WO2013191270A1 - Glass and optical element production method - Google Patents

Glass and optical element production method Download PDF

Info

Publication number
WO2013191270A1
WO2013191270A1 PCT/JP2013/067050 JP2013067050W WO2013191270A1 WO 2013191270 A1 WO2013191270 A1 WO 2013191270A1 JP 2013067050 W JP2013067050 W JP 2013067050W WO 2013191270 A1 WO2013191270 A1 WO 2013191270A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
melting
optical
sample
atmosphere
Prior art date
Application number
PCT/JP2013/067050
Other languages
French (fr)
Japanese (ja)
Inventor
修平 三上
藤原 康裕
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012240953A external-priority patent/JP2014024748A/en
Priority claimed from JP2012240954A external-priority patent/JP2014024749A/en
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201380033009.6A priority Critical patent/CN104395247B/en
Priority to US14/410,519 priority patent/US9604872B2/en
Priority to KR1020147035452A priority patent/KR102186021B1/en
Publication of WO2013191270A1 publication Critical patent/WO2013191270A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a glass having excellent transmittance and a method of manufacturing an optical element.
  • the high refractive index optical glass usually contains a large amount of high refractive index components such as Ti, Nb, W and Bi as glass components. These components are easily reduced in the melting process of the glass, and these reduced components absorb light on the short wavelength side of the visible light range, so the glass may be colored (hereinafter referred to as "reduced color" ) Increases.
  • the high refractive index component which is easily reduced is reacted (oxidized) with a noble metal material such as platinum which is widely used as a crucible material, and causes a noble metal ion generated by oxidizing the noble metal to be dissolved in the molten glass.
  • a noble metal material such as platinum which is widely used as a crucible material
  • Noble metal ions dissolved in the molten glass absorb visible light, thereby increasing the color of the glass.
  • Patent Document 1 proposes a technique of bubbling non-oxidizing gas during glass melting and a technique of reheating and heat-treating the glass once obtained.
  • oxygen in the atmosphere may react with a noble metal material such as platinum which is a material of the melting container.
  • a noble metal material such as platinum which is a material of the melting container.
  • platinum dioxide PtO 2
  • Pt 4+ platinum ions
  • Patent Document 1 the technique of bubbling non-oxidizing gas as in Patent Document 1 alone can not sufficiently suppress the dissolution of a noble metal such as platinum in the glass, and still significantly reduces the coloring of the high refractive index optical glass. It was difficult.
  • This invention is made in view of such a situation, and an object of this invention is to provide the manufacturing method of the glass excellent in the transmittance
  • the gist of the present invention for the purpose of solving such problems is as follows. [1] A glass raw material containing at least one or more components of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 is heated and melted in a melting vessel in a melting step (i) to obtain a molten glass, The manufacturing method of the glass which performs operation which raises the moisture content in molten glass.
  • a step (ii) of flowing the molten glass out of the melting vessel The method further includes the step (iii) of forming the molten glass, The method for producing glass according to any one of the above [1] to [5], wherein at least one of the step (ii) and the step (iii) is performed in an oxidizing atmosphere.
  • the method further includes the step (iv) of heat-treating the glass, The method for producing glass according to any one of the above [1] to [6], wherein the step (iv) is performed in an oxidizing atmosphere.
  • the transmittance of glass can be dramatically improved.
  • the amount of the noble metal such as platinum dissolved in the glass can be significantly reduced.
  • the method for producing glass of the present embodiment heats and melts a glass material containing at least one or more components of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 in a melting vessel to obtain a molten glass
  • a melting vessel to obtain a molten glass
  • an operation to increase the amount of water in the molten glass is performed.
  • the operation to increase the moisture in the molten glass is preferably to supply moisture into the melting vessel (hereinafter, first embodiment), or the glass material contains moisture.
  • the melting container is substantially sealed (second embodiment).
  • the operation which raises the moisture content in molten glass is raising the moisture content in molten glass rather than the moisture content in molten glass when not performing such operation. If the operation to increase the water content in the molten glass is not performed, the water content in the molten glass decreases with the passage of time. An operation of reducing and suppressing the reduction of the amount of water in the molten glass is also included in the operation of increasing the amount of water in the molten glass.
  • the glass produced by the production method of the present embodiment includes a high refractive index component (at least one or more components of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 ), and the glass is strongly colored. Even in this case, the coloration of the glass can be significantly reduced by heat treating the glass in an oxidizing atmosphere in a later step. That is, after heat treatment, the glass obtained by the manufacturing method of the present embodiment has little color and has extremely excellent transmittance.
  • the present inventors estimate that the reason why such an effect can be obtained is as follows.
  • the molten glass Melting on the reduction side can suppress dissolution of metal ions (ions of the metal constituting the melting vessel) into the molten glass.
  • the melting vessel is alloyed as described above.
  • the degree of coloring of the glass is enhanced by reduction of the high refractive index component even if the molten glass is not excessively reduced, the degree of reduction of coloring is small even if the glass is subjected to heat treatment in a later step.
  • the coloring can be greatly reduced by heat-treating the glass once obtained while forming a state in which the metal material constituting the melting vessel is ionized and is not dissolved in the molten glass. You can make a glass.
  • H + is considered to be suitable as such an ion, but to make H + more mobile, introduce OH ⁇ into the glass structure so that H + can hop from OH ⁇ . It is believed that this can increase the oxidation rate during heat treatment.
  • a raw material component having a high water content may be used as a glass raw material, such as a hydroxide such as orthophosphoric acid, aluminum hydroxide or calcium hydroxide.
  • a glass raw material such as a hydroxide such as orthophosphoric acid, aluminum hydroxide or calcium hydroxide.
  • Moisture evaporates in the process of melting into molten glass and in the state of high temperature molten glass.
  • the batch raw material is initially contained in the batch raw material The contained water is lost during culletization, and the water is also lost during the remelting process in the melting vessel. Therefore, regardless of which method is employed to produce the glass, the water content of the glass is usually extremely low. As a result, this glass can not be heat-treated to significantly reduce its color.
  • the melting vessel may be substantially sealed in the heating and melting process while using a glass material containing water. Also in this case, since the airtightness of the melting vessel is enhanced, when the glass raw material is heated and melted in the melting vessel, the moisture contained in the glass raw material can be suppressed from transpiration to the outside of the melting vessel. Therefore, as a result, it is easy to increase the water content of the glass.
  • the glass raw material containing water can be obtained using orthophosphoric acid, a hydroxide, etc. as mentioned above.
  • the glass raw material containing water can be obtained also by introduce
  • the cullet raw material glass raw material containing water
  • the water adhering to the surface is removed when the cullet is dried.
  • the water taken into the cullet contributes to the increase of the water content in the molten glass obtained by the remelting (heating and melting process).
  • a glass component having a strong action of taking in and holding water in the glass that is, a phosphoric acid component (eg, orthophosphate, metaphosphate, pyrophosphate etc.) It is also effective to use
  • a glass material containing a phosphoric acid component it is particularly preferable to use a glass material containing a phosphoric acid component.
  • the phosphoric acid component include orthophosphoric acid (H 3 PO 4 ), and in addition, pyrophosphoric acid (H 4 P 2 O 7 ) and various phosphates (especially hydration) )
  • various known phosphoric acid compounds may be used, and two or more kinds may be used in combination.
  • the water content of the obtained glass is high, and as a result, when the glass is heat-treated, it is possible to significantly reduce the coloration.
  • the water content of the glass is higher than when the second embodiment is performed alone. Can be further enhanced, and the color reduction effect is also high.
  • the operation of increasing the water content in the molten glass is performed by supplying the water into the melting container in the heating and melting step.
  • water can be supplied to the molten glass from the outside, and as a result, the water content of the glass can be increased.
  • the manner of supplying water into the melting vessel is not particularly limited, but the first supplying manner of supplying water vapor into the atmosphere near the liquid surface of the molten glass, the second supplying of water vapor while bubbling water vapor into the molten glass It is preferable that it is any selected from the supply aspect and the 3rd supply aspect which combined the 1st supply aspect and the 2nd supply aspect.
  • Moisture is usually preferably supplied in the form of water vapor (gas), but for example, it is a glass raw material powder (solid) having a high water content, the remaining components excluding water being substantially the same components as glass. It may be supplied in a form.
  • the operation of increasing the water content in the molten glass is performed by using a glass material containing water and by substantially sealing the melting container in the heating and melting step. That is, the molten glass containing water is sealed in a very narrow space called a melting vessel. For this reason, it is possible to suppress the evaporation of water by increasing the water vapor partial pressure in the atmosphere in the vicinity of the liquid surface of the molten glass. As a result, the water content of the glass can be increased.
  • the method for substantially sealing the melting container is not particularly limited, for example, if the melting container is a container having an opening, the opening of the melting container may be covered. In this case, the heating and melting process is performed in a state where the molten glass is confined in a sealed space surrounded by the melting vessel and the lid. The lid may simply be placed on the melting vessel so as to close the opening of the melting vessel. In this case, if the pressure in the sealed melting container is increased, it is possible to ensure a substantially sealed state in which the gas in the melting container gradually leaks to the outside. However, after closing the opening of the melting vessel, a pressing force is applied so that the lid is in pressure contact with the opening so that the lid is strongly fixed to the melting vessel, or the opening is sealed, etc. And the airtightness in the melting vessel may be further enhanced.
  • the opening is opened other than the embodiment in which the opening of the melting container is directly covered or the opening is directly sealed.
  • the melting container in the state where the part is open is disposed in a closed melting container storage chamber in the melting furnace. Then, the embodiments (1) to (3) may be combined appropriately.
  • the operation of increasing the amount of water in the molten glass is carried out according to the first embodiment in the method for producing glass of this embodiment. That is, it is preferable to perform at least one of a process of adding water vapor to the melting atmosphere and a process of bubbling a gas containing water vapor in the molten material as the operation of increasing the water content in the molten glass.
  • the method of adding water vapor to the melting atmosphere is not particularly limited.
  • a connecting pipe is inserted into the crucible through an opening provided in the melting apparatus, and a gas containing water vapor is optionally passed through this pipe.
  • the method of supplying to the space in a cage etc. are mentioned.
  • the flow rate of the gas containing water vapor supplied to the space in the crucible is not particularly limited, and can be adjusted based on the measurement result of ⁇ OH of the experimentally produced glass.
  • a relatively small amount of steam can be supplied to obtain a glass having a desired ⁇ OH.
  • the volume in the glass melting furnace becomes larger than the volume in the crucible, so to set ⁇ OH to a desired value, A relatively large amount of water vapor will be supplied into the glass melting furnace.
  • the flow rate of gas, the flow rate of steam, the additional flow rate of atmosphere, and the feed rate of steam are values converted to 25 ° C. and 1 atm.
  • a well-known method can be used.
  • a platinum or platinum alloy pipe is inserted into the melt in the melting vessel, and a gas containing water vapor is blown into the melt through the pipe, near the bottom of the melting vessel consisting of the same material as the material of the melting vessel.
  • the bubble diameter of the gas containing water vapor blown into the melt is preferably 0.01 to 100 mm in diameter, more preferably 0.1 to 30 mm. By setting it as the said range, it is thought that the moisture content in molten glass can be raised effectively. In addition, when the bubble diameter is too small, there is a problem that the bubbling pipe inserted into the melt tends to be clogged.
  • the flow rate of the gas containing water vapor blown into the melt is not particularly limited, and can be adjusted based on the measurement result of ⁇ OH of the experimentally produced glass.
  • the ⁇ OH of experimentally produced glass is measured, and if the measurement result is smaller than the desired value, the gas flow rate is increased, and conversely, if the measurement result is larger than the desired ⁇ OH value, the gas flow rate Make adjustments to reduce
  • the ⁇ OH of glass may be determined experimentally and the flow rate of gas may be adjusted from the measurement result.
  • the glass having the desired ⁇ OH can be produced by feeding back the supply amount of water vapor, that is, the flow rate of the gas, to the next production based on the measured value of ⁇ OH of the experimentally produced glass.
  • the content of water vapor in the gas containing water vapor is preferably 10% by volume or more, more preferably 20% by volume or more, still more preferably 30% by volume or more, more preferably 40% by volume or more, still more preferably 50% by volume
  • the content is more preferably 60% by volume or more, still more preferably 70% by volume or more, particularly preferably 80% by volume or more, and still more preferably 90% by volume or more.
  • the content of water vapor is preferably as high as possible, and by setting the content to the above range, in particular, in the finally obtained glass, the color reduction effect can be enhanced, the content of noble metal can be reduced, and the clarity is improved. can do.
  • the gas containing water vapor may be one produced or a commercially available one, and may be a mixed gas with another gas.
  • another gas air etc. are mentioned, for example.
  • the molten material may be stirred in a melting atmosphere to which water vapor is added.
  • the operation of increasing the water content in the molten glass is the first operation. It is particularly preferred to carry out the embodiment in combination with the second embodiment.
  • the melting vessel is platinum (Pt)
  • Pt platinum
  • melting of glass is performed in the atmosphere, and oxygen in the atmosphere may react with a noble metal material such as platinum which is a material of the melting vessel.
  • a noble metal material such as platinum which is a material of the melting vessel.
  • platinum dioxide PtO 2
  • Pt 4+ platinum ions
  • Noble metal ions dissolved in the molten glass absorb visible light, so the coloring of the glass tends to increase.
  • dissolution of metal ions into the molten glass can be suppressed by performing an operation to increase the amount of water in the molten glass.
  • the partial pressure of oxygen in the melting atmosphere is reduced by the operation of increasing the amount of water in the molten glass (for example, supplying water into the melting container, etc.), and a platinum material which is a material such as a melting container Etc. to be oxidized.
  • platinum dioxide and platinum ions (Pt 4+ ) formed by the reaction of oxygen in the melting atmosphere with a platinum material and the like can be effectively prevented from melting into the molten material (glass), and platinum is obtained in the obtained glass
  • the amount of penetration of (Pt) is further reduced.
  • the glass manufactured by the manufacturing method of this embodiment has very little content of noble metals, such as Pt originating in manufacturing tools, such as a fusion container. Therefore, there is little coloring of the glass by ultraviolet irradiation called solarization. Therefore, when such a glass is used as an optical element, for example, the secular change of the transmittance is small. Moreover, when fixing an optical element using an ultraviolet curing adhesive, even if it irradiates an ultraviolet-ray to an optical element, the effect that a transmittance
  • the content of the noble metal in the obtained glass is 4 ppm or less from the viewpoints of reduction of coloring of the glass due to the noble metal ion, improvement of transmittance, reduction of solarization, reduction of foreign metal particles, and the like.
  • the lower limit value of the content of the noble metal is preferably as low as possible, and 3 ppm, 2.7 ppm, 2.5 ppm, 2.2 ppm, 2.0 ppm, 1.8 ppm, 1.6 ppm, 1.4 ppm, 1.2 ppm, 1.1 ppm, It is even more preferable that the upper limit value is lower in the order of 1.0 ppm and 0.9 ppm.
  • the lower limit of the content of the noble metal is not particularly limited, it is unavoidably contained in the order of 0.001 ppm.
  • noble metals include simple metals such as Pt, Au, Rh and Ir, and alloys such as Pt alloys, Au alloys, Rh alloys, and Ir alloys.
  • Pt or a Pt alloy which is excellent in heat resistance and corrosion resistance, is preferable as the melting vessel material and the melting tool material. Therefore, with regard to a glass produced by using a Pt or Pt alloy melting container or a melting tool, the content of Pt contained in the glass is preferably 4 ppm or less.
  • the more preferable upper limit of the content of Pt is the same as the more preferable upper limit of the content of the noble metal contained in the glass.
  • the lower limit of the content of Pt is not particularly limited, but unavoidably, about 0.001 ppm is included.
  • the clarity can be significantly improved.
  • a homogeneous, low bubble glass is required.
  • a fining step for releasing (defoaming) the dissolved gas in the molten glass, but the fining property of the glass is determined in the molten glass. It depends on the amount of dissolved gas.
  • Such amount of dissolved gas is greatly influenced by the composition of the glass (especially the type of raw material), the melting time of the glass and the number of times of melting.
  • dissolved gas can be supplemented in the melting process, the problem of clarity is solved.
  • the glass manufactured by the manufacturing method of the present embodiment is to increase the amount of dissolved gas in the molten glass by performing an operation to increase the amount of water in the molten glass (for example, supplying water into the melting container, etc.) It is believed that That is, the moisture (for example, water vapor) actively introduced into the molten glass is considered to play a role as a dissolved gas and to improve the clarity of the glass.
  • the glass manufacturing method of the present embodiment since the glass has excellent clarity, the time required for the clarification step can be shortened, and the productivity is improved.
  • the clarification tank which performs a clarification process is also comprised with metal materials, such as platinum and a platinum alloy. Therefore, as the fining step takes a long time, problems such as the deterioration of the transmittance due to the dissolution of platinum ions into the melt become remarkable.
  • the glass manufacturing method of the present embodiment since the time required for the fining step can be shortened, the contact time between the molten glass and the melting vessel or the like can be reduced, and a melt of noble metal ions such as platinum can be obtained. Penetration of is also considered to be able to reduce more.
  • the use of the glass obtained by the manufacturing method of this embodiment is not specifically limited, For example, it can use suitably as optical glass.
  • the optical glass containing a large amount of high refractive index components (Ti, Nb, W, Bi, etc.) has a remarkable problem of coloration (reduction color) of the glass, but the manufacturing method of this embodiment According to this, it is possible to easily obtain an optical glass having an excellent transmittance while having a high refractive index.
  • the optical glass obtained by the manufacturing method of the present embodiment contains a large amount of the high refractive index component as described above, the reduced color can be efficiently reduced by heat treatment. Furthermore, even when a noble metal material such as platinum is used as a melting vessel or the like, it is possible to effectively suppress the dissolution of the noble metal material into the molten glass, and the color originating from the noble metal ion is extremely small.
  • the optical glass obtained by the manufacturing method of such this embodiment has the outstanding transmittance
  • the amount of dissolved gas in the molten glass can be increased by the operation of increasing the amount of water in the molten glass, and the clarity can be significantly improved. As a result, homogeneous optical glass with less bubbles can be obtained in a short time.
  • the glass manufacturing method of the present embodiment publicly known methods can be appropriately adopted for the glass raw material preparation method, the glass raw material heating method, the melting method, and the molten glass forming method except for the matters described in the present specification.
  • well-known materials can be appropriately used for the glass raw materials used in the method for producing glass of the present embodiment and the material constituting the melting vessel.
  • a material which constitutes a fusion vessel etc. used at the time of preparation of glass a material (for example, metal material, quartz material, etc.) which usually has heat resistance and corrosion resistance in temperature and atmosphere which melts fusion glass is mentioned. It can be used appropriately.
  • a molten product exhibiting significant corrosion may be formed, or the molten glass may react with the material constituting the melting vessel or the like to melt the melting vessel. Therefore, when selecting the material which comprises a fusion
  • phosphate glass containing a high refractive index component glass comprising P 2 O 5 and at least one oxide selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3
  • a molten product is produced that exhibits significant attack. Since such molten products tend to attack even corrosion resistant materials such as platinum, precious metal materials such as platinum are attacked by the above molten products, dissolve in the melt and are formed as foreign matter. And the problem of increasing the coloration of the glass.
  • the melting vessel for heating and melting batch materials is selected from materials such as a melting vessel separately from the latter half of the melting process, the clarification process, etc. It is preferable to do.
  • a melting container etc. which are used when heating and melting a batch raw material, containers and apparatus made from refractories, such as quartz, are suitable. Refractories such as quartz are corroded by the above-mentioned melt products, but even if they are corroded and mixed in the melt, they become part of the glass composition, so there are few problems like noble metal materials.
  • a precious metal container or device made of platinum or platinum alloy since the problem that the molten product corrodes the precious metal material is small, it is preferable to use a precious metal container or device made of platinum or platinum alloy.
  • B 2 O 3 and a borate glass containing a high refractive index component (a glass containing at least one oxide selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 )
  • a molten product such as the above-mentioned phosphate glass also attacks noble metal materials
  • refractory containers such as quartz tend to be severely attacked. Therefore, as a melting container etc., it is suitable to use containers and instruments made of precious metals such as platinum and platinum alloy which are not easily corroded in the process of manufacturing glass.
  • the method for producing glass of the present embodiment it is preferable to use a metal material as a material for forming a melting vessel used for producing glass.
  • the metal material it is preferable to use at least one selected from noble metals and noble metal alloys.
  • the water content in the molten glass is maintained high as compared with a general method for producing glass.
  • the molten glass is in a redox state in which the above-mentioned noble metal or noble metal alloy is not corroded by the molten glass, and the reduced high refractive index component is not alloyed with the material constituting the melting container. Can be maintained.
  • platinum, gold or the like as the noble metal and a platinum alloy, gold alloy or the like as the noble metal alloy.
  • the heating and melting step is usually a refining step for promoting the defoaming of the molten glass, in addition to the melting step for melting the molten glass by heating the glass raw material to make the molten glass; It is preferable to include a homogenization step in which the temperature of the molten glass after fining is lowered to a viscosity suitable for molding and the mixture is stirred and homogenized.
  • a raw material corresponding to the glass component can be weighed and sufficiently mixed to obtain an optical glass having desired characteristics, and a mixed raw material (batch raw material) obtained by mixing and a mixed cullet can be used.
  • a culletizing step (rough melt step) of rough melting and batching the batch material is carried out before the melting step (remelt step).
  • the cullet is preferably pre-measured for refractive index measurement. If the measured value of the refractive index equals the desired value, the cullet is taken as the formulated cullet and if the measured value of the refractive index deviates from the desired value, the cullet with the refractive index higher than the desired value and the desired value The cullet having a low refractive index is mixed to form a compound cullet.
  • the cullet is made of glass, it does not have to be homogeneous glass.
  • the cullet may also contain air bubbles.
  • the raw material of a batch raw material may be included.
  • the composition and optical properties of cullet eg, refractive index, Abbe's number, etc.
  • the composition and optical properties of cullet are remelted from cullet to form a homogeneous, bubble-free glass, and the composition and optical properties of this glass are respectively the composition of cullet and the optical properties Do.
  • the melting vessel is made of a metal material
  • the heating temperature of the glass during the heating and melting process is 800 to 1500 ° C. from the viewpoint of suppressing the ionization of the metal material and securing the water content in the glass. It is preferable to maintain it, more preferably, it is maintained at 1400 ° C. or less, more preferably, 1300 ° C. or less.
  • the heating temperature of the glass during the heating and melting step is the highest in the fining step It is preferable to set to, that is, to melt the glass below the fining temperature.
  • the time from the start to the end of the heating and melting process is extended, the reduction of high refractive index components promotes ionization of the metal material when the melting vessel is made of a metal material, and the moisture content in the glass tends to decrease. Will be shown. Therefore, it is preferable to set the time from the start to the end of the heating and melting process within 100 hours. The time from the start to the end of the heating and melting process may be appropriately adjusted depending on the size of the volume of the melting container and the like.
  • the glass production method of the present embodiment is more preferably carried out by the rough melt-remelt method. That is, the method for producing glass of this embodiment is preferably It has a rough melting process to melt the compounded material to obtain cullet, and a remelt process to remelt the cullet to obtain glass, In at least one of the rough melting step and the remelting step, an operation to increase the amount of water in the molten glass is performed.
  • the melting temperature (rough melting temperature) of the batch material at the time of rough melting is preferably in the range of 800 to 1400.degree.
  • the temperature of the melt in the rough melt process is the same as the melt temperature of the cullet (remelt temperature) in the remelt process, in order to enhance the refining effect.
  • the temperature is preferably lower than the melting temperature of cullet, and particularly preferably lower than the fining temperature in the remelt process.
  • the dissolution time in the rough melt process can be appropriately adjusted in consideration of the volume of the crucible and the input amount of the batch material to the crucible, and for example, the dissolution time is 0.1 to 100 hours, more preferably 0.1. It may be in the range of -20 hours.
  • the melting temperature (remelting temperature) of the prepared cullet in the remelt step is preferably in the range of 800 to 1,500 ° C. However, in order to further enhance the fining effect, it is preferable to make the remelting temperature lower than the fining temperature.
  • the dissolution time in the remelt process can be appropriately adjusted in consideration of the volume of the crucible and the amount of the mixed cullet to be introduced into the crucible. For example, the dissolution time at the time of remelting is preferably 0.1 to 100 hours, more preferably 2 to It may be in the range of 20 hours.
  • the atmosphere at the time of melting is not particularly limited, but water vapor is added to the melting atmosphere from the viewpoint of effectively increasing the amount of water in the molten glass. Is preferred.
  • Melting atmosphere starts melting in melting atmosphere other than water vapor such as air atmosphere or nitrogen atmosphere first, and water vapor may be added to the melting atmosphere in the middle by operation to increase the amount of water in the molten glass, or melting atmosphere May be previously adjusted to a water vapor atmosphere.
  • water vapor may be added to the melting atmosphere in the middle by operation to increase the amount of water in the molten glass, or melting atmosphere May be previously adjusted to a water vapor atmosphere.
  • the partial pressure of water vapor in the melting atmosphere when performing the operation to increase the amount of water in the molten glass is higher than the partial pressure of water vapor in the atmosphere, and more preferably higher than the partial pressure of oxygen.
  • the upper limit of the water vapor partial pressure is not particularly limited, and for example, the melting atmosphere can be entirely replaced with water vapor.
  • the high partial pressure of water vapor in the melting atmosphere throughout the melting process can effectively prevent oxygen from reacting with the melting vessel made of a noble metal material such as platinum, and the amount of dissolution of Pt or the like in the glass can be reduced. It is possible to reduce and effectively prevent the deterioration (decrease) of the transmittance. Furthermore, by maintaining the amount of dissolved gas until just before the clarification step, the improvement effect of the clarity is enhanced.
  • the melting step can also involve stirring of the melt for the purpose of homogenization of the melt.
  • a well-known method can be used as a stirring method, For example, the method of bubbling gas to a molten material, the method of stirring by a stirring rod, etc. are mentioned.
  • bubbling using a gas containing water vapor and stirring of the melt in a melting atmosphere to which water vapor is added are preferable from the viewpoint of homogenizing the melt and increasing the amount of water in the molten glass.
  • a glass material containing at least one or more components of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 is heated and melted in a melting vessel.
  • the method further includes a step (ii) of flowing the molten glass out of the melting container, and a step (iii) of forming the molten glass.
  • the clarified and homogenized molten glass flows out from the glass outflow pipe attached to the bottom of the melting vessel.
  • the temperature of the glass outflow pipe is adjusted and maintained so that the viscosity is suitable for forming in a temperature range where the flowing molten glass does not devitrify.
  • any known forming method can be used as long as the molten glass in the melting container can be formed into a predetermined shape.
  • molten glass may be poured into a mold to form a block, or a linear molten glass flow made to flow down from a pipe may be cut at a certain length (certain amount) to form a glass block.
  • the shapes of the individual glasses obtained through the forming process may be largely dispersed.
  • the obtained glass may be deeply colored, and the coloring can be reduced by performing heat treatment in a later step.
  • the method for producing glass of the present embodiment it is preferable to perform at least one of the outflow step (ii) and the forming step (iii) in an oxidizing atmosphere. Thereby, the reduced color of the glass can be efficiently reduced.
  • the reduced color derived from the high refractive index component can be reduced by heat treating the glass in an oxidizing atmosphere.
  • the oxidation of Ti, Nb, W and Bi tends to proceed more rapidly as the temperature of the glass is higher.
  • the glass as hot as possible ie the glass of the melting step (i)
  • the glass of the melting step (i) is exposed to an oxidizing atmosphere.
  • the melting vessel, the fining tank, etc. is made of a precious metal material etc.
  • the glass of the melting step (i) is in contact with the precious metal material, so when the melting atmosphere is an oxidizing atmosphere, the precious metal material is an atmosphere Reacts with oxygen in the inside, and there are problems such as dissolution of precious metal ions in the glass.
  • the glass in the outflow step (ii) and the forming step (iii) is lower in temperature than the glass in the melting step (i), but still kept at a sufficiently high temperature as compared to the glass cooled after forming It can be said. Therefore, even in these steps, the effect of reducing the color of the glass by exposing the glass to an oxidizing atmosphere can be fully expected. Furthermore, in the outflow step (ii) and the forming step (iii), since the glass does not come in contact with the noble metal material constituting the melting vessel or the like, it is considered that the above-mentioned problems hardly occur.
  • the reduced color can be efficiently reduced without concern for the penetration of the noble metal material or the like into the molten glass. it can.
  • the reduction color can be reduced more efficiently.
  • the reduced color of the glass is reduced in at least one of the outflow step (ii) and the forming step (iii), so that bubbles and precipitates are formed in the glass after the forming step (iii).
  • the manufacturing method of the glass of this embodiment preferably has a heat treatment process (iv) which heat-processes the manufactured glass.
  • the heat treatment is preferably performed in an oxidizing atmosphere. This makes it possible to significantly reduce the coloration of the glass obtained.
  • the glass obtained through the heat treatment step is less colored and highly transparent, that is, it has a high transmittance in the visible range.
  • the heat treatment temperature and the heat treatment time may be appropriately set so as to obtain desired optical characteristics.
  • the heat treatment temperature is preferably a temperature (Tg-100 ° C.) lower than the softening point of the glass and 100 ° C. lower than the glass transition temperature Tg.
  • heat processing time can be shortened. Further, the heat treatment time can be shortened even if the oxygen partial pressure in the oxidizing atmosphere is increased. As described above, although the heat treatment time changes depending on the heat treatment temperature and the oxygen partial pressure in the oxidizing atmosphere, it may be set so that the coloration of the glass becomes a desired level.
  • the heat treatment time is preferably typically 0.1 hour to 100 hours.
  • the oxidizing atmosphere is an air atmosphere or an atmosphere having a higher oxygen partial pressure than air, preferably oxygen than air. There is a high partial pressure atmosphere.
  • the method for setting it as an oxidative atmosphere is not specifically limited, For example, the method of supplying oxidative atmosphere gas etc. are mentioned.
  • the oxidizing atmosphere gas may be a gas containing oxygen, and the oxygen concentration may be, for example, about the same as or higher than that of air.
  • an oxidizing atmosphere gas for example, air, a gas obtained by adding oxygen to air, a gas substantially consisting only of oxygen, and the like can be mentioned.
  • the glass obtained by the manufacturing method of the present embodiment contains a large amount of water by the operation of increasing the water content in the molten glass, and as described above, after passing through the heat treatment step (iv), the coloring is reduced and excellent Have a good transmittance.
  • Moisture contained in such glass is, OH - as the infrared absorption due to, it is possible to quantitatively grasp a spectrophotometer.
  • the water content in glass can be grasped
  • ⁇ OH ⁇ [ln (B / A)] / t (1)
  • t represents the thickness (mm) of the glass used to measure the external transmittance
  • A represents a wavelength of 2500 nm when light is incident on the glass in parallel with the thickness direction
  • B represents the external transmittance (%) at a wavelength of 2900 nm when light is incident on the glass in parallel with its thickness direction.
  • ln is a natural logarithm.
  • the unit of ⁇ OH is mm ⁇ 1 .
  • external transmittance refers to the ratio of the intensity Iout of transmitted light transmitted through the glass to the intensity Iin of incident light incident on the glass (Iout / Iin), that is, the transmittance in consideration of surface reflection on the surface of the glass.
  • the “internal transmittance” described later is the transmittance when there is no surface reflection on the surface of the glass (that is, the transmittance of the glass material itself constituting the glass). Each transmittance is obtained by measuring the transmission spectrum using a spectrophotometer.
  • the ⁇ OH represented by the above formula (1) means the absorbance due to the hydroxyl group. Therefore, the concentration of water (and / or hydroxide ion, hereinafter, simply referred to as "water”) contained in the glass can be evaluated by evaluating ⁇ OH. That is, the higher the ⁇ OH, the higher the water content in the glass.
  • the ⁇ OH of glass varies depending on the glass composition, production conditions, and the like.
  • a glass having a glass composition that easily takes in water tends to have a higher ⁇ OH than a glass having a glass composition that does not easily take in water.
  • it compares with the same glass composition by performing operation which raises the moisture content in molten glass, it exists in the tendency for (beta) OH to become high.
  • the glass obtained by the manufacturing method of the present embodiment when evaluating whether the water content in the glass is increased, it is necessary to compare the ease with which water is taken in at a similar level.
  • the value of ⁇ OH of glass is not particularly limited as long as it can be adjusted, but from the viewpoint of enhancing effects such as color reduction of glass and reduction of noble metal content in glass, The higher the value of ⁇ OH, the better.
  • the glass produced by the manufacturing method of the present embodiment satisfies the following formula (1-2). ⁇ OHOH0.4891 ⁇ ln (1 / HR) +2.48 (1-2)
  • ln is a natural logarithm.
  • HR represents the total amount (mol%) of the content of each component of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 in the glass.
  • the unit of ⁇ OH is mm ⁇ 1 .
  • the result of whether the glass satisfies these formulas can also be an index for determining whether an operation to increase the amount of water in the molten glass has been performed.
  • the glass produced by the production method of the present embodiment satisfies the following formula (1-3). ⁇ OH ⁇ 181.39 ⁇ nd -3 -325.75 ⁇ nd -2 + 194.85 ⁇ nd -1 -38.1 ⁇ (1-3)
  • nd represents the refractive index of the glass.
  • the unit of ⁇ OH is mm ⁇ 1 .
  • the production method of the present embodiment it is preferable to carry out an operation to increase the amount of water in the molten glass to such an extent that ⁇ OH of the obtained glass satisfies the above equation (1-3).
  • the partial pressure of oxygen in the melting atmosphere is sufficiently reduced, and even when the melting container is made of a noble metal material or the like, reaction between oxygen in the melting atmosphere and the noble metal material can be effectively prevented.
  • the noble metal content in the obtained glass can be further reduced.
  • the result of whether the glass satisfies these formulas can also be an index for determining whether an operation to increase the amount of water in the molten glass has been performed.
  • the upper limit of ⁇ OH of glass obtained by the method for producing glass of the present embodiment is also different depending on the type of glass and production conditions, and is not particularly limited as long as it can be adjusted. Since the amount of volatile matter from the molten glass tends to increase as the ⁇ OH is increased, the ⁇ OH is preferably 10 mm -1 or less, more preferably 8 mm -1 or less, from the viewpoint of suppressing volatilization from the molten glass. preferably 6 mm -1 or less, more preferably 5 mm -1 or less, even more preferably 4 mm -1 or less, even more preferably 3 mm -1 or less, even more preferably to a 2 mm -1 or less.
  • the ⁇ OH of the glass can be evaluated regardless of the presence or absence of coloring of the glass (presence or absence of reduced color). Further, since the heat treatment step (iv) is usually performed at a temperature lower than the softening point of the glass, the value of ⁇ OH of the glass does not substantially change before and after that, and it is measured before or after the heat treatment step (iv) May be Therefore, the ⁇ OH of the glass may be measured on any of the transparent glass having undergone the heat treatment step (iv) and the strongly colored glass not having undergone the heat treatment step (iv).
  • the refractive index nd of the glass obtained by the manufacturing method of the glass of this embodiment is 1.75 or more.
  • the lower limit of the refractive index nd is more preferably 1.80, still more preferably 1.85, and particularly preferably 1.90.
  • the upper limit of the refractive index nd is not limited as long as glass can be obtained, but can be, for example, about 2.5.
  • the optical system can be made compact and highly functional. From such a viewpoint, the higher the refractive index nd, the better.
  • the upper limit of the refractive index nd is preferably 2.4, more preferably 2.3.
  • the content of the glass component, the total content, and the content of the additive are represented by mol% in terms of oxide.
  • the glass obtained by the manufacturing method of the present embodiment is at least one oxide selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 as a glass component (hereinafter, “high refractive index Component) is contained.
  • the total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 contained in the glass is 20% or more, more preferably 25% or more, still more preferably 30% or more More preferably, it is 35% or more.
  • TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 exceeds 85%, the devitrification resistance tends to deteriorate, so from the viewpoint of maintaining the devitrification resistance, TiO 2 , Nb
  • the total content of 2 O 5 , WO 3 and Bi 2 O 3 is preferably 85% or less, more preferably 80% or less, and still more preferably 75% or less.
  • the obtained glass is preferably a P 2 O 5 -containing glass.
  • the H + transfer rate during heat treatment is fast, and coloring can be reduced by heat treatment for a short time as compared with other composition systems.
  • the glass obtained by the manufacturing method of the present embodiment is preferably a phosphate glass containing a high refractive index component. That is, as a glass component, at least one oxide selected from TiO 2, Nb 2 O 5, WO 3 and Bi 2 O 3, and more preferably an oxide glass containing a P 2 O 5.
  • the glass having a P 2 O 5 content greater than the SiO 2 content and a B 2 O 3 content greater than the content of P 2 O 5 in terms of mol% Mention may be made of glasses which are higher than the total content of SiO 2 and B 2 O 3 .
  • This embodiment can be applied to a glass composition containing a known composition in which the content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 is in the above range in addition to the compositions exemplified in the examples. .
  • the preferable glass composition in this embodiment is demonstrated.
  • P 2 O 5 is a glass network forming component and serves to maintain the thermal stability of the glass.
  • the content of P 2 O 5 is less than 7%, the thermal stability tends to decrease, so the content of P 2 O 5 is preferably 7% or more.
  • the content of P 2 O 5 is preferably in the range of 7 to 40%.
  • the lower limit of the content of P 2 O 5 is more preferably 10%, still more preferably 12%, still more preferably 15%, still more preferably 18%.
  • the upper limit of the content of P 2 O 5 is more preferably 35%, still more preferably 33%, still more preferably 30%, still more preferably 28%.
  • the content of SiO 2 is preferably smaller than the content (M) of P 2 O 5 . More preferably, the range of the content of SiO 2 is 0% to 0.8 ⁇ M [%] in terms of the relationship between the content of SiO 2 and the above-mentioned M (content [%] of P 2 O 5 ). Further preferable range is 0% to 0.5 ⁇ M [%], more preferable range is 0% to 0.3 ⁇ M [%], and still more preferable range is 0% to 0.15 ⁇ M [%] is there.
  • B 2 O 3 works to improve the devitrification resistance by containing a small amount.
  • the preferable range of the content of B 2 O 3 is 0% or more and less than M [%] More preferable range is 0% to 0.9 ⁇ M [%], more preferable range is 0% to 0.7 ⁇ M [%], and more preferable range is 0% to 0.6 ⁇ M [%], An even more preferable range is 0% to 0.5 ⁇ M [%], a still more preferable range is 0% to 0.4 ⁇ M [%], and a still more preferable range is 0% to 0.35 ⁇ M [%] It is.
  • TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 are components that function to increase the refractive index and also to increase the dispersion, and to improve the chemical durability.
  • the devitrification resistance tends to deteriorate as the contents of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 increase.
  • the upper limit of the content of TiO 2 is preferably 40%, more preferably 35%, still more preferably 33%, and still more preferably 30%. From the top to obtain the effect of introducing TiO 2, preferable lower limit of the content of TiO 2 1%, more preferred lower limit is 3%.
  • the content of TiO 2 can also be made 0%.
  • the upper limit of the content of Nb 2 O 5 is preferably 45%, more preferably 40%, and still more preferably 35%. From the top to obtain the effect of introducing Nb 2 O 5, preferable lower limit is 5% of the content of Nb 2 O 5, more preferred lower limit is 8%, more preferred lower limit is 11%.
  • the content of Nb 2 O 5 can also be made 0%.
  • the preferred range of the content of WO 3 is 0 to 30%. From the viewpoint of obtaining the introduction effect of WO 3 described above, the lower limit of the content of WO 3 is preferably 1%, more preferably 3%, and still more preferably 5%. On the other hand, from the viewpoint of maintaining the devitrification resistance, the upper limit of the content of WO 3 is preferably 27%, more preferably 24%, still more preferably 20%, and still more preferably 18%. The content of WO 3 can also be made 0%.
  • the preferred range of the content of Bi 2 O 3 is 0 to 35%. From the viewpoint of obtaining the effect of introducing the Bi 2 O 3, Bi 2 O 3 preferred lower limit is 1% of the content of, and more preferable lower limit is 3%, more preferred lower limit is 5%. On the other hand, from the viewpoint of maintaining the devitrification resistance, the upper limit of the content of Bi 2 O 3 is preferably 30%, more preferably 28%, and still more preferably 24%. The content of Bi 2 O 3 can also be 0%.
  • the divalent metal components such as BaO, SrO, CaO, MgO and ZnO work to improve the meltability of the glass and to reduce the coloration of the glass. In addition, if it is an appropriate amount, it works to improve the devitrification resistance.
  • the content of BaO, SrO, CaO, MgO and ZnO is preferably 0 to 40% in total, since the refractive index tends to be lowered and the devitrification resistance is deteriorated due to the inclusion of an excessive amount, 0 It is more preferable that it is ⁇ 32%.
  • the upper limit of the total content of BaO, SrO, CaO, MgO and ZnO is preferably 30%, more preferably 27%, still more preferably 25%.
  • the lower limit of the total content of BaO, SrO, CaO, MgO and ZnO is preferably 0.1%, more preferably 0.5%, still more preferably 1%.
  • BaO is an effective component for maintaining a high refractive index, so the content of BaO is preferably in the range of 0 to 40%, preferably in the range of 0 to 32%. It is more preferable to do.
  • the upper limit of the content of BaO is preferably 30%, more preferably 27%, and still more preferably 25%.
  • the lower limit of the content of BaO is preferably 0.1%, more preferably 0.5%, and still more preferably 1%.
  • the content of BaO can also be made 0%.
  • Alkali metal oxides such as Li 2 O, Na 2 O and K 2 O work to improve the meltability of the glass and to reduce the coloration of the glass. It also lowers the glass transition temperature and the softening temperature and lowers the heat treatment temperature of the glass. However, the inclusion of an excessive amount tends to lower the refractive index and deteriorate the devitrification resistance, so the total content of Li 2 O, Na 2 O and K 2 O is preferably 0 to 40%. 0 to 35% is more preferable, 0 to 32% is more preferable, and 0 to 30% is more preferable. The content of each of Li 2 O, Na 2 O and K 2 O can also be made 0%.
  • the content is more than 0% and less than 10%, more preferably 0%, from the viewpoint of obtaining a high refractive index glass. More preferably, it is more than 9%, and more preferably more than 0% and 8% or less.
  • the preferable range of the content of Al 2 O 3 is 0 to 12%, more preferable range is 0 to 7%, and further preferable range is 0 to 3%.
  • ZrO 2 works to increase the refractive index, and a small amount works to improve the devitrification resistance.
  • the preferable range of the content of ZrO 2 is 0 to 16%, more preferably 0 to 12%, and still more preferably 0. A range of -7%, more preferably 0-3%.
  • GeO 2 works to increase the refractive index while maintaining resistance to devitrification. Also, GeO 2 works to increase the refractive index, but unlike TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 , it does not increase the coloration of the glass. However, since it is a very expensive component as compared with other components, the content of GeO 2 should be as low as possible in order to reduce the manufacturing cost of the glass. Therefore, in order to widely spread high refractive index glass products, it is desirable to provide a high refractive index glass with excellent transmittance while reducing the content of GeO 2 . According to this embodiment, by setting the total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 to 20% or more, excellent transmittance can be obtained without using a large amount of GeO 2. High refractive index glass can be provided.
  • the preferable range of the content of GeO 2 is 0 to 10%, more preferably 0 to 5%, still more preferably 0 to 3%, still more preferably 0 to 2%, and still more preferable
  • the range is 0 to 1%, the still more preferable range is 0 to 0.5%, and GeO 2 may not be contained.
  • a manufacturing cost is not considered, it can use suitably in an effective amount.
  • TeO 2 works to increase the refractive index while maintaining resistance to devitrification.
  • the content of TeO 2 is preferably in the range of 0 to 10%, more preferably in the range of 0 to 5%, still more preferably in the range of 0 to 3%, and still more preferably in the range of 0 to 2.
  • a still more preferable range is 0 to 1%, and a still more preferable range is 0 to 0.5%, and TeO 2 may not be contained.
  • Sb 2 O 3 has an oxidizing action and functions to suppress the reduction of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 . Therefore, the addition of antimony oxide has conventionally been used to suppress the reduction of the high refractive index component during melting.
  • Sb 2 O 3 itself absorbs light in the visible region and oxidizes the melting vessel made of a noble metal by its oxidation action to promote the dissolution of noble metal ions into the molten glass, so the coloration of the glass finally obtained Cause.
  • the glass manufacturing method of the present embodiment it is preferable to prepare the glass raw material so that the content of antimony oxide becomes less than 1000 ppm in terms of Sb 2 O 3 in the obtained glass. According to the method for producing glass of the present embodiment, it is possible to reduce the coloration of the glass obtained by heat treating the glass in an oxidizing atmosphere without using the oxidation action of antimony oxide.
  • the preferable range of the content of Sb 2 O 3 is 0 ppm or more and less than 1000 ppm.
  • the upper limit of the content of Sb 2 O 3 is more preferably as small as possible in the order of 900 ppm, 800 ppm, 700 ppm, 600 ppm, 500 ppm, 400 ppm, 300 ppm, 200 ppm, 100 ppm. It is not necessary to contain Sb 2 O 3 .
  • the total content of SrO, BaO, ZnO, Li 2 O, Na 2 O, K 2 O, Al 2 O 3 , ZrO 2 , GeO 2 , TeO 2 and Sb 2 O 3 is 90% or more. , 92% or more, more preferably 95% or more, still more preferably 96% or more, still more preferably 97% or more, still more preferably 98% or more More preferably, it is more preferably 99% or more.
  • the total content may be 100%.
  • Ta 2 O 5 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 , In 2 O 3 , Ga 2 O 3 , SnO 2 , CeO 2 , F, etc. are also contained if they are in small amounts be able to.
  • the total content of Ta 2 O 5 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 , In 2 O 3 , Ga 2 O 3 and F is preferably 0 to 10%. , 0 to 7% is more preferable, 0 to 5% is more preferable, 0 to 3% is more preferable, 0 to 1% is still more preferable, and 0 to 0. Even more preferably, it is 5%.
  • F is not a component to be contained in a large amount.
  • a preferable range of the content of F is 0 to 3%, a more preferable range is 0 to 1%, a further preferable range is 0 to 0.5%, and it is more preferable that substantially no F is contained.
  • a substance or additive that has absorption in the visible range such as Cu, Cr, Mn, Fe, Co, Ni, V, Mo, Nd, Eu, Er, Tb, Ho, Pr, etc. It is preferable not to contain it.
  • the inclusion of unavoidable impurities is not excluded. Therefore, although it is most preferable that the above-mentioned components be completely used in the glass raw material, it is sufficient that the used amount is substantially zero, that is, even when trace amounts are inevitably mixed in the glass raw material as impurities. preferable.
  • a glass raw material according to a glass component, an oxide, phosphoric acid, phosphate (polyphosphate, metaphosphate, pyrophosphate etc.), boric acid, boric anhydride, boric acid anhydride, carbonate, nitrate, sulfuric acid
  • Known glass materials such as salts and hydroxides can be used.
  • the application of the glass obtained by the production method of the present embodiment is not particularly limited, for example, it can be suitably used as an optical glass.
  • a known method may be applied. For example, molten glass is molded to produce a glass material for press molding. Next, this glass material is reheated and press-molded to produce an optical element blank. Furthermore, it processes by the process including grinding
  • molten glass is molded to produce a glass material for press molding, and this glass material is heated and precision press molded to produce an optical element.
  • a molten glass may be molded to produce a glass molded body, and the glass molded body may be processed to produce a glass material for press molding.
  • a molten glass is molded to produce a glass molded body, and the molded body is processed to produce an optical element.
  • the optical functional surface of the produced optical element may be coated with an antireflective film, a total reflection film or the like according to the purpose of use.
  • an optical element various lenses, such as a spherical lens, an aspheric lens, a macro lens, and a lens array, a prism, a diffraction grating, etc. can be illustrated.
  • the manufacturing method of the following optical glass is one of the preferable another form, Comprising:
  • the manufacturing method of the glass of this invention is not limited to the manufacturing method of the following optical glass.
  • the material for an optical glass produced by using the method of producing a glass of the first embodiment and / or the method of producing a glass of the second embodiment is oxidized
  • An optical glass having a refractive index nd of 1.9 or more is produced through at least a heat treatment step (iv) of heat treatment in a thermal atmosphere.
  • the “material for optical glass” is a glass produced through a forming step of forming the molten glass in the melting container into a predetermined shape, and the glass in a deeply colored state before being subjected to heat treatment Means
  • “optical glass” means the glass which heat-processed the raw material for optical glass of the state colored strongly. That is, “optical glass” is glass whose coloring is reduced by heat treatment as compared with “material for optical glass”.
  • materials for optical glass” and “optical glass” “glass materials for press molding” manufactured using “materials for optical glass” or “optical glass”, “optical elements” and “other glass”
  • the articles are all amorphous glass and not crystallized glass.
  • the oxidizing atmosphere gas may be any gas containing oxygen, and the oxygen concentration may be, for example, about the same as or higher than that of air.
  • an oxidizing atmosphere gas for example, air, a gas obtained by adding oxygen to air, a gas substantially consisting only of oxygen, and the like can be mentioned.
  • the heat treatment temperature and the heat treatment time may be set appropriately so as to obtain desired optical characteristics.
  • the optical glass obtained through a heat treatment process has a high less transparent coloring, the water contained in the optical glass, OH - in the infrared absorption attributable, to quantitatively grasp a spectrophotometer Is possible.
  • the water content in the optical glass is the water content in the material for optical glass and the material for optical glass It is apparent that the water content is proportional to or strongly correlated with the water content in the molten glass at the same time.
  • suitable manufacturing conditions for producing the material for optical glass that is, the method and amount of supplying water into the melting container, and as the glass raw material It becomes extremely easy to grasp the kind of material used and the compounding amount (in particular, the compounding amount of the phosphoric acid component). Therefore, by measuring and grasping the optical properties (especially the transmittance) and the water content of the optical glass, it is possible to easily determine suitable manufacturing conditions for manufacturing the material for optical glass based on the results.
  • the water content in optical glass can be grasped
  • FIG. 2 shows No. 1 shown in Table 1.
  • No. 1 used for measurement of the graph shown in FIG. The optical glass having the composition of No.
  • the raw material for optical glass which consists of a composition of 1 is heat-processed at 600 degreeC in air
  • FIG. 1 The external transmittance at a wavelength of 450 nm when light is incident on the optical glass having a thickness of 5 mm in parallel to the thickness direction with respect to the ⁇ OH value when the ⁇ OH value of the optical glass having the composition of 3 is changed It is the graph which showed the change of (T450).
  • the optical glass having the composition of No. 2 has no.
  • the raw material for optical glass which consists of 2 compositions is heat-processed at 570 degreeC in air
  • the ⁇ OH value, the refractive index nd and the Abbe number ⁇ ⁇ d shown in FIG. 2, FIG. 3 and Table 1 are values measured in the state of the optical glass after heat treatment.
  • the glass composition of No. 4 has a total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 of 30 mol% or more, and further contains P 2 O 5 .
  • the ⁇ OH values at a plurality of points shown in FIG. 2 are values set by adjusting the amount of water vapor per unit time when water vapor is introduced near the liquid surface of the molten glass in the production of the material for optical glass. is there. At this time, all production conditions other than the amount of water vapor were the same. That is, the ⁇ OH value was increased or decreased by the increase or decrease of the amount of water vapor.
  • This point also applies to the ⁇ OH values of a plurality of points shown in FIG. As apparent from FIGS. 2 and 3, it can be seen that the external transmittance (T450) also increases as the ⁇ OH value increases.
  • the coloring degree of the optical glass can be quantified by ⁇ 80 which is an index indicating the coloring degree.
  • ⁇ 80 is the thickness of the optical glass based on the measured internal transmittance after measuring the internal transmittance in the wavelength range of 280 to 700 nm when light is incident on the optical glass in parallel with the thickness direction Means the wavelength (nm) at which the internal transmittance (internal transmittance ⁇ ) calculated assuming that L is 10 mm is 80%. In other words, it means that the internal transmittance at a thickness of 10 mm is 80% or more in the wavelength range of ⁇ 80 or more in the wavelength range of 280 to 700 nm.
  • T1 is a surface reflection loss measured in a wavelength range of 280 nm to 1550 nm when light is incident in parallel with the thickness direction for the first sample having a thickness of d1 (mm)
  • a transmittance (%) including T2 is a wavelength of 280 nm when light is incident in parallel to the thickness direction of a second sample having a thickness of d2 (mm) made of the same glass as the first sample It represents transmission (%) including surface reflection loss measured in the range of ⁇ 1550 nm.
  • ⁇ 80 is calculated using the result of transmittance measurement at wavelengths of 280 to 700 nm, the transmittances T1 and T2 may be measured in the range of wavelengths of 280 to 700 nm.
  • ⁇ d represents a difference d2-d1 (mm) between the thickness d1 and the thickness d2, and the thickness d1 and the thickness d2 satisfy the relationship of d1 ⁇ d2.
  • ⁇ 80 increases as the total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 increases.
  • the total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 in mol% is X
  • the relationship between X and ⁇ 80 is as shown in the following equation (3). Therefore, it is difficult to significantly improve ⁇ 80.
  • a represents a constant (1.8359 nm / mol%)
  • b represents a constant (351.06 nm).
  • the heat treatment step is performed using a material having a high water content for optical glass, and therefore, it is easy to satisfy the following formula (4).
  • the heat treatment temperature and the heat treatment time in the heat treatment step can be appropriately set so as to satisfy the following equation (4). ⁇ 80 ⁇ aX + b (4)
  • a and b are the same as those shown in Formula (3).
  • an optical glass satisfying the following Formula (5) or the following Formula (6) can be produced by appropriately selecting the heat treatment temperature and the heat treatment time in the heat treatment step.
  • a is the same as that shown in the formula (3), and c represents a constant (348.06 nm).
  • d represents a constant (345.06 nm).
  • the heat treatment process for the purpose of color reduction of performing the heat treatment in an oxidative atmosphere (for the purpose of reducing the coloration of the material for optical glass) using the manufactured material for optical glass
  • the manufactured material for optical glass It is also possible to produce a glass material for press molding or an optical element containing an optical glass having a ratio nd of 1.9 or more.
  • post-steps carried out as necessary other than the heat treatment step for the purpose of color reduction for example, forming steps by pouring into a press or a mold, cutting steps, polishing steps, heat treatment steps (but heat treatment for the purpose of color reduction)
  • the various known processes (aside from the process) can be appropriately carried out before and after the heat treatment process for the purpose of color reduction.
  • the glass material for press molding is a glass material for obtaining a press-formed product, specifically, an optical element blank or an optical element.
  • a method of producing a glass material for press molding for example, (1) a flowing molten glass flow is separated to form a molten glass mass, and the glass material for press molding finally obtained in the process of cooling the molten glass mass
  • a method of producing a glass material for press molding by performing a heat treatment step for reducing color on the material for optical glass after molding the material for optical glass of the same shape and size, (2) a molten glass as a mold And casting the glass block (material for optical glass) into a glass block, and producing a glass material for press molding in a post-processing step including a heat treatment step for the purpose of reducing the color of the glass block.
  • Examples of the optical element include various lenses such as a spherical lens and an aspheric lens, and a prism.
  • Examples of the method of producing an optical element include the methods shown in the following (1) to (3).
  • the present invention is not limited to the embodiment at all, and it is needless to say that the present invention can be practiced in various modes without departing from the scope of the present invention. .
  • an optical glass is exemplified, but any glass product in which coloring by a reducing component causes a problem can be suitably used for manufacturing various glass products regardless of the optical element.
  • a glass product an optical window material, glass for solar cells, a cover glass etc. are mentioned, for example.
  • the glass which concerns on this embodiment is suitable as a material for optical elements, it is preferable that it is amorphous (amorphous) glass.
  • a method of producing an optical element made of glass for example, there is a method of heating and softening a glass material to form it.
  • the crystallized glass in which the crystal phase is dispersed in the glassy material is unsuitable for the above forming method.
  • the crystal phase in the crystallized glass may scatter light to reduce the performance as an optical element.
  • Amorphous glass does not have such a problem.
  • this embodiment exemplifies the method of melting a raw material mainly using a crucible as an example of the manufacturing method of optical glass, as a melting container, the tube made of quartz etc. which both ends opened is used. It is also good.
  • a tube made of quartz or the like is fixed in an inclined state in a glass melting furnace.
  • an opening is provided at a position corresponding to the lower end of the lower end of the tube.
  • Raw material batch material or cullet
  • the melt flows slowly in the tube and flows out one after another from the lower open side of the tube.
  • the effluent passes through the opening at the bottom of the furnace and is dropped one after another into water in a water tank previously disposed under the opening at the bottom of the glass melting furnace to form cullet.
  • the raw material is melted using a tube made of quartz or the like, but instead of the tube, a crucible made of quartz or the like may be used.
  • a crucible made of quartz or the like may be used.
  • raw materials are put in a crucible made of quartz etc., heated and melted to form a melt, and then the melt is cast in water or poured out on a cooled heat-resistant plate to produce cullet. Good.
  • Example 1 [Preparation of batch material] First, when producing optical glass with desired characteristics, phosphoric acid, barium metametaphosphate, titanium oxide, niobium oxide, tungsten oxide, bismuth oxide, boric acid, barium carbonate, barium carbonate, sodium carbonate, potassium carbonate as raw materials of glass And silicon oxide were prepared respectively. Next, the above raw materials are appropriately selected and weighed so that the glass composition of the finally obtained optical glass becomes the oxide compositions I to VIII shown in Table 2, and sufficiently mixed to produce batch raw materials I to VIII. did.
  • the cullet taken out of the water is dried, a part of the cullet is sampled for measuring the refractive index, put in a platinum crucible and melted, and the obtained glass melt is clarified and homogenized, and then cast in a mold After molding and holding at a temperature near the glass transition temperature, cooling was performed at a temperature decrease rate of 30 ° C./hour.
  • the refractive index nd of the sample for refractive index measurement thus obtained was measured by the refractive index measurement method defined by the Japan Optical Glass Industrial Standard.
  • a cullet was prepared so as to obtain a desired refractive index to obtain a prepared cullet for producing an optical glass.
  • the temperature of the crucible was raised to a clarifying temperature (range of 900 to 1450 ° C.) to clarify (refining step). Subsequently, the temperature of the crucible was lowered to the homogenization temperature, and the mixture was homogenized by stirring with a stirrer (homogenization step).
  • a clarifying temperature range of 900 to 1450 ° C.
  • the volume in the melting furnace (the volume of the space in the furnace made of a refractory that stores the crucible), and the residence time of the melting material in the melting furnace (after the cullet is introduced into the platinum melting container, The time until the molten glass flows out is shown in Table 3.
  • a platinum pipe is inserted from outside the melting furnace into a platinum crucible disposed in the furnace, and water vapor (H 2 O 100% by volume) is introduced into the space in the platinum crucible through the platinum pipe. And supplied.
  • water vapor H 2 O 100% by volume
  • the flow rate of the supplied water vapor is shown in Table 3.
  • steam shown in Table 3 is the value converted into the flow volume in normal temperature and normal pressure, and a unit is a liter / minute.
  • the molten glass thus homogenized flows out of the platinum glass outflow pipe attached to the bottom of the crucible in an air atmosphere (effluence process) and is poured into a mold disposed below the outflow pipe, whereby a long length is obtained.
  • the glass block (width 150 mm ⁇ thickness 10 mm) was molded (molding step).
  • the optical glass sample was processed to prepare a cylindrical measurement sample (diameter 5 mm, height 20 mm).
  • the glass transition temperature Tg of the obtained measurement sample was measured using a thermomechanical analyzer (TMA) at a temperature rising rate of + 10 ° C./min.
  • ln is a natural logarithm
  • the thickness t corresponds to the distance between the two planes.
  • the external transmittance also includes the reflection loss on the surface of the glass sample, and is the ratio of the intensity of the transmitted light to the intensity of the incident light incident on the glass sample (transmitted light intensity / incident light intensity). Also, the higher the value of ⁇ OH, the more water is contained in the glass. The results are shown in Table 7.
  • T450 (H) The optical glass sample was heat-treated by raising the temperature at a rate of + 100 ° C./hour, holding it at a predetermined holding temperature for 100 hours, and decreasing the temperature at a rate of ⁇ 30 ° C./hour in an air atmosphere.
  • holding temperature changes according to a composition, it was set as the temperature shown in Table 5 according to the oxide composition of each optical glass sample.
  • the heat-treated optical glass sample was processed to prepare a plate-like glass sample having a thickness of 10 mm, which was optically polished parallel to each other and flat on both sides.
  • the external transmittance T450 (H) at 450 nm of the plate-like glass sample thus obtained was determined using a spectrophotometer. The larger the value of T450 (H), the better the transmittance, meaning that the coloration of the glass is reduced. The results are shown in Table 7.
  • the optical glass sample was heat-treated under the same conditions as in the case of T450 (H).
  • the heat-treated optical glass sample was processed to prepare a plate-like glass sample having a thickness of 10 mm ⁇ 0.1 mm, which was optically polished parallel to each other and flat on both sides.
  • T450 (L) 0.5 to 0.7 cc of molten glass which has been subjected to the homogenization process when producing an optical glass sample, and a mold for floating molding (concave portion receiving the molten glass is formed of a porous body, a porous body It was poured into the recess of the mold having a structure in which the gas spouted from the surface of the recess, the gas was spouted from the recess, an upward wind pressure was applied to the molten glass block on the recess, and the glass block was formed in a floating state.
  • the temperature of the above glass gob is raised at a rate of + 100 ° C./hour, held at a predetermined holding temperature and holding time, and lowered at a rate of -30 ° C./hour to obtain a spherical optical glass sample after heat treatment.
  • holding temperature and holding time change according to a composition, it was set as the temperature and time which are shown in Table 6 according to the oxide composition of each optical glass sample.
  • the obtained spherical optical glass sample was processed to prepare a plate-like glass sample having a thickness of 5 mm, which was optically polished on both sides parallel to each other and flat.
  • the external transmittance T450 (L) at 450 nm of the plate-like glass sample thus obtained was determined using a spectrophotometer. The larger the value of T450 (L), the better the transmittance, and the shorter the heat treatment, the less the coloration of the glass.
  • Bubble breakage 40 cc of molten glass (glass melt) before starting the clarifying process in preparing an optical glass sample is collected and clarified in another platinum crucible in the atmosphere for a fixed time, and the glass melt is It was cooled in a platinum crucible and solidified. In this process, the color was reduced to such an extent that the number of bubbles contained in the glass could be counted. The solidified glass was then removed from the platinum crucible.
  • the inside of the glass was subjected to magnified observation (100 ⁇ ) using an optical microscope (magnification: 20 to 100 ⁇ ), and the number of bubbles contained in the glass was counted.
  • the same observation was carried out for each of the measurement samples having different clarifying times, and the clarifying time of the measurement sample, in which the number of bubbles remaining in the glass was 100 / kg or less, was evaluated as the defoaming time. The shorter the defoaming time, the better the clarity.
  • Table 7 The results are shown in Table 7.
  • an optical glass sample having a high ⁇ OH can be obtained (Sample 13 to Sample 16, Sample 24 to Sample 26, Sample 33 to Sample 35, Sample 43 to sample 46, sample 53 to sample 56, sample 63 to sample 66, sample 72, sample 73, and sample 82 to sample 84). That is, it is expected that the optical glass sample produced by the production method of the present invention has a high water content in the glass.
  • the values of T450 (H) and T450 (L), which are values indicating the transmittance of the optical glass sample after heat treatment, are It is large and the value of ⁇ 70 (or ⁇ 80) is small. From these results, it was confirmed that the optical glass sample produced by the production method of the present invention has excellent transmittance after heat treatment.
  • the transmittance is dramatically improved by a short time heat treatment, and the thickness of the measurement sample is In view of the above, it was confirmed that the transmittance was equivalent to the transmittance (the value of T450 (H)) after the heat treatment for 100 hours.
  • the optical glass sample produced by the production method of the present invention also has a significantly reduced Pt content. This result is considered to be that the optical glass sample produced by the production method of the present invention is prevented from deterioration of the transmittance due to Pt ions, and the optical glass sample produced by the production method of the present invention is excellent in transmittance It agrees with having.
  • the optical glass sample produced by the production method corresponding to the comparative example of the present invention is produced with the same oxide composition by the production method of the present invention because the operation to increase the water content in the molten glass is not performed. It was confirmed that the value of ⁇ OH is smaller than that of the optical glass sample (Sample 11, Sample 12, Sample 21 to Sample 23, Sample 31, Sample 32, Sample 41, Sample 42, Sample 51, Sample 52, Sample 61, sample 62, sample 71, and sample 81). That is, it is expected that the optical glass sample produced by the production method corresponding to the comparative example of the present invention has a lower water content in the glass than the optical glass sample produced by the production method of the present invention.
  • Such an optical glass sample produced by the production method corresponding to the comparative example of the present invention has a transmission of glass after heat treatment compared to an optical glass sample produced with the same oxide composition according to the production method of the present invention It was confirmed that the rate was low, the amount of dissolved Pt was large, and the time required for defoaming was also increased.
  • an optical glass having excellent transmittance after heat treatment can be obtained. Further, according to the manufacturing method of the present invention, since a good optical glass can be obtained even if the time required for the clarification step and the heat treatment step is shortened, the production cost can be significantly reduced and the productivity is also improved.
  • Example 2 Optical glass samples were produced under the same conditions as Samples 51 to 56 of Example 1 except that antimony oxide (Sb 2 O 3 ) was added to batch raw material V as a glass raw material (Samples 51a to 56a).
  • the amount of antimony oxide added is shown in Table 8. In addition, a unit is ppm with respect to 100 mass% of batch raw materials.
  • Example 3 The molten glass (molten glass just before starting the outflow step) manufactured by the same method as the sample 55 of Example 1 is allowed to flow out (outflow step) in the atmosphere, and cast into a mold to be formed (forming step) ), And annealing (annealing step) at a temperature decrease rate of ⁇ 100 ° C./hour to produce an optical glass sample (sample 55 b).
  • each treatment atmosphere at the time of performing the outflow step and the forming step is changed to the air atmosphere to form an oxidizing atmosphere (an atmosphere in which oxygen is added to air to increase the oxygen partial pressure).
  • Another optical glass sample (sample 55c) was produced in the same manner.
  • the oxidizing atmosphere was adjusted as follows.
  • the molten glass was covered with a cover at a zone where the molten glass flowed out and formed, oxygen gas was supplied into the cover, and the oxygen partial pressure in the atmosphere, ie, the atmosphere where the molten glass flowed out and formed, was higher than the oxygen partial pressure in the atmosphere.
  • the volume ratio of oxygen in the atmosphere for flowing out and forming the molten glass was approximately 30% to 40%.
  • the refractive index nd, the Abbe number dd, and the glass transition temperature Tg were substantially the same as the values shown in the oxide composition V of Example 1. Further, ⁇ OH was 1.31 mm ⁇ 1 .
  • the sample 55c produced by setting the oxygen partial pressure of the atmosphere at the time of flowing out and forming the molten glass higher than the oxygen partial pressure in the atmosphere flows out and forms the molten glass in the atmosphere. It was confirmed that the transmittance in the visible range is high and the color is low compared to the sample 55b produced.
  • Example 4 The optical glass samples (glass blocks) produced in Examples 1 to 3 were divided, and further processed if necessary, to obtain glass materials for press molding corresponding to the respective optical glasses.
  • the glass material for press molding obtained in this manner was heated, softened and pressed in the atmosphere to produce an optical element blank having a lens shape.
  • the obtained optical element blank was annealed in the atmosphere, and was further processed by grinding, polishing and the like to produce glass optical elements such as lenses and prisms corresponding to the samples of Examples 1 to 3. .
  • the temperature-fall rate at the time of annealing was set so that the refractive index of an optical element might turn into a desired value.
  • Optical glass sample (Sample 13 to Sample 16, Sample 24 to Sample 26, Sample 33 to Sample 35, Sample 43 to Sample 46, Sample 53 to Sample 56, Sample 63 to Sample 66, Samples prepared by the manufacturing method of the present invention 72, Sample 73, Sample 82 to Sample 84, Sample 53a to Sample 56a, Sample 55b and Sample 55c), the optical element produced in the process from forming of the molten glass to processing of the optical element blank, etc. It was confirmed that the coloring was significantly reduced by the heat treatment in the oxidizing atmosphere of
  • optical glass sample glass (Sample 11, Sample 12, Sample 21 to Sample 23, Sample 31, Sample 32, Sample 41, Sample 42, Sample 51, Sample 52) manufactured by the manufacturing method corresponding to the comparative example of the present invention.
  • the optical element manufactured using the sample 61, the sample 62, the sample 71, the sample 81, the sample 51b, and the sample 52b) has an oxidizing atmosphere such as the atmosphere between molding of the molten glass and processing of the optical element blank. Even after the heat treatment in, it was confirmed that the coloring remained and the reduction effect of the coloring was low.
  • Examples A1 to A6 and Examples B1 to B6) The raw materials of the batch are roughly melted to prepare cullet, and the cullet is put into a platinum crucible, heated, melted and shaped. 1 to No.
  • Each optical glass of the composition of 4 was produced in the following procedures. First, phosphate, orthophosphoric acid, oxides, carbonates, nitrates and sulfates were weighed and thoroughly mixed to prepare a raw material (batch raw material). Next, this batch raw material was put into a container made of quartz. 1 and No. The glass No. 2 was heated in the range of the liquidus temperature LT to 1400 ° C. 3 and No. The glass No. 4 was heated at a liquidus temperature LT to 1300 ° C. to form a molten glass, and this molten glass was dropped into water to prepare a cullet raw material.
  • the cullet raw material was reconstituted, and was put into a platinum crucible (fusion container) and a platinum lid was placed.
  • the cullet raw material in the platinum crucible was heated within the range of the liquidus temperature LT to 1300 ° C. of the glass composition of the cullet raw material to melt the cullet raw material and melt vitrify (melting step).
  • the temperature of the liquidus temperature LT to 1400 ° C. to clarify
  • the temperature of the liquidus temperature LT to 1300 ° C. lowers and stirs and homogenizes (homogenization) Step)
  • the clarified and homogenized molten glass is drained from the glass outflow pipe and cast in a mold to form a glass block (material for optical glass).
  • the water vapor flow rate per unit time supplied into the platinum crucible is shown in Table 9 and Table 10.
  • the water vapor flow rate shown in Table 9 and Table 10 is a value converted to the flow rate at normal temperature, and the unit is liter / minute.
  • the platinum crucible is sealed with a platinum lid without an opening, and the platinum crucible is sealed from the melting process through the clarification process to the homogenization process. It controlled the transpiration of water from cullet raw material and molten glass in the process of melting.
  • each glass block (material for optical glass) consisting of 2 glasses is raised to 600 ° C from 25 ° C over 2 hours in the atmosphere, and annealing (heat treatment) is performed at 600 ° C to form a glass block (material for optical glass) An operation to reduce the color was performed. Thereafter, the glass block was cooled to normal temperature at a temperature lowering rate of -30 ° C / hour.
  • maintained at 600 degreeC is 1 hour.
  • the temperature of each glass block (material for optical glass) consisting of 4 glasses is raised to 570 ° C. from 25 ° C.
  • the measured values of the refractive index nd and the Abbe number dd shown in Table 1 are values measured using a sample cooled at a cooling rate of 30 ° C. per hour, and the measured values of the liquidus temperature LT After reheating and holding for 2 hours, it is cooled to room temperature, and the presence or absence of crystal precipitation inside the glass is confirmed by an optical microscope, and the lowest temperature at which no crystal is observed is taken as the liquidus temperature.
  • Examples A1 to A3 in Table 9 are data on optical glass prepared from a platinum pipe without introducing water vapor into the melting vessel, and Examples A4 to A6 are samples from platinum pipes to the melting vessel. It is data about the optical glass produced by introducing water vapor.
  • the use of a phosphoric acid raw material and the improvement of the airtightness of the melting container introduce water into the molten glass and suppresses the dissipation of water vapor from the melting container.
  • the water vapor partial pressure in the melting vessel is also positively increased.
  • Example A4 Comparing the T450 and ⁇ 80 of the optical glass of Example A1 to Example A3 with the T450 and ⁇ 80 of the optical glass of Example A4 to Example A6, Example A4 in which the water vapor partial pressure in the melting vessel is positively increased
  • the optical glass of Example A6 also has a larger ⁇ OH value. Then, it is understood from the results of visual observation of the glass block before and after heat treatment described later that the degree of coloring is significantly reduced.
  • Examples B4 to B6 are from platinum pipes to a melting vessel It is data about the optical glass produced by introducing water vapor.
  • Example B1 to Example B3 by using a phosphoric acid raw material and by enhancing the airtightness of the melting vessel, water is introduced into the molten glass and the dissipation of water vapor from the melting vessel is suppressed.
  • Example B4 to Example B6 the water vapor partial pressure in the melting vessel is also positively increased.
  • Example B4 Comparing the T450 and ⁇ 80 of the optical glass of Example B1 to Example B3 with the T450 and ⁇ 80 of the optical glass of Example B4 to Example B6, Example B4 in which the water vapor partial pressure in the melting vessel is positively increased
  • the optical glass of Example B6 also has a larger ⁇ OH value. Then, it is understood from the results of visual observation of the glass block before and after heat treatment described later that the degree of coloring is significantly reduced.
  • Examples A1 to A6 and Examples B1 to B6 platinum crucibles were used as the melting vessel, but materials for optical glass are manufactured using platinum alloy crucibles, gold crucibles, and gold alloy crucibles. Even when the obtained material for optical glass was heat-treated in an oxidizing atmosphere, the coloration thereof could be significantly reduced, and as a result, an optical glass with less coloration could be obtained. Furthermore, in Examples A4 to A6 and Examples B4 to B6, water vapor was supplied through a pipe into a covered platinum crucible, but similar effects may be obtained by bubbling water vapor into molten glass in the platinum crucible. You can get the effect. The composition of optical glass to be produced is shown in Table 1 2 or No. Even when the glass composition is changed to No. 4, no. 1 and No. Similar results are obtained with the glass composition of 3.
  • Examples A4 to A6 and B4 to B6 steam obtained by boiling water using a boiler was used as steam supplied into the platinum crucible.
  • water vapor obtained by other methods can also be appropriately used.
  • water is sprayed in the form of a mist into a refractory glass melting furnace that accommodates a melting vessel such as a platinum crucible and steamed to increase the partial pressure of water vapor in the atmosphere inside the glass melting furnace and inside the melting vessel Good.
  • water may be supplied into the glass melting furnace using a pump, and the water in the melting furnace may be boiled to vaporize the water, and the partial pressure of water vapor in the glass melting atmosphere may be increased, or other methods. May be used.
  • the moisture content in the optical glass material can be increased also by using these methods.
  • Example A1 A glass block (raw material for optical glass) was produced in the same manner as in Examples A1 to A3 except that the melting vessel was not opened but in an open state, and then heat treatment was performed in the same manner as in Examples A1 to A6. However, the degree of coloring of the heat-treated glass block (optical glass) was greater than in Examples A1 to A6.
  • No. 1 described in Table 1 is a glass composition.
  • No. 1 instead of the composition of No. 1 A glass block (material for optical glass) was produced and heat-treated in the same manner as in Comparative Example A1 except that the composition of No. 2 was used.
  • the degree of coloring of the heat-treated glass block (optical glass) was greater than in Examples A1 to A6.
  • Comparative Example B1 A glass block (material for optical glass) was produced in the same manner as in Examples B1 to B3 except that the melting vessel was not opened but in an open state, and then heat treatment was performed in the same manner as in Examples B1 to B6. However, the degree of coloring of the heat-treated glass block (optical glass) was greater than in Examples B1 to B6.
  • No. 1 described in Table 1 is a glass composition.
  • No. 3 instead of No. 3 A glass block (material for optical glass) was produced and heat-treated in the same manner as in Comparative Example B1 except that the composition No. 4 was used. However, the degree of coloring of the heat-treated glass block (optical glass) was greater than in Examples B1 to B6.
  • Comparative Example A2 A glass block (material for optical glass) was produced in the same manner as in Examples A4 to A6 except that nitrogen gas was introduced instead of water vapor into the melting vessel, and then heat treatment was performed in the same manner as in Examples A1 to A6. . However, the degree of coloring of the heat-treated glass block (optical glass) was much larger than that of the glass block (optical glass) of Comparative Example A1.
  • No. 1 described in Table 1 is a glass composition.
  • No. 1 instead of the composition of No. 1 A glass block (material for optical glass) was produced in the same manner as in Comparative Example 2 except that the composition of No. 2 was used, and was heat-treated. However, the results were similar to Comparative Example A2.
  • Comparative Example B2 A glass block (material for optical glass) was produced in the same manner as in Examples B4 to B6 except that nitrogen gas was introduced instead of water vapor into the melting vessel, and then heat treatment was performed in the same manner as in Examples B1 to B6. . However, the coloring degree of the heat treated glass block (optical glass) was much larger than the glass block (optical glass) of Comparative Example B1.
  • No. 1 described in Table 1 is a glass composition.
  • No. 3 instead of No. 3 A glass block (material for optical glass) was produced and heat-treated in the same manner as in Comparative Example B2, except that the composition No. 4 was used. However, the results were similar to Comparative Example B2.
  • Example 3 A glass block (material for optical glass) is produced in the same manner as in Examples A4 to A6 except that a reducing gas such as carbon monoxide gas is introduced into the melting vessel in place of water vapor, and then Examples A1 to A6 and Heat treatment was performed in the same manner. However, the coloring degree of the heat-treated glass block (optical glass) was much larger than that of the glass block (optical glass) of Comparative Example 1.
  • the concentration of the reducing gas is increased, the reduced glass component is alloyed with the platinum crucible and breakage of the crucible occurs. This corresponds to No. 1 described in Table 1 for the glass composition. 2 to No. The same applies to the case of changing to the composition of 4.
  • a glass block (optical glass) is colored, but the sheet positioned below the glass block (optical glass) has sufficient transparency (medium transparency).
  • Example 7 The optical glasses produced in Examples A1 to A6 and Examples B1 to B6 were processed into glass materials for press molding, heated, softened, and press molded to produce optical element blanks. Further, the optical element blank was processed to produce an optical element such as a spherical lens or a prism. Furthermore, the lens surface and the prism surface were coated with an antireflective film to obtain a final product. No. 1 described in Table 1 2 and No. The glass material for press molding, an optical element blank, and an optical element were similarly produced about the optical glass of 4.
  • the preferable thing of another form of this embodiment is a heating and melting process of heating and melting a glass material in a melting vessel in order to obtain a molten glass,
  • a heating and melting process of heating and melting a glass material in a melting vessel in order to obtain a molten glass
  • An oxide glass comprising at least one oxide selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 as a glass component, wherein TiO 2 , Nb 2 O 5 , WO 3 and Bi 2
  • the material for optical glass which is 30 mol% or more in total content of O 3 is manufactured, It is a manufacturing method of the material for optical glass characterized by supplying moisture in the fusion container in the above-mentioned heating and melting process.
  • the manner of supplying water into the melting vessel is a first supplying manner of supplying water vapor into the atmosphere near the liquid surface of the molten glass, and a method of supplying water vapor while bubbling water vapor into the molten glass It is preferable that it is any selected from the 2nd supply aspect and the 3rd supply aspect which combined the 1st supply aspect and the 2nd supply aspect.
  • the glass material preferably contains a phosphoric acid component.
  • the preferable thing of another form of this embodiment is a heating and melting process of heating and melting a glass material in a melting vessel in order to obtain a molten glass,
  • a forming step of forming the molten glass in the melting container into a predetermined shape An oxide glass comprising at least one oxide selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 as a glass component, wherein TiO 2 , Nb 2 O 5 , WO 3 and Bi 2
  • the material for optical glass which is 30 mol% or more in total content of O 3 is manufactured, While the said glass-making feedstock contains water
  • the glass material preferably contains a phosphoric acid component.
  • the optical glass material further includes P 2 O 5 , and
  • the content of P 2 O 5 contained in the material for optical glass is preferably in the range of 10 mol% to 35 mol%.
  • the material constituting the melting vessel is preferably at least one metal material selected from noble metals and noble metal alloys.
  • a material for optical glass is produced by the method for producing a material for optical glass according to any one of the above, and a heat treatment step of heat treating the material for optical glass in an oxidizing atmosphere
  • the optical glass manufacturing method is characterized in that an optical glass having a refractive index nd of at least 1.9 is produced.
  • ⁇ 80 of the optical glass satisfies the following expression (4).
  • ⁇ 80 is the internal transmittance measured in a wavelength range of 280 to 700 nm when light is incident on the optical glass in parallel with its thickness direction, and then the measured internal transmittance Represents the wavelength (nm) at which the internal transmittance calculated based on the assumption that the thickness of the optical glass is 10 mm is 80%, a represents a constant (1.8359 nm / mol%), b Represents a constant (351.06 nm), and X represents the total content (mol%) of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 . ]
  • a material for optical glass is produced by the method for producing a material for optical glass according to any one of the above, and a heat treatment step of heat treating the material for optical glass in an oxidizing atmosphere
  • a method of manufacturing a glass material for press molding comprising: manufacturing a glass material for press molding made of optical glass having a refractive index nd of 1.9 or more.
  • ⁇ 80 of the optical glass satisfies the following expression (4).
  • ⁇ 80 is the internal transmittance measured in a wavelength range of 280 to 700 nm when light is incident on the optical glass in parallel with its thickness direction, and then the measured internal transmittance Represents the wavelength (nm) at which the internal transmittance calculated based on the assumption that the thickness of the optical glass is 10 mm is 80%, a represents a constant (1.8359 nm / mol%), b Represents a constant (351.06 nm), and X represents the total content (mol%) of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 . ]
  • a material for optical glass is produced by the method for producing a material for optical glass according to any one of the above, and a heat treatment step of heat treating the material for optical glass in an oxidizing atmosphere Manufacturing an optical element made of an optical glass having a refractive index nd of 1.9 or more.
  • ⁇ 80 of the optical glass satisfies the following expression (4).
  • ⁇ 80 is the internal transmittance measured in a wavelength range of 280 to 700 nm when light is incident on the optical glass in parallel with its thickness direction, and then the measured internal transmittance Represents the wavelength (nm) at which the internal transmittance calculated based on the assumption that the thickness of the optical glass is 10 mm is 80%, a represents a constant (1.8359 nm / mol%), b Represents a constant (351.06 nm), and X represents the total content (mol%) of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 . ]

Abstract

[Problem] The transmittance of glass can be dramatically improved as a result of this glass production method. In addition, the amount of rare metal, such as platinum, that melts into glass can be greatly reduced. [Solution] A glass production method whereby the water content in molten glass is increased, in a melting step (i) in which a glass raw material including at least one type of component among TiO2, Nb2O5, WO3, and Bi2O3 is heated inside a melting container and melted, and a molten glass is obtained.

Description

ガラスおよび光学素子の製造方法Glass and optical element manufacturing method
 本発明は、透過率に優れたガラスおよび光学素子の製造方法に関する。 The present invention relates to a glass having excellent transmittance and a method of manufacturing an optical element.
 近年、撮像光学系、投射光学系等の装置の高機能化、コンパクト化に伴い、有効な光学素子の材料として、高屈折率の光学ガラスの需要が高まってきている。 In recent years, with the advancement of functions and compactness of apparatuses such as imaging optical systems and projection optical systems, the demand for optical glasses of high refractive index as materials of effective optical elements is increasing.
 高屈折率の光学ガラスは、通常、ガラス成分としてTi、Nb、W、Bi等の高屈折率成分を多量に含有している。これらの成分は、ガラスの熔融過程で還元されやすく、還元されたこれらの成分は、可視光域の短波長側の光を吸収するため、ガラスの着色(以下、「還元色」ということがある)が増加する。 The high refractive index optical glass usually contains a large amount of high refractive index components such as Ti, Nb, W and Bi as glass components. These components are easily reduced in the melting process of the glass, and these reduced components absorb light on the short wavelength side of the visible light range, so the glass may be colored (hereinafter referred to as "reduced color" ) Increases.
 また、上記還元されやすい高屈折率成分は、坩堝の材料として広く用いられる白金等の貴金属材料と反応(酸化)し、貴金属が酸化されて生じた貴金属イオンが熔融ガラス中に溶け込む原因となる。熔融ガラス中に溶け込んだ貴金属イオンは可視光を吸収するため、ガラスの着色が増加する。 Further, the high refractive index component which is easily reduced is reacted (oxidized) with a noble metal material such as platinum which is widely used as a crucible material, and causes a noble metal ion generated by oxidizing the noble metal to be dissolved in the molten glass. Noble metal ions dissolved in the molten glass absorb visible light, thereby increasing the color of the glass.
 高屈折率成分を多く含有している高屈折率の光学ガラスでは、上述のようにガラスの着色、特に可視域の短波長側の透過率が低下しやすいという問題があった。このような問題を解決する手段として、特許文献1では、ガラス熔融中に非酸化性ガスをバブリングする技術や、一旦得られたガラスを再度加熱して熱処理する技術が提案されている。 The optical glass of high refractive index which contains a large amount of high refractive index components has a problem that coloring of the glass, in particular, the transmittance on the short wavelength side in the visible region tends to decrease as described above. As means for solving such problems, Patent Document 1 proposes a technique of bubbling non-oxidizing gas during glass melting and a technique of reheating and heat-treating the glass once obtained.
 しかし、Ti、Nb、W、Biなどの高屈折率成分を多量に含有するガラスを熔融するに際して、特許文献1に記載されている一酸化炭素、水素などの還元性ガスでバブリングすると、酸化物として添加される高屈折率成分が還元されて金属化し、熔融容器を構成する白金などの金属材料と合金を作り、熔融容器の強度、耐久性が著しく低下するという問題が起きる。また、ヘリウムやアルゴン等の不活性ガスは高価であるため、生産コストの増大の観点から長時間のバブリングには適さない問題があった。 However, when melting glass containing a large amount of high refractive index components such as Ti, Nb, W, and Bi, bubbling with a reducing gas such as carbon monoxide or hydrogen described in Patent Document 1 produces oxides. The high refractive index component to be added is reduced and metallized to form an alloy with a metal material such as platinum constituting the melting vessel, and the strength and the durability of the melting vessel are significantly reduced. In addition, since inert gases such as helium and argon are expensive, there is a problem that they are not suitable for bubbling for a long time from the viewpoint of increase in production cost.
 また、一般にガラスの熔融は大気雰囲気中で行われるため、大気中の酸素が熔融容器の材料である白金等の貴金属材料と反応することがある。特に、熔融容器が白金系材料である場合、二酸化白金(PtO)が生成し熔融物中に溶け込む、あるいは、熔融物と白金系材料との界面から白金イオン(Pt4+)として熔融物に溶け込むことがあり、これによりガラスの着色を生じることがある。 Moreover, since melting of glass is generally performed in the atmosphere, oxygen in the atmosphere may react with a noble metal material such as platinum which is a material of the melting container. In particular, when the melting vessel is a platinum-based material, platinum dioxide (PtO 2 ) is formed and dissolved in the melt, or dissolved in the melt as platinum ions (Pt 4+ ) from the interface between the melt and the platinum-based material In some cases, this may result in the coloration of the glass.
 そのため、特許文献1のような非酸化性ガスをバブリングする技術だけでは、ガラス中に白金等の貴金属が溶け込むことを十分に抑制できず、依然として高屈折率の光学ガラスの着色を大幅に低減することは困難であった。 Therefore, the technique of bubbling non-oxidizing gas as in Patent Document 1 alone can not sufficiently suppress the dissolution of a noble metal such as platinum in the glass, and still significantly reduces the coloring of the high refractive index optical glass. It was difficult.
特開2011-246344号公報JP 2011-246344 A
 本発明は、このような事情に鑑みてなされたもので、透過率に優れたガラスおよび光学素子の製造方法を提供することを目的とする。 This invention is made in view of such a situation, and an object of this invention is to provide the manufacturing method of the glass excellent in the transmittance | permeability, and an optical element.
 このような課題の解決を目的とした本発明の要旨は以下の通りである。
〔1〕 TiO、Nb、WOおよびBiの少なくとも一種以上の成分を含むガラス原料を熔融容器内にて加熱、熔融し、熔融ガラスを得る熔融工程(i)において、熔融ガラス中の水分量を高める操作を行うガラスの製造方法。
The gist of the present invention for the purpose of solving such problems is as follows.
[1] A glass raw material containing at least one or more components of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 is heated and melted in a melting vessel in a melting step (i) to obtain a molten glass, The manufacturing method of the glass which performs operation which raises the moisture content in molten glass.
〔2〕 前記ガラス原料が、TiO、Nb、WOおよびBiを合計で20モル%以上含む上記〔1〕に記載のガラスの製造方法。 [2] The method for producing a glass according to the above [1], wherein the glass raw material contains 20 mol% or more of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 in total.
〔3〕 前記熔融ガラス中の水分量を高める操作が、熔融雰囲気に水蒸気を付加する処理および熔融物内に水蒸気を含むガスをバブリングする処理の少なくともいずれか一方により行われる上記〔1〕または〔2〕に記載のガラスの製造方法。 [3] The operation according to the above [1] or [1], wherein the operation of increasing the water content in the molten glass is performed by at least one of adding water vapor to the melting atmosphere and bubbling a gas containing water vapor in the melt. The manufacturing method of the glass as described in 2].
〔4〕 前記熔融容器が金属材料からなる上記〔1〕~〔3〕のいずれかに記載のガラスの製造方法。 [4] The method for producing glass according to any one of the above [1] to [3], wherein the melting vessel is made of a metal material.
〔5〕 前記熔融工程(i)における熔融容器内の酸素分圧が、大気中の酸素分圧よりも低い上記〔1〕~〔4〕のいずれかに記載のガラスの製造方法。 [5] The method for producing a glass according to any one of the above [1] to [4], wherein the partial pressure of oxygen in the melting vessel in the melting step (i) is lower than the partial pressure of oxygen in the atmosphere.
〔6〕 前記熔融ガラスを前記熔融容器外に流出する工程(ii)、
 前記熔融ガラスを成形する工程(iii)をさらに有し、
 前記工程(ii)および前記工程(iii)の少なくともいずれか一つの工程を酸化性雰囲気下で行う上記〔1〕~〔5〕のいずれかに記載のガラスの製造方法。
[6] a step (ii) of flowing the molten glass out of the melting vessel;
The method further includes the step (iii) of forming the molten glass,
The method for producing glass according to any one of the above [1] to [5], wherein at least one of the step (ii) and the step (iii) is performed in an oxidizing atmosphere.
〔7〕 前記ガラスを熱処理する工程(iv)をさらに有し、
 前記工程(iv)を酸化性雰囲気下で行う上記〔1〕~〔6〕のいずれかに記載のガラスの製造方法。
[7] The method further includes the step (iv) of heat-treating the glass,
The method for producing glass according to any one of the above [1] to [6], wherein the step (iv) is performed in an oxidizing atmosphere.
〔8〕 前記酸化性雰囲気が、大気雰囲気、または大気よりも酸素分圧が高い雰囲気である上記〔6〕または〔7〕に記載のガラスの製造方法。 [8] The method for producing a glass as described in [6] or [7] above, wherein the oxidizing atmosphere is an air atmosphere or an atmosphere having a higher oxygen partial pressure than the air.
〔9〕 前記ガラスが、リン酸ガラスである上記〔1〕~〔8〕のいずれかに記載のガラスの製造方法。 [9] The method for producing a glass according to any one of the above [1] to [8], wherein the glass is a phosphate glass.
〔10〕 上記〔1〕~〔9〕のいずれかに記載の製造方法によりガラスを製造する工程と、
 前記ガラスを、さらに成形または加工する工程と、を有する光学素子の製造方法。
[10] A process for producing glass by the production method according to any one of the above [1] to [9],
And d) further molding or processing the glass.
 本発明のガラスの製造方法によれば、ガラスの透過率を劇的に改善できる。また、ガラス中に白金等の貴金属が溶け込む量を大幅に低減できる。 According to the method of producing glass of the present invention, the transmittance of glass can be dramatically improved. In addition, the amount of the noble metal such as platinum dissolved in the glass can be significantly reduced.
本発明の一実施形態に係る、バッチ原料の調合からガラスの製造までの工程をフローチャートで表したものである。It is a flowchart showing the process from preparation of a batch raw material to manufacture of glass based on one Embodiment of this invention. 表1に示すNo.1の組成からなる光学ガラスのβOH値を変化させた場合において、βOH値に対して、厚さ5mmの光学ガラスに対してその厚み方向と平行に光を入射した際の波長450nmにおける外部透過率(T450)の変化を示したグラフである。No. shown in Table 1 The external transmittance at a wavelength of 450 nm when light is incident on the optical glass having a thickness of 5 mm in parallel with the thickness direction with respect to the β OH value when the β OH value of the optical glass consisting of 1 is changed It is the graph which showed the change of (T450). 表1に示すNo.3の組成からなる光学ガラスのβOH値を変化させた場合において、βOH値に対して、厚さ5mmの光学ガラスに対してその厚み方向と平行に光を入射した際の波長450nmにおける外部透過率(T450)の変化を示したグラフである。No. shown in Table 1 The external transmittance at a wavelength of 450 nm when light is incident on the optical glass having a thickness of 5 mm in parallel to the thickness direction with respect to the β OH value when the β OH value of the optical glass having the composition of 3 is changed It is the graph which showed the change of (T450). 実施例2において、試料55および試料55bについて、透過率を測定した結果を示したグラフである。In Example 2, it is the graph which showed the result of having measured the transmittance | permeability about the sample 55 and the sample 55b.
 本実施形態のガラスの製造方法は、TiO、Nb、WOおよびBiの少なくとも一種以上の成分を含むガラス原料を熔融容器内にて加熱、熔融し、熔融ガラスを得る熔融工程(i)において、熔融ガラス中の水分量を高める操作を行うことを特徴とする。 The method for producing glass of the present embodiment heats and melts a glass material containing at least one or more components of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 in a melting vessel to obtain a molten glass In the melting step (i), an operation to increase the amount of water in the molten glass is performed.
 本実施形態のガラスの製造方法において、熔融ガラス中の水分を高める操作は、好ましくは、熔融容器内に水分を供給すること(以下、第一の実施態様)、または、ガラス原料が水分を含むとともに、加熱・熔融工程において、熔融容器が略密閉されていること(第二の実施態様)により行われる。 In the method for producing glass of the present embodiment, the operation to increase the moisture in the molten glass is preferably to supply moisture into the melting vessel (hereinafter, first embodiment), or the glass material contains moisture. At the same time, in the heating and melting step, the melting container is substantially sealed (second embodiment).
 なお、熔融ガラス中の水分量を高める操作とは、このような操作を行わなかった場合の熔融ガラス中の水分量よりも、熔融ガラス中の水分量を高めることである。熔融ガラス中の水分量を高める操作を行わない場合、熔融ガラス中の水分量は時間の経過とともに減少する。このような熔融ガラス中の水分量の減少を低減、抑制する操作も、熔融ガラス中の水分量を高める操作に含まれる。 In addition, the operation which raises the moisture content in molten glass is raising the moisture content in molten glass rather than the moisture content in molten glass when not performing such operation. If the operation to increase the water content in the molten glass is not performed, the water content in the molten glass decreases with the passage of time. An operation of reducing and suppressing the reduction of the amount of water in the molten glass is also included in the operation of increasing the amount of water in the molten glass.
 このような本実施形態の製造方法によって作製されたガラスは、高屈折率成分(TiO、Nb、WOおよびBiの少なくとも一種以上の成分)を含み、ガラスが濃く着色している場合であっても、後工程において、このガラスに対し、酸化性雰囲気中で熱処理することにより、ガラスの着色を大幅に低減できる。すなわち、熱処理後において、本実施形態の製造方法により得られたガラスは、着色が少なく、極めて優れた透過率を有する。このような効果が得られる理由については、本発明者は以下の通りであると推定している。 The glass produced by the production method of the present embodiment includes a high refractive index component (at least one or more components of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 ), and the glass is strongly colored. Even in this case, the coloration of the glass can be significantly reduced by heat treating the glass in an oxidizing atmosphere in a later step. That is, after heat treatment, the glass obtained by the manufacturing method of the present embodiment has little color and has extremely excellent transmittance. The present inventors estimate that the reason why such an effect can be obtained is as follows.
 まず、白金などの貴金属製の熔融容器を用いて、TiO、Nb、WOおよびBiなどの高屈折率成分を含む高屈折率のガラスを熔融する際、熔融ガラスを還元側にして熔融すると熔融ガラスへの金属イオン(熔融容器を構成する金属のイオン)の溶け込みを抑制することができる。しかし、熔融ガラスを過剰に還元側にすると、既述したように熔融容器が合金化されてしまう。また、熔融ガラスを過剰に還元しないまでも高屈折率成分が還元されることによってガラスの着色度合が強まると、後工程にてこのガラスに対して熱処理を行っても着色の低減度合は小幅なものにとどまる。 First, when melting a high refractive index glass containing high refractive index components such as TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 using a melting vessel made of a noble metal such as platinum, the molten glass Melting on the reduction side can suppress dissolution of metal ions (ions of the metal constituting the melting vessel) into the molten glass. However, when the molten glass is excessively reduced, the melting vessel is alloyed as described above. Also, if the degree of coloring of the glass is enhanced by reduction of the high refractive index component even if the molten glass is not excessively reduced, the degree of reduction of coloring is small even if the glass is subjected to heat treatment in a later step. Stay with things.
 このような問題を解決するには、熔融容器を構成する金属材料がイオン化して熔融ガラスに溶け込まない状態を作りつつ、一旦得られたガラスを熱処理することで着色を大幅に低減することができるガラスを作ればよい。 In order to solve such a problem, the coloring can be greatly reduced by heat-treating the glass once obtained while forming a state in which the metal material constituting the melting vessel is ionized and is not dissolved in the molten glass. You can make a glass.
 本発明者は、熱処理によりガラスの着色が低減される現象について次のように考えた。まず、ガラスを酸化性雰囲気で熱処理することにより得られる光学ガラスの着色は少なくなるが、これは還元状態のTi、Nb、W、Biなどの各イオンが酸化され、各イオンの可視光吸収が弱まることによると考えられる。ガラスを熱処理してもTi、Nb、W、Biを酸化する速度が遅いと着色の改善は小幅なものにとどまる。ガラスの着色を大幅に低減するには、熱処理時のTi、Nb、W、Biの酸化速度を大きくすればよい。 The inventor considered as follows the phenomenon in which the coloration of the glass is reduced by the heat treatment. First, although the coloring of the optical glass obtained by heat-treating the glass in an oxidizing atmosphere is reduced, each ion of Ti, Nb, W, Bi, etc. in the reduced state is oxidized, and the visible light absorption of each ion is It is considered to be due to weakening. Even if the glass is heat-treated, the improvement of the coloration is small if the rate of oxidizing Ti, Nb, W and Bi is low. In order to significantly reduce the coloration of the glass, the oxidation rates of Ti, Nb, W, and Bi during heat treatment may be increased.
 仮に、ガラス中を移動しやすいイオンがあり、このイオンが直接着色に影響を与えるものでなければ、熱処理時にこのようなイオンがガラス中を速やかに移動して電荷を受け渡し、還元されたTi、Nb、W、Biを速やかに酸化し、着色を短時間で低減することが可能になる。このようなイオンとしてはHが適していると考えられるが、Hをより移動しやすくするには、ガラス構造中にOHを導入し、OHを起点にHがホッピングできるようにすることで、熱処理時の酸化速度を増加させることができると考えられる。 Temporarily, if there is an ion which is easy to move in the glass, and this ion does not directly affect the coloring, such an ion rapidly moves in the glass at the time of heat treatment to transfer the charge, and the reduced Ti, It is possible to rapidly oxidize Nb, W, and Bi and reduce coloring in a short time. H + is considered to be suitable as such an ion, but to make H + more mobile, introduce OH into the glass structure so that H + can hop from OH −. It is believed that this can increase the oxidation rate during heat treatment.
 したがって、ガラスを熱処理した際に、その着色を大幅に低減するためには、ガラス中にできるだけ多くのHとOHとを導入する、すなわち、ガラスの含水量をできるだけ大きくすればよい。 Therefore, when the heat treatment of the glass, in order to significantly reduce the coloration, as many H + and OH in the glass - introducing and, that may be as large as possible a water content of the glass.
 ここで、ガラス原料からガラスを作製する場合において、ガラス原料として正リン酸、水酸化アルミニウム、水酸化カルシウムなどの水酸化物のように含水量の多い原料成分を用いてもよいが、ガラス原料を熔解して熔融ガラスとする過程や、高温の熔融ガラスの状態において水分が蒸散してしまう。また、化合物を調合してバッチ原料とし、このバッチ原料を粗熔解してカレットを作り、このカレットを再調合して熔融容器中で再熔融することでガラスを得る場合でも、バッチ原料中に当初含まれていた水分はカレット化する際に失われ、さらに熔融容器中で再熔融する過程でも、水分が失われる。よって、いずれの方法を採用してガラスを作製したとしても、通常であれば、ガラスの含水量は極めて小さくなる。そして結果的に、このガラスを熱処理して着色を大幅に低減することはできなくなる。 Here, in the case of producing glass from a glass raw material, a raw material component having a high water content may be used as a glass raw material, such as a hydroxide such as orthophosphoric acid, aluminum hydroxide or calcium hydroxide. Moisture evaporates in the process of melting into molten glass and in the state of high temperature molten glass. In addition, even in the case of preparing a batch raw material, roughly melting this batch raw material to make a cullet, recomposing this cullet and remelting it in a melting vessel to obtain glass, the batch raw material is initially contained in the batch raw material The contained water is lost during culletization, and the water is also lost during the remelting process in the melting vessel. Therefore, regardless of which method is employed to produce the glass, the water content of the glass is usually extremely low. As a result, this glass can not be heat-treated to significantly reduce its color.
 しかしながら、熔融ガラスに対して外部から水分を供給すれば、高温の熔融ガラスから蒸散して失われた水分を補うことができ、ガラスの含水量を大きくすることが容易となる。 However, if water is supplied to the molten glass from the outside, it is possible to compensate for water lost by transpiration from the high temperature molten glass, and it becomes easy to increase the water content of the glass.
 あるいは、水分を含むガラス原料を使用すると共に、加熱・熔融工程において、熔融容器を略密閉してもよい。この場合も熔融容器の気密性が高まるため、熔融容器中でガラス原料を加熱、熔融する際、ガラス原料に含まれる水分が熔融容器の外へ蒸散するのを抑制できる。それゆえ、結果的に、ガラスの含水量を大きくすることが容易となる。 Alternatively, the melting vessel may be substantially sealed in the heating and melting process while using a glass material containing water. Also in this case, since the airtightness of the melting vessel is enhanced, when the glass raw material is heated and melted in the melting vessel, the moisture contained in the glass raw material can be suppressed from transpiration to the outside of the melting vessel. Therefore, as a result, it is easy to increase the water content of the glass.
 なお、水分を含むガラス原料は、上記のように正リン酸や水酸化物などを用いて得ることができる。また、この他にも、水分を含むガラス原料は、粗熔解して得た熔解物を水に導入してカレット化することによっても得ることができる。このようにして作製したカレット原料(水分を含むガラス原料)では、その表面に付着した水分はカレットを乾燥する際に除去される。しかし、カレットの内部に取り込まれた水分は再熔融(加熱・熔融工程)によって得られる熔融ガラス中の水分量の増加に寄与する。 In addition, the glass raw material containing water can be obtained using orthophosphoric acid, a hydroxide, etc. as mentioned above. Moreover, the glass raw material containing water can be obtained also by introduce | transducing into water the cullet obtained by roughly melt | dissolving, and cullet-izing. In the cullet raw material (glass raw material containing water) thus produced, the water adhering to the surface is removed when the cullet is dried. However, the water taken into the cullet contributes to the increase of the water content in the molten glass obtained by the remelting (heating and melting process).
 また、ガラスの含水量をできるだけ大きくするためには、ガラス中に水分を取り込んだり保持する作用の強いガラス成分、すなわちリン酸成分(例えば、正リン酸塩、メタリン酸塩、ピロリン酸塩など)をガラス原料として用いることも有効である。 Also, in order to increase the water content of the glass as much as possible, a glass component having a strong action of taking in and holding water in the glass, that is, a phosphoric acid component (eg, orthophosphate, metaphosphate, pyrophosphate etc.) It is also effective to use
 それゆえ、本実施形態のガラスの製造方法では、リン酸成分を含むガラス原料を用いることが特に好ましい。ここでリン酸成分としては、代表的には正リン酸(HPO)が挙げられるが、その他にも、ピロリン酸(H)や各種のリン酸塩(特に水和物)など各種公知のリン酸化合物も利用でき、2種類以上を組み合わせて利用してもよい。 Therefore, in the glass manufacturing method of the present embodiment, it is particularly preferable to use a glass material containing a phosphoric acid component. Here, typical examples of the phosphoric acid component include orthophosphoric acid (H 3 PO 4 ), and in addition, pyrophosphoric acid (H 4 P 2 O 7 ) and various phosphates (especially hydration) ) And various known phosphoric acid compounds may be used, and two or more kinds may be used in combination.
 また、本実施形態のガラスの製造方法では、得られるガラスの含水量が高く、結果的にガラスを熱処理した際に、着色を大幅に低減することが可能となる。特に、本実施形態のガラスの製造方法において、熔融ガラス中の水分を高める操作が、第一の実施態様により行われる場合は、第二の実施態様を単独で行った場合よりもガラスの含水量を一層高めることができ、着色の低減効果も高い。 Moreover, in the method for producing glass of the present embodiment, the water content of the obtained glass is high, and as a result, when the glass is heat-treated, it is possible to significantly reduce the coloration. In particular, in the glass manufacturing method of the present embodiment, when the operation to increase the water content in the molten glass is performed according to the first embodiment, the water content of the glass is higher than when the second embodiment is performed alone. Can be further enhanced, and the color reduction effect is also high.
 なお、上述した第一の実施態様では、熔融ガラス中の水分を高める操作が、加熱・熔融工程において、熔融容器内に水分を供給することにより行われる。これにより熔融ガラスに対して外部から水分を供給でき、結果的にガラスの含水量を大きくすることができる。熔融容器内への水分の供給態様としては特に限定されないが、熔融ガラスの液面近傍の雰囲気中へ水蒸気を供給する第一の供給態様、熔融ガラス中に水蒸気をバブリングしながら供給する第二の供給態様、および、第一の供給態様と第二の供給態様とを組み合わせた第三の供給態様、から選択されるいずれかであることが好ましい。なお、水分は、通常、水蒸気(気体)の形態で供給されることが好ましいが、たとえば、水分を除いた残り成分がガラスと略同一の成分からなる含水量の多いガラス原料粉末(固体)の形態で供給してもよい。 In the first embodiment described above, the operation of increasing the water content in the molten glass is performed by supplying the water into the melting container in the heating and melting step. Thereby, water can be supplied to the molten glass from the outside, and as a result, the water content of the glass can be increased. The manner of supplying water into the melting vessel is not particularly limited, but the first supplying manner of supplying water vapor into the atmosphere near the liquid surface of the molten glass, the second supplying of water vapor while bubbling water vapor into the molten glass It is preferable that it is any selected from the supply aspect and the 3rd supply aspect which combined the 1st supply aspect and the 2nd supply aspect. Moisture is usually preferably supplied in the form of water vapor (gas), but for example, it is a glass raw material powder (solid) having a high water content, the remaining components excluding water being substantially the same components as glass. It may be supplied in a form.
 一方、熔融ガラスの液面近傍の雰囲気の水蒸気分圧が低い場合は、熔融ガラス中の水分が外部へと蒸散し易くなる。しかしながら上述した第二の実施態様では、熔融ガラス中の水分を高める操作が、水分を含むガラス原料を使用すると共に、加熱・熔融工程において、熔融容器を略密閉することにより行われる。すなわち、水分を含む熔融ガラスは熔融容器という極めて狭い空間内に密閉される。このため、熔融ガラスの液面近傍の雰囲気の水蒸気分圧を高くして水分が蒸散するのを抑制できる。その結果、ガラスの含水量を高めることができる。 On the other hand, when the partial pressure of water vapor in the atmosphere near the liquid surface of the molten glass is low, the water in the molten glass tends to evaporate to the outside. However, in the second embodiment described above, the operation of increasing the water content in the molten glass is performed by using a glass material containing water and by substantially sealing the melting container in the heating and melting step. That is, the molten glass containing water is sealed in a very narrow space called a melting vessel. For this reason, it is possible to suppress the evaporation of water by increasing the water vapor partial pressure in the atmosphere in the vicinity of the liquid surface of the molten glass. As a result, the water content of the glass can be increased.
 なお、熔融容器を略密閉する方法としては特に限定されないが、たとえば、熔融容器が開口部を有する容器であれば、熔融容器の開口部に蓋をすればよい。この場合、熔融容器と蓋とで囲まれた密閉空間内に熔融ガラスを閉じ込めた状態で加熱・熔融工程を実施する。なお、蓋は熔融容器の開口部を塞ぐように熔融容器上に載置するだけでもよい。この場合、密閉された熔融容器内の圧力が高まれば、熔融容器のガスが外部へと少しづつ漏れるものの略密閉した状態を確保できる。しかしながら、熔融容器の開口部に蓋をした後、蓋が開口部に圧接するように押圧力を加えて蓋を熔融容器に対して強く固定したり、あるいは、開口部を封止処理するなどによって、熔融容器内の気密性をさらに高めてもよい。 Although the method for substantially sealing the melting container is not particularly limited, for example, if the melting container is a container having an opening, the opening of the melting container may be covered. In this case, the heating and melting process is performed in a state where the molten glass is confined in a sealed space surrounded by the melting vessel and the lid. The lid may simply be placed on the melting vessel so as to close the opening of the melting vessel. In this case, if the pressure in the sealed melting container is increased, it is possible to ensure a substantially sealed state in which the gas in the melting container gradually leaks to the outside. However, after closing the opening of the melting vessel, a pressing force is applied so that the lid is in pressure contact with the opening so that the lid is strongly fixed to the melting vessel, or the opening is sealed, etc. And the airtightness in the melting vessel may be further enhanced.
 また、「熔融容器を略密閉する」ことには、(1)熔融容器の開口部に直接蓋をしたりあるいは開口部を直接封止する実施態様以外にも、(2)開口部が開口した状態の熔融容器を、この熔融容器を収納する収納容器内に配置した上で、この収納容器の開口部に直接蓋をしたりあるいは開口部を直接封止する実施態様、および、(3)開口部が開口した状態の熔融容器を、この熔融容器を熔解炉内の密閉式の熔融容器収納室に配置する実施態様、も含まれる。そして、上記(1)~(3)の実施態様を適宜組み合わせて実施してもよい。 In addition, in order to “seal the melting container substantially”, (1) the opening is opened other than the embodiment in which the opening of the melting container is directly covered or the opening is directly sealed. An embodiment in which the molten container in the above state is placed in a storage container for storing the molten container and the opening of the storage container is directly covered or the opening is directly sealed, and (3) the opening There is also included an embodiment in which the melting container in the state where the part is open is disposed in a closed melting container storage chamber in the melting furnace. Then, the embodiments (1) to (3) may be combined appropriately.
 なお、熔融ガラス中の水分量を効率よく高める観点から、本実施形態のガラスの製造方法において、熔融ガラス中の水分量を高める操作としては、上記第一の実施態様により行われることがより好ましい。すなわち、熔融ガラス中の水分量を高める操作として、少なくとも、熔融雰囲気に水蒸気を付加する処理および熔融物内に水蒸気を含むガスをバブリングする処理のいずれか一方を行うことが好ましい。 From the viewpoint of efficiently increasing the amount of water in the molten glass, it is more preferable that the operation of increasing the amount of water in the molten glass is carried out according to the first embodiment in the method for producing glass of this embodiment. . That is, it is preferable to perform at least one of a process of adding water vapor to the melting atmosphere and a process of bubbling a gas containing water vapor in the molten material as the operation of increasing the water content in the molten glass.
 熔融雰囲気に水蒸気を付加する方法は、特に限定されるものではないが、例えば、熔融装置に設けた開口部から連結パイプを坩堝内へ挿入し、必要に応じてこのパイプを通して水蒸気を含むガスを坩堝内の空間へと供給する方法等が挙げられる。 The method of adding water vapor to the melting atmosphere is not particularly limited. For example, a connecting pipe is inserted into the crucible through an opening provided in the melting apparatus, and a gas containing water vapor is optionally passed through this pipe The method of supplying to the space in a cage etc. are mentioned.
 坩堝内の空間に供給する水蒸気を含むガスの流量は、特に限定されず、試験的に作製したガラスのβOHの測定結果をもとに調整することができる。例えば、略密閉された熔融容器内に水蒸気を供給する場合は、比較的少量の水蒸気を供給すれば、所望のβOHを有するガラスを得ることができる。一方、蓋をしない坩堝をガラス熔融炉内に配置してガラスを熔融する場合は、ガラス熔融炉内の体積が坩堝内の体積に比べて大きくなるため、βOHを所望の値にするには、ガラス熔融炉内に比較的多量の水蒸気を供給することになる。このような実験結果に基づいて、水蒸気の供給量、すなわち、ガスの流量を次の生産にフィードバックすることで、所望のβOHを有するガラスを生産できる。なお、以下、ガスの流量、水蒸気の流量、雰囲気付加流量、水蒸気の供給量は、25℃、1気圧に換算した値である。 The flow rate of the gas containing water vapor supplied to the space in the crucible is not particularly limited, and can be adjusted based on the measurement result of βOH of the experimentally produced glass. For example, when steam is supplied into a substantially sealed melting vessel, a relatively small amount of steam can be supplied to obtain a glass having a desired βOH. On the other hand, when melting a glass by arranging a crucible without a lid in a glass melting furnace, the volume in the glass melting furnace becomes larger than the volume in the crucible, so to set βOH to a desired value, A relatively large amount of water vapor will be supplied into the glass melting furnace. Based on such experimental results, it is possible to produce a glass having the desired βOH by feeding back the supply amount of water vapor, that is, the flow rate of the gas to the next production. In the following, the flow rate of gas, the flow rate of steam, the additional flow rate of atmosphere, and the feed rate of steam are values converted to 25 ° C. and 1 atm.
 また、バブリング方法としては、特に限定されるものではなく、公知の方法を用いることができる。例えば、白金製または白金合金製のパイプを熔融容器中の熔融物中に差込み、パイプを通して水蒸気を含むガスを熔融物中に吹き込む方法、熔融容器の底部付近に熔融容器の材料と同じ材料からなるパイプを取り付け、このパイプから熔融物中に水蒸気を含むガスを吹き込む方法などが挙げられる。 Moreover, it does not specifically limit as a bubbling method, A well-known method can be used. For example, a platinum or platinum alloy pipe is inserted into the melt in the melting vessel, and a gas containing water vapor is blown into the melt through the pipe, near the bottom of the melting vessel consisting of the same material as the material of the melting vessel There is a method of attaching a pipe and blowing a gas containing water vapor from the pipe into the melt.
 熔融物中に吹き込む水蒸気を含むガスの気泡径は、好ましくは直径0.01~100mmであり、より好ましくは0.1~30mmである。上記範囲とすることで、熔融ガラス中の水分量を効果的に高めることができると考えられる。なお、気泡径が小さすぎる場合には、熔融物に挿入するバブリング用の管が詰まりやすい等の問題がある。 The bubble diameter of the gas containing water vapor blown into the melt is preferably 0.01 to 100 mm in diameter, more preferably 0.1 to 30 mm. By setting it as the said range, it is thought that the moisture content in molten glass can be raised effectively. In addition, when the bubble diameter is too small, there is a problem that the bubbling pipe inserted into the melt tends to be clogged.
 熔融物中に吹き込む水蒸気を含むガスの流量は、特に限定されず、試験的に作製したガラスのβOHの測定結果をもとに調整することができる。例えば、試験的に作製したガラスのβOHを測定し、測定結果が所望の値よりも小さい場合は、ガスの流量を増加させ、逆に測定結果が所望のβOH値より大きい場合は、ガスの流量を減少させる調整を行う。このように試験的にガラスのβOHを求め、測定結果からガスの流量を調整すればよい。このように、試験的に作製したガラスのβOHの測定値に基づいて、水蒸気の供給量、すなわち、ガスの流量を次の生産にフィードバックすることで、所望のβOHを有するガラスを生産できる。 The flow rate of the gas containing water vapor blown into the melt is not particularly limited, and can be adjusted based on the measurement result of βOH of the experimentally produced glass. For example, the βOH of experimentally produced glass is measured, and if the measurement result is smaller than the desired value, the gas flow rate is increased, and conversely, if the measurement result is larger than the desired βOH value, the gas flow rate Make adjustments to reduce Thus, the βOH of glass may be determined experimentally and the flow rate of gas may be adjusted from the measurement result. Thus, the glass having the desired βOH can be produced by feeding back the supply amount of water vapor, that is, the flow rate of the gas, to the next production based on the measured value of βOH of the experimentally produced glass.
 水蒸気を含むガス中の水蒸気の含有量は、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは30体積%以上、一層好ましくは40体積%以上、より一層好ましくは50体積%以上、さらに一層好ましくは60体積%以上、なお一層好ましくは70体積%以上、特に好ましくは80体積%以上、さらに特に好ましくは90体積%以上である。水蒸気の含有量は、高いほど好ましく、特に上記範囲とすることで、最終的に得られるガラスにおいて、着色の低減効果を高めることができると共に、貴金属の含有量を低減でき、かつ清澄性を改善することができる。 The content of water vapor in the gas containing water vapor is preferably 10% by volume or more, more preferably 20% by volume or more, still more preferably 30% by volume or more, more preferably 40% by volume or more, still more preferably 50% by volume The content is more preferably 60% by volume or more, still more preferably 70% by volume or more, particularly preferably 80% by volume or more, and still more preferably 90% by volume or more. The content of water vapor is preferably as high as possible, and by setting the content to the above range, in particular, in the finally obtained glass, the color reduction effect can be enhanced, the content of noble metal can be reduced, and the clarity is improved. can do.
 なお、水蒸気を含むガスは、生成したものや、市販のものを用いることができ、他のガスとの混合ガスであってもよい。他のガスとしては、例えば、空気等が挙げられる。 The gas containing water vapor may be one produced or a commercially available one, and may be a mixed gas with another gas. As another gas, air etc. are mentioned, for example.
 また、熔融ガラス中の水分量を高めるため、水蒸気を付加した熔融雰囲気中で、熔融物を攪拌してもよい。 Further, in order to increase the amount of water in the molten glass, the molten material may be stirred in a melting atmosphere to which water vapor is added.
 なお、ガラス中の含水量を高めて、酸化性雰囲気中での熱処理により着色の低減がより容易となる観点からは、本実施形態において、熔融ガラス中の水分を高める操作は、第一の実施態様と第二の実施態様とを組み合わせて実施することが特に好ましい。 From the viewpoint of increasing the water content in the glass and facilitating the reduction of coloring by heat treatment in an oxidizing atmosphere, in the present embodiment, the operation of increasing the water content in the molten glass is the first operation. It is particularly preferred to carry out the embodiment in combination with the second embodiment.
 また、本実施形態のガラスの製造方法によれば、熔融容器等に由来する貴金属(例えば白金等)のガラス中への溶け込みを有効に防止でき、貴金属イオンに由来する着色も一層低減される。 Further, according to the method for producing glass of the present embodiment, it is possible to effectively prevent dissolution of noble metal (for example, platinum etc.) derived from a melting vessel or the like into glass, and coloration derived from noble metal ions is further reduced.
 以下の説明では、熔融容器が白金(Pt)の場合を例にとるが、白金以外の貴金属等の金属材料からなる熔融容器等を用いる場合についても同様である。 In the following description, the case where the melting vessel is platinum (Pt) is taken as an example, but the same applies to the case where a melting vessel or the like made of a metal material such as a noble metal other than platinum is used.
 通常、ガラスの熔融は大気雰囲気中で行われ、大気中の酸素が熔融容器の材料である白金等の貴金属材料と反応することがある。特に、熔融容器が白金系材料である場合、二酸化白金(PtO)が生成し熔融物中に溶け込む、あるいは、熔融物と白金系材料との界面から白金イオン(Pt4+)として熔融物に溶け込むことがある。熔融ガラス中に溶け込んだ貴金属イオンは可視光を吸収するため、ガラスの着色が増加する傾向にある。 Generally, melting of glass is performed in the atmosphere, and oxygen in the atmosphere may react with a noble metal material such as platinum which is a material of the melting vessel. In particular, when the melting vessel is a platinum-based material, platinum dioxide (PtO 2 ) is formed and dissolved in the melt, or dissolved in the melt as platinum ions (Pt 4+ ) from the interface between the melt and the platinum-based material Sometimes. Noble metal ions dissolved in the molten glass absorb visible light, so the coloring of the glass tends to increase.
 このような白金イオンに由来する着色を低減するためには、熔融雰囲気を還元雰囲気にすることで、熔融ガラスへの金属イオンの溶け込みを抑制する方法等が挙げられる。しかし、熔融ガラスを過剰に還元側にすると、熔融容器が合金化し、熔融容器の強度、耐久性が著しく低下する。また、熔融雰囲気を不活性ガスで置換する方法等もあるが、Arなどの不活性ガスは高価で、長時間の熔融に適さない。 In order to reduce the coloration derived from such platinum ions, there is a method of suppressing the dissolution of metal ions into the molten glass by making the melting atmosphere a reducing atmosphere. However, if the molten glass is excessively reduced, the melting vessel is alloyed, and the strength and durability of the melting vessel are significantly reduced. Although there is also a method of replacing the melting atmosphere with an inert gas, etc., the inert gas such as Ar is expensive and not suitable for long-term melting.
 これに対し、本実施形態に係るガラスの製造方法では、熔融ガラス中の水分量を高める操作を行うことで、熔融ガラスへの金属イオンの溶け込みを抑制できる。 On the other hand, in the method for producing glass according to the present embodiment, dissolution of metal ions into the molten glass can be suppressed by performing an operation to increase the amount of water in the molten glass.
 すなわち、熔融ガラス中の水分量を高める操作(例えば、熔融容器内に水分を供給する等)により、熔融雰囲気中の酸素分圧が低減され、熔融容器(坩堝等)等の材料である白金材料等が酸化されるのを防止する。その結果、熔融雰囲気中の酸素が白金材料等と反応して生成する二酸化白金や白金イオン(Pt4+)が、熔融物(ガラス)中に溶け込むことを有効に防止でき、得られるガラスにおいて、白金(Pt)の溶け込み量が一層低減される。 That is, the partial pressure of oxygen in the melting atmosphere is reduced by the operation of increasing the amount of water in the molten glass (for example, supplying water into the melting container, etc.), and a platinum material which is a material such as a melting container Etc. to be oxidized. As a result, platinum dioxide and platinum ions (Pt 4+ ) formed by the reaction of oxygen in the melting atmosphere with a platinum material and the like can be effectively prevented from melting into the molten material (glass), and platinum is obtained in the obtained glass The amount of penetration of (Pt) is further reduced.
 このように本実施形態の製造方法により作製されたガラスは、熔融容器等の製造器具に由来するPtなどの貴金属の含有量が極めて少ない。したがって、ソラリゼーションと呼ばれる紫外線照射によるガラスの着色が少ない。そのため、このようなガラスを例えば光学素子として用いた場合には、透過率の経年変化が少ない。また、紫外線硬化型接着剤を用いて光学素子を固定するとき、光学素子に紫外線を照射しても、透過率が低下しないという効果も得ることができる。 Thus, the glass manufactured by the manufacturing method of this embodiment has very little content of noble metals, such as Pt originating in manufacturing tools, such as a fusion container. Therefore, there is little coloring of the glass by ultraviolet irradiation called solarization. Therefore, when such a glass is used as an optical element, for example, the secular change of the transmittance is small. Moreover, when fixing an optical element using an ultraviolet curing adhesive, even if it irradiates an ultraviolet-ray to an optical element, the effect that a transmittance | permeability does not fall can also be acquired.
 貴金属イオンに起因するガラスの着色の低減、透過率の改善、ソラリゼーションの低減、貴金属異物の低減などの観点から、好ましくは、得られるガラス中の貴金属の含有量は、4ppm以下である。貴金属の含有量の上限値は低いほど好ましく、3ppm、2.7ppm、2.5ppm、2.2ppm、2.0ppm、1.8ppm、1.6ppm、1.4ppm、1.2ppm、1.1ppm、1.0ppm、0.9ppmの順に上限値が低いほどより一層好ましい。貴金属の含有量の下限は、特に制限されないが不可避的に0.001ppm程度は含まれる。 Preferably, the content of the noble metal in the obtained glass is 4 ppm or less from the viewpoints of reduction of coloring of the glass due to the noble metal ion, improvement of transmittance, reduction of solarization, reduction of foreign metal particles, and the like. The lower limit value of the content of the noble metal is preferably as low as possible, and 3 ppm, 2.7 ppm, 2.5 ppm, 2.2 ppm, 2.0 ppm, 1.8 ppm, 1.6 ppm, 1.4 ppm, 1.2 ppm, 1.1 ppm, It is even more preferable that the upper limit value is lower in the order of 1.0 ppm and 0.9 ppm. Although the lower limit of the content of the noble metal is not particularly limited, it is unavoidably contained in the order of 0.001 ppm.
 貴金属としては、Pt、Au、Rh、Ir等の金属単体、Pt合金、Au合金、Rh合金、Ir合金などの合金を例示することができる。熔融容器材料や熔融器具材料としては、貴金属の中でも耐熱性、耐蝕性に優れるPtまたはPt合金が好ましい。したがって、PtまたはPt合金製の熔融容器、熔融器具を用いて作製したガラスについては、ガラス中に含まれるPtの含有量が4ppm以下であることが好ましい。Ptの含有量のより好ましい上限については、ガラス中に含まれる貴金属の含有量のより好ましい上限と同じである。また、Ptの含有量の下限は、特に制限されないが、不可避的に0.001ppm程度は含まれる。 Examples of noble metals include simple metals such as Pt, Au, Rh and Ir, and alloys such as Pt alloys, Au alloys, Rh alloys, and Ir alloys. Among the noble metals, Pt or a Pt alloy, which is excellent in heat resistance and corrosion resistance, is preferable as the melting vessel material and the melting tool material. Therefore, with regard to a glass produced by using a Pt or Pt alloy melting container or a melting tool, the content of Pt contained in the glass is preferably 4 ppm or less. The more preferable upper limit of the content of Pt is the same as the more preferable upper limit of the content of the noble metal contained in the glass. Further, the lower limit of the content of Pt is not particularly limited, but unavoidably, about 0.001 ppm is included.
 さらに、本実施形態のガラスの製造方法によれば、清澄性を大幅に改善できる。 Furthermore, according to the glass manufacturing method of the present embodiment, the clarity can be significantly improved.
 一般に、ガラスの製造では、均質で泡の少ないガラスが求められる。このような泡の少ないガラスを得るためには、通常、熔融ガラス中の溶存ガスを放出(脱泡)させる清澄工程が設けるのが一般的であるが、ガラスの清澄性は、熔融ガラス中の溶存ガス量に依存する。このような溶存ガス量は、ガラスの組成(特に原材料の種類)や、ガラスの熔融時間や熔融回数に大きな影響を受ける。しかし、熔融工程において溶存ガスを補うことができれば、清澄性の問題は解決される。 Generally, in the production of glass, a homogeneous, low bubble glass is required. In order to obtain such low-foam glass, it is common to provide a fining step for releasing (defoaming) the dissolved gas in the molten glass, but the fining property of the glass is determined in the molten glass. It depends on the amount of dissolved gas. Such amount of dissolved gas is greatly influenced by the composition of the glass (especially the type of raw material), the melting time of the glass and the number of times of melting. However, if dissolved gas can be supplemented in the melting process, the problem of clarity is solved.
 本実施形態の製造方法により作製されるガラスは、熔融ガラス中の水分量を高める操作(例えば、熔融容器内に水分を供給する等)を行うことにより、熔融ガラス中の溶存ガス量を高めることができると考えられる。すなわち、熔融ガラス中に積極的に導入された水分(例えば、水蒸気)は、溶存ガスとしての役割を果たし、ガラスの清澄性を改善すると考えられる。 The glass manufactured by the manufacturing method of the present embodiment is to increase the amount of dissolved gas in the molten glass by performing an operation to increase the amount of water in the molten glass (for example, supplying water into the melting container, etc.) It is believed that That is, the moisture (for example, water vapor) actively introduced into the molten glass is considered to play a role as a dissolved gas and to improve the clarity of the glass.
 このような本実施形態のガラスの製造方法によれば、ガラスが優れた清澄性を有することから、清澄工程に要する時間を短縮でき、生産性が向上する。 According to the glass manufacturing method of the present embodiment, since the glass has excellent clarity, the time required for the clarification step can be shortened, and the productivity is improved.
 なお、清澄工程を行う清澄槽も、白金や白金合金等の金属材料により構成されているのが一般的である。そのため、清澄工程が長時間になるほど、白金イオンの熔融物への溶け込みによる透過率劣化等の問題が顕著となる。しかし、本実施形態のガラスの製造方法によれば、清澄工程に要する時間を短縮することができるため、熔融ガラスと熔融容器等との接触時間を低減でき、白金等の貴金属イオンの熔融物への溶け込みも、より低減できると考えられる。 In addition, it is general that the clarification tank which performs a clarification process is also comprised with metal materials, such as platinum and a platinum alloy. Therefore, as the fining step takes a long time, problems such as the deterioration of the transmittance due to the dissolution of platinum ions into the melt become remarkable. However, according to the glass manufacturing method of the present embodiment, since the time required for the fining step can be shortened, the contact time between the molten glass and the melting vessel or the like can be reduced, and a melt of noble metal ions such as platinum can be obtained. Penetration of is also considered to be able to reduce more.
 本実施形態の製造方法により得られるガラスの用途は、特に限定されるものではないが、例えば光学ガラスとして好適に用いることができる。 Although the use of the glass obtained by the manufacturing method of this embodiment is not specifically limited, For example, it can use suitably as optical glass.
 上述のように、高屈折率成分(Ti、Nb、W、Bi等)を多量に含有した光学ガラスは、ガラスの着色(還元色)の問題が顕著であるが、本実施形態の製造方法によれば、高屈折率でありながら、優れた透過率を有する光学ガラスを容易に得ることができる。 As described above, the optical glass containing a large amount of high refractive index components (Ti, Nb, W, Bi, etc.) has a remarkable problem of coloration (reduction color) of the glass, but the manufacturing method of this embodiment According to this, it is possible to easily obtain an optical glass having an excellent transmittance while having a high refractive index.
 すなわち、本実施形態の製造方法により得られる光学ガラスは、上記のような高屈折率成分を多量に含有した場合であっても、熱処理によって効率よく還元色を低減できる。さらに、熔融容器等として白金等の貴金属材料を用いた場合であっても、貴金属材料が熔融ガラス中に溶け込むことを効果的に抑制でき、貴金属イオンに由来する着色も極めて少ない。このような本実施形態の製造方法により得られる光学ガラスは、優れた透過性を有する。 That is, even if the optical glass obtained by the manufacturing method of the present embodiment contains a large amount of the high refractive index component as described above, the reduced color can be efficiently reduced by heat treatment. Furthermore, even when a noble metal material such as platinum is used as a melting vessel or the like, it is possible to effectively suppress the dissolution of the noble metal material into the molten glass, and the color originating from the noble metal ion is extremely small. The optical glass obtained by the manufacturing method of such this embodiment has the outstanding transmittance | permeability.
 また、本実施形態の製造方法によれば、熔融ガラス中の水分量を高める操作により、熔融ガラス中の溶存ガス量を高めることができ、清澄性を大幅に改善できる。その結果、泡の少ない均質な光学ガラスを短時間で得ることができる。 Further, according to the manufacturing method of the present embodiment, the amount of dissolved gas in the molten glass can be increased by the operation of increasing the amount of water in the molten glass, and the clarity can be significantly improved. As a result, homogeneous optical glass with less bubbles can be obtained in a short time.
 本実施形態のガラスの製造方法において、本願明細書において説明した事項以外については、ガラス原料の調整法、ガラス原料の加熱法、熔融法、熔融ガラスの成形法については公知の方法が適宜採用できる。また、本実施形態のガラスの製造方法に用いられるガラス原料や熔融容器を構成する材料についても公知の材料が適宜利用できる。 In the glass manufacturing method of the present embodiment, publicly known methods can be appropriately adopted for the glass raw material preparation method, the glass raw material heating method, the melting method, and the molten glass forming method except for the matters described in the present specification. . In addition, well-known materials can be appropriately used for the glass raw materials used in the method for producing glass of the present embodiment and the material constituting the melting vessel.
 ここで、ガラスの作製に際して用いられる熔融容器等を構成する材料としては、通常、熔融ガラスを熔融する温度・雰囲気において耐熱性と耐侵蝕性と有する材料(例えば、金属材料や石英材料等)を適宜利用できる。 Here, as a material which constitutes a fusion vessel etc. used at the time of preparation of glass, a material (for example, metal material, quartz material, etc.) which usually has heat resistance and corrosion resistance in temperature and atmosphere which melts fusion glass is mentioned. It can be used appropriately.
 ただし、作製しようとするガラス組成によっては、著しい侵蝕性を示す熔融生成物が生成したり、熔融ガラスが熔融容器等を構成する材料と反応し、熔融容器が溶けたりする場合もある。そのため、熔融容器等を構成する材料を選択する際には、ガラス組成に応じて適宜材料を選択することが好ましい。 However, depending on the composition of the glass to be produced, a molten product exhibiting significant corrosion may be formed, or the molten glass may react with the material constituting the melting vessel or the like to melt the melting vessel. Therefore, when selecting the material which comprises a fusion | melting container etc., it is preferable to select a material suitably according to a glass composition.
 例えば、高屈折率成分を含有するリン酸塩ガラス(Pと、TiO、Nb、WOおよびBiから選択される少なくとも1種の酸化物とを含むガラス)の場合、特に、バッチ原料を加熱・熔解する際に、著しい侵蝕性を示す熔解生成物が生成する。このような熔融生成物は、白金等の耐蝕性に優れた材料をも侵蝕する傾向があるため、白金等の貴金属材料は、上記熔融生成物により侵蝕され、熔融物中に溶け込み、異物として生成したり、ガラスの着色を増大させたりする問題がある。 For example, phosphate glass containing a high refractive index component (glass comprising P 2 O 5 and at least one oxide selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 ) In particular, when heating and thawing batch materials, a molten product is produced that exhibits significant attack. Since such molten products tend to attack even corrosion resistant materials such as platinum, precious metal materials such as platinum are attacked by the above molten products, dissolve in the melt and are formed as foreign matter. And the problem of increasing the coloration of the glass.
 そのため、高屈折率成分を含有するリン酸塩ガラスの場合には、バッチ原料を加熱・熔解する際の熔融容器は、熔融工程の後半や清澄工程等とは別に、熔融容器等の材料を選択することが好ましい。バッチ原料を加熱・熔解する際に用いる熔融容器等としては、石英製など、耐火物製の容器や器具が好適である。石英などの耐火物は、上記熔融生成物により侵蝕されるが、侵食されて熔融物中に混入してもガラス組成物の一部となるため、貴金属材料のような問題は少ないためである。熔融工程の後半や清澄工程等では、熔融生成物が貴金属材料をも侵蝕するという問題は少ないため、白金製や白金合金製等の貴金属製の容器や器具を用いるのが好適である。 Therefore, in the case of phosphate glass containing a high refractive index component, the melting vessel for heating and melting batch materials is selected from materials such as a melting vessel separately from the latter half of the melting process, the clarification process, etc. It is preferable to do. As a melting container etc. which are used when heating and melting a batch raw material, containers and apparatus made from refractories, such as quartz, are suitable. Refractories such as quartz are corroded by the above-mentioned melt products, but even if they are corroded and mixed in the melt, they become part of the glass composition, so there are few problems like noble metal materials. In the second half of the melting step, the fining step, etc., since the problem that the molten product corrodes the precious metal material is small, it is preferable to use a precious metal container or device made of platinum or platinum alloy.
 他方、Bと、高屈折率成分を含有するホウ酸塩ガラス(TiO、Nb、WOおよびBiから選択される少なくとも1種の酸化物を含むガラス)の場合には、上記リン酸塩ガラスのような熔融生成物が貴金属材料をも侵蝕するという問題は少ない。むしろ、ホウ酸ガラスの場合、石英などの耐火物容器は著しく侵蝕される傾向にある。そのため、熔融容器等としては、ガラスの製造過程で侵蝕され難い白金製や白金合金製等の貴金属製の容器や器具を用いるのが好適である。 On the other hand, B 2 O 3 and a borate glass containing a high refractive index component (a glass containing at least one oxide selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 ) In such a case, the problem that a molten product such as the above-mentioned phosphate glass also attacks noble metal materials is small. Rather, in the case of borate glass, refractory containers such as quartz tend to be severely attacked. Therefore, as a melting container etc., it is suitable to use containers and instruments made of precious metals such as platinum and platinum alloy which are not easily corroded in the process of manufacturing glass.
 本実施形態のガラスの製造方法では、ガラスの作製に際して用いられる熔融容器を構成する材料としては、金属材料を使用することが好ましい。ここで、金属材料は、貴金属および貴金属合金から選択される少なくとも1種を使用することが好ましい。本実施形態のガラスの製造方法では、一般的なガラスの製造方法と比べて熔融ガラス中の含水量が高く維持される。これにより、熔融ガラスによって上述の貴金属あるいは貴金属合金が侵蝕されることもなく、且つ還元された高屈折率成分が熔融容器を構成する材料と合金化することもない酸化還元状態に、熔融ガラスを維持することができる。なお、耐侵蝕性、耐熱性が特に優れる観点から、貴金属としては白金、金などを、貴金属合金としては白金合金、金合金などを用いることが好ましい。 In the method for producing glass of the present embodiment, it is preferable to use a metal material as a material for forming a melting vessel used for producing glass. Here, as the metal material, it is preferable to use at least one selected from noble metals and noble metal alloys. In the method for producing glass of the present embodiment, the water content in the molten glass is maintained high as compared with a general method for producing glass. Thereby, the molten glass is in a redox state in which the above-mentioned noble metal or noble metal alloy is not corroded by the molten glass, and the reduced high refractive index component is not alloyed with the material constituting the melting container. Can be maintained. From the viewpoint of particularly excellent corrosion resistance and heat resistance, it is preferable to use platinum, gold or the like as the noble metal and a platinum alloy, gold alloy or the like as the noble metal alloy.
 本実施形態のガラスの製造方法では、加熱・熔融工程は、通常、ガラス原料を加熱することで熔解して熔融ガラスにする熔解工程に加えて、熔融ガラスの脱泡を促進する清澄工程と、清澄後の熔融ガラスを降温して成形に適した粘度にするとともに撹拌して均質化する均質化工程とを含むことが好ましい。 In the glass manufacturing method of the present embodiment, the heating and melting step is usually a refining step for promoting the defoaming of the molten glass, in addition to the melting step for melting the molten glass by heating the glass raw material to make the molten glass; It is preferable to include a homogenization step in which the temperature of the molten glass after fining is lowered to a viscosity suitable for molding and the mixture is stirred and homogenized.
 ガラス原料としては、所望の特性の光学ガラスが得られるように、ガラス成分に対応する原材料を秤量し、十分混合して得られた調合原料(バッチ原料)や、調合カレットを用いることができる。 As a glass raw material, a raw material corresponding to the glass component can be weighed and sufficiently mixed to obtain an optical glass having desired characteristics, and a mixed raw material (batch raw material) obtained by mixing and a mixed cullet can be used.
 ガラス原料としてカレットを使用する場合には、バッチ原料を粗熔解してカレット化するカレット化工程(ラフメルト工程)が、熔解工程(リメルト工程)の前に実施される。また、カレットは、好ましくは事前に屈折率測定の測定が行われている。屈折率の測定値が所望の値と等しい場合、カレットをそのまま調合カレットとし、屈折率の測定値が所望の値からずれている場合、所望の値より高い屈折率を有するカレットと所望の値より低い屈折率を有するカレットを混合して、調合カレットとする。 When cullet is used as the glass material, a culletizing step (rough melt step) of rough melting and batching the batch material is carried out before the melting step (remelt step). Also, the cullet is preferably pre-measured for refractive index measurement. If the measured value of the refractive index equals the desired value, the cullet is taken as the formulated cullet and if the measured value of the refractive index deviates from the desired value, the cullet with the refractive index higher than the desired value and the desired value The cullet having a low refractive index is mixed to form a compound cullet.
 なお、カレットはガラスからなるが、均質なガラスである必要はない。また、カレットは気泡を含むものであってもよい。さらに、バッチ原料の未熔解物を含むものであってもよい。カレットの組成、光学特性(例えば、屈折率、アッベ数など)は、カレットを再熔融して均質で泡を含まないガラスを作り、このガラスの組成、光学特性をそれぞれカレットの組成、光学特性とする。 Although the cullet is made of glass, it does not have to be homogeneous glass. The cullet may also contain air bubbles. Furthermore, the raw material of a batch raw material may be included. The composition and optical properties of cullet (eg, refractive index, Abbe's number, etc.) are remelted from cullet to form a homogeneous, bubble-free glass, and the composition and optical properties of this glass are respectively the composition of cullet and the optical properties Do.
 カレットを作製する方式(ラフメルトーリメルト方式)であっても、バッチ原料を直接熔解工程で熔解する方式(バッチダイレクト方式)であっても、Ti、Nb、WおよびBiの過剰な還元を抑えるとともに、熔融容器が金属材料から構成される場合にその金属材料のイオン化を抑制し、ガラス中の含水量を確保する観点から、加熱・熔融工程中のガラスの加熱温度は、800~1500℃に維持することが好ましく、より好ましくは1400℃以下、さらに好ましくは1300℃以下に維持することが好ましい。さらに清澄性を改善しつつ、ガラスを酸化性雰囲気中で熱処理した際の着色の大幅な低減を容易とする観点からは、加熱・熔融工程中のガラスの加熱温度が清澄工程で最も高くなるように設定する、すなわち、清澄温度以下でガラスを熔融することが好ましい。 Even in the method of producing cullet (rough melt-remelt method) or in the method of melting batch materials directly in the melting step (batch direct method), excessive reduction of Ti, Nb, W and Bi is suppressed In addition, when the melting vessel is made of a metal material, the heating temperature of the glass during the heating and melting process is 800 to 1500 ° C. from the viewpoint of suppressing the ionization of the metal material and securing the water content in the glass. It is preferable to maintain it, more preferably, it is maintained at 1400 ° C. or less, more preferably, 1300 ° C. or less. Furthermore, from the viewpoint of facilitating a drastic reduction of coloration when heat treating the glass in an oxidizing atmosphere while improving the clarity, the heating temperature of the glass during the heating and melting step is the highest in the fining step It is preferable to set to, that is, to melt the glass below the fining temperature.
 また、加熱・熔融工程の開始から終了までの時間を長くすると、高屈折率成分の還元、熔融容器が金属材料からなる場合においてその金属材料のイオン化を助長し、ガラス中の含水量も低下傾向を示すことになる。このため、加熱・熔融工程の開始から終了までの時間は100時間以内にすることが好ましい。なお、加熱・熔融工程の開始から終了までの時間は熔融容器の容量の大小などにより適宜調整すればよい。 In addition, if the time from the start to the end of the heating and melting process is extended, the reduction of high refractive index components promotes ionization of the metal material when the melting vessel is made of a metal material, and the moisture content in the glass tends to decrease. Will be shown. Therefore, it is preferable to set the time from the start to the end of the heating and melting process within 100 hours. The time from the start to the end of the heating and melting process may be appropriately adjusted depending on the size of the volume of the melting container and the like.
 本実施形態のガラスの製造方法は、より好ましくは、ラフメルト-リメルト方式で行われる。
 すなわち、本実施形態のガラスの製造方法は、好ましくは、
調合材料を熔融してカレットを得るラフメルト工程と、前記カレットを再熔融してガラスを得るリメルト工程と、を有し、
 前記ラフメルト工程および前記リメルト工程のうち少なくともいずれか一方において、熔融ガラス中の水分量を高める操作を行うことを特徴とする。
The glass production method of the present embodiment is more preferably carried out by the rough melt-remelt method.
That is, the method for producing glass of this embodiment is preferably
It has a rough melting process to melt the compounded material to obtain cullet, and a remelt process to remelt the cullet to obtain glass,
In at least one of the rough melting step and the remelting step, an operation to increase the amount of water in the molten glass is performed.
 特に、ラフメルト-リメルト方式でガラスを作製する場合には、ラフメルト時のバッチ原料の熔解温度(粗熔解温度)は、800~1400℃の範囲とすることが好ましい。ただし、溶存ガスの溶解度は熔融物の温度上昇とともに減少するため、清澄効果をより高める上で、ラフメルト工程における熔融物の温度は、リメルト工程におけるカレットの熔融温度(再熔解温度)と同じ、もしくはカレットの熔解温度未満であることが好ましく、特にリメルト工程における清澄温度よりも低くすることが好ましい。 In particular, in the case of producing glass by the rough melt-remelt method, the melting temperature (rough melting temperature) of the batch material at the time of rough melting is preferably in the range of 800 to 1400.degree. However, since the solubility of the dissolved gas decreases with the temperature rise of the melt, the temperature of the melt in the rough melt process is the same as the melt temperature of the cullet (remelt temperature) in the remelt process, in order to enhance the refining effect. The temperature is preferably lower than the melting temperature of cullet, and particularly preferably lower than the fining temperature in the remelt process.
 また、ラフメルト工程における熔解時間は、坩堝の容量、バッチ原料の坩堝への投入量を考慮して適宜調整することができ、例えば、熔解時間を0.1~100時間、より好ましくは0.1~20時間の範囲としてもよい。 In addition, the dissolution time in the rough melt process can be appropriately adjusted in consideration of the volume of the crucible and the input amount of the batch material to the crucible, and for example, the dissolution time is 0.1 to 100 hours, more preferably 0.1. It may be in the range of -20 hours.
 また、リメルト工程における調合カレットの熔解温度(再熔解温度)は、800~1500℃の範囲にすることが好ましい。ただし、清澄効果をより高める上から、この再熔解温度を清澄温度よりも低くすることが好ましい。リメルト工程における熔解時間は坩堝の容量、調合カレットの坩堝への投入量を考慮して適宜調整することができ、例えば、再熔融時の熔解時間を0.1~100時間、より好ましくは2~20時間の範囲としてもよい。 Further, the melting temperature (remelting temperature) of the prepared cullet in the remelt step is preferably in the range of 800 to 1,500 ° C. However, in order to further enhance the fining effect, it is preferable to make the remelting temperature lower than the fining temperature. The dissolution time in the remelt process can be appropriately adjusted in consideration of the volume of the crucible and the amount of the mixed cullet to be introduced into the crucible. For example, the dissolution time at the time of remelting is preferably 0.1 to 100 hours, more preferably 2 to It may be in the range of 20 hours.
 なお、本実施形態のガラスの製造方法において、熔融時の雰囲気は、特に限定されるものではないが、熔融ガラス中の水分量を効果的に高める観点から、熔融雰囲気に水蒸気が付加されていることが好ましい。 In the glass manufacturing method of the present embodiment, the atmosphere at the time of melting is not particularly limited, but water vapor is added to the melting atmosphere from the viewpoint of effectively increasing the amount of water in the molten glass. Is preferred.
 熔融雰囲気は、はじめ大気雰囲気や窒素雰囲気などの水蒸気以外の熔融雰囲気で熔融を開始し、熔融ガラス中の水分量を高める操作により、途中から熔融雰囲気に水蒸気が付加されてもよいし、熔融雰囲気を予め水蒸気雰囲気に調整しておいてもよい。 Melting atmosphere starts melting in melting atmosphere other than water vapor such as air atmosphere or nitrogen atmosphere first, and water vapor may be added to the melting atmosphere in the middle by operation to increase the amount of water in the molten glass, or melting atmosphere May be previously adjusted to a water vapor atmosphere.
 熔融ガラス中の水分量を高める操作を行う際の、熔融雰囲気の水蒸気分圧は、大気中の水蒸気分圧よりも高く、より好ましくは酸素分圧よりも高い。さらに、水蒸気分圧の上限は、特に限定されるものではなく、例えば熔融雰囲気を全て水蒸気で置換することもできる。 The partial pressure of water vapor in the melting atmosphere when performing the operation to increase the amount of water in the molten glass is higher than the partial pressure of water vapor in the atmosphere, and more preferably higher than the partial pressure of oxygen. Furthermore, the upper limit of the water vapor partial pressure is not particularly limited, and for example, the melting atmosphere can be entirely replaced with water vapor.
 また、熔融工程全体を通して、熔融雰囲気中の水蒸気分圧が高いことで、酸素が白金等の貴金属材料からなる熔融容器と反応することを有効に防止でき、ガラス中へのPt等の溶け込み量を低減でき、透過率の劣化(低下)を効果的に防ぐことができる。さらに、溶存ガス量を清澄工程の直前まで維持することで、清澄性の改善効果が高まる。 In addition, the high partial pressure of water vapor in the melting atmosphere throughout the melting process can effectively prevent oxygen from reacting with the melting vessel made of a noble metal material such as platinum, and the amount of dissolution of Pt or the like in the glass can be reduced. It is possible to reduce and effectively prevent the deterioration (decrease) of the transmittance. Furthermore, by maintaining the amount of dissolved gas until just before the clarification step, the improvement effect of the clarity is enhanced.
 また、熔融工程は、熔融物の均質化を目的として、熔融物の攪拌を伴うこともできる。攪拌方法としては、公知の方法を用いることができ、例えば、気体を熔融物にバブリングする方法や攪拌棒により攪拌する方法などが挙げられる。 The melting step can also involve stirring of the melt for the purpose of homogenization of the melt. A well-known method can be used as a stirring method, For example, the method of bubbling gas to a molten material, the method of stirring by a stirring rod, etc. are mentioned.
 特に、水蒸気を含むガスを用いたバブリングや、水蒸気を付加した熔融雰囲気中での熔融物の攪拌は、熔融物の均質化を図ると共に、熔融ガラス中の水分量を高める観点で好適である。 In particular, bubbling using a gas containing water vapor and stirring of the melt in a melting atmosphere to which water vapor is added are preferable from the viewpoint of homogenizing the melt and increasing the amount of water in the molten glass.
 また、本実施形態のガラスの製造方法は、好ましくは、TiO、Nb、WOおよびBiの少なくとも一種以上の成分を含むガラス原料を熔融容器内にて加熱、熔融し、熔融ガラスを得る熔融工程(i)の後に、さらに前記熔融ガラスを前記熔融容器外に流出する工程(ii)、および前記熔融ガラスを成形する工程(iii)を有する。 In the glass manufacturing method of the present embodiment, preferably, a glass material containing at least one or more components of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 is heated and melted in a melting vessel. After the melting step (i) for obtaining a molten glass, the method further includes a step (ii) of flowing the molten glass out of the melting container, and a step (iii) of forming the molten glass.
 流出工程(ii)では、清澄・均質化した熔融ガラスを熔融容器底部に取り付けたガラス流出パイプより流出する。ガラス流出パイプの温度は、流れる熔融ガラスが失透しない温度域であって、成形に適した粘度になるように調整、維持する。 In the outflow step (ii), the clarified and homogenized molten glass flows out from the glass outflow pipe attached to the bottom of the melting vessel. The temperature of the glass outflow pipe is adjusted and maintained so that the viscosity is suitable for forming in a temperature range where the flowing molten glass does not devitrify.
 成形工程(iii)では、熔融容器内の熔融ガラスを所定の形状に成形できるのであれば公知の如何様な成形方法も利用できる。たとえば、熔融ガラスを、鋳型に流し込んでブロック状としてもよく、パイプから流下させた線状の熔融ガラス流を、一定の長さ(一定の量)毎に切断してガラス塊としてもよい。また、後工程において、より精度の高い形状加工を行う場合は、成形工程を経て得られる個々のガラスの形状は大きくばらついていてもよい。また、得られたガラスは濃く着色していてもよく、後工程において、熱処理を行うことにより着色は低減することができる。 In the forming step (iii), any known forming method can be used as long as the molten glass in the melting container can be formed into a predetermined shape. For example, molten glass may be poured into a mold to form a block, or a linear molten glass flow made to flow down from a pipe may be cut at a certain length (certain amount) to form a glass block. In addition, when performing shape processing with higher accuracy in the post process, the shapes of the individual glasses obtained through the forming process may be largely dispersed. In addition, the obtained glass may be deeply colored, and the coloring can be reduced by performing heat treatment in a later step.
 本実施形態のガラスの製造方法では、流出工程(ii)および成形工程(iii)の少なくともいずれか一つの工程を酸化性雰囲気下で行うことが好ましい。これにより、ガラスの還元色を効率よく低減できる。 In the method for producing glass of the present embodiment, it is preferable to perform at least one of the outflow step (ii) and the forming step (iii) in an oxidizing atmosphere. Thereby, the reduced color of the glass can be efficiently reduced.
 通常、高屈折率成分に由来する還元色は、ガラスを酸化性雰囲気で熱処理することで低減できる。特に、Ti、Nb、WおよびBi等の酸化は、ガラスの温度が高いほど速やかに進む傾向にある。 Usually, the reduced color derived from the high refractive index component can be reduced by heat treating the glass in an oxidizing atmosphere. In particular, the oxidation of Ti, Nb, W and Bi tends to proceed more rapidly as the temperature of the glass is higher.
 そのため、できるだけ高温のガラス、すなわち熔融工程(i)のガラスを酸化性雰囲気に晒すと良いとも考えられる。しかし、熔融容器や清澄槽等が貴金属材料等で構成されている場合、熔融工程(i)のガラスは、貴金属材料と接する状態にあるため、熔融雰囲気を酸化性雰囲気にすると、貴金属材料が雰囲気中の酸素と反応し、ガラス中に貴金属のイオンが溶け込む等の問題がある。 Therefore, it is also considered good if the glass as hot as possible, ie the glass of the melting step (i), is exposed to an oxidizing atmosphere. However, when the melting vessel, the fining tank, etc. is made of a precious metal material etc., the glass of the melting step (i) is in contact with the precious metal material, so when the melting atmosphere is an oxidizing atmosphere, the precious metal material is an atmosphere Reacts with oxygen in the inside, and there are problems such as dissolution of precious metal ions in the glass.
 一方、流出工程(ii)および成形工程(iii)のガラスは、熔融工程(i)のガラスに比べて温度が低いが、成形後に降温したガラスに比べれば、なお十分に高温に保たれているといえる。そのため、これらの工程でも、ガラスを酸化性雰囲気に晒すことによるガラスの着色低減の効果は十分に期待できる。さらに、流出工程(ii)および成形工程(iii)では、ガラスが熔融容器等を構成する貴金属材料と接触することもないため、上記のような問題は生じにくいと考えられる。 On the other hand, the glass in the outflow step (ii) and the forming step (iii) is lower in temperature than the glass in the melting step (i), but still kept at a sufficiently high temperature as compared to the glass cooled after forming It can be said. Therefore, even in these steps, the effect of reducing the color of the glass by exposing the glass to an oxidizing atmosphere can be fully expected. Furthermore, in the outflow step (ii) and the forming step (iii), since the glass does not come in contact with the noble metal material constituting the melting vessel or the like, it is considered that the above-mentioned problems hardly occur.
 そのため、流出工程(ii)および成形工程(iii)の少なくともいずれか一つの工程を酸化性雰囲気とすることで、熔融ガラスへの貴金属材料等の溶け込みを危惧することなく、効率よく還元色を低減できる。 Therefore, by setting at least one of the outflow step (ii) and the forming step (iii) in an oxidizing atmosphere, the reduced color can be efficiently reduced without concern for the penetration of the noble metal material or the like into the molten glass. it can.
 また、熔融ガラス流の方が、鋳型中のガラスブロックよりも、単位体積当たり、酸化性雰囲気に晒されるガラスの表面積が大きくなるため、より効率よく還元色を低減することができる。 In addition, since the surface area of the glass exposed to the oxidizing atmosphere per unit volume is larger for the molten glass flow than for the glass block in the mold, the reduction color can be reduced more efficiently.
 また、流出工程(ii)および成形工程(iii)の少なくともいずれか一つの工程で、ガラスの還元色の低減が図られていることにより、成形工程(iii)後のガラスについて、気泡や析出物の有無などガラス内部の検査が容易にできる。その結果、早い段階で良質のガラスを精査でき、歩留まりも向上する。 In addition, the reduced color of the glass is reduced in at least one of the outflow step (ii) and the forming step (iii), so that bubbles and precipitates are formed in the glass after the forming step (iii). You can easily inspect the inside of the glass such as the presence or absence of As a result, high quality glass can be scrutinized at an early stage, and the yield is also improved.
 また、本実施形態のガラスの製造方法は、好ましくは、製造されたガラスを熱処理する熱処理工程(iv)を有する。熱処理は、酸化性雰囲気中で行うことが好ましい。これにより得られるガラスの着色を大幅に低減することが可能となる。熱処理工程を経て得られたガラスは、着色が少なく透明度が高い、すなわち、可視域における透過率が高い。 Moreover, the manufacturing method of the glass of this embodiment preferably has a heat treatment process (iv) which heat-processes the manufactured glass. The heat treatment is preferably performed in an oxidizing atmosphere. This makes it possible to significantly reduce the coloration of the glass obtained. The glass obtained through the heat treatment step is less colored and highly transparent, that is, it has a high transmittance in the visible range.
 熱処理工程(iv)において、熱処理温度および熱処理時間は、所望の光学特性が得られるように適宜設定すればよい。例えば、熱処理温度は、ガラスの軟化点よりも低く、ガラス転移温度Tgよりも100℃低い温度(Tg-100℃)以上の温度が好ましい。 In the heat treatment step (iv), the heat treatment temperature and the heat treatment time may be appropriately set so as to obtain desired optical characteristics. For example, the heat treatment temperature is preferably a temperature (Tg-100 ° C.) lower than the softening point of the glass and 100 ° C. lower than the glass transition temperature Tg.
 なお、ガラスの着色を所定のレベルまで低減する際、熱処理温度が高ければ、熱処理時間を短縮することができる。また、酸化性雰囲気中の酸素分圧を高めても熱処理時間を短縮することができる。このように熱処理時間は、熱処理温度や酸化性雰囲気中の酸素分圧により変わるが、ガラスの着色が所望のレベルになるように設定すればよい。熱処理時間は、典型的には、0.1時間~100時間であることが好ましい。 In addition, when reducing coloring of glass to a predetermined level, if heat processing temperature is high, heat processing time can be shortened. Further, the heat treatment time can be shortened even if the oxygen partial pressure in the oxidizing atmosphere is increased. As described above, although the heat treatment time changes depending on the heat treatment temperature and the oxygen partial pressure in the oxidizing atmosphere, it may be set so that the coloration of the glass becomes a desired level. The heat treatment time is preferably typically 0.1 hour to 100 hours.
 なお、上記流出工程(ii)、成形工程(iii)および熱処理工程(iv)において、酸化性雰囲気とは、大気雰囲気、または大気よりも酸素分圧が高い雰囲気であり、好ましくは大気よりも酸素分圧が高い雰囲気である。 In the above outflow step (ii), molding step (iii) and heat treatment step (iv), the oxidizing atmosphere is an air atmosphere or an atmosphere having a higher oxygen partial pressure than air, preferably oxygen than air. There is a high partial pressure atmosphere.
 酸化性雰囲気とするための方法は、特に限定されるものではないが、例えば酸化性雰囲気ガスを供給する方法などが挙げられる。酸化性雰囲気ガスとしては、酸素を含むガスであればよく、酸素濃度は、たとえば、空気と同程度前後かそれ以上であればよい。このような酸化性雰囲気ガスとしては、たとえば、空気、空気に酸素を加えたガス、実質的に酸素のみからなるガスなどを挙げることができる。 Although the method for setting it as an oxidative atmosphere is not specifically limited, For example, the method of supplying oxidative atmosphere gas etc. are mentioned. The oxidizing atmosphere gas may be a gas containing oxygen, and the oxygen concentration may be, for example, about the same as or higher than that of air. As such an oxidizing atmosphere gas, for example, air, a gas obtained by adding oxygen to air, a gas substantially consisting only of oxygen, and the like can be mentioned.
 本実施形態の製造方法で得られたガラスは、熔融ガラス中の水分量を高める操作により、水分を多く含み、上述のように、熱処理工程(iv)を経た後は、着色が低減され、優れた透過率を有する。このようなガラス中に含まれる水分(ガラス中の含水量)は、OHに起因する赤外線吸収量として、分光光度計によって定量的に把握することが可能である。 The glass obtained by the manufacturing method of the present embodiment contains a large amount of water by the operation of increasing the water content in the molten glass, and as described above, after passing through the heat treatment step (iv), the coloring is reduced and excellent Have a good transmittance. Moisture contained in such glass (water content in the glass) is, OH - as the infrared absorption due to, it is possible to quantitatively grasp a spectrophotometer.
 ガラス中の含水量は、たとえば、下式(1)に示すβOH値により把握できる。
 βOH=-[ln(B/A)]/t ・・・(1)
The water content in glass can be grasped | ascertained by the (beta) OH value shown, for example to the following Formula (1).
βOH = − [ln (B / A)] / t (1)
 ここで、上記式(1)中、tは外部透過率の測定に用いる前記ガラスの厚み(mm)を表し、Aは前記ガラスに対してその厚み方向と平行に光を入射した際の波長2500nmにおける外部透過率(%)を表し、Bは前記ガラスに対してその厚み方向と平行に光を入射した際の波長2900nmにおける外部透過率(%)を表す。また、上記式(1)中、lnは自然対数である。βOHの単位はmm-1である。 Here, in the above formula (1), t represents the thickness (mm) of the glass used to measure the external transmittance, and A represents a wavelength of 2500 nm when light is incident on the glass in parallel with the thickness direction. B represents the external transmittance (%) at a wavelength of 2900 nm when light is incident on the glass in parallel with its thickness direction. Moreover, in said Formula (1), ln is a natural logarithm. The unit of βOH is mm −1 .
 なお、「外部透過率」とは、ガラスに入射する入射光の強度Iinに対するガラスを透過した透過光の強度Ioutの比(Iout/Iin)、すなわち、ガラスの表面における表面反射も考慮した透過率であり、後述する「内部透過率」とは、ガラスの表面における表面反射が無い場合の透過率(すなわちガラスを構成するガラス材料自体の透過率)である。それぞれの透過率は、分光光度計を用いて、透過スペクトルを測定することにより得られる。 The term "external transmittance" refers to the ratio of the intensity Iout of transmitted light transmitted through the glass to the intensity Iin of incident light incident on the glass (Iout / Iin), that is, the transmittance in consideration of surface reflection on the surface of the glass The “internal transmittance” described later is the transmittance when there is no surface reflection on the surface of the glass (that is, the transmittance of the glass material itself constituting the glass). Each transmittance is obtained by measuring the transmission spectrum using a spectrophotometer.
 上記式(1)で表されるβOHは、水酸基に起因する吸光度を意味する。そのため、βOHを評価することにより、ガラス中に含まれる水分(および/または水酸化物イオン、以下、単に「水」という。)の濃度を評価することができる。すなわち、βOHが高いほど、ガラス中の含水量が高いことを意味する。 The βOH represented by the above formula (1) means the absorbance due to the hydroxyl group. Therefore, the concentration of water (and / or hydroxide ion, hereinafter, simply referred to as "water") contained in the glass can be evaluated by evaluating βOH. That is, the higher the βOH, the higher the water content in the glass.
 一般に、ガラスのβOHは、ガラス組成や製造条件等によって異なる。例えば、同じ製造条件で作製されたガラスの場合、水を取り込みやすいガラス組成のガラスは、水を取り込みにくいガラス組成のガラスに比べて、βOHが高くなる傾向にある。また、同じガラス組成で比較した場合、熔融ガラス中の水分量を高める操作が行われることにより、βOHは高くなる傾向にある。 In general, the βOH of glass varies depending on the glass composition, production conditions, and the like. For example, in the case of a glass manufactured under the same manufacturing conditions, a glass having a glass composition that easily takes in water tends to have a higher βOH than a glass having a glass composition that does not easily take in water. Moreover, when it compares with the same glass composition, by performing operation which raises the moisture content in molten glass, it exists in the tendency for (beta) OH to become high.
 したがって、本実施形態の製造方法により得られるガラスについて、ガラス中の水分量が高められているか否かを評価する際にも、水の取り込み易さが同程度のもので比較する必要がある。 Therefore, for the glass obtained by the manufacturing method of the present embodiment, when evaluating whether the water content in the glass is increased, it is necessary to compare the ease with which water is taken in at a similar level.
 本実施形態の製造方法においては、ガラスのβOHの値は、調整できる限り、特に制限されるものではないが、ガラスの着色低減やガラス中の貴金属含有量の低減等の効果を高める観点から、βOHの値は高いほど好ましい。 In the manufacturing method of the present embodiment, the value of βOH of glass is not particularly limited as long as it can be adjusted, but from the viewpoint of enhancing effects such as color reduction of glass and reduction of noble metal content in glass, The higher the value of βOH, the better.
 特に、熱処理後のガラスの透過率改善の観点からは、本実施形態の製造方法により作製されるガラスは、下記式(1-2)を満足することが好ましい。
 βOH≧0.4891×ln(1/HR)+2.48 ・・・(1-2)
In particular, from the viewpoint of improving the transmittance of glass after heat treatment, it is preferable that the glass produced by the manufacturing method of the present embodiment satisfies the following formula (1-2).
βOHOH0.4891 × ln (1 / HR) +2.48 (1-2)
 ここで、上記式(1-2)中、lnは自然対数である。また、上記式(1-2)中、HRは、前記ガラス中の、TiO、Nb、WOおよびBiの各成分の含有量の合計量(モル%)を表す。また、βOHの単位はmm-1である。 Here, in the above equation (1-2), ln is a natural logarithm. Further, in the above formula (1-2), HR represents the total amount (mol%) of the content of each component of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 in the glass. Also, the unit of βOH is mm −1 .
 本実施形態の製造方法においては、得られるガラスのβOHが、上記(1-2)式を満足する程度まで、熔融ガラス中の水分量を高める操作を行うことが好ましい。これにより、得られるガラスの熱処理後における、ガラスの着色低減効果をさらに一層高めることができる。 In the production method of the present embodiment, it is preferable to perform an operation to increase the amount of water in the molten glass to such an extent that the βOH of the obtained glass satisfies the above equation (1-2). Thereby, the coloring reduction effect of glass after heat processing of the obtained glass can be heightened further.
 なお、熔融工程(i)において、熔融ガラス中の水分量を高める操作を行わない場合には、得られるガラスは上記(1-2)式を満足しない傾向にある。したがって、ガラスがこれらの式を満足するか否の結果は、熔融ガラス中の水分量を高める操作が行われたか否かを判断するための指標にもなり得ると考えられる。 In the melting step (i), when the operation to increase the water content in the molten glass is not performed, the obtained glass tends not to satisfy the above formula (1-2). Therefore, it is considered that the result of whether the glass satisfies these formulas can also be an index for determining whether an operation to increase the amount of water in the molten glass has been performed.
 また、特に、ガラス中の貴金属含有量の低減の観点からは、本実施形態の製造方法により作製されるガラスは、下記式(1-3)を満足することが好ましい。
 βOH≧181.39×nd-3-325.75×nd-2+194.85×nd-1-38.1 ・・・(1-3)
In particular, from the viewpoint of reducing the noble metal content in the glass, it is preferable that the glass produced by the production method of the present embodiment satisfies the following formula (1-3).
βOH ≧ 181.39 × nd -3 -325.75 × nd -2 + 194.85 × nd -1 -38.1 ··· (1-3)
 ここで、上記式(1-3)中、ndは、前記ガラスの屈折率を表す。βOHの単位はmm-1である。 Here, in the above formula (1-3), nd represents the refractive index of the glass. The unit of βOH is mm −1 .
 本実施形態の製造方法においては、得られるガラスのβOHが、上記(1-3)式を満足する程度まで、熔融ガラス中の水分量を高める操作を行うことが好ましい。これにより、熔融雰囲気中の酸素分圧が十分に低減され、熔融容器が貴金属材料等で構成された場合であっても、熔融雰囲気中の酸素と貴金属材料とが反応することを有効に防止でき、得られるガラス中の貴金属含有量をより一層低減できる。 In the production method of the present embodiment, it is preferable to carry out an operation to increase the amount of water in the molten glass to such an extent that βOH of the obtained glass satisfies the above equation (1-3). As a result, the partial pressure of oxygen in the melting atmosphere is sufficiently reduced, and even when the melting container is made of a noble metal material or the like, reaction between oxygen in the melting atmosphere and the noble metal material can be effectively prevented. The noble metal content in the obtained glass can be further reduced.
 なお、熔融工程(i)において、熔融ガラス中の水分量を高める操作を行わない場合には、得られるガラスは上記(1-3)式を満足しない傾向にある。したがって、ガラスがこれらの式を満足するか否の結果は、熔融ガラス中の水分量を高める操作が行われたか否かを判断するための指標にもなり得ると考えられる。 In the melting step (i), when the operation to increase the water content in the molten glass is not performed, the obtained glass tends not to satisfy the above formula (1-3). Therefore, it is considered that the result of whether the glass satisfies these formulas can also be an index for determining whether an operation to increase the amount of water in the molten glass has been performed.
 また、本実施形態のガラスの製造方法により得られるガラスのβOHの上限も、ガラスの種類や製造条件によって異なり、調整できる限り、特に制限されるものではない。βOHを高めていくと、熔融ガラスからの揮発物量が増加する傾向にあるため、熔融ガラスからの揮発を抑制する上から、好ましくはβOHが10mm-1以下、より好ましくは8mm-1以下、さらに好ましくは6mm-1以下、一層好ましくは5mm-1以下、より一層好ましくは4mm-1以下、さらに一層好ましくは3mm-1以下、なお一層好ましくは2mm-1以下とすることができる。 Further, the upper limit of βOH of glass obtained by the method for producing glass of the present embodiment is also different depending on the type of glass and production conditions, and is not particularly limited as long as it can be adjusted. Since the amount of volatile matter from the molten glass tends to increase as the βOH is increased, the βOH is preferably 10 mm -1 or less, more preferably 8 mm -1 or less, from the viewpoint of suppressing volatilization from the molten glass. preferably 6 mm -1 or less, more preferably 5 mm -1 or less, even more preferably 4 mm -1 or less, even more preferably 3 mm -1 or less, even more preferably to a 2 mm -1 or less.
 なお、赤外光は、濃く着色したガラスであっても透過するため、ガラスのβOHはガラスの着色の有無(還元色の有無)によらず評価できる。また、通常、熱処理工程(iv)はガラスの軟化点よりも低い温度で行われるため、その前後でガラスのβOHの値は実質的に変化せず、熱処理工程(iv)の前後何れで測定してもよい。したがって、ガラスのβOHは、熱処理工程(iv)を経た透明なガラス、および熱処理工程(iv)を経ていない濃く着色しているガラスの何れで測定してもよい。 In addition, since infrared light transmits even if it is a strongly colored glass, βOH of the glass can be evaluated regardless of the presence or absence of coloring of the glass (presence or absence of reduced color). Further, since the heat treatment step (iv) is usually performed at a temperature lower than the softening point of the glass, the value of βOH of the glass does not substantially change before and after that, and it is measured before or after the heat treatment step (iv) May be Therefore, the βOH of the glass may be measured on any of the transparent glass having undergone the heat treatment step (iv) and the strongly colored glass not having undergone the heat treatment step (iv).
 本実施形態のガラスの製造方法により得られるガラスの屈折率ndは、1.75以上であることが好ましい。また、屈折率ndのより好ましい下限は1.80、さらに好ましくは1.85、特に好ましくは1.90である。また、屈折率ndの上限は、ガラスが得られる限り制限はないが、例えば2.5程度とすることができる。屈折率の高いガラスからなる光学素子を用い、光学系を構成することによって、光学系のコンパクト化、高機能化が可能なる。このような観点から、屈折率ndは高いほど好ましい。しかし、屈折率を高めるとガラスの耐失透性が低下する傾向を示す。そのため、耐失透性を維持する上から、屈折率ndの好ましい上限は2.4、より好ましくは2.3である。 It is preferable that the refractive index nd of the glass obtained by the manufacturing method of the glass of this embodiment is 1.75 or more. The lower limit of the refractive index nd is more preferably 1.80, still more preferably 1.85, and particularly preferably 1.90. The upper limit of the refractive index nd is not limited as long as glass can be obtained, but can be, for example, about 2.5. By using an optical element made of glass with a high refractive index to configure the optical system, the optical system can be made compact and highly functional. From such a viewpoint, the higher the refractive index nd, the better. However, when the refractive index is increased, the devitrification resistance of the glass tends to decrease. Therefore, in order to maintain the devitrification resistance, the upper limit of the refractive index nd is preferably 2.4, more preferably 2.3.
ガラス組成について
 以下、特記しない限り、ガラス成分の含有量、合計含有量、添加剤の含有量は酸化物換算のモル%で表示する。
About glass composition Hereinafter, unless otherwise stated, the content of the glass component, the total content, and the content of the additive are represented by mol% in terms of oxide.
 本実施形態の製造方法により得られるガラスは、ガラス成分として、TiO、Nb、WOおよびBiから選択される少なくともいずれか1種の酸化物(以下、「高屈折率成分」ということがある)を含有する。好ましくは、ガラス中に含まれるTiO、Nb、WOおよびBiの合計含有量は、20%以上であり、より好ましくは25%以上であり、さらに好ましくは30%以上、一層好ましくは35%以上である。TiO、Nb、WOおよびBiの合計含有量が85%を超えると耐失透性が悪化傾向を示すため、耐失透性を維持する観点から、TiO、Nb、WOおよびBiの合計含有量は85%以下であることが好ましく、80%以下であることがより好ましく、75%以下であることがさらに好ましい。 The glass obtained by the manufacturing method of the present embodiment is at least one oxide selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 as a glass component (hereinafter, “high refractive index Component) is contained. Preferably, the total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 contained in the glass is 20% or more, more preferably 25% or more, still more preferably 30% or more More preferably, it is 35% or more. If the total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 exceeds 85%, the devitrification resistance tends to deteriorate, so from the viewpoint of maintaining the devitrification resistance, TiO 2 , Nb The total content of 2 O 5 , WO 3 and Bi 2 O 3 is preferably 85% or less, more preferably 80% or less, and still more preferably 75% or less.
 ガラス中のTiO、Nb、WOおよびBiの含有量を高める観点から、本実施形態の製造方法では、得られるガラスはP含有ガラスであることが好ましい。P含有ガラス中では、加熱処理時のHの移動速度が速く、他の組成系に比べると短時間の加熱処理で着色を低減することができる。 From the viewpoint of increasing the content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 in the glass, in the production method of the present embodiment, the obtained glass is preferably a P 2 O 5 -containing glass. In the P 2 O 5 -containing glass, the H + transfer rate during heat treatment is fast, and coloring can be reduced by heat treatment for a short time as compared with other composition systems.
 本実施形態の製造方法により得られるガラスは、好ましくは高屈折率成分を含むリン酸ガラスである。すなわち、ガラス成分として、TiO、Nb、WOおよびBiから選択される少なくとも1種の酸化物と、Pとを含む酸化物ガラスであることがより好ましい。 The glass obtained by the manufacturing method of the present embodiment is preferably a phosphate glass containing a high refractive index component. That is, as a glass component, at least one oxide selected from TiO 2, Nb 2 O 5, WO 3 and Bi 2 O 3, and more preferably an oxide glass containing a P 2 O 5.
 このようなガラスとしては、モル%表示において、Pの含有量がSiOの含有量よりも大きくかつBの含有量よりも多いガラスや、Pの含有量がSiOとBの合計含有量よりも多いガラスを挙げることができる。 As such a glass, the glass having a P 2 O 5 content greater than the SiO 2 content and a B 2 O 3 content greater than the content of P 2 O 5 in terms of mol% Mention may be made of glasses which are higher than the total content of SiO 2 and B 2 O 3 .
 本実施態様は、実施例に例示する組成に加え、TiO、Nb、WOおよびBiの含有量が上記範囲にある公知の組成を含むガラス組成に適用することができる。
次に、本実施態様における好ましいガラス組成について説明する。
This embodiment can be applied to a glass composition containing a known composition in which the content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 is in the above range in addition to the compositions exemplified in the examples. .
Next, the preferable glass composition in this embodiment is demonstrated.
 Pは、ガラスネットワーク形成成分であり、ガラスの熱的安定性を維持する働きがある。Pの含有量が7%未満であると、熱的安定性が低下傾向を示すため、Pの含有量を7%以上にすることが好ましい。ガラスに含まれるPの含有量を7%以上とすることにより、ガラス中の含水量を高めることができ、結果的にガラスを酸化性雰囲気中で熱処理した際に、着色を低減する効果もより一層大きくすることが容易となる。 P 2 O 5 is a glass network forming component and serves to maintain the thermal stability of the glass. When the content of P 2 O 5 is less than 7%, the thermal stability tends to decrease, so the content of P 2 O 5 is preferably 7% or more. By setting the content of P 2 O 5 contained in the glass to 7% or more, the water content in the glass can be increased, and as a result, when the glass is heat-treated in an oxidizing atmosphere, the coloring is reduced It becomes easy to make the effect even larger.
 一方、Pの含有量が40%より大きいと、屈折率が低下する。ガラスに含まれるPの含有量を40モル%以下とすることにより、ガラスを酸化性雰囲気中で熱処理して得られた光学ガラスの屈折率を高い値に維持することが容易となる。 On the other hand, when the content of P 2 O 5 is more than 40%, the refractive index is lowered. By setting the content of P 2 O 5 contained in the glass to 40 mol% or less, it becomes easy to maintain the refractive index of the optical glass obtained by heat-treating the glass in an oxidizing atmosphere at a high value .
 したがって、Pの含有量を7~40%の範囲にすることが好ましい。なお、Pの含有量のより好ましい下限は10%、さらに好ましい下限は12%、一層好ましい下限は15%、より一層好ましい下限は18%である。Pの含有量のより好ましい上限は35%、さらに好ましい上限は33%、一層好ましい上限は30%、より一層好ましい上限は28%である。 Therefore, the content of P 2 O 5 is preferably in the range of 7 to 40%. The lower limit of the content of P 2 O 5 is more preferably 10%, still more preferably 12%, still more preferably 15%, still more preferably 18%. The upper limit of the content of P 2 O 5 is more preferably 35%, still more preferably 33%, still more preferably 30%, still more preferably 28%.
 SiOは、P系組成のガラスには溶けにくく、多量に導入すると溶け残りが生じてガラスの均質性が悪化する傾向を示す。そのため、SiOの含有量は、Pの含有量(M)よりも少ないことが好ましい。SiOの含有量を上記M(Pの含有量[%])との関係を表すと、より好ましいSiOの含有量の範囲は0%~0.8×M[%]であり、さらに好ましい範囲は0%~0.5×M[%]、一層好ましい範囲は0%~0.3×M[%]、より一層好ましい範囲は0%~0.15×M[%]である。 SiO 2 is difficult to dissolve in glass of P 2 O 5 -based composition, and when it is introduced in a large amount, unmelted residue tends to be generated to deteriorate the homogeneity of the glass. Therefore, the content of SiO 2 is preferably smaller than the content (M) of P 2 O 5 . More preferably, the range of the content of SiO 2 is 0% to 0.8 × M [%] in terms of the relationship between the content of SiO 2 and the above-mentioned M (content [%] of P 2 O 5 ). Further preferable range is 0% to 0.5 × M [%], more preferable range is 0% to 0.3 × M [%], and still more preferable range is 0% to 0.15 × M [%] is there.
 Bは、少量を含有させることにより耐失透性を改善する働きをする。Bの含有量を上記M(Pの含有量[%])との関係を表すと、好ましいBの含有量の範囲は0%以上、M[%]未満であり、より好ましい範囲は0%~0.9×M[%]、さらに好ましい範囲は0%~0.7×M[%]、一層好ましい範囲は0%~0.6×M[%]、より一層好ましい範囲は0%~0.5×M[%]、さらに一層好ましい範囲は0%~0.4×M[%]、なお一層好ましい範囲は0%~0.35×M[%]である。 B 2 O 3 works to improve the devitrification resistance by containing a small amount. When the relation between the content of B 2 O 3 and the above M (the content [%] of P 2 O 5 ), the preferable range of the content of B 2 O 3 is 0% or more and less than M [%] More preferable range is 0% to 0.9 × M [%], more preferable range is 0% to 0.7 × M [%], and more preferable range is 0% to 0.6 × M [%], An even more preferable range is 0% to 0.5 × M [%], a still more preferable range is 0% to 0.4 × M [%], and a still more preferable range is 0% to 0.35 × M [%] It is.
 TiO、Nb、WOおよびBiは屈折率を高めるとともに、分散を高める働きをし、化学的耐久性を改善する働きをする成分である。しかし、TiO、Nb、WOおよびBiの含有量がそれぞれ多くなると耐失透性が悪化する傾向を示す。 TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 are components that function to increase the refractive index and also to increase the dispersion, and to improve the chemical durability. However, the devitrification resistance tends to deteriorate as the contents of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 increase.
 耐失透性を維持する観点から、TiOの含有量の好ましい上限は40%、より好ましい上限は35%、さらに好ましい上限は33%、一層好ましい上限は30%である。TiOの導入効果を得る上から、TiOの含有量の好ましい下限は1%、より好ましい下限は3%である。TiOの含有量を0%にすることもできる。 From the viewpoint of maintaining the devitrification resistance, the upper limit of the content of TiO 2 is preferably 40%, more preferably 35%, still more preferably 33%, and still more preferably 30%. From the top to obtain the effect of introducing TiO 2, preferable lower limit of the content of TiO 2 1%, more preferred lower limit is 3%. The content of TiO 2 can also be made 0%.
 耐失透性を維持する観点から、Nbの含有量の好ましい上限は45%、より好ましい上限は40%、さらに好ましい上限は35%である。Nbの導入効果を得る上から、Nbの含有量の好ましい下限は5%、より好ましい下限は8%、さらに好ましい下限は11%である。Nbの含有量を0%にすることもできる。 From the viewpoint of maintaining the devitrification resistance, the upper limit of the content of Nb 2 O 5 is preferably 45%, more preferably 40%, and still more preferably 35%. From the top to obtain the effect of introducing Nb 2 O 5, preferable lower limit is 5% of the content of Nb 2 O 5, more preferred lower limit is 8%, more preferred lower limit is 11%. The content of Nb 2 O 5 can also be made 0%.
 WOの含有量の好ましい範囲は0~30%である。上記WOの導入効果を得る観点から、WOの含有量の好ましい下限は1%、より好ましい下限は3%、さらに好ましい下限は5%である。一方、耐失透性を維持する観点から、WOの含有量の好ましい上限は27%、より好ましい上限は24%、さらに好ましい上限は20%、一層好ましい上限は18%である。WOの含有量を0%にすることもできる。 The preferred range of the content of WO 3 is 0 to 30%. From the viewpoint of obtaining the introduction effect of WO 3 described above, the lower limit of the content of WO 3 is preferably 1%, more preferably 3%, and still more preferably 5%. On the other hand, from the viewpoint of maintaining the devitrification resistance, the upper limit of the content of WO 3 is preferably 27%, more preferably 24%, still more preferably 20%, and still more preferably 18%. The content of WO 3 can also be made 0%.
 Biの含有量の好ましい範囲は0~35%である。上記Biの導入効果を得る観点から、Biの含有量の好ましい下限は1%、より好ましい下限は3%、さらに好ましい下限は5%である。一方、耐失透性を維持する観点から、Biの含有量の好ましい上限は30%、より好ましい上限は28%、さらに好ましい上限は24%である。Biの含有量を0%にすることもできる。 The preferred range of the content of Bi 2 O 3 is 0 to 35%. From the viewpoint of obtaining the effect of introducing the Bi 2 O 3, Bi 2 O 3 preferred lower limit is 1% of the content of, and more preferable lower limit is 3%, more preferred lower limit is 5%. On the other hand, from the viewpoint of maintaining the devitrification resistance, the upper limit of the content of Bi 2 O 3 is preferably 30%, more preferably 28%, and still more preferably 24%. The content of Bi 2 O 3 can also be 0%.
 BaO、SrO、CaO、MgO、ZnO等の二価金属成分は、ガラスの熔融性を改善し、ガラスの着色を低減する働きをする。また、適量であれば耐失透性を改善する働きをする。しかし、過剰量の含有により屈折率が低下し、耐失透性が悪化する傾向を示すため、BaO、SrO、CaO、MgOおよびZnOの合計含有量が0~40%であることが好ましく、0~32%であることがより好ましい。BaO、SrO、CaO、MgOおよびZnOの合計含有量の好ましい上限は30%、より好ましい上限は27%、さらに好ましい上限は25%である。BaO、SrO、CaO、MgOおよびZnOの合計含有量の好ましい下限は0.1%、より好ましい下限は0.5%、さらに好ましい下限は1%である。 The divalent metal components such as BaO, SrO, CaO, MgO and ZnO work to improve the meltability of the glass and to reduce the coloration of the glass. In addition, if it is an appropriate amount, it works to improve the devitrification resistance. However, the content of BaO, SrO, CaO, MgO and ZnO is preferably 0 to 40% in total, since the refractive index tends to be lowered and the devitrification resistance is deteriorated due to the inclusion of an excessive amount, 0 It is more preferable that it is ̃32%. The upper limit of the total content of BaO, SrO, CaO, MgO and ZnO is preferably 30%, more preferably 27%, still more preferably 25%. The lower limit of the total content of BaO, SrO, CaO, MgO and ZnO is preferably 0.1%, more preferably 0.5%, still more preferably 1%.
 これら2価金属成分のうち、BaOは高屈折率を維持する上で有効な成分であることから、BaOの含有量を0~40%の範囲にすることが好ましく、0~32%の範囲にすることがより好ましい。BaOの含有量の好ましい上限は30%、より好ましい上限は27%、さらに好ましい上限は25%である。BaOの含有量の好ましい下限は0.1%、より好ましい下限は0.5%、さらに好ましい下限は1%である。BaOの含有量を0%にすることもできる。 Among these divalent metal components, BaO is an effective component for maintaining a high refractive index, so the content of BaO is preferably in the range of 0 to 40%, preferably in the range of 0 to 32%. It is more preferable to do. The upper limit of the content of BaO is preferably 30%, more preferably 27%, and still more preferably 25%. The lower limit of the content of BaO is preferably 0.1%, more preferably 0.5%, and still more preferably 1%. The content of BaO can also be made 0%.
 LiO、NaO、KO等のアルカリ金属酸化物はガラスの熔融性を改善し、ガラスの着色を低減する働きをする。またガラス転移温度、軟化温度を低下させ、ガラスの加熱処理温度を低下させる働きもする。しかし、過剰量の含有により屈折率が低下し、耐失透性が悪化する傾向を示すため、LiO、NaOおよびKOの合計含有量が0~40%であることが好ましく、0~35%であることがより好ましく、0~32%であることがさらに好ましく、0~30%であることが一層好ましい。LiO、NaO、KOの含有量をそれぞれ0%にすることもできる。 Alkali metal oxides such as Li 2 O, Na 2 O and K 2 O work to improve the meltability of the glass and to reduce the coloration of the glass. It also lowers the glass transition temperature and the softening temperature and lowers the heat treatment temperature of the glass. However, the inclusion of an excessive amount tends to lower the refractive index and deteriorate the devitrification resistance, so the total content of Li 2 O, Na 2 O and K 2 O is preferably 0 to 40%. 0 to 35% is more preferable, 0 to 32% is more preferable, and 0 to 30% is more preferable. The content of each of Li 2 O, Na 2 O and K 2 O can also be made 0%.
 特に、アルカリ金属酸化物としてLiOを用いる場合、高屈折率ガラスを得る観点から、その含有量は製造されるガラス中において0%を超え10%未満であることがより好ましく、0%を超え9%以下であることがさらに好ましく、0%を超え8%以下であることが特に好ましい。 In particular, in the case of using Li 2 O as the alkali metal oxide, the content is more than 0% and less than 10%, more preferably 0%, from the viewpoint of obtaining a high refractive index glass. More preferably, it is more than 9%, and more preferably more than 0% and 8% or less.
 Alは少量であれば耐失透性を改善する働きをするが、過剰量の含有により屈折率が低下する。したがって、Alの含有量の好ましい範囲は0~12%、より好ましい範囲は0~7%、さらに好ましい範囲は0~3%である。 A small amount of Al 2 O 3 works to improve the devitrification resistance, but the inclusion of an excessive amount lowers the refractive index. Therefore, the preferable range of the content of Al 2 O 3 is 0 to 12%, more preferable range is 0 to 7%, and further preferable range is 0 to 3%.
 ZrOは屈折率を高める働きをし、少量であれば耐失透性を改善する働きをする。しかし、過剰量の含有により、耐失透性や熔融性が悪化傾向を示すため、ZrOの含有量の好ましい範囲は0~16%、より好ましい範囲は0~12%、さらに好ましい範囲は0~7%、一層好ましい範囲は0~3%である。 ZrO 2 works to increase the refractive index, and a small amount works to improve the devitrification resistance. However, since the devitrification resistance and the meltability tend to deteriorate due to the inclusion of an excessive amount, the preferable range of the content of ZrO 2 is 0 to 16%, more preferably 0 to 12%, and still more preferably 0. A range of -7%, more preferably 0-3%.
 GeOは耐失透性を維持しつつ、屈折率を高める働きをする。また、GeOは屈折率を高める働きを有するが、TiO、Nb、WOおよびBiと異なり、ガラスの着色を増大させない。しかし、他の成分と比較して非常に高価な成分であるため、ガラスの製造コストを低減する上からGeOの含有量は少ないほどよい。したがって、高屈折率ガラス製品を広く普及するためには、GeOの含有量を削減しつつ、透過率の優れた高屈折率ガラスを提供することが望まれる。本実施態様によれば、TiO、Nb、WOおよびBiの合計含有量を20%以上とすることにより、多量のGeOを使用しなくても、透過率の優れた高屈折率ガラスを提供することができる。 GeO 2 works to increase the refractive index while maintaining resistance to devitrification. Also, GeO 2 works to increase the refractive index, but unlike TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 , it does not increase the coloration of the glass. However, since it is a very expensive component as compared with other components, the content of GeO 2 should be as low as possible in order to reduce the manufacturing cost of the glass. Therefore, in order to widely spread high refractive index glass products, it is desirable to provide a high refractive index glass with excellent transmittance while reducing the content of GeO 2 . According to this embodiment, by setting the total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 to 20% or more, excellent transmittance can be obtained without using a large amount of GeO 2. High refractive index glass can be provided.
 このような観点から、GeOの含有量の好ましい範囲は0~10%、より好ましい範囲は0~5%、さらに好ましい範囲は0~3%、一層好ましい範囲は0~2%、より一層好ましい範囲は0~1%、さらに一層好ましい範囲は0~0.5%であり、GeOを含有しなくてもよい。なお、製造コストを考慮しなければ、有効量で好適に用いることができる。 From such viewpoints, the preferable range of the content of GeO 2 is 0 to 10%, more preferably 0 to 5%, still more preferably 0 to 3%, still more preferably 0 to 2%, and still more preferable The range is 0 to 1%, the still more preferable range is 0 to 0.5%, and GeO 2 may not be contained. In addition, if a manufacturing cost is not considered, it can use suitably in an effective amount.
 TeOは耐失透性を維持しつつ、屈折率を高める働きをする。しかし、環境への負荷を軽減する上からTeOの含有量の好ましい範囲は0~10%、より好ましい範囲は0~5%、さらに好ましい範囲は0~3%、一層好ましい範囲は0~2%、より一層好ましい範囲は0~1%、さらに一層好ましい範囲は0~0.5%であり、TeOを含有しなくてもよい。 TeO 2 works to increase the refractive index while maintaining resistance to devitrification. However, the content of TeO 2 is preferably in the range of 0 to 10%, more preferably in the range of 0 to 5%, still more preferably in the range of 0 to 3%, and still more preferably in the range of 0 to 2. A still more preferable range is 0 to 1%, and a still more preferable range is 0 to 0.5%, and TeO 2 may not be contained.
 Sbは酸化作用を有し、TiO、Nb、WOおよびBiの還元を抑制する働きをする。そのため、従来、熔融中の高屈折率成分の還元を抑制するために、酸化アンチモンの添加が用いられてきた。しかし、Sb自体が可視域に吸収を有するとともに、その酸化作用により貴金属製の熔融容器を酸化して貴金属イオンの熔融ガラスへの溶け込みを助長するため、最終的に得られるガラスの着色の原因となる。 Sb 2 O 3 has an oxidizing action and functions to suppress the reduction of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 . Therefore, the addition of antimony oxide has conventionally been used to suppress the reduction of the high refractive index component during melting. However, Sb 2 O 3 itself absorbs light in the visible region and oxidizes the melting vessel made of a noble metal by its oxidation action to promote the dissolution of noble metal ions into the molten glass, so the coloration of the glass finally obtained Cause.
 このため、本実施形態のガラスの製造方法では、得られるガラス中において、Sbに換算して、酸化アンチモンの含有量が1000ppm未満となるように、ガラス原料を調合することが好ましい。本実施形態のガラスの製造方法によれば、酸化アンチモンの酸化作用を利用しなくても、ガラスを酸化性雰囲気中で熱処理して得られるガラスの着色を小さくできる。 For this reason, in the glass manufacturing method of the present embodiment, it is preferable to prepare the glass raw material so that the content of antimony oxide becomes less than 1000 ppm in terms of Sb 2 O 3 in the obtained glass. According to the method for producing glass of the present embodiment, it is possible to reduce the coloration of the glass obtained by heat treating the glass in an oxidizing atmosphere without using the oxidation action of antimony oxide.
 したがって、Sbの含有量の好ましい範囲は0ppm以上1000ppm未満である。上記観点から、Sbの含有量の上限は、900ppm、800ppm、700ppm、600ppm、500ppm、400ppm、300ppm、200ppm、100ppmの順に少ない値ほど一層好ましい。Sbを含有させなくてもよい。 Therefore, the preferable range of the content of Sb 2 O 3 is 0 ppm or more and less than 1000 ppm. From the above viewpoint, the upper limit of the content of Sb 2 O 3 is more preferably as small as possible in the order of 900 ppm, 800 ppm, 700 ppm, 600 ppm, 500 ppm, 400 ppm, 300 ppm, 200 ppm, 100 ppm. It is not necessary to contain Sb 2 O 3 .
 上記成分以外の成分を多量に含有させると、ガラスの耐失透性が悪化し、液相温度が上昇する傾向を示す。そのため、ガラス熔融温度を高めなければならず、貴金属製熔融容器の侵蝕が増大し、ガラスに溶け込む貴金属の量が増加する。また、TiO、Nb、WOおよびBiの還元色も増大する。 When a large amount of components other than the above components is contained, the devitrification resistance of the glass deteriorates, and the liquidus temperature tends to increase. Therefore, it is necessary to raise the glass melting temperature, corrosion of the noble metal melting vessel is increased, and the amount of noble metal dissolved in the glass is increased. Also, the reduced color of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 also increases.
 こうした貴金属量の増加を抑制し、ガラスの着色を抑制する上から、P、SiO、B、TiO、Nb、WOおよびBi、MgO、CaO、SrO、BaO、ZnO、LiO、NaO、KO、Al、ZrO、GeO、TeOおよびSbの合計含有量を90%以上とすることが好ましく、92%以上とすることがより好ましく、95%以上とすることがさらに好ましく、96%以上とすることが一層好ましく、97%以上とすることがより一層好ましく、98%以上とすることがさらに一層好ましく、99%超とすることがなお一層好ましい。なお、上記合計含有量を100%としてもよい。 From the viewpoint of suppressing the increase in the amount of such noble metals and suppressing the coloring of the glass, P 2 O 5 , SiO 2 , B 2 O 3 , TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 , MgO, CaO Preferably, the total content of SrO, BaO, ZnO, Li 2 O, Na 2 O, K 2 O, Al 2 O 3 , ZrO 2 , GeO 2 , TeO 2 and Sb 2 O 3 is 90% or more. , 92% or more, more preferably 95% or more, still more preferably 96% or more, still more preferably 97% or more, still more preferably 98% or more More preferably, it is more preferably 99% or more. The total content may be 100%.
 Ta、Y、La、Gd、Yb、In、Ga、SnO、CeO、Fなども少量であれば含有させることができる。Ta、Y、La、Gd、Yb、In、GaおよびFの合計含有量を0~10%とすることが好ましく、0~7%とすることがより好ましく、0~5%とすることがさらに好ましく、0~3%とすることが一層好ましく、0~1%とすることがより一層好ましく、0~0.5%とすることがさらに一層好ましい。 Ta 2 O 5 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 , In 2 O 3 , Ga 2 O 3 , SnO 2 , CeO 2 , F, etc. are also contained if they are in small amounts be able to. The total content of Ta 2 O 5 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 , In 2 O 3 , Ga 2 O 3 and F is preferably 0 to 10%. , 0 to 7% is more preferable, 0 to 5% is more preferable, 0 to 3% is more preferable, 0 to 1% is still more preferable, and 0 to 0. Even more preferably, it is 5%.
 Fは、熔融ガラスの揮発性を高め、均質なガラスを得る上からも、安定した光学特性を有するガラスを得る上からも、多量に含有させるべき成分ではない。Fの含有量の好ましい範囲は0~3%、より好ましい範囲は0~1%、さらに好ましい範囲は0~0.5%であり、実質的にFを含まないことが一層好ましい。 From the viewpoint of increasing the volatility of the molten glass and obtaining a homogeneous glass, and also obtaining a glass having stable optical properties, F is not a component to be contained in a large amount. A preferable range of the content of F is 0 to 3%, a more preferable range is 0 to 1%, a further preferable range is 0 to 0.5%, and it is more preferable that substantially no F is contained.
 環境への負荷を低減する上から、Pb、As、Cd、U、Th、Tlを実質的に含有しないことが好ましい。 From the viewpoint of reducing the load on the environment, it is preferable not to substantially contain Pb, As, Cd, U, Th and Tl.
 ガラスの着色を低減する上から、Cu、Cr、Mn、Fe、Co、Ni、V、Mo、Nd、Eu、Er、Tb、Ho、Prなどの可視域に吸収を有する成分、添加剤を実質的に含有しないことが好ましい。 In addition to reducing the coloration of the glass, it is possible to use a substance or additive that has absorption in the visible range, such as Cu, Cr, Mn, Fe, Co, Ni, V, Mo, Nd, Eu, Er, Tb, Ho, Pr, etc. It is preferable not to contain it.
 但し、本実施形態のガラスの製造方法において、不可避的不純物の含有を排除するものではない。したがって、上述した成分は、ガラス原料中の使用量が完全にゼロであることが最も好ましいものの、使用量が実質的にゼロ、すなわち不純物として不可避的にガラス原料中に微量混入する場合も十分に好ましい。 However, in the glass manufacturing method of the present embodiment, the inclusion of unavoidable impurities is not excluded. Therefore, although it is most preferable that the above-mentioned components be completely used in the glass raw material, it is sufficient that the used amount is substantially zero, that is, even when trace amounts are inevitably mixed in the glass raw material as impurities. preferable.
 なお、ガラス原料としては、ガラス成分に応じて、酸化物、リン酸、リン酸塩(ポリリン酸塩、メタリン酸塩、ピロリン酸塩など)、ホウ酸、無水ホウ酸、炭酸塩、硝酸塩、硫酸塩、水酸化物など、公知のガラス原料を使用することができる。 In addition, as a glass raw material, according to a glass component, an oxide, phosphoric acid, phosphate (polyphosphate, metaphosphate, pyrophosphate etc.), boric acid, boric anhydride, boric acid anhydride, carbonate, nitrate, sulfuric acid Known glass materials such as salts and hydroxides can be used.
 光学素子の製造
 本実施形態の製造方法により得られるガラスの用途は、特に限定されるものではないが、例えば光学ガラスとして好適に用いることができる。本実施形態の製造方法により作製した光学ガラスを使用して光学素子を作るには、公知の方法を適用すればよい。例えば、熔融ガラスを成形してプレス成形用ガラス素材を作製する。次に、このガラス素材を再加熱、プレス成形して光学素子ブランクを作製する。さらに光学素子ブランクの研磨を含む工程により加工して光学素子を作製する。
 あるいは、熔融ガラスを成形してプレス成形用ガラス素材を作製し、このガラス素材を加熱、精密プレス成形して光学素子を作製する。
Production of Optical Element Although the application of the glass obtained by the production method of the present embodiment is not particularly limited, for example, it can be suitably used as an optical glass. In order to produce an optical element using the optical glass produced by the production method of this embodiment, a known method may be applied. For example, molten glass is molded to produce a glass material for press molding. Next, this glass material is reheated and press-molded to produce an optical element blank. Furthermore, it processes by the process including grinding | polishing of an optical element blank, and an optical element is produced.
Alternatively, molten glass is molded to produce a glass material for press molding, and this glass material is heated and precision press molded to produce an optical element.
 上記の各工程において、熔融ガラスを成形してガラス成形体を作製し、ガラス成形体を加工してプレス成形用ガラス素材を作製してもよい。
 あるいは、熔融ガラスを成形してガラス成形体を作製し、この成形体を加工して光学素子を作製する。
In each of the above-described steps, a molten glass may be molded to produce a glass molded body, and the glass molded body may be processed to produce a glass material for press molding.
Alternatively, a molten glass is molded to produce a glass molded body, and the molded body is processed to produce an optical element.
 作製した光学素子の光学機能面には使用目的に応じて、反射防止膜、全反射膜などをコーティングしてもよい。
 光学素子としては、球面レンズ、非球面レンズ、マクロレンズ、レンズアレイなどの各種レンズ、プリズム、回折格子などを例示することができる。
The optical functional surface of the produced optical element may be coated with an antireflective film, a total reflection film or the like according to the purpose of use.
As an optical element, various lenses, such as a spherical lens, an aspheric lens, a macro lens, and a lens array, a prism, a diffraction grating, etc. can be illustrated.
 光学ガラスの製造方法
 以下、本実施形態の実施の別形態として、光学ガラスの製造方法を説明する。なお、下記の光学ガラスの製造方法は、好ましい別形態の一つであって、本発明のガラスの製造方法は、下記の光学ガラスの製造方法に限定されるものではない。
Method of Producing Optical Glass Hereinafter, a method of producing optical glass will be described as another embodiment of the present embodiment. In addition, the manufacturing method of the following optical glass is one of the preferable another form, Comprising: The manufacturing method of the glass of this invention is not limited to the manufacturing method of the following optical glass.
 本実施形態に係る光学ガラスの製造方法では、上記第一の実施態様のガラスの製造方法および/または第二の実施態様のガラスの製造方法を利用して製造された光学ガラス用素材を、酸化性雰囲気中で熱処理する熱処理工程(iv)を少なくとも経て、屈折率ndが1.9以上である光学ガラスを作製する。 In the method of producing an optical glass according to the present embodiment, the material for an optical glass produced by using the method of producing a glass of the first embodiment and / or the method of producing a glass of the second embodiment is oxidized An optical glass having a refractive index nd of 1.9 or more is produced through at least a heat treatment step (iv) of heat treatment in a thermal atmosphere.
 以下では、「光学ガラス用素材」とは、熔融容器内の熔融ガラスを所定の形状に成形する成形工程を経て作製されたガラスであって、かつ、熱処理を受ける前の濃く着色した状態のガラスを意味する。また、「光学ガラス」とは、濃く着色した状態の光学ガラス用素材を、熱処理したガラスを意味する。すなわち、「光学ガラス」は「光学ガラス用素材」よりも熱処理により着色が低減されたガラスである。また、「光学ガラス用素材」および「光学ガラス」、ならびに、「光学ガラス用素材」または「光学ガラス」を用いて作製された「プレス成形用ガラス素材」、「光学素子」および「その他のガラス物品」は、いずれもアモルファス状のガラスであり、結晶化ガラスではない。 In the following, the “material for optical glass” is a glass produced through a forming step of forming the molten glass in the melting container into a predetermined shape, and the glass in a deeply colored state before being subjected to heat treatment Means Moreover, "optical glass" means the glass which heat-processed the raw material for optical glass of the state colored strongly. That is, "optical glass" is glass whose coloring is reduced by heat treatment as compared with "material for optical glass". In addition, "materials for optical glass" and "optical glass", "glass materials for press molding" manufactured using "materials for optical glass" or "optical glass", "optical elements" and "other glass" The articles are all amorphous glass and not crystallized glass.
 ここで、酸化性雰囲気ガスとしては、酸素を含むガスであればよく、酸素濃度は、たとえば、空気と同程度前後かそれ以上であればよい。このような酸化性雰囲気ガスとしては、たとえば、空気、空気に酸素を加えたガス、実質的に酸素のみからなるガスなどを挙げることができる。また、熱処理温度および熱処理時間は、所望の光学特性が得られるように適宜設定すればよい。 Here, the oxidizing atmosphere gas may be any gas containing oxygen, and the oxygen concentration may be, for example, about the same as or higher than that of air. As such an oxidizing atmosphere gas, for example, air, a gas obtained by adding oxygen to air, a gas substantially consisting only of oxygen, and the like can be mentioned. Further, the heat treatment temperature and the heat treatment time may be set appropriately so as to obtain desired optical characteristics.
 なお、熱処理工程を経て得られた光学ガラスは、着色が少なく透明度が高いため、光学ガラス中に含まれる水分を、OHに起因する赤外線吸収量として、分光光度計によって定量的に把握することが可能である。 The optical glass obtained through a heat treatment process has a high less transparent coloring, the water contained in the optical glass, OH - in the infrared absorption attributable, to quantitatively grasp a spectrophotometer Is possible.
 また、光学ガラスは光学ガラス用素材を酸化性雰囲気中で熱処理することにより得られたものであるため、光学ガラス中の含水量は、光学ガラス用素材中の含水量や光学ガラス用素材を製造する際の熔融ガラス中の含水量と比例又は強い相関関係にあることは明らかである。 Further, since the optical glass is obtained by heat-treating the material for optical glass in an oxidizing atmosphere, the water content in the optical glass is the water content in the material for optical glass and the material for optical glass It is apparent that the water content is proportional to or strongly correlated with the water content in the molten glass at the same time.
 このため、光学ガラス中の含水量の値を把握することで、光学ガラス用素材を製造する際の好適な製造条件、すなわち、熔融容器内への水分の供給方法・供給量や、ガラス原料として用いる材料種・配合量(特にリン酸成分の配合量)を把握することが極めて容易となる。したがって、光学ガラスの光学的特性(特に透過率)と含水量と測定し、把握すれば、この結果に基づいて光学ガラス用素材を製造する際の好適な製造条件を容易に決定できる。 For this reason, by grasping the value of the water content in the optical glass, suitable manufacturing conditions for producing the material for optical glass, that is, the method and amount of supplying water into the melting container, and as the glass raw material It becomes extremely easy to grasp the kind of material used and the compounding amount (in particular, the compounding amount of the phosphoric acid component). Therefore, by measuring and grasping the optical properties (especially the transmittance) and the water content of the optical glass, it is possible to easily determine suitable manufacturing conditions for manufacturing the material for optical glass based on the results.
 なお、光学ガラス中の含水量は、たとえば、上記式(1)に示すβOH値により把握できる。 In addition, the water content in optical glass can be grasped | ascertained by the (beta) OH value shown, for example to said Formula (1).
 図2は、表1に示すNo.1の組成からなる光学ガラスのβOH値を変化させた場合において、βOH値に対して、厚さ5mmの光学ガラスに対してその厚み方向と平行に光を入射した際の波長450nmにおける外部透過率(T450)の変化を示したグラフである。 FIG. 2 shows No. 1 shown in Table 1. The external transmittance at a wavelength of 450 nm when light is incident on the optical glass having a thickness of 5 mm in parallel with the thickness direction with respect to the β OH value when the β OH value of the optical glass consisting of 1 is changed It is the graph which showed the change of (T450).
 図2に示すグラフの測定に用いたNo.1の組成からなる光学ガラスは、No.1の組成からなる光学ガラス用素材を大気中にて600℃で1時間熱処理したものである。 No. 1 used for measurement of the graph shown in FIG. The optical glass having the composition of No. The raw material for optical glass which consists of a composition of 1 is heat-processed at 600 degreeC in air | atmosphere for 1 hour.
 また、図3は、表1に示すNo.3の組成からなる光学ガラスのβOH値を変化させた場合において、βOH値に対して、厚さ5mmの光学ガラスに対してその厚み方向と平行に光を入射した際の波長450nmにおける外部透過率(T450)の変化を示したグラフである。図3に示すグラフの測定に用いたNo.2の組成からなる光学ガラスは、No.2の組成からなる光学ガラス用素材を大気中にて570℃で4.5時間熱処理したものである。 Also, FIG. The external transmittance at a wavelength of 450 nm when light is incident on the optical glass having a thickness of 5 mm in parallel to the thickness direction with respect to the β OH value when the β OH value of the optical glass having the composition of 3 is changed It is the graph which showed the change of (T450). No. 3 used in the measurement of the graph shown in FIG. The optical glass having the composition of No. 2 has no. The raw material for optical glass which consists of 2 compositions is heat-processed at 570 degreeC in air | atmosphere for 4.5 hours.
 また、図2、図3および表1中に示すβOH値、屈折率ndおよびアッベ数νdは、熱処理後の光学ガラスの状態で測定した値である。また、表1に示すNo.1~No.4のガラス組成はTiO、Nb、WOおよびBiの合計含有量が30mol%以上であり、さらに、Pを含むものである。 Further, the βOH value, the refractive index nd and the Abbe number 示 す d shown in FIG. 2, FIG. 3 and Table 1 are values measured in the state of the optical glass after heat treatment. In addition, No. 1 shown in Table 1 1 to No. The glass composition of No. 4 has a total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 of 30 mol% or more, and further contains P 2 O 5 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 さらに、図2に示す複数点のβOH値は、光学ガラス用素材の製造に際して、熔融ガラスの液面近傍に水蒸気を導入した際の単位時間当たりの水蒸気量を調整することによって設定された値である。この際、水蒸気量以外の製造条件は全て同一とした。すなわち、水蒸気量の増減によって、βOH値を増減させた。なお、この点は図3に示す複数点のβOH値についても同様である。図2および図3から明らかなように、βOH値の増加に伴い外部透過率(T450)も増加していることがわかる。 Furthermore, the βOH values at a plurality of points shown in FIG. 2 are values set by adjusting the amount of water vapor per unit time when water vapor is introduced near the liquid surface of the molten glass in the production of the material for optical glass. is there. At this time, all production conditions other than the amount of water vapor were the same. That is, the βOH value was increased or decreased by the increase or decrease of the amount of water vapor. This point also applies to the βOH values of a plurality of points shown in FIG. As apparent from FIGS. 2 and 3, it can be seen that the external transmittance (T450) also increases as the βOH value increases.
 以上に説明したように、光学ガラスの光学的特性(特に透過率)と含水量と測定し、把握すれば、この結果に基づいて光学ガラス用素材を製造する際の好適な製造条件を容易に決定できる。 As described above, if the optical properties (especially transmittance) and the moisture content of the optical glass are measured and grasped, suitable manufacturing conditions for producing the material for optical glass based on the result are easily made. It can be decided.
 なお、光学ガラスの着色度合は、着色度を示す指標であるλτ80により定量化することができる。λτ80とは、光学ガラスに対してその厚み方向と平行に光を入射した際の波長280~700nmの範囲における内部透過率を測定した後、当該測定された内部透過率に基づいて光学ガラスの厚みが10mmであると仮定して計算した内部透過率(内部透過率τ)が、80%となる波長(nm)を意味する。言い換えれば、波長280~700nmの範囲においてλτ80以上の波長域では厚み10mmでの内部透過率は80%以上となることを意味する。ここで、内部透過率τは、入射側及び出射側における表面反射損失を除いた透過率であり、厚さの異なる2つの試料を用いて、各試料の表面反射損失を含む透過率T1、T2、すなわち、外部透過率T1、T2を波長280nm~1550nmの範囲にて行い、それら測定値を用いて下式(2)に基づいて算出される値である。
 logτ=-(logT1-logT2)×10/Δd ・・・(2)
The coloring degree of the optical glass can be quantified by λτ80 which is an index indicating the coloring degree. λτ80 is the thickness of the optical glass based on the measured internal transmittance after measuring the internal transmittance in the wavelength range of 280 to 700 nm when light is incident on the optical glass in parallel with the thickness direction Means the wavelength (nm) at which the internal transmittance (internal transmittance τ) calculated assuming that L is 10 mm is 80%. In other words, it means that the internal transmittance at a thickness of 10 mm is 80% or more in the wavelength range of λτ80 or more in the wavelength range of 280 to 700 nm. Here, the internal transmittance τ is the transmittance excluding the surface reflection loss on the incident side and the emission side, and the transmittance T1 and T2 including the surface reflection loss of each sample using two samples having different thicknesses. That is, it is a value calculated based on the following equation (2) using the external transmittances T1 and T2 in the wavelength range of 280 nm to 1550 nm, and using those measured values.
log τ = − (log T1−log T2) × 10 / Δd (2)
 ここで、式(2)中、T1は、厚みがd1(mm)の第一の試料について、その厚み方向と平行に光を入射した際の波長280nm~1550nmの範囲内において測定した表面反射損失を含む透過率(%)を表し、T2は、第一の試料と同一のガラスからなる厚みがd2(mm)の第二の試料について、その厚み方向と平行に光を入射した際の波長280nm~1550nmの範囲内において測定した表面反射損失を含む透過率(%)を表す。なお、λτ80は波長280~700nmにおける透過率測定の結果を用いて算出されるので、透過率T1、T2の測定は波長280~700nmの範囲で行ってもよい。また、Δdは、厚みd1と厚みd2との差d2-d1(mm)を表し、厚みd1と厚みd2とは、d1<d2なる関係を満たす。 Here, in the formula (2), T1 is a surface reflection loss measured in a wavelength range of 280 nm to 1550 nm when light is incident in parallel with the thickness direction for the first sample having a thickness of d1 (mm) Represents a transmittance (%) including T2 is a wavelength of 280 nm when light is incident in parallel to the thickness direction of a second sample having a thickness of d2 (mm) made of the same glass as the first sample It represents transmission (%) including surface reflection loss measured in the range of ̃1550 nm. Since λτ80 is calculated using the result of transmittance measurement at wavelengths of 280 to 700 nm, the transmittances T1 and T2 may be measured in the range of wavelengths of 280 to 700 nm. Further, Δd represents a difference d2-d1 (mm) between the thickness d1 and the thickness d2, and the thickness d1 and the thickness d2 satisfy the relationship of d1 <d2.
 λτ80はTiO、Nb、WOおよびBiの合計含有量が増加するに伴って増加する。mol%表示によるTiO、Nb、WO3およびBiの合計含有量をXとすると、酸化性雰囲気中での熱処理に先立ち光学ガラス用素材中の含水量を増加させずに、この光学ガラス用素材を熱処理して作製された光学ガラスでは、Xとλτ80との関係は下式(3)に示す関係となる。このため、λτ80の大幅な改善は難しい。
 λτ80>aX+b ・・・(3)
 なお、式(3)中、aは、定数(1.8359nm/mol%)を表し、bは、定数(351.06nm)を表す。
λτ 80 increases as the total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 increases. Assuming that the total content of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 in mol% is X, without increasing the water content in the material for optical glass prior to the heat treatment in the oxidizing atmosphere, In the optical glass manufactured by heat-processing this raw material for optical glass, the relationship between X and λτ80 is as shown in the following equation (3). Therefore, it is difficult to significantly improve λτ80.
λτ80> aX + b (3)
In addition, in Formula (3), a represents a constant (1.8359 nm / mol%), b represents a constant (351.06 nm).
 一方、本実施形態の光学ガラスの製造方法では、含水量の高い光学ガラス用素材を用いて熱処理工程を実施するため、下式(4)を満たすことが容易である。ここで、熱処理工程における熱処理温度・熱処理時間については、下記(4)式を満たすように適宜設定できる。
 λτ80<aX+b ・・・(4)
 なお、式(4)中、aおよびbは式(3)に示したものと同様である。
On the other hand, in the method for producing an optical glass according to the present embodiment, the heat treatment step is performed using a material having a high water content for optical glass, and therefore, it is easy to satisfy the following formula (4). Here, the heat treatment temperature and the heat treatment time in the heat treatment step can be appropriately set so as to satisfy the following equation (4).
λτ80 <aX + b (4)
In Formula (4), a and b are the same as those shown in Formula (3).
 なお、光学ガラスのλτ80は、さらに下式(5)を満たすことがより好ましく、下式(6)を満たすことがさらに好ましい。この場合、熱処理工程における熱処理温度・熱処理時間を適宜選択することで、下式(5)または下式(6)を満たす光学ガラスを作製することができる。
 λτ80<aX+c ・・・(5)
 λτ80<aX+d ・・・(6)
 ここで式(5)中、aは式(3)に示したものと同様であり、cは定数(348.06nm)を表す。また、式(6)中、aは式(3)に示したものと同様であり、dは定数(345.06nm)を表す。
In addition, it is more preferable to satisfy the following Formula (5), and it is more preferable to satisfy the following Formula (6). In this case, an optical glass satisfying the following Formula (5) or the following Formula (6) can be produced by appropriately selecting the heat treatment temperature and the heat treatment time in the heat treatment step.
λτ80 <aX + c (5)
λτ80 <aX + d (6)
Here, in the formula (5), a is the same as that shown in the formula (3), and c represents a constant (348.06 nm). Further, in the formula (6), a is the same as that shown in the formula (3), and d represents a constant (345.06 nm).
 また、作製された光学ガラス用素材を用いて、(光学ガラス用素材の着色の低減を目的として)酸化性雰囲気中で熱処理する熱処理工程(着色低減目的の熱処理工程)を少なくとも経ることにより、屈折率がndが1.9以上である光学ガラスを含むプレス成形用ガラス素材あるいは光学素子を作製することもできる。ここで、着色低減目的の熱処理工程以外のその他必要に応じて実施される後工程;たとえば、プレスや鋳型への流し込みによる成形工程、切削工程、研磨工程、熱処理工程(但し、着色低減目的の熱処理工程を除く)の各種公知の工程は、着色低減目的の熱処理工程の前後で適宜実施できる。 In addition, by using at least the heat treatment process (the heat treatment process for the purpose of color reduction) of performing the heat treatment in an oxidative atmosphere (for the purpose of reducing the coloration of the material for optical glass) using the manufactured material for optical glass It is also possible to produce a glass material for press molding or an optical element containing an optical glass having a ratio nd of 1.9 or more. Here, post-steps carried out as necessary other than the heat treatment step for the purpose of color reduction; for example, forming steps by pouring into a press or a mold, cutting steps, polishing steps, heat treatment steps (but heat treatment for the purpose of color reduction) The various known processes (aside from the process) can be appropriately carried out before and after the heat treatment process for the purpose of color reduction.
 なお、プレス成形用ガラス素材は、プレス成形品、具体的には光学素子ブランクあるいは光学素子などを得るためのガラス素材である。プレス成形用ガラス素材の作製法としては、たとえば、(1)流出する熔融ガラス流を分離して熔融ガラス塊とし、この熔融ガラス塊を冷却する過程で最終的に得られるプレス成形用ガラス素材と同一形状・サイズの光学ガラス用素材を成形した後、この光学ガラス用素材に対して着色低減目的の熱処理工程を実施してプレス成形用ガラス素材を作製する方法や、(2)熔融ガラスを鋳型に鋳込んでガラスブロック(光学ガラス用素材)を成形し、このガラスブロックを着色低減目的の熱処理工程を含む後加工工程によりプレス成形用ガラス素材を作製する方法などが挙げられる。 In addition, the glass material for press molding is a glass material for obtaining a press-formed product, specifically, an optical element blank or an optical element. As a method of producing a glass material for press molding, for example, (1) a flowing molten glass flow is separated to form a molten glass mass, and the glass material for press molding finally obtained in the process of cooling the molten glass mass A method of producing a glass material for press molding by performing a heat treatment step for reducing color on the material for optical glass after molding the material for optical glass of the same shape and size, (2) a molten glass as a mold And casting the glass block (material for optical glass) into a glass block, and producing a glass material for press molding in a post-processing step including a heat treatment step for the purpose of reducing the color of the glass block.
 光学素子の例としては、球面レンズ、非球面レンズなどの各種のレンズ、プリズムなどが挙げられる。光学素子を作製する方法としては、たとえば、下記(1)~(3)に示す方法が挙げられる。(1)光学ガラス用素材に対して着色低減目的の熱処理工程を実施して光学ガラス(あるいはプレス成形用ガラス素材)を作製した後、この光学ガラス(あるいはプレス成形用ガラス素材)を加熱、軟化してプレス成形して光学素子ブランクを作製し、最後にこの光学素子ブランクを加工して光学素子を作製する方法。(2)光学ガラス用素材からプレス成形用ガラス素材を作製後、このプレス成形用ガラス素材を加熱、軟化して精密プレス成形して光学素子を作製する方法。(3)熔融ガラスをプレス成形して光学素子ブランクを作製し、この光学素子ブランクを加工して光学素子を作製する過程において、光学素子ブランクの加工前または加工後に着色低減目的の熱処理工程を実施する方法。 Examples of the optical element include various lenses such as a spherical lens and an aspheric lens, and a prism. Examples of the method of producing an optical element include the methods shown in the following (1) to (3). (1) After a heat treatment process for reducing color is performed on a material for optical glass to produce an optical glass (or a glass material for press molding), the optical glass (or a glass material for press molding) is heated and softened And press molding to produce an optical element blank, and finally, processing the optical element blank to produce an optical element. (2) A method of producing an optical element by heating and softening this glass material for press molding and precision press molding after producing the glass material for press molding from the material for optical glass. (3) In the process of press-molding molten glass to produce an optical element blank and processing this optical element blank to produce an optical element, a heat treatment process for reducing color is performed before or after processing of the optical element blank how to.
 以上、本発明の実施形態について説明してきたが、本発明はこうした実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々なる態様で実施し得ることは勿論である。 As mentioned above, although the embodiment of the present invention has been described, the present invention is not limited to the embodiment at all, and it is needless to say that the present invention can be practiced in various modes without departing from the scope of the present invention. .
 本発明の実施形態では光学ガラスを例示しているが、還元成分による着色が問題となるガラス製品であれば、光学素子によらず、種々のガラス製品の製造に好適に用いることができる。このようなガラス製品としては、例えば光学窓材、太陽電池用ガラス、カバーガラス等が挙げられる。 In the embodiment of the present invention, an optical glass is exemplified, but any glass product in which coloring by a reducing component causes a problem can be suitably used for manufacturing various glass products regardless of the optical element. As such a glass product, an optical window material, glass for solar cells, a cover glass etc. are mentioned, for example.
 また、本実施形態に係るガラスは、光学素子用の材料として好適であるため、非晶質性(アモルファス)のガラスであることが好ましい。ガラス製の光学素子を作製する方法には、例えば、ガラス材料を加熱、軟化させて成形する方法がある。ガラス質の中に結晶相が分散した結晶化ガラスは、上記成形方法には不向きである。また、結晶化ガラス中の結晶相が光を散乱し、光学素子としての性能を低下させることもある。非晶質性ガラスには、このような問題はない。 Moreover, since the glass which concerns on this embodiment is suitable as a material for optical elements, it is preferable that it is amorphous (amorphous) glass. As a method of producing an optical element made of glass, for example, there is a method of heating and softening a glass material to form it. The crystallized glass in which the crystal phase is dispersed in the glassy material is unsuitable for the above forming method. In addition, the crystal phase in the crystallized glass may scatter light to reduce the performance as an optical element. Amorphous glass does not have such a problem.
 また、本実施形態は、光学ガラスの製造方法の一例として、主として坩堝を用いて原材料を熔融する方法を例示しているが、熔融容器としては、両端が開口した石英製のチューブ等を用いてもよい。 Moreover, although this embodiment exemplifies the method of melting a raw material mainly using a crucible as an example of the manufacturing method of optical glass, as a melting container, the tube made of quartz etc. which both ends opened is used. It is also good.
 具体的には、ガラス熔解炉内に、石英製等のチューブを傾斜状態で固定する。ガラス熔解炉の底部には、チューブの低位置側の開口端の下方に相当する位置に開口部を設けておく。チューブの高位置側の開口端からチューブ内に原料材料(バッチ原料、またはカレット)を導入し、チューブ内で熔解(または熔融)して熔融物とする。熔融物はチューブ中をゆっくりと流動し、チューブの低位置側の開口側から次々に流出する。 Specifically, a tube made of quartz or the like is fixed in an inclined state in a glass melting furnace. At the bottom of the glass melting furnace, an opening is provided at a position corresponding to the lower end of the lower end of the tube. Raw material (batch material or cullet) is introduced into the tube from the open end on the high position side of the tube and melted (or melted) in the tube to form a melt. The melt flows slowly in the tube and flows out one after another from the lower open side of the tube.
 例えば、ラフメルト工程では、流出物は炉底の開口部を通過し、予めガラス熔解炉の底部の開口部下方に配置した水槽中の水へと、次々に滴下され、カレットになる。 For example, in the rough melt process, the effluent passes through the opening at the bottom of the furnace and is dropped one after another into water in a water tank previously disposed under the opening at the bottom of the glass melting furnace to form cullet.
 上記の方法では、石英製等のチューブを用いて原材料を熔融したが、チューブの替わりに、石英製等の坩堝を用いてもよい。まず石英製等の坩堝の中に原材料を入れて加熱、熔融し、熔融物とし、次いで、熔融物を水中にキャストしたり、冷却した耐熱板上に流し出したりしてカレットを作製してもよい。 In the above method, the raw material is melted using a tube made of quartz or the like, but instead of the tube, a crucible made of quartz or the like may be used. First, raw materials are put in a crucible made of quartz etc., heated and melted to form a melt, and then the melt is cast in water or poured out on a cooled heat-resistant plate to produce cullet. Good.
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
(実施例1)
[バッチ原料の調製]
 まず、所望の特性を備えた光学ガラスを作製するにあたり、ガラスの原材料として、リン酸、メタリン酸バリウム、酸化チタン、酸化ニオブ、酸化タングステン、酸化ビスマス、ホウ酸、炭酸バリウム、炭酸ナトリウム、炭酸カリウムおよび酸化ケイ素をそれぞれ準備した。次に、最終的に得られる光学ガラスのガラス組成が、表2に示す酸化物組成I~VIIIとなるように、上記原材料を適宜選択、秤量し、十分混合してバッチ原料I~VIIIを作製した。
Example 1
[Preparation of batch material]
First, when producing optical glass with desired characteristics, phosphoric acid, barium metametaphosphate, titanium oxide, niobium oxide, tungsten oxide, bismuth oxide, boric acid, barium carbonate, barium carbonate, sodium carbonate, potassium carbonate as raw materials of glass And silicon oxide were prepared respectively. Next, the above raw materials are appropriately selected and weighed so that the glass composition of the finally obtained optical glass becomes the oxide compositions I to VIII shown in Table 2, and sufficiently mixed to produce batch raw materials I to VIII. did.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[カレットおよび調合カレットの作製(ラフメルト工程)]
 調合されたバッチ原料I~VIIIを、各光学ガラスのガラス原料とした。このガラス原料を石英製坩堝に投入し、大気雰囲気中で900~1350℃で熔解して熔融物を得た。このようにして得られた熔融物を水中に滴下してカレットを得た。
[Preparation of cullet and compound cullet (rough melt process)]
The prepared batch materials I to VIII were used as glass materials of each optical glass. The glass raw material was put into a quartz crucible and melted at 900 to 1350 ° C. in an air atmosphere to obtain a molten material. The melt thus obtained was dropped into water to obtain cullet.
 水中から取り出したカレットを乾燥させ、カレットの一部を屈折率測定用にサンプリングし、白金製坩堝に入れて熔解し、得られたガラス融液を清澄、均質化した後、鋳型に鋳込んで成形し、ガラス転移温度付近の温度で保持した後、30℃/時の降温速度で冷却した。このようにして得た屈折率測定用試料の屈折率ndを日本光学硝子工業会規格で定められた屈折率測定法により測定した。 The cullet taken out of the water is dried, a part of the cullet is sampled for measuring the refractive index, put in a platinum crucible and melted, and the obtained glass melt is clarified and homogenized, and then cast in a mold After molding and holding at a temperature near the glass transition temperature, cooling was performed at a temperature decrease rate of 30 ° C./hour. The refractive index nd of the sample for refractive index measurement thus obtained was measured by the refractive index measurement method defined by the Japan Optical Glass Industrial Standard.
 次に、測定した屈折率ndに応じて、所望の屈折率となるようにカレットを調合し、光学ガラス製造用の調合カレットを得た。 Next, according to the measured refractive index nd, a cullet was prepared so as to obtain a desired refractive index to obtain a prepared cullet for producing an optical glass.
[光学ガラスの作製(リメルト工程)]
 次に、調合カレットを白金製坩堝(熔融容器)に投入し、800~1350℃の範囲内で白金製坩堝内の調合カレットを加熱、熔融し、熔融ガラスとした(熔融工程)。
[Preparation of optical glass (remelt process)]
Next, the prepared cullet was introduced into a platinum crucible (melting vessel), and the prepared cullet in the platinum crucible was heated and melted at 800 ° C. to 1350 ° C. to form a molten glass (melting step).
 その後、坩堝の温度を清澄温度(900~1450℃の範囲)にまで昇温し、清澄した(清澄工程)。続けて、坩堝の温度を均質化温度にまで降温し、攪拌器具で攪拌して均質化した(均質化工程)。 Thereafter, the temperature of the crucible was raised to a clarifying temperature (range of 900 to 1450 ° C.) to clarify (refining step). Subsequently, the temperature of the crucible was lowered to the homogenization temperature, and the mixture was homogenized by stirring with a stirrer (homogenization step).
 なお、熔融炉内の容積(坩堝を収納する耐火物製の炉内の空間の体積)、および熔融炉内での熔融物の滞在時間(白金熔融容器にカレットを投入してから、熔融容器から熔融ガラスを流出するまでの時間)は、表3に示す。 The volume in the melting furnace (the volume of the space in the furnace made of a refractory that stores the crucible), and the residence time of the melting material in the melting furnace (after the cullet is introduced into the platinum melting container, The time until the molten glass flows out is shown in Table 3.
 また、熔融工程、清澄工程、均質化工程の実施に際しては、必要に応じて熔融ガラス中の水分量を高める操作を行った。 Moreover, in the case of implementation of a fusion | melting process, a clarification process, and a homogenization process, the operation which raises the moisture content in molten glass was performed as needed.
 具体的には、熔融炉外から白金製パイプを、炉内に配置した白金製坩堝内に挿入し、この白金製パイプを通して、水蒸気(HO 100体積%)を白金製坩堝内の空間へと供給した。このように、熔融雰囲気への水蒸気の付加は、大気に水蒸気を付加することにより行った。供給した水蒸気の流量は、表3に示す。 Specifically, a platinum pipe is inserted from outside the melting furnace into a platinum crucible disposed in the furnace, and water vapor (H 2 O 100% by volume) is introduced into the space in the platinum crucible through the platinum pipe. And supplied. Thus, the addition of water vapor to the melting atmosphere was accomplished by the addition of water vapor to the atmosphere. The flow rate of the supplied water vapor is shown in Table 3.
 また、必要に応じて、坩堝の下部に設置した管から、熔融物中に水蒸気(HO 100体積%)をバブリングした。このように、熔融物内への水蒸気バブリングは、大気雰囲気中の熔融物、または、大気に水蒸気を付加した熔融雰囲気中の熔融物に対して水蒸気バブリングすることにより行った。供給した水蒸気の流量は、表3に示す。 In addition, water vapor (H 2 O 100% by volume) was bubbled into the melt from a pipe placed at the bottom of the crucible, as needed. Thus, the steam bubbling into the melt was performed by bubbling the melt in the air atmosphere or the melt in the melt atmosphere in which water vapor was added to the atmosphere. The flow rate of the supplied water vapor is shown in Table 3.
 なお、表3中に示す、水蒸気の流量は常温、常圧での流量に換算した値であり、単位はリットル/分である。 In addition, the flow volume of water vapor | steam shown in Table 3 is the value converted into the flow volume in normal temperature and normal pressure, and a unit is a liter / minute.
 また、坩堝内に水蒸気を供給しない場合は、白金製の蓋はせずに、熔融容器を開放した状態で、熔解工程から清澄工程を経て均質化工程に至るまで、全て大気雰囲気下で行った。
Figure JPOXMLDOC01-appb-T000003
In the case where steam was not supplied into the crucible, all were carried out in the atmosphere from the melting process through the clarification process to the homogenization process with the melting vessel opened with no lid made of platinum. .
Figure JPOXMLDOC01-appb-T000003
 このようにして均質化した熔融ガラスを、大気雰囲気中で、坩堝底部に取り付けた白金製のガラス流出パイプより流出し(流出工程)、流出パイプの下方に配置した鋳型に流し込むことで、長尺のガラスブロック(幅150mm×厚10mm)を成形した(成形工程)。 The molten glass thus homogenized flows out of the platinum glass outflow pipe attached to the bottom of the crucible in an air atmosphere (effluence process) and is poured into a mold disposed below the outflow pipe, whereby a long length is obtained. The glass block (width 150 mm × thickness 10 mm) was molded (molding step).
 その後、上記ガラスブロックを、大気雰囲気中で、+100℃/時の速度で昇温し、それぞれのガラス転移温度付近で1.5~8時間保持し、-10℃/時の速度で降温して(アニール工程)、歪を除去した光学ガラスサンプルを得た。 Thereafter, the temperature of the glass block is raised at a rate of + 100 ° C./hour in the air atmosphere, held for 1.5 to 8 hours near each glass transition temperature, and decreased at a rate of −10 ° C./hour. (Annealing Step) An optical glass sample from which strain was removed was obtained.
[光学ガラスの評価]
 得られた光学ガラスサンプル(試料11~試料84)の各種物性は、以下のように測定、評価した。
[Evaluation of optical glass]
Various physical properties of the obtained optical glass samples (samples 11 to 84) were measured and evaluated as follows.
[1]ガラス組成
 光学ガラスサンプルを適量採取し、これを酸およびアルカリ処理し、誘導結合プラズマ質量分析法(ICP-MS法)、イオンクロマトグラフフィー法を用いて、各成分の含有量を定量することで測定し、酸化物組成I~VIIIと一致していることを確認した。
[1] Glass composition An appropriate amount of optical glass sample is collected, treated with acid and alkali, and the content of each component is quantified using inductively coupled plasma mass spectrometry (ICP-MS method) and ion chromatography method. It was confirmed that the oxide compositions I to VIII were in agreement.
[2]屈折率nd、アッベ数νdおよびガラス転移温度Tg
 光学ガラスサンプルを作製する際の、均質化工程を経た熔融ガラスを、鋳型に鋳込んで成形し、ガラス転移温度付近の温度で保持した後、10℃/時の降温速度で冷却し、測定用試料を作製した。得られた測定用試料について、日本光学硝子工業会規格で定められた屈折率測定法により、屈折率nd、ng、nF、ncを測定した。さらに、これら屈折率の測定値より、アッベ数νdを算出した。
[2] refractive index nd, Abbe number d d and glass transition temperature Tg
The molten glass that has passed through the homogenization process in making the optical glass sample is cast in a mold and molded, held at a temperature near the glass transition temperature, and then cooled at a temperature decrease rate of 10 ° C / hour for measurement A sample was made. The refractive indexes nd, ng, nF, and nc were measured for the obtained measurement samples by the refractive index measurement method defined by the Japan Optical Glass Industrial Standard. Furthermore, the Abbe number νd was calculated from the measured values of the refractive index.
 次に、光学ガラスサンプルを加工して、円柱形状の測定用試料(直径5mm、高さ20mm)を作製した。得られた測定用試料について、熱機械分析装置(TMA)を用い、昇温速度+10℃/分の条件で、ガラス転移温度Tgを測定した。 Next, the optical glass sample was processed to prepare a cylindrical measurement sample (diameter 5 mm, height 20 mm). The glass transition temperature Tg of the obtained measurement sample was measured using a thermomechanical analyzer (TMA) at a temperature rising rate of + 10 ° C./min.
 なお、これらの特性値は、ガラス組成に起因する為、同じバッチ原料をガラス原料としている光学ガラスサンプルでは、実質的に同じ値となることが確認された。結果を表4に示す。 In addition, since these characteristic values originate in a glass composition, in the optical glass sample which uses the same batch raw material as glass raw material, it was confirmed that it becomes substantially the same value. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[3]βOH
 光学ガラスサンプルを加工して、両面が互いに平行かつ平坦に光学研磨された厚さ1mmの板状ガラス試料を準備した。この板状ガラス試料の研磨面に垂直方向から光を入射して、波長2500nmにおける外部透過率Aおよび波長2900nmにおける外部透過率Bを、分光光度計を用いてそれぞれ測定し、下記式(1)により、βOHを算出した。
 βOH=-[ln(B/A)]/t   ・・・(1)
[3] βOH
The optical glass sample was processed to prepare a plate-like glass sample having a thickness of 1 mm, which was optically polished so that both sides were parallel to each other and flat. Light is perpendicularly incident on the polished surface of this plate-like glass sample, and the external transmittance A at a wavelength of 2500 nm and the external transmittance B at a wavelength of 2900 nm are respectively measured using a spectrophotometer, and the following formula (1) ΒOH was calculated by
βOH = − [ln (B / A)] / t (1)
 上記式(1)中、lnは自然対数であり、厚さtは上記2つの平面の間隔に相当する。また、外部透過率は、ガラス試料表面における反射損失も含み、ガラス試料に入射する入射光の強度に対する透過光の強度の比(透過光強度/入射光強度)である。また、βOHの値は、高いほど、ガラス中に水が多く含まれていることを意味する。結果を表7に示す。 In the above equation (1), ln is a natural logarithm, and the thickness t corresponds to the distance between the two planes. The external transmittance also includes the reflection loss on the surface of the glass sample, and is the ratio of the intensity of the transmitted light to the intensity of the incident light incident on the glass sample (transmitted light intensity / incident light intensity). Also, the higher the value of βOH, the more water is contained in the glass. The results are shown in Table 7.
[4]T450(H)
 光学ガラスサンプルを、大気雰囲気中で、+100℃/時の速度で昇温し、所定の保持温度で100時間保持して、-30℃/時の速度で降温して、熱処理した。なお、保持温度は、組成に応じて異なるため、それぞれの光学ガラスサンプルの酸化物組成に応じて、表5に示す温度とした。
[4] T450 (H)
The optical glass sample was heat-treated by raising the temperature at a rate of + 100 ° C./hour, holding it at a predetermined holding temperature for 100 hours, and decreasing the temperature at a rate of −30 ° C./hour in an air atmosphere. In addition, since holding temperature changes according to a composition, it was set as the temperature shown in Table 5 according to the oxide composition of each optical glass sample.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 熱処理後の光学ガラスサンプルを加工して、両面が互いに平行かつ平坦に光学研磨された厚さ10mmの板状ガラス試料を準備した。このようにして得られた板状ガラス試料について、分光光度計を用いて450nmにおける外部透過率T450(H)を求めた。T450(H)の値が大きいほど、透過率に優れ、ガラスの着色は低減されていることを意味する。結果を表7に示す。 The heat-treated optical glass sample was processed to prepare a plate-like glass sample having a thickness of 10 mm, which was optically polished parallel to each other and flat on both sides. The external transmittance T450 (H) at 450 nm of the plate-like glass sample thus obtained was determined using a spectrophotometer. The larger the value of T450 (H), the better the transmittance, meaning that the coloration of the glass is reduced. The results are shown in Table 7.
[5]Pt含有量
 光学ガラスサンプルを適量採取し、これをアルカリ融解して、Ptを分離する処理した後、ICP-MS法によりガラス中のPt量を定量した。結果を表7に示す。
[5] Pt Content An appropriate amount of an optical glass sample was collected and alkali-melted to separate Pt, and then the amount of Pt in the glass was quantified by ICP-MS. The results are shown in Table 7.
[6]着色度λ80およびλ70
 まず、光学ガラスサンプルを、T450(H)の場合と同様の条件で熱処理した。
 熱処理後の光学ガラスサンプルを加工して、両面が互いに平行かつ平坦に光学研磨された厚さ10mm±0.1mmの板状ガラス試料を準備した。この板状ガラス試料の研磨面に垂直方向から光を入射して、波長280nm~700nmの範囲で表面反射損失を含む分光透過率を、分光光度計を用いて測定し、分光透過率(外部透過率)が80%および70%になる波長を、それぞれ着色度λ80およびλ70とした。λ80およびλ70の値は、いずれも小さいほど、ガラスの着色が少ないことを意味する。結果を表7に示す。なお、λ80により評価した試料については、表7に示す結果に下線を付した。
[6] Degree of coloring λ80 and λ70
First, the optical glass sample was heat-treated under the same conditions as in the case of T450 (H).
The heat-treated optical glass sample was processed to prepare a plate-like glass sample having a thickness of 10 mm ± 0.1 mm, which was optically polished parallel to each other and flat on both sides. Light is perpendicularly incident on the polished surface of this plate-like glass sample, and the spectral transmittance including surface reflection loss in the wavelength range of 280 nm to 700 nm is measured using a spectrophotometer, and the spectral transmittance (external transmission The wavelengths at which the ratio) reaches 80% and 70% were taken as the coloring degrees .lambda.80 and .lambda.70, respectively. The smaller the values of λ80 and λ70, the lower the coloration of the glass. The results are shown in Table 7. The results shown in Table 7 are underlined for the samples evaluated by λ80.
[7]T450(L)
 光学ガラスサンプルを作製する際の、均質化工程を経た熔融ガラスを、0.5~0.7cc採取し、浮上成形用の鋳型(熔融ガラスを受ける凹部が多孔質体で形成され、多孔質体を通して凹部表面からガスが噴出する構造になっている鋳型)の凹部に流し込み、凹部からガスを噴出し、凹部上の熔融ガラス塊に上向きの風圧を加え、ガラス塊を浮上状態で成形した。
[7] T450 (L)
0.5 to 0.7 cc of molten glass which has been subjected to the homogenization process when producing an optical glass sample, and a mold for floating molding (concave portion receiving the molten glass is formed of a porous body, a porous body It was poured into the recess of the mold having a structure in which the gas spouted from the surface of the recess, the gas was spouted from the recess, an upward wind pressure was applied to the molten glass block on the recess, and the glass block was formed in a floating state.
 その後、上記ガラス塊を、+100℃/時の速度で昇温し、所定の保持温度および保持時間で保持し、-30℃/時の速度で降温して、熱処理後の球状光学ガラスサンプルを得た。なお、保持温度および保持時間は、組成に応じて異なるため、それぞれの光学ガラスサンプルの酸化物組成に応じて、表6に示す温度および時間とした。 Thereafter, the temperature of the above glass gob is raised at a rate of + 100 ° C./hour, held at a predetermined holding temperature and holding time, and lowered at a rate of -30 ° C./hour to obtain a spherical optical glass sample after heat treatment. The In addition, since holding temperature and holding time change according to a composition, it was set as the temperature and time which are shown in Table 6 according to the oxide composition of each optical glass sample.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 得られた球状光学ガラスサンプルを加工して、両面が互いに平行かつ平坦に光学研磨された厚さ5mmの板状ガラス試料を準備した。このようにして得られた板状ガラス試料について、分光光度計を用いて450nmにおける外部透過率T450(L)を求めた。T450(L)の値は、大きいほど透過率に優れ、短時間の熱処理でもガラスの着色が低減されていることを意味する。 The obtained spherical optical glass sample was processed to prepare a plate-like glass sample having a thickness of 5 mm, which was optically polished on both sides parallel to each other and flat. The external transmittance T450 (L) at 450 nm of the plate-like glass sample thus obtained was determined using a spectrophotometer. The larger the value of T450 (L), the better the transmittance, and the shorter the heat treatment, the less the coloration of the glass.
[8]泡切れ
 光学ガラスサンプルを作製する際の、清澄工程を開始する前の熔融ガラス(ガラス融液)を40cc採取し、大気中で別の白金坩堝で一定時間清澄し、ガラス融液を白金坩堝中で冷却し、固化させた。この過程で、ガラス中に含まれる泡の数をカウントできる程度に着色を低減した。次に固化したガラスを白金坩堝から取り出した。
[8] Bubble breakage 40 cc of molten glass (glass melt) before starting the clarifying process in preparing an optical glass sample is collected and clarified in another platinum crucible in the atmosphere for a fixed time, and the glass melt is It was cooled in a platinum crucible and solidified. In this process, the color was reduced to such an extent that the number of bubbles contained in the glass could be counted. The solidified glass was then removed from the platinum crucible.
 このようにして得られた測定用サンプルについて、光学顕微鏡(倍率20~100倍)を用いてガラス内部を拡大観察(100倍)し、ガラス中に含まれる泡の数をカウントした。清澄時間の異なる測定用サンプルのそれぞれについて同様の観察を行い、ガラス中に残留する泡数が100個/kg以下になる測定用試料の清澄時間を、泡切れの時間として評価した。泡切れ時間は、短いほど清澄性に優れている。結果を表7に示す。 With respect to the measurement sample obtained in this manner, the inside of the glass was subjected to magnified observation (100 ×) using an optical microscope (magnification: 20 to 100 ×), and the number of bubbles contained in the glass was counted. The same observation was carried out for each of the measurement samples having different clarifying times, and the clarifying time of the measurement sample, in which the number of bubbles remaining in the glass was 100 / kg or less, was evaluated as the defoaming time. The shorter the defoaming time, the better the clarity. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、本発明の製造方法によれば、βOHが高い光学ガラスサンプルが得られることが確認された(試料13~試料16、試料24~試料26、試料33~試料35、試料43~試料46、試料53~試料56、試料63~試料66、試料72、試料73、および試料82~試料84)。すなわち、本発明の製造方法により作製された光学ガラスサンプルは、ガラス中の水分量が高いことが予想される。 As shown in Table 7, according to the manufacturing method of the present invention, it was confirmed that an optical glass sample having a high βOH can be obtained (Sample 13 to Sample 16, Sample 24 to Sample 26, Sample 33 to Sample 35, Sample 43 to sample 46, sample 53 to sample 56, sample 63 to sample 66, sample 72, sample 73, and sample 82 to sample 84). That is, it is expected that the optical glass sample produced by the production method of the present invention has a high water content in the glass.
 また、表7に示されるように、本発明の製造方法により作製された光学ガラスサンプルにおいて、熱処理後の光学ガラスサンプルの透過率を示す値であるT450(H)、T450(L)の値は大きく、またλ70(またはλ80)の値は小さい。これらの結果から、本発明の製造方法により作製された光学ガラスサンプルは、熱処理後において、優れた透過率を有していることが確認された。 In addition, as shown in Table 7, in the optical glass sample produced by the production method of the present invention, the values of T450 (H) and T450 (L), which are values indicating the transmittance of the optical glass sample after heat treatment, are It is large and the value of λ70 (or λ80) is small. From these results, it was confirmed that the optical glass sample produced by the production method of the present invention has excellent transmittance after heat treatment.
 特に、T450(L)の結果に示されるように、本発明の製造方法により作製された光学ガラスサンプルの場合には、短時間の熱処理で劇的に透過率が改善され、測定サンプルの肉厚を考慮すると、その透過率は100時間熱処理後の透過率(T450(H)の値)と同等であることが確認された。 In particular, as shown in the result of T450 (L), in the case of the optical glass sample produced by the production method of the present invention, the transmittance is dramatically improved by a short time heat treatment, and the thickness of the measurement sample is In view of the above, it was confirmed that the transmittance was equivalent to the transmittance (the value of T450 (H)) after the heat treatment for 100 hours.
 また、本発明の製造方法により作製された光学ガラスサンプルは、Ptの含有量も非常に低減されていることが確認された。この結果は、本発明の製造方法により作製された光学ガラスサンプルにおいて、Ptイオンによる透過率劣化が防止されていると考えられ、本発明の製造方法により作製された光学ガラスサンプルが優れた透過率を有することとも一致する。 Moreover, it was confirmed that the optical glass sample produced by the production method of the present invention also has a significantly reduced Pt content. This result is considered to be that the optical glass sample produced by the production method of the present invention is prevented from deterioration of the transmittance due to Pt ions, and the optical glass sample produced by the production method of the present invention is excellent in transmittance It agrees with having.
 さらに、本発明の製造方法によれば、清澄性を大きく改善することができ、短時間の清澄で、泡の少ない均一なガラスを得ることができることが確認された。 Furthermore, according to the production method of the present invention, it was confirmed that the clarity can be greatly improved, and it is possible to obtain a uniform glass with less bubbles by a short time of clarification.
 一方、本発明の比較例に相当する製造方法により作製された光学ガラスサンプルは、熔融ガラス中の水分量を高める操作が行われていないため、本発明の製造方法により同じ酸化物組成で作製された光学ガラスサンプルに比べて、βOHの値が小さいことが確認された(試料11、試料12、試料21~試料23、試料31、試料32、試料41、試料42、試料51、試料52、試料61、試料62、試料71、および試料81)。すなわち、本発明の比較例に相当する製造方法により作製された光学ガラスサンプルは、本発明の製造方法により作製された光学ガラスサンプルに比べて、ガラス中の水分量が低いことが予想される。 On the other hand, the optical glass sample produced by the production method corresponding to the comparative example of the present invention is produced with the same oxide composition by the production method of the present invention because the operation to increase the water content in the molten glass is not performed. It was confirmed that the value of βOH is smaller than that of the optical glass sample (Sample 11, Sample 12, Sample 21 to Sample 23, Sample 31, Sample 32, Sample 41, Sample 42, Sample 51, Sample 52, Sample 61, sample 62, sample 71, and sample 81). That is, it is expected that the optical glass sample produced by the production method corresponding to the comparative example of the present invention has a lower water content in the glass than the optical glass sample produced by the production method of the present invention.
 このような、本発明の比較例に相当する製造方法により作製された光学ガラスサンプルは、本発明の製造方法により同じ酸化物組成で作製された光学ガラスサンプルに比べて、熱処理後のガラスの透過率が低く、Ptの溶け込み量が多く、泡切れに要する時間も長くなることが確認された。 Such an optical glass sample produced by the production method corresponding to the comparative example of the present invention has a transmission of glass after heat treatment compared to an optical glass sample produced with the same oxide composition according to the production method of the present invention It was confirmed that the rate was low, the amount of dissolved Pt was large, and the time required for defoaming was also increased.
 このように、本発明の製造方法によれば、熱処理後において優れた透過率を有する光学ガラスが得られる。また、本発明の製造方法によれば、清澄工程や熱処理工程に要する時間を短縮しても良好な光学ガラスが得られるため、生産コストを大幅に低減でき、生産性も向上する。 Thus, according to the manufacturing method of the present invention, an optical glass having excellent transmittance after heat treatment can be obtained. Further, according to the manufacturing method of the present invention, since a good optical glass can be obtained even if the time required for the clarification step and the heat treatment step is shortened, the production cost can be significantly reduced and the productivity is also improved.
(実施例2)
 ガラス原料として、バッチ原料Vに酸化アンチモン(Sb)を添加した以外は、実施例1の試料51~試料56と同様の条件で光学ガラスサンプルを作製した(試料51a~試料56a)。酸化アンチモンの添加量を表8に示す。なお、単位は、バッチ原料100質量%に対するppmである。
(Example 2)
Optical glass samples were produced under the same conditions as Samples 51 to 56 of Example 1 except that antimony oxide (Sb 2 O 3 ) was added to batch raw material V as a glass raw material (Samples 51a to 56a). The amount of antimony oxide added is shown in Table 8. In addition, a unit is ppm with respect to 100 mass% of batch raw materials.
[光学ガラスの評価]
 得られた光学ガラスサンプル(試料51a~試料56a)の各種物性は、実施例1の場合と同様の条件により測定、評価した。
[Evaluation of optical glass]
Various physical properties of the obtained optical glass samples (Samples 51a to 56a) were measured and evaluated under the same conditions as in Example 1.
 その結果、屈折率nd、アッベ数νdおよびガラス転移温度Tgは、実施例1の酸化物組成Vに示す値と実質的に同じであった。その他の結果を表8に示す。 As a result, the refractive index nd, the Abbe number dd, and the glass transition temperature Tg were substantially the same as the values shown in the oxide composition V of Example 1. Other results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示されるように、ガラス中の酸化アンチモンの有無によっては、ガラスのβOHの値は実質的に変化しないことが確認された(試料51~試料56および試料51a~試料56a)。 As shown in Table 8, it was confirmed that the value of βOH of glass does not substantially change depending on the presence or absence of antimony oxide in the glass (Samples 51 to 56 and Samples 51a to 56a).
 また、酸化アンチモン添加したバッチ原料を用いた場合であっても、本発明の製造方法により作製された光学ガラスサンプルでは、熱処理後において優れた透過率が確認され、ガラス中のPtの溶け込み量を低減されていることが確認された(試料53a~試料56a)。 In addition, even in the case of using a batch material to which antimony oxide is added, in the optical glass sample manufactured by the manufacturing method of the present invention, excellent transmittance is confirmed after heat treatment, and the dissolution amount of Pt in the glass is It was confirmed that it was reduced (Samples 53a to 56a).
(実施例3)
 実施例1の試料55と同様の方法で作製された熔融ガラス(流出工程を開始する直前の熔融ガラス)を、大気雰囲気中で、流出し(流出工程)、鋳型に流し込んで成形し(成形工程)、-100℃/時の降温速度でアニール(アニール工程)し、光学ガラスサンプル(試料55b)を作製した。
(Example 3)
The molten glass (molten glass just before starting the outflow step) manufactured by the same method as the sample 55 of Example 1 is allowed to flow out (outflow step) in the atmosphere, and cast into a mold to be formed (forming step) ), And annealing (annealing step) at a temperature decrease rate of −100 ° C./hour to produce an optical glass sample (sample 55 b).
 次に、上記流出工程および成形工程を行う際の各処理雰囲気を、大気雰囲気に換えて酸化性雰囲気(空気に酸素を付加し、酸素分圧を高めた雰囲気)とした以外は、試料55bと同様の方法で、別の光学ガラスサンプル(試料55c)を作製した。 Next, each treatment atmosphere at the time of performing the outflow step and the forming step is changed to the air atmosphere to form an oxidizing atmosphere (an atmosphere in which oxygen is added to air to increase the oxygen partial pressure). Another optical glass sample (sample 55c) was produced in the same manner.
 なお、上記酸化性雰囲気は、次のようにして調整した。熔融ガラスを流出、成形するゾーンをカバーで覆い、カバー内に酸素ガスを供給し、カバー内、すなわち、熔融ガラスを流出、成形する雰囲気の酸素分圧を大気における酸素分圧よりも高めた。熔融ガラスを流出、成形する雰囲気内の酸素の体積比は概ね30%~40%であった。 The oxidizing atmosphere was adjusted as follows. The molten glass was covered with a cover at a zone where the molten glass flowed out and formed, oxygen gas was supplied into the cover, and the oxygen partial pressure in the atmosphere, ie, the atmosphere where the molten glass flowed out and formed, was higher than the oxygen partial pressure in the atmosphere. The volume ratio of oxygen in the atmosphere for flowing out and forming the molten glass was approximately 30% to 40%.
 得られた光学ガラスサンプル(試料55bおよび試料55c)の各種物性は、実施例1の場合と同様の条件により測定、評価した。 Various physical properties of the obtained optical glass samples (Samples 55b and 55c) were measured and evaluated under the same conditions as in Example 1.
 その結果、屈折率nd、アッベ数νdおよびガラス転移温度Tgは、実施例1の酸化物組成Vに示す値と実質的に同じであった。また、βOHは1.31mm-1であった。 As a result, the refractive index nd, the Abbe number dd, and the glass transition temperature Tg were substantially the same as the values shown in the oxide composition V of Example 1. Further, βOH was 1.31 mm −1 .
 さらに、試料55bおよび試料55cについて、以下の測定を行った。
[9]分光透過率
 光学ガラスサンプルを加工して、両面が互いに平行かつ平坦に光学研磨された同じ厚みの板状ガラス試料を準備した。この板状ガラス試料の研磨面(板厚方向)に垂直方向から光を入射して、波長280nm~700nmの範囲で表面反射損失を含む分光透過率を、分光光度計を用いて測定した。結果を図4に示す。図4の横軸は波長、縦軸は外部透過率である。
Furthermore, the following measurements were performed on sample 55b and sample 55c.
[9] Spectral Transmittance The optical glass sample was processed to prepare a plate-like glass sample of the same thickness optically polished on both sides parallel to each other and flat. Light was perpendicularly incident on the polished surface (plate thickness direction) of this plate-like glass sample, and the spectral transmittance including surface reflection loss was measured using a spectrophotometer in the wavelength range of 280 nm to 700 nm. The results are shown in FIG. The horizontal axis in FIG. 4 is the wavelength, and the vertical axis is the external transmittance.
 図4に示されるように、熔融ガラスを流出、成形する際の雰囲気の酸素分圧を、大気における酸素分圧より高めて作製した試料55cは、熔融ガラスを大気雰囲気中で流出、成形して作製した試料55bと比較して、可視域における透過率が高く、着色が少ないことが確認された。 As shown in FIG. 4, the sample 55c produced by setting the oxygen partial pressure of the atmosphere at the time of flowing out and forming the molten glass higher than the oxygen partial pressure in the atmosphere flows out and forms the molten glass in the atmosphere. It was confirmed that the transmittance in the visible range is high and the color is low compared to the sample 55b produced.
(実施例4)
 実施例1~3で作製した光学ガラスサンプル(ガラスブロック)を分割し、必要に応じて、さらに加工を施し、各光学ガラスに対応するプレス成形用ガラス素材を得た。
(Example 4)
The optical glass samples (glass blocks) produced in Examples 1 to 3 were divided, and further processed if necessary, to obtain glass materials for press molding corresponding to the respective optical glasses.
 このようにして得たプレス成形用ガラス素材を、大気中で加熱、軟化してプレス成形し、レンズ形状に近似する光学素子ブランクを作製した。 The glass material for press molding obtained in this manner was heated, softened and pressed in the atmosphere to produce an optical element blank having a lens shape.
 次に、得られた光学素子ブランクを、大気中でアニールし、さらに研削、研磨等の加工を行い、実施例1~3の各試料に対応したレンズ、プリズム等のガラス製光学素子を作製した。 Next, the obtained optical element blank was annealed in the atmosphere, and was further processed by grinding, polishing and the like to produce glass optical elements such as lenses and prisms corresponding to the samples of Examples 1 to 3. .
 なお、アニール時の降温速度は、光学素子の屈折率が所望の値になるように設定した。 In addition, the temperature-fall rate at the time of annealing was set so that the refractive index of an optical element might turn into a desired value.
 また、ガラスのプレス成形方法、レンズブランクのアニール方法、研削方法、研磨方法には、いずれも公知の方法を用いた。 In addition, as the press forming method of glass, the annealing method of lens blank, the grinding method, and the polishing method, all known methods were used.
 本発明の製造方法により作製された光学ガラスサンプル(試料13~試料16、試料24~試料26、試料33~試料35、試料43~試料46、試料53~試料56、試料63~試料66、試料72、試料73、試料82~試料84、試料53a~試料56a、試料55bおよび試料55c)を用いて作製された光学素子は、熔融ガラスの成形から光学素子ブランクの加工までの間に、大気等の酸化性雰囲気中で熱処理されることにより、着色が大幅に低減されていることが確認された。 Optical glass sample (Sample 13 to Sample 16, Sample 24 to Sample 26, Sample 33 to Sample 35, Sample 43 to Sample 46, Sample 53 to Sample 56, Sample 63 to Sample 66, Samples prepared by the manufacturing method of the present invention 72, Sample 73, Sample 82 to Sample 84, Sample 53a to Sample 56a, Sample 55b and Sample 55c), the optical element produced in the process from forming of the molten glass to processing of the optical element blank, etc. It was confirmed that the coloring was significantly reduced by the heat treatment in the oxidizing atmosphere of
 一方、本発明の比較例に相当する製造方法により作製された光学ガラスサンプルガラス(試料11、試料12、試料21~試料23、試料31、試料32、試料41、試料42、試料51、試料52、試料61、試料62、試料71、試料81、試料51bおよび試料52b)を用いて作製された光学素子は、熔融ガラスの成形から光学素子ブランクの加工までの間に、大気等の酸化性雰囲気中での熱処理を経ていても、着色が残り、着色の低減効果が低いことが確認された。 On the other hand, optical glass sample glass (Sample 11, Sample 12, Sample 21 to Sample 23, Sample 31, Sample 32, Sample 41, Sample 42, Sample 51, Sample 52) manufactured by the manufacturing method corresponding to the comparative example of the present invention. The optical element manufactured using the sample 61, the sample 62, the sample 71, the sample 81, the sample 51b, and the sample 52b) has an oxidizing atmosphere such as the atmosphere between molding of the molten glass and processing of the optical element blank. Even after the heat treatment in, it was confirmed that the coloring remained and the reduction effect of the coloring was low.
 次に、本発明の別実施形態に係る実施例について説明する。
(実施例A1~A6および実施例B1~B6)
 バッチ原料を粗熔解してカレットを作製し、カレットを白金製坩堝に入れて加熱、熔融、成形して、表1に示すNo.1~No.4の組成の各光学ガラスを以下の手順で作製した。まず最初に、リン酸塩、正リン酸、酸化物、炭酸塩、硝酸塩、硫酸塩を秤量し、十分混合して調合した原料(バッチ原料)とした。次に、このバッチ原料を石英製容器に入れて、No.1およびNo.2のガラスについては液相温度LT~1400℃の範囲で加熱し、No.3およびNo.4のガラスについては液相温度LT~1300℃の範囲で加熱することで、熔融ガラスとし、この熔融ガラスを水中に滴下してカレット原料を作製した。
Next, an example according to another embodiment of the present invention will be described.
(Examples A1 to A6 and Examples B1 to B6)
The raw materials of the batch are roughly melted to prepare cullet, and the cullet is put into a platinum crucible, heated, melted and shaped. 1 to No. Each optical glass of the composition of 4 was produced in the following procedures. First, phosphate, orthophosphoric acid, oxides, carbonates, nitrates and sulfates were weighed and thoroughly mixed to prepare a raw material (batch raw material). Next, this batch raw material was put into a container made of quartz. 1 and No. The glass No. 2 was heated in the range of the liquidus temperature LT to 1400 ° C. 3 and No. The glass No. 4 was heated at a liquidus temperature LT to 1300 ° C. to form a molten glass, and this molten glass was dropped into water to prepare a cullet raw material.
 次に、No.1およびNo.2のガラスについては、カレット原料を乾燥させた後、カレット原料を再調合し、白金製坩堝(熔融容器)に投入して白金製の蓋をした。この状態で、白金製坩堝内のカレット原料を、当該カレット原料のガラス組成の液相温度LT~1300℃の範囲内で加熱し、カレット原料を熔解して熔融ガラス化(熔解工程)した。さらに熔融ガラスを液相温度LT~1400℃の範囲内にて昇温して清澄(清澄工程)した後、液相温度LT~1300℃の範囲内にて降温して撹拌、均質化(均質化工程)し、清澄、均質化した熔融ガラスをガラス流出パイプから流出させて鋳型に鋳込むことで、ガラスブロック(光学ガラス用素材)を成形した。 Next, No. 1 and No. As for the glass of No. 2, after the cullet raw material was dried, the cullet raw material was reconstituted, and was put into a platinum crucible (fusion container) and a platinum lid was placed. In this state, the cullet raw material in the platinum crucible was heated within the range of the liquidus temperature LT to 1300 ° C. of the glass composition of the cullet raw material to melt the cullet raw material and melt vitrify (melting step). Furthermore, after raising the temperature of the molten glass within the range of the liquidus temperature LT to 1400 ° C. to clarify (clearing step), the temperature of the liquidus temperature LT to 1300 ° C. lowers and stirs and homogenizes (homogenization) Step), the clarified and homogenized molten glass is drained from the glass outflow pipe and cast in a mold to form a glass block (material for optical glass).
 また、No.3およびNo.4のガラスについては、カレット原料を乾燥させた後、カレット原料を再調合し、白金製坩堝(熔融容器)に投入して白金製の蓋をした。この状態で、白金製坩堝内のカレット原料を、当該カレット原料のガラス組成の液相温度LT~1250℃の範囲内で加熱し、カレット原料を熔解して熔融ガラス化(熔解工程)した。さらに熔融ガラスを液相温度LT~1300℃の範囲内にて昇温して清澄(清澄工程)した後、液相温度LT~1250℃の範囲内にて降温して撹拌、均質化(均質化工程)し、清澄、均質化した熔融ガラスをガラス流出パイプから流出させて鋳型に鋳込むことで、ガラスブロック(光学ガラス用素材)を成形した。 Also, no. 3 and No. With regard to the glass of No. 4, after the cullet raw material was dried, the cullet raw material was reconstituted, and was put into a platinum crucible (fusion container) and a platinum lid was placed. In this state, the cullet raw material in the platinum crucible was heated within the range of the liquidus temperature LT to 1250 ° C. of the glass composition of the cullet raw material to melt the cullet raw material and melt vitrify (melting step). Furthermore, after raising the temperature of the molten glass within the range of the liquidus temperature LT to 1300 ° C. to clarify (clearing step), the temperature of the liquidus temperature LT to 1250 ° C. lowers and stirs and homogenizes (homogenization) Step), the clarified and homogenized molten glass is drained from the glass outflow pipe and cast in a mold to form a glass block (material for optical glass).
 なお、熔解工程、清澄工程、均質化工程の実施に際しては、白金製の蓋に設けた開口部から白金製パイプを白金製坩堝内へ挿入し、必要に応じてこの白金製パイプを通して水蒸気を白金製坩堝内の空間へ供給可能にした。白金製坩堝内に供給した単位時間あたりの水蒸気流量を表9および表10に示す。なお、表9および表10中に示す、水蒸気流量は常温での流量に換算した値であり、単位はリットル/分である。また、坩堝内へ水蒸気を供給しない場合は、開口部のない白金製の蓋で白金製坩堝を密閉し、熔解工程から清澄工程を経て均質化工程に至までの間、白金製坩堝内を密閉して熔解過程にあるカレット原料および熔融ガラスからの水分の蒸散を抑制した。 In addition, when performing the melting step, the clarifying step, and the homogenization step, insert a platinum pipe into the platinum crucible through the opening provided in the platinum lid, and if necessary, steam through the platinum pipe It became possible to supply the space in the cocoon. The water vapor flow rate per unit time supplied into the platinum crucible is shown in Table 9 and Table 10. The water vapor flow rate shown in Table 9 and Table 10 is a value converted to the flow rate at normal temperature, and the unit is liter / minute. Also, if steam is not supplied into the crucible, the platinum crucible is sealed with a platinum lid without an opening, and the platinum crucible is sealed from the melting process through the clarification process to the homogenization process. It controlled the transpiration of water from cullet raw material and molten glass in the process of melting.
 次にNo.1のガラスおよびNo.2ガラスからなる各ガラスブロック(光学ガラス用素材)を大気中で25℃から2時間かけて600℃まで昇温し、600℃にてアニール(熱処理)し、ガラスブロック(光学ガラス用素材)の着色を低減する操作を行った。その後、ガラスブロックを降温速度-30℃/時で常温まで冷却した。なお、No.1のガラスおよびNo.2のガラスからなる各ガラスブロックを600℃で保持した時間は1時間である。同様にNo.3のガラスおよびNo.4のガラスからなる各ガラスブロック(光学ガラス用素材)を大気中で25℃から2時間かけて570℃まで昇温し、570℃にてアニール(熱処理)し、ガラスブロック(光学ガラス用素材)の着色を低減する操作を行った。その後、ガラスブロックを降温速度-30℃/時で常温まで冷却した。なお、No.3のガラスおよびNo.4のガラスの各ガラスブロックを570℃で保持した時間は4時間30分である。 Next, No. No. 1 glass and no. The temperature of each glass block (material for optical glass) consisting of 2 glasses is raised to 600 ° C from 25 ° C over 2 hours in the atmosphere, and annealing (heat treatment) is performed at 600 ° C to form a glass block (material for optical glass) An operation to reduce the color was performed. Thereafter, the glass block was cooled to normal temperature at a temperature lowering rate of -30 ° C / hour. No. No. 1 glass and no. The time for which each glass block consisting of 2 glass was hold | maintained at 600 degreeC is 1 hour. Similarly, no. No. 3 glass and no. The temperature of each glass block (material for optical glass) consisting of 4 glasses is raised to 570 ° C. from 25 ° C. over 2 hours in the atmosphere, annealed (heat treatment) at 570 ° C., glass block (material for optical glass) An operation to reduce the coloration of Thereafter, the glass block was cooled to normal temperature at a temperature lowering rate of -30 ° C / hour. No. No. 3 glass and no. The holding time of each glass block of 4 glasses at 570 ° C. is 4 hours 30 minutes.
 アニール後、No.1およびNo.3のガラス組成のガラスブロック(光学ガラス)のβOH値、λτ80、屈折率nd、アッベ数νd、ガラス転移温度Tg、を測定した。No.1の光学ガラスについて、βOH値、T450、λτ80の値を表9に、No.3の光学ガラスについて、βOH値、T450、λτ80の値を表10に、No.1~No.4の各光学ガラスの屈折率nd、アッベ数νd、ガラス転移温度Tgを表1に示す。 After annealing, no. 1 and No. The βOH value, λτ80, refractive index nd, Abbe number dd, and glass transition temperature Tg of a glass block (optical glass) having a glass composition of 3 were measured. No. Table 9 shows the values of βOH value, T450 and λτ80 for the optical glass of No. 1. Table 10 shows the values of βOH value, T450 and λτ80 of the optical glass of No. 1 to No. The refractive index nd, the Abbe number ベ d, and the glass transition temperature Tg of each optical glass of No. 4 are shown in Table 1.
 なお、表1に示した屈折率nd、アッベ数νdの測定値は、毎時30℃の冷却速度で冷却した試料を用いて測定した値であり、液相温度LTの測定値については、試料を再加熱して、2時間保持後、室温まで冷却し、光学顕微鏡によるガラス内部の結晶析出の有無を確認し、結晶が認められない最低温度を液相温度としたものである。 The measured values of the refractive index nd and the Abbe number dd shown in Table 1 are values measured using a sample cooled at a cooling rate of 30 ° C. per hour, and the measured values of the liquidus temperature LT After reheating and holding for 2 hours, it is cooled to room temperature, and the presence or absence of crystal precipitation inside the glass is confirmed by an optical microscope, and the lowest temperature at which no crystal is observed is taken as the liquidus temperature.
 表9の実施例A1~実施例A3は白金製パイプから熔融容器内へと水蒸気を導入しないで作製した光学ガラスについてのデータ、実施例A4~実施例A6は白金製パイプから熔融容器内へと水蒸気を導入して作製した光学ガラスについてのデータである。実施例A1~実施例A3は正リン酸原料を使用するとともに熔融容器の気密性を高めることにより、熔融ガラスに水分を導入するとともに熔融容器からの水蒸気の散逸を抑制している。さらに、実施例A4~実施例A6では熔融容器内の水蒸気分圧も積極的に高めている。 Examples A1 to A3 in Table 9 are data on optical glass prepared from a platinum pipe without introducing water vapor into the melting vessel, and Examples A4 to A6 are samples from platinum pipes to the melting vessel. It is data about the optical glass produced by introducing water vapor. In Examples A1 to A3, the use of a phosphoric acid raw material and the improvement of the airtightness of the melting container introduce water into the molten glass and suppresses the dissipation of water vapor from the melting container. Furthermore, in Example A4 to Example A6, the water vapor partial pressure in the melting vessel is also positively increased.
 実施例A1~実施例A3の光学ガラスのT450、λτ80と実施例A4~実施例A6の光学ガラスとのT450、λτ80を比較すると、熔融容器内の水蒸気分圧を積極的に高めた実施例A4~実施例A6の光学ガラスのほうがβOH値も大きい。そして、後述する熱処理前後のガラスブロックの目視観察の結果から一層大幅な着色度合の低減がなされていることがわかる。 Comparing the T450 and λτ80 of the optical glass of Example A1 to Example A3 with the T450 and λτ80 of the optical glass of Example A4 to Example A6, Example A4 in which the water vapor partial pressure in the melting vessel is positively increased The optical glass of Example A6 also has a larger βOH value. Then, it is understood from the results of visual observation of the glass block before and after heat treatment described later that the degree of coloring is significantly reduced.
 また、表10の実施例B1~実施例B3は白金製パイプから熔融容器内へと水蒸気を導入しないで作製した光学ガラスについてのデータ、実施例B4~実施例B6は白金製パイプから熔融容器内へと水蒸気を導入して作製した光学ガラスについてのデータである。実施例B1~実施例B3は正リン酸原料を使用するとともに熔融容器の気密性を高めることにより、熔融ガラスに水分を導入するとともに熔融容器からの水蒸気の散逸を抑制している。さらに、実施例B4~実施例B6では熔融容器内の水蒸気分圧も積極的に高めている。 In addition, in Examples B1 to B3 of Table 10, data on optical glass prepared without introducing water vapor from a platinum pipe into a melting vessel, Examples B4 to B6 are from platinum pipes to a melting vessel It is data about the optical glass produced by introducing water vapor. In Example B1 to Example B3, by using a phosphoric acid raw material and by enhancing the airtightness of the melting vessel, water is introduced into the molten glass and the dissipation of water vapor from the melting vessel is suppressed. Furthermore, in Example B4 to Example B6, the water vapor partial pressure in the melting vessel is also positively increased.
 実施例B1~実施例B3の光学ガラスのT450、λτ80と実施例B4~実施例B6の光学ガラスとのT450、λτ80を比較すると、熔融容器内の水蒸気分圧を積極的に高めた実施例B4~実施例B6の光学ガラスのほうがβOH値も大きい。そして、後述する熱処理前後のガラスブロックの目視観察の結果から一層大幅な着色度合の低減がなされていることがわかる。 Comparing the T450 and λτ80 of the optical glass of Example B1 to Example B3 with the T450 and λτ80 of the optical glass of Example B4 to Example B6, Example B4 in which the water vapor partial pressure in the melting vessel is positively increased The optical glass of Example B6 also has a larger βOH value. Then, it is understood from the results of visual observation of the glass block before and after heat treatment described later that the degree of coloring is significantly reduced.
 以上に説明したように、No.1およびNo.3のガラス組成の光学ガラス用素材を酸化性雰囲気中で熱処理することによってその着色を大幅に低減でき、着色の少ない光学ガラスが得られた。 As described above, no. 1 and No. By heat-treating the optical glass material having the glass composition of No. 3 in an oxidizing atmosphere, the coloration thereof can be greatly reduced, and an optical glass with little coloration is obtained.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 なお、実施例A1~A6および実施例B1~B6では、熔融容器として白金製坩堝を使用したが、白金合金製坩堝、金製坩堝、金合金製坩堝を使用して光学ガラス用素材を作製し、得られた光学ガラス用素材を酸化性雰囲気中で熱処理しても、その着色を大幅に低減でき、その結果、着色の少ない光学ガラスを得ることができた。さらに、実施例A4~A6および実施例B4~B6では、蓋をした白金坩堝内にパイプを介して水蒸気を供給したが、白金坩堝内の熔融ガラス中に水蒸気を吹き込んでバブリングしても同様の効果を得ることができる。なお、作製する光学ガラスの組成を表1に示すNo.2またはNo.4のガラス組成に変更した場合も、No.1およびNo.3のガラス組成の場合と同様の結果が得られる。 In Examples A1 to A6 and Examples B1 to B6, platinum crucibles were used as the melting vessel, but materials for optical glass are manufactured using platinum alloy crucibles, gold crucibles, and gold alloy crucibles. Even when the obtained material for optical glass was heat-treated in an oxidizing atmosphere, the coloration thereof could be significantly reduced, and as a result, an optical glass with less coloration could be obtained. Furthermore, in Examples A4 to A6 and Examples B4 to B6, water vapor was supplied through a pipe into a covered platinum crucible, but similar effects may be obtained by bubbling water vapor into molten glass in the platinum crucible. You can get the effect. The composition of optical glass to be produced is shown in Table 1 2 or No. Even when the glass composition is changed to No. 4, no. 1 and No. Similar results are obtained with the glass composition of 3.
 また、実施例A4~A6、B4~B6において、白金製坩堝内へ供給した水蒸気としては、ボイラーを使用して水を沸騰させることで得られた水蒸気を使用した。しかしながら、光学ガラス用素材の作製に際しては、他の方法により得られた水蒸気も適宜利用できる。たとえば、白金製坩堝などの熔融容器を収容する耐火物製のガラス熔解炉内へ水をミスト状に噴射して水蒸気化し、ガラス熔解炉内部および熔融容器内部の雰囲気の水蒸気分圧を高めてもよい。あるいは、ポンプを用いてガラス熔解炉中に水を供給し、熔解炉内の熱により水を沸騰させることで、水蒸気化し、ガラス熔融雰囲気中の水蒸気分圧を高めてもよいし、その他の方法を用いてもよい。これらの方法を利用しても光学ガラス用素材中の含水量を高めることができる。 In Examples A4 to A6 and B4 to B6, steam obtained by boiling water using a boiler was used as steam supplied into the platinum crucible. However, when producing the material for optical glass, water vapor obtained by other methods can also be appropriately used. For example, water is sprayed in the form of a mist into a refractory glass melting furnace that accommodates a melting vessel such as a platinum crucible and steamed to increase the partial pressure of water vapor in the atmosphere inside the glass melting furnace and inside the melting vessel Good. Alternatively, water may be supplied into the glass melting furnace using a pump, and the water in the melting furnace may be boiled to vaporize the water, and the partial pressure of water vapor in the glass melting atmosphere may be increased, or other methods. May be used. The moisture content in the optical glass material can be increased also by using these methods.
(比較例A1)
 熔融容器に蓋をせず開放状態とした以外は実施例A1~A3と同様にしてガラスブロック(光学ガラス用素材)を作製した後、実施例A1~A6と同様にして熱処理を行った。しかしながら、熱処理されたガラスブロック(光学ガラス)の着色度合は、実施例A1~A6よりも大きかった。
(Comparative Example A1)
A glass block (raw material for optical glass) was produced in the same manner as in Examples A1 to A3 except that the melting vessel was not opened but in an open state, and then heat treatment was performed in the same manner as in Examples A1 to A6. However, the degree of coloring of the heat-treated glass block (optical glass) was greater than in Examples A1 to A6.
 また、ガラス組成を表1に記載のNo.1の組成の代わりにNo.2の組成とした以外は、比較例A1と同様にガラスブロック(光学ガラス用素材)を作製し、熱処理した。しかしながら、熱処理されたガラスブロック(光学ガラス)の着色度合は、実施例A1~A6よりも大きかった。 Moreover, No. 1 described in Table 1 is a glass composition. No. 1 instead of the composition of No. 1 A glass block (material for optical glass) was produced and heat-treated in the same manner as in Comparative Example A1 except that the composition of No. 2 was used. However, the degree of coloring of the heat-treated glass block (optical glass) was greater than in Examples A1 to A6.
(比較例B1)
 熔融容器に蓋をせず開放状態とした以外は実施例B1~B3と同様にしてガラスブロック(光学ガラス用素材)を作製した後、実施例B1~B6と同様にして熱処理を行った。しかしながら、熱処理されたガラスブロック(光学ガラス)の着色度合は、実施例B1~B6よりも大きかった。
(Comparative Example B1)
A glass block (material for optical glass) was produced in the same manner as in Examples B1 to B3 except that the melting vessel was not opened but in an open state, and then heat treatment was performed in the same manner as in Examples B1 to B6. However, the degree of coloring of the heat-treated glass block (optical glass) was greater than in Examples B1 to B6.
 また、ガラス組成を表1に記載のNo.3の組成の代わりにNo.4の組成とした以外は、比較例B1と同様にガラスブロック(光学ガラス用素材)を作製し、熱処理した。しかしながら、熱処理されたガラスブロック(光学ガラス)の着色度合は、実施例B1~B6よりも大きかった。 Moreover, No. 1 described in Table 1 is a glass composition. No. 3 instead of No. 3 A glass block (material for optical glass) was produced and heat-treated in the same manner as in Comparative Example B1 except that the composition No. 4 was used. However, the degree of coloring of the heat-treated glass block (optical glass) was greater than in Examples B1 to B6.
(比較例A2)
 熔融容器内に水蒸気の代わりに窒素ガスを導入した以外は実施例A4~A6と同様にしてガラスブロック(光学ガラス用素材)を作製した後、実施例A1~A6と同様にして熱処理を行った。しかしながら、熱処理したガラスブロック(光学ガラス)の着色度合は、比較例A1のガラスブロック(光学ガラス)よりも非常に大きくなった。
(Comparative Example A2)
A glass block (material for optical glass) was produced in the same manner as in Examples A4 to A6 except that nitrogen gas was introduced instead of water vapor into the melting vessel, and then heat treatment was performed in the same manner as in Examples A1 to A6. . However, the degree of coloring of the heat-treated glass block (optical glass) was much larger than that of the glass block (optical glass) of Comparative Example A1.
 また、ガラス組成を表1に記載のNo.1の組成の代わりにNo.2の組成とした以外は、比較例2と同様にガラスブロック(光学ガラス用素材)を作製し、熱処理した。しかしながら、結果は比較例A2と同様であった。 Moreover, No. 1 described in Table 1 is a glass composition. No. 1 instead of the composition of No. 1 A glass block (material for optical glass) was produced in the same manner as in Comparative Example 2 except that the composition of No. 2 was used, and was heat-treated. However, the results were similar to Comparative Example A2.
(比較例B2)
 熔融容器内に水蒸気の代わりに窒素ガスを導入した以外は実施例B4~B6と同様にしてガラスブロック(光学ガラス用素材)を作製した後、実施例B1~B6と同様にして熱処理を行った。しかしながら、熱処理したガラスブロック(光学ガラス)の着色度合は、比較例B1のガラスブロック(光学ガラス)よりも非常に大きくなった。
(Comparative Example B2)
A glass block (material for optical glass) was produced in the same manner as in Examples B4 to B6 except that nitrogen gas was introduced instead of water vapor into the melting vessel, and then heat treatment was performed in the same manner as in Examples B1 to B6. . However, the coloring degree of the heat treated glass block (optical glass) was much larger than the glass block (optical glass) of Comparative Example B1.
 また、ガラス組成を表1に記載のNo.3の組成の代わりにNo.4の組成とした以外は、比較例B2と同様にガラスブロック(光学ガラス用素材)を作製し、熱処理した。しかしながら、結果は比較例B2と同様であった。 Moreover, No. 1 described in Table 1 is a glass composition. No. 3 instead of No. 3 A glass block (material for optical glass) was produced and heat-treated in the same manner as in Comparative Example B2, except that the composition No. 4 was used. However, the results were similar to Comparative Example B2.
(比較例3)
 熔融容器内に水蒸気の代わりに一酸化炭素ガスなどの還元性ガスを導入した以外は実施例A4~A6と同様にしてガラスブロック(光学ガラス用素材)を作製した後、実施例A1~A6と同様にして熱処理を行った。しかしながら、熱処理したガラスブロック(光学ガラス)の着色度合は、比較例1のガラスブロック(光学ガラス)よりも非常に大きくなった。
(Comparative example 3)
A glass block (material for optical glass) is produced in the same manner as in Examples A4 to A6 except that a reducing gas such as carbon monoxide gas is introduced into the melting vessel in place of water vapor, and then Examples A1 to A6 and Heat treatment was performed in the same manner. However, the coloring degree of the heat-treated glass block (optical glass) was much larger than that of the glass block (optical glass) of Comparative Example 1.
 なお、還元性ガスの濃度を高くすると還元されたガラス成分が白金坩堝と合金化し、坩堝の破壊が起こる。これは、ガラス組成を表1に記載のNo.2~No.4の組成に変更した場合ついても同様である。 When the concentration of the reducing gas is increased, the reduced glass component is alloyed with the platinum crucible and breakage of the crucible occurs. This corresponds to No. 1 described in Table 1 for the glass composition. 2 to No. The same applies to the case of changing to the composition of 4.
(熱処理前後におけるガラスブロックの着色度合の観察結果の詳細)
 表11に、各実施例および比較例で作製したガラスブロックの熱処理前後の着色度合の観察結果を示す。なお、着色度合は、白色の用紙上に、平面形状が略円形状のガラスブロックを配置して、室内光下にて目視観察することにより評価した。なお、観察に用いたいずれの実施例および比較例のガラスブロックも厚みはほぼ同じである。また、表11中に示す透明度の評価基準は以下の通りである。A:ガラスブロック(光学ガラス)が薄く着色しているものの、ガラスブロック(光学ガラス)の下方に位置する用紙の白さも十分に認識できる程に透明度が高い(高透明度)。B:ガラスブロック(光学ガラス)が着色しているが、ガラスブロック(光学ガラス)の下方に位置する用紙は十分に認識できる程度の透明度はある(中透明度)。C:ガラスブロック(光学ガラス)が濃く着色しており、ガラスブロック(光学ガラス)の下方に位置する用紙が僅かに認識できる程度の低い透明度しかない(低透明度)。D:ガラスブロック(光学ガラス)は完全に不透明であり、ガラスブロック(光学ガラス)の下方に位置する用紙の存在は全く認識できない(不透明)。
(Details of the observation result of the degree of coloring of the glass block before and after heat treatment)
In Table 11, the observation result of the coloring degree before and behind heat processing of the glass block produced by each Example and the comparative example is shown. The degree of coloring was evaluated by disposing a glass block having a substantially circular planar shape on a white paper and visually observing it under room light. In addition, the thickness of the glass block of any Example used for observation and a comparative example is substantially the same. Moreover, the evaluation criteria of the transparency shown in Table 11 are as follows. A: Although the glass block (optical glass) is lightly colored, the transparency is high (high transparency) so that the whiteness of the sheet located below the glass block (optical glass) can be sufficiently recognized. B: The glass block (optical glass) is colored, but the sheet positioned below the glass block (optical glass) has sufficient transparency (medium transparency). C: The glass block (optical glass) is strongly colored and there is only low transparency (low transparency) to which the sheet located below the glass block (optical glass) is slightly recognizable. D: The glass block (optical glass) is completely opaque, and the presence of a sheet located below the glass block (optical glass) can not be recognized at all (opaque).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(白金混入等の確認)
 実施例A1~A6、B1~B6および比較例A1、A2、B1、B2、3で用いた熱処理後のガラスブロックのうち、透明度の評価がDのものを除いてガラスブロックの内部を光学顕微鏡により観察した。その結果、いずれのガラスブロックにおいてもその内部に、混入した白金異物および析出した結晶は確認されなかった。また、実施例A1~A6、B1~B6および比較例A1、A2、B1、B2、3で用いたガラスブロック中の白金溶解量をICP発光分光法により測定したところ、いずれも2ppm未満であった。
(実施例7)
 実施例A1~A6および実施例B1~B6で作製した光学ガラスをプレス成形用ガラス素材に加工し、加熱、軟化してプレス成形し、光学素子ブランクを作製した。さらに光学素子ブランクを加工して球面レンズ、プリズムなどの光学素子を作製した。さらにレンズ表面、プリズム表面に反射防止膜をコートして最終製品を得た。表1に記載のNo.2およびNo.4の光学ガラスについても同様にしてプレス成形用ガラス素材、光学素子ブランク、光学素子を作製した。
(Confirmation of platinum contamination etc.)
Of the glass blocks after heat treatment used in Examples A1 to A6 and B1 to B6 and Comparative Examples A1, A2, B1 and B2, 3, the evaluation of the transparency is the inside of the glass block by an optical microscope except for those of D. I observed it. As a result, no platinum foreign matter and precipitated crystals were found in the interior of any glass block. In addition, the amount of dissolved platinum in the glass blocks used in Examples A1 to A6 and B1 to B6 and Comparative Examples A1, A2, B1 and B2 and 3 was measured by ICP emission spectroscopy, and all were less than 2 ppm. .
(Example 7)
The optical glasses produced in Examples A1 to A6 and Examples B1 to B6 were processed into glass materials for press molding, heated, softened, and press molded to produce optical element blanks. Further, the optical element blank was processed to produce an optical element such as a spherical lens or a prism. Furthermore, the lens surface and the prism surface were coated with an antireflective film to obtain a final product. No. 1 described in Table 1 2 and No. The glass material for press molding, an optical element blank, and an optical element were similarly produced about the optical glass of 4.
 以下、総括する。
 本実施の別形態の好ましいものは、熔融ガラスを得るために、熔融容器内にてガラス原料を加熱・熔融する加熱・熔融工程と、
 前記熔融容器内の前記熔融ガラスを所定の形状に成形する成形工程とを、少なくとも経ることにより、
 ガラス成分として、TiO、Nb、WOおよびBiから選択される少なくとも1種の酸化物を含む酸化物ガラスであり、TiO、Nb、WOおよびBiの合計含有量が30mol%以上である光学ガラス用素材を製造し、
 前記加熱・熔融工程において、前記熔融容器内に水分を供給することを特徴とする光学ガラス用素材の製造方法である。
The following is a summary.
The preferable thing of another form of this embodiment is a heating and melting process of heating and melting a glass material in a melting vessel in order to obtain a molten glass,
By at least a forming step of forming the molten glass in the melting container into a predetermined shape,
An oxide glass comprising at least one oxide selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 as a glass component, wherein TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 The material for optical glass which is 30 mol% or more in total content of O 3 is manufactured,
It is a manufacturing method of the material for optical glass characterized by supplying moisture in the fusion container in the above-mentioned heating and melting process.
 本実施の形態において、前記熔融容器内への水分の供給態様が、熔融ガラスの液面近傍の雰囲気中へ水蒸気を供給する第一の供給態様、熔融ガラス中に水蒸気をバブリングしながら供給する第二の供給態様、および、第一の供給態様と第二の供給態様とを組み合わせた第三の供給態様、から選択されるいずれかであることが好ましい。 In the present embodiment, the manner of supplying water into the melting vessel is a first supplying manner of supplying water vapor into the atmosphere near the liquid surface of the molten glass, and a method of supplying water vapor while bubbling water vapor into the molten glass It is preferable that it is any selected from the 2nd supply aspect and the 3rd supply aspect which combined the 1st supply aspect and the 2nd supply aspect.
 本実施の形態において、前記ガラス原料中に、リン酸成分が含まれることが好ましい。 In the present embodiment, the glass material preferably contains a phosphoric acid component.
 本実施の別形態の好ましいものは、熔融ガラスを得るために、熔融容器内にてガラス原料を加熱・熔融する加熱・熔融工程と、
 前記熔融容器内の前記熔融ガラスを所定の形状に成形する成形工程とを、少なくとも経ることにより、
 ガラス成分として、TiO、Nb、WOおよびBiから選択される少なくとも1種の酸化物を含む酸化物ガラスであり、TiO、Nb、WOおよびBiの合計含有量が30mol%以上である光学ガラス用素材を製造し、
 前記ガラス原料が水分を含むとともに、
 前記加熱・熔融工程において、前記熔融容器が略密閉されることを特徴とする光学ガラス用素材の製造方法である。
The preferable thing of another form of this embodiment is a heating and melting process of heating and melting a glass material in a melting vessel in order to obtain a molten glass,
By at least a forming step of forming the molten glass in the melting container into a predetermined shape,
An oxide glass comprising at least one oxide selected from TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 as a glass component, wherein TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 The material for optical glass which is 30 mol% or more in total content of O 3 is manufactured,
While the said glass-making feedstock contains water | moisture content,
In the heating and melting step, the melting vessel is substantially sealed.
 本実施の形態において、前記ガラス原料中に、リン酸成分が含まれることが好ましい。 In the present embodiment, the glass material preferably contains a phosphoric acid component.
 本実施の形態において、前記光学ガラス用素材がさらにPを含み、かつ、
 前記光学ガラス用素材に含まれるPの含有量が、10mol%~35mol%の範囲内であることが好ましい。
In the present embodiment, the optical glass material further includes P 2 O 5 , and
The content of P 2 O 5 contained in the material for optical glass is preferably in the range of 10 mol% to 35 mol%.
 本実施の形態において、前記熔融容器を構成する材料が、貴金属および貴金属合金から選択される少なくとも1種の金属材料であることが好ましい。 In the present embodiment, the material constituting the melting vessel is preferably at least one metal material selected from noble metals and noble metal alloys.
 さらに別の実施の形態の好ましいものは、上記いずれか1つに記載の光学ガラス用素材の製造方法により光学ガラス用素材を作製し、前記光学ガラス用素材を酸化性雰囲気中で熱処理する熱処理工程を少なくとも経て、屈折率ndが1.9以上である光学ガラスを作製することを特徴とする光学ガラスの製造方法である。 In still another preferable embodiment of the present invention, a material for optical glass is produced by the method for producing a material for optical glass according to any one of the above, and a heat treatment step of heat treating the material for optical glass in an oxidizing atmosphere The optical glass manufacturing method is characterized in that an optical glass having a refractive index nd of at least 1.9 is produced.
 本実施の形態において、前記光学ガラスのλτ80が、下式(4)を満たすように前記熱処理工程を行うことが好ましい。
 λτ80<aX+b ・・・(4)
〔式(4)中、λτ80は、前記光学ガラスに対してその厚み方向と平行に光を入射した際の波長280~700nmの範囲における内部透過率を測定した後、当該測定された内部透過率に基づいて前記光学ガラスの厚みが10mmであると仮定して計算した内部透過率が、80%となる波長(nm)を表し、aは、定数(1.8359nm/mol%)を表し、bは、定数(351.06nm)を表し、Xは、TiO、Nb、WOおよびBiの合計含有量(mol%)を表す。〕
In the present embodiment, it is preferable to perform the heat treatment step such that λτ 80 of the optical glass satisfies the following expression (4).
λτ80 <aX + b (4)
[In the formula (4), λτ80 is the internal transmittance measured in a wavelength range of 280 to 700 nm when light is incident on the optical glass in parallel with its thickness direction, and then the measured internal transmittance Represents the wavelength (nm) at which the internal transmittance calculated based on the assumption that the thickness of the optical glass is 10 mm is 80%, a represents a constant (1.8359 nm / mol%), b Represents a constant (351.06 nm), and X represents the total content (mol%) of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 . ]
 さらに別の実施の形態の好ましいものは、上記いずれか1つに記載の光学ガラス用素材の製造方法により光学ガラス用素材を作製し、前記光学ガラス用素材を酸化性雰囲気中で熱処理する熱処理工程を少なくとも経て、屈折率がndが1.9以上である光学ガラスからなるプレス成形用ガラス素材を作製することを特徴とするプレス成形用ガラス素材の製造方法である。 In still another preferable embodiment of the present invention, a material for optical glass is produced by the method for producing a material for optical glass according to any one of the above, and a heat treatment step of heat treating the material for optical glass in an oxidizing atmosphere A method of manufacturing a glass material for press molding comprising: manufacturing a glass material for press molding made of optical glass having a refractive index nd of 1.9 or more.
 本実施の形態において、前記光学ガラスのλτ80が、下式(4)を満たすように前記熱処理工程を行うことが好ましい。
 λτ80<aX+b ・・・(4)
〔式(4)中、λτ80は、前記光学ガラスに対してその厚み方向と平行に光を入射した際の波長280~700nmの範囲における内部透過率を測定した後、当該測定された内部透過率に基づいて前記光学ガラスの厚みが10mmであると仮定して計算した内部透過率が、80%となる波長(nm)を表し、aは、定数(1.8359nm/mol%)を表し、bは、定数(351.06nm)を表し、Xは、TiO、Nb、WOおよびBiの合計含有量(mol%)を表す。〕
In the present embodiment, it is preferable to perform the heat treatment step such that λτ 80 of the optical glass satisfies the following expression (4).
λτ80 <aX + b (4)
[In the formula (4), λτ80 is the internal transmittance measured in a wavelength range of 280 to 700 nm when light is incident on the optical glass in parallel with its thickness direction, and then the measured internal transmittance Represents the wavelength (nm) at which the internal transmittance calculated based on the assumption that the thickness of the optical glass is 10 mm is 80%, a represents a constant (1.8359 nm / mol%), b Represents a constant (351.06 nm), and X represents the total content (mol%) of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 . ]
 さらに別の実施の形態の好ましいものは、上記いずれか1つに記載の光学ガラス用素材の製造方法により光学ガラス用素材を作製し、前記光学ガラス用素材を酸化性雰囲気中で熱処理する熱処理工程を少なくとも経て、屈折率がndが1.9以上である光学ガラスからなる光学素子を作製することを特徴とする光学素子の製造方法である。 In still another preferable embodiment of the present invention, a material for optical glass is produced by the method for producing a material for optical glass according to any one of the above, and a heat treatment step of heat treating the material for optical glass in an oxidizing atmosphere Manufacturing an optical element made of an optical glass having a refractive index nd of 1.9 or more.
 本実施の形態において、前記光学ガラスのλτ80が、下式(4)を満たすように前記熱処理工程を行うことが好ましい。
 λτ80<aX+b ・・・(4)
〔式(4)中、λτ80は、前記光学ガラスに対してその厚み方向と平行に光を入射した際の波長280~700nmの範囲における内部透過率を測定した後、当該測定された内部透過率に基づいて前記光学ガラスの厚みが10mmであると仮定して計算した内部透過率が、80%となる波長(nm)を表し、aは、定数(1.8359nm/mol%)を表し、bは、定数(351.06nm)を表し、Xは、TiO、Nb、WOおよびBiの合計含有量(mol%)を表す。〕
In the present embodiment, it is preferable to perform the heat treatment step such that λτ 80 of the optical glass satisfies the following expression (4).
λτ80 <aX + b (4)
[In the formula (4), λτ80 is the internal transmittance measured in a wavelength range of 280 to 700 nm when light is incident on the optical glass in parallel with its thickness direction, and then the measured internal transmittance Represents the wavelength (nm) at which the internal transmittance calculated based on the assumption that the thickness of the optical glass is 10 mm is 80%, a represents a constant (1.8359 nm / mol%), b Represents a constant (351.06 nm), and X represents the total content (mol%) of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 . ]

Claims (10)

  1.  TiO、Nb、WOおよびBiの少なくとも一種以上の成分を含むガラス原料を熔融容器内にて加熱、熔融し、熔融ガラスを得る熔融工程(i)において、熔融ガラス中の水分量を高める操作を行うガラスの製造方法。 Glass raw materials containing at least one or more components of TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 are heated and melted in a melting container to obtain molten glass, and in the melting step (i) A method of producing glass, which performs an operation to increase the amount of water.
  2.  前記ガラス原料が、TiO、Nb、WOおよびBiを合計で20モル%以上含む請求項1に記載のガラスの製造方法。 The glass raw material, TiO 2, Nb 2 O 5 , a method of manufacturing glass according to claim 1 comprising WO 3 and Bi 2 O 3 in total 20 mol% or more.
  3.  前記熔融ガラス中の水分量を高める操作が、熔融雰囲気に水蒸気を付加する処理および熔融物内に水蒸気を含むガスをバブリングする処理の少なくともいずれか一方により行われる請求項1または2に記載のガラスの製造方法。 The glass according to claim 1 or 2, wherein the operation of increasing the water content in the molten glass is performed by at least one of a treatment of adding water vapor to the melting atmosphere and a treatment of bubbling a gas containing water vapor in the melt. Manufacturing method.
  4.  前記熔融容器が金属材料からなる請求項1~3のいずれかに記載のガラスの製造方法。 The method for producing glass according to any one of claims 1 to 3, wherein the melting vessel is made of a metal material.
  5.  前記熔融工程(i)における熔融容器内の酸素分圧が、大気中の酸素分圧よりも低い請求項1~4のいずれかに記載のガラスの製造方法。 The method according to any one of claims 1 to 4, wherein the partial pressure of oxygen in the melting vessel in the melting step (i) is lower than the partial pressure of oxygen in the atmosphere.
  6.  前記熔融ガラスを前記熔融容器外に流出する工程(ii)、
     前記熔融ガラスを成形する工程(iii)をさらに有し、
     前記工程(ii)および前記工程(iii)の少なくともいずれか一つの工程を酸化性雰囲気下で行う請求項1~5のいずれかに記載のガラスの製造方法。
    Draining the molten glass out of the melting vessel (ii)
    The method further includes the step (iii) of forming the molten glass,
    The method for producing glass according to any one of claims 1 to 5, wherein at least one of the step (ii) and the step (iii) is performed in an oxidizing atmosphere.
  7.  前記ガラスを熱処理する工程(iv)をさらに有し、
     前記工程(iv)を酸化性雰囲気下で行う請求項1~6のいずれかに記載のガラスの製造方法。
    Further comprising the step (iv) of heat treating the glass;
    The method for producing glass according to any one of claims 1 to 6, wherein the step (iv) is performed in an oxidizing atmosphere.
  8.  前記酸化性雰囲気が、大気雰囲気、または大気よりも酸素分圧が高い雰囲気である請求項6または7に記載のガラスの製造方法。 The method according to claim 6 or 7, wherein the oxidizing atmosphere is an air atmosphere or an atmosphere having an oxygen partial pressure higher than the air.
  9.  前記ガラスが、リン酸ガラスである請求項1~8のいずれかに記載のガラスの製造方法。 The method for producing a glass according to any one of claims 1 to 8, wherein the glass is a phosphate glass.
  10.  請求項1~9のいずれかに記載の製造方法によりガラスを製造する工程と、
     前記ガラスを、さらに成形または加工する工程と、を有する光学素子の製造方法。
    A process of producing a glass by the production method according to any one of claims 1 to 9,
    And d) further molding or processing the glass.
PCT/JP2013/067050 2012-06-22 2013-06-21 Glass and optical element production method WO2013191270A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380033009.6A CN104395247B (en) 2012-06-22 2013-06-21 The manufacture method of glass and optical element
US14/410,519 US9604872B2 (en) 2012-06-22 2013-06-21 Glass and optical element production method
KR1020147035452A KR102186021B1 (en) 2012-06-22 2013-06-21 Glass and optical element production method

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2012-141452 2012-06-22
JP2012-141453 2012-06-22
JP2012-141454 2012-06-22
JP2012141452 2012-06-22
JP2012141454 2012-06-22
JP2012141453 2012-06-22
JP2012-240954 2012-10-31
JP2012240953A JP2014024748A (en) 2012-06-22 2012-10-31 Optical glass, glass raw material for press molding, and optical element
JP2012-240953 2012-10-31
JP2012240954A JP2014024749A (en) 2012-06-22 2012-10-31 Optical glass, glass raw material for press molding, and optical element
JP2012240955 2012-10-31
JP2012-240955 2012-10-31
JP2013094501 2013-04-26
JP2013-094501 2013-04-26
JP2013-094498 2013-04-26
JP2013094498 2013-04-26

Publications (1)

Publication Number Publication Date
WO2013191270A1 true WO2013191270A1 (en) 2013-12-27

Family

ID=49768862

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/067051 WO2013191271A1 (en) 2012-06-22 2013-06-21 Glass, optical glass, glass raw material for press molding, and optical element
PCT/JP2013/067050 WO2013191270A1 (en) 2012-06-22 2013-06-21 Glass and optical element production method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067051 WO2013191271A1 (en) 2012-06-22 2013-06-21 Glass, optical glass, glass raw material for press molding, and optical element

Country Status (1)

Country Link
WO (2) WO2013191271A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9834465B2 (en) 2013-09-30 2017-12-05 Hoya Corporation Optical glass and method for producing the same
JP2020117411A (en) * 2019-01-18 2020-08-06 Hoya株式会社 Method for promoting improvement of glass transmittance, method for manufacturing glass, and glass

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6734630B2 (en) * 2015-05-12 2020-08-05 株式会社オハラ Optical glass
JP6755712B2 (en) * 2016-05-20 2020-09-16 Hoya株式会社 Manufacturing method of optical products
CN113135653B (en) * 2017-07-20 2022-11-01 Hoya株式会社 Optical glass and optical element
JP6517411B2 (en) * 2017-07-20 2019-05-22 Hoya株式会社 Optical glass and optical element
JP2023030503A (en) * 2021-08-23 2023-03-08 日本電気硝子株式会社 Method for manufacturing glass material and glass material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178638A (en) * 1991-06-26 1993-07-20 Hoya Corp Faraday rotation glass
JP2005132713A (en) * 2003-10-10 2005-05-26 Nippon Electric Glass Co Ltd Method for producing alkali-free glass and alkali-free glass
JP2010057893A (en) * 2008-08-06 2010-03-18 Nippon Electric Glass Co Ltd Sealing glass
JP2011042556A (en) * 2009-07-24 2011-03-03 Nippon Electric Glass Co Ltd Method for manufacturing optical glass
JP2011046550A (en) * 2009-08-26 2011-03-10 Nippon Electric Glass Co Ltd Method for producing sealing glass and sealing glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178638A (en) * 1991-06-26 1993-07-20 Hoya Corp Faraday rotation glass
JP2005132713A (en) * 2003-10-10 2005-05-26 Nippon Electric Glass Co Ltd Method for producing alkali-free glass and alkali-free glass
JP2010057893A (en) * 2008-08-06 2010-03-18 Nippon Electric Glass Co Ltd Sealing glass
JP2011042556A (en) * 2009-07-24 2011-03-03 Nippon Electric Glass Co Ltd Method for manufacturing optical glass
JP2011046550A (en) * 2009-08-26 2011-03-10 Nippon Electric Glass Co Ltd Method for producing sealing glass and sealing glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9834465B2 (en) 2013-09-30 2017-12-05 Hoya Corporation Optical glass and method for producing the same
JP2020117411A (en) * 2019-01-18 2020-08-06 Hoya株式会社 Method for promoting improvement of glass transmittance, method for manufacturing glass, and glass
JP7433764B2 (en) 2019-01-18 2024-02-20 Hoya株式会社 Method for promoting improvement of transmittance of glass, method for manufacturing glass, and glass

Also Published As

Publication number Publication date
WO2013191271A1 (en) 2013-12-27

Similar Documents

Publication Publication Date Title
JP6270350B2 (en) Glass and optical element manufacturing method
JP6009709B1 (en) Optical glass and manufacturing method thereof
JP7320100B2 (en) Optical glasses and optical elements
WO2013191270A1 (en) Glass and optical element production method
JP5826428B1 (en) Glass, optical glass, glass material for press molding and optical element
JP5826429B1 (en) Glass, optical glass, glass material for press molding and optical element
JP6283512B2 (en) Method for producing glass and method for producing optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147035452

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14410519

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13806170

Country of ref document: EP

Kind code of ref document: A1