JP6327822B2 - Method for producing ethanol from woody biomass using filamentous fungi - Google Patents

Method for producing ethanol from woody biomass using filamentous fungi Download PDF

Info

Publication number
JP6327822B2
JP6327822B2 JP2013202539A JP2013202539A JP6327822B2 JP 6327822 B2 JP6327822 B2 JP 6327822B2 JP 2013202539 A JP2013202539 A JP 2013202539A JP 2013202539 A JP2013202539 A JP 2013202539A JP 6327822 B2 JP6327822 B2 JP 6327822B2
Authority
JP
Japan
Prior art keywords
ethanol
cellulase
absidia
fermentation
filamentous fungi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013202539A
Other languages
Japanese (ja)
Other versions
JP2015065867A (en
Inventor
星野 一宏
一宏 星野
真希 高野
真希 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
Original Assignee
Toyama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University filed Critical Toyama University
Priority to JP2013202539A priority Critical patent/JP6327822B2/en
Publication of JP2015065867A publication Critical patent/JP2015065867A/en
Application granted granted Critical
Publication of JP6327822B2 publication Critical patent/JP6327822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Description

本発明は、特定の糸状菌を用いる木質系バイオマスまたはその加水分解物から、エタノールを製造する方法に関するものである。 The present invention relates to a method for producing ethanol from a woody biomass using a specific filamentous fungus or a hydrolyzate thereof.

現在、ブラジルやアメリカなどで行われているエタノールの製造は、トウモロコシやサトウキビから得られた6炭糖を主成分とする糖液を、酵母(S.cerevisiae)を用いる発酵法により行われる。トウモロコシやサトウキビは生産が容易で加工がしやすく豊富な糖が得られ、酵母は高濃度の糖存在下で優れた成長能力を持ち、エタノール生産収率も高い。しかし食料を燃料に替えるという倫理観の問題に始まり、食料としての供給の減少などの重大な問題を抱えている。このような背景から、未利用なバイオマス資源である農産廃棄物(稲わら、もみ殻など)、林産廃棄物(間伐材、廃木材)や産業廃棄物(ペーパースラッジなど)からエタノールを高収率で得る研究が進められている。
未利用なバイオマス資源である農産廃棄物からのエタノール生産は、成分であるセルロースやヘミセルロースなどを分解・発酵させてエタノールを生産する微生物が利用される。
Currently, ethanol production performed in Brazil, the United States, and the like is performed by fermentation using yeast (S. cerevisiae) with a sugar solution mainly composed of hexose obtained from corn and sugarcane. Corn and sugarcane are easy to produce, easy to process, and abundant sugars are obtained. Yeast has excellent growth ability in the presence of high concentrations of sugar and has a high ethanol production yield. However, it begins with the ethical problem of replacing food with fuel, and has serious problems such as a decline in the supply of food. Against this background, high yields of ethanol from unused biomass resources such as agricultural waste (rice straw, rice husk, etc.), forest waste (thinned wood, waste wood) and industrial waste (paper sludge, etc.) The research gained in is underway.
Ethanol production from agricultural waste, which is an unused biomass resource, uses microorganisms that produce ethanol by decomposing and fermenting components such as cellulose and hemicellulose.

しかし、これらS.cerevisiaeを代表するエタノール発酵微生物を用いて5炭糖の代表であるキシロースからエタノール発酵は不可能であり、キシロース発酵酵母であるCandida sheataeやPichia stipitisにおいても培養が難しい、副生成物が生成する、エタノール耐性が低い、発酵阻害物質により強く発酵が阻害されるなど多くの問題を抱えている。さらに、組換え微生物(例えば、特許文献1、2)を用いた場合には、高いエタノール生産性を達成できるものの、組換え菌を使用する際の安全性の問題や倫理的問題を解決していく必要がある。 However, these S.P. Ethanol fermentation is impossible from xylose, which is representative of pentose, using ethanol-fermenting microorganisms that represent cerevisiae, and by-products are produced that are difficult to culture even in Candida sheatae and Pichia stipis, which are xylose-fermenting yeasts. It has many problems such as low ethanol resistance and strong inhibition of fermentation by fermentation inhibitors. Furthermore, when recombinant microorganisms (for example, Patent Documents 1 and 2) are used, although high ethanol productivity can be achieved, the problems of safety and ethical problems when using recombinant bacteria are solved. We have to go.

これらのことから、本発明者らエタノール微生物として考えられていなかった糸状菌、特にケカビの検索を行い、Mucor属とRhizomucor属の糸状菌を用いて我が国の主要な未利用バイオマスとして稲わらからのバイオエタノール製造システムの開発を行ってきた(特許文献3)。 From these facts, the present inventors searched for filamentous fungi that were not considered as ethanol microorganisms, especially fungi, and from rice straw as the main unused biomass in Japan using the fungi of the genus Mucor and Rhizomucor. A bioethanol production system has been developed (Patent Document 3).

一方、Mucor属やRhizomucor属の特定の菌株を用いて、主にトウヒに由来する森林残渣の加水分解物からエタノールを製造できることが知られている(非特許文献1、2)。 On the other hand, it is known that ethanol can be produced from a hydrolyzate of a forest residue mainly derived from spruce using a specific strain of the genus Mucor or Rhizomucor (Non-patent Documents 1 and 2).

特開2010−158170JP 2010-158170 A 特開2011−030563JP2011-030563 A 特開2010−046024JP 2010-046024 A

Biochemical Engineering Journal, 39(2008), 383-388Biochemical Engineering Journal, 39 (2008), 383-388 Enzyme and Microbial Technology, 36(2005), 294-300Enzyme and Microbial Technology, 36 (2005), 294-300

製紙製造事業所から排出されるペーパースラッジやスラッジテールなど製紙廃棄物は、木質系バイオマスであり、バイオマス成分である糖質(セルロースとヘミセルロース)を含み、さらに、 リグニンおよび無機分を多量に含んでいる。この成分中の糖質を有効利用し生物変換によりエタノールを製造するためには、セルロースおよびヘミセルロース成分を加水分解する酵素群の分泌と、加水分解液中の5炭糖および6炭糖ともに効率よくエタノールへ変換することが望まれる。しかし、一般の発酵瀬微生物
S.cerevisiaeは、セルロース分解酵素(セルラーゼ)を分泌せず、さらに、5炭糖を資化できるものの発酵性を有しない。また、キシロース発酵酵母であるCandida sheataeやPichia stipitisは、5炭糖は発酵するもののセルラーゼ等は分泌しない。さらに、セルラーゼを多量に分泌する糸状菌Trichoderma resseiやAcremonium cellulolyticusはエタノール発酵能を有していない。
Paper waste such as paper sludge and sludge tail discharged from the paper manufacturing plant is a woody biomass that contains carbohydrates (cellulose and hemicellulose) as biomass components, and also contains a large amount of lignin and inorganic components. Yes. In order to produce ethanol by bioconversion using the carbohydrates in this component effectively, both the secretion of enzymes that hydrolyze the cellulose and hemicellulose components and the pentose and hexose in the hydrolyzed solution are both efficient. It is desirable to convert to ethanol. However, general fermented microorganism S. cerevisiae does not secrete cellulolytic enzyme (cellulase), and can assimilate pentose, but has no fermentability. In addition, Candida sheatae and Pichia stititis, which are xylose-fermenting yeasts, ferment pentose but do not secrete cellulase or the like. Furthermore, the filamentous fungi Trichoderma ressei and Acremonium cellulolyticus that secrete a large amount of cellulase do not have ethanol fermentation ability.

そこで、近年、セルラーゼおよびキシロース代謝酵素遺伝子を組換えたS.cerevisiaeやZ.palmae、地球環境産業技術研究機構(RITE)による組換えコリネ菌などが開発されてきているが、遺伝子組換え菌であることからカルタヘナル法の適用を受けて規制が厳しく、さらに、実際の製造において拡散防止などの設備を必要とする製造施設に多大なコストが負担となり商業化されていない。 Therefore, in recent years, S. cerevisiae having cellulase and xylose metabolizing enzyme genes recombined has been developed. cerevisiae and Z. Recombinant corynebacteria have been developed by Palmae, Institute for Global Environmental Industrial Technology (RITE), but since it is a genetically engineered bacterium, regulations are severe under the application of the Cartagenal Act, and actual production In manufacturing facilities that require equipment such as diffusion prevention, large costs are incurred and are not commercialized.

木質系バイオマスからの少ない工程数でエタノール生産を実用化させるためには、セルラーゼを分泌生産し、さらに、キシロースも発酵できる野性の菌株を見出すことが必要である。そこで、発明者らは、当研究室に保存している接合菌ライブラリーからセルラーゼを分泌生産すると共に、キシロースも発酵できる菌株の検索を行い、有用な糸状菌株を見出し、本発明を完成させるに至った。
以下、本発明を詳細に説明する。
In order to put ethanol production into practical use with a small number of steps from woody biomass, it is necessary to find a wild strain capable of secreting and producing cellulase and fermenting xylose. Therefore, the inventors searched for a strain that can secrete and produce cellulase from a zygote library stored in our laboratory and can also ferment xylose, find a useful filamentous strain, and complete the present invention. It came.
Hereinafter, the present invention will be described in detail.

本発明において使用される糸状菌は、接合菌門・接合菌綱・ケカビ目に属する糸状菌であり、アブシディア(Absidia)、バクセラ(Backusella)およびゴングロネリア(Gongronella)に属する糸状菌である。具体的には、例えば以下のような種を示すことができる。   The filamentous fungus used in the present invention is a filamentous fungus belonging to the zygomycota, zygomycetes, and fungi, and is a filamentous fungus belonging to Absidia, Baccusella, and Gongronella. Specifically, for example, the following species can be shown.

アブシディア・コエルレア(Absidia coerulea)
アブシディア・シリンドロスポラ(Absidia cylindrospora)
アブシディア・ヒアロスポラ(Absidia hyalospora)
バクセラ・シリシナ(Backusella circina)
ゴングロネリア・ブトレリ(Gongronella butleri)
Absidia coerulea
Absidia cylindrospora
Absidia hyalospora
Baxella circina
Gongronella butleri

上記の糸状菌は、湿気の多い有機物上に出現する、ごく普通のカビである。これら微生物の、土壌、河川、あるいは湖沼などの材料からの単離・同定法は公知である。たとえば単離および同定方法については以下のような文献を参照することができる。
カビ:”The Genera of Hyphomycetes from soil”, G.L.Barron, Baltimore, Maryland, Williams and Wilkins(1968).
”Compendium of soil Fungi”, K.H.
Domsh, W. Gams, T. Anderson, New York, Academic Press(1980).
The above-mentioned filamentous fungus is an ordinary mold that appears on moist organic matter. Methods for isolating and identifying these microorganisms from materials such as soil, rivers, and lakes are well known. For example, the following documents can be referred to for isolation and identification methods.
Mold: “The Genera of Hyphomycetes from soil”, GL Barron, Baltimore, Maryland, Williams and Wilkins (1968).
“Compendium of soil Fungi”, KH
Domsh, W. Gams, T. Anderson, New York, Academic Press (1980).

より具体的には、以下の微生物菌株を示すことができる。
アブシディア・コエルレア(NBRC4013,4423)
アブシディア・シリンドロスポラ(NBRC4001)
アブシディア・ヒアロスポラ(NBRC8092)
バクセラ・シリシナ(NBRC9231)
ゴングロネリア・ブトレリ(NBRC101111)
これらの糸状菌は、野生株または変異株のいずれの株も用いることができる。また、これらの糸状菌は、単独または混合して使用することができる。
More specifically, the following microbial strains can be shown.
Absidia Coellea (NBRC 4013, 4423)
Absidia Cylindrosspora (NBRC4001)
Absidia Hiarospora (NBRC8092)
Baccera Siricina (NBRC9231)
Gongnerelia butleri (NBRC101111)
As these filamentous fungi, either wild strains or mutant strains can be used. These filamentous fungi can be used alone or in combination.

上記の菌株は、独立行政法人製品評価技術基盤機構 バイオテクノロジー本部 生物遺伝資源部門(NBRC)
発行の微生物カタログ第1版(2005年)に記載されており、それぞれのアクセション番号をもとにNBRCなどのセルバンクから入手することができる。
The above strains are from the National Institute of Product Evaluation Technology Biotechnology Headquarters Biogenetic Resources Division (NBRC)
It is described in the published microorganism catalog 1st edition (2005) and can be obtained from cell banks such as NBRC based on the respective accession numbers.

上記した糸状菌は、エンド−β−グルカナーゼを分泌し、エタノールの発酵生産のみならず、セルラーゼも分泌生産することができる。   The above-mentioned filamentous fungus secretes endo-β-glucanase and can secrete and produce cellulase as well as fermentative production of ethanol.

上記した糸状菌を作用させる木質系バイオマスとしては、廃材、間伐材、樹皮、パルプ、古紙およびそれらの加水分解物が挙げられるが、例えば、製紙工程から排出されるペーパースラッジ、スラッジテールも木質系バイオマスに含まれる。   Examples of the woody biomass that causes the above fungi to act include waste wood, thinned wood, bark, pulp, waste paper, and hydrolysates thereof. For example, paper sludge and sludge tail discharged from the papermaking process are also woody. Included in biomass.

上記した糸状菌のセルラーゼの分泌生産能を利用してエタノールの製造を行う場合、発酵を糖化発酵同時進行で行うシステムを構築することができる。 When ethanol is produced using the above-described ability to produce cellulase of filamentous fungi, a system can be constructed in which fermentation is performed simultaneously with saccharification and fermentation.

上記した糸状菌とセルラーゼ剤を用いて、同時糖化発酵によりエタノールを製造することができる。ここで用いられるセルラーゼ剤は特に限定されず、市販のセルラーゼ剤を用いればよい。セルラーゼ剤は複数組み合わせでカクテルとすることができ、例えば、アクセラーゼ・メイセラーゼ・ペクチナーゼのセルラーゼカクテルなどが挙げられる。 Ethanol can be produced by simultaneous saccharification and fermentation using the above-mentioned filamentous fungus and cellulase agent. The cellulase agent used here is not particularly limited, and a commercially available cellulase agent may be used. The cellulase agent can be used as a cocktail by combining a plurality of cellulase agents, and examples thereof include cellulase cocktails of accelerators, mecerases, and pectinases.

本発明のセルラーゼの分泌能を有するエタノール発酵微生物を使用することから、同時糖化発酵においては、使用酵素の添加量の軽減に繋がり、製造コストの削減が可能である。
また、糖化発酵同時進行の場合、本発明のセルラーゼの分泌能を有するエタノール発酵微生物のみを発酵槽へ投入し、ペーパースラッジなどへの糖化と発酵を行うことから、酵素製造に係わるコストは必要としない。すなわち、本発明により、ペーパースラッジのような産業廃棄物を含む未利用木質系バイオマスからバイオ燃料として利用されているエタノールを安価に製造することが可能となる。
Since the ethanol-fermenting microorganism having the secretory ability of the cellulase of the present invention is used, in the simultaneous saccharification and fermentation, the amount of the enzyme used is reduced, and the production cost can be reduced.
In the case of simultaneous progress of saccharification and fermentation, only the ethanol-fermenting microorganism having the ability to secrete the cellulase of the present invention is introduced into the fermentor, and saccharification and fermentation to paper sludge and the like are necessary. do not do. That is, according to the present invention, ethanol used as biofuel can be produced at low cost from unused woody biomass containing industrial waste such as paper sludge.

本発明について、以下の実施例に基づきさらに詳細に説明するが、本発明は以下の実施例に制限されるものではない。 The present invention will be described in more detail based on the following examples, but the present invention is not limited to the following examples.

[実施例1]
硫酸アンモニウム(0.75%)、リン酸水素二カリウム(0.35%)、塩化カルシウム(0.1%)、硫酸マグネシウム・7水和物(0.075%)、酵母エキス(0.5%)、pH7.5の液体培地に、グルコース(2%)を含む寒天プレートで、糸状菌株を28℃で3〜5日培養した後、寒天プレートを粉砕し生理食塩液に懸濁させた。
生ペーパースラッジ(5%)を含有する上記の25mLに、上記懸濁液1mLを加え、28℃、120時間嫌気下で振とう培養した。
[Example 1]
Ammonium sulfate (0.75%), dipotassium hydrogen phosphate (0.35%), calcium chloride (0.1%), magnesium sulfate heptahydrate (0.075%), yeast extract (0.5% ) After culturing filamentous strains at 28 ° C. for 3 to 5 days on an agar plate containing glucose (2%) in a liquid medium at pH 7.5, the agar plate was pulverized and suspended in physiological saline.
1 mL of the above suspension was added to the above 25 mL containing raw paper sludge (5%), and cultured with shaking at 28 ° C. for 120 hours under anaerobic conditions.

培養終了後、定性濾紙(Advantec製、No.131)を用いて濾過を行うことにより菌体を除去し、各培養液の培養上清液を調製した。濾紙上に得られた菌体は、蒸留水で十分洗浄した後、90℃で24時間乾燥させた後、重量を測定し、乾燥菌体重量を求めた。一方、GCにより、培養により得られた培養液中のエタノールを定量した。
本発明の糸状菌株のエタノールの発酵能を表1に示す。また、エタノール生産とセルラーゼ(エンド−β−グルカナーゼ)生産を表2に示す。
After completion of the culture, the cells were removed by filtration using qualitative filter paper (manufactured by Advantec, No. 131), and a culture supernatant of each culture was prepared. The bacterial cells obtained on the filter paper were sufficiently washed with distilled water and then dried at 90 ° C. for 24 hours, and then the weight was measured to obtain the dry bacterial cell weight. On the other hand, the ethanol in the culture solution obtained by culture was quantified by GC.
Table 1 shows the ethanol fermentability of the filamentous strain of the present invention. Table 2 shows ethanol production and cellulase (endo-β-glucanase) production.

本発明により、例えば、製紙業界から排出される製紙廃棄物の問題点である化石燃料の多量消費、それに伴う炭酸ガスの発生を軽減でき、さらに、備蓄性の燃料であるエタノールを安価かつ効率よく製造することが可能となる。この分野において、エタノール製造の実用化は、エタノールの発酵効率の向上とコスト削減に係っている。本発明に使用される糸状菌は、セルラーゼの分必能を有していることから、例えば、バイオマスであるペーパースラッジの発酵処理に必要な酵素添加量の軽減あるいは酵素無添加状態でエタノールを生産でき、大幅なコスト削減が可能である。 According to the present invention, for example, a large amount of fossil fuel, which is a problem of papermaking waste discharged from the paper industry, can be reduced, and the generation of carbon dioxide gas associated therewith can be reduced. Further, ethanol as a stockpile fuel can be inexpensively and efficiently used. It can be manufactured. In this field, the practical use of ethanol production is related to the improvement of ethanol fermentation efficiency and cost reduction. Since the filamentous fungus used in the present invention has the necessary ability of cellulase, for example, it reduces the amount of enzyme required for fermentation treatment of biomass paper sludge or produces ethanol in the absence of enzyme. And significant cost reduction is possible.

Claims (1)

木質系バイオマスまたはその加水分解物に、アブシディア・コエルレア(NBRC4013,4423) 、アブシディア・シリンドロスポラ(NBRC4001) 、アブシディア・ヒアロスポラ(NBRC8092) 、バクセラ・シリシナ(NBRC9231)、ゴングロネリア・ブトレリ(NBRC101111)の野生株から選ばれる糸状菌を作用させることを特徴とするエタノールの製造方法であって,前記糸状菌がセルラーゼ分泌能を有する糸状菌であるエタノールの製造方法。 Absidia coerlea (NBRC4013, 4423), Absidia cylindrospora (NBRC4001), Absidia hyaspora (NBRC8092), Baccella sirichina (NBRC9231), wild globrel butleri (NBRC101111) A method for producing ethanol, wherein the filamentous fungus is a filamentous fungus having a cellulase-secreting ability.
JP2013202539A 2013-09-27 2013-09-27 Method for producing ethanol from woody biomass using filamentous fungi Active JP6327822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013202539A JP6327822B2 (en) 2013-09-27 2013-09-27 Method for producing ethanol from woody biomass using filamentous fungi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013202539A JP6327822B2 (en) 2013-09-27 2013-09-27 Method for producing ethanol from woody biomass using filamentous fungi

Publications (2)

Publication Number Publication Date
JP2015065867A JP2015065867A (en) 2015-04-13
JP6327822B2 true JP6327822B2 (en) 2018-05-23

Family

ID=52833347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013202539A Active JP6327822B2 (en) 2013-09-27 2013-09-27 Method for producing ethanol from woody biomass using filamentous fungi

Country Status (1)

Country Link
JP (1) JP6327822B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0720728B1 (en) * 2007-01-03 2018-01-23 Danisco Us Inc., Genencor Division METHOD FOR GROWING A PRODUCTION MICRO-ORGANISM THAT PRODUCES A DESIRED PROTEIN
CN102016055A (en) * 2008-04-29 2011-04-13 丹尼斯科美国公司 Swollenin compositions and methods of increasing the efficiency of a cellulase

Also Published As

Publication number Publication date
JP2015065867A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
Ali et al. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis
Cadete et al. Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest
da Silva Delabona et al. Using Amazon forest fungi and agricultural residues as a strategy to produce cellulolytic enzymes
US7449313B2 (en) Systems and processes for cellulosic ethanol production
US8232082B2 (en) Process for the fermentative production of ethanol from solid lignocellulosic material comprising a step of treating a solid lignocellulosic material with alkaline solution in order to remove the lignin
Charoensopharat et al. Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing
Itelima et al. Simultaneous saccharification and fermentation of corn cobs to bio-ethanol by co-culture of Aspergillus niger and Saccharomyces cerevisiae
Pothiraj et al. Simultaneous saccharification and fermentation of cassava waste for ethanol production
da Silva Fernandes et al. Current ethanol production requirements for the yeast Saccharomyces cerevisiae
Nouri et al. Xylan-hydrolyzing thermotolerant Candida tropicalis HNMA-1 for bioethanol production from sugarcane bagasse hydrolysate
Chaturvedi et al. Banana peel waste management for single-cell oil production
Ungureanu et al. Capitalization of wastewater-grown algae in bioethanol production
JP2011152079A (en) Saccharifying fermentation system of cellulose-based biomass
Shokrkar et al. Exploring strategies for the use of mixed microalgae in cellulase production and its application for bioethanol production
Murugan et al. Bioethanol production from agave leaves using Saccharomyces cerevisiae (MTCC 173) and Zymomonas mobilis (MTCC 2427)
Sharma et al. A review on current technological advancement of lignocellulosic bioethanol production
Al-Tabib et al. Production of acetone, butanol, and ethanol (ABE) by Clostridium acetobutylicum YM1 from pretreated palm kernel cake in batch culture fermentation
Kumar et al. Bioethanol production from apple pomace using co-cultures with Saccharomyces cerevisiae in solid-state fermentation
CN104160021A (en) Method for producing an enzyme cocktail using the solid residues from a process for biochemically converting of lignocellulosic materials
Takano et al. Direct ethanol production from rice straw by coculture with two high-performing fungi
JP5953045B2 (en) Ethanol production method using biomass
JP6327822B2 (en) Method for producing ethanol from woody biomass using filamentous fungi
WO2017037745A1 (en) An integrated process for production of carbohydratases, ethanol, and xylitol using an isolated candida strain
Praveenkumar et al. Comparative analysis of saccharification of cassava sago waste using Aspergillus niger and Bacillus sp. for the production of bio-ethanol using Saccharomyces cerevisiae
JP6335462B2 (en) Method for producing ethanol from papermaking waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170602

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180417

R150 Certificate of patent or registration of utility model

Ref document number: 6327822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250