WO2012096271A1 - Biological adhesive material - Google Patents

Biological adhesive material Download PDF

Info

Publication number
WO2012096271A1
WO2012096271A1 PCT/JP2012/050307 JP2012050307W WO2012096271A1 WO 2012096271 A1 WO2012096271 A1 WO 2012096271A1 JP 2012050307 W JP2012050307 W JP 2012050307W WO 2012096271 A1 WO2012096271 A1 WO 2012096271A1
Authority
WO
WIPO (PCT)
Prior art keywords
collagen
adhesive material
fistula
present
bioadhesive
Prior art date
Application number
PCT/JP2012/050307
Other languages
French (fr)
Japanese (ja)
Inventor
達雄 中村
政人 荒木
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2012552731A priority Critical patent/JP5940987B2/en
Publication of WO2012096271A1 publication Critical patent/WO2012096271A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/10Polypeptides; Proteins
    • A61L24/106Fibrin; Fibrinogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/0047Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L24/0073Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix
    • A61L24/0094Composite materials, i.e. containing one material dispersed in a matrix of the same or different material with a macromolecular matrix containing macromolecular fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/043Mixtures of macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/10Polypeptides; Proteins
    • A61L24/102Collagen

Definitions

  • the present invention relates to a bioadhesive material.
  • Gastrointestinal cutaneous fistula is a disease in which a hole is opened in the digestive tract and reaches the outside of the body. It is an intractable disease that covers a wide variety of diseases such as intestinal skin fistula, bile fistula, pancreatic fistula) and complications after radiotherapy (for example, rectal vaginal fistula, rectal bladder fistula).
  • Treatment methods for gastrointestinal cutaneous fistula include long-term fasting that expects natural blockage of gastrointestinal cutaneous fistula and closure by surgery. When an operation is attempted, it is often a very invasive operation because of the strong inflammation around the affected area.
  • the gastrointestinal tract can be completely occluded in some way, it should be treatable without the need for long-term fasting or surgery.
  • Drugs and materials (2) can be approached only from the skin (3) side against the digestive tract skin fistula (1). That is, the drug and the material (2) cannot be approached from the digestive tract (4), for example, the intestinal tract side.
  • the gastrointestinal skin fistula (1) has a very thin and complicated shape, and it is difficult to place the material (2) used for closing the fistula in the fistula.
  • the material (2) used for closing the gastrointestinal tract is required to remain in the gastrointestinal tract and prevent the inflow of the digestive fluid (5) from the gastrointestinal tract (4).
  • Fibrin glue is obtained by mixing two liquids, liquid A mainly composed of fibrinogen and liquid B mainly composed of thrombin.
  • the monomer fibrinogen is polymerized by the catalytic action of thrombin to form the polymer fibrin, which becomes glue and adheres to the living tissue.
  • Fibrin glue has good biocompatibility and is often used during surgery because there is no other adhesive material that can be placed in the living body. Since the applied fibrin glue forms a film and covers the damaged organ, it is possible to prevent air leakage from the damaged lung and bleeding from blood vessels and organs.
  • the applied fibrin glue is gradually decomposed and reduced in the living body and finally absorbed into the body. (For example, see Patent Documents 1 and 2)
  • the fibrin glue When the fibrin glue is injected into the gastrointestinal tract such as the digestive tract skin fistula, immediately after the injection, the fibrin glue stays in the gastrointestinal tract and temporarily closes the fistula. However, since the fibrin glue is gradually decomposed and reduced in the living body, the fibrin glue is finally pushed out of the fistula by the digestive fluid and falls off, and the gastrointestinal skin fistula recurs. In other words, it is very unlikely that the fibrin glue stays in the tubule for a long period of time and the tubule is cured and blocked.
  • the present invention is a bioadhesive material obtained by mixing (a) fibrinogen and (b) thrombin, Furthermore, the present invention provides an adhesive material obtained by mixing (c) collagen having a pH of more than 5.5 and not more than 7.0 and (d) powdered polyglycolic acid (PGA).
  • the bioadhesive material according to the present invention can be suitably used as an injection.
  • the present invention provides the biological adhesive material, wherein the collagen is uncrosslinked. In another aspect, the present invention provides the bioadhesive material as described above, wherein the polyglycolic acid has a weight average molecular weight of 5000 to 30,000.
  • the present invention provides (a) fibrinogen, (b) thrombin, (c) collagen having a pH of greater than 5.5 and 7.0 or less, and (d) a powder for obtaining the bioadhesive material.
  • a combination of polyglycolic acid (PGA) is provided.
  • the present invention in a preferred aspect, is a method for producing a bioadhesive material comprising mixing (a) fibrinogen and (b) thrombin, Furthermore, the present invention provides a production method in which (c) a collagen having a pH greater than 5.5 and not greater than 7.0 and (d) powdered polyglycolic acid (PGA) are mixed.
  • the bioadhesive according to the present invention is obtained by mixing (a) fibrinogen and (b) thrombin, and (c) collagen having a pH of more than 5.5 and not more than 7.0, and (d) a powder. Since it is obtained by mixing polyglycolic acid (PGA), a novel bioadhesive that can be used for various organs such as digestive organs, respiratory organs and circulatory organs can be provided. More specifically, the fistula can be closed while the adhesive material remains in the fistula generated in various organs.
  • PGA polyglycolic acid
  • the biomedical adhesive material is more uniform and easier to use as the biomedical adhesive.
  • the polyglycolic acid has a weight average molecular weight of 5000 to 30000, the bioadhesive can be made into a finer powder, and as a bioadhesive, the uniformity is further improved and it is easier to use. .
  • the combination for obtaining the bioadhesive material according to the present invention includes (a) fibrinogen, (b) thrombin, (c) collagen having a pH of more than 5.5 and not more than 7.0, and (d) powdered polyglycol. Since it is a combination of acids (PGA), a bioadhesive that can block the fistula while the adhesive material remains in the fistula generated in various organs such as digestive organs, respiratory organs, and circulatory organs Can be provided.
  • PGA combination of acids
  • the method for producing a bioadhesive material according to the present invention comprises (a) fibrinogen (b) thrombin (c) collagen having a pH greater than 5.5 and not greater than 7.0 and (d) powdered polyglycolic acid (PGA). Since it is a manufacturing method that mixes, while the adhesive material stays in the fistula generated in various organs such as digestive organs, respiratory organs, circulatory organs, etc. A method can be provided.
  • FIG. 1 schematically shows a digestive tract cutaneous fistula.
  • FIG. 2 shows an optical micrograph of the central portion of the bioadhesive material according to Example 1, which was implanted subcutaneously into an SD rat as a cylindrical material having a diameter of 5 mm and a length of 10 mm.
  • FIGS. 2 (a) to (d) show optical micrographs of 40 times after 3 days, 200 times after 3 days, 40 times after 21 days, and 40 times after 28 days, respectively.
  • FIG. 3 shows an optical micrograph of the central portion of the bioadhesive material according to Comparative Example 1, which was implanted subcutaneously into an SD rat as a cylindrical material having a diameter of 5 mm and a length of 10 mm.
  • FIG. 4 shows an optical micrograph of the central part of the bioadhesive material according to Comparative Example 2, which was implanted subcutaneously into an SD rat as a cylindrical material having a diameter of 5 mm and a length of 10 mm.
  • 4 (a) to 4 (d) show optical micrographs of 40 times after 3 days, 40 times after 7 days, 40 times after 14 days, and 40 times after 28 days, respectively.
  • the “(a) fibrinogen” according to the present invention is usually referred to as “fibrinogen”, and is not particularly limited as long as the biomedical adhesive intended by the present invention can be obtained.
  • a commercially available product can be used as “(a) fibrinogen”. Examples of such commercially available fibrinogen include Bolheel (product name) and Veriplast (product name).
  • A) As for fibrinogen a commercially available stock solution (for example, about 8% by weight) can be used as it is, but an aqueous solution is prepared and used by dissolving and / or dispersing using an appropriate aqueous medium. You can also.
  • the “(b) thrombin” according to the present invention is usually “thrombin” and is not particularly limited as long as the bioadhesive intended by the present invention can be obtained.
  • a commercially available product can be used as “(b) thrombin”. Examples of such commercially available thrombin include Bolheel (product name) and Veriplast (product name).
  • the “aqueous medium” is a medium that is usually used to make fibrin glue, and is mainly formed from water, and may contain additives as appropriate, and the bioadhesive intended by the present invention. There is no particular limitation as long as the agent can be obtained. Examples of such an aqueous medium include fibrinogen solution and thrombin solution (manufactured by Chemistry and Serum Therapy Laboratory).
  • the “aqueous liquid” means that various components according to the present invention are dissolved and / or dispersed in an aqueous medium.
  • the bioadhesive agent according to the present invention it is preferable that (a) fibrinogen is used by diluting the stock solution up to 5 times or using the stock solution as it is, and diluting the stock solution up to 3 times or using the stock solution as it is. It is more preferable to dilute the stock solution up to 2 times or to use the stock solution as it is. (B) Thrombin is preferably used after diluting the above-mentioned stock solution 2 to 20 times, more preferably 5 to 15 times diluted and the stock solution being 8 to 12 times. It is particularly preferable to use after diluting.
  • the density of fibrinogen is related to the density of the bioadhesive, and it is considered that the thicker the fibrinogen, the greater the adhesive strength as an adhesive. Further, since thrombin has a catalytic action on the polymerization of fibrinogen, when it is thick, fibrin glue formation is fast, and when it is thin, fibrin glue formation is slow. Depending on the properties (for example, adhesive strength, time required for solidification, etc.) required for the biomedical adhesive according to the present invention, the densities of (a) and (b) are appropriately selected.
  • (C) Collagen having a pH of more than 5.5 and not more than 7.0 (hereinafter also referred to as“ (c) collagen ”)” according to the present invention is 5.5 when dissolved in water at a concentration of 10 g / L. It is a collagen that exhibits a pH of 7.0 or less, and is not particularly limited as long as the biomedical adhesive targeted by the present invention can be obtained.
  • (C) Collagen according to the present invention is usually highly soluble in water, so it may be a normal solid, and in particular, it does not need to be in powder form, but in order to dissolve quickly in water, It is preferably “powdered”.
  • the longest diameter of the powder particles is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the particle diameter of the powder can be visually observed using various microscopes such as an optical microscope and an electron microscope.
  • water refers to water generally referred to as pure water or ultrapure water in the field of medicine and biotechnology, and is usually an ion exchange method, a distillation method, a reverse osmosis membrane method, and ( It means water purified using at least one selected from reverse osmosis + continuous ion exchange method, and ultrapure water is preferable, and the ultrapure water device Milli-Q (trade name) manufactured by Millipore is used. Purified ultrapure water (so-called milli-Q water) is more preferable, but is not particularly limited as long as the bioadhesive material intended by the present invention is obtained.
  • pure water refers to water having a specific resistance of 1 M ⁇ ⁇ cm (25 ° C.) or higher, preferably 3 M ⁇ ⁇ cm (25 ° C.) or higher.
  • Ultra pure water refers to a specific resistance of 15 M ⁇ . It indicates cm (25 ° C.) or more, preferably 18 M ⁇ ⁇ cm (25 ° C.) or more, and has an organic content (TOC) of 50 ppb or less, preferably 20 ppb or less.
  • the pH of the fibrin glue is adjusted to a specific value range of 5.5 to 7.0. It is known that there must be.
  • Conventional collagen is generally known to be more acidic because of its lower pH value than this range of pH.
  • the present inventors need that the pH exhibited by collagen be greater than 5.5 and less than or equal to 7.0 when dissolved in water at a concentration of 10 g / L. Therefore, we examined using such collagen.
  • the pH exhibited by the collagen is preferably 6.0 to 7.0, more preferably 6.5 to 7.0.
  • Such (c) collagen is prepared by mixing conventional collagen with the above-mentioned water, preferably ultrapure water, more preferably 1% by weight, and stirring to dissolve. Then, the pH of the lysate can be adjusted to be greater than 5.5 and less than 7.0 using 0.1 N HCl and lyophilized.
  • C As a value of collagen pH, a value obtained by measuring the pH of the lysate with a pH meter is shown. Usually, the pH of the lysate adjusted with 0.1N HCl is considered to be substantially equal to the pH value shown when collagen is dissolved in water at a concentration of 10 g / L.
  • Collagen obtained by adjusting the pH of the above-mentioned collagen solution to 6.0 to 7.0 and freeze-drying is preferred as (c) collagen, and the pH is 6.5 to 7. Collagen obtained by adjusting to 0 and freeze-drying is more preferable as (c) collagen.
  • Freeze-drying can be performed using a conventional method.
  • the freezing temperature is not particularly limited as long as collagen can be freeze-dried and a target bioadhesive can be obtained.
  • the freezing temperature can be appropriately selected according to the structure of collagen obtained by lyophilization. Generally, fibrous or sponge-like collagen is obtained when frozen at around -20 ° C, thin film multitufted collagen is obtained when frozen at around -80 ° C, and fibrous or sponge is obtained when frozen at around -196 ° C. Collagen collagen is obtained. From the viewpoint of tissue regeneration ability, the collagen is preferably thin film multitufted collagen, the freezing temperature is more preferably ⁇ 70 ° C. to ⁇ 100 ° C., and particularly preferably ⁇ 80 to ⁇ 90 ° C.
  • the lyophilization is preferably performed at a frozen temperature, for example, when a thin film multitufted collagen is obtained, at a temperature of ⁇ 80 ° C. to ⁇ 90 ° C., decompressed to 5.0 Pa or less, and performed for 24 hours.
  • the collagen according to the present invention is preferably easily dissolved and / or dispersed in an aqueous medium, and therefore is preferably not crosslinked.
  • Collagen is not cross-linked, that is, is not cross-linked, so that the uniformity of the bioadhesive according to the present invention is further improved, and an adhesive that is easier to inject when used as an injection can be obtained. .
  • the “(d) powdery polyglycolic acid (hereinafter also referred to as“ (d) PGA ”” ” is a PGA pulverized into a powder form, and the bioadhesive intended by the present invention If it can be obtained, it is not particularly limited.
  • “powdered” means a state of being crushed and made fine, and is preferably fine enough not to block the tip (inner diameter is 1 mm) of the syringe. Accordingly, the longest diameter of the powder particles is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the particle diameter of the powder can be visually observed using various microscopes such as an optical microscope and an electron microscope.
  • PGA is a biodegradable synthetic polymer and is used as a suture thread or tissue reinforcing material. Therefore, in order to increase the strength, PGA having a weight average molecular weight of about 200,000 to 300,000 is synthesized. ing. However, considering the solubility in water and / or dispersibility, the molecular weight is preferably lower, and the weight average molecular weight is preferably 1000 to 50000, more preferably 3000 to 400000. It is particularly preferably from ⁇ 30000.
  • Such (d) PGA having a lower molecular weight is produced by bulk polymerization by adding alcohols having a high boiling point such as lauryl alcohol, lactic acid and glycolic acid or esterified products thereof to glycolide, for example. It is well known that this can be done (see, for example, Chang-Ming Dong et al; Polymer 42 (2001) 6891-6896). The weight average molecular weight can be measured using GPC (gel permeation chromatography). Details such as GPC measurement conditions are described in the examples.
  • the bioadhesive material according to the present invention usually has a form of an aqueous liquid containing the above-described components (a) to (d), and generally has a gel-like form.
  • D PGA is a component that is relatively hardly dissolved in an aqueous medium and easily precipitated, but is mixed together.
  • C Collagen is dissolved and / or dispersed in an aqueous medium to form an aqueous liquid having a relatively high viscosity.
  • D) PGA does not precipitate, so that the bioadhesive in the form of an aqueous liquid in which the components (a) to (d) are uniformly dispersed and / or dissolved in an aqueous medium. Material can be obtained.
  • the bioadhesive material according to the present invention preferably contains 1 to 5 g of (a) fibrinogen, based on an aqueous liquid containing the components (a) to (d) (per 100 g). More preferably, 4 to 5 g is particularly preferable.
  • (B) Thrombin is preferably contained in an amount of 10 to 250 units, more preferably 15 to 100 units, and particularly preferably 20 to 30 units.
  • 1 to 20 g of powdered polyglycolic acid (PGA) is preferably contained, more preferably 3 to 10 g, and particularly preferably 4 to 6 g.
  • the present invention provides (a) fibrinogen, (b) thrombin, (c) collagen having a pH of more than 5.5 and not more than 7.0, and (d) powdered polyglycolic acid for obtaining the above-mentioned bioadhesive material. (PGA) combinations are provided. This combination can also be referred to as a four-component adhesive.
  • the bioadhesive material according to the present invention can be produced and used by mixing all four components at once just before use.
  • a first component containing fibrinogen specifically, a stock solution or an aqueous solution
  • a second component containing three components specifically, (b) thrombin, (c) collagen, and (d) PGA
  • a combination of two types of components can be once created. This can be called a so-called two-component biomedical adhesive material.
  • the bioadhesive material according to the present invention can be used by mixing these two kinds of components.
  • the combination of these four components and the combination of the two components are based on the aqueous liquid containing the components (a) to (d) with respect to the bioadhesive according to the present invention obtained by mixing ( It is preferable to satisfy the above-described quantitative relationship of the components (a) to (d).
  • the mixing of the components (a) to (d) for producing the bioadhesive according to the present invention can be performed using a commonly used mixing method.
  • the produced biomedical adhesive can be applied to various organs of a living body using various instruments such as a syringe.
  • the bioadhesive material according to the present invention can be suitably used for closing a fistula by placing it in a fistula as an injection using a syringe.
  • a combination of the above-mentioned two kinds of components (a combination of the first component containing the component (a) and the second component containing the components (b) to (d)) for closing the fistula, that is, a two-component adhesive material Is preferably used with a syringe, ie a dual syringe, that can be extruded into the fistula while simultaneously mixing each of the two components and mixing at the tip of the syringe.
  • the bioadhesive material according to the present invention can be used for various organs, for example, digestive organs, respiratory organs, circulatory organs, etc., and can be preferably used for closing the fistulas generated in them.
  • GI cutaneous fistula Inflammatory bowel diseases such as Crohn's disease, ulcerative colitis, fistula due to delayed postoperative gastrointestinal suture failure, postoperative bile fistula, postoperative pancreatic fistula etc.
  • fistula postoperative It can be suitably used for bronchial stump fistula, bladder vaginal fistula, rectal vaginal fistula, tracheoesophageal fistula, pathological condition in which fistula is formed in adjacent organs, and the like.
  • fistulas generated in various organs can be closed by a minimally invasive method.
  • the bioadhesive material according to the present invention is easy to use because it can be easily formulated at the patient's bedside. Furthermore, various diseases can be treated under fluoroscopy by mixing a contrast medium or the like.
  • the biomedical adhesive material according to the present invention has the excellent effects as described above, which is considered to be due to the following reasons.
  • the reason why the fibrin glue stays in the fistula for a long time and the fistula is not healed and clogged is because the fibrin glue does not induce tissue such as cells and blood vessels from the tissue around the fistula. I thought it was because it was simply decomposed and reduced.
  • fibrin glue decomposes and shrinks and creates a new tissue inside the tubule.
  • the present inventors have further added (c) collagen having a pH of more than 5.5 and not more than 7.0, and (d) powdered polyglycolic acid, which are the specific components described above.
  • the manufacture of fibrin glue has been accomplished by discovering that fibrin glue can be decomposed and reduced and that a new tissue can be formed inside the fistula, while taking advantage of fibrin glue as a bioadhesive material. is there.
  • the added (c) collagen and (d) polyglycolic acid are considered to significantly improve the efficiency of inducing new tissues such as cells and blood vessels from tissues around the fistula.
  • a molecular weight regulator ethyl acetate
  • glycolide and a polymerization initiator tin octylate, about 0.005 to 0.01% by weight
  • tin octylate about 0.005 to 0.01% by weight
  • the weight average molecular weight of the obtained PGA refers to the weight average molecular weight converted by monodisperse molecular weight polystyrene, measured using GPC (gel permeation chromatography). More specifically, it refers to a value measured using the following GPC apparatus and measurement method, and the present inventor also used the following apparatus and measurement method in Examples described later.
  • a gel permeation chromatograph GPC (equipment No. GPC-14) was used as the GPC apparatus, and a differential refractive index detector RI (RI-2414, manufactured by Waters, sensitivity 512) was used as a detector.
  • RI-2414 differential refractive index detector
  • Shodex HFIP-806M (2 pieces) (S / N A805260, A805261, ⁇ 7.8 mm ⁇ 30 cm) manufactured by Showa Denko was used.
  • To 3 mg of sample add 5 ml of solvent (hexafluoroisopropanol to which sodium trifluoroacetate was added at a concentration of 5 mM), gently stir at 40 ° C. for 4 hours, and then filter the sample using a 0.45 ⁇ m filter. Using.
  • the column temperature was 40 ° C. and the same solvent was used.
  • the flow rate was 0.5 ml / min.
  • the measurement was repeated twice from the sample weight, and the average value of the obtained Mn and Mw was defined as Mn and Mw of PGA.
  • Mn was about 16,000 and Mw was about 24,000.
  • the PGA was pulverized by pulverizing for 30 seconds to 1 minute using a wonder blender WB-1 manufactured by Osaka Chemical.
  • the size of the powder was about 10 to 100 ⁇ m as measured using an optical microscope BX40 (trade name) manufactured by OLYMPUS.
  • PGA was sterilized using ethylene oxide gas at 40 ° C. for 22 hours and 30 minutes.
  • ⁇ Fibrinogen solution (A solution)> As the fibrinogen solution, a commercially available product (stock solution, containing 8% by weight of fibrinogen) (Bolheel (trade name) manufactured by Chemistry and Serum Therapy Laboratory) was used as it was.
  • Example 1 The collagen powder 0.1 g and the PGA powder 0.1 g were mixed with 1 ml of thrombin solution (diluted 10 times as described above) to obtain a mixed thrombin solution.
  • 1 ml of fibrinogen solution was placed in one of the dual syringes (Mini-Dual Syringe (trade name) manufactured by Plas-Pak Industries, Inc.), and 1 ml of the mixed thrombin solution was placed in the other.
  • the dual syringes Mini-Dual Syringe (trade name) manufactured by Plas-Pak Industries, Inc.
  • the bioadhesive material according to Example 1 was manufactured using a dual syringe as a cylindrical shape material having a diameter of 5 mm and a length of 10 mm under the SD rat. It dye
  • Optical micrographs of the central portion of the cylindrical biological adhesive material are shown in FIGS. 2 (a) to 2 (d).
  • 2 (a) is 40 times after 3 days
  • FIG. 2 (b) is 200 times after 3 days
  • FIG. 2 (c) is 40 times after 21 days
  • FIG. 2 (d) is 40 times after 28 days.
  • the state of the tissue in the central part of the biological adhesive material is shown.
  • FIG. 2 (a) As shown in FIG. 2 (a), on the third day, it was confirmed that cells such as rat inflammatory cells had entered the adhesive material that appeared to be elliptical. This invasion had reached the center.
  • FIG. 2B is an enlarged view of the central portion of the adhesive material of FIG. Purple dots are considered rat cells.
  • FIGS. 2 (c) and (d) in 2-3 weeks, rat cells completely remodeled the rat tissue within the adhesive material, and the adhesive material gradually degraded in 2-3 weeks. . In FIG. 2 (d), a small amount of glycolic acid remains, but the decomposition progressed smoothly as a whole of the adhesive material.
  • the bioadhesive material according to Comparative Example 1 was obtained by mixing a fibrinogen solution and a thrombin solution (diluted 10 times as described above). That is, 1 ml of fibrinogen solution and 1 ml of thrombin solution were placed in one of the dual syringes (Mini-Dual Syringe (trade name) manufactured by Plas-Pak Industries, Inc.). By pressing the inner cylinder of the dual syringe, both were extruded in an equivalent amount, and the bioadhesive material according to Comparative Example 1 was produced. This bioadhesive material corresponds to normal fibrin glue.
  • the bioadhesive material according to Comparative Example 1 was manufactured by using a dual syringe as a cylindrical material having a diameter of 5 mm and a length of 10 mm under the SD rat, and was implanted at the same time.
  • the sample was stained with Hematoxylin and Eosin dye, and visually observed at 40 times using an optical microscope (BX40 (product name) manufactured by OLYMPUS).
  • 3A to 3D show optical micrographs of the central part of the cylindrical biological adhesive material.
  • 3 (a) is 40 times after 3 days
  • FIG. 3 (b) is 40 times after 7 days
  • FIG. 3 (c) is 40 times after 14 days
  • FIG. 3 (d) is 40 times after 28 days.
  • the state of the tissue in the central part of the biological adhesive material is shown.
  • the oval biomedical adhesive material gradually becomes smaller, but cells and blood vessels invade into the adhesive material from the rat's surrounding subcutaneous tissue.
  • the organization was never built. There was always a gap between the oval bioadhesive material and the rat subcutaneous tissue. This is considered to be a cause of easily falling off the fistula when fibrin glue, in which collagen powder and PGA powder are not mixed, becomes small to some extent.
  • Comparative Example 2 0.1 g of the above collagen powder was mixed with 1 ml of thrombin solution (diluted 10 times as described above) to obtain a mixed thrombin solution. 1 ml of fibrinogen solution was placed in one of the dual syringes (Mini-Dual Syringe (trade name) manufactured by Plas-Pak Industries, Inc.), and 1 ml of the mixed thrombin solution was placed in the other. By pressing the inner cylinder of the dual syringe, both were extruded in an equivalent amount, and the bioadhesive material according to Comparative Example 2 was produced.
  • the dual syringes Mini-Dual Syringe (trade name) manufactured by Plas-Pak Industries, Inc.
  • the bioadhesive material according to Comparative Example 2 was manufactured by using a dual syringe as a cylindrical material having a diameter of 5 mm and a length of 10 mm under the SD rat, and was implanted at the same time.
  • the sample was stained with Hematoxylin and Eosin dyes, and visually observed at 40 and 200 times using an optical microscope (BX40 (product name) manufactured by OLYMPUS).
  • Optical micrographs of the central part of the cylindrical biological adhesive material are shown in FIGS. 4 (a) is 40 times after 3 days
  • FIG. 4 (b) is 40 times after 7 days
  • FIG. 4 (c) is 40 times after 21 days
  • FIG. 4 (d) is 40 times after 28 days.
  • the state of the tissue in the central part of the biological adhesive material is shown.
  • the oval bioadhesive material gradually becomes smaller, but cells and blood vessels invade into the adhesive material from the rat's surrounding tissue around the rat. The organization was never built.
  • the fibrin glue contains collagen, but voids are observed inside the fibrin glue.
  • the bioadhesive material according to the present invention comprises (a) fibrinogen, (b) thrombin, (c) collagen having a pH of more than 5.5 and not more than 7.0, and (d) powdered polyglycolic acid (PGA). It can be used for various organs such as digestive organs, respiratory organs, circulatory organs, etc., but it can be suitably used particularly for closing the fistula generated in them.
  • GI cutaneous fistula Inflammatory bowel diseases such as Crohn's disease, ulcerative colitis, fistula due to delayed postoperative gastrointestinal suture failure, postoperative bile fistula, postoperative pancreatic fistula etc.
  • fistula postoperative It can be suitably used for bronchial stump fistula, bladder vaginal fistula, rectal vaginal fistula, tracheoesophageal fistula, pathological condition in which fistula is formed in adjacent organs, and the like.
  • bioadhesive material By using the bioadhesive material according to the present invention, fistulas generated in various organs can be closed by a minimally invasive method.

Abstract

The purpose of the present invention is to provide: a novel biological adhesive material which can be used in various organs including digestive organs, respiratory organs and cardiovascular organs; a novel adhesive material which can block fistulae occurring in various organs during the remaining of the adhesive material in the fistulae; and a process for producing the adhesive material. As the adhesive material, the present invention provides a biological adhesive material produced by mixing (a) fibrinogen, (b) thrombin, (c) a collagen having a pH value of 5.5-7.0 and (d) a powdery polyglucolic acid (PGA). The present invention also provides a process for producing a biological adhesive material, comprising mixing (a) fibrinogen, (b) thrombin, (c) a collagen having a pH value of higher than 5.5 and equal to or lower than 7.0 and (d) a powdery polyglucolic acid (PGA). The biological adhesive material can be used suitably as an injection preparation and can block fistulae occurring in various organs during the remaining of the adhesive material in the fistulae.

Description

生体用接着材料Bioadhesive material
 本発明は、生体用接着材料に関する。 The present invention relates to a bioadhesive material.
 消化管皮膚瘻は、消化管に穴が開き、その穴が、体外にまで達する病気であって、炎症性腸疾患(例えば、クローン病、潰瘍性大腸炎)、術後縫合不全等(例えば、腸管皮膚瘻、胆汁瘻、膵液瘻)、放射線治療後の合併症(例えば、直腸膣瘻、直腸膀胱瘻)等の多岐の疾病に渡る難治性の疾患である。消化管皮膚瘻の治療法として、消化管皮膚瘻の自然閉塞を期待する長期に渡る絶食、手術による閉鎖等がある。手術を試みる場合、患部の周囲の炎症が強いため、非常に侵襲の大きな手術となることが多い。 Gastrointestinal cutaneous fistula is a disease in which a hole is opened in the digestive tract and reaches the outside of the body. It is an intractable disease that covers a wide variety of diseases such as intestinal skin fistula, bile fistula, pancreatic fistula) and complications after radiotherapy (for example, rectal vaginal fistula, rectal bladder fistula). Treatment methods for gastrointestinal cutaneous fistula include long-term fasting that expects natural blockage of gastrointestinal cutaneous fistula and closure by surgery. When an operation is attempted, it is often a very invasive operation because of the strong inflammation around the affected area.
 本来、消化管皮膚瘻の瘻管を、何らかの方法で完全に閉塞することができれば、長期の絶食も手術も必要とすることなく治療可能なはずである。しかし、消化管皮膚瘻を低侵襲な方法で閉塞することは、一般的に困難である。その理由として、下記の3点が指摘される。(図1参照)
 i)消化管皮膚瘻(1)に対して、薬剤及び材料(2)は、皮膚(3)側からしかアプローチできない。即ち、薬剤及び材料(2)は、消化管(4)、例えば腸管側から、アプローチできない。
 ii)消化管皮膚瘻(1)の瘻管は非常に細くて複雑な形態を有することが多く、瘻管を閉塞するために用いる材料(2)を、瘻管に留置することが困難である。
 iii)瘻管を閉塞するために用いる材料(2)は、瘻管に留まり、消化管(4)からの消化液(5)の流入を防ぐことが要求される。
Essentially, if the gastrointestinal tract can be completely occluded in some way, it should be treatable without the need for long-term fasting or surgery. However, it is generally difficult to close the digestive tract skin fistula by a minimally invasive method. The following three points are pointed out as the reason. (See Figure 1)
i) Drugs and materials (2) can be approached only from the skin (3) side against the digestive tract skin fistula (1). That is, the drug and the material (2) cannot be approached from the digestive tract (4), for example, the intestinal tract side.
ii) The gastrointestinal skin fistula (1) has a very thin and complicated shape, and it is difficult to place the material (2) used for closing the fistula in the fistula.
iii) The material (2) used for closing the gastrointestinal tract is required to remain in the gastrointestinal tract and prevent the inflow of the digestive fluid (5) from the gastrointestinal tract (4).
 このような事情から、消化管皮膚瘻の瘻管を閉塞するために、使用開始後すぐにゲル化し、接着力を生ずる注射剤を注入することが、近年行われている。そのような注射剤として、フィブリン糊が良く用いられている。 Under these circumstances, in order to close the fistula of the digestive tract skin fistula, injection of an injection that gels immediately after the start of use and generates adhesive force has been performed in recent years. Fibrin glue is often used as such an injection.
 フィブリン糊は、主にフィブリノーゲンから成るA液と、主にトロンビンから成るB液の2液を混合することによって得られる。モノマーであるフィブリノーゲンが、トロンビンの触媒作用によって重合して、ポリマーであるフィブリンを形成し、それが糊となって生体組織に接着する。フィブリン糊は、生体適合性が良好であり、生体内に留置できる接着材料が他にないので、手術の際によく使用される。塗布されたフィブリン糊が膜を形成して損傷した臓器を覆うので、損傷した肺から空気漏れを防止することや、血管や臓器等からの出血を防止することができる。塗布されたフィブリン糊は、生体内で徐々に分解されて縮小し、最終的に体内に吸収される。(例えば、特許文献1及び2参照) Fibrin glue is obtained by mixing two liquids, liquid A mainly composed of fibrinogen and liquid B mainly composed of thrombin. The monomer fibrinogen is polymerized by the catalytic action of thrombin to form the polymer fibrin, which becomes glue and adheres to the living tissue. Fibrin glue has good biocompatibility and is often used during surgery because there is no other adhesive material that can be placed in the living body. Since the applied fibrin glue forms a film and covers the damaged organ, it is possible to prevent air leakage from the damaged lung and bleeding from blood vessels and organs. The applied fibrin glue is gradually decomposed and reduced in the living body and finally absorbed into the body. (For example, see Patent Documents 1 and 2)
 フィブリン糊を、消化管皮膚瘻等の瘻管内に注入すると、注入直後は、フィブリン糊は、瘻管に留まり、一時的に瘻管を閉鎖する。しかし、徐々にフィブリン糊が生体内で分解されて縮小するので、最後には、フィブリン糊は消化液によって瘻管から押し出されて抜け落ちて、消化管皮膚瘻は再発することとなる。つまり、フィブリン糊が長期間にわたって瘻管内に留まり、瘻管が治癒して塞がる確立は極めて低いのが現状である。 When the fibrin glue is injected into the gastrointestinal tract such as the digestive tract skin fistula, immediately after the injection, the fibrin glue stays in the gastrointestinal tract and temporarily closes the fistula. However, since the fibrin glue is gradually decomposed and reduced in the living body, the fibrin glue is finally pushed out of the fistula by the digestive fluid and falls off, and the gastrointestinal skin fistula recurs. In other words, it is very unlikely that the fibrin glue stays in the tubule for a long period of time and the tubule is cured and blocked.
JP2774141BJP2774141B JP6-102628BJP 6-102628B
 本発明の目的は、消化器、呼吸器及び循環器等の種々の臓器に使用することができる新規な生体用接着剤を提供することである。より具体的には、種々の臓器に生じた瘻管内に接着材料が留まっている間に、その瘻管を閉塞することができる新規な接着材料を提供することである。
 更に本発明の別の目的は、そのような接着材料を得るための成分の組合せを提供することである。
 また本発明の更なる目的は、そのような接着材料の製造方法を提供することである。
An object of the present invention is to provide a novel biomedical adhesive that can be used for various organs such as digestive organs, respiratory organs, and circulatory organs. More specifically, it is to provide a novel adhesive material capable of closing the fistula while the adhesive material stays in the fistula generated in various organs.
Yet another object of the present invention is to provide a combination of components to obtain such an adhesive material.
A further object of the present invention is to provide a method for producing such an adhesive material.
 本発明者等は、種々検討した結果、驚くべきことに、特定のコラーゲンと特定のポリグリコール酸(PGA)を、フィブリン糊に混合することによって、上記課題を解決することができることを見出して、本発明を完成するに至ったものである。 As a result of various studies, the present inventors have surprisingly found that the above problem can be solved by mixing specific collagen and specific polyglycolic acid (PGA) into fibrin glue, The present invention has been completed.
 即ち、本発明は、第一の要旨において、(a)フィブリノーゲン及び(b)トロンビンを混合することで得られる生体用接着材料であって、
 更に、(c)pHは5.5より大きく7.0以下のコラーゲン及び(d)粉末状ポリグルコール酸(PGA)を混合して得られる接着材料を提供する。
 本発明に係る生体用接着材料は、注射剤として、好適に使用することができる。
That is, in the first aspect, the present invention is a bioadhesive material obtained by mixing (a) fibrinogen and (b) thrombin,
Furthermore, the present invention provides an adhesive material obtained by mixing (c) collagen having a pH of more than 5.5 and not more than 7.0 and (d) powdered polyglycolic acid (PGA).
The bioadhesive material according to the present invention can be suitably used as an injection.
 本発明は、一の態様において、コラーゲンは、未架橋である上記生体用接着材料を提供する。
 本発明は、他の態様において、ポリグルコール酸は、5000~30000の重量平均分子量を有する上記生体用接着材料を提供する。
In one aspect, the present invention provides the biological adhesive material, wherein the collagen is uncrosslinked.
In another aspect, the present invention provides the bioadhesive material as described above, wherein the polyglycolic acid has a weight average molecular weight of 5000 to 30,000.
 本発明は、別の要旨において、上記生体用接着材料を得るための、(a)フィブリノーゲン、(b)トロンビン、(c)pHは5.5より大きく7.0以下のコラーゲン及び(d)粉末状ポリグルコール酸(PGA)の組み合わせを提供する。 In another aspect, the present invention provides (a) fibrinogen, (b) thrombin, (c) collagen having a pH of greater than 5.5 and 7.0 or less, and (d) a powder for obtaining the bioadhesive material. A combination of polyglycolic acid (PGA) is provided.
 本発明は、好ましい要旨において、(a)フィブリノーゲン及び(b)トロンビンを混合する生体用接着材料の製造方法であって、
 更に、(c)pHは5.5より大きく7.0以下のコラーゲン及び(d)粉末状ポリグルコール酸(PGA)を混合する製造方法を提供する。
The present invention, in a preferred aspect, is a method for producing a bioadhesive material comprising mixing (a) fibrinogen and (b) thrombin,
Furthermore, the present invention provides a production method in which (c) a collagen having a pH greater than 5.5 and not greater than 7.0 and (d) powdered polyglycolic acid (PGA) are mixed.
 本発明に係る生体用接着剤は、(a)フィブリノーゲン及び(b)トロンビンを混合することで得られ、更に、(c)pHは5.5より大きく7.0以下のコラーゲン及び(d)粉末状ポリグルコール酸(PGA)を混合して得られるので、消化器、呼吸器及び循環器等の種々の臓器に使用することができる新規な生体用接着剤を提供することができる。より具体的には、種々の臓器に生じた瘻管内に接着材料が留まっている間に、その瘻管を閉塞することができる。 The bioadhesive according to the present invention is obtained by mixing (a) fibrinogen and (b) thrombin, and (c) collagen having a pH of more than 5.5 and not more than 7.0, and (d) a powder. Since it is obtained by mixing polyglycolic acid (PGA), a novel bioadhesive that can be used for various organs such as digestive organs, respiratory organs and circulatory organs can be provided. More specifically, the fistula can be closed while the adhesive material remains in the fistula generated in various organs.
 上記生体用接着剤は、コラーゲンが、未架橋である場合、上記生体用接着材料は、生体用接着剤として、より均一性が向上し、より使用し易くなる。
 上記生体用接着剤本発明は、ポリグルコール酸が、5000~30000の重量平均分子量を有する場合、より微粉末と成り得、生体用接着剤として、より均一性が向上し、より使用し易くなる。
When the biomedical adhesive is uncrosslinked, the biomedical adhesive material is more uniform and easier to use as the biomedical adhesive.
In the present invention, when the polyglycolic acid has a weight average molecular weight of 5000 to 30000, the bioadhesive can be made into a finer powder, and as a bioadhesive, the uniformity is further improved and it is easier to use. .
 本発明に係る上記生体用接着材料を得るための組み合わせは、(a)フィブリノーゲン、(b)トロンビン、(c)pHは5.5より大きく7.0以下のコラーゲン及び(d)粉末状ポリグルコール酸(PGA)の組み合わせであるので、消化器、呼吸器、循環器等の種々の臓器に生じた瘻管内に接着材料が留まっている間に、その瘻管を閉塞することができる生体用接着剤を提供することができる。 The combination for obtaining the bioadhesive material according to the present invention includes (a) fibrinogen, (b) thrombin, (c) collagen having a pH of more than 5.5 and not more than 7.0, and (d) powdered polyglycol. Since it is a combination of acids (PGA), a bioadhesive that can block the fistula while the adhesive material remains in the fistula generated in various organs such as digestive organs, respiratory organs, and circulatory organs Can be provided.
 本発明に係る生体用接着材料の製造方法は、(a)フィブリノーゲン(b)トロンビン(c)pHは5.5より大きく7.0以下のコラーゲン及び(d)粉末状ポリグルコール酸(PGA)を混合する製造方法であるので、消化器、呼吸器、循環器等の種々の臓器に生じた瘻管内に接着材料が留まっている間に、その瘻管を閉塞することができる生体用接着剤の製造方法を提供することができる。 The method for producing a bioadhesive material according to the present invention comprises (a) fibrinogen (b) thrombin (c) collagen having a pH greater than 5.5 and not greater than 7.0 and (d) powdered polyglycolic acid (PGA). Since it is a manufacturing method that mixes, while the adhesive material stays in the fistula generated in various organs such as digestive organs, respiratory organs, circulatory organs, etc. A method can be provided.
図1は、消化管皮膚瘻を模式的に示す。FIG. 1 schematically shows a digestive tract cutaneous fistula. 図2は、直径5mm、長さ10mmの円筒形の材料として、SDラット皮下に埋入した、実施例1に係る生体用接着材料の中央部分の光学顕微鏡写真を示す。図2(a)~(d)は、各々3日後40倍、3日後200倍、21日後40倍、28日後40倍の光学顕微鏡写真を示す。FIG. 2 shows an optical micrograph of the central portion of the bioadhesive material according to Example 1, which was implanted subcutaneously into an SD rat as a cylindrical material having a diameter of 5 mm and a length of 10 mm. FIGS. 2 (a) to (d) show optical micrographs of 40 times after 3 days, 200 times after 3 days, 40 times after 21 days, and 40 times after 28 days, respectively. 図3は、直径5mm、長さ10mmの円筒形の材料として、SDラット皮下に埋入した、比較例1に係る生体用接着材料の中央部分の光学顕微鏡写真を示す。図3(a)~(d)は、各々3日後40倍、7日後40倍、14日後40倍、28日後40倍の光学顕微鏡写真を示す。FIG. 3 shows an optical micrograph of the central portion of the bioadhesive material according to Comparative Example 1, which was implanted subcutaneously into an SD rat as a cylindrical material having a diameter of 5 mm and a length of 10 mm. 3 (a) to 3 (d) show optical micrographs of 40 times after 3 days, 40 times after 7 days, 40 times after 14 days, and 40 times after 28 days, respectively. 図4は、直径5mm、長さ10mmの円筒形の材料として、SDラット皮下に埋入した、比較例2に係る生体用接着材料の中央部分の光学顕微鏡写真を示す。図4(a)~(d)は、各々3日後40倍、7日後40倍、14日後40倍、28日後40倍の光学顕微鏡写真を示す。FIG. 4 shows an optical micrograph of the central part of the bioadhesive material according to Comparative Example 2, which was implanted subcutaneously into an SD rat as a cylindrical material having a diameter of 5 mm and a length of 10 mm. 4 (a) to 4 (d) show optical micrographs of 40 times after 3 days, 40 times after 7 days, 40 times after 14 days, and 40 times after 28 days, respectively.
 本発明に係る「(a)フィブリノーゲン」とは、通常「フィブリノーゲン」とされるものであり、本発明が目的とする生体用接着剤を得ることができれば、特に制限されるものではない。「(a)フィブリノーゲン」は、市販のものを使用することができる。そのような市販のフィブリノーゲンとして、例えば、ボルヒール(製品名)及びベリプラスト(製品名)等を例示できる。(a)フィブリノーゲンは、市販の原液(例えば、約8重量%)をそのまま使用することができるが、適切な水性媒体を用いて溶解及び/又は分散させて、水性液を作成して使用することもできる。 The “(a) fibrinogen” according to the present invention is usually referred to as “fibrinogen”, and is not particularly limited as long as the biomedical adhesive intended by the present invention can be obtained. A commercially available product can be used as “(a) fibrinogen”. Examples of such commercially available fibrinogen include Bolheel (product name) and Veriplast (product name). (A) As for fibrinogen, a commercially available stock solution (for example, about 8% by weight) can be used as it is, but an aqueous solution is prepared and used by dissolving and / or dispersing using an appropriate aqueous medium. You can also.
 本発明に係る「(b)トロンビン」とは、通常「トロンビン」とされるものであり、本発明が目的とする生体用接着剤を得ることができれば、特に制限されるものではない。「(b)トロンビン」は、市販のものを使用することができる。そのような市販のトロンビンとして、例えば、ボルヒール(製品名)及びベリプラスト(製品名)等を例示できる。(b)トロンビンは、市販の原液(250単位/ml)をそのまま使用することができるが、適切な水性媒体を用いて溶解及び/又は分散させて、水性液を作成して使用することもできる。 The “(b) thrombin” according to the present invention is usually “thrombin” and is not particularly limited as long as the bioadhesive intended by the present invention can be obtained. A commercially available product can be used as “(b) thrombin”. Examples of such commercially available thrombin include Bolheel (product name) and Veriplast (product name). (B) As for thrombin, a commercially available stock solution (250 units / ml) can be used as it is, but it can also be used by preparing an aqueous solution by dissolving and / or dispersing using an appropriate aqueous medium. .
 本発明において、「水性媒体」とは、通常フィブリン糊を作るために使用され、おもに水から形成される媒体であって、適宜、添加剤を含んでよく、本発明が目的とする生体用接着剤を得ることができるものであれば、特に制限されるものではない。そのような水性媒体として、例えば、フィブリノーゲン溶解液及びトロンビン溶解液(化学及び血清療法研究所製)等を例示できる。また、本発明において、「水性液」とは、本発明に係る種々の成分が、水性媒体に溶解及び/又は分散した状態であることを意味する。 In the present invention, the “aqueous medium” is a medium that is usually used to make fibrin glue, and is mainly formed from water, and may contain additives as appropriate, and the bioadhesive intended by the present invention. There is no particular limitation as long as the agent can be obtained. Examples of such an aqueous medium include fibrinogen solution and thrombin solution (manufactured by Chemistry and Serum Therapy Laboratory). In the present invention, the “aqueous liquid” means that various components according to the present invention are dissolved and / or dispersed in an aqueous medium.
 本発明に係る生体用接着剤では、(a)フィブリノーゲンは、上述の原液を5倍まで希釈するか原液をそのままで使用することが好ましく、原液を3倍まで希釈するか原液をそのままで使用することがより好ましく、原液を2倍まで希釈するか原液をそのままで使用することが特に好ましい。(b)トロンビンは、上述の原液を2倍~20倍に希釈して使用することが好ましく、原液を5倍~15倍に希釈して使用することがより好ましく、原液を8倍~12倍に希釈して使用することが特に好ましい。 In the bioadhesive agent according to the present invention, it is preferable that (a) fibrinogen is used by diluting the stock solution up to 5 times or using the stock solution as it is, and diluting the stock solution up to 3 times or using the stock solution as it is. It is more preferable to dilute the stock solution up to 2 times or to use the stock solution as it is. (B) Thrombin is preferably used after diluting the above-mentioned stock solution 2 to 20 times, more preferably 5 to 15 times diluted and the stock solution being 8 to 12 times. It is particularly preferable to use after diluting.
 (a)フィブリノーゲンの濃さは、生体用接着剤の濃さと関連し、濃い方が、接着剤としてより大きな接着力を発揮すると考えられる。また、トロンビンはフィブリノーゲンに重合に関する触媒作用を有するので、濃い場合はフィブリン糊形成が早く、薄い場合フィブリン糊形成が遅くなる。本発明に係る生体用接着剤に求められる性質(例えば、接着強度、固化に要する時間等)に応じて、(a)及び(b)の濃さは、適宜選択されるものである。 (A) The density of fibrinogen is related to the density of the bioadhesive, and it is considered that the thicker the fibrinogen, the greater the adhesive strength as an adhesive. Further, since thrombin has a catalytic action on the polymerization of fibrinogen, when it is thick, fibrin glue formation is fast, and when it is thin, fibrin glue formation is slow. Depending on the properties (for example, adhesive strength, time required for solidification, etc.) required for the biomedical adhesive according to the present invention, the densities of (a) and (b) are appropriately selected.
 本発明に係る「(c)pHは5.5より大きく7.0以下のコラーゲン(以下「(c)コラーゲン」ともいう)」とは、水に濃度10g/Lで溶解したときに5.5より大きく7.0以下のpHを示すコラーゲンであり、本発明が目的とする生体用接着剤を得ることができれば、特に制限されるものではない。
 本発明に係る(c)コラーゲンは、通常、水に溶解性が高いので、通常の固形物であってよく、特に、粉末状であることを要しないが、水により迅速に溶解させるために、「粉末状」であることが好ましい。ここで「コラーゲン」に関し「粉末状」とは、砕けて細かくなった状態をいい、たとえ粉末状で水中に存在したとしても、注射器の先端(内径が1mm)を閉塞しない程度に細かいことが好ましい。従って、粉末の粒子は、その一番長い径が、100μm以下であることが好ましく、50μm以下であることがより好ましく、10μm以下であることが特に好ましい。粉末の粒子の径は、光学顕微鏡、電子顕微鏡等の各種顕微鏡を用いて目視で観察することができる。
“(C) Collagen having a pH of more than 5.5 and not more than 7.0 (hereinafter also referred to as“ (c) collagen ”)” according to the present invention is 5.5 when dissolved in water at a concentration of 10 g / L. It is a collagen that exhibits a pH of 7.0 or less, and is not particularly limited as long as the biomedical adhesive targeted by the present invention can be obtained.
(C) Collagen according to the present invention is usually highly soluble in water, so it may be a normal solid, and in particular, it does not need to be in powder form, but in order to dissolve quickly in water, It is preferably “powdered”. As used herein, “powdered” refers to a state of being crushed and made fine, and even if it is powdered and present in water, it is preferably fine enough not to block the tip (inner diameter is 1 mm) of the syringe. . Accordingly, the longest diameter of the powder particles is preferably 100 μm or less, more preferably 50 μm or less, and particularly preferably 10 μm or less. The particle diameter of the powder can be visually observed using various microscopes such as an optical microscope and an electron microscope.
 尚、ここで、「水」とは、医薬・バイオテクノロジー分野において、一般的に純水又は超純水と呼ばれる水であって、通常、イオン交換法、蒸留法、逆浸透膜法、及び(逆浸透+連続イオン交換法)から選択される少なくとも一種を用いて精製された水をいい、超純水が好ましく、ミリポア社製の超純水装置ミリQ(Milli-Q)(商品名)により精製された超純水(いわゆる、ミリQ水)がより好ましいが、本発明が目的とする生体用接着材料が得られる限り特に制限されるものではない。一般的に「純水」とは、比抵抗が1MΩ・cm(25℃)以上、好ましくは3MΩ・cm(25℃)以上を示す水をいい、「超純水」とは、比抵抗が15MΩ・cm(25℃)以上、好ましくは18MΩ・cm(25℃)以上を示し、有機物量(TOC)が50ppb以下、好ましくは20ppb以下であるものをいう。 Here, “water” refers to water generally referred to as pure water or ultrapure water in the field of medicine and biotechnology, and is usually an ion exchange method, a distillation method, a reverse osmosis membrane method, and ( It means water purified using at least one selected from reverse osmosis + continuous ion exchange method, and ultrapure water is preferable, and the ultrapure water device Milli-Q (trade name) manufactured by Millipore is used. Purified ultrapure water (so-called milli-Q water) is more preferable, but is not particularly limited as long as the bioadhesive material intended by the present invention is obtained. In general, “pure water” refers to water having a specific resistance of 1 MΩ · cm (25 ° C.) or higher, preferably 3 MΩ · cm (25 ° C.) or higher. “Ultra pure water” refers to a specific resistance of 15 MΩ. It indicates cm (25 ° C.) or more, preferably 18 MΩ · cm (25 ° C.) or more, and has an organic content (TOC) of 50 ppb or less, preferably 20 ppb or less.
 フィブリノーゲンとトロンビンを混合することで得られるフィブリン糊をゲル化して、糊として機能させるためには、フィブリン糊のpHは5.5より大きく7.0以下という特定の値の範囲にpHを調整しなければならないことが知られている。常套のコラーゲンは、通常、この範囲のpHより、pHの値がより小さいので、より酸性を示すことが知られている。本発明者等は、フィブリン糊のゲル化を考慮して、コラーゲンが示すpHは、水に濃度10g/Lで溶解したときに、5.5より大きく7.0以下であることが必要であると考えて、そのようなコラーゲンを用いて検討を行った。(c)コラーゲンが示すpHは、6.0~7.0であることが好ましく、6.5~7.0であることがより好ましい。 In order to gel the fibrin glue obtained by mixing fibrinogen and thrombin and to function as glue, the pH of the fibrin glue is adjusted to a specific value range of 5.5 to 7.0. It is known that there must be. Conventional collagen is generally known to be more acidic because of its lower pH value than this range of pH. In consideration of the gelation of fibrin glue, the present inventors need that the pH exhibited by collagen be greater than 5.5 and less than or equal to 7.0 when dissolved in water at a concentration of 10 g / L. Therefore, we examined using such collagen. (C) The pH exhibited by the collagen is preferably 6.0 to 7.0, more preferably 6.5 to 7.0.
 このような(c)コラーゲンは、常套のコラーゲンを、上述の水、好ましくは超純水、より好ましくはミリQ水に1重量%となるように混合し、攪拌して溶解して溶解液を得た後、0.1NのHClを用いて、この溶解液のpHを5.5より大きく7.0以下となるように調節し、凍結乾燥することによって得ることができる。(c)コラーゲンのpHの値として、この溶解液のpHを、pHメーターで測定して得た値を示した。通常、この0.1NHClを用いて調節された溶解液のpHは、コラーゲンを水に濃度10g/Lで溶解したときに示すpHの値と実質的に等しいと考えられる。上述のコラーゲンの上記溶解液のpHを、6.0~7.0となるように調節して、凍結乾燥して得られるコラーゲンが、(c)コラーゲンとして好ましく、pHを6.5~7.0となるように調節して、凍結乾燥して得られるコラーゲンが、(c)コラーゲンとしてより好ましい。 Such (c) collagen is prepared by mixing conventional collagen with the above-mentioned water, preferably ultrapure water, more preferably 1% by weight, and stirring to dissolve. Then, the pH of the lysate can be adjusted to be greater than 5.5 and less than 7.0 using 0.1 N HCl and lyophilized. (C) As a value of collagen pH, a value obtained by measuring the pH of the lysate with a pH meter is shown. Usually, the pH of the lysate adjusted with 0.1N HCl is considered to be substantially equal to the pH value shown when collagen is dissolved in water at a concentration of 10 g / L. Collagen obtained by adjusting the pH of the above-mentioned collagen solution to 6.0 to 7.0 and freeze-drying is preferred as (c) collagen, and the pH is 6.5 to 7. Collagen obtained by adjusting to 0 and freeze-drying is more preferable as (c) collagen.
 凍結乾燥は、常套の方法を用いて行うことができる。凍結温度は、コラーゲンを凍結乾燥することができ、目的とする生体用接着剤を得ることができれば特に制限されるものではない。凍結乾燥して得られるコラーゲンの構造に応じて適宜凍結温度を選択することができる。一般的に-20℃付近で凍結すると線維状又はスポンジ状コラーゲンが得られ、-80℃付近で凍結すると、薄フィルム多房状コラーゲンが得られ、-196℃付近で凍結すると、線維状又はスポンジ状コラーゲンが得られる。組織再生能力の点から、コラーゲンは、薄フィルム多房状コラーゲンが好ましく、凍結温度は、-70℃~-100℃がより好ましく、-80~-90℃が特に好ましい。凍結乾燥は、凍結した温度で、例えば、薄フィルム多房状コラーゲンを得た場合、-80℃~-90℃の温度で、5.0Pa以下に減圧して、24時間行うことが好ましい。 Freeze-drying can be performed using a conventional method. The freezing temperature is not particularly limited as long as collagen can be freeze-dried and a target bioadhesive can be obtained. The freezing temperature can be appropriately selected according to the structure of collagen obtained by lyophilization. Generally, fibrous or sponge-like collagen is obtained when frozen at around -20 ° C, thin film multitufted collagen is obtained when frozen at around -80 ° C, and fibrous or sponge is obtained when frozen at around -196 ° C. Collagen collagen is obtained. From the viewpoint of tissue regeneration ability, the collagen is preferably thin film multitufted collagen, the freezing temperature is more preferably −70 ° C. to −100 ° C., and particularly preferably −80 to −90 ° C. The lyophilization is preferably performed at a frozen temperature, for example, when a thin film multitufted collagen is obtained, at a temperature of −80 ° C. to −90 ° C., decompressed to 5.0 Pa or less, and performed for 24 hours.
 本発明に係るコラーゲンは、水性媒体に溶解及び/又は分散し易いことが好ましく、そのため、架橋されていないことが好ましい。コラーゲンは、架橋されていない、即ち、未架橋であることによって、本発明に係る生体用接着剤の均一性がより向上し、注射剤として使用した場合により注射し易い接着剤を得ることができる。 The collagen according to the present invention is preferably easily dissolved and / or dispersed in an aqueous medium, and therefore is preferably not crosslinked. Collagen is not cross-linked, that is, is not cross-linked, so that the uniformity of the bioadhesive according to the present invention is further improved, and an adhesive that is easier to inject when used as an injection can be obtained. .
 本発明に係る「(d)粉末状ポリグルコール酸(以下、「(d)PGA」ともいう)」とは、粉末状に粉砕したPGAであって、本発明が目的とする生体用接着剤を得ることができれば、特に制限されるものではない。
 本発明に係るPGAに関し「粉末状」とは、砕けて細かくなった状態をいい、注射器の先端(内径が1mm)を閉塞しない程度に細かいことが好ましい。従って、粉末の粒子は、その一番長い径が、100μm以下であることが好ましく、50μm以下であることがより好ましく、10μm以下であることが特に好ましい。粉末の粒子の径は、光学顕微鏡、電子顕微鏡等の各種顕微鏡を用いて目視で観察することができる。
The “(d) powdery polyglycolic acid (hereinafter also referred to as“ (d) PGA ”” ”according to the present invention is a PGA pulverized into a powder form, and the bioadhesive intended by the present invention If it can be obtained, it is not particularly limited.
Regarding the PGA according to the present invention, “powdered” means a state of being crushed and made fine, and is preferably fine enough not to block the tip (inner diameter is 1 mm) of the syringe. Accordingly, the longest diameter of the powder particles is preferably 100 μm or less, more preferably 50 μm or less, and particularly preferably 10 μm or less. The particle diameter of the powder can be visually observed using various microscopes such as an optical microscope and an electron microscope.
 一般的にPGAは、生分解性の合成高分子であり、縫合糸や組織補強材料として使用されるので、強度を高めるために、約20万から30万の重量平均分子量を有するものが合成されている。
 しかし、水への溶解性及び/又は分散性を考慮すると、より低分子量であることが好ましく、重量平均分子量は、1000~50000であることが好ましく、3000~400000であることがより好ましく、5000~30000であることが特に好ましい。
Generally, PGA is a biodegradable synthetic polymer and is used as a suture thread or tissue reinforcing material. Therefore, in order to increase the strength, PGA having a weight average molecular weight of about 200,000 to 300,000 is synthesized. ing.
However, considering the solubility in water and / or dispersibility, the molecular weight is preferably lower, and the weight average molecular weight is preferably 1000 to 50000, more preferably 3000 to 400000. It is particularly preferably from ˜30000.
 このような分子量がより小さい(d)PGAは、例えば、ラウリルアルコール等の沸点の高いアルコール類、乳酸及びグリコール酸又はそれらのエステル化物等をグリコリドに添加して、バルク重合することによって、製造することができることは周知のことである(例えば、Chang-Ming Dong et al; Polymer42(2001)6891-6896参照)。その重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)を用いて測定することができる。GPC測定条件等の詳細は、実施例に記載した。 Such (d) PGA having a lower molecular weight is produced by bulk polymerization by adding alcohols having a high boiling point such as lauryl alcohol, lactic acid and glycolic acid or esterified products thereof to glycolide, for example. It is well known that this can be done (see, for example, Chang-Ming Dong et al; Polymer 42 (2001) 6891-6896). The weight average molecular weight can be measured using GPC (gel permeation chromatography). Details such as GPC measurement conditions are described in the examples.
 本発明に係る生体用接着材料は、通常、上述の(a)~(d)成分を含んで成る水性液の形態を有し、一般的に、ゲル状の形態を有する。
 (d)PGAが比較的水性媒体に溶解し難く、沈殿しやすい成分であるが、一緒に混合する(c)コラーゲンは、水性媒体に溶解及び/又は分散して比較的粘度の高い水性液を形成することができるので、(d)PGAは、沈殿することはなく、その結果、水性媒体に均一に成分(a)~(d)が分散及び/又は溶解した水性液の形態の生体用接着材料を得ることができる。
The bioadhesive material according to the present invention usually has a form of an aqueous liquid containing the above-described components (a) to (d), and generally has a gel-like form.
(D) PGA is a component that is relatively hardly dissolved in an aqueous medium and easily precipitated, but is mixed together. (C) Collagen is dissolved and / or dispersed in an aqueous medium to form an aqueous liquid having a relatively high viscosity. (D) PGA does not precipitate, so that the bioadhesive in the form of an aqueous liquid in which the components (a) to (d) are uniformly dispersed and / or dissolved in an aqueous medium. Material can be obtained.
 本発明に係る生体用接着材料は、(a)~(d)成分を含んで成る水性液を基準(100g当たり)として、(a)フィブリノーゲンを、1~5g含むことが好ましく、3~5g含むことがより好ましく、4~5g含むことが特に好ましい。
 (b)トロンビンを、10~250単位含むことが好ましく、15~100単位含むことがより好ましく、20~30単位含むことが特に好ましい。
 (c)pHは5.5より大きく7.0以下のコラーゲンを、1~20g含むことが好ましく、3~10g含むことがより好ましく、4~6g含むことが特に好ましい。
 (d)粉末状ポリグルコール酸(PGA)を、1~20g含むことが好ましく、3~10g含むことがより好ましく、4~6g含むことが特に好ましい。
The bioadhesive material according to the present invention preferably contains 1 to 5 g of (a) fibrinogen, based on an aqueous liquid containing the components (a) to (d) (per 100 g). More preferably, 4 to 5 g is particularly preferable.
(B) Thrombin is preferably contained in an amount of 10 to 250 units, more preferably 15 to 100 units, and particularly preferably 20 to 30 units.
(C) It is preferable that 1 to 20 g of collagen having a pH greater than 5.5 and not more than 7.0 is contained, more preferably 3 to 10 g, and particularly preferably 4 to 6 g.
(D) 1 to 20 g of powdered polyglycolic acid (PGA) is preferably contained, more preferably 3 to 10 g, and particularly preferably 4 to 6 g.
 本発明は、上述した生体用接着材料を得るための、(a)フィブリノーゲン、(b)トロンビン、(c)pHは5.5より大きく7.0以下のコラーゲン及び(d)粉末状ポリグルコール酸(PGA)の組み合わせを提供する。
 この組み合わせは、四成分型接着剤ということもできる。使用する直前に四つの成分全部を一度に混合して本発明に係る生体用接着材料を製造して使用することができる。
The present invention provides (a) fibrinogen, (b) thrombin, (c) collagen having a pH of more than 5.5 and not more than 7.0, and (d) powdered polyglycolic acid for obtaining the above-mentioned bioadhesive material. (PGA) combinations are provided.
This combination can also be referred to as a four-component adhesive. The bioadhesive material according to the present invention can be produced and used by mixing all four components at once just before use.
 更に、(a)フィブリノーゲンを含む第一成分(具体的には、原液又は水性液)と、(b)トロンビン、(c)コラーゲン及び(d)PGAの三成分を含む第二成分(具体的には水性液)の二種類の成分の組み合わせを一旦作成することができる。これは、いわゆる二成分型生体用接着材料ということができる。この二種類の成分を混合して本発明に係る生体用接着材料を製造して使用することができる。
 尚、これらの四つの成分の組み合わせ及び二種類の成分の組み合わせは、混合して得られる本発明に係る生体用接着剤に関して、(a)~(d)成分を含んで成る水性液を基準(100g当たり)とする、(a)~(d)成分の上述の量的な関係を満たすことが好ましい。
Furthermore, (a) a first component containing fibrinogen (specifically, a stock solution or an aqueous solution), and a second component containing three components (specifically, (b) thrombin, (c) collagen, and (d) PGA (specifically, A combination of two types of components (aqueous liquid) can be once created. This can be called a so-called two-component biomedical adhesive material. The bioadhesive material according to the present invention can be used by mixing these two kinds of components.
The combination of these four components and the combination of the two components are based on the aqueous liquid containing the components (a) to (d) with respect to the bioadhesive according to the present invention obtained by mixing ( It is preferable to satisfy the above-described quantitative relationship of the components (a) to (d).
 本発明に係る生体用接着剤を製造するための(a)~(d)成分の混合は、通常使用される混合方法を使用して行うことができる。製造した生体用接着剤は、種々の器具、例えば、シリンジ等を用いて生体の種々の臓器に塗工することができる。
 本発明に係る生体用接着材料は、注射器を使用して注射剤として瘻管内に入れて、瘻管を閉塞するために好適に使用することができる。
 瘻管を閉塞するために、上述の二種類の成分の組み合わせ((a)成分を含む第一成分と(b)~(d)成分を含む第二成分の組み合わせ)、即ち、二成分型接着材料を、二種類の成分の各々を同時に押し出して注射器先端で混合しながら瘻管に入れることができる注射器、即ち、デュアルシリンジを用いて、使用することが好ましい。
The mixing of the components (a) to (d) for producing the bioadhesive according to the present invention can be performed using a commonly used mixing method. The produced biomedical adhesive can be applied to various organs of a living body using various instruments such as a syringe.
The bioadhesive material according to the present invention can be suitably used for closing a fistula by placing it in a fistula as an injection using a syringe.
A combination of the above-mentioned two kinds of components (a combination of the first component containing the component (a) and the second component containing the components (b) to (d)) for closing the fistula, that is, a two-component adhesive material Is preferably used with a syringe, ie a dual syringe, that can be extruded into the fistula while simultaneously mixing each of the two components and mixing at the tip of the syringe.
 本発明に係る生体用接着材料は、種々の臓器、例えば、消化器、呼吸器、循環器等に使用することができるが、それらに生じた瘻管の閉鎖に好適に使用することができる。例えば、消化管皮膚瘻(クローン病、潰瘍性大腸炎等の炎症性腸疾患、術後の消化管縫合不全の遅延化による瘻孔、術後胆汁瘻、術後膵液瘻等)、痔瘻、術後気管支断端瘻、膀胱膣瘻、直腸膣瘻、気管食道瘻、隣接する臓器で瘻孔を形成するような病態等に好適に使用することができる。本発明に係る生体用接着材料を使用することで、種々の臓器に生じた瘻管を低侵襲な方法で閉塞することができる。 The bioadhesive material according to the present invention can be used for various organs, for example, digestive organs, respiratory organs, circulatory organs, etc., and can be preferably used for closing the fistulas generated in them. For example, GI cutaneous fistula (Inflammatory bowel diseases such as Crohn's disease, ulcerative colitis, fistula due to delayed postoperative gastrointestinal suture failure, postoperative bile fistula, postoperative pancreatic fistula etc.), fistula, postoperative It can be suitably used for bronchial stump fistula, bladder vaginal fistula, rectal vaginal fistula, tracheoesophageal fistula, pathological condition in which fistula is formed in adjacent organs, and the like. By using the bioadhesive material according to the present invention, fistulas generated in various organs can be closed by a minimally invasive method.
 本発明に係る生体用接着材料は、患者のベッドサイドで簡単に調合することができるので、使用が容易である。更に、造影剤等を混合することによって、透視下で、種々の病気を治療することができる。 The bioadhesive material according to the present invention is easy to use because it can be easily formulated at the patient's bedside. Furthermore, various diseases can be treated under fluoroscopy by mixing a contrast medium or the like.
 本発明に係る生体用接着材料は、上述したような優れた効果を奏するが、それは、以下のような理由によるものと考えられる。
 本発明者等は、フィブリン糊が、瘻管内に長期に渡って留まり、瘻管が治癒して塞がらない理由は、フィブリン糊は、瘻管の周囲の組織から細胞や血管等の組織を誘導することなく、単に分解して縮小するからであると考えた。そこで、フィブリン糊の生体用接着材料としての長所を生かしつつ、フィブリン糊が分解縮小するとともに、瘻管内部に新たな組織を生じさせることを考えた。
The biomedical adhesive material according to the present invention has the excellent effects as described above, which is considered to be due to the following reasons.
The reason why the fibrin glue stays in the fistula for a long time and the fistula is not healed and clogged is because the fibrin glue does not induce tissue such as cells and blood vessels from the tissue around the fistula. I thought it was because it was simply decomposed and reduced. Thus, while taking advantage of fibrin glue as a bioadhesive material, we considered that fibrin glue decomposes and shrinks and creates a new tissue inside the tubule.
 本発明者等は、種々の検討を行った結果、上述した特定の成分である(c)pHは5.5より大きく7.0以下のコラーゲン及び(d)粉末状ポリグルコール酸を更に加えてフィブリン糊を製造すると、フィブリン糊の生体用接着材料としての長所を生かしつつ、フィブリン糊が分解縮小するとともに、瘻管内部に新たな組織を生じさせることができることを見出して本発明を完成したものである。加えられた(c)コラーゲンと(d)ポリグルコール酸は、瘻管の周囲の組織から、細胞や血管等の新たな組織を誘導する効率を著しく向上すると考えられる。 As a result of various studies, the present inventors have further added (c) collagen having a pH of more than 5.5 and not more than 7.0, and (d) powdered polyglycolic acid, which are the specific components described above. The manufacture of fibrin glue has been accomplished by discovering that fibrin glue can be decomposed and reduced and that a new tissue can be formed inside the fistula, while taking advantage of fibrin glue as a bioadhesive material. is there. The added (c) collagen and (d) polyglycolic acid are considered to significantly improve the efficiency of inducing new tissues such as cells and blood vessels from tissues around the fistula.
 尚、本発明に係る(c)コラーゲンと(d)ポリグルコール酸ではなく、一般的な単なる「コラーゲン」と「ポリグルコール酸」を用いると、フィブリン糊はゲル化せず接着材料として機能しない、均一な接着材料を得ることができず結果的に使用できない、シリンジの先端で詰まってしまう等の問題を生じ、目的とする生体用接着材料を得ることが困難であると考えられる。 In addition, when (c) collagen and (d) polyglycolic acid according to the present invention are used instead of general “collagen” and “polyglycolic acid”, the fibrin glue does not gel and does not function as an adhesive material. A uniform adhesive material cannot be obtained, resulting in problems such as being unusable and clogging at the tip of the syringe, and it is considered difficult to obtain the target biomedical adhesive material.
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はその要旨を逸脱しない限り以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to the following examples without departing from the gist thereof.
 使用した材料を、以下説明する。
 <コラーゲン>
 日本ハム社製(NMPコラーゲンPSN(商品名))のブタのコラーゲンを、MILLIPORE社製のMilli-Q spU(精製装置名)を用いて作成したミリQ水に、1重量%となるように混合し、攪拌して溶解した。この水溶液のpHを、0.1NのHClを用いて、6.5~7.0になるように調節した。pHは、pHメーター(HORIBA製のTwin pH B-212(商品名)を用いて測定した。作成したコラーゲン水溶液を容器に流し込み、-80℃で固めた。十分に固まった後、-80℃で凍結乾燥した。尚、コラーゲンに通常施される熱架橋は行わなかった。48時間の凍結乾燥後、容器から乾燥したコラーゲンを取り出した。
 このコラーゲンを、大阪ケミカル製のワンダーブレンダー WB-1を用いて30秒間~1分間粉砕することによって、微粉化した。
 コラーゲンは、エチレンオキサイドガスを用いて40℃で22時間30分、減菌した。
The materials used will be described below.
<Collagen>
Pig collagen from Nippon Ham Co., Ltd. (NMP Collagen PSN (trade name)) was mixed with Milli-Q spU (purification equipment name) made by MILLIPORE so as to be 1% by weight. And dissolved by stirring. The pH of this aqueous solution was adjusted to 6.5 to 7.0 using 0.1 N HCl. The pH was measured using a pH meter (Twin pH B-212 (trade name) manufactured by HORIBA. The prepared collagen aqueous solution was poured into a container and solidified at −80 ° C. After sufficiently solidified, at −80 ° C. After the freeze-drying for 48 hours, the dried collagen was taken out from the container.
The collagen was pulverized by pulverization for 30 seconds to 1 minute using a wonder blender WB-1 manufactured by Osaka Chemical.
The collagen was sterilized using ethylene oxide gas at 40 ° C. for 22 hours and 30 minutes.
 <ポリグルコール酸>
 分子量調整剤(酢酸エチル)、グリコリド及び重合開始剤(オクチル酸錫、約0.005~0.01重量%程度)を重合管に入れ、減圧して真空にした後、管を封じて、オイルバス(約140℃)で、24~48時間加熱して、重合させることで、重量平均分子量が約24000のPGAを合成した。
 得られたPGAの重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)を用いて測定される、単分散分子量ポリスチレンで換算された重量平均分子量をいう。より具体的には、下記のGPC装置及び測定方法を用いて測定された値をいい、本発明者は後述する実施例においても、下記の装置及び測定方法を用いた。
<Polyglycolic acid>
A molecular weight regulator (ethyl acetate), glycolide and a polymerization initiator (tin octylate, about 0.005 to 0.01% by weight) are placed in a polymerization tube, vacuumed and vacuumed, and the tube is sealed and oil PGA having a weight average molecular weight of about 24,000 was synthesized by heating in a bath (about 140 ° C.) for 24 to 48 hours for polymerization.
The weight average molecular weight of the obtained PGA refers to the weight average molecular weight converted by monodisperse molecular weight polystyrene, measured using GPC (gel permeation chromatography). More specifically, it refers to a value measured using the following GPC apparatus and measurement method, and the present inventor also used the following apparatus and measurement method in Examples described later.
 GPC装置はゲル浸透クロマトグラフGPC(機器No.GPC-14)を用い、検出器として、示差屈折率検出器RI(Waters社製のRI-2414型、感度512)を用いた。GPCカラムとして、昭和電工製のShodex HFIP-806M(2本)(S/N A805260、A805261、φ7.8mm×30cm)を用いた。3mgの試料に5mlの溶媒(5mMの濃度でトリフルオロ酢酸ナトリウムが添加されたヘキサフルオロイソプロパノール)を加えて、40℃で4時間緩やかに撹拌後、0.45μmのフィルターを用いて濾過した試料を用いた。カラム温度は、40℃で、同様の溶媒を用いた。流量は、0.5ml/分であった。試料の秤量から繰り返し2回測定を行い、得られたMn及びMwの平均値を、PGAのMn及びMwとした。Mnは約16,000、Mwは約24,000であった。
 このPGAを、大阪ケミカル製のワンダーブレンダー WB-1を用いて30秒間~1分間粉砕することによって、微粉化した。粉の寸法は、OLYMPUS製の光学顕微鏡BX40(商品名)を用いて測定して、約10~100μmであった。
 PGAは、エチレンオキサイドガスを用いて40℃で22時間30分、減菌した。
A gel permeation chromatograph GPC (equipment No. GPC-14) was used as the GPC apparatus, and a differential refractive index detector RI (RI-2414, manufactured by Waters, sensitivity 512) was used as a detector. As the GPC column, Shodex HFIP-806M (2 pieces) (S / N A805260, A805261, φ7.8 mm × 30 cm) manufactured by Showa Denko was used. To 3 mg of sample, add 5 ml of solvent (hexafluoroisopropanol to which sodium trifluoroacetate was added at a concentration of 5 mM), gently stir at 40 ° C. for 4 hours, and then filter the sample using a 0.45 μm filter. Using. The column temperature was 40 ° C. and the same solvent was used. The flow rate was 0.5 ml / min. The measurement was repeated twice from the sample weight, and the average value of the obtained Mn and Mw was defined as Mn and Mw of PGA. Mn was about 16,000 and Mw was about 24,000.
The PGA was pulverized by pulverizing for 30 seconds to 1 minute using a wonder blender WB-1 manufactured by Osaka Chemical. The size of the powder was about 10 to 100 μm as measured using an optical microscope BX40 (trade name) manufactured by OLYMPUS.
PGA was sterilized using ethylene oxide gas at 40 ° C. for 22 hours and 30 minutes.
<フィブリノーゲン液(A液)>
 フィブリノーゲン液は、市販のもの(原液、フィブリノーゲンを8重量%含む)(化学及び血清療法研究所製のボルヒール(商品名))をそのまま使用した。
<トロンビン液(B液)>
 トロンビン液は、市販のもの(原液、トロンビンを250単位/ml含む)(化学及び血清療法研究所製のボルヒール(商品名))を、生理食塩水を使用して10倍に希釈して用いた。
<Fibrinogen solution (A solution)>
As the fibrinogen solution, a commercially available product (stock solution, containing 8% by weight of fibrinogen) (Bolheel (trade name) manufactured by Chemistry and Serum Therapy Laboratory) was used as it was.
<Thrombin solution (B solution)>
As the thrombin solution, a commercially available solution (stock solution, containing 250 units / ml of thrombin) (Bolheel (trade name) manufactured by Chemistry and Serum Therapy Laboratory) was diluted 10-fold with physiological saline and used. .
 実施例1
 上述のコラーゲン粉末0.1gとPGA粉末0.1gを、1mlのトロンビン液(上述の10倍に希釈したもの)と混合して、混合トロンビン液を得た。
 デュアルシリンジ(Plas-Pak Industries,Inc製のMini-Dual Syringe(商品名))の一方に、フィブリノーゲン液を1ml入れ、他方に混合トロンビン液を1ml入れた。デュアルシリンジの内筒を押すことで、両者を当量ずつ押し出して、実施例1に係る生体用接着材料を製造すると同時に、シリンジの先から、細い瘻管内へ、注入することができた。
Example 1
The collagen powder 0.1 g and the PGA powder 0.1 g were mixed with 1 ml of thrombin solution (diluted 10 times as described above) to obtain a mixed thrombin solution.
1 ml of fibrinogen solution was placed in one of the dual syringes (Mini-Dual Syringe (trade name) manufactured by Plas-Pak Industries, Inc.), and 1 ml of the mixed thrombin solution was placed in the other. By pushing the inner cylinder of the dual syringe, both were extruded in an equivalent amount, and at the same time, the bioadhesive material according to Example 1 was manufactured, and at the same time, it was able to be injected into a thin tubule.
 実施例1に係る生体用接着材料をSDラット皮下に、直径5mm、長さ10mmの円筒形の形状の材料としてデュアルシリンジを用いて製造すると同時に埋入した。HematoxylinとEosin染料で染色し、光学顕微鏡(OLYMPUS製のBX40(商品名))を使用して40倍と200倍で目視観察した。円筒形の生物用接着材料の中央部分の光学顕微鏡写真を、図2(a)~(d)に示す。
 図2(a)は、3日後40倍、図2(b)は、3日後200倍、図2(c)は21日後40倍、図2(d)は28日後40倍で、円筒形の生物用接着材料の中央部分の組織の様子を示す。
The bioadhesive material according to Example 1 was manufactured using a dual syringe as a cylindrical shape material having a diameter of 5 mm and a length of 10 mm under the SD rat. It dye | stained with Hematoxylin and Eosin dye, and visually observed at 40 times and 200 times using the optical microscope (BX40 (brand name) made from OLYMPUS). Optical micrographs of the central portion of the cylindrical biological adhesive material are shown in FIGS. 2 (a) to 2 (d).
2 (a) is 40 times after 3 days, FIG. 2 (b) is 200 times after 3 days, FIG. 2 (c) is 40 times after 21 days, and FIG. 2 (d) is 40 times after 28 days. The state of the tissue in the central part of the biological adhesive material is shown.
 図2(a)に示すように、3日目には、楕円状に見える接着材料の内部にラットの炎症細胞等の細胞が侵入していることが認められた。この侵入は、中央部まで達していた。図2(b)は、図2(a)の接着材料の中央部を拡大したものである。紫色の点々は、ラットの細胞と考えられる。図2(c)及び(d)に示すように、2~3週間で、ラットの細胞によって、接着材料の内部にラットの組織が完全に再構築されるとともに、接着材料は徐々に分解された。図2(d)では、少量のグルコール酸は、残存しているが、接着材料全体として分解は順調に進んでいた。 As shown in FIG. 2 (a), on the third day, it was confirmed that cells such as rat inflammatory cells had entered the adhesive material that appeared to be elliptical. This invasion had reached the center. FIG. 2B is an enlarged view of the central portion of the adhesive material of FIG. Purple dots are considered rat cells. As shown in FIGS. 2 (c) and (d), in 2-3 weeks, rat cells completely remodeled the rat tissue within the adhesive material, and the adhesive material gradually degraded in 2-3 weeks. . In FIG. 2 (d), a small amount of glycolic acid remains, but the decomposition progressed smoothly as a whole of the adhesive material.
 比較例1
 比較例1に係る生体用接着材料は、フィブリノーゲン液とトロンビン液(上述の10倍に希釈したもの)を混合して得た。
 即ち、デュアルシリンジ(Plas-Pak Industries,Inc製のMini-Dual Syringe(商品名))の一方に、フィビリノーゲン液を1ml入れ、トロンビン液を1ml入れた。デュアルシリンジの内筒を押すことで、両者を当量ずつ押し出して、比較例1に係る生体用接着材料を製造した。この生体用接着材料は、通常のフィブリン糊に対応する。
Comparative Example 1
The bioadhesive material according to Comparative Example 1 was obtained by mixing a fibrinogen solution and a thrombin solution (diluted 10 times as described above).
That is, 1 ml of fibrinogen solution and 1 ml of thrombin solution were placed in one of the dual syringes (Mini-Dual Syringe (trade name) manufactured by Plas-Pak Industries, Inc.). By pressing the inner cylinder of the dual syringe, both were extruded in an equivalent amount, and the bioadhesive material according to Comparative Example 1 was produced. This bioadhesive material corresponds to normal fibrin glue.
 比較例1に係る生体用接着材料をSDラット皮下に、直径5mm、長さ10mmの円筒形の形状の材料としてデュアルシリンジを用いて製造すると同時に埋入した。HematoxylinとEosin染料で染色し、光学顕微鏡(OLYMPUS製のBX40(製品名))を使用して40倍で目視観察した。円筒形の生物用接着材料の中央部分の光学顕微鏡写真を、図3(a)~(d)に示す。
 図3(a)は、3日後40倍、図3(b)は、7日後40倍、図3(c)は14日後40倍、図3(d)は28日後40倍で、円筒形の生物用接着材料の中央部分の組織の様子を示す。
The bioadhesive material according to Comparative Example 1 was manufactured by using a dual syringe as a cylindrical material having a diameter of 5 mm and a length of 10 mm under the SD rat, and was implanted at the same time. The sample was stained with Hematoxylin and Eosin dye, and visually observed at 40 times using an optical microscope (BX40 (product name) manufactured by OLYMPUS). 3A to 3D show optical micrographs of the central part of the cylindrical biological adhesive material.
3 (a) is 40 times after 3 days, FIG. 3 (b) is 40 times after 7 days, FIG. 3 (c) is 40 times after 14 days, and FIG. 3 (d) is 40 times after 28 days. The state of the tissue in the central part of the biological adhesive material is shown.
 図3(a)~(d)に示すように、楕円形の生体用接着材料は徐々に小さくなるが、その周囲にあるラットの皮下組織から接着材料の内部に細胞や血管が侵入してラットの組織が構築されることはなかった。楕円形の生体用接着材料とラット皮下組織の間には、隙間が常に存在した。このことが、コラーゲン粉末とPGA粉末を混合していない、フィブリン糊では、ある程度小さくなったときに、容易に瘻管から脱落する原因であると思われる。 As shown in FIGS. 3 (a) to 3 (d), the oval biomedical adhesive material gradually becomes smaller, but cells and blood vessels invade into the adhesive material from the rat's surrounding subcutaneous tissue. The organization was never built. There was always a gap between the oval bioadhesive material and the rat subcutaneous tissue. This is considered to be a cause of easily falling off the fistula when fibrin glue, in which collagen powder and PGA powder are not mixed, becomes small to some extent.
 比較例2
 上述のコラーゲン粉末0.1gを、1mlのトロンビン液(上述の10倍に希釈したもの)と混合して、混合トロンビン液を得た。
 デュアルシリンジ(Plas-Pak Industries,Inc製のMini-Dual Syringe(商品名))の一方に、フィブリノーゲン液を1ml入れ、他方に混合トロンビン液を1ml入れた。デュアルシリンジの内筒を押すことで、両者を当量ずつ押し出して、比較例2に係る生体用接着材料を製造した。
Comparative Example 2
0.1 g of the above collagen powder was mixed with 1 ml of thrombin solution (diluted 10 times as described above) to obtain a mixed thrombin solution.
1 ml of fibrinogen solution was placed in one of the dual syringes (Mini-Dual Syringe (trade name) manufactured by Plas-Pak Industries, Inc.), and 1 ml of the mixed thrombin solution was placed in the other. By pressing the inner cylinder of the dual syringe, both were extruded in an equivalent amount, and the bioadhesive material according to Comparative Example 2 was produced.
 比較例2に係る生体用接着材料をSDラット皮下に、直径5mm、長さ10mmの円筒形の形状の材料としてデュアルシリンジを用いて製造すると同時に埋入した。HematoxylinとEosin染料で染色し、光学顕微鏡(OLYMPUS製のBX40(製品名))を使用して40倍と200倍で目視観察した。円筒形の生物用接着材料の中央部分の光学顕微鏡写真を、図4(a)~(d)に示す。
 図4(a)は、3日後40倍、図4(b)は、7日後40倍、図4(c)は21日後40倍、図4(d)は28日後40倍で、円筒形の生物用接着材料の中央部分の組織の様子を示す。
The bioadhesive material according to Comparative Example 2 was manufactured by using a dual syringe as a cylindrical material having a diameter of 5 mm and a length of 10 mm under the SD rat, and was implanted at the same time. The sample was stained with Hematoxylin and Eosin dyes, and visually observed at 40 and 200 times using an optical microscope (BX40 (product name) manufactured by OLYMPUS). Optical micrographs of the central part of the cylindrical biological adhesive material are shown in FIGS.
4 (a) is 40 times after 3 days, FIG. 4 (b) is 40 times after 7 days, FIG. 4 (c) is 40 times after 21 days, and FIG. 4 (d) is 40 times after 28 days. The state of the tissue in the central part of the biological adhesive material is shown.
 図4(a)~(d)に示すように、楕円形の生体用接着材料は徐々に小さくなるが、その周囲にあるラットの皮下組織から接着材料の内部に細胞や血管が侵入してラットの組織が構築されることはなかった。尚、比較例2の生体用接着材料は、フィブリン糊がコラーゲンを含む場合であるが、フィブリン糊の内部に空隙が見られる。 As shown in FIGS. 4 (a) to 4 (d), the oval bioadhesive material gradually becomes smaller, but cells and blood vessels invade into the adhesive material from the rat's surrounding tissue around the rat. The organization was never built. In the bioadhesive material of Comparative Example 2, the fibrin glue contains collagen, but voids are observed inside the fibrin glue.
 本発明に係る生体用接着材料は、(a)フィブリノーゲン、(b)トロンビン、(c)pHは5.5より大きく7.0以下のコラーゲン及び(d)粉末状ポリグルコール酸(PGA)を混合して得られ、種々の臓器、例えば、消化器、呼吸器、循環器等に使用することができるが、特に、それらに生じた瘻管の閉鎖に好適に使用することができる。例えば、消化管皮膚瘻(クローン病、潰瘍性大腸炎等の炎症性腸疾患、術後の消化管縫合不全の遅延化による瘻孔、術後胆汁瘻、術後膵液瘻等)、痔瘻、術後気管支断端瘻、膀胱膣瘻、直腸膣瘻、気管食道瘻、隣接する臓器で瘻孔を形成するような病態等に好適に使用することができる。本発明に係る生体用接着材料を使用することで、種々の臓器に生じた瘻管を低侵襲な方法で閉塞することができる。
 [関連出願]
 尚、本出願は、2011年1月12日に日本国でされた出願番号2011-03841を基礎出願とするパリ条約第4条又は日本国特許法第41条に基づく優先権を主張する。この基礎出願の内容は、参照することによって、本明細書に組み込まれる。
The bioadhesive material according to the present invention comprises (a) fibrinogen, (b) thrombin, (c) collagen having a pH of more than 5.5 and not more than 7.0, and (d) powdered polyglycolic acid (PGA). It can be used for various organs such as digestive organs, respiratory organs, circulatory organs, etc., but it can be suitably used particularly for closing the fistula generated in them. For example, GI cutaneous fistula (Inflammatory bowel diseases such as Crohn's disease, ulcerative colitis, fistula due to delayed postoperative gastrointestinal suture failure, postoperative bile fistula, postoperative pancreatic fistula etc.), fistula, postoperative It can be suitably used for bronchial stump fistula, bladder vaginal fistula, rectal vaginal fistula, tracheoesophageal fistula, pathological condition in which fistula is formed in adjacent organs, and the like. By using the bioadhesive material according to the present invention, fistulas generated in various organs can be closed by a minimally invasive method.
[Related applications]
This application claims priority based on Article 4 of the Paris Convention or Article 41 of the Japanese Patent Law, which is based on the application number 2011-03841 filed in Japan on January 12, 2011. The contents of this basic application are incorporated herein by reference.
 1 消化管皮膚瘻、 2 薬剤及び材料、 3 皮膚、 4 消化管、 5 消化液 1 Gastrointestinal cutaneous fistula, 2 Drugs and materials, 3 Skin, 4 Gastrointestinal tract, 5 Digestive fluid

Claims (6)

  1.  (a)フィブリノーゲン及び(b)トロンビン
    を混合することで得られる生体用接着材料であって、
     更に、(c)pHは5.5より大きく7.0以下のコラーゲン及び(d)粉末状ポリグルコール酸(PGA)を混合して得られる生体用接着材料。
    A bioadhesive material obtained by mixing (a) fibrinogen and (b) thrombin,
    Furthermore, (c) a bioadhesive material obtained by mixing collagen having a pH greater than 5.5 and not more than 7.0 and (d) powdered polyglycolic acid (PGA).
  2.  コラーゲンは、未架橋である請求項1記載の生体用接着材料。 The bioadhesive material according to claim 1, wherein the collagen is uncrosslinked.
  3.  ポリグルコール酸は、5000~30000の重量平均分子量を有する請求項1又は2に記載の生体用接着材料。 3. The bioadhesive material according to claim 1, wherein the polyglycolic acid has a weight average molecular weight of 5000 to 30000.
  4.  生体用接着剤は注射剤である請求項1~3のいずれかに記載の生体用接着材料。 The bioadhesive material according to any one of claims 1 to 3, wherein the bioadhesive is an injection.
  5.  請求項1~4のいずれかに記載の生体用接着材料を得るための
     (a)フィブリノーゲン、(b)トロンビン、(c)pHは5.5より大きく7.0以下のコラーゲン及び(d)粉末状ポリグルコール酸(PGA)の組み合わせ。
    (A) fibrinogen, (b) thrombin, (c) collagen having a pH of more than 5.5 and not more than 7.0, and (d) a powder for obtaining the bioadhesive material according to any one of claims 1 to 4 A combination of polyglycolic acid (PGA).
  6.  (a)フィブリノーゲン及び(b)トロンビンを混合する生体用接着材料の製造方法であって、
     更に、(c)pHは5.5より大きく7.0以下のコラーゲン及び(d)粉末状ポリグルコール酸(PGA)を混合する生体用接着材料の製造方法。
    (A) a method for producing a bioadhesive material comprising mixing fibrinogen and (b) thrombin,
    Further, (c) a method for producing a bioadhesive material comprising mixing collagen having a pH greater than 5.5 and not greater than 7.0 and (d) powdered polyglycolic acid (PGA).
PCT/JP2012/050307 2011-01-12 2012-01-11 Biological adhesive material WO2012096271A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012552731A JP5940987B2 (en) 2011-01-12 2012-01-11 Bioadhesive material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011003841 2011-01-12
JP2011-003841 2011-01-12

Publications (1)

Publication Number Publication Date
WO2012096271A1 true WO2012096271A1 (en) 2012-07-19

Family

ID=46507169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050307 WO2012096271A1 (en) 2011-01-12 2012-01-11 Biological adhesive material

Country Status (2)

Country Link
JP (1) JP5940987B2 (en)
WO (1) WO2012096271A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508689A (en) * 1997-01-16 2001-07-03 コヘージョン コーポレイション Lyophilized collagen-based biomaterials, their preparation process and use
WO2009106641A2 (en) * 2008-02-29 2009-09-03 Coloplast A/S Compositions and methods for augmentation and regeneration of living tissue in a subject

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508689A (en) * 1997-01-16 2001-07-03 コヘージョン コーポレイション Lyophilized collagen-based biomaterials, their preparation process and use
WO2009106641A2 (en) * 2008-02-29 2009-09-03 Coloplast A/S Compositions and methods for augmentation and regeneration of living tissue in a subject

Also Published As

Publication number Publication date
JP5940987B2 (en) 2016-06-29
JPWO2012096271A1 (en) 2014-06-09

Similar Documents

Publication Publication Date Title
Hong et al. A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds
Li et al. Multifunctional tissue-adhesive cryogel wound dressing for rapid nonpressing surface hemorrhage and wound repair
Chen et al. An injectable anti-microbial and adhesive hydrogel for the effective noncompressible visceral hemostasis and wound repair
Weng et al. In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release
Le Renard et al. The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia
CN104888263B (en) Biocompatible hemostatic prevents adhesion, promoting healing, the closed modified starch material of surgery
CA2596283C (en) Embolization using poly-4-hydroxybutyrate particles
US9844597B2 (en) Biocompatible in situ hydrogel
KR20080044238A (en) Hemostatic compositions, assemblies, systems, and methods employing particulate hemostatic agents formed from chitosan and including a polymer mesh material of poly-4-hydroxy butyrate
Zheng et al. Recent progress in surgical adhesives for biomedical applications
Guan et al. Injectable gelatin/oxidized dextran hydrogel loaded with apocynin for skin tissue regeneration
Ouyang et al. Rapidly degrading and mussel-inspired multifunctional carboxymethyl chitosan/montmorillonite hydrogel for wound hemostasis
KR100478227B1 (en) Preparing method for embolic materials comprising of chitin and/or chitosan
US11872244B2 (en) Thixotropic oxidized cellulose solutions and medical applications thereof
CN111465417B (en) Hemostatic composition and container comprising same
JP2022546512A (en) Hydrogel composition for temperature-sensitive tissue adhesion prevention and method for producing the same
Ke et al. A silk fibroin based bioadhesive with synergistic photothermal-reinforced antibacterial activity
Sahiner et al. Hyaluronic acid (HA)-Gd (III) and HA-Fe (III) microgels as MRI contrast enhancing agents
Atashgahi et al. Epinephrine-entrapped chitosan nanoparticles covered by gelatin nanofibers: A bi-layer nano-biomaterial for rapid hemostasis
EP3281646A1 (en) Thixotropic oxidized cellulose solutions and medical applications thereof
Xu et al. Engineering air-in-water emulsion as adaptable multifunctional sealant
JP5940987B2 (en) Bioadhesive material
KR102521769B1 (en) Topical Hemostat Powder Composition and Manufacturing Method Thereof
Chinh et al. Fish scale derived collagen/ginsenoside Rb1 biocomposites: preparation, characterization and their hemostatic ability
Fu et al. Preparation, evaluation and application of MRI detectable sunitinib-loaded calcium alginate/poly (acrylic acid) hydrogel microspheres

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12733996

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012552731

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12733996

Country of ref document: EP

Kind code of ref document: A1