WO2012096236A1 - Method for producing starting material for enzymatic saccharification, method for producing sugar, and method for producing ethanol - Google Patents

Method for producing starting material for enzymatic saccharification, method for producing sugar, and method for producing ethanol Download PDF

Info

Publication number
WO2012096236A1
WO2012096236A1 PCT/JP2012/050199 JP2012050199W WO2012096236A1 WO 2012096236 A1 WO2012096236 A1 WO 2012096236A1 JP 2012050199 W JP2012050199 W JP 2012050199W WO 2012096236 A1 WO2012096236 A1 WO 2012096236A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
producing
water
saccharification
biomass
Prior art date
Application number
PCT/JP2012/050199
Other languages
French (fr)
Japanese (ja)
Inventor
悠一 柴田
佳功 磯村
靖敏 井口
雅裕 丹羽
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2012552714A priority Critical patent/JPWO2012096236A1/en
Publication of WO2012096236A1 publication Critical patent/WO2012096236A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention uses a raw material for enzyme saccharification produced by a method for producing a raw material for enzyme saccharification, which is used for production of sugar, using a plant biomass raw material containing lignocellulose, and the method for producing the raw material for enzyme saccharification.
  • the present invention relates to a method for producing sugar, and a method for producing ethanol using the sugar produced by the method for producing sugar.
  • ethanol has been produced from plant biomass raw materials containing lignocellulose (a complex composed of lignin, cellulose, hemicellulose) such as woody biomass and herbaceous biomass, and will be used as various fuels and chemical raw materials. Attempts to do so are widely made. Production of ethanol from biomass raw material can be performed, for example, by decomposing the collected biomass raw material into sugar in the saccharification step and then converting it to ethanol using a microorganism such as yeast in the fermentation step.
  • lignocellulose a complex composed of lignin, cellulose, hemicellulose
  • lactic acid is used as one of the raw materials.
  • This lactic acid can also be obtained by fermenting sugar obtained by saccharifying the biomass raw material.
  • organic acids other than lactic acid can be obtained by fermenting the sugar.
  • the saccharification has been conventionally performed using concentrated sulfuric acid, but from the viewpoint of reducing the environmental load, it is desired to reduce the amount of sulfuric acid used. Therefore, in recent years, saccharification of the biomass raw material using enzymes has been widely studied as a means to replace saccharification with concentrated sulfuric acid.
  • Enzymatic saccharification is a desirable means from the viewpoint of impact on the environment.
  • the biomass raw material is pretreated in advance, It is necessary to separate cellulose and lignin in the lignocellulose to be formed.
  • Various methods are known as a pretreatment method of this biomass raw material, and among them, steaming treatment with dilute sulfuric acid, pressurized hot water, etc.
  • the enzymatic saccharification rate of biomass is improved by subjecting the biomass raw material to steaming with pressurized hot water and then performing wet mechanical pulverization in the presence of water or the like (for example, the following) (See Patent Document 5).
  • the enzyme saccharification rate is improved, the problem in the steaming treatment, that is, the problem that the sugar concentration in the sugar solution obtained by the production of an inhibitory substance for fermentation and the enzyme saccharification process is still not solved.
  • a lignocellulosic biomass saccharification pretreatment device for performing pretreatment of the biomass with ammonia water is known (for example, see Patent Document 8).
  • the biomass raw material is pretreated with ammonia water using the apparatus, it is considered that the hemicellulose with the ester bond cleaved is cleaved with hydrogen bond with cellulose and eluted into ammonia water.
  • a large amount of energy is required, which is not suitable for commercial implementation.
  • the present invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention can efficiently carry out enzymatic saccharification, and thus can improve the production efficiency of sugar, and a useful method for producing a raw material for enzymatic saccharification used in a method for producing sugar, It aims at providing the manufacturing method of sugar, and the manufacturing method of ethanol.
  • the present inventors repeated intensive studies, and obtained biomass by treating a biomass raw material containing lignocellulose with a treatment agent containing ammonia, soaking this modified biomass in warm water, A part of hemicellulose whose bond with lignin was cleaved was eluted into warm water to obtain a raw material for enzymatic saccharification. It has been found that the enzyme saccharification raw material is enzymatically saccharified to obtain a significantly improved enzyme saccharification rate.
  • the present invention provides a method for producing a raw material for enzyme saccharification according to the following ⁇ 1> to ⁇ 5>, a method for producing a sugar according to ⁇ 6> below, and a method for producing ethanol according to ⁇ 7> below.
  • ⁇ 1> A plant biomass raw material containing lignocellulose is treated with a treatment agent containing ammonia to obtain a modified biomass, and the modified biomass is immersed in water at 40 to 100 ° C., And a water treatment step of eluting the polysaccharide in the modified biomass into the water and obtaining a raw material for enzymatic saccharification for use in the enzymatic saccharification step.
  • ⁇ 2> The method for producing a raw material for enzyme saccharification according to ⁇ 1>, wherein the temperature of the water in the water treatment step is higher than the treatment temperature in the enzyme saccharification step.
  • ⁇ 3> The method for producing a raw material for enzyme saccharification according to ⁇ 1> or ⁇ 2>, wherein the temperature of the water in the water treatment step is 50 to 100 ° C.
  • ⁇ 4> In any one of ⁇ 1> to ⁇ 3>, in the water treatment step, the mass A of the water and the dry mass B of the modified biomass satisfy the relationship of the following formula (1):
  • the present invention various problems in the prior art can be solved, and enzymatic saccharification can be efficiently performed. Therefore, it is useful for a sugar production method that can improve sugar production efficiency.
  • the manufacturing method of the raw material for enzyme saccharification, the manufacturing method of sugar, and the manufacturing method of ethanol can be provided.
  • the method for producing a raw material for enzymatic saccharification according to the first embodiment of the present invention includes a modified biomass production process for obtaining a modified biomass by treating a plant biomass raw material containing lignocellulose with a treatment agent containing ammonia.
  • a plant biomass raw material containing lignocellulose (a complex composed of lignin, cellulose and hemicellulose) is treated with a treatment agent containing ammonia (hereinafter, the treatment is simply referred to as “ammonia treatment”).
  • ammonia treatment a treatment agent containing ammonia
  • at least a part of the ester bond in the plant biomass raw material is cleaved.
  • the ester bond to be cleaved includes an ester bond between hemicellulose and lignin constituting lignocellulose, and in the enzymatic saccharification step described later by cleavage of the ester bond (that is, amidation cleavage of the ester bond),
  • the hydrolysis of cellulose by an enzyme can be performed efficiently.
  • the plant biomass raw material is not particularly limited as long as it contains lignocellulose, and can be appropriately selected according to the purpose.
  • “waste biomass” obtained as a residue resulting from production activities such as agriculture and forestry, “resource crop biomass” obtained by intentionally cultivating for the purpose of obtaining energy and the like can be used.
  • Examples of the “waste biomass” include waste building materials, thinned wood, rice straw, straw, rice husk, bagasse, etc., and the “resource crop biomass” is intended to use, for example, celluloses.
  • the biomass is also classified into “woody biomass” derived from trees, “herbaceous biomass” derived from grass, and the like.
  • woody biomass derived from trees
  • herbaceous biomass can be used.
  • a plant biomass raw material may be used individually by 1 type, and may use 2 or more types together.
  • the cellulose contained in the said biomass raw material is comprised from a cellulose I type crystal fundamentally.
  • the plant biomass raw material used in the modified biomass production process may be collected as it is, but it is easy to handle and use ammonia as particles of the following size by cutting, grinding, etc. From the viewpoint of the efficiency of treatment with a treatment agent containing
  • the treatment with a treatment agent containing ammonia described later can be efficiently advanced.
  • a grinder used for the said rough crushing According to the objective, it can select suitably, For example, a wheelie mill, a cutter mill, a hammer mill, a pin mill etc. can be used.
  • the method is not particularly limited and can be appropriately selected depending on the purpose.
  • a plant biomass material containing lignocellulose and a treatment agent containing ammonia are introduced into a pressure vessel, and the inside of the pressure vessel is set to a desired pressure and temperature and treated for a desired time. be able to.
  • limiting in particular as said pressure According to the objective, it can select suitably, For example, it can be set as 0 MPa-12.5 MPa (gauge pressure).
  • the temperature is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the temperature may be ⁇ 35 ° C. to 180 ° C., preferably 40 ° C. to 150 ° C.
  • the treatment agent containing ammonia may be in a liquid phase, a gas phase, a gas-liquid mixed phase, or a supercritical state.
  • the time for treatment with the treatment agent containing ammonia is not particularly limited, and is appropriately determined within a range in which cleavage of the ester bond of a desired degree proceeds according to the amount of plant biomass raw material used, the treatment pressure, the treatment temperature, and the like. Although it can be selected, it is preferably 10 minutes to 10 hours, more preferably 30 minutes to 8 hours, and particularly preferably 30 minutes to 5 hours. If the treatment time is less than 10 minutes, the desired degree of ester bond cleavage may not proceed, and if it exceeds 10 hours, the ester bond cleavage does not proceed any further, resulting in inefficiency as a whole. Sometimes. On the other hand, when the treatment time is within the further preferable range, it is advantageous in that the cleavage of the ester bond can be efficiently advanced, and the enzyme saccharification rate of the obtained enzyme saccharification raw material is improved.
  • the apparatus for performing the treatment with the treatment agent containing ammonia is not particularly limited, and a batch-type apparatus, a semi-continuous apparatus, a continuous apparatus, and the like are appropriately selected, and from the viewpoint of increasing the efficiency of the treatment, semi-continuous. It is preferable to employ a type device or a continuous type device.
  • the amount of the treatment agent containing ammonia is not particularly limited and can be appropriately selected depending on the purpose. For example, 10 mg to 300 g of ammonia per 1 g of dry mass of the plant biomass raw material containing lignocellulose. Is preferable, 100 mg to 150 g is more preferable, and 1 g to 50 g is particularly preferable.
  • the amount of the treatment agent containing ammonia is less than 10 mg as ammonia with respect to 1 g of dry mass of the plant biomass raw material containing lignocellulose, the treatment may be insufficient. May be less efficient.
  • the amount used is within the particularly preferable range, it is advantageous in that the treatment time can be shortened and the amount of the treatment agent to be used can be reduced.
  • the treatment agent containing ammonia may further contain a compound other than ammonia as long as at least a part of the ester bond in the plant biomass raw material can be cleaved.
  • compounds other than ammonia include carbon dioxide, nitrogen, ethylene, methane, ethane, propane, butane, pentane, hexane, toluene, benzene, phenol, dioxane, xylene, acetone, chloroform, carbon tetrachloride, ethanol, methanol, Examples include propanol and butanol.
  • organic amines such as ethylenedian, monomethylamine, monoethylamine, dimethylamine, diethylamine, and triethylamine, are mentioned. These compounds may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the mass of moisture present in the system for ammonia treatment and the dry mass of the plant biomass raw material are expressed as [mass of moisture present in the system for treatment / (inside the system for treatment).
  • the ratio represented by the mass of water present in the water + the dry mass of the plant biomass raw material)] is preferably 0.3 or less, more preferably 0.2 or less, and 0.1 or less. Particularly preferred. If a large amount of water is present in the system for ammonia treatment based on the amount of plant biomass raw material, after the ammonia treatment, the obtained modified biomass and ammonia are separated and recovered for reuse. In order to separate ammonia dissolved in water from water, a large amount of heat energy is required, and the cost of producing modified biomass increases. The smaller the amount of water present in the system for ammonia treatment relative to the amount of plant biomass raw material, the better from the viewpoint of the amount of energy consumed, but if the ratio is 0.3 or less, Consumption is not excessive.
  • the modified biomass obtained in the modified biomass production process may be used as it is in the water treatment process described later, or may be pulverized in advance before being used in the water treatment process. That is, the method for producing the enzyme saccharification raw material according to the present embodiment may further include a pulverization step of pulverizing the modified biomass between the modified biomass production step and the water treatment step. In the pulverization step, by pulverizing the modified biomass obtained in the modified biomass production step, the enzyme saccharification efficiency of the enzyme saccharification raw material obtained through the water treatment step is further improved.
  • the raw material for enzymatic saccharification for use in the enzymatic saccharification step is obtained by immersing the modified biomass in water at 40 to 100 ° C. and eluting polysaccharides such as hemicellulose in the modified biomass into the water. Is obtained.
  • the phenomenon in which hemicellulose, whose bond with lignin is cleaved, can be eluted in water can occur even at low temperatures, but the amount and rate of elution of the hemicellulose are affected by temperature, and the higher the temperature, the more efficiently it is eluted. The higher the temperature, the more advantageous.
  • the temperature of water is 40 degreeC or more.
  • the temperature of water is preferably 100 ° C. or lower.
  • the temperature of water in the water treatment step according to this embodiment is preferably 40 to 100 ° C., more preferably 50 to 100 ° C.
  • the water temperature in the water treatment step is preferably higher than the treatment temperature in the enzyme saccharification step described later.
  • the enzymatic saccharification step is generally performed in an aqueous medium, and the required time is about several tens of hours.
  • the water treatment step is not provided before the enzyme saccharification step, it is considered that in the enzyme saccharification step, elution of the polysaccharide into water occurs as in the water treatment step.
  • the water treatment step is compared with the efficiency of elution of polysaccharides in water in the enzyme saccharification step when no water treatment step is provided. The efficiency of elution of polysaccharides in water into water can be increased, and the effects of the water treatment step can be expressed more reliably.
  • the mass A of water and the dry mass B of the modified biomass satisfy the relationship of the following formula (1).
  • fill the relationship of following formula (1) the quantity of the water used in a water treatment process will be the quantity exceeding the saturated water content of the modified biomass to be processed.
  • polysaccharides such as hemicellulose whose bond with lignin is cleaved can be efficiently eluted into water and removed from the biomass solids.
  • the raw material for enzyme saccharification according to the present invention is not only a modified biomass-derived insoluble matter (solid matter) derived from the modified water treatment step, but also polysaccharides such as hemicellulose eluted in water and May contain water. That is, in the present invention, the entire suspension obtained by the water treatment step can be directly used for the subsequent enzymatic saccharification.
  • the suspension may be concentrated by distilling off at least a portion of water, or may be diluted by adding water and / or an organic solvent. It is included in the raw material for saccharification.
  • the raw material for enzyme saccharification includes those added with an additive such as a buffer solution for achieving a pH suitable for the enzyme saccharification step.
  • the sugar production method according to the second embodiment of the present invention includes at least an enzyme saccharification step for enzymatic saccharification of the enzyme saccharification raw material obtained by the enzyme saccharification raw material production method according to the first embodiment. Depending on the situation, other steps are included.
  • the sugar production method according to the present embodiment will be described in detail.
  • the enzyme saccharification raw material used in the enzyme saccharification step according to this embodiment includes cellulose and hemicellulose produced in the modified biomass production step and the water treatment step.
  • the cellulose and hemicellulose are hydrolyzed by bringing the enzyme saccharification raw material into contact with the enzyme, whereby a monosaccharide is obtained.
  • the enzyme saccharification method used in the enzyme saccharification step is not particularly limited as long as an enzyme is used, and a known method can be appropriately selected.
  • a chemical saccharification method using sulfuric acid or the like When a chemical saccharification method using sulfuric acid or the like is used, the yield of monosaccharides tends to decrease due to excessive decomposition, and a substance having an inhibitory action is likely to be produced in the fermentation process following saccharification.
  • mild conditions can be selected in the saccharification method using an enzyme. It tends not to occur.
  • the enzyme used in the enzymatic saccharification step is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include cellulase and cellobiase ( ⁇ -glucosidase). An immobilized enzyme in which these enzymes are immobilized on an appropriate carrier or matrix can also be used.
  • the amount of the enzyme used in the enzyme saccharification step is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 0.001 mg to 100 mg per 1 g of solid content dry mass in the enzyme saccharification raw material Is preferable, 0.01 mg to 10 mg is more preferable, and 0.1 mg to 1 mg is still more preferable. If the amount of the enzyme used is less than 0.001 mg relative to 1 g of the solid content dry mass in the enzyme saccharification raw material, enzyme saccharification may be insufficient, and if it exceeds 100 mg, saccharification inhibition may occur. May happen. On the other hand, when the amount of the enzyme used is within the further preferable range, it is advantageous in that the amount of sugar obtained is larger than the amount of enzyme used.
  • the treatment temperature in the enzymatic saccharification step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 ° C to 70 ° C, more preferably 20 ° C to 60 ° C, and further preferably 30 ° C to 50 ° C. . If the treatment temperature is lower than 10 ° C, enzyme saccharification may not proceed sufficiently, and if it exceeds 70 ° C, the enzyme may be deactivated. On the other hand, when the treatment temperature is within the further preferable range, it is advantageous in that the amount of sugar obtained is larger than the amount of enzyme used.
  • the pH in the enzymatic saccharification step is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 3.0 to 8.0, more preferably 3.5 to 7.0, and 4.0. More preferably, ⁇ 6.0. If the pH is less than 3.0 or more than 8.0, the enzyme may be deactivated. On the other hand, when the pH is within the more preferable range, it is advantageous in that the amount of sugar obtained is larger than the amount of enzyme used.
  • glucose is produced from cellulose contained in the raw material for enzymatic saccharification.
  • Hemicellulose produces hexoses such as glucose, galactose and mannose and pentoses such as xylose and arabinose.
  • the sugar solution containing the monosaccharide obtained by the above enzymatic saccharification step may be directly subjected to the fermentation step described later.
  • a step of adjusting the pH of the sugar solution, a step of adjusting the sugar concentration, etc. Therefore, the sugar solution may be more suitable for fermentation.
  • the sugar obtained by the sugar production method according to the present embodiment can be used not only in the ethanol production method and lactic acid production method described later, but also as a raw material for producing other substances.
  • the method for producing ethanol according to the third embodiment of the present invention includes at least a fermentation process (ethanol fermentation process) for fermenting sugar (sugar solution) obtained by the sugar production method according to the second embodiment. Depending on the above, other steps are included.
  • ethanol fermentation process for fermenting sugar (sugar solution) obtained by the sugar production method according to the second embodiment.
  • sugar sucgar solution
  • the fermentation process according to the present embodiment is a process of adding ethanol-fermenting microorganisms to the sugar solution and performing ethanol fermentation.
  • the ethanol-fermenting microorganism is not particularly limited and may be appropriately selected depending on the intended purpose. However, yeast, bacteria of the genus Zymomonas such as Zymomonas mobilis, etc. are preferred, and yeast is more preferred.
  • Yeast is not particularly limited and may be appropriately selected depending on the intended purpose, but yeast of the genus Saccharomyces such as Saccharomyces cerevisiae is preferable.
  • yeast of the genus Saccharomyces such as Saccharomyces cerevisiae is preferable.
  • hemicellulose constituting the biomass raw material generates pentoses such as xylose and arabinose by enzymatic saccharification, but natural yeasts of the genus Saccharomyces have the ability to assimilate pentoses to produce ethanol. There is no waste.
  • yeast that has the ability to assimilate pentose and produce ethanol (pentose-utilizing yeast) It is also preferable to use
  • pentose utilization yeast Although it can select suitably according to the objective, Pichia stipitis, Candida shihatae, etc. are preferable.
  • a method of using a yeast of the genus Saccharomyces and the aforementioned pentose-utilizing yeast in combination is also preferably employed.
  • the yeast of the genus Saccharomyces and the above-mentioned pentose-assimilating yeast may be fermented, or the glucose in the sugar solution is first assimilated by the yeast of the genus Saccharomyces, and then the above-mentioned pentose-assimilating yeast. You may assimilate pentose sugars.
  • the yeast used in the fermentation process may be a natural yeast or a genetically modified yeast.
  • the amount of yeast used in the fermentation process, additives other than sugar, fermentation temperature, pH, fermentation time and the like are not particularly limited, and known conditions can be appropriately selected and used. 7.
  • the fermentation temperature is preferably about 20 ° C to 37 ° C.
  • thermostable yeast examples include thermostable yeast belonging to the genus Kloyveromyces such as Kleiberymyces marxianas.
  • the fermentation temperature can be about 37 ° C. or higher and 50 ° C. or lower.
  • a so-called parallel double fermentation method in which the enzymatic saccharification step and the fermentation step are simultaneously performed may be employed.
  • the enzyme saccharification step and the fermentation step can be carried out as a single step, and ethanol can be produced by a simplified step.
  • the enzyme saccharification raw material obtained by the enzyme saccharification raw material production method of the present embodiment is used in the reaction system as it is in the reaction system.
  • a microorganism for ethanol fermentation is added to perform enzymatic saccharification and ethanol fermentation.
  • the ethanol production method according to the present embodiment may further include steps other than the fermentation step described above.
  • the other steps are not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose, but preferably include a purification step.
  • the purification step is a step of separating and purifying ethanol from the medium containing ethanol obtained in the fermentation step. Through the purification process, ethanol is separated and purified from various substances contained in the fermentation medium and concentrated.
  • the ethanol separation / purification method is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the fermentation medium is first solidified by centrifuging and / or filtering solid matter such as bacterial cells. Liquid separation is preferred, and an aqueous solution containing ethanol is recovered, and then the aqueous solution is concentrated and purified by distillation, membrane separation, or the like.
  • ethanol can be produced efficiently by using the sugar obtained using the raw material for enzyme saccharification.
  • Ethanol obtained by the ethanol production method can be suitably used as, for example, fuel ethanol, industrial ethanol, and the like.
  • Lactic acid can be produced using the sugar obtained by the sugar production method of the present invention.
  • the method for producing lactic acid in this case includes at least a fermentation step (lactic acid fermentation step) for lactic acid fermentation of the sugar, and further includes other steps as necessary.
  • the lactic acid fermentation step is a step in which lactic acid bacteria and the like are added to the sugar solution to perform lactic acid fermentation.
  • the lactic acid bacterium is not particularly limited, and a known lactic acid bacterium can be appropriately selected and used. (Streptococcus thermophilus), Lactobacillus bulgaricus (Lactobacillus bulgaricus) and the like.
  • the lactic acid bacterium may be a natural lactic acid bacterium or a genetically modified lactic acid bacterium. There are no particular restrictions on conditions such as the amount of lactic acid bacteria used in the fermentation step, additives other than sugar, fermentation temperature, pH, fermentation time, etc., and known conditions can be appropriately selected and used.
  • a lactic acid purification step as another step other than the fermentation step.
  • lactic acid can be produced efficiently by using the saccharide obtained using the enzyme saccharification raw material.
  • the lactic acid thus obtained can be used as a raw material for biodegradable polymers such as polylactic acid.
  • the saccharide obtained by the method for producing saccharides of the present invention is fermented by using microorganisms that produce the desired organic acid in place of the lactic acid bacteria, so that an organic acid other than lactic acid, for example, citric acid is used.
  • an organic acid other than lactic acid for example, citric acid is used.
  • Succinic acid, malic acid, oxalic acid and the like can also be produced.
  • the manufacturing method of the raw material for enzyme saccharification of this invention the manufacturing method of the saccharide
  • a method for producing ethanol and a method for producing lactic acid and the like have been described according to preferred embodiments, but the present invention is not limited to the above-described embodiments without departing from the gist thereof.
  • Example 1 Plant biomass raw material
  • Elianthus was used as biomass containing lignocellulose.
  • the Eliansus was pulverized using a cutter mill while controlling the particle size with a screen having an opening of 4 mm.
  • the average particle diameter (d50) measured by the laser diffraction method was 975 ⁇ m.
  • the Eliansus after pulverization was dried overnight under reduced pressure at a temperature of 40 ° C. and 5 kPaA before being subjected to the modified biomass production process.
  • the moisture content of the Elianthus after drying was 0.5% by mass based on the mass of the Elianthus after drying.
  • Cellluclast (registered trademark) 1.5L and Novozyme (registered trademark) 188 both trade names, manufactured by Novozyme as enzymes were each 0.01% (mass / vol) of each enzyme, a total of 0.02% (mass / vol.) to obtain an enzyme saccharification reaction solution.
  • this reaction solution was shaken at 37 ° C. and 200 rpm for 72 hours to carry out an enzymatic saccharification reaction.
  • the glucose concentration in the supernatant obtained by centrifuging the reaction solution after the reaction was measured using a biosensor (manufactured by Oji Scientific Instruments), and the glucose yield was calculated.
  • the glucose yield is defined by the following formula.
  • Glucose yield (%) [mass of glucose in enzyme saccharification reaction solution / (mass of modified biomass in water-treated sample solution ⁇ total glucosylation rate / 100)] ⁇ 100
  • Example 1 First, a modified biomass production process was performed in the same manner as in Example 1. Next, using the obtained modified biomass, a suspension sample solution is prepared in the same manner as in Example 1 so that the modified biomass concentration becomes 3% (mass / vol) and pH 4.5 (acetate buffer). did. And without performing a water treatment process, an enzyme is added to this sample liquid by the same operation as the enzyme saccharification process of Example 1, and an enzyme saccharification reaction liquid is prepared, The same as the enzyme saccharification process of Example 1 The operation was subjected to an enzymatic saccharification step. In addition, after preparing the said sample liquid, the temperature was kept at room temperature (about 25 degreeC), and the enzyme was added rapidly and it used for the enzyme saccharification process. After completion of the enzymatic saccharification reaction, the glucose yield was determined in the same manner as in Example 1. The results are shown in Table 1.
  • Examples 2 to 7, Comparative Example 2 [Examples 2 to 7, 11 and Comparative Example 2]
  • the temperature of water in the water treatment step, the treatment time, and [ ⁇ A / (A + B) ⁇ ⁇ 100] (A and B are the same as those described in Example 1. .)
  • the modified biomass production process, the water treatment process and the enzymatic saccharification process were carried out in the same manner as in Example 1, and compared with the glucose yield and the glucose yield, respectively.
  • the ⁇ glucose yield which is the difference from the glucose yield in Example 1, was calculated. The obtained results are shown in Table 1.
  • Example 8 The modified biomass production process, the water treatment process and the enzymatic saccharification process were carried out in the same manner as in Example 1 except that the temperature in the modified biomass production process was set to 80 ° C. and the ammonia pressure was set to 3.8 MPaA. The rate was calculated. The obtained results are shown in Table 2. Moreover, in order to show the effect of the glucose yield improvement by water treatment, the difference which reduced the glucose yield in the comparative example 3 (enzymatic saccharification of the modified biomass which has not performed water treatment) mentioned later from the said glucose yield " It is calculated as “ ⁇ glucose yield” and is also shown in Table 1.
  • Example 9 The temperature of water in the water treatment step and [ ⁇ A / (A + B) ⁇ ⁇ 100] (A and B are the same as those described in Example 1) are as shown in Table 2, and are the same as in Example 8. Thus, a modified biomass production process, a water treatment process and an enzymatic saccharification process were carried out. And it carried out similarly to Example 8, and computed (DELTA) glucose yield which is a difference of this glucose yield and the glucose yield in the comparative example 3 mentioned later. The results are shown in Table 2.
  • Comparative Example 3 The modified biomass production process and the enzymatic saccharification process (without performing the water treatment process) are the same as in Comparative Example 1 except that the temperature in the modified biomass production process is 80 ° C. and the ammonia pressure is 3.8 MPaA. And the glucose yield and ⁇ glucose yield were calculated. The results are shown in Table 2.
  • Example 10 As the raw material biomass, Elianthus of a lot different from that used in Examples 1 to 9 and Comparative Examples 1 to 3 was used, and thereafter, a modified biomass production process was carried out by the same operation as in Example 9. Then, before subjecting the obtained modified biomass to the water treatment step, a modified biomass pulverization step using a disk mill is provided, and then the water treatment step and the enzymatic saccharification step are carried out in the same manner as in Example 9. The glucose yield was calculated. Moreover, in order to show the effect of improving the glucose yield by water treatment, the glucose yield in Comparative Example 5 (enzymatic saccharification of modified biomass that has been pulverized and not subjected to water treatment) described later is reduced from the glucose yield. The difference is calculated as “ ⁇ glucose yield” and is also shown in Table 1.
  • Example 5 The modified biomass obtained in the modified biomass production process as in Example 10 was subjected to a pulverization process using a disk mill. Then, without passing through the water treatment step, the enzyme was subjected to the saccharification step by the same operation as in Comparative Example 1, and the glucose yield was calculated. The results are shown in Table 2.
  • ⁇ glucose yield in each example described in Table 1 and Table 2 is modified before the corresponding water treatment process (after the modified biomass production process and after the pulverization process for those subjected to the pulverization process).
  • the increase in glucose yield is shown in comparison with a comparative example in which enzymatic saccharification of sucrose biomass is performed. That is, it corresponds to an increase in glucose yield due to the water treatment step in each example.

Abstract

A method for producing a starting material for enzymatic saccharification according to the present invention comprises: a modified biomass production step for treating a lignocellulose-containing plant biomass material with a treating agent containing ammonia to give a modified biomass; and a water treatment step for immersing the modified biomass in water at 40-100°C and thus eluting polysaccharides in the modified biomass in water to give a starting material to be subjected to an enzymatic saccharification step. Thus, the present invention can provide a method for producing a useful starting material for enzymatic saccharification, said starting material being usable in a method for producing a sugar, enabling efficient performance of the enzymatic saccharification and ensuring an increase in the productivity of the sugar.

Description

酵素糖化用原料の製造方法、並びに糖の製造方法、及びエタノールの製造方法Method for producing raw material for enzymatic saccharification, method for producing sugar, and method for producing ethanol
 本発明は、リグノセルロースを含有する植物バイオマス原料を利用した、糖の製造に用いられる、酵素糖化用原料の製造方法、該酵素糖化用原料の製造方法により製造された酵素糖化用原料を用いた糖の製造方法、及び該糖の製造方法により製造された糖を用いたエタノールの製造方法に関する。 The present invention uses a raw material for enzyme saccharification produced by a method for producing a raw material for enzyme saccharification, which is used for production of sugar, using a plant biomass raw material containing lignocellulose, and the method for producing the raw material for enzyme saccharification. The present invention relates to a method for producing sugar, and a method for producing ethanol using the sugar produced by the method for producing sugar.
 近年、地球温暖化対策の一環として、木質バイオマスや草本バイオマス等のリグノセルロース(リグニン、セルロース、ヘミセルロースからなる複合体)を含む植物バイオマス原料からエタノールを製造し、各種燃料や化学原料として利用しようとする試みが広く行われている。バイオマス原料からのエタノールの製造は、例えば、収集した前記バイオマス原料を、糖化工程において糖に分解した後、発酵工程において酵母等の微生物を用いてエタノールに変換することにより行うことができる。 In recent years, as part of global warming countermeasures, ethanol has been produced from plant biomass raw materials containing lignocellulose (a complex composed of lignin, cellulose, hemicellulose) such as woody biomass and herbaceous biomass, and will be used as various fuels and chemical raw materials. Attempts to do so are widely made. Production of ethanol from biomass raw material can be performed, for example, by decomposing the collected biomass raw material into sugar in the saccharification step and then converting it to ethanol using a microorganism such as yeast in the fermentation step.
 一方、環境負荷低減の観点から、生分解性ポリマーの利用が増加しており、その原料のひとつとして乳酸が使用されている。この乳酸も、前記バイオマス原料を糖化して得られる糖を発酵させることにより得ることができる。更に、前記糖を発酵させることにより、乳酸以外の有機酸類等を得ることもできる。 On the other hand, the use of biodegradable polymers is increasing from the viewpoint of reducing environmental impact, and lactic acid is used as one of the raw materials. This lactic acid can also be obtained by fermenting sugar obtained by saccharifying the biomass raw material. Furthermore, organic acids other than lactic acid can be obtained by fermenting the sugar.
 前記糖化は、従来より、濃硫酸を用いて行われることが多かったが、環境負荷低減の観点から、硫酸の使用量を少なくすることが望まれている。そこで、近年は、濃硫酸による糖化に代わる手段として、酵素を用いた前記バイオマス原料の糖化が広く研究されている。酵素による糖化は、環境に対する影響の観点から望ましい手段であるが、この酵素糖化のためには、酵素を作用させ易くする目的から、予め前記バイオマス原料に対して前処理を施して、バイオマス原料を構成するリグノセルロース中のセルロースとリグニンとを分離することが必要となる。このバイオマス原料の前処理方法として様々な方法が知られているが、中でも、希硫酸、加圧熱水等による蒸煮処理などが一般的である(例えば、下記特許文献1~4参照。)。しかしながら、前記したように硫酸の使用が好ましくないこと、及び前記バイオマス原料にこれらの前処理を行い、得られた処理物を酵素糖化に供する場合では、所望の程度の酵素糖化率を得るためには該前処理を多段で行う必要があったり、200℃以上の高温にしなければならない等の問題がある。また、前記蒸煮処理において生成する一部の分解生成物は、酵素糖化後の発酵工程において、酵母等の微生物による発酵に対する阻害作用を及ぼすという問題もある。更に、前記蒸煮処理では、前記バイオマス原料の粒子を流動化させるために水分量を多くする必要があり、そのために、酵素糖化後の糖液中における糖濃度が低くなり、その後の発酵工程における効率が低下するという問題もある。 The saccharification has been conventionally performed using concentrated sulfuric acid, but from the viewpoint of reducing the environmental load, it is desired to reduce the amount of sulfuric acid used. Therefore, in recent years, saccharification of the biomass raw material using enzymes has been widely studied as a means to replace saccharification with concentrated sulfuric acid. Enzymatic saccharification is a desirable means from the viewpoint of impact on the environment. For this enzymatic saccharification, for the purpose of facilitating the action of the enzyme, the biomass raw material is pretreated in advance, It is necessary to separate cellulose and lignin in the lignocellulose to be formed. Various methods are known as a pretreatment method of this biomass raw material, and among them, steaming treatment with dilute sulfuric acid, pressurized hot water, etc. is common (for example, see Patent Documents 1 to 4 below). However, as described above, in order to obtain a desired degree of enzymatic saccharification, the use of sulfuric acid is not preferable, and when the biomass raw material is subjected to these pretreatments and the resulting processed product is subjected to enzymatic saccharification. However, there are problems that it is necessary to carry out the pretreatment in multiple stages and that the temperature must be raised to 200 ° C. or higher. In addition, some degradation products generated in the steaming treatment also have a problem of exerting an inhibitory action on fermentation by microorganisms such as yeast in the fermentation step after enzymatic saccharification. Furthermore, in the steaming treatment, it is necessary to increase the amount of water in order to fluidize the particles of the biomass raw material. For this reason, the sugar concentration in the sugar solution after enzymatic saccharification is reduced, and the efficiency in the subsequent fermentation process There is also a problem of lowering.
 また、前記バイオマス原料を物理的手段により微細に粉砕することにより、化学的、生物化学的反応性が向上することが知られているが、粉砕のみにより充分な酵素糖化率を得ようとすると、粉砕工程に多大なエネルギーを要し、経済合理性を失うおそれがある。 In addition, it is known that chemical and biochemical reactivity are improved by finely pulverizing the biomass raw material by physical means, but when trying to obtain a sufficient enzyme saccharification rate only by pulverization, The pulverization process requires a lot of energy and may lose economic rationality.
 また、前記バイオマス原料を加圧熱水により蒸煮処理した後、水等の存在下に湿式で機械的粉砕を行うことにより、バイオマスの酵素糖化率が向上することが開示されている(例えば、下記特許文献5参照。)。この場合も、酵素糖化率の向上はあるものの、前記蒸煮処理における問題点、すなわち発酵に対する阻害物質の生成、酵素糖化工程により得られる糖液中の糖濃度が低いとの問題は依然として解消しない。 In addition, it is disclosed that the enzymatic saccharification rate of biomass is improved by subjecting the biomass raw material to steaming with pressurized hot water and then performing wet mechanical pulverization in the presence of water or the like (for example, the following) (See Patent Document 5). In this case as well, although the enzyme saccharification rate is improved, the problem in the steaming treatment, that is, the problem that the sugar concentration in the sugar solution obtained by the production of an inhibitory substance for fermentation and the enzyme saccharification process is still not solved.
 一方、アンモニアを用いて前記バイオマス原料を前処理することにより、その化学的、生物化学的反応性が向上することが知られている(例えば、下記特許文献6、非特許文献1参照。)。前記バイオマス原料をアンモニア処理することによる酵素糖化効率の向上は、前記バイオマス原料中のセルロースI型結晶が、セルロースI型結晶の結晶密度よりも低い結晶密度を有するセルロースIII型結晶に転移することに起因することが知られている(例えば、特許文献7参照)。 On the other hand, it is known that pretreatment of the biomass raw material with ammonia improves its chemical and biochemical reactivity (see, for example, Patent Document 6 and Non-Patent Document 1 below). The improvement of the enzymatic saccharification efficiency by treating the biomass raw material with ammonia is that the cellulose type I crystal in the biomass raw material is transferred to a cellulose type III crystal having a crystal density lower than that of the cellulose type I crystal. This is known to be caused (see, for example, Patent Document 7).
 また、アンモニアによる前記バイオマス原料の前処理による酵素糖化効率の向上に対しては、前記バイオマス原料中のヘミセルロースとリグニンとの間のエステル結合がアミド化開裂し、これによりセルロースとリグニンが分離し、酵素のセルロースへのアクセスが容易になるとの作用機構も知られている(例えば、非特許文献2参照)。 In addition, for the improvement of the enzymatic saccharification efficiency by pretreatment of the biomass raw material with ammonia, the ester bond between hemicellulose and lignin in the biomass raw material is amidated, thereby separating the cellulose and lignin, A mechanism of action that facilitates access of the enzyme to cellulose is also known (see, for example, Non-Patent Document 2).
しかし、前記アンモニアによる前処理を、前記バイオマス原料が保持できる以上の水が存在しない系で行った場合には、リグニンとのエステル結合が開裂したヘミセルロースであっても、その一部はセルロースとの水素結合を維持していると考えられる。そして、このセルロースと水素結合したヘミセルロースは、酵素糖化工程においてもその水素結合が維持され、酵素のセルロースへのアクセスに対して立体的な到達障害物として作用している可能性がある。 However, when the pretreatment with ammonia is carried out in a system in which there is no more water than the biomass raw material can hold, even if it is hemicellulose in which the ester bond with lignin is cleaved, a part of it is It is thought that hydrogen bonds are maintained. And this hemicellulose hydrogen-bonded to cellulose maintains its hydrogen bond even in the enzymatic saccharification step, and may act as a three-dimensional obstacle to the access of the enzyme to cellulose.
 一方、アンモニア水による前記バイオマスの前処理を行うためのリグノセルロース系バイオマス糖化前処理装置が知られている(例えば、特許文献8参照。)。該装置を用いて、アンモニア水により前記バイオマス原料の前処理を行う場合には、前記エステル結合が開裂したヘミセルロースはセルロースとの水素結合が開裂し、アンモニア水中に溶出すると考えられるが、前処理後のバイオマス/アンモニア水混合物からアンモニアを加熱により除去するためには、大きなエネルギーを必要とし、商業的実施には適さない。 On the other hand, a lignocellulosic biomass saccharification pretreatment device for performing pretreatment of the biomass with ammonia water is known (for example, see Patent Document 8). When the biomass raw material is pretreated with ammonia water using the apparatus, it is considered that the hemicellulose with the ester bond cleaved is cleaved with hydrogen bond with cellulose and eluted into ammonia water. In order to remove ammonia from a biomass / ammonia water mixture by heating, a large amount of energy is required, which is not suitable for commercial implementation.
 以上から、アンモニアによる前処理により酵素糖化工程に供するための酵素糖化用原料を製造する方法であって、十分に酵素糖化効率が向上した酵素糖化用原料を、合理的なエネルギー消費によって得ることができる技術は開発されていないのが現状である。 From the above, a method for producing an enzyme saccharification raw material for use in an enzymatic saccharification step by pretreatment with ammonia, which can obtain a raw material for enzyme saccharification with sufficiently improved enzyme saccharification efficiency by reasonable energy consumption The technology that can be developed has not been developed.
特開2006-075007号公報JP 2006-075007 A 特開2004-121055号公報JP 2004-121055 A 特表2002-541355号公報JP-T-2002-541355 特開2002-159954号公報JP 2002-159954 A 特開2006-136263号公報JP 2006-136263 A 欧州特許公開第77287号公報European Patent Publication No. 77287 特開2008-161125号公報JP 2008-161125 A 特開2010-115162号公報JP 2010-115162 A
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、酵素糖化を効率的に行うことができ、そのため、糖の生産効率を向上させることが可能な、糖の製造方法に用いられる有用な酵素糖化用原料の製造方法、並びに、糖の製造方法、及びエタノールの製造方法を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention can efficiently carry out enzymatic saccharification, and thus can improve the production efficiency of sugar, and a useful method for producing a raw material for enzymatic saccharification used in a method for producing sugar, It aims at providing the manufacturing method of sugar, and the manufacturing method of ethanol.
 前記課題を解決するため本発明者らは鋭意検討を重ね、リグノセルロースを含有するバイオマス原料を、アンモニアを含む処理剤で処理して改質バイオマスを得、この改質バイオマスを温水に浸漬し、リグニンとの結合が開裂したヘミセルロースの一部を温水へ溶出せしめることで酵素糖化用原料を得た。前記酵素糖化用原料を酵素糖化せしめ、格段に向上した酵素糖化率が得られることを見出した。 In order to solve the above-mentioned problems, the present inventors repeated intensive studies, and obtained biomass by treating a biomass raw material containing lignocellulose with a treatment agent containing ammonia, soaking this modified biomass in warm water, A part of hemicellulose whose bond with lignin was cleaved was eluted into warm water to obtain a raw material for enzymatic saccharification. It has been found that the enzyme saccharification raw material is enzymatically saccharified to obtain a significantly improved enzyme saccharification rate.
 すなわち、本発明は、下記<1>~<5>に記載の酵素糖化用原料の製造方法、下記<6>に記載の糖の製造方法、及び下記<7>に記載のエタノールの製造方法を提供する。
<1>リグノセルロースを含有する植物バイオマス原料を、アンモニアを含む処理剤で処理して改質バイオマスを得る改質バイオマス製造工程と、前記改質バイオマスを40~100℃の水に浸漬して、前記改質バイオマス中の多糖を前記水中に溶出せしめ、酵素糖化工程に供するための酵素糖化用原料を得る水処理工程と、を備えることを特徴とする酵素糖化用原料の製造方法。
<2>前記水処理工程における前記水の温度が、前記酵素糖化工程における処理温度よりも高いことを特徴とする<1>に記載の酵素糖化用原料の製造方法。
<3>前記水処理工程における前記水の温度が50~100℃であることを特徴とする<1>又は<2>に記載の酵素糖化用原料の製造方法。
<4>前記水処理工程において、前記水の質量Aと、前記改質バイオマスの乾燥質量Bとが、下記式(1)の関係を満たすことを特徴とする<1>~<3>のいずれか一項に記載の酵素糖化用原料の製造方法。
{A/(A+B)}×100≧70        (1)
<5>前記改質バイオマス製造工程と前記水処理工程との間に、前記改質バイオマスを粉砕する粉砕工程を更に備えることを特徴とする<1>~<4>のいずれか一項に記載の酵素糖化用原料の製造方法。
<6>上記<1>~<5>のいずれか一項に記載の酵素糖化用原料の製造方法により得られた酵素糖化用原料を、酵素糖化工程に供して糖を得ることを特徴とする糖の製造方法。
<7>上記<6>に記載の糖の製造方法により得られた糖を発酵工程に供してエタノールを得ることを特徴とするエタノールの製造方法。
That is, the present invention provides a method for producing a raw material for enzyme saccharification according to the following <1> to <5>, a method for producing a sugar according to <6> below, and a method for producing ethanol according to <7> below. provide.
<1> A plant biomass raw material containing lignocellulose is treated with a treatment agent containing ammonia to obtain a modified biomass, and the modified biomass is immersed in water at 40 to 100 ° C., And a water treatment step of eluting the polysaccharide in the modified biomass into the water and obtaining a raw material for enzymatic saccharification for use in the enzymatic saccharification step.
<2> The method for producing a raw material for enzyme saccharification according to <1>, wherein the temperature of the water in the water treatment step is higher than the treatment temperature in the enzyme saccharification step.
<3> The method for producing a raw material for enzyme saccharification according to <1> or <2>, wherein the temperature of the water in the water treatment step is 50 to 100 ° C.
<4> In any one of <1> to <3>, in the water treatment step, the mass A of the water and the dry mass B of the modified biomass satisfy the relationship of the following formula (1): A method for producing a raw material for enzymatic saccharification according to claim 1.
{A / (A + B)} × 100 ≧ 70 (1)
<5> The method according to any one of <1> to <4>, further comprising a pulverization step of pulverizing the modified biomass between the modified biomass production step and the water treatment step. Of producing raw materials for enzymatic saccharification of
<6> The enzyme saccharification raw material obtained by the method for producing an enzyme saccharification raw material according to any one of <1> to <5> above is subjected to an enzymatic saccharification step to obtain a saccharide. A method for producing sugar.
<7> A method for producing ethanol, wherein the sugar obtained by the method for producing sugar according to <6> is subjected to a fermentation step to obtain ethanol.
 本発明によれば、従来における諸問題を解決することができ、酵素糖化を効率的に行うことができ、そのため、糖の生産効率を向上させることが可能な、糖の製造方法に用いられる有用な酵素糖化用原料の製造方法、糖の製造方法及びエタノールの製造方法を提供することができる。 According to the present invention, various problems in the prior art can be solved, and enzymatic saccharification can be efficiently performed. Therefore, it is useful for a sugar production method that can improve sugar production efficiency. The manufacturing method of the raw material for enzyme saccharification, the manufacturing method of sugar, and the manufacturing method of ethanol can be provided.
 以下、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
<第1実施形態:酵素糖化用原料の製造方法>
 本発明の第1実施形態に係る酵素糖化用原料の製造方法は、リグノセルロースを含有する植物バイオマス原料を、アンモニアを含む処理剤で処理して改質バイオマスを得る改質バイオマス製造工程と、改質バイオマスを40~100℃の水に浸漬して、改質バイオマス中の多糖を前記水中に溶出せしめ、酵素糖化工程に供するための酵素糖化用原料を得る水処理工程と、を備える。
<First Embodiment: Method for Producing Enzymatic Saccharification Raw Material>
The method for producing a raw material for enzymatic saccharification according to the first embodiment of the present invention includes a modified biomass production process for obtaining a modified biomass by treating a plant biomass raw material containing lignocellulose with a treatment agent containing ammonia. A water treatment step of immersing the quality biomass in water at 40 to 100 ° C. to elute the polysaccharide in the modified biomass into the water to obtain a raw material for enzymatic saccharification for use in the enzymatic saccharification step.
 改質バイオマス製造工程においては、リグノセルロース(リグニン、セルロース、ヘミセルロースからなる複合体)を含有する植物バイオマス原料がアンモニアを含む処理剤で処理される(以下、前記処理を単に「アンモニア処理」ということもある。)。かかるアンモニア処理によって、植物バイオマス原料中のエステル結合の少なくとも一部が切断される。切断されるエステル結合にはリグノセルロースを構成するヘミセルロースとリグニンとの間のエステル結合が含まれ、当該エステル結合の開裂(即ち、当該エステル結合のアミド化開裂)によって、後述する酵素糖化工程において、酵素によるセルロースの加水分解を効率的に行うことができる。 In the modified biomass production process, a plant biomass raw material containing lignocellulose (a complex composed of lignin, cellulose and hemicellulose) is treated with a treatment agent containing ammonia (hereinafter, the treatment is simply referred to as “ammonia treatment”). There is also.) By such ammonia treatment, at least a part of the ester bond in the plant biomass raw material is cleaved. The ester bond to be cleaved includes an ester bond between hemicellulose and lignin constituting lignocellulose, and in the enzymatic saccharification step described later by cleavage of the ester bond (that is, amidation cleavage of the ester bond), The hydrolysis of cellulose by an enzyme can be performed efficiently.
 植物バイオマス原料としては、リグノセルロースを含有する限りにおいて特に制限はなく、目的に応じて適宜選択することができる。例えば、農業や林業等の生産活動に伴う残渣として得られる「廃棄物バイオマス」や、エネルギー等を得る目的で意図的に栽培して得られる「資源作物バイオマス」などを使用することができる。前記「廃棄物バイオマス」としては、例えば、廃建材、間伐材、稲わら、麦わら、もみ殻、バガスなどが挙げられ、また、前記「資源作物バイオマス」としては、例えば、セルロース類の利用を目的として栽培されるシラカバ、ユーカリ、ポプラ、アカシア、ヤナギ、スギ、スイッチグラス、ネピアグラス、エリアンサス、ミスカンサス、ススキ、リードカナリーグラスなどが挙げられる。また、前記バイオマスは、木に由来する「木質バイオマス」、草に由来する「草本バイオマス」などにも分類される。本発明においては、木質バイオマス及び草本バイオマス共に使用することができる。植物バイオマス原料は、1種単独で使用してもよいし、2種以上を併用してもよい。なお、上記バイオマス原料に含まれるセルロースは、基本的にセルロースI型結晶から構成される。 The plant biomass raw material is not particularly limited as long as it contains lignocellulose, and can be appropriately selected according to the purpose. For example, “waste biomass” obtained as a residue resulting from production activities such as agriculture and forestry, “resource crop biomass” obtained by intentionally cultivating for the purpose of obtaining energy and the like can be used. Examples of the “waste biomass” include waste building materials, thinned wood, rice straw, straw, rice husk, bagasse, etc., and the “resource crop biomass” is intended to use, for example, celluloses. Birch, eucalyptus, poplar, acacia, willow, cedar, switchgrass, napiergrass, Eliansus, Miscanthus, Susuki, Reed canarygrass and the like that are cultivated as The biomass is also classified into “woody biomass” derived from trees, “herbaceous biomass” derived from grass, and the like. In the present invention, both woody biomass and herbaceous biomass can be used. A plant biomass raw material may be used individually by 1 type, and may use 2 or more types together. In addition, the cellulose contained in the said biomass raw material is comprised from a cellulose I type crystal fundamentally.
 改質バイオマス製造工程に供する植物バイオマス原料は、収集されたものをそのまま使用してもよいが、裁断、粉砕等によりある程度以下の大きさの粒子としてから使用することが、取り扱いの容易さ並びにアンモニアを含む処理剤による処理の効率の観点から望ましい。 The plant biomass raw material used in the modified biomass production process may be collected as it is, but it is easy to handle and use ammonia as particles of the following size by cutting, grinding, etc. From the viewpoint of the efficiency of treatment with a treatment agent containing
 植物バイオマス原料の粒子の大きさとしては特に制限はなく、粒子としての取り扱いやすさなどに応じて適宜選択することができるが、例えば、通過するメッシュの目開きとして、5mm以下が好ましく、3mm以下がより好ましい。前記メッシュの目開きの大きさが5mmを超えると、後述するアンモニアを含む処理剤による処理効率が低下することがある。一方、単位操作としての粉砕はエネルギー効率が極めて低いため、例えば、粉砕に供するエネルギー投入量は乾燥バイオマス1kg当たり1MJ以下が好ましい。なお、以下、前記の収集したバイオマス原料を裁断、粉砕する工程を「粗粉砕」ということがある。 There is no restriction | limiting in particular as the magnitude | size of the particle | grains of a plant biomass raw material, Although it can select suitably according to the ease of handling as particle | grains etc., 5 mm or less is preferable as an opening of the mesh which passes, for example, 3 mm or less Is more preferable. When the mesh size of the mesh exceeds 5 mm, the treatment efficiency with a treatment agent containing ammonia described later may be lowered. On the other hand, since pulverization as a unit operation is extremely low in energy efficiency, for example, the amount of energy input used for pulverization is preferably 1 MJ or less per 1 kg of dry biomass. Hereinafter, the process of cutting and pulverizing the collected biomass material may be referred to as “coarse pulverization”.
 前記粗粉砕を予め行うことにより、後述するアンモニアを含む処理剤による処理を効率的に進行させることができる。前記粗粉砕に用いる粉砕機としては特に制限はなく、目的に応じて適宜選択することができ、例えば、ウィレーミル、カッターミル、ハンマーミル、ピンミル等を用いることができる。 By performing the coarse pulverization in advance, the treatment with a treatment agent containing ammonia described later can be efficiently advanced. There is no restriction | limiting in particular as a grinder used for the said rough crushing, According to the objective, it can select suitably, For example, a wheelie mill, a cutter mill, a hammer mill, a pin mill etc. can be used.
 リグノセルロースを含有する植物バイオマス原料を、アンモニアを含む処理剤で処理する場合、その方法としては特に制限はなく、目的に応じて適宜選択することができる。例えば、リグノセルロースを含有する植物バイオマス原料と、アンモニアを含む処理剤とを、圧力容器内に導入し、前記圧力容器内を所望の圧力及び温度に設定して、所望の時間処理することにより行うことができる。前記圧力としては特に制限はなく、目的に応じて適宜選択することができ、例えば、0MPa~12.5MPa(ゲージ圧)とすることができる。前記温度としては特に制限はなく、目的に応じて適宜選択することができ、例えば、-35℃~180℃、好ましくは40℃~150℃とすることができる。 When the plant biomass raw material containing lignocellulose is treated with a treatment agent containing ammonia, the method is not particularly limited and can be appropriately selected depending on the purpose. For example, a plant biomass material containing lignocellulose and a treatment agent containing ammonia are introduced into a pressure vessel, and the inside of the pressure vessel is set to a desired pressure and temperature and treated for a desired time. be able to. There is no restriction | limiting in particular as said pressure, According to the objective, it can select suitably, For example, it can be set as 0 MPa-12.5 MPa (gauge pressure). The temperature is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the temperature may be −35 ° C. to 180 ° C., preferably 40 ° C. to 150 ° C.
 アンモニアを含む処理剤は液相であっても、気相であっても、気液混相であっても、また超臨界状態であってもよい。 The treatment agent containing ammonia may be in a liquid phase, a gas phase, a gas-liquid mixed phase, or a supercritical state.
 前記アンモニアを含む処理剤による処理の時間は特に制限されず、用いる植物バイオマス原料の量や、前記した処理圧力、処理温度等に応じ、所望の程度のエステル結合の切断が進行する範囲内で適宜選択することができるが、10分~10時間が好ましく、30分~8時間が更に好ましく、30分~5時間が特に好ましい。前記処理時間が、10分未満であると、所望の程度のエステル結合の切断が進行しないことがあり、10時間を超えると、それ以上エステル結合の切断が進行せず、全体として非効率となることがある。一方、前記処理時間が、前記更に好ましい範囲内であると、効率よく、エステル結合の切断を進行させることができ、得られる酵素糖化用原料の酵素糖化率が向上する点で有利である。 The time for treatment with the treatment agent containing ammonia is not particularly limited, and is appropriately determined within a range in which cleavage of the ester bond of a desired degree proceeds according to the amount of plant biomass raw material used, the treatment pressure, the treatment temperature, and the like. Although it can be selected, it is preferably 10 minutes to 10 hours, more preferably 30 minutes to 8 hours, and particularly preferably 30 minutes to 5 hours. If the treatment time is less than 10 minutes, the desired degree of ester bond cleavage may not proceed, and if it exceeds 10 hours, the ester bond cleavage does not proceed any further, resulting in inefficiency as a whole. Sometimes. On the other hand, when the treatment time is within the further preferable range, it is advantageous in that the cleavage of the ester bond can be efficiently advanced, and the enzyme saccharification rate of the obtained enzyme saccharification raw material is improved.
 前記アンモニアを含む処理剤による処理を実施する装置としては特に限定されず、回分式装置、半連続式装置、連続式装置などが適宜選択され、処理を行う効率を高めるとの観点から、半連続式装置又は連続式装置を採用することが好ましい。 The apparatus for performing the treatment with the treatment agent containing ammonia is not particularly limited, and a batch-type apparatus, a semi-continuous apparatus, a continuous apparatus, and the like are appropriately selected, and from the viewpoint of increasing the efficiency of the treatment, semi-continuous. It is preferable to employ a type device or a continuous type device.
 アンモニアを含む処理剤の使用量としては特に制限はなく、目的に応じて適宜選択することができるが、例えば、リグノセルロースを含有する植物バイオマス原料の乾燥質量1gに対して、アンモニアとして10mg~300gが好ましく、100mg~150gがより好ましく、1g~50gが特に好ましい。アンモニアを含む処理剤の使用量が、リグノセルロースを含有する植物バイオマス原料の乾燥質量1gに対して、アンモニアとして10mg未満であると、処理が不十分となることがあり、300gを超えると、処理の効率が悪くなることがある。一方、その使用量が、前記特に好ましい範囲内であると、処理時間が短縮できる、使用する処理剤の量を少なくできる等の点で、有利である。 The amount of the treatment agent containing ammonia is not particularly limited and can be appropriately selected depending on the purpose. For example, 10 mg to 300 g of ammonia per 1 g of dry mass of the plant biomass raw material containing lignocellulose. Is preferable, 100 mg to 150 g is more preferable, and 1 g to 50 g is particularly preferable. When the amount of the treatment agent containing ammonia is less than 10 mg as ammonia with respect to 1 g of dry mass of the plant biomass raw material containing lignocellulose, the treatment may be insufficient. May be less efficient. On the other hand, when the amount used is within the particularly preferable range, it is advantageous in that the treatment time can be shortened and the amount of the treatment agent to be used can be reduced.
 なお、アンモニアを含む処理剤は、植物バイオマス原料中のエステル結合の少なくとも一部を切断することができる範囲であれば、アンモニア以外の化合物を更に含有していてもよい。アンモニア以外の化合物としては、例えば、二酸化炭素、窒素、エチレン、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、トルエン、ベンゼン、フェノール、ジオキサン、キシレン、アセトン、クロロホルム、四塩化炭素、エタノール、メタノール、プロパノール、ブタノールなどが挙げられる。また、エチレンジアン、モノメチルアミン、モノエチルアミン、ジメチルアミン、ジエチルアミン、トリエチルアミン等の有機アミン類が挙げられる。これらの化合物は1種を単独で使用してもよく、あるいは2種以上を組み合わせて使用してもよい。 In addition, the treatment agent containing ammonia may further contain a compound other than ammonia as long as at least a part of the ester bond in the plant biomass raw material can be cleaved. Examples of compounds other than ammonia include carbon dioxide, nitrogen, ethylene, methane, ethane, propane, butane, pentane, hexane, toluene, benzene, phenol, dioxane, xylene, acetone, chloroform, carbon tetrachloride, ethanol, methanol, Examples include propanol and butanol. Moreover, organic amines, such as ethylenedian, monomethylamine, monoethylamine, dimethylamine, diethylamine, and triethylamine, are mentioned. These compounds may be used individually by 1 type, or may be used in combination of 2 or more type.
 改質バイオマス製造工程においては、アンモニア処理を行う系内に存在する水分の質量と、植物バイオマス原料の乾燥質量とについて、[処理を行なう系内に存在する水分の質量/(処理を行なう系内に存在する水分の質量+植物バイオマス原料の乾燥質量)]で表される比率が0.3以下であることが好ましく、0.2以下であることがより好ましく、0.1以下であることが特に好ましい。アンモニア処理を行う系内に、植物バイオマス原料の量を基準として、多量の水が存在すると、アンモニア処理後に、得られる改質バイオマスとアンモニアとを分離し、アンモニアを再使用するために回収する工程において、水中に溶解したアンモニアを水と分離するために、多量の熱エネルギーを必要とし、改質バイオマス製造のコストが増大する。アンモニア処理を行う系内に存在する水分の量が、植物バイオマス原料の量に対して少ないほど、前記エネルギーの消費量の観点から好ましいが、前記比率が0.3以下であれば、前記エネルギーの消費量は過大なものとはならない。 In the modified biomass production process, the mass of moisture present in the system for ammonia treatment and the dry mass of the plant biomass raw material are expressed as [mass of moisture present in the system for treatment / (inside the system for treatment). The ratio represented by the mass of water present in the water + the dry mass of the plant biomass raw material)] is preferably 0.3 or less, more preferably 0.2 or less, and 0.1 or less. Particularly preferred. If a large amount of water is present in the system for ammonia treatment based on the amount of plant biomass raw material, after the ammonia treatment, the obtained modified biomass and ammonia are separated and recovered for reuse. In order to separate ammonia dissolved in water from water, a large amount of heat energy is required, and the cost of producing modified biomass increases. The smaller the amount of water present in the system for ammonia treatment relative to the amount of plant biomass raw material, the better from the viewpoint of the amount of energy consumed, but if the ratio is 0.3 or less, Consumption is not excessive.
 改質バイオマス製造工程で得られる改質バイオマスは、そのまま後述する水処理工程に供してもよいが、水処理工程に供する前に予め粉砕してもよい。すなわち、本実施形態に係る酵素糖化用原料の製造方法は、改質バイオマス製造工程と水処理工程との間に、改質バイオマスを粉砕する粉砕工程を更に備えてもよい。粉砕工程において、改質バイオマス製造工程で得られる改質バイオマスを粉砕することにより、その後水処理工程を経て得られる酵素糖化用原料の酵素糖化効率が一層向上する。 The modified biomass obtained in the modified biomass production process may be used as it is in the water treatment process described later, or may be pulverized in advance before being used in the water treatment process. That is, the method for producing the enzyme saccharification raw material according to the present embodiment may further include a pulverization step of pulverizing the modified biomass between the modified biomass production step and the water treatment step. In the pulverization step, by pulverizing the modified biomass obtained in the modified biomass production step, the enzyme saccharification efficiency of the enzyme saccharification raw material obtained through the water treatment step is further improved.
 水処理工程においては、改質バイオマスを40~100℃の水に浸漬して、改質バイオマス中のヘミセルロース等の多糖を前記水中に溶出せしめることによって、酵素糖化工程に供するための酵素糖化用原料が得られる。 In the water treatment step, the raw material for enzymatic saccharification for use in the enzymatic saccharification step is obtained by immersing the modified biomass in water at 40 to 100 ° C. and eluting polysaccharides such as hemicellulose in the modified biomass into the water. Is obtained.
 なお、植物バイオマス原料を、改質バイオマス製造工程を経ずにそのまま熱水に浸漬しても、ヘミセルロースは実質的に水中に溶出しない。一方、改質バイオマス製造工程後に得られる改質バイオマスを熱水に浸漬するとヘミセルロースなどの多糖類が溶出することを本発明者らは確認している。これらの結果から、リグニンとの結合が開裂したヘミセルロースなどの多糖類が水に溶出すると考えられる。 In addition, even if a plant biomass raw material is immersed in hot water as it is without passing through the modified biomass manufacturing process, hemicellulose is not substantially eluted in water. On the other hand, the present inventors have confirmed that polysaccharides such as hemicellulose are eluted when the modified biomass obtained after the modified biomass production process is immersed in hot water. From these results, it is considered that polysaccharides such as hemicellulose whose bond with lignin is cleaved are eluted in water.
 また、リグニンとの結合が開裂したヘミセルロースが水に溶出する現象は低温でも起こり得るが、当該ヘミセルロースの溶出量及び溶出の速度は温度の影響を受け、高温ほど効率的に溶出するので、水の温度は高温ほど有利である。そして、効率的にヘミセルロースなどの多糖を水中に溶出せしめるためには、水の温度は40℃以上であることが好ましい。一方、水の温度を100℃を超える温度とするためには、水処理工程を実施するための装置として圧力容器を必要とするため、設備コストが増大する。よって、水の温度は100℃以下であることが好ましい。以上の理由により、本実施形態に係る水処理工程における水の温度は、好ましくは40~100℃であり、より好ましくは50~100℃である。 In addition, the phenomenon in which hemicellulose, whose bond with lignin is cleaved, can be eluted in water can occur even at low temperatures, but the amount and rate of elution of the hemicellulose are affected by temperature, and the higher the temperature, the more efficiently it is eluted. The higher the temperature, the more advantageous. And in order to elute polysaccharides, such as hemicellulose, in water efficiently, it is preferable that the temperature of water is 40 degreeC or more. On the other hand, in order to make the temperature of water over 100 degreeC, since a pressure vessel is required as an apparatus for implementing a water treatment process, installation cost increases. Therefore, the temperature of water is preferably 100 ° C. or lower. For the above reasons, the temperature of water in the water treatment step according to this embodiment is preferably 40 to 100 ° C., more preferably 50 to 100 ° C.
 また、水処理工程における水の温度は、後述する酵素糖化工程における処理温度よりも高いことが好ましい。酵素糖化工程は一般的に水媒体中で実施され、所要時間は数十時間程度である。酵素糖化工程の前に水処理工程を設けない場合には、酵素糖化工程において、水処理工程と同様に多糖類の水中への溶出が起こると考えられる。水処理工程における水の温度を、酵素糖化工程における処理温度よりも高くすることにより、水処理工程を設けない場合に酵素糖化工程において多糖類が水中に溶出する効率に比較して、水処理工程における多糖類の水中への溶出の効率を高めることができ、水処理工程の効果をより確実に発現させることができる。 Further, the water temperature in the water treatment step is preferably higher than the treatment temperature in the enzyme saccharification step described later. The enzymatic saccharification step is generally performed in an aqueous medium, and the required time is about several tens of hours. In the case where the water treatment step is not provided before the enzyme saccharification step, it is considered that in the enzyme saccharification step, elution of the polysaccharide into water occurs as in the water treatment step. By setting the temperature of the water in the water treatment step higher than the treatment temperature in the enzyme saccharification step, the water treatment step is compared with the efficiency of elution of polysaccharides in water in the enzyme saccharification step when no water treatment step is provided. The efficiency of elution of polysaccharides in water into water can be increased, and the effects of the water treatment step can be expressed more reliably.
 また、水処理工程において、水の質量Aと、改質バイオマスの乾燥質量Bとは、下記式(1)の関係を満たすことが好ましい。なお、A、Bが下記式(1)の関係を満たす場合には、水処理工程において使用される水の量は、処理される改質バイオマスの飽和含水量を超える量となる。かかる条件下で水処理工程を行うことによって、リグニンとの結合が開裂したヘミセルロースなどの多糖類を効率的に水に溶出させ、バイオマス固体外に除去することができる。更に、後述の酵素糖化工程における反応条件と同じ量比の水を用いてもよい。
 {A/(A+B)}×100≧70・・・ (1)
Moreover, in the water treatment process, it is preferable that the mass A of water and the dry mass B of the modified biomass satisfy the relationship of the following formula (1). In addition, when A and B satisfy | fill the relationship of following formula (1), the quantity of the water used in a water treatment process will be the quantity exceeding the saturated water content of the modified biomass to be processed. By performing the water treatment step under such conditions, polysaccharides such as hemicellulose whose bond with lignin is cleaved can be efficiently eluted into water and removed from the biomass solids. Furthermore, you may use the water of the same quantity ratio as the reaction conditions in the below-mentioned enzyme saccharification process.
{A / (A + B)} × 100 ≧ 70 (1)
 なお、本発明に係る酵素糖化用原料とは、上述の水処理工程によって得られる、改質バイオマス由来の、水に対する不溶物(固形物)のみならず、水中に溶出したヘミセルロースなどの多糖類及び水を含み得る。すなわち、本発明においては、水処理工程により得られる懸濁液全体をそのまま後段の酵素糖化に供し得る。また、前記懸濁液から、水の少なくとも一部を留去することによってこれを濃縮し、あるいは水及び/又は有機溶媒を添加して希釈してもよく、これらの濃縮物及び希釈物も酵素糖化用原料に包含される。更にこれらに、酵素糖化工程に適したpHとするための緩衝液等の添加薬剤を加えたものも、酵素糖化用原料に包含される。 The raw material for enzyme saccharification according to the present invention is not only a modified biomass-derived insoluble matter (solid matter) derived from the modified water treatment step, but also polysaccharides such as hemicellulose eluted in water and May contain water. That is, in the present invention, the entire suspension obtained by the water treatment step can be directly used for the subsequent enzymatic saccharification. The suspension may be concentrated by distilling off at least a portion of water, or may be diluted by adding water and / or an organic solvent. It is included in the raw material for saccharification. Furthermore, the raw material for enzyme saccharification includes those added with an additive such as a buffer solution for achieving a pH suitable for the enzyme saccharification step.
<第2実施形態:糖の製造方法>
 本発明の第2実施形態に係る糖の製造方法は、上記第1実施形態に係る酵素糖化用原料の製造方法により得られた酵素糖化用原料を酵素糖化する酵素糖化工程を少なくとも含み、必要に応じて更にその他の工程を含む。
 以下、本実施形態に係る糖の製造方法について詳述する。
<Second Embodiment: Method for Producing Sugar>
The sugar production method according to the second embodiment of the present invention includes at least an enzyme saccharification step for enzymatic saccharification of the enzyme saccharification raw material obtained by the enzyme saccharification raw material production method according to the first embodiment. Depending on the situation, other steps are included.
Hereinafter, the sugar production method according to the present embodiment will be described in detail.
 本実施形態に係る酵素糖化工程に供される酵素糖化用原料には、改質バイオマス製造工程及び水処理工程において生じたセルロース及びヘミセルロースが含まれる。酵素糖化工程においては、酵素糖化用原料と酵素とを接触させることにより、上記のセルロース及びヘミセルロースが加水分解し、単糖類が得られる。 The enzyme saccharification raw material used in the enzyme saccharification step according to this embodiment includes cellulose and hemicellulose produced in the modified biomass production step and the water treatment step. In the enzyme saccharification step, the cellulose and hemicellulose are hydrolyzed by bringing the enzyme saccharification raw material into contact with the enzyme, whereby a monosaccharide is obtained.
 前記酵素糖化工程に用いられる酵素糖化の方法としては、酵素を用いる限りにおいて特に制限はなく、公知の方法を適宜選択することができる。硫酸等を用いる化学的な糖化方法を用いた場合には、過分解により単糖の収率が低下する傾向にあること、糖化に続く工程である発酵工程において阻害作用をもつ物質が生成し易い傾向にあること、及び硫酸等の環境負荷物質の排出が生じるなどの問題があるのに対して、酵素を用いる糖化方法においては、温和な条件を選択することが可能であり、前記の問題を生じ難い傾向にある。 The enzyme saccharification method used in the enzyme saccharification step is not particularly limited as long as an enzyme is used, and a known method can be appropriately selected. When a chemical saccharification method using sulfuric acid or the like is used, the yield of monosaccharides tends to decrease due to excessive decomposition, and a substance having an inhibitory action is likely to be produced in the fermentation process following saccharification. In contrast to the problem of the tendency and the discharge of environmentally hazardous substances such as sulfuric acid, mild conditions can be selected in the saccharification method using an enzyme. It tends not to occur.
 酵素糖化工程において使用する酵素としては特に制限はなく、目的に応じて適宜選択することができ、例えば、セルラーゼ、セロビアーゼ(β-グルコシダーゼ)などが挙げられる。また、これら酵素を適当な担体又はマトリックスに固定化した固定化酵素を使用することもできる。 The enzyme used in the enzymatic saccharification step is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include cellulase and cellobiase (β-glucosidase). An immobilized enzyme in which these enzymes are immobilized on an appropriate carrier or matrix can also be used.
 酵素糖化工程における酵素の使用量としては特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記酵素糖化用原料中の固形分乾燥質量1gに対して、0.001mg~100mgが好ましく、0.01mg~10mgがより好ましく、0.1mg~1mgが更に好ましい。前記酵素の使用量が、前記酵素糖化用原料中の固形分乾燥質量1gに対して、0.001mg未満であると、酵素糖化が不十分となることがあり、100mgを超えると、糖化阻害が起こることがある。一方、前記酵素の使用量が前記更に好ましい範囲内であると、酵素の使用量に対して得られる糖の量が多い点で有利である。 The amount of the enzyme used in the enzyme saccharification step is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 0.001 mg to 100 mg per 1 g of solid content dry mass in the enzyme saccharification raw material Is preferable, 0.01 mg to 10 mg is more preferable, and 0.1 mg to 1 mg is still more preferable. If the amount of the enzyme used is less than 0.001 mg relative to 1 g of the solid content dry mass in the enzyme saccharification raw material, enzyme saccharification may be insufficient, and if it exceeds 100 mg, saccharification inhibition may occur. May happen. On the other hand, when the amount of the enzyme used is within the further preferable range, it is advantageous in that the amount of sugar obtained is larger than the amount of enzyme used.
 酵素糖化工程における処理温度としては特に制限はなく、目的に応じて適宜選択することができるが、10℃~70℃が好ましく、20℃~60℃がより好ましく、30℃~50℃が更に好ましい。処理温度が、10℃より低い温度であると、酵素糖化が十分に進行しないことがあり、70℃を超えると、酵素が失活することがある。一方、処理温度が、前記更に好ましい範囲内であると、酵素の使用量に対して得られる糖の量が多い点で有利である。 The treatment temperature in the enzymatic saccharification step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 ° C to 70 ° C, more preferably 20 ° C to 60 ° C, and further preferably 30 ° C to 50 ° C. . If the treatment temperature is lower than 10 ° C, enzyme saccharification may not proceed sufficiently, and if it exceeds 70 ° C, the enzyme may be deactivated. On the other hand, when the treatment temperature is within the further preferable range, it is advantageous in that the amount of sugar obtained is larger than the amount of enzyme used.
 酵素糖化工程におけるpHとしては特に制限はなく、目的に応じて適宜選択することができるが、例えば、3.0~8.0が好ましく、3.5~7.0がより好ましく、4.0~6.0が更に好ましい。前記pHが、3.0未満、又は8.0を超えると、酵素が失活することがある。一方、前記pHが、前記更に好ましい範囲内であると、酵素の使用量に対して得られる糖の量が多い点で有利である。 The pH in the enzymatic saccharification step is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 3.0 to 8.0, more preferably 3.5 to 7.0, and 4.0. More preferably, ˜6.0. If the pH is less than 3.0 or more than 8.0, the enzyme may be deactivated. On the other hand, when the pH is within the more preferable range, it is advantageous in that the amount of sugar obtained is larger than the amount of enzyme used.
 酵素糖化工程により、酵素糖化用原料に含まれるセルロースからはグルコースが生成する。また、ヘミセルロースからはグルコース、ガラクトース、マンノースといった六炭糖及びキシロース、アラビノースといった五炭糖が生成する。 In the enzymatic saccharification step, glucose is produced from cellulose contained in the raw material for enzymatic saccharification. Hemicellulose produces hexoses such as glucose, galactose and mannose and pentoses such as xylose and arabinose.
 上記の酵素糖化工程により得られる単糖を含む糖液は、そのまま後述する発酵工程に供してもよいが、例えば、糖液のpHを調整する工程、糖の濃度を調整する工程などを施すことにより、発酵により適した糖液としてもよい。 The sugar solution containing the monosaccharide obtained by the above enzymatic saccharification step may be directly subjected to the fermentation step described later. For example, a step of adjusting the pH of the sugar solution, a step of adjusting the sugar concentration, etc. Therefore, the sugar solution may be more suitable for fermentation.
 本実施形態に係る糖の製造方法により得られる糖は、後述するエタノールの製造方法、乳酸の製造方法に用いるだけでなく、その他の物質の製造の原料として用いることもできる。 The sugar obtained by the sugar production method according to the present embodiment can be used not only in the ethanol production method and lactic acid production method described later, but also as a raw material for producing other substances.
<第3実施形態:エタノールの製造方法>
 本発明の第3実施形態に係るエタノールの製造方法は、上記第2実施形態に係る糖の製造方法により得られた糖(糖液)を発酵する発酵工程(エタノール発酵工程)を少なくとも含み、必要に応じて更にその他の工程を含む。
 以下、本実施形態に係るエタノールの製造方法について詳述する。
<Third Embodiment: Method for Producing Ethanol>
The method for producing ethanol according to the third embodiment of the present invention includes at least a fermentation process (ethanol fermentation process) for fermenting sugar (sugar solution) obtained by the sugar production method according to the second embodiment. Depending on the above, other steps are included.
Hereinafter, the ethanol production method according to this embodiment will be described in detail.
 本実施形態に係る発酵工程は、前記糖液にエタノール発酵微生物を添加し、エタノール発酵を行う工程である。 The fermentation process according to the present embodiment is a process of adding ethanol-fermenting microorganisms to the sugar solution and performing ethanol fermentation.
 エタノール発酵微生物としては特に制限はなく、目的に応じて適宜選択することができるが、酵母、ザイモモナス・モビリス等のザイモモナス属の細菌等が好ましく、酵母がより好ましい。 The ethanol-fermenting microorganism is not particularly limited and may be appropriately selected depending on the intended purpose. However, yeast, bacteria of the genus Zymomonas such as Zymomonas mobilis, etc. are preferred, and yeast is more preferred.
 酵母としては特に制限はなく、目的に応じて適宜選択することができるが、サッカロマイセス・セルビシエ等のサッカロマイセス属の酵母が好ましい。ただし前述のように、前記バイオマス原料を構成するヘミセルロースからは、酵素糖化によりキシロース、アラビノースといった五炭糖が生成するが、サッカロマイセス属の天然酵母は五炭糖を資化してエタノールを生成する能力をもたない。このため、六炭糖だけでなくヘミセルロース由来の五炭糖も有効に利用してエタノールに変換するためには、五炭糖を資化してエタノールを生成する能力を有する酵母(ペントース資化酵母)を使用することも好ましく行われる。前記ペントース資化酵母としては特に制限はなく、目的に応じて適宜選択することができるが、ピキア・スティピティス、カンジダ・シハタエ等が好ましい。六炭糖及び五炭糖を効率的にエタノールに変換するためには、サッカロマイセス属の酵母と、前述のペントース資化酵母とを組み合わせて使用する方法も好ましく採用される。この場合、サッカロマイセス属の酵母と前述のペントース資化酵母を共存させて発酵を行なってもよいし、まずサッカロマイセス属の酵母により糖液中のグルコースを資化させ、その後前述のペントース資化酵母により五炭糖を資化させてもよい。 Yeast is not particularly limited and may be appropriately selected depending on the intended purpose, but yeast of the genus Saccharomyces such as Saccharomyces cerevisiae is preferable. However, as described above, hemicellulose constituting the biomass raw material generates pentoses such as xylose and arabinose by enzymatic saccharification, but natural yeasts of the genus Saccharomyces have the ability to assimilate pentoses to produce ethanol. There is no waste. Therefore, in order to effectively use not only hexose but also pentose derived from hemicellulose and convert it to ethanol, yeast that has the ability to assimilate pentose and produce ethanol (pentose-utilizing yeast) It is also preferable to use There is no restriction | limiting in particular as said pentose utilization yeast, Although it can select suitably according to the objective, Pichia stipitis, Candida shihatae, etc. are preferable. In order to efficiently convert hexose sugar and pentose sugar to ethanol, a method of using a yeast of the genus Saccharomyces and the aforementioned pentose-utilizing yeast in combination is also preferably employed. In this case, the yeast of the genus Saccharomyces and the above-mentioned pentose-assimilating yeast may be fermented, or the glucose in the sugar solution is first assimilated by the yeast of the genus Saccharomyces, and then the above-mentioned pentose-assimilating yeast. You may assimilate pentose sugars.
 発酵工程に用いる酵母は、天然の酵母であってもよいし、遺伝子組換え酵母であってもよい。特に、六炭糖と五炭糖の両方の資化能を有する遺伝子組換え酵母を用いることにより、効率的にセルロース及びヘミセルロース由来の六炭糖及び五炭糖の両方をエタノールに変換することができる。 The yeast used in the fermentation process may be a natural yeast or a genetically modified yeast. In particular, it is possible to efficiently convert both hexose and pentose derived from cellulose and hemicellulose into ethanol by using a genetically modified yeast having the ability to assimilate both hexose and pentose. it can.
 発酵工程における前記酵母の使用量、糖以外の添加物、発酵温度、pH、発酵時間等の条件としては特に制限はなく、公知の条件を適宜選択して用いることができるが、pHは4~7、発酵温度は20℃~37℃程度が好ましい。 The amount of yeast used in the fermentation process, additives other than sugar, fermentation temperature, pH, fermentation time and the like are not particularly limited, and known conditions can be appropriately selected and used. 7. The fermentation temperature is preferably about 20 ° C to 37 ° C.
 また、耐熱性の酵母を用いて、通常よりも高い温度で発酵を行なうことで、冷却のための設備を必要とせず、また雑菌の繁殖を抑制して効率的に発酵を行なうこともできる。前記耐熱性の酵母としては例えば、クロイベロマイセス・マルキシアナス等のクロイベロマイセス属に属する耐熱性酵母が挙げられる。これらの耐熱性酵母を使用する場合は、発酵温度は37℃以上50℃以下程度とすることができる。 Further, by performing fermentation at a temperature higher than usual using heat-resistant yeast, it is possible to perform fermentation efficiently without the need for cooling equipment and by suppressing the propagation of various bacteria. Examples of the thermostable yeast include thermostable yeast belonging to the genus Kloyveromyces such as Kleiberymyces marxianas. When using these heat-resistant yeasts, the fermentation temperature can be about 37 ° C. or higher and 50 ° C. or lower.
 酵素糖化工程と発酵工程とを同時に行う、所謂並行複発酵法を採用してもよい。この並行複発酵法を採用することにより、前記酵素糖化工程と発酵工程とを単一の工程として実施することができ、簡略化された工程によってエタノールを製造することが可能となる。 A so-called parallel double fermentation method in which the enzymatic saccharification step and the fermentation step are simultaneously performed may be employed. By employing this parallel double fermentation method, the enzyme saccharification step and the fermentation step can be carried out as a single step, and ethanol can be produced by a simplified step.
 前記並行複発酵としては、前記本実施形態の酵素糖化用原料の製造方法によって得られた酵素糖化用原料に、酵素糖化のための酵素、及び、酵素糖化により生成する糖をそのまま反応系内でエタノール発酵させるための微生物を添加し、酵素糖化及びエタノール発酵を行う。 In the parallel double fermentation, the enzyme saccharification raw material obtained by the enzyme saccharification raw material production method of the present embodiment is used in the reaction system as it is in the reaction system. A microorganism for ethanol fermentation is added to perform enzymatic saccharification and ethanol fermentation.
 本実施形態に係るエタノールの製造方法は、上記の発酵工程以外の工程を更に備えていてもよい。その他の工程としては、本発明の効果を損なわない限り、特に制限はなく、目的に応じて適宜選択することができるが、精製工程を含むことが好ましい。 The ethanol production method according to the present embodiment may further include steps other than the fermentation step described above. The other steps are not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected according to the purpose, but preferably include a purification step.
 精製工程は、発酵工程において得られたエタノールを含む培地からエタノールを分離・精製する工程である。精製工程により、エタノールは発酵培地中に含まれる種々の物質から分離・精製され、また濃縮される。 The purification step is a step of separating and purifying ethanol from the medium containing ethanol obtained in the fermentation step. Through the purification process, ethanol is separated and purified from various substances contained in the fermentation medium and concentrated.
 前記エタノールの分離・精製の方法としては特に制限はなく、目的に応じて適宜選択することができるが、例えば、まず発酵培地を、菌体等の固形分を遠心分離及び/又はろ過などにより固液分離し、エタノールを含む水溶液を回収し、その後、該水溶液を蒸留、膜分離などの方法によりエタノールを濃縮、精製する方法が好ましい。 The ethanol separation / purification method is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the fermentation medium is first solidified by centrifuging and / or filtering solid matter such as bacterial cells. Liquid separation is preferred, and an aqueous solution containing ethanol is recovered, and then the aqueous solution is concentrated and purified by distillation, membrane separation, or the like.
 本実施形態に係るエタノールの製造方法によれば、前記酵素糖化用原料を用いて得られた糖を用いることで、効率的にエタノールを製造することができる。前記エタノールの製造方法により得られたエタノールは、例えば、燃料用エタノール、工業用エタノールなどとして好適に利用可能である。 According to the method for producing ethanol according to this embodiment, ethanol can be produced efficiently by using the sugar obtained using the raw material for enzyme saccharification. Ethanol obtained by the ethanol production method can be suitably used as, for example, fuel ethanol, industrial ethanol, and the like.
<乳酸の製造方法>
 前記本発明の糖の製造方法により得られた糖を用いて、乳酸を製造することができる。この場合の乳酸の製造方法においては、前記糖を乳酸発酵する発酵工程(乳酸発酵工程)を少なくとも含み、必要に応じて更にその他の工程を含む。
<Production method of lactic acid>
Lactic acid can be produced using the sugar obtained by the sugar production method of the present invention. The method for producing lactic acid in this case includes at least a fermentation step (lactic acid fermentation step) for lactic acid fermentation of the sugar, and further includes other steps as necessary.
 前記乳酸発酵工程は、前記糖液に乳酸菌等を添加し、乳酸発酵を行う工程である。前記乳酸菌としては特に制限はなく、公知の乳酸菌を適宜選択して用いることができ、例えば、ラクトバチルス・マニホティヴォランス(Lactobacillus manihotivorans)、ラクトバチルス・プランタラム(Lactobacillus plantarum)、ストレプトコッカス・サーモフィルス(Streptococcus thermophilus)、ラクトバチルス・ブルガリカス(Lactobacillus bulgaricus)などが挙げられる。なお、前記乳酸菌は、天然の乳酸菌であってもよいし、遺伝子組換え乳酸菌であってもよい。前記発酵工程における前記乳酸菌の使用量、糖以外の添加物、発酵温度、pH、発酵時間等の条件としては特に制限はなく、公知の条件を適宜選択して用いることができる。 The lactic acid fermentation step is a step in which lactic acid bacteria and the like are added to the sugar solution to perform lactic acid fermentation. The lactic acid bacterium is not particularly limited, and a known lactic acid bacterium can be appropriately selected and used. (Streptococcus thermophilus), Lactobacillus bulgaricus (Lactobacillus bulgaricus) and the like. The lactic acid bacterium may be a natural lactic acid bacterium or a genetically modified lactic acid bacterium. There are no particular restrictions on conditions such as the amount of lactic acid bacteria used in the fermentation step, additives other than sugar, fermentation temperature, pH, fermentation time, etc., and known conditions can be appropriately selected and used.
 乳酸の製造方法においては、発酵工程以外のその他の工程としては、例えば乳酸の精製工程を含むことが好ましい。 In the method for producing lactic acid, it is preferable to include, for example, a lactic acid purification step as another step other than the fermentation step.
 本発明の糖の製造方法により得られた糖を用いる乳酸の製造方法によれば、前記酵素糖化用原料を用いて得られた糖を用いることで、効率的に乳酸を製造することができる。このようにして得られた乳酸は、例えばポリ乳酸等の生分解性高分子の原料として利用することができる。 According to the lactic acid production method using the saccharide obtained by the saccharide production method of the present invention, lactic acid can be produced efficiently by using the saccharide obtained using the enzyme saccharification raw material. The lactic acid thus obtained can be used as a raw material for biodegradable polymers such as polylactic acid.
 また、本発明の糖の製造方法により得られる糖を、前記乳酸菌に代えて、それぞれ目的とする有機酸を産生する微生物を使用して発酵せしめることにより、乳酸以外の有機酸、例えば、クエン酸、コハク酸、リンゴ酸、シュウ酸等を製造することもできる。 In addition, the saccharide obtained by the method for producing saccharides of the present invention is fermented by using microorganisms that produce the desired organic acid in place of the lactic acid bacteria, so that an organic acid other than lactic acid, for example, citric acid is used. Succinic acid, malic acid, oxalic acid and the like can also be produced.
 以上、本発明の酵素糖化用原料の製造方法、並びに前記酵素糖化用原料の製造方法により製造された酵素糖化用原料を用いた糖の製造方法、及び、前記糖の製造方法により製造された糖を用いたエタノールの製造方法、乳酸等の製造方法について、好ましい実施形態に沿って説明したが、本発明はその趣旨を逸脱しない範囲において、上記実施形態に限定されるものではない。 As mentioned above, the manufacturing method of the raw material for enzyme saccharification of this invention, the manufacturing method of the saccharide | sugar using the raw material for enzyme saccharification manufactured by the manufacturing method of the said raw material for enzymatic saccharification, and the saccharide manufactured by the said manufacturing method of saccharide | sugar A method for producing ethanol and a method for producing lactic acid and the like have been described according to preferred embodiments, but the present invention is not limited to the above-described embodiments without departing from the gist thereof.
 以下に本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
[実施例1]
(植物バイオマス原料)
 リグノセルロースを含むバイオマスとしてエリアンサスを用いた。
(粉砕)
 前記エリアンサスを4mmの目開きを有するスクリーンで粒度を制御しながらカッターミルを用いて粉砕した。レーザー回折法で測定した平均粒子径(d50)は975μmであった。
(乾燥)
 粉砕後のエリアンサスを、改質バイオマス製造工程に供する前に、温度40℃、5kPaAの減圧下に一昼夜乾燥した。乾燥後のエリアンサスの含水率は乾燥後のエリアンサスの質量を基準として0.5質量%であった。
(改質バイオマス製造工程)
 内容積が約5Lの撹拌装置を備えたステンレス・スチール製オートクレーブに、粉砕及び乾燥後のエリアンサスを200g充てんした。次に、オートクレーブ内への加圧窒素ガスの導入/脱圧を繰り返して、オートクレーブ内の空気を除去し、窒素ガスへと置換した。その後このオートクレーブを120℃まで昇温した。昇温後、オートクレーブ内を脱圧し、更に減圧にして窒素ガスを排気した。一方、別途の圧力容器に加圧アンモニアを導入し、120℃よりやや高い温度までこのアンモニアを昇温した。その後、前記オートクレーブと前記圧力容器とを連結する配管に設置したバルブを開くことにより、前記オートクレーブに、温度120℃において圧力1.2MPaAとなるようにアンモニアを導入した。この温度、圧力条件にて2.5時間、撹拌下にエリアンサスをアンモニアにより処理した。その後、脱圧してアンモニアを排出し、更に窒素ガスをオートクレーブに流通させてエリアンサス粒子中に残留したアンモニアを除去し、改質バイオマスを得た。
 なお、使用したアンモニアは水分を実質的に含まないものであるので、アンモニア処理の際にオートクレーブ中に存在する水分は、乾燥されたエリアンサスが包含していた水分のみであり、水分の乾燥後のエリアンサスの質量に対する量比は0.5質量%であった。
(水処理工程)
 得られた改質バイオマスについて、以下の操作により、水処理を行った。内容積50mlのポリプロピレン製チューブに精秤した改質バイオマス0.3gを取り、改質バイオマス濃度3%(mass/vol)、pH4.5(酢酸緩衝液)となるように懸濁試料液を調製した。この試料液を、大気圧下で50℃の温水浴により10分間加温した。このときの、[{A/(A+B)}×100](Aは水の質量、Bは改質バイオマスの乾燥質量をそれぞれ表す。)は97%であった。
(酵素糖化工程)
 水処理後の試料液に、以下の操作により酵素を添加して、酵素糖化反応液を調製した。すなわち、酵素としてCelluclast(登録商標) 1.5L及びNovozyme(登録商標)188(共に商品名、Novozyme社製)を各酵素濃度0.01%(mass/vol)、計0.02%(mass/vol)の酵素濃度となるように添加して酵素糖化反応液を調製した。この反応液を振とう機(TAITEC社製)を用いて、37℃、200rpmにて72時間回転振とうして酵素糖化反応を行った。反応後の反応液を遠心分離して得られた上澄み液中のグルコース濃度を、バイオセンサー(王子計測機器社製)を用いて測定し、グルコース収率を算出した。
 なお、グルコース収率は次式で定義される。
グルコース収率(%)=[酵素糖化反応液中のグルコースの質量/(水処理試料液中の改質バイオマスの質量×全グルコース化率/100)]×100
全グルコース化率(%):(バイオマス原料を別途化学的に完全に加水分解したときに得られるグルコースの質量/バイオマス原料の質量)×100(バイオマス原料基準の理論収率に相当)
 結果を水処理工程の条件と共に表1に示す。
 また、水処理によるグルコース収率向上の効果を示すために、前記グルコース収率から後述する比較例1(水処理を施していない改質バイオマスの酵素糖化)におけるグルコース収率を減じた差分を「Δグルコース収率」として算出し、表1に併せて示す。
[Example 1]
(Plant biomass raw material)
Elianthus was used as biomass containing lignocellulose.
(Pulverization)
The Eliansus was pulverized using a cutter mill while controlling the particle size with a screen having an opening of 4 mm. The average particle diameter (d50) measured by the laser diffraction method was 975 μm.
(Dry)
The Eliansus after pulverization was dried overnight under reduced pressure at a temperature of 40 ° C. and 5 kPaA before being subjected to the modified biomass production process. The moisture content of the Elianthus after drying was 0.5% by mass based on the mass of the Elianthus after drying.
(Modified biomass production process)
A stainless steel autoclave equipped with a stirrer with an internal volume of about 5 L was filled with 200 g of ground and dried Eliansus. Next, introduction / depressurization of pressurized nitrogen gas into the autoclave was repeated to remove air in the autoclave and replace it with nitrogen gas. Thereafter, the autoclave was heated to 120 ° C. After raising the temperature, the autoclave was depressurized and further reduced in pressure to exhaust nitrogen gas. On the other hand, pressurized ammonia was introduced into a separate pressure vessel, and the ammonia was heated to a temperature slightly higher than 120 ° C. Thereafter, ammonia was introduced into the autoclave so that the pressure became 1.2 MPaA at a temperature of 120 ° C. by opening a valve installed in a pipe connecting the autoclave and the pressure vessel. The Elianthus was treated with ammonia under stirring at this temperature and pressure condition for 2.5 hours. Thereafter, the pressure was released and ammonia was discharged. Further, nitrogen gas was circulated through the autoclave to remove ammonia remaining in the Elianthus particles to obtain a modified biomass.
In addition, since the ammonia used does not substantially contain moisture, the moisture present in the autoclave during the ammonia treatment is only the moisture contained in the dried Elianthus. The mass ratio of Eliansus to the mass was 0.5% by mass.
(Water treatment process)
About the obtained modified biomass, water treatment was performed by the following operation. Take 0.3 g of modified biomass precisely weighed in a polypropylene tube with an internal volume of 50 ml, and prepare a suspension sample solution so that the modified biomass concentration is 3% (mass / vol) and pH 4.5 (acetate buffer) did. This sample solution was heated for 10 minutes in a hot water bath at 50 ° C. under atmospheric pressure. At this time, [{A / (A + B)} × 100] (A represents the mass of water and B represents the dry mass of the modified biomass) was 97%.
(Enzyme saccharification process)
An enzyme saccharification reaction solution was prepared by adding an enzyme to the sample solution after water treatment by the following operation. That is, Cellluclast (registered trademark) 1.5L and Novozyme (registered trademark) 188 (both trade names, manufactured by Novozyme) as enzymes were each 0.01% (mass / vol) of each enzyme, a total of 0.02% (mass / vol.) to obtain an enzyme saccharification reaction solution. Using this shaker (manufactured by TAITEC), this reaction solution was shaken at 37 ° C. and 200 rpm for 72 hours to carry out an enzymatic saccharification reaction. The glucose concentration in the supernatant obtained by centrifuging the reaction solution after the reaction was measured using a biosensor (manufactured by Oji Scientific Instruments), and the glucose yield was calculated.
The glucose yield is defined by the following formula.
Glucose yield (%) = [mass of glucose in enzyme saccharification reaction solution / (mass of modified biomass in water-treated sample solution × total glucosylation rate / 100)] × 100
Total glucosylation rate (%): (mass of glucose obtained when the biomass raw material is completely hydrolyzed separately / mass of biomass raw material) × 100 (corresponding to the theoretical yield based on biomass raw material)
The results are shown in Table 1 together with the conditions for the water treatment process.
Moreover, in order to show the effect of the glucose yield improvement by water treatment, the difference which reduced the glucose yield in the comparative example 1 (enzymatic saccharification of the modified biomass which has not performed water treatment) mentioned later from the glucose yield " It is calculated as “Δglucose yield” and is also shown in Table 1.
[比較例1]
 まず、実施例1と同様にして、改質バイオマス製造工程を実施した。次に、得られた改質バイオマスを用い、実施例1と同様にして、改質バイオマス濃度3%(mass/vol)、pH4.5(酢酸緩衝液)となるように懸濁試料液を調製した。そして、水処理工程を行わずに、この試料液に、実施例1の酵素糖化工程と同様の操作により酵素を添加して酵素糖化反応液を調製し、実施例1の酵素糖化工程と同様の操作にて酵素糖化工程に供した。なお、前記試料液を調製後は、その温度を室温(約25℃)に保ち、且つ、速やかに酵素を添加して酵素糖化工程に供した。酵素糖化反応終了後、実施例1と同様にしてグルコース収率を求めた。結果を表1に示す。
[Comparative Example 1]
First, a modified biomass production process was performed in the same manner as in Example 1. Next, using the obtained modified biomass, a suspension sample solution is prepared in the same manner as in Example 1 so that the modified biomass concentration becomes 3% (mass / vol) and pH 4.5 (acetate buffer). did. And without performing a water treatment process, an enzyme is added to this sample liquid by the same operation as the enzyme saccharification process of Example 1, and an enzyme saccharification reaction liquid is prepared, The same as the enzyme saccharification process of Example 1 The operation was subjected to an enzymatic saccharification step. In addition, after preparing the said sample liquid, the temperature was kept at room temperature (about 25 degreeC), and the enzyme was added rapidly and it used for the enzyme saccharification process. After completion of the enzymatic saccharification reaction, the glucose yield was determined in the same manner as in Example 1. The results are shown in Table 1.
[実施例2~7、比較例2]
[実施例2~7、11、比較例2]
 実施例2~7、11及び比較例2においては、それぞれ水処理工程における水の温度、処理時間、及び[{A/(A+B)}×100](A、Bは実施例1の記載と同一。)を表1に示す通りとしたこと以外は、実施例1と同様にして、改質バイオマス製造工程、水処理工程及び酵素糖化工程を実施し、それぞれグルコース収率、及びグルコース収率と比較例1におけるグルコース収率との差分であるΔグルコース収率を算出した。得られた結果を表1に示す。
[Examples 2 to 7, Comparative Example 2]
[Examples 2 to 7, 11 and Comparative Example 2]
In Examples 2 to 7, 11 and Comparative Example 2, the temperature of water in the water treatment step, the treatment time, and [{A / (A + B)} × 100] (A and B are the same as those described in Example 1. .) Was performed as shown in Table 1, and the modified biomass production process, the water treatment process and the enzymatic saccharification process were carried out in the same manner as in Example 1, and compared with the glucose yield and the glucose yield, respectively. The Δglucose yield, which is the difference from the glucose yield in Example 1, was calculated. The obtained results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例8]
改質バイオマス製造工程における温度を80℃、アンモニアの圧力を3.8MPaAとしたこと以外は実施例1と同様にして、改質バイオマス製造工程、水処理工程及び酵素糖化工程を実施し、グルコース収率を算出した。得られた結果を表2に示す。また、水処理によるグルコース収率向上の効果を示すために、前記グルコース収率から後述する比較例3(水処理を施していない改質バイオマスの酵素糖化)におけるグルコース収率を減じた差分を「Δグルコース収率」として算出し、表1に併せて示す。
[Example 8]
The modified biomass production process, the water treatment process and the enzymatic saccharification process were carried out in the same manner as in Example 1 except that the temperature in the modified biomass production process was set to 80 ° C. and the ammonia pressure was set to 3.8 MPaA. The rate was calculated. The obtained results are shown in Table 2. Moreover, in order to show the effect of the glucose yield improvement by water treatment, the difference which reduced the glucose yield in the comparative example 3 (enzymatic saccharification of the modified biomass which has not performed water treatment) mentioned later from the said glucose yield " It is calculated as “Δglucose yield” and is also shown in Table 1.
[実施例9]
 水処理工程における水の温度及び[{A/(A+B)}×100](A、Bは実施例1の記載と同一。)を表2に示す通りとしたこと以外は、実施例8と同様にして、改質バイオマス製造工程、水処理工程及び酵素糖化工程を実施した。そして、実施例8と同様にして、グルコース収率、及びこのグルコース収率と後述する比較例3におけるグルコース収率との差分であるΔグルコース収率を算出した。結果を表2に示す。
[Example 9]
The temperature of water in the water treatment step and [{A / (A + B)} × 100] (A and B are the same as those described in Example 1) are as shown in Table 2, and are the same as in Example 8. Thus, a modified biomass production process, a water treatment process and an enzymatic saccharification process were carried out. And it carried out similarly to Example 8, and computed (DELTA) glucose yield which is a difference of this glucose yield and the glucose yield in the comparative example 3 mentioned later. The results are shown in Table 2.
[比較例3]
 改質バイオマス製造工程における温度を80℃、アンモニアの圧力を3.8MPaA、としたこと以外は比較例1と同様にして、改質バイオマス製造工程及び(水処理工程を行なうことなく)酵素糖化工程を実施し、グルコース収率及びΔグルコース収率を算出した。結果を表2に示す。
[Comparative Example 3]
The modified biomass production process and the enzymatic saccharification process (without performing the water treatment process) are the same as in Comparative Example 1 except that the temperature in the modified biomass production process is 80 ° C. and the ammonia pressure is 3.8 MPaA. And the glucose yield and Δglucose yield were calculated. The results are shown in Table 2.
[実施例10]
 原料バイオマスとして、実施例1~9及び比較例1~3に用いたものとは異なるロットのエリアンサスを用い、以後実施例9と同様の操作により、改質バイオマス製造工程を実施した。そして、得られた改質バイオマスを水処理工程に供する前に、ディスクミルを用いた改質バイオマスの粉砕工程を設け、その後、実施例9と同様にして水処理工程及び酵素糖化工程を実施し、グルコース収率を算出した。
 また、水処理によるグルコース収率向上の効果を示すために、前記グルコース収率から後述する比較例5(粉砕処理し、水処理を施していない改質バイオマスの酵素糖化)におけるグルコース収率を減じた差分を「Δグルコース収率」として算出し、表1に併せて示す。
[Example 10]
As the raw material biomass, Elianthus of a lot different from that used in Examples 1 to 9 and Comparative Examples 1 to 3 was used, and thereafter, a modified biomass production process was carried out by the same operation as in Example 9. Then, before subjecting the obtained modified biomass to the water treatment step, a modified biomass pulverization step using a disk mill is provided, and then the water treatment step and the enzymatic saccharification step are carried out in the same manner as in Example 9. The glucose yield was calculated.
Moreover, in order to show the effect of improving the glucose yield by water treatment, the glucose yield in Comparative Example 5 (enzymatic saccharification of modified biomass that has been pulverized and not subjected to water treatment) described later is reduced from the glucose yield. The difference is calculated as “Δglucose yield” and is also shown in Table 1.
[比較例4]
 実施例10と同様に実施した改質バイオマス製造工程により得た改質バイオマスを、比較例1と同様の操作により、水処理工程を経ることなく、酵素糖化工程に供し、グルコース収率を算出した。結果を表2に示す。
[Comparative Example 4]
The modified biomass obtained by the modified biomass production process performed in the same manner as in Example 10 was subjected to the enzymatic saccharification process by the same operation as in Comparative Example 1 without passing through the water treatment process, and the glucose yield was calculated. . The results are shown in Table 2.
[比較例5]
 実施例10と同様に改質バイオマス製造工程にて得た改質バイオマスをディスクミルによる粉砕工程に供した。その後、水処理工程を経ることなく、比較例1と同様の操作により酵素糖化工程に供し、グルコース収率を算出した。結果を表2に示す。
[Comparative Example 5]
The modified biomass obtained in the modified biomass production process as in Example 10 was subjected to a pulverization process using a disk mill. Then, without passing through the water treatment step, the enzyme was subjected to the saccharification step by the same operation as in Comparative Example 1, and the glucose yield was calculated. The results are shown in Table 2.
 なお、表1及び表2に記載の各実施例におけるΔグルコース収率は、それぞれ、相当する水処理工程の前(改質バイオマス製造工程後、粉砕工程を経るものについては粉砕工程後)の改質バイオマスの酵素糖化を行なう比較例対比での、グルコース収率の増加分を表す。すなわち、各実施例における水処理工程を施すことによるグルコース収率の増加分に相当する。 In addition, Δglucose yield in each example described in Table 1 and Table 2 is modified before the corresponding water treatment process (after the modified biomass production process and after the pulverization process for those subjected to the pulverization process). The increase in glucose yield is shown in comparison with a comparative example in which enzymatic saccharification of sucrose biomass is performed. That is, it corresponds to an increase in glucose yield due to the water treatment step in each example.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示す結果から、アンモニア処理により得られる改質バイオマスを、40~100℃の水により処理することにより、酵素糖化によるグルコース収率が向上することが判る。また、表2に示す結果から、異なるアンモニア処理条件により得られる、より高い酵素糖化効率(グルコース収率)を有する改質バイオマスであっても、40~100℃の水により処理を行うことにより、更にグルコース収率が向上することが判る(実施例8及び9)。また、改質バイオマスを粉砕工程に供することにより、酵素糖化効率(グルコース収率は向上するが(比較例5/比較例4)、粉砕工程に供された改質バイオマスを水処理することにより、更にグルコース収率が向上することが判る。 From the results shown in Table 1, it is understood that the glucose yield by enzymatic saccharification is improved by treating the modified biomass obtained by the ammonia treatment with water at 40 to 100 ° C. Further, from the results shown in Table 2, even when the modified biomass having higher enzyme saccharification efficiency (glucose yield) obtained under different ammonia treatment conditions is treated with water at 40 to 100 ° C., It can also be seen that the glucose yield is improved (Examples 8 and 9). Moreover, by subjecting the modified biomass to the pulverization step, enzymatic saccharification efficiency (glucose yield is improved (Comparative Example 5 / Comparative Example 4)), but by treating the modified biomass supplied to the pulverization step with water, Furthermore, it turns out that a glucose yield improves.

Claims (7)

  1.  リグノセルロースを含有する植物バイオマス原料を、アンモニアを含む処理剤で処理して改質バイオマスを得る改質バイオマス製造工程と、
     前記改質バイオマスを40~100℃の水に浸漬して、前記改質バイオマス中の多糖を前記水中に溶出せしめ、酵素糖化工程に供するための酵素糖化用原料を得る水処理工程と、
    を備えることを特徴とする酵素糖化用原料の製造方法。
    A modified biomass production process for obtaining a modified biomass by treating a plant biomass raw material containing lignocellulose with a treatment agent containing ammonia; and
    A water treatment step of immersing the modified biomass in water at 40 to 100 ° C. to elute the polysaccharide in the modified biomass into the water to obtain an enzyme saccharification raw material for use in the enzyme saccharification step;
    A process for producing a raw material for enzymatic saccharification, comprising:
  2.  前記水処理工程における前記水の温度が、前記酵素糖化工程における処理温度よりも高いことを特徴とする請求項1に記載の酵素糖化用原料の製造方法。 The method for producing a raw material for enzyme saccharification according to claim 1, wherein the temperature of the water in the water treatment step is higher than the treatment temperature in the enzyme saccharification step.
  3.  前記水処理工程における前記水の温度が50~100℃であることを特徴とする請求項1又は2に記載の酵素糖化用原料の製造方法。 The method for producing a raw material for enzymatic saccharification according to claim 1 or 2, wherein the temperature of the water in the water treatment step is 50 to 100 ° C.
  4.  前記水処理工程において、前記水の質量Aと、前記改質バイオマスの乾燥質量Bとが、下記式(1)の関係を満たすことを特徴とする請求項1~3のいずれか一項に記載の酵素糖化用原料の製造方法。
    {A/(A+B)}×100≧70        (1)
    4. In the water treatment step, the mass A of the water and the dry mass B of the modified biomass satisfy the relationship of the following formula (1). Of producing raw materials for enzymatic saccharification of
    {A / (A + B)} × 100 ≧ 70 (1)
  5.  前記改質バイオマス製造工程と前記水処理工程との間に、前記改質バイオマスを粉砕する粉砕工程を更に備えることを特徴とする請求項1~4のいずれか一項に記載の酵素糖化用原料の製造方法。 The raw material for enzymatic saccharification according to any one of claims 1 to 4, further comprising a pulverization step of pulverizing the modified biomass between the modified biomass production step and the water treatment step. Manufacturing method.
  6.  請求項1~5のいずれか一項に記載の酵素糖化用原料の製造方法により得られた酵素糖化用原料を、酵素糖化工程に供して糖を得ることを特徴とする糖の製造方法。 A method for producing sugar, characterized in that the enzyme saccharification raw material obtained by the method for producing an enzyme saccharification raw material according to any one of claims 1 to 5 is subjected to an enzyme saccharification step to obtain sugar.
  7.  請求項6に記載の糖の製造方法により得られた糖を発酵工程に供してエタノールを得ることを特徴とするエタノールの製造方法。 A method for producing ethanol, wherein the sugar obtained by the method for producing sugar according to claim 6 is subjected to a fermentation step to obtain ethanol.
PCT/JP2012/050199 2011-01-11 2012-01-06 Method for producing starting material for enzymatic saccharification, method for producing sugar, and method for producing ethanol WO2012096236A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012552714A JPWO2012096236A1 (en) 2011-01-11 2012-01-06 Method for producing raw material for enzymatic saccharification, method for producing sugar, and method for producing ethanol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011003299 2011-01-11
JP2011-003299 2011-01-11

Publications (1)

Publication Number Publication Date
WO2012096236A1 true WO2012096236A1 (en) 2012-07-19

Family

ID=46507136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050199 WO2012096236A1 (en) 2011-01-11 2012-01-06 Method for producing starting material for enzymatic saccharification, method for producing sugar, and method for producing ethanol

Country Status (2)

Country Link
JP (1) JPWO2012096236A1 (en)
WO (1) WO2012096236A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132426A1 (en) * 2013-02-28 2014-09-04 日揮株式会社 Method for pretreating biomass, and method for producing sugar containing glucose as main component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055647A1 (en) * 2008-11-13 2010-05-20 本田技研工業株式会社 Apparatus for pretreatment for saccharification of lignocellulose biomass
WO2010147218A1 (en) * 2009-06-19 2010-12-23 国立大学法人東京大学 Biomass feedstock processing method, sugar production method, ethanol production method, and lactic acid production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055647A1 (en) * 2008-11-13 2010-05-20 本田技研工業株式会社 Apparatus for pretreatment for saccharification of lignocellulose biomass
WO2010147218A1 (en) * 2009-06-19 2010-12-23 国立大学法人東京大学 Biomass feedstock processing method, sugar production method, ethanol production method, and lactic acid production method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KIM TAE HYUN ET AL.: "Pretreatment and fractionation of corn stover by ammonia recycle percolation process", BIORESOURCE TECHNOLOGY, vol. 96, 2005, pages 2007 - 2013 *
MASAHIRO NIWA ET AL.: "Ammonia Pre-treatment for cellulosic bioethanol production", BIOMASS KAGAKU KAIGI HAPPYO RONBUNSHU, vol. 5, 20 January 2010 (2010-01-20), pages 86 - 87 *
SENDICH ELIZABETH NEWTON ET AL.: "Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions", BIORESOURCE TECHNOLOGY, vol. 99, 28 April 2008 (2008-04-28), pages 8429 - 8435, XP023182764, DOI: doi:10.1016/j.biortech.2008.02.059 *
YUICHI SHIBATA ET AL.: "Study on reaction rate during ammonia pre-treatment for cellulosic bioethanol production", BIOMASS KAGAKU KAIGI HAPPYO RONBUNSHU, vol. 6, 2 November 2011 (2011-11-02), pages 94 - 95 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132426A1 (en) * 2013-02-28 2014-09-04 日揮株式会社 Method for pretreating biomass, and method for producing sugar containing glucose as main component

Also Published As

Publication number Publication date
JPWO2012096236A1 (en) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5469881B2 (en) Method for producing sugar, method for producing ethanol, method for producing lactic acid, and method for producing raw material for enzyme saccharification used in these
CN105229155B (en) Propagating organisms and related methods and compositions
US10927388B2 (en) Method for preparing sugar, bioethanol or microbial metabolite from lignocellulosic biomass
JP2012523852A (en) Compositions and methods for biomass fermentation
US11098327B2 (en) Methods and systems for starch based propagation of a microorganism
JP2011160753A (en) Method for producing sugar, method for producing ethanol and method for producing lactic acid
WO2014190294A1 (en) Sugar separation and purification from biomass
JP2011152079A (en) Saccharifying fermentation system of cellulose-based biomass
WO2010077170A2 (en) Process and system for production of organic solvents
JP2011045277A (en) Production system for cellulose-based ethanol, and method for producing the same
JP5278991B2 (en) Method for producing ethanol raw material and ethanol from lignocellulosic biomass
US20220315886A1 (en) Methods for propagating microorganisms for fermentation &amp; related methods &amp; systems
JP2009022165A (en) Method for producing ethanol
JP2011010597A (en) Sugar and method for producing sugar, method for producing ethanol and method for producing lactic acid
Rudolf et al. Ethanol production from traditional and emerging raw materials
JP5702644B2 (en) Method for producing raw material for enzymatic saccharification, method for producing sugar, and method for producing ethanol
WO2012096236A1 (en) Method for producing starting material for enzymatic saccharification, method for producing sugar, and method for producing ethanol
JP6167758B2 (en) Ethanol production method
US11959119B2 (en) Methods and systems for starch based propagation of a microorganism
JP5761682B2 (en) Method for producing raw material for enzymatic saccharification, method for producing sugar and method for producing ethanol
JP2013143918A (en) Method for producing raw material for enzymatic saccharification, method for producing sugar, and method for producing ethanol
JP6327822B2 (en) Method for producing ethanol from woody biomass using filamentous fungi
WO2014156980A1 (en) Method for producing raw material for enzymatic saccharification, method for producing sugar, and method for producing ethanol
JP2023535512A (en) Method for producing sugar syrup from residual lignocellulosic biomass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12733867

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012552714

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12733867

Country of ref document: EP

Kind code of ref document: A1