスからなるロッドの外部に加熱し可撓性を付与したクラッドガラスを巻き付けても良い。そして、プリフォームの一部を、線引き、すなわち加熱し引き伸ばす、ことにより、所望の径のライトガイトファイバ10を得る。二重るつぼ法は、二重のるつぼの中央にコアガラスを熔解させ、周囲にクラッドガラスを熔解させ、溶融したコアガラスとクラッドガラスとを同時に各ノズルから押し出し冷却し、ファイバを作製する方法である。 An example of a method for manufacturing the light guide fiber 10 is a preform method. In the preform method, first, a preform having a large clad diameter and core diameter is produced by a rod-in-tube method or a double crucible method. The rod-in-tube method is a method of inserting a rod made of core glass into a hollow portion of a tube made of clad glass. A clad glass heated and imparted with flexibility to the outside of the core glass rod may be wound. Then, a part of the preform is drawn, that is, heated and stretched to obtain the light-gite fiber 10 having a desired diameter. In the double crucible method, the core glass is melted in the center of the double crucible, the clad glass is melted around it, and the melted core glass and clad glass are simultaneously extruded from each nozzle and cooled to produce a fiber. is there.
 なお、クラッドガラスには以下に示す条件が要求される。それは、(1)屈折率がコアガラスよりも低い。(2)化学的耐久性が良い。(3)熱膨張係数(α)がコアガラスと近い値である。(4)ファイバ線引き時に結晶が析出しない。(5)コアガラスとの融着性が良い。等である。 The following conditions are required for the clad glass. (1) The refractive index is lower than that of the core glass. (2) Good chemical durability. (3) The coefficient of thermal expansion (α) is close to that of the core glass. (4) Crystal does not precipitate during fiber drawing. (5) Good fusion with core glass. Etc.
 このためクラッドガラス材料としては、公知の鉛フリーガラスの中から、後述の本発明のコアガラスとの相性を考慮した上で選択されるが、例えば、SiO:41~46wt%、B<14wt%、Al<10wt%、NaO<11wt%、KO<14wt%、LiO<1.5wt%、F<0.2wt%、および慣用量の清澄剤を含む組成のガラスを用いることができる。 Therefore, the clad glass material is selected from known lead-free glasses in consideration of compatibility with the core glass of the present invention described later. For example, SiO 2 : 41 to 46 wt%, B 2 O 3 <14 wt%, Al 2 O 3 <10 wt%, Na 2 O <11 wt%, K 2 O <14 wt%, Li 2 O <1.5 wt%, F <0.2 wt%, and conventional amounts of fining agents. The glass of the composition which contains can be used.
<測定方法>
 一般的にガラスの透過率は、日本光学硝子工業規格JPGIS17-1982に基づいて測定される。この規格では、透過率は、厚みの異なる2つのガラスサンプル(3mm、10mm)の透過率を測定し、表面反射による損失を除いて算出され、10mmにおける透過率(%)で示される。
<Measurement method>
Generally, the transmittance of glass is measured based on Japanese Optical Glass Industry Standard JPG 17-1982. In this standard, the transmittance is calculated by measuring the transmittance of two glass samples (3 mm, 10 mm) having different thicknesses and excluding the loss due to surface reflection, and is indicated by the transmittance (%) at 10 mm.
 しかし、医療用内視鏡に用いるライトガイド用ガラスの評価では、10mm厚のサンプルを用いる上記方法では、測定精度が不足しているため、合否が判別できない。これは、医療用内視鏡のライトガイドの長さは例えば3.6mと非常に光路長が長いためである。長さ3.6mのライトガイドの透過率として例えば78%(78%/3.6m)以上となるガラスの測定長10mmでの透過率は99.93%以上である。 However, in the evaluation of the light guide glass used for the medical endoscope, the above method using a 10 mm thick sample has insufficient measurement accuracy, so it cannot be judged pass / fail. This is because the length of the light guide of the medical endoscope is very long, for example, 3.6 m. For example, the transmittance of a light guide having a length of 3.6 m is 78% (78% / 3.6 m) or more, and the transmittance at a measurement length of 10 mm is 99.93% or more.
 しかし、市販の高精度な分光器(例えばPerkinElmer社製、型番LAMBDA750)であっても、透過率の測定精度は±0.1%程度しかない。すなわち、測定値が透過率99.93%/10mmのガラスの実際の透過率は99.83~100.93%/10mmの範囲となる可能性がある。この測定長10mmの透過率を測定長3.6mに換算するには、10mmの透過率の360乗を計算する必要がある。すると、透過率の範囲は、54.2~111.4%/3.6mとなってしまうため、ガラスの良否を判断することができない。したがって、実質的にガラスの可否を判断するためには、より精度の良い測定方法が必須であった。 However, even with a commercially available high-accuracy spectrometer (for example, model number LAMBDA750, manufactured by PerkinElmer), the transmittance measurement accuracy is only about ± 0.1%. That is, the actual transmittance of a glass having a measured value of 99.93% / 10 mm may be in the range of 99.83 to 100.93% / 10 mm. In order to convert the transmittance of the measurement length of 10 mm into the measurement length of 3.6 m, it is necessary to calculate the transmittance of 10 mm to the 360th power. Then, since the transmittance range is 54.2 to 111.4% / 3.6 m, it is not possible to judge the quality of the glass. Therefore, a more accurate measurement method has been essential to determine whether glass is practically available.
 本発明者は、この課題を解決するために、略30cm厚のガラスサンプルと1cm(10mm)厚のガラスサンプルとを作り、表面反射を計算により除く方法を用いた。さらに通常の市販測定器の集光ビームでは屈折率および厚さにより光路が変化するため検出器における光電面上での像の大きさが変化し、結果として測定値が変化してしまうという問題があった。このため、測定には自作した治具により精密に制御した平行光束を用いた。なお、測定に用いた略30cm長、すなわち厚さ30cmのガラスバーは、測定後に加工して例えばロッドインチューブ法にて線引きされファイバ10になる半製品である。すなわち、本測定方法では製造途中でガラスの良否を判断できる。 In order to solve this problem, the present inventor made a glass sample having a thickness of about 30 cm and a glass sample having a thickness of 1 cm (10 mm), and used a method of removing surface reflection by calculation. Furthermore, the light path of a normal commercial measuring instrument's focused beam changes depending on the refractive index and thickness, so the size of the image on the photocathode on the detector changes, resulting in a change in the measured value. there were. For this reason, a parallel light flux precisely controlled by a self-made jig was used for the measurement. Note that the glass bar having a length of approximately 30 cm, that is, a thickness of 30 cm, used for the measurement is a semi-finished product that is processed after the measurement and drawn into the fiber 10 by, for example, the rod-in-tube method. That is, in this measurement method, the quality of the glass can be determined during the production.
 前述の長さ3.6mのライトガイドで波長400nmの透過率として例えば、78%(78%/3.6m)となるガラスの測定長30cmでの透過率は97.95%である。測定精度が±0.1%であっても、測定長30cmの透過率を測定長3.6mの透過率に換算するためには12乗するだけである。この結果、透過率範囲は、77.99~78.95%/3.6mとなるため、実質的にガラスの良否を判断することができる。 The transmittance at a measurement length of 30 cm of glass having 78% (78% / 3.6 m), for example, as the transmittance at a wavelength of 400 nm with the light guide having a length of 3.6 m is 97.95%. Even if the measurement accuracy is ± 0.1%, it is only 12 to convert the transmittance with a measurement length of 30 cm into the transmittance with a measurement length of 3.6 m. As a result, the transmittance range is 79.99 to 78.95% / 3.6 m, so that the quality of the glass can be substantially judged.
 以下の測定では、前記方法により、波長380~750nmの光の30cm長の透過率(T380-750)と、波長400nmの30cm長の透過率(T400)と、を測定した。なお透過率(T380-750)は波長380~750nmの範囲の光の透過率の平均値とした。 In the following measurement, the 30 cm long transmittance (T380-750) of light having a wavelength of 380 to 750 nm and the 30 cm long transmittance (T400) of wavelength 400 nm were measured by the above-described methods. The transmittance (T380-750) was the average value of the transmittance of light in the wavelength range of 380 to 750 nm.
 また、主成分組成はEPMAにより、不純物含有量は、ICP-MSにより測定した。なお、組成等を示した場合に、含有量の範囲として「0%」を含む材料は必須成分ではなく任意成分であることを意味している。また不純物含有量の表示において、「未満」表示は測定限界以下を意味している。 The main component composition was measured by EPMA, and the impurity content was measured by ICP-MS. In addition, when a composition etc. are shown, it means that the material which contains "0%" as a range of content is not an essential component but an arbitrary component. In the display of the impurity content, “less than” means that the measurement limit is not exceeded.
 そして、ガラス材料の比表面積は、窒素ガスを用いたガス吸着法により、BET値を算出した。 The specific surface area of the glass material was calculated as a BET value by a gas adsorption method using nitrogen gas.
<第1実施形態>
 以下、本発明の第1実施形態のライトガイトファイバ用のガラス材料G1およびガラス材料GG1の製造方法について説明する。
<First Embodiment>
Hereinafter, the glass material G1 for light-gite fibers of the first embodiment of the present invention and the method for manufacturing the glass material GG1 will be described.
<第1の溶液作製工程>
 ゾルゲル法により製造されるガラス材料G1は、金属アルコキシド化合物と非水溶媒とを含有する第1の溶液と、金属元素化合物と水とを含有する第2の溶液と、を混合し、ゲル化することにより製造される。
<First solution preparation process>
The glass material G1 manufactured by the sol-gel method is mixed by mixing a first solution containing a metal alkoxide compound and a non-aqueous solvent and a second solution containing a metal element compound and water. It is manufactured by.
 第1の溶液は、例えば、Si(OC(TEOS)のようなSiを有する金属アルコキシド化合物を含み、エタノールを溶媒とする。アルコキシド化合物は、水の存在下では、不安定で加水分解および縮重合反応によりゲル化するために実質的に水を含まないように管理される。逆にいえば、実質的に水を含まない状態とは、ゲル化反応が製造上、問題となる速度で進行しない状態をいう。 The first solution includes, for example, a metal alkoxide compound having Si such as Si (OC 2 H 5 ) 4 (TEOS), and ethanol as a solvent. The alkoxide compound is controlled so as to be substantially free of water because it is unstable in the presence of water and gels by hydrolysis and polycondensation reactions. Conversely, a state that does not substantially contain water refers to a state in which the gelation reaction does not proceed at a problem rate in production.
 このため、第1の溶液の非水溶媒は十分に脱水処理して用いられる。非水溶媒としては、メタノール、プロパノール等のアルコール、メチルエチルケトン等のケトン類、その他公知の溶媒を用いることができる。 For this reason, the non-aqueous solvent of the first solution is used after being sufficiently dehydrated. As the non-aqueous solvent, alcohols such as methanol and propanol, ketones such as methyl ethyl ketone, and other known solvents can be used.
 金属アルコキシドとしては、ガラス材料G1の主成分であるSiOとなるSiを有するTEOS等が、入手が容易であることから必須成分として用いられる。Siを有する金属アルコキシド化合物としては、アルコキシ基の炭素数を変化した例えばブチルシリケート、またはアルコキシ基の骨格を変化した化合物であってもよい。 As the metal alkoxide, TEOS having Si that becomes SiO 2 which is the main component of the glass material G1 is used as an essential component because it is easily available. The metal alkoxide compound having Si may be, for example, butyl silicate in which the carbon number of the alkoxy group is changed, or a compound in which the skeleton of the alkoxy group is changed.
 また、第1の溶液に、ガラスGG1の成分である、B、Al、ZrOとなる、B、Al、Zrを、それぞれ含む金属アルコキシド化合物を混合してもよい。すなわち、第1の溶液は、ガラスGG1の成分である元素を有する金属アルコキシド化合物を有する。 Further, the first solution, which is a component of glass GG1, B 2 O 3, Al 2 O 3, a ZrO 2, B, Al, and Zr, may be mixed with the metal alkoxide compound containing, respectively. That is, the first solution includes a metal alkoxide compound having an element that is a component of the glass GG1.
 例えば、Zrアルコキシド化合物としては、テトラメトキシジルコニウム(Zr(OCH)、テトラエトキシ(Et)ジルコニウム(Zr(OC)、テトラ-i-プロポキシ(Pr)ジルコニウム(Zr(O-i-C)、テトラ-n-プロポキシジルコニウム(Zr(O-n-C)、テトラ-i-ブトキシ(Bu)ジルコニウム(Zr(O-i-C)、テトラ-n-ブトキシジルコニウム(Zr(O-n-C)、テトラ-sec-ブトキシジルコニウム(Zr(O-sec-C)、またはテトラ-t-ブトキシジルコニウム(Zr(O-t-C)、等を用いることができる。 For example, Zr alkoxide compounds include tetramethoxy zirconium (Zr (OCH 3 ) 4 ), tetraethoxy (Et) zirconium (Zr (OC 2 H 5 ) 4 ), tetra-i-propoxy (Pr) zirconium (Zr (O -I-C 3 H 7 ) 4 ), tetra-n-propoxyzirconium (Zr (On-C 3 H 7 ) 4 ), tetra-i-butoxy (Bu) zirconium (Zr (Oi-C 4 H 9 ) 4 ), tetra-n-butoxyzirconium (Zr (On-C 4 H 9 ) 4 ), tetra-sec-butoxyzirconium (Zr (O-sec-C 4 H 9 ) 4 ), or tetra -T-butoxyzirconium (Zr (Ot-C 4 H 9 ) 4 ), etc. can be used.
 また、ガラスGG1の成分の元素を含有し、第1の溶液の溶媒に溶解し、かつ、水分を含有していなければ、金属アルコキシド化合物ではない化合物を第1の溶液に、混合してもよい。なお、ここで、水分を含有していないとは、金属アルコキシドが加水分解・重縮合をするものではない程度の極小の水分含有量を有する場合も含むものとする。また、第1の溶液には、第2の溶液との混合前にゲル化反応の触媒となる酸、例えば水を含む硝酸を添加しておいてもよい。 Further, a compound that is not a metal alkoxide compound may be mixed with the first solution as long as it contains the element of the glass GG1 element, dissolves in the solvent of the first solution, and does not contain moisture. . Here, the phrase “not containing water” includes the case where the metal alkoxide has a minimum water content that does not cause hydrolysis and polycondensation. Moreover, you may add the acid used as the catalyst of a gelatinization reaction, for example, nitric acid containing water, to a 1st solution before mixing with a 2nd solution.
 例えば、第1の溶液は、以下のようなグループAの化合物を有する組成である。 For example, the first solution has a composition having the following group A compounds.
(グループA)
 TEOS          11.281kg
 B(OEt)        0.472kg
 Al(OBu)       0.967kg
 Zr(O-i-Pr)     1.633kg
 HNO           0.466kg
 エタノール
 上記組成の第1の溶液は、透明、無着色であった。
(Group A)
TEOS 11.281kg
B (OEt) 3 0.472 kg
Al (OBu) 3 0.967 kg
Zr (O-i-Pr) 4 1.633 kg
HNO 3 0.466kg
Ethanol The first solution having the above composition was transparent and uncolored.
<第2の溶液作製工程>
 第2の溶液は、第1の溶液に添加されなかったガラス材料G1の成分となる化合物を含み、水を溶媒とする。多くの元素は金属アルコキシド化合物として第1の溶液に添加することができるが、元素によってはアルコキシド化が困難であるためアルコキシド化合物の価格が高い。このため、ガラス材料G1の成分の一部は、安価な金属塩として第2の溶液に添加される。なおゲル化反応の触媒となる酸は第2の溶液に添加しておいてもよい。
<Second solution preparation step>
The 2nd solution contains the compound used as the component of the glass material G1 which was not added to the 1st solution, and uses water as a solvent. Many elements can be added to the first solution as a metal alkoxide compound, but the alkoxide compound is expensive because it is difficult to alkoxide depending on the element. For this reason, a part of component of glass material G1 is added to a 2nd solution as an inexpensive metal salt. Note that an acid serving as a catalyst for the gelation reaction may be added to the second solution.
 例えば、第2の溶液は以下のようなグループBの化合物を有する組成である。 For example, the second solution has a composition having the following group B compounds.
(グループB)
 Zn(NO・6HO   3.360kg
 La(NO・6HO   3.707kg
 Ba(NO       5.510kg
 NaNO      1.180kg
 水
 上記組成の第2の溶液は、透明、無着色であった。
(Group B)
Zn (NO 3) 2 · 6H 2 O 3.360kg
La (NO 3) 3 · 6H 2 O 3.707kg
Ba (NO 3 ) 2 5.510 kg
NaNO 3 1.180 kg
Water The second solution having the above composition was transparent and uncolored.
 ガラス材料G1の成分となるそれぞれの元素は、第1の溶液または第2の溶液の少なくともいずれかに含まれていればよい。例えば、アルミニウムは、上記のようにアルミニウムアルコキシドとして第1の溶液に含まれていても良いし、硝酸アルミニウムのような金属塩として第2の溶液に含まれていても良いし、両方の溶液に含まれていてもよい。また、第2の溶液に含まれる金属塩は酢酸塩等であってもよい。 Each element that is a component of the glass material G1 may be included in at least one of the first solution and the second solution. For example, aluminum may be contained in the first solution as aluminum alkoxide as described above, or may be contained in the second solution as a metal salt such as aluminum nitrate, It may be included. The metal salt contained in the second solution may be acetate.
<精製工程>
 第1の溶液および第2の溶液に含まれている化合物としては高純度材料を用いる。しかし、ライトガイトファイバには非常に高い光透過性が要求される。このため、第1の溶液および第2の溶液は、透過率に悪影響を及ぼす不純物の含有量が所定量以下となるまで精製される。
<Purification process>
High purity materials are used as the compounds contained in the first solution and the second solution. However, light guide fiber is required to have very high light transmittance. For this reason, the first solution and the second solution are purified until the content of impurities that adversely affect the transmittance is equal to or less than a predetermined amount.
 発明者は、不純物の中でも、遷移元素である、Fe、Cr、Co、Ni、Cu、およびPtが、波長380nm~750nmの光の透過率に大きな影響を及ぼすことを見いだした。そして、さらに、Fe、Cr、Co、Ni、Cu、およびPtの6種類の金属の合計含有量が1ppmになるまで、第1の溶液および第2の溶液を、蒸留法、またはカラム吸着法等により精製することにより所望の特性のライトガイド用のファイバを得ることが可能であることを見いだした。例えば、第1の溶液を、前記金属含有量の合計値を0.6ppm以下に精製するとともに、第2の溶液を、前記金属含有量の合計値が0.4ppm以下に精製することで、第1の溶液および第2の溶液の合計含有量、すなわち混合溶液の合計含有量を1ppm以下とできる。なお、本明細書においては、理化学辞典等の記載に基づき白金(Pt)を遷移元素のひとつとする。 The inventor has found that among the impurities, transition elements such as Fe, Cr, Co, Ni, Cu, and Pt have a great influence on the transmittance of light having a wavelength of 380 nm to 750 nm. Further, the first solution and the second solution are subjected to distillation, column adsorption, or the like until the total content of the six kinds of metals of Fe, Cr, Co, Ni, Cu, and Pt becomes 1 ppm. It has been found that it is possible to obtain a light guide fiber having desired characteristics by purifying by the above method. For example, the first solution is purified to a total value of the metal content of 0.6 ppm or less, and the second solution is purified to a total value of the metal content of 0.4 ppm or less. The total content of the first solution and the second solution, that is, the total content of the mixed solution can be 1 ppm or less. In this specification, platinum (Pt) is one of the transition elements based on the description in the physics and chemistry dictionary.
 そして、第1の溶液および第2の溶液は液体状であるために精製が容易である。なお、第1の溶液または第2の溶液に調合する前に液体の状態の化合物、例えば金属アルコキシド化合物は、調合前に予め精製しておいてもよい。 And since the 1st solution and the 2nd solution are liquid, it is easy to refine. In addition, the compound in a liquid state, for example, a metal alkoxide compound, before the preparation into the first solution or the second solution, may be purified in advance before the preparation.
<溶液混合工程>
 第1の溶液を攪拌しながら、第2の溶液を滴下することにより、透明、無着色の混合溶液を作製した。なお、第1の溶液および第2の溶液は、いずれもPbを含有していないため、混合溶液もPbを含有していない。
<Solution mixing process>
While the first solution was stirred, the second solution was dropped to prepare a transparent and non-colored mixed solution. In addition, since neither the 1st solution nor the 2nd solution contains Pb, the mixed solution also does not contain Pb.
 また、第1の溶液および第2の溶液の調合、溶液の混合および貯蔵等には、不純物の混入を避けるため、ステンレスもしくは鉄などの金属容器またはビーカーなどのガラス容器ではなく、紙容器またはプラスチック容器を用いた。 In addition, in preparing the first solution and the second solution, mixing and storing the solution, in order to avoid mixing of impurities, not a metal container such as stainless steel or iron or a glass container such as a beaker, but a paper container or plastic A container was used.
 ガラスGG1は、所望の特性を有する鉛フリーガラスであるために、多種類の元素を含む多成分である。それぞれの元素は比重および融点等が異なるために固体状態で混合することは困難である。また加熱溶融しても、均一に混合することは容易ではない。しかし、本実施形態のガラス材料G1は溶液状態で混合するために均一化が容易である。 Glass GG1 is a lead-free glass having desired characteristics, and thus is a multi-component containing many kinds of elements. Since each element has a different specific gravity and melting point, it is difficult to mix in a solid state. Even when heated and melted, uniform mixing is not easy. However, since the glass material G1 of the present embodiment is mixed in a solution state, it is easy to make uniform.
<キセロゲル作製工程>
 本実施形態のガラス材料G1は、粉末状のキセロゲルである。ここで、キセロゲルとは、網目構造のゲルであり、乾燥ゲルの1種類であるが、ゼリー状ゲルを乾燥した通常の乾燥ゲルと比較すると比表面積が大きい。例えば、ガラス材料G1の比表面積は、500~1000m/gである。密度が0.05~0.5g/cmである。前記範囲内の比表面積のガラス材料G1は、後述するように、溶融温度が低く、省エネルギー生産が可能であるだけなく、溶融時に容器からの不純物が混入しにくい。
<Xerogel production process>
The glass material G1 of this embodiment is a powdery xerogel. Here, xerogel is a gel having a network structure and is one type of dry gel, but has a larger specific surface area than a normal dry gel obtained by drying a jelly-like gel. For example, the specific surface area of the glass material G1 is 500 to 1000 m 2 / g. The density is 0.05 to 0.5 g / cm 3 . As will be described later, the glass material G1 having a specific surface area within the above range has a low melting temperature and enables energy-saving production, and impurities from the container are hardly mixed at the time of melting.
 ガラス材料G1の混合溶液は、スプレードライ法によりゲル化し溶媒を除去することにより、キセロゲルとすることが好ましい。スプレードライ法では、混合溶液はノズルから細かな霧状に噴出される。そして、噴出先の例えば200℃に加熱された空間において、霧状の混合溶液は、溶媒が除去されてキセロゲルとなる。 The mixed solution of the glass material G1 is preferably made into a xerogel by gelling by a spray drying method and removing the solvent. In the spray drying method, the mixed solution is ejected from the nozzle into a fine mist. Then, in the space heated to, for example, 200 ° C., the mist-like mixed solution becomes xerogel after the solvent is removed.
 なお、第1の溶液と第2の溶液とは、混合されたときから、ゲル化反応が開始する。すなわち、混合溶液は、所定時間、放置されると、溶媒を含有したゼリー状ゲルとなる。このため、混合溶液は作製後、速やかにスプレードライ処理される。 Note that the gelation reaction starts when the first solution and the second solution are mixed. That is, when the mixed solution is allowed to stand for a predetermined time, it becomes a jelly-like gel containing a solvent. For this reason, a mixed solution is spray-dried immediately after preparation.
 なお、スプレードライ工程においても、不純物の混入を防ぐため、容器等は、全て紙またはプラスチックを使うことが好ましい。例えば、プラスチックの容器内の混合溶液は、プラスチックのチューブを介してスプレードライ装置に送液され、キセロゲルはプラスチックの容器に回収される。このため、キセロゲル状態のガラス材料G1の不純物含有量は、混合溶液のときと略同じである。 Even in the spray drying process, it is preferable to use paper or plastic for all containers in order to prevent contamination. For example, the mixed solution in a plastic container is sent to a spray drying device via a plastic tube, and the xerogel is collected in a plastic container. For this reason, the impurity content of the glass material G1 in the xerogel state is substantially the same as that in the mixed solution.
 なお、キセロゲル作製工程として、例えば、混合溶液を室温で30分放置しゼリー状ゲルとした後に、130℃48時間乾燥した乾燥ゲルを用いてもよい。ゼリー状ゲルから得られた乾燥ゲルは、粉砕機により粉末状に加工される。上記方法により製造された粉末状キセロゲルは、スプレードライ法により製造されたキセロゲルに比べると、比表面積が100~500m/gと小さく、密度は0.5~1.0g/cmと大きい。 In addition, as a xerogel preparation process, for example, after leaving the mixed solution at room temperature for 30 minutes to form a jelly-like gel, a dry gel dried at 130 ° C. for 48 hours may be used. The dried gel obtained from the jelly-like gel is processed into powder by a pulverizer. The powdery xerogel produced by the above method has a specific surface area as small as 100 to 500 m 2 / g and a density as large as 0.5 to 1.0 g / cm 3 as compared with the xerogel produced by the spray drying method.
<キセロゲル溶融工程>
 キセロゲルを溶融したガラス融液の作製には白金/ジルコニアルツボを使用し、高純度石英ガラス棒にて攪拌を行った。なお、以下の組成より明らかなように、ガラスGG1の組成は融点が比較的低くなるように設計されているために、ルツボからの不純物の混入も抑制されている。
<Xerogel melting process>
A platinum / zirconia crucible was used to prepare a glass melt in which xerogel was melted, and stirring was performed with a high-purity quartz glass rod. As is clear from the following composition, the composition of the glass GG1 is designed to have a relatively low melting point, and therefore, mixing of impurities from the crucible is also suppressed.
 さらに、ガラス材料G1は比表面積の大きい粉末状のキセロゲルであるため、同じ組成のバルク金属塩を溶融する場合には1400℃程度の加熱が必要なのに対して、1100℃程度で溶融する。このためガラス材料G1は溶融時におけるルツボからの不純物、特にPtの混入が抑制できる。すなわち、不純物であるPtは主として溶融工程において混入する。またその他の不純物も溶融工程において増加するおそれはあるが、減少することはない。すなわち、ガラス材料G1の不純物含有量は、ガラスGG1の不純物含有量よりも少ない。 Furthermore, since the glass material G1 is a powdery xerogel having a large specific surface area, when a bulk metal salt having the same composition is melted, the glass material G1 melts at about 1100 ° C. while heating at about 1400 ° C. is required. For this reason, the glass material G1 can suppress the mixing of impurities from the crucible during melting, particularly Pt. That is, the impurity Pt is mainly mixed in the melting step. Further, other impurities may increase in the melting process, but do not decrease. That is, the impurity content of the glass material G1 is smaller than the impurity content of the glass GG1.
 以下に示すガラスGG1の組成は、溶融後のガラス組成である。なお、一般的には必要に応じてガラス中の泡除去のため清澄剤としてSbを0~0.5wt%程度加えるが、ガラスGG1は均質化しやすいためSbの含有量を少なくすることが可能である。少ないとは、例えば0.0001wt%~0.01wt%である。Sb量は、以下の組成には記載していない。 The composition of glass GG1 shown below is the glass composition after melting. In general, about 0 to 0.5 wt% of Sb 2 O 3 is added as a clarifier to remove bubbles in the glass as necessary. However, since glass GG1 is easy to homogenize, the Sb 2 O 3 content is increased. It can be reduced. For example, “low” means 0.0001 wt% to 0.01 wt%. The amount of Sb 2 O 3 is not described in the following composition.
 本実施形態のガラス材料G1から作製されたライトガイトファイバ用ガラスGG1の組成は以下の通りである。 The composition of the light GG fiber glass GG1 produced from the glass material G1 of the present embodiment is as follows.
SiO        31.1wt%
    1.3wt%
Al       2.0wt%
ZnO    9.1wt%
ZrO        4.3wt%
LaO        13.8wt%
BaO        32.0wt%
O         2.2wt%
NaO        4.3wt%
 ここで、SiOおよびBは、ガラス形成酸化物である。安定したガラスを得るためには、(A)(SiO+B):20~55wt%以下、(B)SiO:20~55wt%、(C)B:0~10wt%である。SiOは、ガラスの結晶化防止およびX線耐性の向上のための必須成分である。Bは、ガラスの結晶化防止のための任意成分である。
SiO 2 31.1 wt%
B 2 O 3 1.3 wt%
Al 2 O 3 2.0 wt%
ZnO 9.1wt%
ZrO 2 4.3 wt%
LaO 3 13.8 wt%
BaO 32.0wt%
K 2 O 2.2wt%
Na 2 O 4.3 wt%
Here, SiO 2 and B 2 O 3 are glass-forming oxides. In order to obtain a stable glass, (A) (SiO 2 + B 2 O 3 ): 20 to 55 wt% or less, (B) SiO 2 : 20 to 55 wt%, (C) B 2 O 3 : 0 to 10 wt% It is. SiO 2 is an essential component for preventing crystallization of glass and improving X-ray resistance. B 2 O 3 is an optional component for preventing crystallization of glass.
 BaOは、高屈折率、青領域での高透過率を得るための必須成分であり、溶融性および安定性に効果があり、効果があり悪影響が発現しない(以下、単に「効果がある」という)のは、(D)BaO:20~35wt%である。 BaO is an essential component for obtaining a high refractive index and a high transmittance in the blue region, has an effect on meltability and stability, has an effect, and does not exhibit an adverse effect (hereinafter simply referred to as “effective”). ) Is (D) BaO: 20 to 35 wt%.
 ZnOは、高屈折率かつ青領域での高透過率を得るため、および溶融性および安定性に効果があるが必須成分ではない。ZnOの効果があるのは、(E)ZnO:~30wt%である。 ZnO has high refractive index and high transmittance in the blue region, and is effective for melting and stability, but is not an essential component. The effect of ZnO is (E) ZnO: ˜30 wt%.
 Alは、溶融性、安定性、耐薬品性、耐熱性および硬度の向上に効果があり、効果があるのは、(G)Al:0.5~10wt%である。 Al 2 O 3 is effective in improving meltability, stability, chemical resistance, heat resistance and hardness, and (G) Al 2 O 3 : 0.5 to 10 wt% is effective.
 ZrOは、安定性、耐薬品性、耐熱性に効果があり、効果があるのは、(H)ZrO:~8wt%である。アルカリ金属酸化物は、溶融性に効果があり、効果があるのは、(I)アルカリ金属酸化物:~10wt%である。 ZrO 2 is effective in stability, chemical resistance, and heat resistance, and (H) ZrO 2 : ˜8 wt% is effective. Alkali metal oxides have an effect on meltability, and (I) alkali metal oxides: ˜10 wt% are effective.
 そして、Laは、高屈折率かつ高透過率を得るための重要成分であり、効果があるのは、(F1)La:0.1~25wt%、であり、好ましくは、5~20wt%であり、より好ましくは9~18wt%である。Laは、含有量が前記範囲以上であれば、屈折率が大きく所望のNAが得られ、前記範囲以下であればガラスの製造難易度が低く、青領域での吸収によりガラスが黄色く着色することがない。このため本実施形態のガラスGG1の組成範囲では、La含有量を9~18wt%にすることが、より好ましい。 La 2 O 3 is an important component for obtaining a high refractive index and a high transmittance, and it is effective that (F1) La 2 O 3 is 0.1 to 25 wt%, preferably It is 5 to 20 wt%, and more preferably 9 to 18 wt%. If the content of La 2 O 3 is not less than the above range, a desired NA can be obtained with a large refractive index, and if it is not more than the above range, the glass manufacturing difficulty is low, and the glass becomes yellow due to absorption in the blue region. There is no coloring. For this reason, in the composition range of the glass GG1 of the present embodiment, it is more preferable that the La 2 O 3 content is 9 to 18 wt%.
なお、Laに替えて、または混合して、(F)R(Rは、Gd、Y)、またはR(Rは、Ta、Nb)、から選ばれた1種以上であっても同様の効果が得られる。 In addition, instead of La 2 O 3 or mixed, 1 selected from (F) R 2 O 3 (R is Gd, Y), or R 2 O 5 (R is Ta, Nb) The same effect can be obtained even with more than seeds.
 さらに、ガラスGG1のガラス材料G1は、特に不純物含有量が少ない。このため、ガラスGG1の不純物は、Cr=0.08ppm、Fe=0.4ppm、Co=0.05ppm、Ni=0.09ppm、Cu<0.01pm、Pt=0.18ppmであった。 Furthermore, the glass material G1 of the glass GG1 has particularly low impurity content. For this reason, the impurities of glass GG1 were Cr = 0.08 ppm, Fe = 0.4 ppm, Co = 0.05 ppm, Ni = 0.09 ppm, Cu <0.01 pm, and Pt = 0.18 ppm.
<線引き工程>
 ガラスGG1をコアガラスとして、ガラスGG1よりも屈折率の低い鉛フリーガラスをクラッドガラスとして、ロッドインチューブ法にて線引きを行い、ファイバ10を作製した。ロッドインチューブ法では、加熱炉内部で、クラッドとなるチューブ状のガラスの中にコアとなるロッド状のコアガラスGG1を挿入した状態で、溶融紡糸、いわゆる「線引き」する。
<Drawing process>
Using glass GG1 as a core glass and lead-free glass having a refractive index lower than that of glass GG1 as a clad glass, drawing was performed by a rod-in-tube method to produce a fiber 10. In the rod-in-tube method, melt spinning, so-called “drawing” is performed in a state where a core-shaped rod-shaped core glass GG1 is inserted into a tube-shaped glass serving as a clad inside a heating furnace.
 内視鏡用のファイバは、大光量を導光するために、ファイバ径φFに対するコア径φCの比率が高い。例えば、光ファイバのコア径φCがファイバ径φFの80%以上でなければ所望の光量を導光できない。例えば、ファイバ径φFが30μmの場合、コア径φCは24μm(80%)以上が好ましく、特に好ましくは27μm(90%)以上である。コア径φCの上限は、例えばファイバ径φFの95%以下であり、前記範囲以下であれば、反射に必要なクラッドガラス厚を確保することができる。 The endoscope fiber has a high ratio of the core diameter φC to the fiber diameter φF in order to guide a large amount of light. For example, a desired light quantity cannot be guided unless the core diameter φC of the optical fiber is 80% or more of the fiber diameter φF. For example, when the fiber diameter φF is 30 μm, the core diameter φC is preferably 24 μm (80%) or more, and particularly preferably 27 μm (90%) or more. The upper limit of the core diameter φC is, for example, 95% or less of the fiber diameter φF. If the upper limit is not more than the above range, the clad glass thickness necessary for reflection can be ensured.
 本実施形態のガラスGG1は、透過率(T1000@380~750nm)が99%/mであり、透過率(T1000@400nm)が、98%/mと、優れた特性を示した。 The glass GG1 of the present embodiment exhibited excellent characteristics with a transmittance (T1000 @ 380 to 750 nm) of 99% / m and a transmittance (T1000 @ 400 nm) of 98% / m.
 以上の結果から、本実施形態のガラスGG1の透過率(T1000@380~750nm)が、96%/m以上であり、かつ、透過率(T1000@400nm)が、90%/m以上であるのは、ガラス材料G1を用いたことによる不純物低減効果およびR酸化物添加効果であると推定された。 From the above results, the transmittance (T1000 @ 380 to 750 nm) of the glass GG1 of this embodiment is 96% / m or more, and the transmittance (T1000 @ 400 nm) is 90% / m or more. Was estimated to be an impurity reduction effect and an R oxide addition effect due to the use of the glass material G1.
 なお、ファイバの波長380nm~750nmの光の透過率が、96%/m以上の達成のためには、ガラスGG1の不純物含有量は、Feの含有量が0.5ppm以下、Crの含有量が0.1ppm以下、Coの含有量が0.01ppm以下、Niの含有量が0.1ppm以下、およびPtの含有量が0.2ppm以下であることが好ましい。 In order to achieve a light transmittance of 380 nm to 750 nm of the fiber of 96% / m or more, the glass GG1 has an impurity content of 0.5 ppm or less and a Cr content of 0.5 ppm or less. It is preferable that the content is 0.1 ppm or less, the Co content is 0.01 ppm or less, the Ni content is 0.1 ppm or less, and the Pt content is 0.2 ppm or less.
 すでに説明したように、ファイバ10の製造工程は不純物の混入が発生しないように特に留意しながら行っている。このため、溶融後のガラスGG1の不純物含有量およびファイバ10のコアガラス11の不純物含有量は、キセロゲル状態のガラス材料G1と比較すると、Ptの含有量が増加しているだけである。 As already described, the manufacturing process of the fiber 10 is performed with particular attention not to cause contamination of impurities. For this reason, the impurity content of the glass GG1 after melting and the impurity content of the core glass 11 of the fiber 10 are only increased in the Pt content as compared with the glass material G1 in the xerogel state.
 なお、ガラスGG1はX線被曝耐性も優れていることが判明している。すなわち、医療内視鏡は被検者の体内に挿入後に内視鏡の先端部等の位置を確認するためにX線を照射しながら使用されることがあるが、ガラスはX線被曝により、化学結合の一部が切断されたり歪が生じたりして着色する。しかし、ガラスGG1は通常の1回の手術等で照射される照射量の数百回分に相当するX線を一度に照射する加速試験において高いX線耐性を示し、耐X線特性が良いことが確認されている。 Incidentally, it has been found that the glass GG1 has excellent X-ray exposure resistance. In other words, the medical endoscope may be used while irradiating X-rays to confirm the position of the distal end portion of the endoscope after being inserted into the body of the subject. A part of the chemical bond is broken or distorted, resulting in coloring. However, the glass GG1 exhibits high X-ray resistance in an accelerated test in which X-rays corresponding to several hundred doses of irradiation irradiated in one normal operation are performed at a time, and the X-ray resistance is good. It has been confirmed.
 以上の説明のように、ガラス材料G1は不純物の混入が少ないこと、混ざりやすく均質な組成が得やすいこと、溶融前の状態でありながら所定の化学結合を有しているため溶融時に揮発しやすいアルカリ成分等が保持されやすく所望の組成のガラスが得やすいこと、ガラス成分の比重の差による不均質を防ぎ均質組成のガラスが得られやすいこと、という特徴を有している。このため、上記実施形態で示したように、「数十kg」単位で製造することも容易である。 As described above, the glass material G1 is less apt to be volatilized at the time of melting because it contains less impurities, easily mixes and easily obtains a homogeneous composition, and has a predetermined chemical bond in the state before melting. It is characterized in that an alkali component or the like is easily retained and a glass having a desired composition is easily obtained, and that a glass having a homogeneous composition is easily obtained by preventing inhomogeneity due to a difference in specific gravity of glass components. For this reason, as shown in the above embodiment, it is easy to manufacture in units of “several tens of kg”.
 すなわち、本実施形態のガラス材料G1は、高い光透過率のライトガイトファイバを製造可能である。 That is, the glass material G1 of the present embodiment can produce a light-gite fiber having a high light transmittance.
 本発明は上述した実施形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等ができる。 The present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the present invention.
 本出願は、2011年1月13日に日本国に出願された特願2011-005166号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。 The present application is filed on the basis of the priority claim of Japanese Patent Application No. 2011-005166 filed in Japan on January 13, 2011, and the above disclosure includes the present specification, claims, It shall be cited in the drawing.

Claims (11)

  1.  主成分であるSiOおよびBaOがそれぞれ20~55wt%、20~35wt%であり、不純物であるFe、Cr、Co、Ni、Cu、およびPtの合計含有量が1ppm以下の、Pbを含有しない粉末状のキセロゲルからなり、ライトガイド用のファイバのコアガラスの原料であることを特徴とするガラス材料。 The main components SiO 2 and BaO are 20 to 55 wt% and 20 to 35 wt%, respectively, and the total content of impurities Fe, Cr, Co, Ni, Cu, and Pt is 1 ppm or less, and does not contain Pb. A glass material comprising a powdered xerogel and being a raw material for a core glass of a light guide fiber.
  2.  前記キセロゲルを溶融し製造したコアガラスを有する前記ファイバの、波長380nm~750nmの光の平均透過率が96%/m以上であり、かつ前記ファイバの波長400nmの光の透過率が90%/m以上であることを特徴とする請求項1に記載のガラス材料。 The fiber having the core glass manufactured by melting the xerogel has an average transmittance of light with a wavelength of 380 nm to 750 nm of 96% / m or more, and the transmittance of light with a wavelength of 400 nm of the fiber is 90% / m. It is the above, The glass material of Claim 1 characterized by the above-mentioned.
  3.  Feの含有量が0.5ppm以下、Crの含有量が0.1ppm以下、Coの含有量が0.01ppm以下、Niの含有量が0.1ppm以下、Cuの含有量が0.01ppm以下、およびPtの含有量が0.2ppm以下であることを特徴とする請求項2に記載のガラス材料。 Fe content is 0.5 ppm or less, Cr content is 0.1 ppm or less, Co content is 0.01 ppm or less, Ni content is 0.1 ppm or less, Cu content is 0.01 ppm or less, The glass material according to claim 2, wherein the Pt content is 0.2 ppm or less.
  4.  比表面積が、100~1000m/gであることを特徴とする請求項3に記載のガラス材料。 The glass material according to claim 3, wherein the specific surface area is 100 to 1000 m 2 / g.
  5.  比表面積が、500~1000m/gであることを特徴とする請求項4に記載のガラス材料。 The glass material according to claim 4, wherein the specific surface area is 500 to 1000 m 2 / g.
  6.  組成が以下であることを特徴とする請求項5に記載のガラス材料。
    (A)(SiO+B):20~55wt%、
    (B)SiO:20~55wt%、
    (C)B:0~10wt%、
    (D)BaO:20~35wt%、
    (E)ZnO:0~30wt%
    (F)R(Rは、La、Gd、Y)、またはR(Rは、Ta、Nb)、から選ばれた1種以上:0.1~20wt%、
    (G)Al:0~10wt%、
    (H)ZrO:0~8wt%、
    (I)アルカリ金属酸化物:0~10wt%、
    (J)Sb:0~0.15wt%。
    The glass material according to claim 5, wherein the composition is as follows.
    (A) (SiO 2 + B 2 O 3 ): 20 to 55 wt%
    (B) SiO 2 : 20 to 55 wt%
    (C) B 2 O 3 : 0 to 10 wt%
    (D) BaO: 20 to 35 wt%,
    (E) ZnO: 0 to 30 wt%
    (F) one or more selected from R 2 O 3 (R is La, Gd, Y) or R 2 O 5 (R is Ta, Nb): 0.1 to 20 wt%,
    (G) Al 2 O 3 : 0 to 10 wt%
    (H) ZrO 2 : 0 to 8 wt%
    (I) Alkali metal oxide: 0-10 wt%
    (J) Sb 2 O 3 : 0 to 0.15 wt%.
  7.  少なくともSiを有する金属アルコキシド化合物と、非水溶媒と、を含有する第1の溶液を作製する第1の溶液作製工程と、
     複数の金属元素化合物と、水と、を含有する第2の溶液を作製する第2の溶液作製工程と、
     前記第1の溶液および前記第2の溶液から、Fe、Cr、Co、Ni、Cu、およびPtの合計含有量が1ppm以下になるまで除去する精製工程と、
     前記第1の溶液と前記第2の溶液とを混合し、Pbを含有しない混合溶液を作製する溶液混合工程と、
     前記混合溶液をゲル化し溶媒を除去し粉末状のキセロゲルを作製するキセロゲル作製工程と、を具備することを特徴とするガラス材料の製造方法。
    A first solution preparation step of preparing a first solution containing a metal alkoxide compound having at least Si and a non-aqueous solvent;
    A second solution production step of producing a second solution containing a plurality of metal element compounds and water;
    A purification step of removing from the first solution and the second solution until the total content of Fe, Cr, Co, Ni, Cu, and Pt is 1 ppm or less;
    A solution mixing step of mixing the first solution and the second solution to produce a mixed solution containing no Pb;
    And a xerogel production step of producing a powdery xerogel by gelling the mixed solution to remove the solvent, and a method for producing a glass material.
  8.  前記キセロゲルの、Feの含有量が0.5ppm以下、Crの含有量が0.1ppm以下、Coの含有量が0.01ppm以下、Cuの含有量が0.01ppm以下、およびNiの含有量が0.1ppm以下であることを特徴とする請求項7に記載のガラス材料の製造方法。 The xerogel has a Fe content of 0.5 ppm or less, a Cr content of 0.1 ppm or less, a Co content of 0.01 ppm or less, a Cu content of 0.01 ppm or less, and a Ni content of It is 0.1 ppm or less, The manufacturing method of the glass material of Claim 7 characterized by the above-mentioned.
  9.  前記キセロゲル作製工程が、スプレードライ法によることを特徴とする請求項8に記載のガラス材料の製造方法。 The method for producing a glass material according to claim 8, wherein the xerogel preparation step is performed by a spray drying method.
  10.  前記キセロゲルの比表面積が、500~1000m/gであることを特徴とする請求項9に記載のガラス材料の製造方法。 The method for producing a glass material according to claim 9, wherein the specific surface area of the xerogel is 500 to 1000 m 2 / g.
  11.  前記キセロゲルの組成が以下であることを特徴とする請求項10に記載のガラス材料の製造方法。
    (A)(SiO+B):20~55wt%、
    (B)SiO:20~55wt%、
    (C)B:0~10wt%、
    (D)BaO:20~35wt%、
    (E)ZnO:0~30wt%
    (F)R(Rは、La、Gd、Y)、またはR(Rは、Ta、Nb)、から選ばれた1種以上:0.1~25wt%、
    (G)Al:0~10wt%、
    (H)ZrO:0~8wt%、
    (I)アルカリ金属酸化物:0~10wt%、
    (J)Sb:0~0.15wt%。
    The method for producing a glass material according to claim 10, wherein the composition of the xerogel is as follows.
    (A) (SiO 2 + B 2 O 3 ): 20 to 55 wt%
    (B) SiO 2 : 20 to 55 wt%
    (C) B 2 O 3 : 0 to 10 wt%
    (D) BaO: 20 to 35 wt%,
    (E) ZnO: 0 to 30 wt%
    (F) one or more selected from R 2 O 3 (R is La, Gd, Y), or R 2 O 5 (R is Ta, Nb): 0.1 to 25 wt%,
    (G) Al 2 O 3 : 0 to 10 wt%
    (H) ZrO 2 : 0 to 8 wt%
    (I) Alkali metal oxide: 0-10 wt%
    (J) Sb 2 O 3 : 0 to 0.15 wt%.
PCT/JP2012/050328 2011-01-13 2012-01-11 Glass material and method for producing glass material WO2012096279A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011005166 2011-01-13
JP2011-005166 2011-03-07

Publications (1)

Publication Number Publication Date
WO2012096279A1 true WO2012096279A1 (en) 2012-07-19

Family

ID=46507177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050328 WO2012096279A1 (en) 2011-01-13 2012-01-11 Glass material and method for producing glass material

Country Status (1)

Country Link
WO (1) WO2012096279A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056579A (en) * 2018-09-28 2020-04-09 株式会社ディスコ Thickness measuring device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117931A (en) * 1986-10-31 1988-05-21 Showa Electric Wire & Cable Co Ltd Multicomponent-base optical fiber for optical communication
JP2000264675A (en) * 1999-03-23 2000-09-26 Ohara Inc Glass for optical fiber
JP2003104752A (en) * 2001-07-11 2003-04-09 Carl Zeiss:Fa Lead-free heavy flint optical glass
JP2003520180A (en) * 2000-01-20 2003-07-02 コーニング インコーポレイテッド Sol-gel method for preparing powders for use in forming glass
JP2004256389A (en) * 2003-02-25 2004-09-16 Carl-Zeiss-Stiftung Aluminosilicate glass
JP2006117504A (en) * 2004-03-10 2006-05-11 Ohara Inc Optical glass
WO2010001449A1 (en) * 2008-06-30 2010-01-07 東洋ガラス株式会社 Method of producing grin lens

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117931A (en) * 1986-10-31 1988-05-21 Showa Electric Wire & Cable Co Ltd Multicomponent-base optical fiber for optical communication
JP2000264675A (en) * 1999-03-23 2000-09-26 Ohara Inc Glass for optical fiber
JP2003520180A (en) * 2000-01-20 2003-07-02 コーニング インコーポレイテッド Sol-gel method for preparing powders for use in forming glass
JP2003104752A (en) * 2001-07-11 2003-04-09 Carl Zeiss:Fa Lead-free heavy flint optical glass
JP2004256389A (en) * 2003-02-25 2004-09-16 Carl-Zeiss-Stiftung Aluminosilicate glass
JP2006117504A (en) * 2004-03-10 2006-05-11 Ohara Inc Optical glass
WO2010001449A1 (en) * 2008-06-30 2010-01-07 東洋ガラス株式会社 Method of producing grin lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056579A (en) * 2018-09-28 2020-04-09 株式会社ディスコ Thickness measuring device
JP7103906B2 (en) 2018-09-28 2022-07-20 株式会社ディスコ Thickness measuring device

Similar Documents

Publication Publication Date Title
JP5153963B2 (en) Glass for light guide fiber
JP5727719B2 (en) Optical glass and optical fiber core material
JP7320100B2 (en) Optical glasses and optical elements
JP5415065B2 (en) Core glass in alkali zinc silicate glass system for optical fiber light guide and optical fiber light guide manufactured by said core glass
US9834465B2 (en) Optical glass and method for producing the same
JP4558343B2 (en) Aluminosilicate glass
US7767605B2 (en) Optical glass
JP4464162B2 (en) Boron aluminosilicate glass
US20150218041A1 (en) Glass and optical element production method
WO2010071202A1 (en) Glass, and glass processing method
JP2006117504A (en) Optical glass
CN110183108B (en) Optical fiber skin glass for optical fiber image transmission element and mechanical tube drawing forming method thereof
WO2013191270A1 (en) Glass and optical element production method
JP2010105906A (en) Optical glass, optical element, and preform for precision press-molding
TW201806893A (en) Optical glass, preform material and optical element
JP2016074557A (en) Optical glass and optical element
CN105948482A (en) Optical glass and preparation method thereof
CN116332506A (en) Optical glass, preform and optical element
WO2012096279A1 (en) Glass material and method for producing glass material
CN103466936A (en) Optical glass and core material for optical fiber
JP2013230952A (en) Ultraviolet-visible region transmitting glass
JP5919867B2 (en) Low photoelastic glass and optical fiber using the same
JP7372063B2 (en) Chemically strengthened colored glass and its manufacturing method
JP2015117169A (en) Manufacturing method of glass, and manufacturing method of optical element
SU1712329A1 (en) Ir-transparent glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12734371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP