WO2012096194A1 - 画像符号化方法、画像符号化装置、画像復号化方法、画像復号化装置および画像符号化復号化装置 - Google Patents

画像符号化方法、画像符号化装置、画像復号化方法、画像復号化装置および画像符号化復号化装置 Download PDF

Info

Publication number
WO2012096194A1
WO2012096194A1 PCT/JP2012/000177 JP2012000177W WO2012096194A1 WO 2012096194 A1 WO2012096194 A1 WO 2012096194A1 JP 2012000177 W JP2012000177 W JP 2012000177W WO 2012096194 A1 WO2012096194 A1 WO 2012096194A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion
unit
error signal
image
signal
Prior art date
Application number
PCT/JP2012/000177
Other languages
English (en)
French (fr)
Inventor
陽司 柴原
西 孝啓
寿郎 笹井
敏康 杉尾
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012096194A1 publication Critical patent/WO2012096194A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques

Definitions

  • the present invention relates to a moving image encoding method, an image encoding device, an image decoding method, an image decoding device, and an image encoding / decoding device.
  • H.C. in order to encode a moving image, an error signal between an image signal and a predicted image signal is converted into a frequency coefficient by performing integer precision orthogonal transform matrix (integer Discrete Cosine Transform (DCT)) conversion.
  • DCT integer Discrete Cosine Transform
  • the DCT transform has a problem that there is a limit in the coding efficiency of moving images, that is, the compression rate.
  • An object of the present invention is to provide an image encoding method and an image encoding device, and an image decoding method and an image decoding device with high encoding efficiency of moving images.
  • an image encoding method is an image encoding method for converting an error signal between an image signal and a predicted image signal into a frequency coefficient, and is an expectation of the error signal.
  • the element arrangement or the element code can be changed so that the compression rate of the error signal is improved. For this reason, it is possible to improve the compression rate without having to hold a large number of new transformation matrices.
  • the expected value of the error signal is an expected value when the error signal is a random variable.
  • the above-described image encoding method further includes a determination step of determining a prediction direction in the intra-screen prediction, and the changing step is based on the prediction direction related to a distribution of expected values of the error signal. Then, the arrangement of elements of the transformation matrix or the signs of the elements are changed.
  • the expected value of the error signal is considered to increase as the position is farther from the intra prediction value.
  • the arrangement of elements of the conversion matrix or the sign of the elements can be changed so that the inclination indicated by the base of the conversion matrix is aligned with the inclination indicated by the expected value of the error signal. For this reason, it is possible to improve the compression rate without having to hold a large number of new transformation matrices.
  • the arrangement of elements of the transformation matrix or the code of the elements may be changed based on the encoding block boundary related to the distribution of the expected value of the error signal.
  • the elements may be rearranged in reverse order for each row of the transformation matrix.
  • the arrangement of elements of the conversion matrix or the sign of the elements can be changed so that the inclination indicated by the base of the conversion matrix and the inclination indicated by the expected value of the error signal are aligned.
  • the elements may be rearranged in the reverse order for every odd row of the transformation matrix.
  • the sign of an odd-numbered column element of the transformation matrix is inverted, and in the converting step, the error is calculated using another transformation matrix and the transformation matrix in which the sign of the element is inverted.
  • the signal may be converted into the frequency coefficient in multiple stages.
  • the sign of the element of i row and j column (i + j is an odd number, 0 ⁇ i, j ⁇ N) of the transformation matrix is inverted, and in the transformation step, another transformation matrix and the sign of the element are inverted.
  • the error signal may be converted into the frequency coefficient in multiple stages using the conversion matrix in which is inverted.
  • An image encoding method is an image encoding method for converting an error signal between an image signal and a predicted image signal into a frequency coefficient, and is adapted to the distribution of expected values of the error signal.
  • the error signal input order is changed, and the error signal whose input order is changed is used as the frequency coefficient by using a pre-stored conversion matrix used for conversion of an error signal having an expected value of a predetermined distribution.
  • the input order of error signals is changed instead of changing the arrangement of elements of the transformation matrix. For this reason, it is possible to improve the compression rate without having to hold a large number of new transformation matrices.
  • An image decoding method is an image decoding method for decoding a frequency coefficient obtained by converting an error signal between an image signal and a predicted image signal, and expects the error signal.
  • the frequency coefficient obtained by converting the error signal by the above-described image encoding method can be decoded.
  • the present invention can be realized not only as an image encoding method or an image decoding method including such characteristic steps, but also as a characteristic step included in the image encoding method or image decoding method. It can be realized as an image encoding device or an image decoding device as a processing unit. Also, for causing a computer to function as a program for causing a computer to execute characteristic steps included in the image encoding method or the image decoding method, or as a characteristic processing unit included in the image encoding device or the image decoding device. It can also be realized as a program. Such a program can be distributed via a computer-readable non-transitory recording medium such as a CD-ROM (Compact Disc-Read Only Memory) or a communication network such as the Internet. .
  • a computer-readable non-transitory recording medium such as a CD-ROM (Compact Disc-Read Only Memory) or a communication network such as the Internet. .
  • the present invention can also be realized as an image encoding / decoding device including an image encoding device and an image decoding device.
  • an image encoding method and an image encoding device it is possible to provide an image encoding method and an image encoding device, an image decoding method and an image decoding device with high moving image encoding efficiency.
  • FIG. 1A shows the conventional H.264. 2 is a diagram illustrating a positional relationship between an encoding target block and an in-screen predictor in H.264.
  • FIG. 1B shows conventional H.264. 264 is a diagram for describing the relationship between the position of the intra-screen predictor and the prediction mode.
  • FIG. 1C shows conventional H.264. 2 is a diagram illustrating a relationship between an azimuth ⁇ (prediction mode) and an in-screen predictor in H.264.
  • FIG. 2A shows the conventional H.264. 2 is a diagram illustrating a relationship among an image signal O, a predicted image signal P, and an error signal R in H.264.
  • FIG. 2B shows the conventional H.264.
  • FIG. 2 is a diagram for explaining horizontal DCT transformation in H.264.
  • FIG. 2C shows the conventional H.264.
  • 2 is a diagram for explaining vertical DCT transform in H.264.
  • FIG. 3A is a diagram for explaining the relationship between the distance from the in-screen predictor and the expected value of the error.
  • FIG. 3B is a graph for explaining the relationship between the distance from the in-screen predictor and the expected value of error.
  • FIG. 4A is a diagram illustrating a DCT transformation matrix used for converting a pixel value of 8 ⁇ 8 size.
  • FIG. 4B is a diagram showing a DDST conversion matrix in mode 1 (horizontal or vertical prediction) used for conversion of 8 ⁇ 8 pixel values.
  • FIG. 4C is a waveform graph of three lines from the top of the DDST conversion matrix in the frequency conversion of 16-point samples.
  • FIG. 5 is a diagram illustrating an example of assignment of DCT transform and DDST transform according to the prediction mode.
  • FIG. 6 is a diagram showing the orientation of DDST, which is one of the focus points of the present invention.
  • FIG. 7 is a functional block diagram of the image coding apparatus according to the first embodiment.
  • FIG. 8 is a flowchart illustrating a processing flow of the image encoding device.
  • FIG. 9 is a flowchart showing the determination of the matrix and direction according to the corresponding orientation of the prediction mode.
  • FIG. 10 is a diagram for explaining the operation of the left / right flip of the transform coefficient.
  • FIG. 11 is a diagram showing another expression method (H.265) for information related to the orientation.
  • FIG. 12 is a functional block diagram of the image decoding apparatus according to the second embodiment.
  • FIG. 13 is a flowchart illustrating processing of the image decoding apparatus according to the second embodiment.
  • FIG. 14 is a functional block diagram of a conversion unit and an inverse conversion unit of the image coding apparatus according to the third embodiment.
  • FIG. 15 is a conceptual diagram illustrating the concept of two-stage conversion by the conversion unit.
  • FIG. 16 is a conceptual diagram illustrating the concept of two-stage inverse transform by the inverse transform unit.
  • FIG. 17 is a flowchart illustrating processing of the image encoding device according to the third embodiment.
  • FIG. 18 is a functional block diagram of the image decoding apparatus according to the fourth embodiment.
  • FIG. 19 is a flowchart illustrating processing of the image decoding method according to the fourth embodiment.
  • FIG. 20 is a diagram for explaining even-symmetric conversion.
  • FIG. 21 is an overall configuration diagram of a content supply system that realizes a content distribution service.
  • FIG. 22 is an overall configuration diagram of a digital broadcasting system.
  • FIG. 23 is a block diagram illustrating a configuration example of a television.
  • FIG. 24 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk.
  • FIG. 25 is a diagram illustrating a structure example of a recording medium that is an optical disk.
  • FIG. 26A is a diagram illustrating an example of a cellular phone, and FIG.
  • FIG. 26B is a block diagram illustrating a configuration example of the cellular phone.
  • FIG. 27 is a diagram showing a structure of multiplexed data.
  • FIG. 28 is a diagram schematically showing how each stream is multiplexed in the multiplexed data.
  • FIG. 29 is a diagram showing in more detail how the video stream is stored in the PES packet sequence.
  • FIG. 30 is a diagram illustrating the structure of TS packets and source packets in multiplexed data.
  • FIG. 31 is a diagram illustrating a data structure of the PMT.
  • FIG. 32 shows the internal structure of multiplexed data information.
  • FIG. 33 shows the internal structure of stream attribute information.
  • FIG. 34 is a diagram showing steps for identifying video data.
  • FIG. 27 is a diagram showing a structure of multiplexed data.
  • FIG. 28 is a diagram schematically showing how each stream is multiplexed in the multiplexed data.
  • FIG. 29 is a diagram showing in more detail how
  • FIG. 35 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment.
  • FIG. 36 is a diagram showing a configuration for switching the driving frequency.
  • FIG. 37 is a diagram showing steps for identifying video data and switching between driving frequencies.
  • FIG. 38 is a diagram showing an example of a look-up table in which video data standards are associated with drive frequencies.
  • FIG. 39A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit
  • FIG. 39B is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit.
  • FIG. 40 is a flowchart of processing essential to the image coding method of the present invention.
  • FIG. 41 is a flowchart of processing essential to the image decoding method of the present invention.
  • the generation of the predicted image signal in the H.264 intra-screen coding is performed using the intra-screen predictor and the corresponding prediction mode.
  • FIG. 264 is a diagram for describing a relationship between an in-screen predictor and a direction indicated by a prediction mode.
  • FIG. 1A is a diagram showing a positional relationship between a block to be encoded or decoded and an intra-screen predictor.
  • a target block 801 indicates a block that is currently an encoding target or a decoding target.
  • Blocks B0, B1, B2, and B3 indicate blocks that have already been decoded at the time of decoding the target block 801.
  • the pixels included in the hatched inverted L-shaped region are set as the in-screen predictor 802 of the target block 801.
  • FIG. 1B is a diagram for explaining the relationship between the position of the in-screen predictor and the prediction mode.
  • the direction ⁇ satisfies ⁇ (3/4) ⁇ ⁇ ⁇ ⁇ + (1/8) ⁇ .
  • FIG. 1C is a diagram showing the relationship between the azimuth ⁇ (prediction mode) and the predictor.
  • the arrow indicated by Direction 1 is applied.
  • the root of the arrow belonging to the block B3 is the in-screen predictor, and the tip of the arrow is the target block 801 to which the arrow is applied.
  • a predicted image signal P of the target block 801 is created using the value of the in-screen predictor in the block B3.
  • the arrow indicated by Direction 0 is applied.
  • the predicted image signal P of the target block 801 is created by applying the values of the pixels belonging to the block B1 in the direction of Direction0.
  • a predicted image signal is generated in this way, and a difference signal (error signal) between the image signal and the predicted image signal is converted into a frequency coefficient.
  • the error signal R is derived by inversely transforming the frequency coefficient.
  • FIGS. 2A to 2C are diagrams for explaining an error signal R and a two-step orthogonal transformation applied to the error signal R.
  • FIG. FIG. 2A is a diagram showing that the difference between the image signal O and the predicted image signal P is an error signal R.
  • an integer precision orthogonal transform matrix (integer discrete coordinate transform (DCT)) transform is applied to the error signal R in two directions, the horizontal direction shown in FIG. 2B and the vertical direction shown in FIG. 2C.
  • DCT integer discrete coordinate transform
  • the DCT transformation in each direction of the two directions is executed by a DCT transformation matrix.
  • the DCT transformation matrix M takes the following values when the size is 4 ⁇ 4.
  • the first base of the DCT transformation matrix is designed with four values (0.5) that are flat. This is to derive the DC component of the error signal.
  • Non-Patent Document 2 it is proposed to use a specially designed KL transformation matrix instead of the conventional DCT transformation matrix for the orthogonal transformation of the error signal in the intra-frame coding described in FIGS. 1A to 1C.
  • Equation (2) represents the DDST conversion equation.
  • the first base (component value in the first row) uses a matrix that is not flat, such as 29, 55, 74, and 84.
  • FIG. 3A is a diagram for explaining the relationship between the distance from the in-screen predictor and the expected value of the error value (expected value when the error value is a random variable value) using the prediction mode 1 as an example. It is. Col0 indicates the first column of the predicted image signal, Col1 indicates the second column, and Col3 indicates the fourth column. Col0 has the shortest distance from the in-screen predictor (prediction source pixel) 802, and Col3 has the longest distance from the in-screen predictor 802. In mode 0, this is the same if the diagram is rotated 90 degrees clockwise, and the characteristics of the error function are the same in the other modes.
  • FIG. 3B is a diagram schematically showing the distance from the predictor in the screen and the value of the prediction error function.
  • the horizontal axis indicates the distance from the in-screen predictor.
  • the vertical axis represents the expected value of the error value (residual value) of the predicted image. This schematically illustrates that the residual value of Col1 close to the in-screen predictor (the difference between the actual pixel value and the pixel value of the predicted image) is stochastically smaller than the residual value of Col3.
  • Each base (distribution of component values of each row) in Equation (2) is due to the fact that the error signal is an error signal for the predicted image.
  • the error distribution is based on a predetermined probability distribution function such as a normal distribution, it is based on an estimation that “the prediction error expected value increases as the position is farther from the intra-screen predictor”.
  • the DDST transformation can be regarded as a kind of KL transformation matrix that is specially derived for a prediction image of intra prediction encoding.
  • FIG. 4A is a diagram showing a DCT conversion matrix used for conversion of 8 ⁇ 8 pixel values.
  • FIG. 4A shows a DCT transformation matrix in the frequency transformation of 8-point samples. As shown in the figure, each coefficient has symmetry (even symmetry, odd symmetry, including) about the axis Center. Each coefficient of the first base shown at the top in the figure is flat.
  • Each base takes an asymmetric component value about the axis Center.
  • this DDST special form of KL transform designed for intra-screen prediction
  • DCT transform are used by switching according to the prediction modes 0 to 8 described in FIG. Patent Document 2).
  • Table 1 shows the proposed prediction modes 0 to 8 (9 modes) and conversion methods applied in the vertical and horizontal directions.
  • DCT is H.264.
  • H.264 shows DCT conversion
  • KLT shows the above-mentioned DDST.
  • FIG. 5 shows the assignment of the transformation matrix in Table 1 to H.264. It is a figure shown by the relationship with the direction of prediction which a prediction mode of H.264 shows.
  • the prediction mode is roughly divided into three directions.
  • Range Q1 First, when the direction indicated by the prediction mode belongs to the first quadrant (in the case of modes 1 and 8) (1) DCT is applied in the vertical direction (2) DDST is applied in the horizontal direction .
  • Range Q4 Next, when the orientation indicated by the prediction mode belongs to the fourth quadrant (in the case of modes 6, 4, and 5), DDST is applied in both the vertical direction and the horizontal direction.
  • Range Q3 Finally, when the direction indicated by the prediction mode belongs to the third quadrant (in the case of modes 0, 7, and 3), (1) DCT is applied in the horizontal direction and (2) DDST is applied in the horizontal direction. .
  • this allocation is “when the direction indicated by the prediction mode and the direction of the conversion coefficient to be applied are 1 / 2 ⁇ or more, DCT is used for conversion in that direction”, and DDST is used for the other parts. It is assigned. For example, in mode 8 (+ ⁇ / 8), DCT is used in the vertical direction. For example, in modes 3 and 7, DCT is used in the horizontal direction. For other orientations, DDST is used to be horizontal and vertical.
  • FIG. 6 shows the orientation of the DDST that is the focus of the present invention.
  • the base of DDST is asymmetric as described above, and has a directional gradient. In consideration of the fact that encoding / decoding is performed from the upper left to the lower right, this inclination is suitable when the direction indicated by the prediction mode is in the fourth quadrant.
  • Examples of assignments in Table 1 are: (1) Computer resource perspective: without having to hold many new transformation matrices, (2) Viewpoint of compression ratio: Depending on the direction of the prediction mode, DDST is used only in an appropriate direction. It can be considered as an implementation example of the configuration. We propose a method of applying DDST according to a better prediction mode, taking into account the two aspects of (1) computer resources and (2) compression ratio.
  • the transformation matrix and the orientation of the transformation matrix are determined instead of simply selecting the transformation matrix to be applied according to the prediction mode.
  • the arrangement of coefficients corresponding to the basis of the transformation matrix is inverted according to the determined direction.
  • a frequency coefficient is derived using a transformation matrix in which the arrangement of coefficients is inverted.
  • encoding is performed using a matrix in which the coefficient order is inverted in the vertical direction in the prediction mode 8, and in the case of 3, 7, the coefficient order is inverted in the vertical direction. ⁇ Decrypt.
  • DCT transformation is used when the orientation is vertical or near vertical while using DDST.
  • FIG. 7 is a functional block diagram of the image coding apparatus 1000 according to Embodiment 1.
  • the image encoding apparatus 1000 includes a control unit 101, an image data supply unit 106, a difference unit 107, a conversion unit 102, an inverse conversion unit 103, an addition unit 108, a frame memory 109, a prediction unit 104, a prediction conversion control unit 105, and A variable length encoding unit 110 is included.
  • the main functional blocks in the first embodiment are a control unit 101, a conversion unit 102, an inverse conversion unit 103, a prediction unit 104, and a prediction conversion control unit 105.
  • the control unit 101 controls the image block Vin [i] supplied from the image data supply unit 106.
  • the control unit 101 specifies p that is an ID corresponding to the prediction modes [0] to [8] to be executed to the prediction conversion control unit 105.
  • the control unit 101 compares the designated Vin [i] with the image signal DecodedVin [i] [p] restored in the designated prediction mode [p], and performs the overall operation of the image coding apparatus 1000 and the image data.
  • the supply images i and p of the supply unit 106 are controlled.
  • the image data supply unit 106 receives an instruction from the control unit 101 and inputs the i-th image block Vin [i].
  • the difference unit 107 derives a difference between Vin [i] and the predicted image signal Pred [i] [p], and outputs an error signal Err [i] [p].
  • the conversion unit 102 converts the error signal Err [i] [p] with a conversion matrix specified by the Flip_LR signal to derive a frequency coefficient. Also, the conversion unit 102 quantizes the frequency coefficient with a predetermined quantization matrix and outputs it as a quantized conversion coefficient.
  • variable length coding unit 110 performs variable length coding on the quantized transform coefficient into a predetermined code string in accordance with a signal from the control unit 101 (not shown) and outputs the result.
  • the inverse transform unit 103 inversely quantizes the quantized transform coefficient with a predetermined inverse quantization matrix to restore the frequency coefficient.
  • the inverse transform unit 103 inversely transforms the frequency coefficient using a transform matrix specified by the Flip_LR signal, and outputs a restored error signal DecodedErr [i] [p].
  • the adding unit 108 adds the restored error signal DecodedErr [i] [p] and the predicted image [i] [p] generated by Pred_mode [p], and restores the restored image Vin [i] [p]. Is output.
  • the prediction unit 104 outputs the prediction image Pred [i] [p] according to the prediction mode Pred_mode [p] specified by the prediction conversion control unit 105.
  • the prediction conversion control unit 105 instructs the prediction unit 104 in the prediction mode Pred_mode [p]. Further, the predictive conversion control unit 105 supplies a control signal Flip_LR for designating a conversion matrix to the conversion unit 102. Further, the predictive conversion control unit 105 supplies a control signal Flip_LR for designating an inverse transform matrix to the inverse transform unit 103.
  • FIG. 8 is a flowchart showing the processing of the image encoding apparatus 1000.
  • control unit 101 controls the input block number i of the image data supply unit 106.
  • the image data supply unit 106 receives the image signal Vin [i] (S201).
  • the control unit 101 tries to determine the accuracy of the prediction mode for the input image signal Vin [i] by the number of prediction modes (S202).
  • the loop from S202 to S221 is an example of a loop for selecting the optimum prediction mode for the predetermined image signal block i in the image coding apparatus 1000. Therefore, when a predicted image that satisfies a predetermined condition for the block can be generated, the loop may be broken.
  • the prediction conversion control unit 105 sets the prediction mode (Pred_mode [p]) according to the prediction mode number p (S203).
  • H.P. Since H.264 defines nine prediction modes in eight directions, p takes nine values from 0 to 8 in this example.
  • the prediction unit 104 generates a predicted image Pred [i] [p] according to Pred_mode [p] designated by the prediction conversion control unit 105 (S204). For example, in the prediction mode 0, the prediction unit 104 generates the predicted image Pred [i] [0] by extending the value of the in-screen predictor existing above in the ⁇ 1 / 2 ⁇ direction. For example, in the prediction mode 3, the prediction unit 104 generates the predicted image Pred [i] [3] by extending the value of the in-screen predictor existing in the upper right direction in the ⁇ 3 / 4 ⁇ direction.
  • the difference unit 107 calculates the difference between Vin [i] and Pred [i] [p] and derives an error signal Err [i] [p] (S205).
  • the prediction conversion control unit 105 determines and outputs the value of the control signal Flip_LR indicating the application direction of the DDST matrix according to the prediction mode (S210). That is, the prediction conversion control unit 105 determines the conversion matrix and the direction according to the information related to the direction of the intra prediction. The relationship between this direction and the control signal will be described later.
  • the conversion unit 102 performs processing for replacing the coefficients of the conversion matrix of the matrix mat [p] prepared corresponding to the prediction mode p based on the input Flip_LR value (S212). That is, the conversion unit 102 rearranges the asymmetric coefficients included in the conversion matrix in the reverse order when the value of Flip_LR indicates the reverse direction.
  • the inverse transform unit 103 performs processing to invert the column direction for each row of the coefficient a [i] [j] of the matrix Inv_mat [p] prepared corresponding to the prediction mode p. This is performed (S214). That is, the inverse transform unit 103 rearranges the asymmetric coefficients included in the inverse transform matrix in reverse order when the value of Flip_LR indicates the reverse direction.
  • the conversion unit 102 converts the error signal Err [i] [p] into a frequency coefficient using the matrix set in S212 (S216). That is, the conversion unit 102 converts the error signal into a frequency coefficient using a conversion matrix in which asymmetric coefficients are rearranged.
  • the conversion unit 102 quantizes the frequency coefficient (S218).
  • the inverse transform unit 103 outputs the frequency coefficient restored by inverse quantization of the output of the transform unit 102 (S219).
  • the inverse transform unit 103 restores the restored error signal to the restored error signal using the matrix set in S214. Thereafter, the adding unit 108 adds Pred [i] [p] and DecodedErr [i] [p], and outputs DecodedVin [i] [p] (S221).
  • the determination policy in the control unit 101 may be given in advance, such as compression ratio priority and minimum processing load, or may be based on interactive operations.
  • the image coding apparatus 1000 outputs the error signal Err [i] [p] as a code string when the predicted image signal is generated in the selected prediction mode p and the prediction mode p (S231).
  • the image coding apparatus 1000 repeats the same processing for the next block (i + 1) when the processing for the block i is completed, and repeats the above processing until the coding processing for all the image blocks is completed.
  • FIG. 9 is a flowchart schematically showing the determination in S210 of FIG.
  • the prediction conversion control unit 105 first acquires the prediction mode p as “information on direction” in S2101 (S2101). H. In the case of H.264, prediction modes 0 to 8 (eight modes excluding 2) each correspond to eight directions.
  • the predictive conversion control unit 105 determines which quadrant (n-th quadrant) of the first to fourth quadrants (or whether the orientation ⁇ is 0 rad or near ⁇ 1 / 2 ⁇ ) (S2102). ).
  • the predictive conversion control unit 105 (A) Apply DDST in the forward direction in the forward direction (S2103); (B) Apply DDST in the forward direction in the horizontal direction (S2104).
  • the predictive conversion control unit 105 sets the value of Flip_LR to -1 (reverse direction) (S2110).
  • the prediction conversion control unit 105 (A) DDST is applied in the forward direction in the vertical direction (S2111), and (b) DCT is applied in the horizontal direction instead of inversion of DDST (S2112). Therefore, the predictive conversion control unit 105 sets the value of Flip_LR to 0 (no direction) (S2113).
  • the prediction conversion control unit 105 (A) DCT is applied instead of DDST inversion in the vertical direction (S2114), and (b) DDST is applied in the forward direction in the horizontal direction (S2116). In this case, the predictive conversion control unit 105 sets the value of Flip_UD to 0 (no direction) (S2115).
  • Table 2 is a table value setting example when this process is realized by a table in which fixed values are recorded.
  • H The values of Flip_LR and Flip_UD determined when the H.264 prediction mode is input are shown. For example, it can be implemented as a value fixed in a table.
  • the values in the decision table in Table 2 are set according to the following.
  • A In the table, the blank part applies the same matrix as in Table 1 in the Forward direction.
  • B1 In the prediction from the upper right to the lower left (mode 3), the horizontal conversion uses the inverted version of DDST in mode 4. Therefore, the value of Flip_LR is set to ⁇ 1 (reverse direction).
  • B2) In the prediction from the upper right to the lower left (mode 7), the horizontal conversion uses the inverse of the mode 5 DDST. Therefore, the value of Flip_LR is set to ⁇ 1 (reverse direction).
  • C In the prediction from the lower left to the upper right (mode 8), the vertical conversion uses the inverse of mode 6 DDST. Therefore, the value of Flip_UD is set to ⁇ 1 (reverse direction).
  • FIG. 10 is a diagram for explaining the process executed by the conversion unit 102 to replace the coefficients of the conversion matrix in S212 of FIG.
  • the coefficient of the transformation matrix set for the direction of Forward Direction (Flip value is +1) is T in the figure.
  • the first to third bases are shown, and the fourth to eighth waves are omitted.
  • the coefficient of the nth basis of the forward matrix is C [n] [m]
  • the coefficient of the nth basis of the backward matrix when Flip_LR (or Flip_UD) indicates ⁇ 1 is C [n] [ Size-1 ⁇ m].
  • Table 3 shows the element values of DDST used in the conversion unit 102 when the value of Flip_LR (UD) indicates the forward direction.
  • Table 4 is a matrix that is also used for processing in the conversion unit 102, and is an element value when the value of Flip_LR (UD) indicates the reverse direction.
  • the matrix in the process of “converting the error signal to the frequency coefficient” in the conversion unit 102 is a value obtained by rewriting the value of j to the left and right (reading the value of j from the right). Note that the calculation performed by the conversion unit 102 only needs to obtain a result obtained by converting the input image signal in the order of coefficients as described above. In other implementations, such as switching the input order instead of changing the order of the coefficients, the same result should be obtained.
  • the inverse transformation matrix Inv_mat in the inverse transformation unit 103 is a transposed matrix obtained by transposing the transformation matrix used in the transformation unit 102.
  • the matrix element a ′ [i] [j] is a value obtained by exchanging the row number i and the column number j of the conversion matrix in Table 3.
  • the value of Flip_LR or Flip_UD indicates the forward direction, the values of the elements in Table 5 are used below.
  • the transformation matrix and the direction are determined instead of simply selecting the transformation matrix to be applied. Then, the arrangement of coefficient values corresponding to the basis of the transformation matrix is flipped according to the determined direction. Then, the frequency coefficient is derived using the flipped matrix.
  • encoding / decoding is performed using a matrix that is flipped in the vertical direction in the prediction mode 8 and flipped in the vertical direction in the cases of 3 and 7.
  • DCT conversion is used when the orientation is vertical or near the horizontal direction while using DDST.
  • FIG. 2 is a conceptual diagram of a direction expressing method used in H.265.
  • H.264 the angle is expressed by the mode number located on the circle.
  • H.265 an angle is expressed by a mode number located on a square.
  • H. H.265 has 34 modes of 33 directions + DC prediction. Corresponds to any angle of 22.5 degrees equivalent to H.264. Modes 01 and 2 are H.264 and H.H. H.265 matches.
  • the example which performs a flip (rearrangement) according to the prediction mode in a screen was demonstrated. That is, the method of performing the flip based on the tendency that the prediction error expected value increases as the position is farther from the intra-screen predictor, or the prediction error expected value decreases as the position is farther from the intra-screen predictor. Note that this method can be applied to predictions having the same tendency other than intra-screen prediction, and can be applied to, for example, a coding block boundary, a prediction block boundary, a picture boundary, and a slice boundary.
  • rearrangement of the elements of the transformation matrix may not be realized by inverting the transformation matrix, but may be realized by inverting the data order of the input data.
  • the arrangement of elements can be changed based on the distribution of the expected value of the error signal so that the compression rate of the error signal is improved.
  • the expected value of the error signal is considered to increase as the position is farther from the intra prediction value.
  • the arrangement of elements of the transformation matrix can be changed so that the slope indicated by the base of the transformation matrix is aligned with the slope indicated by the expected value of the error signal. For this reason, it is possible to improve the compression rate without having to hold a large number of new transformation matrices.
  • FIG. 12 is a functional block diagram of an image decoding apparatus 2000 that decodes a code string encoded by the image encoding apparatus of the first embodiment.
  • the image decoding apparatus 2000 includes a variable length decoding unit 201, an inverse quantization unit 202, an inverse transformation unit 203, an addition unit 204, a prediction unit 206, and an inverse transformation coefficient switching control unit 205.
  • the variable length decoding unit 201 inputs a code string obtained by compressing and encoding a moving image, and restores the code string.
  • the inverse quantization unit 202 inversely quantizes the input signal and outputs a quantized transform coefficient.
  • the inverse transform unit 203 switches the inverse transform matrix according to an instruction (Flip_LR, Flip_UD) from the inverse transform coefficient switching control unit 205.
  • the inverse transform unit 203 restores the input quantized transform coefficient by using the inverse transform matrix switched, and outputs the restored error signal.
  • the operation of the inverse transform unit 203 is the same as the operation of the inverse transform unit 103 in the decoding loop of FIG.
  • the prediction unit 206 generates a predicted image signal according to the prediction mode specified by the inverse transform coefficient switching control unit 205.
  • the addition unit 204 adds the predicted image signal and the error signal, and outputs an output image Vout.
  • the inverse transform coefficient switching control unit 205 instructs the inverse transform unit 203 to specify the matrix and direction for the inverse transform using Flip_LR and Flip_UD according to the same rules as those described in Embodiment 1. .
  • FIG. 13 is a flowchart for explaining the processing flow of the image decoding apparatus 2000.
  • variable length decoding unit 201 separates and extracts the control signal CC [i] and the image signal CV [i] corresponding to the image signal [i] from Code [i] (S1201).
  • the inverse transform coefficient switching control unit 205 extracts the prediction mode p applied to the image signal [i] from the control signal CC [i] (S1203).
  • the prediction unit 206 generates a predicted image signal P [i] of the image signal [i] using the prediction mode p (S1204).
  • the inverse transform coefficient switching control unit 205 determines the values of Flip_LR and Flip_UD that are the directions of the coefficients of the transform matrix based on the azimuth by using the same determination method as the image encoding apparatus 1000 from the prediction mode p ( S1210). That is, the inverse transform coefficient switching control unit 205 determines the inverse transform matrix and the direction according to the information related to the direction of intra prediction. The determination here may be the same as in the flowchart of FIG. 9 or may be statically determined as shown in Table 2.
  • the inverse transform unit 203 determines a matrix to be applied and a coefficient direction based on the values of Flip_LR and Flip_UD, and reorganizes the matrix (S1214).
  • the matrix to be switched depending on the orientation is the matrix of Table 5 and Table 6 of the inverse transform unit 103 described in the image coding apparatus 1000. That is, when the determined direction indicates the reverse direction and the determined inverse conversion matrix has an asymmetric coefficient, the inverse transform unit 203 rearranges the asymmetric coefficient in reverse order.
  • the inverse transform unit 203 inversely transforms the image signal CV [i] using the reorganized matrix to obtain an error signal [i] (S1216). That is, the inverse transform unit 203 obtains an error signal by inversely transforming the quantized transform coefficient using an inverse transform matrix in which asymmetric coefficients are rearranged.
  • the adding unit 204 adds the error signal [i] and the predicted image signal P [i], and outputs the restored image signal Vout [i].
  • the code string obtained by the image coding apparatus 1000 according to the first embodiment can be decoded. That is, according to the image decoding apparatus 2000 according to the present embodiment, (1) Like the prior art, there is no need to encode / decode a new transformation matrix (effect in terms of computer resources), (2) It is possible to decode a code string in which DDST superior to DCT is applied in all directions (modes 8, 7, and 3) (effect in terms of compression rate).
  • Embodiment 3 The image coding apparatus according to Embodiment 3 is similar to the image coding apparatus 1000 shown in FIG. 7, the control unit 101, the image data supply unit 106, the difference unit 107, the conversion unit 102, the inverse conversion unit 103, and the addition unit 108. Frame memory 109, prediction unit 104, prediction conversion control unit 105, and variable length coding unit 110.
  • the internal operation of the conversion unit 102 and the inverse conversion unit 103 of the image encoding device of the third embodiment is different from that of the image encoding device 1000 of the first embodiment. That is, the conversion unit 102 and the inverse conversion unit 103 according to the third embodiment are different from the first embodiment in that the conversion is performed in multiple stages or the inverse conversion is performed in multiple stages.
  • This multi-stage conversion is a technique for reducing the amount of computation. It is executed in order to reduce the amount of calculation in performing special conversion (KL (Karhunen Loeve) conversion) for calculating a correlation of a large value for a low-frequency base such as DDST described in the first embodiment.
  • KL Kerhunen Loeve
  • DCT transformation with a high-speed algorithm or H.264 A first conversion which is a H.264 conversion is performed.
  • KL conversion is performed on the coefficient corresponding to the low band among the coefficients of the obtained conversion result using a small-size conversion matrix. Since energy is collected in the low band by the first conversion, the same performance can be obtained even with a small KL conversion (second conversion). Since the size is small, the amount of calculation of KL conversion can be reduced.
  • FIG. 14 is a functional block diagram showing a detailed configuration of the conversion unit 102 and the reverse conversion unit 103 for applying the multi-stage conversion process or the multi-stage reverse conversion process to the present invention.
  • the conversion unit 102 includes a first conversion unit 200, a division unit 210, a second conversion unit 220, and an integration unit 230.
  • the first converter 200 performs a first conversion on the error signal Err [i] [p].
  • the dividing unit 210 divides the coefficient of the conversion result by the first conversion unit 200 into a coefficient corresponding to a low frequency and other coefficients.
  • the second conversion unit 220 performs the second conversion on the coefficient corresponding to the low frequency band divided by the dividing unit 210.
  • the integration unit 230 integrates and outputs the other coefficients divided by the division unit 210 and the coefficient of the conversion result by the second conversion unit 220.
  • the inverse transform unit 103 includes a dividing unit 400, a second inverse transform unit 410, an integration unit 420, and a first inverse transform unit 430.
  • the dividing unit 400 divides the frequency coefficient into a coefficient corresponding to a low frequency and other coefficients.
  • the second inverse transformation unit 410 performs the inverse transformation of the second transformation on the coefficient corresponding to the low frequency divided by the division unit 400.
  • the integrating unit 420 integrates the other coefficients divided by the dividing unit 400 and the coefficient of the inverse transformation result by the second inverse transformation unit 410.
  • the first inverse transform unit 430 performs the inverse transform of the first transform on the integration result by the integration unit 420 and outputs a decoded conversion input signal (DecodedErr [i] [p]).
  • the predictive conversion control unit 105 outputs the control signal Flip_LR determined from the prediction mode or information related to the direction indicated by the predictive mode to the second conversion unit 220 of the conversion unit 102 and the second of the inverse conversion unit 103. Output to the inverse transform unit 410.
  • the second conversion unit 220 and the second inverse conversion unit 410 rearrange elements of the predetermined conversion matrix according to the control signal Flip_LR, and perform conversion and inverse conversion using the rearranged conversion matrix.
  • FIG. 15 is a diagram for explaining the concept of the multi-stage conversion operation by the conversion unit 102 (the first conversion unit 200 and the second conversion unit 220 shown in FIG. 14).
  • the conversion unit 102 receives a conversion input signal such as an error signal Err [i] [p] related to the difference between the image signal and the predicted image signal as an input.
  • a conversion input signal such as an error signal Err [i] [p] related to the difference between the image signal and the predicted image signal as an input.
  • the converted input signal is expressed as a signal in the YUV space such as the luminance signal Y, the color difference signals Cb, and Cr.
  • the first conversion unit 200 receives a conversion input signal having a first pixel size (N1 ⁇ N1) as an input, and performs a conversion process on the conversion input signal, whereby a first data size (N1 ⁇ N1) size is obtained.
  • One conversion output signal is output.
  • the dividing unit 210 in FIG. 14 removes the first converted output signal from the first partial signal having the second data size (M2 ⁇ N2) and the second data size from the first data size (N1 ⁇ N1). Is divided into second partial signals composed of data of a predetermined data size.
  • the second conversion unit 220 further converts the first partial signal having the second data size (M2 ⁇ N2) by a second conversion method different from the first conversion method, and the second data size (M2 ⁇ N2).
  • the second conversion output signal is output.
  • the integrating unit 230 integrates the second partial signal and the second converted output signal having the second data size, and outputs the converted output signal having the first data size after the integration.
  • FIG. 16 is a diagram for explaining the concept of the multi-step inverse transform operation by the inverse transform unit 103 (the second inverse transform unit 410 and the first inverse transform unit 430 shown in FIG. 14).
  • the inverse conversion unit 103 performs the reverse operation of the conversion unit 102.
  • the conversion output signal of the first data size output from the conversion unit 102 passes through the process of quantization and inverse quantization, and is the decoded conversion output signal of the first data size restored with a predetermined accuracy.
  • 320 inv_q_Err [i] [p]) is input to the dividing unit 400.
  • the original image data is represented by signals in the YUV space.
  • the dividing unit 400 converts the input decoding conversion output signal into a second decoding conversion output signal having the second data size (M2 ⁇ N2) and a data size obtained by subtracting the second data size from the first data size. It divides
  • the second inverse conversion unit 410 receives the second decoded conversion output signal as an input, and performs a conversion corresponding to the inverse conversion of the conversion by the second conversion unit 220 on the second decoded conversion output signal, thereby performing the second conversion.
  • a first decoded partial signal having a data size is generated and output.
  • the integrating unit 420 in FIG. 14 integrates the first decoded partial signal and the second decoded partial signal, and performs a first inverse conversion on the first decoded converted output signal having the first data size (N1 ⁇ N1) after the integration. Output to the unit 430.
  • the first inverse transform unit 430 receives the first decoded transform output signal as an input, and performs a transform corresponding to the inverse transform of the transform of the first transform unit 200 on the first decoded transform output signal, thereby inputting the decoded transform input.
  • a signal (DecodedErr [i] [p]) is generated and output.
  • FIG. 17 is a flowchart for explaining the operation of the image coding apparatus according to the third embodiment.
  • FIG. 17 illustrates steps characteristic of the present embodiment, and steps similar to those in FIG. 8 are given the same reference numerals.
  • the image coding apparatus receives the image signal Vin [i], generates a predicted image signal Pred [i] [p] corresponding to the prediction mode [p] determined by the control unit 101, and generates an error signal Err [i]. ] [P] is derived (S201 to S205 in FIG. 8).
  • the error signal corresponds to the “conversion input signal” in FIG.
  • the predictive conversion control unit 105 determines and outputs the value of the control signal Flip_LR indicating the application direction of the DDST matrix according to the prediction mode (S210).
  • the direction and the value of the control signal Flip_LR are as shown in FIG.
  • the conversion unit 102 switches the coefficients of the conversion matrix in accordance with the control signal in the same manner as S212 in FIG. Further, the inverse transform unit 103 switches the coefficient of the transform matrix for the inverse transform according to the control signal as in S214 of FIG.
  • the conversion unit 102 and the inverse conversion unit 103 have a value of Flip_LR in the reverse direction ( ⁇ 1) (modes 3, 7, and 8 in the case of H.264. Information on the measurement direction using the in-screen predictor as the origin. It is determined whether or not the point indicated by the azimuth indicated by is not in the fourth quadrant (S210a).
  • the conversion unit 102 and the inverse conversion unit 103 proceed to S216 without performing the coefficient switching process, that is, the coefficient rearrangement (the value of Flip_LR). Is +1 or 0).
  • the conversion unit 102 and the inverse conversion unit 103 perform processing for switching conversion coefficients (elements in i rows and j columns of the matrix), that is, arrangement of coefficients. Change is performed (when the value of Flip_LR indicates ⁇ 1).
  • the first transformation at the first stage executed by the first transformation unit 200 is selected from transformations (or transformation matrices) for which a high-speed processing algorithm can be used.
  • the first conversion unit 200 switches conversion according to the size of the input image. For example, when the size of the error signal is 8 ⁇ 8, the first conversion unit 200 uses 8 ⁇ 8 DCT conversion for which a high-speed processing algorithm can be used. In this case, the matrix mat [p] [0] does not exist, and the first conversion unit 200 uses a statically mounted value as the DCT coefficient.
  • the second conversion in the second stage executed by the second conversion unit 220 is executed using the matrix mat [p] [1].
  • the value of each element of the matrix can be derived by the first transformation (or a transformation matrix for the first transformation).
  • the method described in Patent Document: US provisional application 61/368403 can be used.
  • the matrix mat [p] [0] corresponding to the first transformation is 8 ⁇ 8 DCT, and the size of the first partial signal Is 4 ⁇ 4, the value of the matrix element a [i] [j] of the second transformation matrix mat [p] [1] takes the values in Table 7.
  • the second conversion unit 220 of the conversion unit 102 reverses the element a [i] [j] of the conversion matrix according to the switching rule shown below (H.264). In the case of prediction modes 3, 7, 8 and the like) (S212a, S212b).
  • Matrix element The vertical direction is i rows and the horizontal direction is j columns. i and j start from 0. The matrix is expressed as Wij, and the matrix after element switching is expressed as Wfij.
  • the conversion unit 102 switches between the positive and negative values of the coefficients of the second conversion matrix according to the value of the control signal Flip_LR (S212a, S212b).
  • the inverse conversion unit 103 switches between positive and negative elements of the inverse conversion matrix of the second inverse conversion unit 410 according to the value of the control signal Flip_FR (S214a, S214b).
  • Table 9 shows an example of matrix elements of Inv_mat [p] [1] when the value of Flip_LR is positive (or 0).
  • the transformation matrix of the second inverse transformation may be a matrix corresponding to an inverse matrix for inversely transforming data after the second transformation of data having a data size of M2 ⁇ N2.
  • a transposed matrix (Table 9) of the matrix of Table 7 can be used. it can.
  • the inverse transform unit 103 inverts the sign of the matrix coefficient according to the same rule as the switching rule of the transform unit 102.
  • Table 10 shows matrix elements that are switched when the value of Flip_LR is negative, and element values after step switching.
  • the matrix shown in Table 10 is obtained by inverting the sign of the element having an odd number of i + j.
  • “Not changed” indicates that the value is the same as the element at the same position in Table 9.
  • the conversion unit 102 performs a conversion process corresponding to S216 in FIG. 8 (FIG. 17, S216a to S216d).
  • the first conversion unit 200 receives Err [i] [p] as an input, performs first conversion on Err [i] [p], and outputs a first conversion output signal that is a conversion result ( S216a).
  • the first conversion unit 200 receives 8 ⁇ 8 size Err [i] [p] as an input, and performs statically mounted 8 ⁇ 8 DCT conversion processing as the first conversion Err [i] [p]. To apply.
  • the signal is separated into other partial signals obtained by removing the first partial signal (S216b).
  • the second conversion unit 220 receives the first partial signal as an input, and uses the matrix mat [p] [1] set according to the value of the control signal Flip_LR in S212 to perform the second operation on the first partial signal. The conversion is performed, and the second conversion output signal as the conversion result is output (S216c).
  • the integration unit 230 integrates the second conversion output signal and the other partial signals obtained by removing the first partial signal from the first conversion output signal, and the same 8 ⁇ 8 as the original image signal size as the integration result.
  • a size conversion output signal is output (S216d).
  • the quantization unit quantizes the transform output signal, and the inverse quantization unit inversely quantizes the output of the quantization unit to obtain a decoded transform output signal (inv_q_Err [i] [p]) restored to 8 ⁇ 8 data size. Output.
  • the quantization unit and the inverse quantization unit may be provided inside the transform unit 102 and the inverse transform unit 103, respectively.
  • the inverse transformation unit 103 performs an inverse transformation process corresponding to S220 in FIG. 8 in multiple stages (S220a to S220d in FIG. 17).
  • the dividing unit 400 separates the 8 ⁇ 8 size restoration conversion output signal into the 4 ⁇ 4 size second decoding conversion output signal corresponding to the low frequency component and the remaining partial signals.
  • the second inverse transform unit 410 performs a second inverse transform on the second decoded transform output signal using Inv_mat [p] [1] in which positive and negative signs are set according to the value of the control signal Flip_LR, A certain 4 ⁇ 4 size first decoded partial signal is output.
  • the integration unit 420 integrates the signal obtained by removing the second decoding conversion output signal from the decoding conversion output signal and the first decoding partial signal, and outputs the first decoding conversion output signal of 8 ⁇ 8 size.
  • the first inverse conversion unit 430 performs the inverse conversion of the conversion of the first conversion unit 200 on the first decoded conversion output signal. Specifically, the first inverse transform unit 430 applies iDCT transform in the vertical and horizontal directions to the first decoded transform output signal.
  • the image coding apparatus has the control information Multi_dec_ctrl (delimiter information for dividing the first partial signal, Flip_LR value required for restoring the first partial signal with the second transformation matrix).
  • the first inverse transform coefficient when it is positive, the applied prediction mode, and the like) are encoded and output in a predetermined unit such as a sequence, a picture, a slice, or a block (S2001).
  • the image encoding apparatus performs the same processing as the processing after S221 in FIG.
  • a transformation matrix in which all elements in a row of the transformation matrix have a sign opposite to that of the original transformation matrix performs the same function as the original transformation matrix.
  • the sign of the conversion matrix in Table 9 may be reversed in any row.
  • the conversion matrix in the reverse direction (Flip_LR value is negative) corresponding to the example of Table 13 is as shown in Table 14.
  • “Not changed” indicates that the value is the same as the element at the same position in Table 13.
  • directivity is improved when the conversion from the image data to the frequency domain data is performed by multi-step conversion by the first conversion and the second conversion.
  • the coefficient value of the second transformation matrix can be easily switched according to the prediction direction indicated by the prediction mode. Specifically, for each element of the matrix shown in Table 7, switching can be realized by a simple process of inverting the sign of the coefficient existing at the position where the sum of the row number and the column number of the matrix corresponds to an even number.
  • Embodiment 4 decodes a code string encoded by the image encoding apparatus or the image encoding method including the conversion unit 102 that performs multi-stage conversion described in Embodiment 3.
  • FIG. 18 is a functional block diagram of the image decoding apparatus 2001 according to the fourth embodiment.
  • the image decoding device 2001 includes a variable length decoding unit 201, an inverse quantization unit 202, an inverse transform unit 203, an inverse transform coefficient switching control unit 205, and a prediction unit (not shown). And an adder.
  • variable length decoding unit 201 decodes the quantized image signal q_Err [i] and the image data of the block i from the code sequence Code [i] for the predetermined block i included in the code sequence. Control information Multi_dec_ctrl is output.
  • the inverse transform coefficient switching control unit 205 receives the control information Multi_dec_ctrl as an input, and (i) the prediction mode Pred_mode [i], (ii) the prediction mode Pred_mode used for encoding the image block i from the control information Multi_dec_ctrl.
  • Flip_LR values (+1, 0, ⁇ 1) derived from the prediction direction indicated by [i], (iii) a signal Delimiter [i] for distinguishing the first partial signal from the remaining partial signals, and ( vi) Extract Inv_mat [p] [1], which is an inverse matrix corresponding to the matrix mat [p] [1] used for the second conversion of the first partial signal.
  • the inverse transform unit 203 is the inverse transform unit 103 (the division unit 400, the second inverse transform unit 410, the integration unit 420, and the first inverse transform unit 430 in FIG. 14) in the decoding loop in the image coding apparatus described with reference to FIG. Performs almost the same operation as Unlike the image encoding apparatus, the image decoding apparatus 2001 has a predetermined prediction mode for a predetermined block i. Different operations due to this point will be described.
  • the dividing unit 400 in the image decoding apparatus 2001 performs the decoding conversion output signal, the second decoding conversion output signal, and the second decoding in accordance with the signal Delimiter [i] that has already been uniquely determined on the image encoding apparatus side. Separated into partial signals.
  • the second inverse transform unit 410 is given a set of Inv_mat [p] [1] in advance in predetermined units such as a sequence, a picture, and a slice from the image coding apparatus side.
  • a set of Inv_mat [p] [1] used for decoding a predetermined block i is designated by an inverse transformation matrix Inv_mat [i] that selects one set from a plurality of sets of Inv_mat [p] [1]. Is done.
  • Other operations of the inverse transform unit 203 are the same as those of the inverse transform unit 103 in the image coding apparatus.
  • FIG. 19 is a flowchart for explaining processing of the image decoding apparatus 2001 according to the fourth embodiment.
  • the same reference numerals are assigned to the same steps as those in the operation flow of the image decoding apparatus 2001 of the second embodiment in FIG. 13 and the decoding loop portion of the image encoding apparatus in the third embodiment shown in FIG.
  • the image decoding apparatus 2001 receives a code string Code [i] obtained by encoding the block i as an input (S1201).
  • variable-length decoding unit 201 acquires control information Multi_dec_ctrl [i] for decoding the block i encoded on the image encoding device side from the code string Code [i] (S1202).
  • the inverse transform coefficient switching control unit 205 extracts, from the control information Multi_dec_ctrl, a prediction mode used for decoding the block i, a Clip_LR, a signal Delimiter [i] for extracting the second decoded transform output signal, and the like (S1203). These pieces of information may be extracted for each block, or may be extracted for each predetermined unit such as a picture added by the image encoding apparatus in S2000 of FIG. A prediction part produces
  • the inverse transform coefficient switching control unit 205 sets the value of Flip_LR in accordance with the extracted prediction mode or information on the orientation indicated by the prediction mode (S1210). This process corresponds to the process of S210 in FIG.
  • the inverse transform unit 203 performs a multi-stage inverse transform process similar to the process of S214 of the inverse transform unit 103 of the image encoding device (S1214). That is, the second inverse transform unit 410 of the inverse transform unit 203 is a coefficient whose sum of the row number i and the column number j is an odd number among the coefficients of the matrix shown in Table 9 according to the set value of Flip_LR. By reversing the sign of, the coefficients in Table 10 are switched (S1214a, S1214b).
  • the inverse quantization unit 202 inversely quantizes the quantized image signal q_Err [i] for the block i extracted from the code string, and outputs a quantized transform coefficient inv_q_Err [i].
  • the inverse transform unit 203 receives inv_q_Err [i] as an input, and performs the same processing as the inverse transform unit 103 in the image coding apparatus according to the third embodiment (S1216).
  • the dividing unit 400 separates the input Inv_q_Err [i] into the second decoded conversion output signal and the second decoded partial signal using the designated signal Delimiter (S220a, FIG. 16).
  • the second inverse transform unit 410 uses the Inv_mat [p] [1] obtained by inverting the sign of the element of mat [p] [1] in accordance with the value of the control signal Flip_LR, and outputs the second decoding transform output.
  • the signal is subjected to the second inverse transformation, and the first decoded partial signal of N2 ⁇ M2 size is output (S220b).
  • the integration unit 420 integrates the signal obtained by removing the second decoding conversion output signal from the decoding conversion output signal and the first decoding partial signal, and outputs the first decoding conversion output signal of 8 ⁇ 8 size (S220c).
  • the first inverse transform unit 430 performs inverse transform of the transform of the first transform unit 200 on the first decoded transform output signal, and outputs a decoded transform input signal (DecodedErr [i]) that is a decoded error signal. (S220d). Note that when the value of the control signal Flip_LR is 0, the second inverse transformation need not be performed. In this case, an effect of reducing the processing amount required for the second inverse transformation can be obtained.
  • the adding unit (not shown) adds the error signal DecodedErr [i] for the block i and the predicted image signal generated by the prediction unit 206 according to the prediction mode, and outputs a decoded image signal (S1221).
  • the image decoding apparatus 2001 repeats the above process for the number of input blocks, and restores the moving image.
  • the sign of some transform coefficients is inverted according to the intra prediction mode.
  • the sign of some conversion coefficients is based on the tendency that the prediction error expectation value increases as the position is far from the in-screen predictor, or the prediction error expectation value decreases as the position is far from the in-screen predictor
  • This method can be applied to predictions having the same tendency other than intra-screen prediction, and can be applied to, for example, a coding block boundary, a prediction block boundary, a picture boundary, and a slice boundary.
  • This inversion may be the inversion of only the input part to the second conversion.
  • the values of the matrix elements of the inverse transformation applied in the second inverse transformation are simply switched for the frequency coefficients obtained by the two-stage transformation. be able to. Specifically, for each element value of the matrix shown in Table 9, it can be realized by a simple process of inverting the sign of the coefficient at the position where the sum of the row number and column number of the matrix corresponds to an even number.
  • Example of 4 ⁇ 4 size is as follows.
  • the size of the transformation matrix for the first transformation is large, it is desirable to avoid having multiple types of transformation matrices for the first transformation. For this reason, instead of changing the sign of the odd-numbered row of the output of the first conversion, an equivalent operation is performed by the second conversion.
  • the sign inversion of the odd row of D can be obtained by the sign inversion of the j column of T.
  • T ′ is obtained by the following equation.
  • T and T ′ are exemplified as 4 ⁇ 4 as follows.
  • T ′′ When T ′′ is illustrated with a size of 4 ⁇ 4, it is as follows.
  • T ′′ is obtained by combining the formula A and the formula B and, after all, from the original matrix with the following changes.
  • the storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
  • the system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • Other configurations in the system can be appropriately changed according to circumstances.
  • FIG. 21 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service.
  • a communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
  • PDA Personal Digital Assistant
  • each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110.
  • the devices may be directly connected to each other via short-range wireless or the like.
  • the camera ex113 is a device that can shoot moving images such as a digital video camera
  • the camera ex116 is a device that can shoot still images and movies such as a digital camera.
  • the mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, or an LTE (Long Term Evolution). It is possible to use any of the above-mentioned systems, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
  • the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like.
  • live distribution the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments (that is, the image encoding of the present invention).
  • Function as a device Function as a device) and transmit to the streaming server ex103.
  • the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data.
  • Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as the image decoding device of the present invention).
  • the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other.
  • the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other.
  • still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111.
  • the encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
  • these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device.
  • the LSI ex500 may be configured as a single chip or a plurality of chips.
  • moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be.
  • moving image data acquired by the camera may be transmitted.
  • the moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
  • the encoded data can be received and reproduced by the client.
  • the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
  • the digital broadcast system ex200 also includes at least the moving image encoding device (image encoding device) or the moving image decoding according to each of the above embodiments. Any of the devices (image decoding devices) can be incorporated.
  • the broadcast station ex201 multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves.
  • This video data is data encoded by the moving image encoding method described in the above embodiments (that is, data encoded by the image encoding apparatus of the present invention).
  • the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting.
  • the received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as the image decoding apparatus of the present invention).
  • a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded.
  • a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television.
  • the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
  • FIG. 23 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in each of the above embodiments.
  • the television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data.
  • the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
  • the television ex300 decodes each of the audio data and the video data, or encodes the respective information, the audio signal processing unit ex304, the video signal processing unit ex305 (function as the image encoding device or the image decoding device of the present invention). ), A speaker ex307 for outputting the decoded audio signal, and an output unit ex309 having a display unit ex308 such as a display for displaying the decoded video signal.
  • the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation.
  • the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit.
  • the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk.
  • a driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included.
  • the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored.
  • Each part of the television ex300 is connected to each other via a synchronous bus.
  • the television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments.
  • the decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described.
  • the television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1).
  • the encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized.
  • a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
  • the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good.
  • the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
  • the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218,
  • the reader / recorder ex218 may share with each other.
  • FIG. 24 shows the configuration of the information reproducing / recording unit ex400 when data is read from or written to the optical disk.
  • the information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below.
  • the optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects reflected light from the recording surface of the recording medium ex215 to read the information.
  • the modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data.
  • the reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information.
  • the buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215.
  • the disk motor ex405 rotates the recording medium ex215.
  • the servo controller ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process.
  • the system control unit ex407 controls the entire information reproduction / recording unit ex400.
  • the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner.
  • the system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
  • the optical head ex401 has been described as irradiating a laser spot.
  • a configuration in which higher-density recording is performed using near-field light may be used.
  • FIG. 25 shows a schematic diagram of a recording medium ex215 that is an optical disk.
  • Guide grooves grooves
  • address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove.
  • This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus.
  • the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234.
  • the area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used.
  • the information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
  • an optical disk such as a single-layer DVD or BD has been described as an example.
  • the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used.
  • an optical disc with a multi-dimensional recording / reproducing structure such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
  • the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has.
  • the configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiving unit is added in the configuration illustrated in FIG. 23, and the same may be considered for the computer ex111, the mobile phone ex114, and the like.
  • FIG. 26 (a) is a diagram showing a mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment.
  • the mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data.
  • the mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video,
  • an audio input unit ex356 such as a microphone for inputting audio
  • a captured video In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded voices, received images, still images, mails, or the like, or an interface unit with a recording medium for storing data
  • a slot ex364 is provided.
  • the mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366.
  • a camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
  • the power supply circuit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
  • the cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
  • the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362.
  • the main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350.
  • almost the reverse process is performed on the received data and output to the display unit ex358.
  • the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. Encode (that is, function as the image encoding apparatus of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353.
  • the audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
  • the multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result.
  • the multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370.
  • the encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355.
  • the video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method shown in each of the above embodiments (that is, functions as the image decoding device of the present invention).
  • video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359.
  • the audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
  • the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder.
  • a transmission terminal having only an encoder
  • a receiving terminal having only a decoder.
  • multiplexed data in which music data or the like is multiplexed with video data is received and transmitted, but data in which character data or the like related to video is multiplexed in addition to audio data It may be video data itself instead of multiplexed data.
  • the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
  • multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to.
  • identification information indicating which standard the video data conforms to.
  • FIG. 27 is a diagram showing a structure of multiplexed data.
  • multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream.
  • the video stream indicates the main video and sub-video of the movie
  • the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio
  • the presentation graphics stream indicates the subtitles of the movie.
  • the main video indicates a normal video displayed on the screen
  • the sub-video is a video displayed on a small screen in the main video.
  • the interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen.
  • the video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing.
  • the audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
  • Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
  • FIG. 28 is a diagram schematically showing how multiplexed data is multiplexed.
  • a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240.
  • the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246.
  • the multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
  • FIG. 29 shows in more detail how the video stream is stored in the PES packet sequence.
  • the first row in FIG. 29 shows a video frame sequence of the video stream.
  • the second level shows a PES packet sequence.
  • a plurality of Video Presentation Units in the video stream are divided into pictures, B pictures, and P pictures, and are stored in the payload of the PES packet.
  • Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
  • PTS Presentation Time-Stamp
  • DTS Decoding Time-Stamp
  • FIG. 30 shows the format of the TS packet that is finally written in the multiplexed data.
  • the TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data.
  • the PES packet is divided and stored in the TS payload.
  • a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data.
  • TP_Extra_Header information such as ATS (Arrival_Time_Stamp) is described.
  • ATS indicates the transfer start time of the TS packet to the PID filter of the decoder.
  • Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 30, and a number incremented from the head of the multiplexed data is called an SPN (source packet number).
  • TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption.
  • PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0.
  • the PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data.
  • the descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data.
  • the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
  • FIG. 31 is a diagram for explaining the data structure of the PMT in detail.
  • a PMT header describing the length of data included in the PMT is arranged at the head of the PMT.
  • a plurality of descriptors related to multiplexed data are arranged.
  • the copy control information and the like are described as descriptors.
  • a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged.
  • the stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream.
  • the multiplexed data is recorded together with the multiplexed data information file.
  • the multiplexed data information file is management information of multiplexed data, has one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
  • the multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time as shown in FIG.
  • the system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later.
  • the ATS interval included in the multiplexed data is set to be equal to or less than the system rate.
  • the playback start time is the PTS of the first video frame of the multiplexed data
  • the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
  • attribute information about each stream included in the multiplexed data is registered for each PID.
  • the attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream.
  • the video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is.
  • the audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
  • the stream type included in the PMT is used.
  • video stream attribute information included in the multiplexed data information is used.
  • the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT.
  • FIG. 34 shows the steps of the moving picture decoding method according to the present embodiment.
  • step exS100 the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data.
  • step exS101 it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do.
  • step exS102 the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form.
  • the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
  • FIG. 35 shows the configuration of an LSI ex500 that is made into one chip.
  • the LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510.
  • the power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
  • the LSI ex500 when performing the encoding process, performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like.
  • the AV signal is input from the above.
  • the input AV signal is temporarily stored in an external memory ex511 such as SDRAM.
  • the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed.
  • the encoding process of the video signal is the encoding process described in the above embodiments.
  • the signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside.
  • the output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
  • the memory ex511 is described as an external configuration of the LSI ex500.
  • a configuration included in the LSI ex500 may be used.
  • the number of buffers ex508 is not limited to one, and a plurality of buffers may be provided.
  • the LSI ex500 may be made into one chip or a plurality of chips.
  • control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration.
  • the signal processing unit ex507 may further include a CPU.
  • the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507.
  • the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
  • LSI LSI
  • IC system LSI
  • super LSI ultra LSI depending on the degree of integration
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • FIG. 36 shows a configuration ex800 in the present embodiment.
  • the drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments.
  • the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data.
  • the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
  • the drive frequency switching unit ex803 includes a CPU ex502 and a drive frequency control unit ex512 in FIG.
  • the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG.
  • the CPU ex502 identifies which standard the video data conforms to.
  • the drive frequency control unit ex512 sets the drive frequency.
  • the signal processing unit ex507 decodes the video data.
  • the identification information described in the sixth embodiment can be used for identifying the video data.
  • the identification information is not limited to that described in the sixth embodiment, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal.
  • the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a look-up table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
  • FIG. 37 shows steps for executing the method of the present embodiment.
  • the signal processing unit ex507 acquires identification information from the multiplexed data.
  • the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information.
  • the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency.
  • step exS203 the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
  • the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
  • the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method.
  • the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
  • the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered.
  • the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high.
  • the driving of the CPU ex502 is stopped.
  • the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
  • a plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone.
  • the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input.
  • the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
  • a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1
  • the processing unit is partly shared.
  • An example of this configuration is shown as ex900 in FIG.
  • the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common.
  • the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for the other processing content unique to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used.
  • Configuration is conceivable.
  • a dedicated decoding processing unit ex901 is used for inverse quantization, and other entropy coding, deblocking filter, It is conceivable to share a decoding processing unit for any or all of the motion compensation processes.
  • the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
  • ex1000 in FIG. 39 (b) shows another example in which processing is partially shared.
  • a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention
  • a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards
  • a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used.
  • the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing.
  • the configuration of the present embodiment can be implemented by LSI ex500.
  • the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
  • FIG. 40 is a flowchart consisting of processing essential to the image coding method of the present invention. That is, S212 and S216 shown in FIG. 8 are essential for the image coding method of the present invention.
  • FIG. 41 is a flowchart consisting of processing essential to the image decoding method of the present invention. That is, S1214 and S1216 shown in FIG. 13 are essential for the image decoding method of the present invention.
  • the present invention can be applied to a moving image encoding method and apparatus, and a decoding method and apparatus.
  • the present invention can be applied to an intra-screen coding apparatus and an intra-screen decoding apparatus that perform frequency conversion or frequency inverse conversion by switching the values of elements of a transform matrix according to the prediction mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

 画像信号と予測画像信号との誤差信号を周波数係数に変換する画像符号化方法は、前記誤差信号の期待値の分布に適合するように、所定の期待値の分布を有する誤差信号の変換に用いられる変換行列の要素の並びまたは要素の符号を変更する変更ステップ(S212)と、要素の並びまたは要素の符号が変更された変換行列を用いて、前記誤差信号を前記周波数係数に変換する変換ステップ(S216)とを含む。

Description

画像符号化方法、画像符号化装置、画像復号化方法、画像復号化装置および画像符号化復号化装置
 本発明は、動画像の画像符号化方法、画像符号化装置、画像復号化方法、画像復号化装置および画像符号化復号化装置に関する。
 従来、H.264においては、動画像を符号化するために、画像信号と予測画像信号との誤差信号を、整数精度直交変換行列(integer Discrete Cosine Transform(DCT))変換することにより周波数係数に変換している。(例えば、非特許文献1参照)。
ISO/IEC 14496-10「MPEG-4 Part 10 Advanced Video Coding」
 しかしながら、DCT変換では、動画像の符号化効率、つまり圧縮率において限界があるという課題がある。
 本発明は、動画像の符号化効率の高い画像符号化方法および画像符号化装置、並びに、画像復号化方法および画像復号化装置を提供することを目的とする。
 上記目的を達成するために、本発明のある局面に係る画像符号化方法は、画像信号と予測画像信号との誤差信号を周波数係数に変換する画像符号化方法であって、前記誤差信号の期待値の分布に適合するように、所定の期待値の分布を有する誤差信号の変換に用いられる予め保持された変換行列の要素の並びまたは要素の符号を変更する変更ステップと、要素の並びまたは要素の符号が変更された変換行列を用いて、前記誤差信号を前記周波数係数に変換する変換ステップとを含む。
 この構成によると、誤差信号の期待値の分布に基づいて、誤差信号の圧縮率が向上するように要素の並びまたは要素の符号を変更することができる。このため、多数の新たな変換行列を保持することを必要とせずに、圧縮率を向上させることができる。なお、誤差信号の期待値とは誤差信号を確率変数としたときの期待値である。
 好ましくは、上述の画像符号化方法は、さらに、画面内予測における予測の方位を決定する決定ステップを含み、前記変更ステップでは、前記誤差信号の期待値の分布に関連する前記予測の方位に基づいて、前記変換行列の要素の並びまたは要素の符号を変更する。
 画面内予測においては画面内予測値から遠い位置になるほど誤差信号の期待値が大きくなると考えられる。この構成によると、例えば、変換行列の基底が示す傾斜と誤差信号の期待値が示す傾斜とを揃えるように変換行列の要素の並びまたは要素の符号を変更することができる。このため、多数の新たな変換行列を保持することを必要とせずに、圧縮率を向上させることができる。
 また、前記変更ステップでは、前記誤差信号の期待値の分布に関連する符号化ブロック境界に基づいて、前記変換行列の要素の並びまたは要素の符号を変更しても良い。
 また、前記変更ステップでは、前記変換行列の行ごとに要素を逆順に並べ替えても良い。
 この構成によると、変換行列の基底が示す傾斜と誤差信号の期待値が示す傾斜とを揃えるように変換行列の要素の並びまたは要素の符号を変更することができる。
 また、前記変更ステップでは、前記変換行列の奇数行ごとに要素を逆順に並べ替えても良い。
 DCTのように奇数行においては偶対称となる変換行列については、奇数行のみ要素を逆順に並べ替えればよい。このため、この構成によると、要素の並べ替えの処理量を削減することができる。
 また、前記変更ステップでは、前記変換行列の奇数列の要素の符号を反転させ、前記変換ステップでは、他の変換行列と、要素の符号が反転させられた前記変換行列とを用いて、前記誤差信号を多段階で前記周波数係数に変換しても良い。
 この構成によると、演算量削減のために行われる多段階変換においても、多数の新たな変換行列を保持することを必要とせずに、圧縮率を向上させることができる。
 また、前記変更ステップでは、前記変換行列のi行j列(i+jは奇数、0≦i,j<N)の要素の符号を反転させ、前記変換ステップでは、他の変換行列と、要素の符号が反転させられた前記変換行列とを用いて、前記誤差信号を多段階で前記周波数係数に変換しても良い。
 この構成によると、対角行列の符号が反転することによる符号化性能の低下、つまり、エントロピー符号を行う過程における符号化性能の低下を防ぐことができる。
 本発明の他の局面に係る画像符号化方法は、画像信号と予測画像信号との誤差信号を周波数係数に変換する画像符号化方法であって、前記誤差信号の期待値の分布に適合するように前記誤差信号の入力順序を変更し、所定の分布の期待値を有する誤差信号の変換に用いられる予め保持された変換行列を用いて、入力順序が変更された前記誤差信号を前記周波数係数に変換する変換ステップを含む。
 この構成によると、変換行列の要素の並びを変更する代わりに、誤差信号の入力順序を変更している。このため、多数の新たな変換行列を保持することを必要とせずに、圧縮率を向上させることができる。
 本発明のさらに他の局面に係る画像復号化方法は、画像信号と予測画像信号との誤差信号を変換することにより得られる周波数係数を復号する画像復号化方法であって、前記誤差信号の期待値の分布に適合するように、所定の期待値の分布を有する誤差信号から得られる周波数係数の逆変換に用いられる予め保持された変換行列の要素の並びまたは要素の符号を変更する変更ステップと、要素の並びまたは要素の符号が変更された変換行列を用いて、前記周波数係数を前記誤差信号に逆変換する逆変換ステップとを含む。
 この構成によると、上述の画像符号化方法により誤差信号を変換することにより得られた周波数係数を復号することができる。
 なお、本発明は、このような特徴的なステップを含む画像符号化方法または画像復号化方法として実現することができるだけでなく、画像符号化方法または画像復号化方法に含まれる特徴的なステップを処理部とする画像符号化装置または画像復号化装置として実現することができる。また、画像符号化方法もしくは画像復号化方法に含まれる特徴的なステップをコンピュータに実行させるプログラム、または、画像符号化装置もしくは画像復号化装置に含まれる特徴的な処理部としてコンピュータを機能させるためのプログラムとして実現することもできる。そして、そのようなプログラムを、CD-ROM(Compact Disc-Read Only Memory)等のコンピュータ読取可能な非一時的な記録媒体やインターネット等の通信ネットワークを介して流通させることができるのは、言うまでもない。
 また、本発明は、画像符号化装置と画像復号化装置とを備える画像符号化復号化装置としても実現することができる。
 本発明によると、動画像の符号化効率の高い画像符号化方法および画像符号化装置、並びに、画像復号化方法および画像復号化装置を提供することができる。
図1Aは、従来のH.264における、符号化対象ブロックと画面内予測子との位置関係を示す図である。 図1Bは、従来のH.264における、画面内予測子の位置と予測モードとの関係を説明するための図である。 図1Cは、従来のH.264における、方位θ(予測モード)と画面内予測子との関係を示す図である。 図2Aは、従来のH.264における、画像信号Oと予測画像信号Pと誤差信号Rとの関係を示す図である。 図2Bは、従来のH.264における水平方向のDCT変換を説明するための図である。 図2Cは、従来のH.264における垂直方向のDCT変換を説明するための図である。 図3Aは、画面内予測子からの距離と誤差の期待値の関係を説明するための図である。 図3Bは、画面内予測子からの距離と誤差の期待値の関係を説明するためのグラフである。 図4Aは、8×8サイズの画素値の変換に用いられるDCT変換行列を示す図である。 図4Bは、8×8サイズの画素値の変換に用いられるモード1(水平あるいは垂直予測)におけるDDST変換行列を示す図である。 図4Cは、16点サンプルの周波数変換におけるDDST変換行列の上から3行の波形のグラフである。 図5は、予測モードに応じたDCT変換とDDST変換との割り当て例を示す図である。 図6は、本発明の着眼点の1つであるDDSTの向きを示す図である。 図7は、実施の形態1の画像符号化装置の機能ブロック図である。 図8は、画像符号化装置の処理フローを示すフローチャートである。 図9は、予測モードの対応する方位に応じた行列と向きとの決定を示すフローチャートである。 図10は、変換係数の左右Flipの動作を説明するための図である。 図11は、方位に関する情報についての他の表現方法(H.265)を示す図である。 図12は、実施の形態2の画像復号化装置の機能ブロック図である。 図13は、実施の形態2の画像復号化装置の処理を示すフローチャートである。 図14は、実施の形態3の画像符号化装置の変換部と逆変換部の機能ブロック図である。 図15は、変換部による二段階変換の概念を説明する概念図である。 図16は、逆変換部による二段階逆変換の概念を説明する概念図である。 図17は、実施の形態3の画像符号化装置の処理を示すフローチャートである。 図18は、実施の形態4の画像復号化装置の機能ブロック図である。 図19は、実施の形態4の画像復号化方法の処理を示すフローチャートである。 図20は、偶対称な変換について説明するための図である。 図21は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。 図22は、デジタル放送用システムの全体構成図である。 図23は、テレビの構成例を示すブロック図である。 図24は、光ディスクである記録メディアに情報の読み書きを行う情報再生/記録部の構成例を示すブロック図である。 図25は、光ディスクである記録メディアの構造例を示す図である。 図26の(a)は携帯電話の一例を示す図であり、(b)は携帯電話の構成例を示すブロック図である。 図27は、多重化データの構成を示す図である。 図28は、各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図である。 図29は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示した図である。 図30は、多重化データにおけるTSパケットとソースパケットの構造を示す図である。 図31は、PMTのデータ構成を示す図である。 図32は、多重化データ情報の内部構成を示す図である。 図33は、ストリーム属性情報の内部構成を示す図である。 図34は、映像データを識別するステップを示す図である。 図35は、各実施の形態の動画像符号化方法および動画像復号化方法を実現する集積回路の構成例を示すブロック図である。 図36は、駆動周波数を切り替える構成を示す図である。 図37は、映像データを識別し、駆動周波数を切り替えるステップを示す図である。 図38は、映像データの規格と駆動周波数を対応づけたルックアップテーブルの一例を示す図である。 図39の(a)は信号処理部のモジュールを共有化する構成の一例を示す図であり、(b)は信号処理部のモジュールを共有化する構成の他の一例を示す図である。 図40は、本発明の画像符号化方法に必須の処理からなるフローチャートである。 図41は、本発明の画像復号化方法に必須の処理からなるフローチャートである。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
 H.264の画面内符号化における予測画像信号の生成は、画面内予測子と対応する予測モードとを用いて行われる。
 図1A~図1Cは、H.264における、画面内予測子と予測モードが示す方位との関係を説明するための図である。
 図1Aは、符号化対象または復号化対象とされるブロックと画面内予測子との位置関係を示す図である。対象ブロック801は、現在符号化対象または復号化対象とされているブロックを示す。ブロックB0、B1、B2およびB3は、対象ブロック801の復号化の時点で既に復号化済のブロックを示している。対象ブロック801の復号化においては、ハッチングされた逆Lの字形の領域に含まれる画素をこの対象ブロック801の画面内予測子802とする。
 図1Bは、画面内予測子の位置と予測モードとの関係を説明するための図である。H.264においては、予測モード0~8の9つ予測モードが用意されている。このうち8つの予測モードは、図に示す8、1、6、4、5、0、7、3の方位に関係している。H264では方位θは、-(3/4)π≦θ≦+(1/8)πを満たしている。
 図1Cは、方位θ(予測モード)と予測子との関係を示す図である。
 例えば、予測モード1の場合(方位θ=0[rad])は、Direction1で示す矢印が適用される。ブロックB3に属する矢印の根元が画面内予測子であり、矢印の先が適用される対象ブロック801である。ブロックB3内の画面内予測子の値を用いて対象ブロック801の予測画像信号Pを作成する。
 また、例えば、予測モード0の場合(方位θ=-(1/2)×π)は、Direction0で示す矢印が適用される。ブロックB1に属する画素の値をDirection0の方向に適用して、対象ブロック801の予測画像信号Pを作成する。
 H.264の画面内符号化ではこのようにして予測画像信号を生成し、画像信号とこの予測画像信号との差分信号(誤差信号)を周波数係数に変換する。復号化では、周波数係数を逆変換することによって誤差信号Rを導出する。
 次に、H.264における、誤差信号Rに対する直交変換について説明する。
 図2A~図2Cは、誤差信号Rと誤差信号Rに適用される2ステップの直交変換を説明するための図である。図2Aは、画像信号Oと予測画像信号Pとの差分が誤差信号Rであることを示す図である。
 H.264では、この誤差信号Rに、整数精度直交変換行列(integer Discrete Cosine Transform(DCT))変換を図2Bに示す水平方向と、図2Cに示す垂直方向の2方向に適用する。
 2方向の各方向のDCT変換はDCT変換行列により実行される。このDCT変換行列Mはサイズが4×4の場合以下の値を取る。
Figure JPOXMLDOC01-appb-M000001
 式(1)の行列の1行目(64、64、64、64)の通り、DCT変換行列の第1基底はフラットとなる4つの値(0.5)で設計されている。これは、誤差信号の直流成分を導出するためである。
 さて、この変換行列について、図1A~図1Cで説明した画面内符号化における誤差信号の直交変換については、従来のDCT変換行列ではなく特別に設計されたKL変換行列の一種を用いることが提案されている(非特許文献2)。
Chuohao Yeo他, "Mode-Dependent Fast Separable KLT for Block-based Intra Coding", JCTVC-B024, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 2nd Meeting: Geneva, CH, 21-28 July, 2010, URL: http://wftp3.itu.int/av-arch/jctvc-site/2010_07_B_Geneva/JCTVC-B024.doc
 以下、所定の予測モードを用いた予測画像から導出された誤差信号の周波数変換のために、特別に導出(Derived)されたKLT(KL変換行列)を、DDST(Derived Discrete Sine Transform)と呼ぶ。式(2)は、DDST変換の式を示す。
Figure JPOXMLDOC01-appb-M000002
 このDDST変換行列では、第1基底(第1行目の成分値)は、29、55、74、84とフラットな値ではない行列を用いる。
 図3Aは、予測モード1を例に用いた、画面内予測子からの距離と誤差値の期待値(誤差値を確率変数の値としたときの期待値)との関係を説明するための図である。Col0は予測画像信号の第1列目を、Col1は第2列目を、Col3は第4列目を示している。Col0は画面内予測子(予測元画素)802からの距離が最も近く、Col3は、画面内予測子802からの距離が最も遠い。なお、モード0においてはこの図を90度時計回りに回転させて考えれば同じことであり、他のモードも誤差関数の性質は同じである。
 図3Bは、画面内予測子からの距離と予測誤差関数の値を模式的に示す図である。横軸は画面内予測子からの距離を示す。縦軸は予測画像の誤差値(残差値)の期待値を示す。画面内予測子に近いCol1の残差値(実際の画素値と予測画像の画素値との差)が、確率的にCol3の残差値より小さいことを模式している。
 式(2)の各基底(各行の成分値の配分)は、誤差信号が予測画像に対する誤差信号であることに起因している。誤差の分布が正規分布等の所定の確率分布関数に基づく場合に、「画面内予測子から遠い位置になるほど予測誤差期待値が大きくなる」という推定に基づいている。DDST変換は、画面内予測符号化の予測画像のために特別に導出されたKL変換行列の一種ととらえることができる。
 図4Aは、8×8サイズの画素値の変換に用いられるDCT変換行列を示す図である。図4Bは、8×8サイズの画素値の変換に用いられるモード1(水平あるいは垂直予測)におけるDDST変換行列を示す図である。図4Aおよび図4Bは、上に下に行くに連れ、周波数が高くなるように並べている。n=0の波形はDCTでは直流成分を示し、DDSTでは最も低周波な成分を示す。
 図4Aは、8点サンプルの周波数変換におけるDCT変換行列を示す。図に示すとおり、各係数は軸Centerを中心に対称性(偶対称、奇対称、含む)を有する。また図中一番上に示す第1基底の各係数は、フラットである。
 図4Bは、予測モード1(θ=0、水平予測)のための8点サンプルのDDST変換行列の波形である。前述したとおり、n=0(第1基底)の成分は(DCTとは異なり)フラットではない。又、各基底は軸Centerを中心に非対称な成分値を取る。
 図4Cは、予測モード1(θ=0、水平予測)のための16点サンプルのDDST変換行列の上から3行の波形を示す図であり、横軸はDDSTにおける列を示し、縦軸は要素の値を示す。
 さて、このDDST(画面内予測のために設計されたKL変換の特別形)とDCT変換とを、図1Bで説明した予測モード0~8に応じて切り替えて使うことが提案されている(非特許文献2)。
 表1は、提案による予測モード0~8(9通りのモード)と垂直方向および水平方向に適用される変換方式を示す。
Figure JPOXMLDOC01-appb-T000001
 この表で「DCT」はH.264でのDCT変換を示し、KLTは前述DDSTを示している。
 図5は、表1の変換行列の割り当てをH.264の予測モードが示す予測の方位との関係で示す図である。説明のために、予測モードを大きく3つの方向に分けて説明する。
・範囲Q1:まず、予測モードの示す方位が第1象限(FirstQuadrant)に属する場合(モード1、8の場合)(1)垂直方向にはDCTを(2)水平方向には、DDSTを適用する。
・範囲Q4:次に、予測モードの示す方位が第4象限に属する場合(モード6、4、5の場合)垂直方向および水平方向共にDDSTを適用する。
・範囲Q3:最後に、予測モードの示す方位が第3象限に属する場合(モード0、7、3の場合)、(1)水平方向にはDCTを(2)水平方向にはDDSTを適用する。
 つまりこの割り当ては「予測モードの示す方位と、適用する変換係数の向きとが、1/2π以上はなれる場合には、その方向の変換にDCTを用い」、他の部分にはDDSTを利用する割り当てとなっている。例えば、モード8(+π/8)では、垂直方向にDCTを用いる。例えば、モード3、7では、水平方向にDCTを用いる。その他の方位には、水平・垂直になるべくDDSTを用いている。
 図6は、本発明の着眼点となるDDSTの向きを示している。
 DDSTの基底は、前述したとおり非対称であり、方向を持った(Directed)傾斜がついている。この傾斜は符号化・復号化が左上から右下に行われることを考慮して、予測モードの示す方位が第4象限に存在する場合に適した傾斜となっている。
 予測モードの示す方位と適用する変換係数の向きとが、1/2π以上離れる場合にDDSTを用いてしまうと予測の方向と誤差の値との関係が負の相関を示すことになる。
 そこでこのような方位(モード8、3、7)にDCTを用いれば少なくとも負の相関にはならない。さらに、DCTであれば他の新たな変換行列の保持を必要としないことは明らかである。よって、表1の割り当ての例は
 (1)計算機資源の観点:多数の新たな変換行列を保持すること必要とせずに、
 (2)圧縮率の観点:予測モードの方向に応じて、DDSTを適切な方位にのみ利用する、
構成の実現例と考えられる。我々は、この(1)計算機資源の観点、および、(2)圧縮率の2つの観点を考慮しつつ、より優れた予測モードに応じたDDSTの適用方法を提案する。
 以下に説明する実施の形態1によれば、予測モードに応じ、単に適用する変換行列を選定するのではなく、変換行列と変換行列の向きとを決定する。決定した向きに応じて変換行列の基底に対応する係数の並びを反転させる。係数の並びを反転させた変換行列を用いて周波数係数を導出する。
 なお、1つの変形例によれば、予測モード8の場合は、係数の並びを垂直方向に反転させ、3、7の場合は、係数の並びを垂直方向に反転させた行列を用いて符号化・復号化する。
 また、1つの変形例によれば、DDSTを利用しつつも方位が垂直または鉛直付近である場合にはDCT変換を用いる。
 (実施の形態1)
 図7は、実施の形態1に係る画像符号化装置1000の機能ブロック図である。
 画像符号化装置1000は、制御部101、画像データ供給部106、差分部107、変換部102、逆変換部103、加算部108、フレームメモリ109、予測部104、予測変換制御部105、および、可変長符号化部110を含む。実施の形態1において主要な機能ブロックは、制御部101、変換部102、逆変換部103、予測部104、および予測変換制御部105である。
 制御部101は、画像データ供給部106から供給される画像ブロックVin[i]を制御する。制御部101は、予測変換制御部105に実行すべき予測モード[0]~[8]に対応するIDであるpを指定する。制御部101は、指定したVin[i]と指定した予測モード[p]で復元された画像信号DecodedVin[i][p]とを比較し、画像符号化装置1000の全体の動作および、画像データ供給部106の供給画像iとpとを制御する。
 画像データ供給部106は、制御部101の指示を受けi番目の画像ブロックVin[i]を入力する。
 差分部107はVin[i]と予測画像信号Pred[i][p]との差分を導出し、誤差信号Err[i][p]を出力する。
 変換部102は、誤差信号Err[i][p]をFlip_LR信号により指定された変換行列で変換し周波数係数を導出する。また、変換部102は、周波数係数を所定の量子化マトリクスで量子化し量子化変換係数として出力する。
 可変長符号化部110は、図示しない制御部101からの信号に従い、量子化変換係数を所定の符号列に可変長符号化して出力する。
 逆変換部103は、量子化変換係数を所定の逆量子化マトリクスで逆量子化し、周波数係数を復元する。逆変換部103は、周波数係数をFlip_LR信号により指定された変換行列で逆変換し、復元された誤差信号DecodedErr[i][p]を出力する。
 加算部108は、復元された誤差信号DecodedErr[i][p]とPred_mode[p]で生成された予測画像[i][p]とを加算し、復元された画像Vin[i][p]を出力する。
 予測部104は、予測変換制御部105から指定された予測モードPred_mode[p]により予測画像Pred[i][p]を出力する。
 予測変換制御部105は、予測部104に予測モードPred_mode[p]を指示する。また、予測変換制御部105は、変換行列を指定するための制御信号Flip_LRを変換部102に供給する。また、予測変換制御部105は、逆変換行列を指定するための制御信号Flip_LRを逆変換部103に供給する。
 図8は、画像符号化装置1000の処理を示すフローチャートである。
 まず、制御部101は、画像データ供給部106の入力ブロック番号iを制御する。
 画像データ供給部106は、画像信号Vin[i]を入力する(S201)。
 制御部101は、入力した画像信号Vin[i]について予測モード数だけ予測モードの精度判定を試行する(S202)。ここでS202~S221までのループは、所定の画像信号ブロックiについて最適な予測モードを画像符号化装置1000内で選択するためのループの一例である。したがって、当該ブロックについて所定の条件を満たす予測画像が生成できた場合は、ループをbreakすることとしてもよい。
 予測変換制御部105は、予測モード番号pに応じて予測モード(Pred_mode[p])を設定する(S203)。予測変換制御部105は、例えばp==0の場合に予測モード0(-1/2π方向予測)を設定する。また、予測変換制御部105は、例えばp==3の場合に予測モード3を設定する。また、予測変換制御部105は、例えばp==7の場合に予測モード7を設定する。前述の通り、H.264では8方向9通りの予測モードが定義されているため、この例ではpは0から8までの9つの値を取る。
 次に、予測部104は、予測変換制御部105に指定されたPred_mode[p]に応じて予測画像Pred[i][p]を生成する(S204)。例えば、予測モード0の場合は、予測部104は、上方に存在する画面内予測子の値を-1/2π方向に引き伸ばすことにより、予測画像Pred[i][0]を生成する。例えば、予測モード3の場合は、予測部104は、右上方向に存在する画面内予測子の値を-3/4π方向に引き伸ばすことにより予測画像Pred[i][3]を生成する。
 次に、差分部107はVin[i]とPred[i][p]との差分を取り、誤差信号Err[i][p]を導出する(S205)。
 次に、予測変換制御部105は、予測モードに応じて、DDST行列の適用方向を示す制御信号Flip_LRの値を決定し出力する(S210)。つまり、予測変換制御部105は、画面内予測の方位に関する情報に応じて、変換行列と向きとを決定する。この方向と制御信号との関係は後述する。
 次に、変換部102は入力したFlip_LRの値に基づいて、予測モードpに対応して用意された行列mat[p]の変換行列の係数を入れ替える処理を行う(S212)。つまり、変換部102は、Flip_LRの値が逆方向を示す場合に、変換行列に含まれる非対称の係数を逆順に並び替える。
 また、逆変換部103はFlip_LRの値に基づいて、予測モードpに対応して用意された行列Inv_mat[p]の係数a[i][j]を行毎に列の向きを反転させる処理を行う(S214)。つまり、逆変換部103は、Flip_LRの値が逆方向を示す場合に、逆変換行列に含まれる非対称の係数を逆順に並び替える。
 変換部102は、誤差信号Err[i][p]をS212で設定した行列で周波数係数に変換する(S216)。つまり、変換部102は、非対称の係数が並べ替えられた変換行列を用いて、誤差信号を周波数係数に変換する。
 変換部102は、周波数係数を量子化する(S218)。逆変換部103は、変換部102の出力を逆量子化して復元された周波数係数を出力する(S219)。
 逆変換部103は、復元された周波数係数をS214で設定した行列により、復元された誤差信号に復元する。その後、加算部108はPred[i][p]とDecodedErr[i][p]とを加算し、DecodedVin[i][p]を出力する(S221)。
 予測モードp(p=0~8)で予測画像信号を作成した場合の画像信号DecodedVin[0]~[8]は、制御部101に蓄積され、最適な予測モードp_bestが1つ決定される(S230)。制御部101での決定方針は、圧縮率優先や、処理負荷最小等、事前に与えられてもよいし、インタラクティブな操作によるものであってもよい。
 画像符号化装置1000は、選択した予測モードpと予測モードpで予測画像信号を生成した場合の誤差信号Err[i][p]を符号列にして出力する(S231)。
 画像符号化装置1000は、ブロックiについての処理が終わると次のブロック(i+1)について同様の手順を繰り返し、全ての画像ブロックの符号化処理が終わるまで上述の処理を繰り返す。
 図9は、図8のS210の決定を模式したフローチャートである。
 予測変換制御部105は、まずS2101で「方位に関する情報」として予測モードpを取得する(S2101)。なお、H.264の場合、予測モード0~8(2を除く8つのモード)は各々8方向の方位に対応している。
 次に、予測変換制御部105は、この方位が第1~第4象限のどの象限(第n象限)に属するか、(または方位θが0radまたは-1/2π近傍か)を判定する(S2102)。
(1)方位が第4象限にある場合(H,264ではモード4,5,6)の場合(S2102でq==Fourth)、予測変換制御部105は、
(a)垂直方向にDDSTを順方向に適用し(S2103)、
(b)水平方向にDDSTを順方向に適用する(S2104)。
(2)方位が第1象限にある場合(H,264ではモード8)の場合(S2102でq==First)、予測変換制御部105は、
(a)垂直方向にDDSTを逆方向に適用し(S2105)、
(b)水平方向にDDSTを順方向に適用する(S2107)。
 したがって、予測変換制御部105は、Flip_UDの値を-1(逆方向)にセットする(S2106)。
(3)方位が第3象限にある場合(H,264ではモード3,7)の場合(S2102でq==Third)、予測変換制御部105は、
(a)垂直方向にはDDSTを順方向に適用し(S2108)、
(b)水平方向には、DDSTを逆方向に適用する(S2109)。
 したがって、予測変換制御部105は、Flip_LRの値を-1(逆方向)にセットする(S2110)。
 なお、方位が第3象限または第4象限に属する場合であって、垂直予測(0番)の水平変換の近傍(S2102でYaxis(-1/2pi)近傍)の場合、予測変換制御部105は、(a)垂直方向にはDDSTを順方向に適用し(S2111)、(b)水平方向にはDDSTの反転ではなくDCTを適用する(S2112)。したがって、予測変換制御部105は、Flip_LRの値を0(無方向)にセットする(S2113)。
 また、方位が第1または第3象限に属する場合であって、水平予測(1番)の垂直変換の近傍(S2102でXaxis近傍(+-0pi)近傍)の場合、予測変換制御部105は、(a)垂直方向にはDDSTの反転ではなくDCTを適用し(S2114)、(b)水平方向にはDDSTを順方向に適用する(S2116)。この場合、予測変換制御部105は、Flip_UDの値を0(無方向)にセットする(S2115)。
 表2は、この処理を固定値の記録されたテーブルにより実現する場合のテーブルの値の設定例である。
 表2では、方位角に関する情報として、H.264予測モードが入力された場合に決定されるFlip_LR、Flip_UDの値を示す。例えば、テーブルに固定された値として実装することができる。
Figure JPOXMLDOC01-appb-T000002
 表2の決定テーブルの値は、以下に従って設定されている。
(a)表中、空欄部は、表1と同じ行列をForward方向に適用する。
(b1)右上から左下への予測(モード3)においては、水平変換はモード4のDDSTを反転したものを用いる。したがって、Flip_LRの値を-1(逆向き)とする。
(b2)右上から左下への予測(モード7)においては、水平変換はモード5のDDSTを反転したものを用いる。したがって、Flip_LRの値を-1(逆向き)とする。
(c)左下から右上のへの予測(モード8)においては、垂直変換はモード6のDDSTを反転したものを用いる。したがって、Flip_UDの値を-1(逆向き)とする。
 図10は、変換部102の実行する、図8のS212の変換行列の係数を入れ替える処理を説明するための図である。
 ForwardDirection(Flipの値が+1)の方向のために設定された変換行列の係数が図中Tである。図では第1次基底~第3次基底までを示し第4次~第8次までの波については省略している。
 順方向の場合(8×8点サンプルの場合)のC[0][0]~C[0][7]の係数を、C[0][i]とあらわすと、逆方向の係数は、C[0][7-i](i=0~7)と変換する。例えば、順方向の行列の第1基底の係数が、11、22、33、42、50、56、60、62である場合、逆方向の第1基底の係数は、62、60、・・・22、11である。
 順方向の行列の第n基底の係数をC[n][m]とした場合、Flip_LR(またはFlip_UD)が-1を示す場合の逆方向の行列の第n基底の係数はC[n][サイズ-1-m]で決定できる。
 DDST変換の行列の要素の反転処理について、4×4サイズの行列の具体例を用いて説明する。
 (変換部102の変換行列)
 表3は、変換部102で用いられる、Flip_LR(UD)の値が順方向を示す場合のDDSTの要素値である。
Figure JPOXMLDOC01-appb-T000003
 表4は、同じく変換部102での処理に用いられる行列であり、Flip_LR(UD)の値が逆方向を示す場合の要素値である。
Figure JPOXMLDOC01-appb-T000004
 このように変換部102での「誤差信号を周波数係数に変換する」処理における行列は、jの値を左右に読み替えた(jの値を右から読む)値となる。なお、変換部102の演算は、上述したとおりの係数順で入力画像信号が変換された結果が得られればよい。係数の順を入れ替える代わりに入力順を切り替える等他の実装でも、同じ結果が得られればよい。
 (逆変換部103の変換行列)
 逆変換部103での逆変換行列Inv_matは、変換部102で用いる変換行列を転置した転置行列である。行列の要素a’[i][j]は、具体的には表3の変換行列の行番号iと列番号jとを入れ替えた値となる。Flip_LRまたはFlip_UDの値が順方向を示す場合は、以下表5の要素の値を利用する。
Figure JPOXMLDOC01-appb-T000005
 逆変換部103でFlip_LRまたはFlip_UDの値が逆方向を示す場合は、表5の行列のI=Size-iと読み替えた係数を用いる。
Figure JPOXMLDOC01-appb-T000006
 このように、実施の形態1に係る画像符号化装置1000によれば、
(1)従来技術同様、新たな変換行列の係数を符号化・復号化する必要なく(計算機資源の観点における効果)、
(2)DCTより優れたDDSTを全方位(モード8、7、3)にも、切り替えのみで適用可能である(圧縮率の観点における効果)。
 つまり、本実施の形態によれば、予測モードに応じて、単に適用する変換行列を選定するのではなく、変換行列と向きとを決定する。そして、決定した向きに応じて変換行列の基底に対応する係数値の並びをFlipさせる。そして、Flipさせた行列を用いて周波数係数を導出する。
 また、1つの変形例によれば、予測モード8の場合は垂直方向にFlipさせ、3、7の場合は垂直方向にFlipさせた行列を用いて符号化・復号化する。
 また、1つの変形例によれば、DDSTを利用しつつも方位が垂直または水平方向付近である場合にはDCT変換を用いる。
 なお、方位についてH.264で用いられる9つの予測モード(8方位)の例を説明したが、この方位に限られるものではない。また、方位の表現として局座標系を用いたが、H.265で用いられる四角表現も利用できる。図11は、H.265で用いられる方位の表現方法の概念図である。H.264では円上に位置するモード番号で角度を表現したのに対して、H.265では四角上に位置するモード番号で角度を表現する。
 H.265は33方向+DC予測の34モードあり、若いモード番号0から9は、H.264と同等の22.5度単位の角度のどれかに対応する。モード01および2は、H.264とH.265とで一致する。
 以上、画面内予測モードに応じてFlip(並べ替え)を行う例を説明した。つまり、画面内予測子から遠い位置になるほど予測誤差期待値が大きくなる、あるいは、画面内予測子から遠い位置になるほど予測誤差期待値が小さくなるという傾向に基づいてFlipを行う方法を説明した。なお、画面内予測以外でも同様の傾向がある予測については、この方法を適用可能であり、例えば、符号化ブロック境界、予測ブロック境界、ピクチャ境界、スライス境界等にも適用可能である。
 なお、変換行列の要素の並べ替えを変換行列の反転を行うことで実現するのではなく、入力データのデータ順の反転で実現してもよい。
 実施の形態1によると、誤差信号の期待値の分布に基づいて、誤差信号の圧縮率が向上するように要素の並びを変更することができる。特に、画面内予測においては画面内予測値から遠い位置になるほど誤差信号の期待値が大きくなると考えられる。実施の形態1によると、例えば、変換行列の基底が示す傾斜と誤差信号の期待値が示す傾斜とを揃えるように変換行列の要素の並びを変更することができる。このため、多数の新たな変換行列を保持することを必要とせずに、圧縮率を向上させることができる。
 (実施の形態2)
 図12は、実施の形態1の画像符号化装置で符号化された符号列を復号する画像復号化装置2000の機能ブロック図である。
 画像復号化装置2000は、可変長復号化部201、逆量子化部202、逆変換部203、加算部204、予測部206、および、逆変換係数切り替え制御部205を含む。
 可変長復号化部201は、動画像を圧縮符号化して得られた符号列を入力し、符号の列に復元する。
 逆量子化部202は、入力信号を逆量子化し、量子化変換係数を出力する。
 逆変換部203は、逆変換係数切り替え制御部205からの指示(Flip_LR,Flip_UD)に従い、逆変換行列を切り替える。逆変換部203は入力された量子化変換係数を切り替えた逆変換行列を用いて復元し、復元された誤差信号を出力する。逆変換部203の動作は、図7の復号ループにおける逆変換部103の動作と同じである。
 予測部206は、逆変換係数切り替え制御部205から指定された予測モードに従い、予測画像信号を生成する。
 加算部204は、予測画像信号と誤差信号とを加算し、出力画像Voutを出力する。
 逆変換係数切り替え制御部205は、逆変換部203に実施の形態1で説明したのと同様のルールで、Flip_LR、Flip_UDを用いて逆変換部203に逆変換用の行列と方向とを指示する。
 図13は、画像復号化装置2000の処理フローを説明するフローチャートである。
 まず、可変長復号化部201は、Code[i]から、画像信号[i]に対応する制御信号CC[i]と画像信号CV[i]とを分離して抽出する(S1201)。
 次に、逆変換係数切り替え制御部205は、制御信号CC[i]からこの画像信号[i]に適用された予測モードpを抽出する(S1203)。
 次に、予測部206は予測モードpを用いてこの画像信号[i]の予測画像信号P[i]を生成する(S1204)。
 次に、逆変換係数切り替え制御部205は、予測モードpから、画像符号化装置1000と同様の判定方法で、方位に基づいて変換行列の係数の向きであるFlip_LR、Flip_UDの値を決定する(S1210)。つまり、逆変換係数切り替え制御部205は、画面内予測の方位に関する情報に応じて、逆変換行列と向きとを決定する。ここでの判定は、図9のフローチャートと同じであってもよいし、表2のように静的に定められたものでもよい。
 逆変換部203は、Flip_LR、Flip_UDの値に基いて、適用する行列と係数の向きとを決定し、行列を再編成する(S1214)。
 ここで向きにより切り替える行列は、画像符号化装置1000において説明した逆変換部103の表5と表6の行列である。つまり、逆変換部203は、決定された向きが逆方向を示し、かつ、決定された逆変換行列が非対称の係数を持つ場合に、その非対称の係数を逆順に並び替える。
 さらに、逆変換部203は、画像信号CV[i]を、再編成した行列により逆変換し、誤差信号[i]を得る(S1216)。つまり、逆変換部203は、非対称の係数が並び替えられた逆変換行列を用いて量子化変換係数を逆変換することにより誤差信号を得る。
 最後に、加算部204は誤差信号[i]と予測画像信号P[i]とを加算し、復元画像信号Vout[i]を出力する。
 このようにして、実施の形態2に係る画像復号化装置2000によれば、実施の形態1の画像符号化装置1000で得られた符号列を復号することができる。つまり、本実施の形態に係る画像復号化装置2000によれば、
(1)従来技術同様、新たな変換行列を符号化・復号化する必要なく(計算機資源の観点における効果)、
(2)DCTより優れたDDSTを全方位(モード8、7、3)に適用した符号列の復号化が可能である(圧縮率の観点における効果)。
 (実施の形態3)
 実施の形態3に係る画像符号化装置は、図7に示す画像符号化装置1000と同様、制御部101、画像データ供給部106、差分部107、変換部102、逆変換部103、加算部108、フレームメモリ109、予測部104、予測変換制御部105、および、可変長符号化部110を含む。
 ここで、実施の形態3の画像符号化装置は、実施の形態1の画像符号化装置1000と比較して、変換部102および逆変換部103の内部動作が異なる。つまり、実施の形態3に係る変換部102および逆変換部103は、多段階に変換あるいは多段階に逆変換を行う点で、実施の形態1と相違する。
 この多段階変換は演算量削減のための技術である。実施の形態1で説明したDDST等、低周波の基底について、大きな値の相関を計算するための特別な変換(KL(Karhunen Loeve)変換)を行う上で、演算量を少なくするために実行される。
 まず、第1段階として、高速アルゴリズムの存在するDCT変換あるいはH.264の変換である第1変換を行う。次に、得られた変換結果の係数のうち低域に該当する係数に、サイズの小さな変換行列を用いてKL変換を行う。第1変換によってエネルギーは低域へ集められているため、小さなサイズのKL変換(第2変換)でも同等の性能が得られる。サイズが小さいのでKL変換の演算量を軽減できる。
 以下、この多段階変換、多段階逆変換の一例を実施の形態1の画像符号化方法に適用した場合の動作を説明する。さらなる詳細な動作については、いずれも我々の発明についての特許文献:日本国特願2009-183791号、米国仮出願61/364680または米国仮出願61/368403に記載されており、本発明に適用可能である。
 図14は、本発明に多段階変換処理、または、多段階逆変換処理を適用するための変換部102および逆変換部103の詳細な構成を示す機能ブロック図である。
 変換部102は、第1変換部200、分割部210、第2変換部220、および、統合部230を含む。
 第1変換部200は、誤差信号Err[i][p]に対して第1変換を行う。
 分割部210は、第1変換部200による変換結果の係数を、低域に該当する係数とそれ以外の係数とに分割する。
 第2変換部220は、分割部210により分割された低域に該当する係数に対して第2変換を行う。
 統合部230は、分割部210により分割された上記それ以外の係数と、第2変換部220による変換結果の係数とを統合して出力する。
 逆変換部103は、分割部400、第2逆変換部410、統合部420、および、第1逆変換部430を含む。
 分割部400は、周波数係数を低域に該当する係数とそれ以外の係数とに分割する。
 第2逆変換部410は、分割部400により分割された低域に該当する係数に対して第2変換の逆変換を行う。
 統合部420は、分割部400により分割された上記それ以外の係数と、第2逆変換部410による逆変換結果の係数とを統合する。
 第1逆変換部430は、統合部420による統合結果に対して、第1変換の逆変換を行い、復号変換入力信号(DecodedErr[i][p])を出力する。
 予測変換制御部105は、第1の実施形態と同様、予測モードまたは予測モードの示す方位に関する情報から決定した制御信号Flip_LRを、変換部102の第2変換部220および逆変換部103の第2逆変換部410に対して出力する。第2変換部220および第2逆変換部410は、所定の変換行列の要素を制御信号Flip_LRに従って並べ替え、並べ替えられた変換行列を用いて変換および逆変換を行う。
 図15は、変換部102(図14に示す第1変換部200と第2変換部220)による多段階変換動作の概念を説明するための図である。
 変換部102は、画像信号と予測画像信号との差分に関する誤差信号Err[i][p]等の変換入力信号を入力として受ける。変換入力信号は、この図の例では、輝度信号Y、色差信号Cb及びCr等のYUV空間の信号として表現されている。
 第1変換部200は、第1の画素サイズ(N1×N1)の変換入力信号を入力として受け、変換入力信号に変換処理を施すことにより、第1のデータサイズ(N1×N1)サイズの第1変換出力信号を出力する。
 図14の分割部210は、第1変換出力信号を、第2のデータサイズ(M2×N2)の第1部分信号と、第1のデータサイズ(N1×N1)から第2のデータサイズを除いたデータサイズのデータで構成される第2部分信号とに分割する。ここで、M2≦N1、N2≦N1である。ただし、M2=N1=N2ではない。
 第2変換部220は、さらに、第2のデータサイズ(M2×N2)の第1部分信号を第1変換方法とは異なる第2変換方法により変換し、第2のデータサイズ(M2×N2)の第2変換出力信号を出力する。
 統合部230は、第2部分信号と、第2のデータサイズの第2変換出力信号とを統合し、統合後の第1のデータサイズの変換出力信号を出力する。
 図16は、逆変換部103(図14に示す第2逆変換部410と第1逆変換部430)による多段階逆変換動作の概念を説明するための図である。逆変換部103は変換部102とは逆の動作を行う。
 まず、変換部102から出力された第1のデータサイズの変換出力信号は、量子化および逆量子化の処理過程を経由し、所定の精度で復元された第1のデータサイズの復号変換出力信号320(inv_q_Err[i][p])として、分割部400に入力される。図16では、図15と同様に元の画像データがYUV空間の信号で表されている。
 分割部400は、入力された復号変換出力信号を、第2のデータサイズ(M2×N2)の第2復号変換出力信号と、第1のデータサイズから第2のデータサイズを除いたデータサイズのデータで構成される第2復号部分信号とに分割する。
 第2逆変換部410は、第2復号変換出力信号を入力として受け、第2変換部220による変換の逆変換に該当する変換を、第2復号変換出力信号に対して行うことで第2のデータサイズの第1復号部分信号を生成し、出力する。
 図14の統合部420は、第1復号部分信号と第2復号部分信号とを統合し、統合後の第1のデータサイズ(N1×N1)の第1復号変換出力信号を、第1逆変換部430に出力する。
 第1逆変換部430は、第1復号変換出力信号を入力として受け、第1変換部200の変換の逆変換に該当する変換を、第1復号変換出力信号に対して行うことで復号変換入力信号(DecodedErr[i][p])を生成し、出力する。
 図17は、実施の形態3の画像符号化装置の動作を説明するフローチャートである。
 図17は、本実施の形態に特徴的なステップを説明するものであり、図8と同様のステップには同じ符号が付与されている。
 まず、画像符号化装置は、画像信号Vin[i]を受け、制御部101で決定した予測モード[p]に応じた予測画像信号Pred[i][p]を生成し、誤差信号Err[i][p]を導出する(図8のS201~S205)。ここで、誤差信号は、図15における「変換入力信号」に該当する。
 次に、予測変換制御部105は、予測モードに応じて、DDST行列の適用方向を示す制御信号Flip_LRの値を決定し、出力する(S210)。方向と制御信号Flip_LRの値は、図9等に示したとおりである。
 以下、破線枠(S212、S214)で示すとおり、変換部102は、図8のS212と同様に変換行列の係数を制御信号に応じて切り替える。また、逆変換部103は、図8のS214と同様に逆変換のための変換行列の係数を、制御信号に応じて切り替える。
 まず、変換部102および逆変換部103は、Flip_LRの値が、逆方向(-1)である(H.264の場合はモード3、7、8。画面内予測子を原点とし測方位に関する情報の示す方位の示す先が第4象限に存在しない場合。)か否かを判定する(S210a)。
 Flip_LRの値が順方向であると判定された場合は(S210aでNO)、変換部102および逆変換部103は係数を切り替える処理、つまり係数の並べ替えを行わず、S216に進む(Flip_LRの値が+1、または、0を示す場合)。
 Flip_LRの値が逆方向であると判定された場合は(S210aでYES)、変換部102および逆変換部103は、変換係数(行列のi行j列の要素)を切り替える処理、つまり係数の並べ替えを行う(Flip_LRの値が-1を示す場合)。
 本実施の形態の変換部102は多段階で変換をおこなう。したがって、各段階の変換部(第1変換部200、第2変換部220は)各予測モード[p]毎に各変換段階n=0、1で利用される係数(あるいは変換に対応する行列mat[p][n])を保持している。変換段階n=0は1段階目を示し、変換段階n=1は2段階目を示す。
 第1変換部200が実行する1段階目の第1変換は、高速処理アルゴリズムが利用可能である変換(あるいは変換行列)から選択される。第1変換部200は、入力画像のサイズに応じて変換を切り替える。例えば、誤差信号のサイズが8×8である場合には、第1変換部200は、高速処理アルゴリズムが利用可能である8×8のDCT変換を利用する。この場合は、行列mat[p][0]は存在せず、第1変換部200は、静的に実装された値を、DCT係数として利用する。
 第2変換部220が実行する2段階目の第2変換は、行列mat[p][1]を用いて実行される。行列の各要素の値は、第1変換(あるいは第1換変換のための変換行列)により値が導出できる。第1変換(あるいは第1変換のための変換行列)から第2変換のための変換行列の値の導出方法については、特許文献:米国仮出願61/368403に記載された方法が利用できる。例えば、順方向(Flip_LRの値が正または0である場合)であって、第1変換に対応する行列mat[p][0]が8×8のDCTであり、かつ第1部分信号のサイズが4×4であるとき、第2変換行列mat[p][1]の行列要素a[i][j]の値は、表7の値をとる。
Figure JPOXMLDOC01-appb-T000007
 制御信号Flip_LRの値が負の値を示す場合、変換部102の第2変換部220は、この変換行列の要素a[i][j]を以下に示す切替ルールに従い、逆方向(H.264の予測モード3、7、8の場合等)に切替える(S212a、S212b)。
 (切替ルール:第2変換部220および第2逆変換部410)
 行列要素:縦方向をi行、横方向をj列とする。i、jは0から開始する。行列をWijと表現し、要素切り替え後の行列をWfijと表現する。
  (i)i+jが偶数のとき、Wfijの要素はWijの要素と同じ(Wfij=Wij)
  (S212aの判定結果がNoの場合)
  (ii)i+jが奇数のとき、Wfijの要素はWjjの要素の符号を反転させた値と同じ(Wfij=-Wij)
  (S212aの判定結果がYESの場合のS212bの処理)
 次の表8の値は、上記の切り替えルールの(ii)によって、S212aの処理により、表7の値の正負が切り替えられた後の第2変換行列の要素の例を示している。ここで、「Not changed」は、表7の同一の位置の要素と値が同じであることを示している。
Figure JPOXMLDOC01-appb-T000008
 このようにして、変換部102は、制御信号Flip_LRの値に応じて、第2変換行列の係数の正負の値を切り替える(S212a、S212b)。
 次に、逆変換部103も変換部102と同様に、制御信号Flip_FRの値に応じて第2逆変換部410の逆変換行列の要素の正負を切り替える(S214a、S214b)。
 表9はFlip_LRの値が正(または0)である場合のInv_mat[p][1]の行列の要素の例を示す。第2逆変換の変換行列は、M2×N2のデータサイズのデータの第2変換後のデータを逆変換するための逆行列に相当する行列であればよい。例えば、第2のデータサイズ(M2×N2)のデータを変換した後の4×4のデータを逆変換するための行列として、例えば表7の行列の転置行列(表9)を利用することができる。
Figure JPOXMLDOC01-appb-T000009
 逆変換部103は、変換部102の切り替えルールと同じルールで行列の係数の符号を反転させる。表10は、Flip_LRの値が負である場合に切り替えられる行列の要素と、ステップ切り替えの後の要素の値を示している。表9に示す行列のうち、i+jが奇数の要素の符号を反転させることで、表10に示す行列が得られる。ここで、「Not changed」は、表9の同一の位置の要素と値が同じであることを示している。
Figure JPOXMLDOC01-appb-T000010
 図17のフローの説明に戻る。
 次に、変換部102は、図8のS216に相当する変換処理を行う(図17、S216a~S216d)。
 まず、第1変換部200は、Err[i][p]を入力として受け、Err[i][p]に対して第1変換を施し、変換結果である第1変換出力信号を出力する(S216a)。例えば、第1変換部200は、8×8サイズのErr[i][p]を入力として受け、静的に実装された8×8DCT変換処理を、第1変換としてErr[i][p]に施す。
 分割部210は、8×8サイズの第1変換出力信号を、低域成分(i=0、1、j=0、1)である4×4サイズの第1部分信号と、第1変換出力信号から第1部分信号を除いた他の部分信号とに分離する(S216b)。
 第2変換部220は、第1部分信号を入力として受け、S212にて制御信号Flip_LRの値に応じて設定した行列mat[p][1]を用いて、第1部分信号に対して第2変換を行い、変換結果である第2変換出力信号を出力する(S216c)。
 最後に、統合部230は、第2変換出力信号と第1変換出力信号から第1部分信号を除いた他の部分信号とを統合し、統合結果である元の画像信号サイズと同じ8×8サイズの変換出力信号を出力する(S216d)。
 量子化部は変換出力信号を量子化し、逆量子化部は量子化部の出力を逆量子化し、8×8データサイズの復元された復号変換出力信号(inv_q_Err[i][p])にして出力する。なお、量子化部および逆量子化部は、それぞれ、変換部102および逆変換部103の内部に備えられていても良い。
 次に、逆変換部103は図8のS220に相当する逆変換処理を多段階で行う(図17のS220a~S220d)。
 まず、分割部400は、8×8サイズの復元変換出力信号を、低域成分に該当する4×4サイズの第2復号変換出力信号と、残りの部分信号とに分離する。
 第2逆変換部410は、制御信号Flip_LRの値に応じて正負の符号を設定したInv_mat[p][1]を用いて、第2復号変換出力信号に第2逆変換を行い、変換結果である4×4サイズの第1復号部分信号を出力する。
 統合部420は、復号変換出力信号から第2復号変換出力信号を除いた信号と、第1復号部分信号とを統合し、8×8サイズの第1復号変換出力信号を出力する。
 第1逆変換部430は、第1復号変換出力信号に対して、第1変換部200の変換の逆変換を行う。具体的には、第1逆変換部430は、第1復号変換出力信号に対して、iDCT変換を垂直および水平方向に適用させる。
 なお、制御信号Flip_LRの値が0の場合には、第2変換を行わなくてもよい。この場合には第2変換にかかる処理量の削減効果が得られる。
 最後に、本実施の形態の画像符号化装置は、第1部分信号を第2変換行列で復元するために必要な制御情報Multi_dec_ctrl(第1部分信号を区分するためのデリミタ情報、Flip_LRの値が正である場合の第1逆変換係数、適用された予測モードなど)を、シーケンス、ピクチャ、スライス、ブロック等の所定の単位で符号化して出力する(S2001)。
 以後、画像符号化装置は、図8のS221以降の処理と同様の処理を行う。
 なお、誤差信号のサイズおよび直交変換のサイズが16×16であり、かつ、第1部分信号のサイズが4×4であるとき、第2変換行列mat[p][1]の行列要素a[i][j]の値は、表11の値をとる。また、誤差信号のサイズおよび直交変換のサイズが32×32であり、かつ、第1部分信号のサイズが4×4であるとき、第2変換行列mat[p][1]の行列要素a[i][j]の値は、表12の値をとる。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 なお、情報量の圧縮という観点において、変換行列のある行の全ての要素が、元の変換行列とは反対の符号を持つ変換行列は、元の変換行列と同等の働きを行う。このため、このような行列も用いてよい。具体的には、表9の変換行列はいずれの行も符号が反転していてもよい。例えば、表9の行列に対して、i=1の行の符号が反転した変換行列(表13)であってもよい。また、他のi=0,i=2,i=3の行についても同様に符号が反転してもよい。表13の例に対応する、逆方向(Flip_LRの値が負)の変換行列は、表14のようになる。ここで、「Not changed」は、表13の同一の位置の要素と値が同じであることを示している。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 このように、実施の形態3の画像符号化装置によれば、画像データから周波数領域のデータへの変換を、第1変換と第2変換による多段階の変換により実行する場合に、指向性を有する第2変換行列の係数の値を、予測モードが示す予測の方位に応じて簡易に切り替えることができる。具体的には表7に示す行列の各要素につき、行列の行番号と列番号との和が偶数に該当する位置に存在する係数の正負を反転させるという、簡易な処理により切り替えを実現できる。
 (実施の形態4)
 実施の形態4に係る画像復号化装置は、実施の形態3で説明した多段階の変換を行う変換部102を含む画像符号化装置または画像符号化方法で符号化された符号列を復号する。
 図18は、実施の形態4の画像復号化装置2001の機能ブロック図である。
 画像復号化装置2001は、図12の画像復号化装置2000と同様、可変長復号化部201、逆量子化部202、逆変換部203、逆変換係数切り替え制御部205と、それぞれ図示しない予測部と、加算部とを含む。
 可変長復号化部201は、上記符号列に含まれる所定のブロックiについての符号列Code[i]から、量子化された画像信号q_Err[i]と、このブロックiの画像データを復号するための制御情報Multi_dec_ctrlとを出力する。
 逆変換係数切り替え制御部205は、制御情報Multi_dec_ctrlを入力として受け、制御情報Multi_dec_ctrlから、この画像ブロックiの符号化に利用された、(i)予測モードPred_mode[i]、(ii)予測モードPred_mode[i]が示す予測の方位から導出されたFlip_LRの値(+1、0、-1)、(iii)第1部分信号と残りの部分信号とを区別するための信号Delimiter[i]、および(vi)第1部分信号の第2変換に用いた行列mat[p][1]に対応する逆行列であるInv_mat[p][1]等を抽出する。
 逆変換部203は、図14で説明した画像符号化装置内の復号ループにおける逆変換部103(図14の分割部400、第2逆変換部410、統合部420、第1逆変換部430)とほぼ同じ動作を行う。画像復号化装置2001は画像符号化装置とは異なり所定のブロックiのための予測モードが事前に定められている。この点に起因して異なる動作について説明する。
 まず、画像復号化装置2001内の分割部400は、画像符号化装置側で既に一意に定められた信号Delimiter[i]に従い、復号変換出力信号を、第2復号変換出力信号と、第2復号部分信号とに分離する。
 第2逆変換部410には、画像符号化装置側から、シーケンス、ピクチャ、スライス等の所定の単位で事前にInv_mat[p][1]のセットが与えられている。所定のブロックiの復号化に用いられるInv_mat[p][1]のセットは、複数のInv_mat[p][1]のセットの中から1つのセットを選択する逆変換行列Inv_mat[i]により指定される。逆変換部203のその他の動作は、画像符号化装置内の逆変換部103と同じである。
 図19は、実施の形態4の画像復号化装置2001の処理を説明するフローチャートである。図13の実施の形態2の画像復号化装置2001の動作フロー、図17に示す実施の形態3の画像符号化装置の復号ループ部分と同一のステップには同じ符号が付されている。
 画像復号化装置2001は、まず、ブロックiを符号化して得られた符号列Code[i]を入力として受ける(S1201)。
 次に、可変長復号化部201は、画像符号化装置側で符号化されたブロックiを復号するための制御情報Multi_dec_ctrl[i]を、符号列Code[i]から取得する(S1202)。
 逆変換係数切り替え制御部205は、制御情報Multi_dec_ctrlからブロックiの復号に使われる予測モード、Flip_LR、第2復号変換出力信号を抽出するための信号Delimiter[i]等を抽出する(S1203)。なお、これらの情報は、ブロック毎に抽出されてもよいし、画像符号化装置が図17のS2000で付加したピクチャ等の所定の単位毎に抽出されてもよい。予測部はこの予測モードを用いて、ブロックiの予測画像信号[i]を生成する(S1204)。
 次に、逆変換係数切り替え制御部205は、抽出された予測モードあるいは予測モードの示す方位に関する情報に応じて、Flip_LRの値を設定する(S1210)。なお、この処理は、図17のS210の処理に対応している。
 逆変換部203は、画像符号化装置の逆変換部103のS214の処理と同様の多段階の逆変換処理を行う(S1214)。即ち、逆変換部203の第2逆変換部410は、設定されたFlip_LRの値に応じ、表9で示した行列の係数のうち、行番号iと列番号jとの和が奇数である係数の正負を反転させることにより、表10の係数に切り替える(S1214a、S1214b)。
 逆量子化部202は、符号列から抽出されたブロックiについての量子化された画像信号q_Err[i]を逆量子化し、量子化変換係数inv_q_Err[i]を出力する。
 逆変換部203は、inv_q_Err[i]を入力として受け、実施の形態3の画像符号化装置内の逆変換部103と同様の処理を行う(S1216)。
 まず、分割部400は、入力されたInv_q_Err[i]を、指定された信号Delimiterを用いて第2復号変換出力信号と第2復号部分信号とに分離する(S220a、図16)。
 第2逆変換部410は、制御信号Flip_LRの値に応じて、mat[p][1]の要素の正負の符号を反転させたInv_mat[p][1]を用いて、第2復号変換出力信号に第2逆変換を行い、N2×M2サイズの第1復号部分信号を出力する(S220b)。
 統合部420は、復号変換出力信号から第2復号変換出力信号を除いた信号と、第1復号部分信号とを統合し、8×8サイズの第1復号変換出力信号を出力する(S220c)。
 第1逆変換部430は、第1復号変換出力信号に対して、第1変換部200の変換の逆変換を行い、復号された誤差信号である復号変換入力信号(DecodedErr[i])を出力する(S220d)。なお、制御信号Flip_LRの値が0の場合には、第2逆変換を行わなくてもよい。この場合には第2逆変換に要する処理量の削減効果が得られる。
 図示しない加算部は、ブロックiについての誤差信号DecodedErr[i]と、予測部206で予測モードに応じて生成された予想画像信号とを加算し、復号画像信号を出力する(S1221)。
 画像復号化装置2001は、上記の処理を入力されるブロックの数だけ繰り返し、動画像を復元する。
 以上、画面内予測モードに応じて一部の変換係数の符号の反転を行う例を説明した。つまり、画面内予測子から遠い位置になるほど予測誤差期待値が大きくなる、あるいは、画面内予測子から遠い位置になるほど予測誤差期待値が小さくなるという傾向に基づいて、一部の変換係数の符号の反転を行う方法を説明した。なお、画面内予測以外でも同様の傾向がある予測については、この方法を適用可能であり、例えば、符号化ブロック境界、予測ブロック境界、ピクチャ境界、スライス境界等にも適用可能である。
 なお、一部の変換係数の符号の反転を行うことで実現するのではなく、入力データのデータ順の反転で実現してもよい。この反転は、第2変換への入力部分のみの反転でよい。
 このように、実施の形態4の画像復号化装置2001によれば、2段階の変換により得られた周波数係数について、第2逆変換で適用する逆変換の行列の要素の値を、簡易に切り替えることができる。具体的には表9に示す行列の各要素の値につき、行列の行番号と列番号との和が偶数に該当する位置にある係数の正負を反転させるという簡易な処理により実現できる。
 なお、上記により得られた2段階変換の行列によりFlipが可能であることの詳細な説明を行う。2次元でN×Nの大きさの行列Tと、入力信号でN×1の大きさの列ベクトルXがあるとする。Xが変換入力であり、変換の出力は、行列Tと行列Xとの乗算で表記でき、出力の大きさはN×1である。なお、M行N列の行列の大きさをM×Nと表記することとする。ここでは、第1変換はDCT等の偶対称な変換を想定している。偶対称な変換とは図20に示すように、原点のy軸を中心として、左右に折り返し対称な関数である。ここでnが奇数となる位置のDCT出力の符号を反転させると、左右を反転させる効果が得られる。n=1を例とすると、この基底は左側でプラス、右側でマイナスのカーブを描いているが、ここでDCT出力の符号を反転させる、つまり、DCT出力を上下に反転させると、左側でマイナス・右側でプラスのカーブとなる。これは、DCT出力を左右に反転したのと等価である。nが偶数の位置の基底で符号を反転させても、左右反転の効果は得られないため反転は不要である。つまり第1変換の変換行列をDとすると、上記のように修正した第1変換の変換行列D´は次のように表記できる。
Figure JPOXMLDOC01-appb-M000003
 4×4の大きさで例示すると、次のようになる。
Figure JPOXMLDOC01-appb-M000004
 本発明では、第1変換の変換行列のサイズが大きいため、第1変換の変換行列を複数種類持つことは避けたい。このため、第1変換の出力の奇数行の符号を変えるのではなく、それと等価な操作を第2変換で行う。当初の第2変換の変換行列をTとし、修正後の第2変換の変換行列をT´とすると、上記のDの奇数行の符号反転は、Tのj列の符号反転でも得られる。つまりTD´=T´Dの関係が成り立つが、このことは行列乗算の定義に従い、左辺および右辺をそれぞれ展開してみれば一致することが容易に確認できる。T´は以下の数式で得られる。
Figure JPOXMLDOC01-appb-M000005
 TおよびT´を4×4の大きさで例示すると、次のようになる。
Figure JPOXMLDOC01-appb-M000006
 ここで、対角要素(i=jの位置)の符号が反転していることがわかるが、2段階変換においては、対角要素は最も大きな値を持つ。このため、対角要素の符号が反転することは、変換出力をエントロピー符号化する過程において符号化性能の低下をまねくかもしれない。上記の表記における変換行列では、ある行の全要素の符号を反転しても、基底の形状には影響を与えないため、奇数行の符号を反転してもよい。この第2の修正を行った2段階変換の行列をT´´とすると、次の数式で表記できる。
Figure JPOXMLDOC01-appb-M000007
 T´´を4×4の大きさで例示すると、次のようになる。
Figure JPOXMLDOC01-appb-M000008
 T´´は、式Aと式Bを組み合わせて、結局、当初の行列から、次の変更で得られる。
Figure JPOXMLDOC01-appb-M000009
 (実施の形態5)
 上記各実施の形態で示した動画像符号化方法(画像符号化方法)または動画像復号化方法(画像復号方法)の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
 さらにここで、上記各実施の形態で示した動画像符号化方法(画像符号化方法)や動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、及び画像復号方法を用いた画像復号装置からなる画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。
 図21は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。
 このコンテンツ供給システムex100は、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex106からex110を介して、コンピュータex111、PDA(Personal Digital Assistant)ex112、カメラex113、携帯電話ex114、ゲーム機ex115などの各機器が接続される。
 しかし、コンテンツ供給システムex100は図21のような構成に限定されず、いずれかの要素を組合せて接続するようにしてもよい。また、固定無線局である基地局ex106からex110を介さずに、各機器が電話網ex104に直接接続されてもよい。また、各機器が近距離無線等を介して直接相互に接続されていてもよい。
 カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器であり、カメラex116はデジタルカメラ等の静止画撮影、動画撮影が可能な機器である。また、携帯電話ex114は、GSM(登録商標)(Global System for Mobile Communications)方式、CDMA(Code Division Multiple Access)方式、W-CDMA(Wideband-Code Division Multiple Access)方式、若しくはLTE(Long Term Evolution)方式、HSPA(High Speed Packet Access)の携帯電話機、またはPHS(Personal Handyphone System)等であり、いずれでも構わない。
 コンテンツ供給システムex100では、カメラex113等が基地局ex109、電話網ex104を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、ユーザがカメラex113を用いて撮影するコンテンツ(例えば、音楽ライブの映像等)に対して上記各実施の形態で説明したように符号化処理を行い(即ち、本発明の画像符号化装置として機能する)、ストリーミングサーバex103に送信する。一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントとしては、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、PDAex112、カメラex113、携帯電話ex114、ゲーム機ex115等がある。配信されたデータを受信した各機器では、受信したデータを復号化処理して再生する(即ち、本発明の画像復号装置として機能する)。
 なお、撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。同様に配信されたデータの復号化処理はクライアントで行っても、ストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。また、カメラex113に限らず、カメラex116で撮影した静止画像および/または動画像データを、コンピュータex111を介してストリーミングサーバex103に送信してもよい。この場合の符号化処理はカメラex116、コンピュータex111、ストリーミングサーバex103のいずれで行ってもよいし、互いに分担して行ってもよい。
 また、これら符号化・復号化処理は、一般的にコンピュータex111や各機器が有するLSIex500において処理する。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、ハードディスクなど)に組み込み、そのソフトウェアを用いて符号化・復号化処理を行ってもよい。さらに、携帯電話ex114がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データは携帯電話ex114が有するLSIex500で符号化処理されたデータである。
 また、ストリーミングサーバex103は複数のサーバや複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。
 以上のようにして、コンテンツ供給システムex100では、符号化されたデータをクライアントが受信して再生することができる。このようにコンテンツ供給システムex100では、ユーザが送信した情報をリアルタイムでクライアントが受信して復号化し、再生することができ、特別な権利や設備を有さないユーザでも個人放送を実現できる。
 なお、コンテンツ供給システムex100の例に限らず、図22に示すように、デジタル放送用システムex200にも、上記各実施の形態の少なくとも動画像符号化装置(画像符号化装置)または動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。具体的には、放送局ex201では映像データに音楽データなどが多重化された多重化データが電波を介して通信または衛星ex202に伝送される。この映像データは上記各実施の形態で説明した動画像符号化方法により符号化されたデータである(即ち、本発明の画像符号化装置によって符号化されたデータである)。これを受けた放送衛星ex202は、放送用の電波を発信し、この電波を衛星放送の受信が可能な家庭のアンテナex204が受信する。受信した多重化データを、テレビ(受信機)ex300またはセットトップボックス(STB)ex217等の装置が復号化して再生する(即ち、本発明の画像復号装置として機能する)。
 また、DVD、BD等の記録メディアex215に記録した多重化データを読み取り復号化する、または記録メディアex215に映像信号を符号化し、さらに場合によっては音楽信号と多重化して書き込むリーダ/レコーダex218にも上記各実施の形態で示した動画像復号化装置または動画像符号化装置を実装することが可能である。この場合、再生された映像信号はモニタex219に表示され、多重化データが記録された記録メディアex215により他の装置やシステムにおいて映像信号を再生することができる。また、ケーブルテレビ用のケーブルex203または衛星/地上波放送のアンテナex204に接続されたセットトップボックスex217内に動画像復号化装置を実装し、これをテレビのモニタex219で表示してもよい。このときセットトップボックスではなく、テレビ内に動画像復号化装置を組み込んでもよい。
 図23は、上記各実施の形態で説明した動画像復号化方法および動画像符号化方法を用いたテレビ(受信機)ex300を示す図である。テレビex300は、上記放送を受信するアンテナex204またはケーブルex203等を介して映像データに音声データが多重化された多重化データを取得、または出力するチューナex301と、受信した多重化データを復調する、または外部に送信する多重化データに変調する変調/復調部ex302と、復調した多重化データを映像データと、音声データとに分離する、または信号処理部ex306で符号化された映像データ、音声データを多重化する多重/分離部ex303を備える。
 また、テレビex300は、音声データ、映像データそれぞれを復号化する、またはそれぞれの情報を符号化する音声信号処理部ex304、映像信号処理部ex305(本発明の画像符号化装置または画像復号装置として機能する)を有する信号処理部ex306と、復号化した音声信号を出力するスピーカex307、復号化した映像信号を表示するディスプレイ等の表示部ex308を有する出力部ex309とを有する。さらに、テレビex300は、ユーザ操作の入力を受け付ける操作入力部ex312等を有するインタフェース部ex317を有する。さらに、テレビex300は、各部を統括的に制御する制御部ex310、各部に電力を供給する電源回路部ex311を有する。インタフェース部ex317は、操作入力部ex312以外に、リーダ/レコーダex218等の外部機器と接続されるブリッジex313、SDカード等の記録メディアex216を装着可能とするためのスロット部ex314、ハードディスク等の外部記録メディアと接続するためのドライバex315、電話網と接続するモデムex316等を有していてもよい。なお記録メディアex216は、格納する不揮発性/揮発性の半導体メモリ素子により電気的に情報の記録を可能としたものである。テレビex300の各部は同期バスを介して互いに接続されている。
 まず、テレビex300がアンテナex204等により外部から取得した多重化データを復号化し、再生する構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、CPU等を有する制御部ex310の制御に基づいて、変調/復調部ex302で復調した多重化データを多重/分離部ex303で分離する。さらにテレビex300は、分離した音声データを音声信号処理部ex304で復号化し、分離した映像データを映像信号処理部ex305で上記各実施の形態で説明した復号化方法を用いて復号化する。復号化した音声信号、映像信号は、それぞれ出力部ex309から外部に向けて出力される。出力する際には、音声信号と映像信号が同期して再生するよう、バッファex318、ex319等に一旦これらの信号を蓄積するとよい。また、テレビex300は、放送等からではなく、磁気/光ディスク、SDカード等の記録メディアex215、ex216から多重化データを読み出してもよい。次に、テレビex300が音声信号や映像信号を符号化し、外部に送信または記録メディア等に書き込む構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、制御部ex310の制御に基づいて、音声信号処理部ex304で音声信号を符号化し、映像信号処理部ex305で映像信号を上記各実施の形態で説明した符号化方法を用いて符号化する。符号化した音声信号、映像信号は多重/分離部ex303で多重化され外部に出力される。多重化する際には、音声信号と映像信号が同期するように、バッファex320、ex321等に一旦これらの信号を蓄積するとよい。なお、バッファex318、ex319、ex320、ex321は図示しているように複数備えていてもよいし、1つ以上のバッファを共有する構成であってもよい。さらに、図示している以外に、例えば変調/復調部ex302や多重/分離部ex303の間等でもシステムのオーバフロー、アンダーフローを避ける緩衝材としてバッファにデータを蓄積することとしてもよい。
 また、テレビex300は、放送等や記録メディア等から音声データ、映像データを取得する以外に、マイクやカメラのAV入力を受け付ける構成を備え、それらから取得したデータに対して符号化処理を行ってもよい。なお、ここではテレビex300は上記の符号化処理、多重化、および外部出力ができる構成として説明したが、これらの処理を行うことはできず、上記受信、復号化処理、外部出力のみが可能な構成であってもよい。
 また、リーダ/レコーダex218で記録メディアから多重化データを読み出す、または書き込む場合には、上記復号化処理または符号化処理はテレビex300、リーダ/レコーダex218のいずれで行ってもよいし、テレビex300とリーダ/レコーダex218が互いに分担して行ってもよい。
 一例として、光ディスクからデータの読み込みまたは書き込みをする場合の情報再生/記録部ex400の構成を図24に示す。情報再生/記録部ex400は、以下に説明する要素ex401、ex402、ex403、ex404、ex405、ex406、ex407を備える。光ヘッドex401は、光ディスクである記録メディアex215の記録面にレーザスポットを照射して情報を書き込み、記録メディアex215の記録面からの反射光を検出して情報を読み込む。変調記録部ex402は、光ヘッドex401に内蔵された半導体レーザを電気的に駆動し記録データに応じてレーザ光の変調を行う。再生復調部ex403は、光ヘッドex401に内蔵されたフォトディテクタにより記録面からの反射光を電気的に検出した再生信号を増幅し、記録メディアex215に記録された信号成分を分離して復調し、必要な情報を再生する。バッファex404は、記録メディアex215に記録するための情報および記録メディアex215から再生した情報を一時的に保持する。ディスクモータex405は記録メディアex215を回転させる。サーボ制御部ex406は、ディスクモータex405の回転駆動を制御しながら光ヘッドex401を所定の情報トラックに移動させ、レーザスポットの追従処理を行う。システム制御部ex407は、情報再生/記録部ex400全体の制御を行う。上記の読み出しや書き込みの処理はシステム制御部ex407が、バッファex404に保持された各種情報を利用し、また必要に応じて新たな情報の生成・追加を行うと共に、変調記録部ex402、再生復調部ex403、サーボ制御部ex406を協調動作させながら、光ヘッドex401を通して、情報の記録再生を行うことにより実現される。システム制御部ex407は例えばマイクロプロセッサで構成され、読み出し書き込みのプログラムを実行することでそれらの処理を実行する。
 以上では、光ヘッドex401はレーザスポットを照射するとして説明したが、近接場光を用いてより高密度な記録を行う構成であってもよい。
 図25に光ディスクである記録メディアex215の模式図を示す。記録メディアex215の記録面には案内溝(グルーブ)がスパイラル状に形成され、情報トラックex230には、予めグルーブの形状の変化によってディスク上の絶対位置を示す番地情報が記録されている。この番地情報はデータを記録する単位である記録ブロックex231の位置を特定するための情報を含み、記録や再生を行う装置において情報トラックex230を再生し番地情報を読み取ることで記録ブロックを特定することができる。また、記録メディアex215は、データ記録領域ex233、内周領域ex232、外周領域ex234を含んでいる。ユーザデータを記録するために用いる領域がデータ記録領域ex233であり、データ記録領域ex233より内周または外周に配置されている内周領域ex232と外周領域ex234は、ユーザデータの記録以外の特定用途に用いられる。情報再生/記録部ex400は、このような記録メディアex215のデータ記録領域ex233に対して、符号化された音声データ、映像データまたはそれらのデータを多重化した多重化データの読み書きを行う。
 以上では、1層のDVD、BD等の光ディスクを例に挙げ説明したが、これらに限ったものではなく、多層構造であって表面以外にも記録可能な光ディスクであってもよい。また、ディスクの同じ場所にさまざまな異なる波長の色の光を用いて情報を記録したり、さまざまな角度から異なる情報の層を記録したりなど、多次元的な記録/再生を行う構造の光ディスクであってもよい。
 また、デジタル放送用システムex200において、アンテナex205を有する車ex210で衛星ex202等からデータを受信し、車ex210が有するカーナビゲーションex211等の表示装置に動画を再生することも可能である。なお、カーナビゲーションex211の構成は例えば図23に示す構成のうち、GPS受信部を加えた構成が考えられ、同様なことがコンピュータex111や携帯電話ex114等でも考えられる。
 図26(a)は、上記実施の形態で説明した動画像復号化方法および動画像符号化方法を用いた携帯電話ex114を示す図である。携帯電話ex114は、基地局ex110との間で電波を送受信するためのアンテナex350、映像、静止画を撮ることが可能なカメラ部ex365、カメラ部ex365で撮像した映像、アンテナex350で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex358を備える。携帯電話ex114は、さらに、操作キー部ex366を有する本体部、音声を出力するためのスピーカ等である音声出力部ex357、音声を入力するためのマイク等である音声入力部ex356、撮影した映像、静止画、録音した音声、または受信した映像、静止画、メール等の符号化されたデータもしくは復号化されたデータを保存するメモリ部ex367、または同様にデータを保存する記録メディアとのインタフェース部であるスロット部ex364を備える。
 さらに、携帯電話ex114の構成例について、図26(b)を用いて説明する。携帯電話ex114は、表示部ex358および操作キー部ex366を備えた本体部の各部を統括的に制御する主制御部ex360に対して、電源回路部ex361、操作入力制御部ex362、映像信号処理部ex355、カメラインタフェース部ex363、LCD(Liquid Crystal Display)制御部ex359、変調/復調部ex352、多重/分離部ex353、音声信号処理部ex354、スロット部ex364、メモリ部ex367がバスex370を介して互いに接続されている。
 電源回路部ex361は、ユーザの操作により終話および電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話ex114を動作可能な状態に起動する。
 携帯電話ex114は、CPU、ROM、RAM等を有する主制御部ex360の制御に基づいて、音声通話モード時に音声入力部ex356で収音した音声信号を音声信号処理部ex354でデジタル音声信号に変換し、これを変調/復調部ex352でスペクトラム拡散処理し、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。また携帯電話ex114は、音声通話モード時にアンテナex350を介して受信した受信データを増幅して周波数変換処理およびアナログデジタル変換処理を施し、変調/復調部ex352でスペクトラム逆拡散処理し、音声信号処理部ex354でアナログ音声信号に変換した後、これを音声出力部ex357から出力する。
 さらにデータ通信モード時に電子メールを送信する場合、本体部の操作キー部ex366等の操作によって入力された電子メールのテキストデータは操作入力制御部ex362を介して主制御部ex360に送出される。主制御部ex360は、テキストデータを変調/復調部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して基地局ex110へ送信する。電子メールを受信する場合は、受信したデータに対してこのほぼ逆の処理が行われ、表示部ex358に出力される。
 データ通信モード時に映像、静止画、または映像と音声を送信する場合、映像信号処理部ex355は、カメラ部ex365から供給された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し(即ち、本発明の画像符号化装置として機能する)、符号化された映像データを多重/分離部ex353に送出する。また、音声信号処理部ex354は、映像、静止画等をカメラ部ex365で撮像中に音声入力部ex356で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex353に送出する。
 多重/分離部ex353は、映像信号処理部ex355から供給された符号化された映像データと音声信号処理部ex354から供給された符号化された音声データを所定の方式で多重化し、その結果得られる多重化データを変調/復調部(変調/復調回路部)ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex350を介して送信する。
 データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、または映像およびもしくは音声が添付された電子メールを受信する場合、アンテナex350を介して受信された多重化データを復号化するために、多重/分離部ex353は、多重化データを分離することにより映像データのビットストリームと音声データのビットストリームとに分け、同期バスex370を介して符号化された映像データを映像信号処理部ex355に供給するとともに、符号化された音声データを音声信号処理部ex354に供給する。映像信号処理部ex355は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって復号化することにより映像信号を復号し(即ち、本発明の画像復号装置として機能する)、LCD制御部ex359を介して表示部ex358から、例えばホームページにリンクされた動画像ファイルに含まれる映像、静止画が表示される。また音声信号処理部ex354は、音声信号を復号し、音声出力部ex357から音声が出力される。
 また、上記携帯電話ex114等の端末は、テレビex300と同様に、符号化器・復号化器を両方持つ送受信型端末の他に、符号化器のみの送信端末、復号化器のみの受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムex200において、映像データに音楽データなどが多重化された多重化データを受信、送信するとして説明したが、音声データ以外に映像に関連する文字データなどが多重化されたデータであってもよいし、多重化データではなく映像データ自体であってもよい。
 このように、上記各実施の形態で示した動画像符号化方法あるいは動画像復号化方法を上述したいずれの機器・システムに用いることは可能であり、そうすることで、上記各実施の形態で説明した効果を得ることができる。
 また、本発明はかかる上記実施の形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。
 (実施の形態6)
 上記各実施の形態で示した動画像符号化方法または装置と、MPEG-2、MPEG4-AVC、VC-1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
 ここで、それぞれ異なる規格に準拠する複数の映像データを生成した場合、復号する際に、それぞれの規格に対応した復号方法を選択する必要がある。しかしながら、復号する映像データが、どの規格に準拠するものであるか識別できないため、適切な復号方法を選択することができないという課題を生じる。
 この課題を解決するために、映像データに音声データなどを多重化した多重化データは、映像データがどの規格に準拠するものであるかを示す識別情報を含む構成とする。上記各実施の形態で示す動画像符号化方法または装置によって生成された映像データを含む多重化データの具体的な構成を以下説明する。多重化データは、MPEG-2トランスポートストリーム形式のデジタルストリームである。
 図27は、多重化データの構成を示す図である。図27に示すように多重化データは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラフィックスストリームのうち、1つ以上を多重化することで得られる。ビデオストリームは映画の主映像および副映像を、オーディオストリーム(IG)は映画の主音声部分とその主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームは、映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。ビデオストリームは、上記各実施の形態で示した動画像符号化方法または装置、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠した動画像符号化方法または装置によって符号化されている。オーディオストリームは、ドルビーAC-3、Dolby Digital Plus、MLP、DTS、DTS-HD、または、リニアPCMのなどの方式で符号化されている。
 多重化データに含まれる各ストリームはPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。
 図28は、多重化データがどのように多重化されるかを模式的に示す図である。まず、複数のビデオフレームからなるビデオストリームex235、複数のオーディオフレームからなるオーディオストリームex238を、それぞれPESパケット列ex236およびex239に変換し、TSパケットex237およびex240に変換する。同じくプレゼンテーショングラフィックスストリームex241およびインタラクティブグラフィックスex244のデータをそれぞれPESパケット列ex242およびex245に変換し、さらにTSパケットex243およびex246に変換する。多重化データex247はこれらのTSパケットを1本のストリームに多重化することで構成される。
 図29は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図29における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図29の矢印yy1,yy2, yy3, yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time-Stamp)やピクチャの復号時刻であるDTS(Decoding Time-Stamp)が格納される。
 図30は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD-ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図30下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。
 また、多重化データに含まれるTSパケットには、映像・音声・字幕などの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。
 図31はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。
 記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。
 多重化データ情報ファイルは、図32に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。
 多重化データ情報は図32に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。
 ストリーム属性情報は図33に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。
 本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。
 また、本実施の形態における動画像復号化方法のステップを図34に示す。ステップexS100において、多重化データからPMTに含まれるストリームタイプ、または、多重化データ情報に含まれるビデオストリーム属性情報を取得する。次に、ステップexS101において、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成された多重化データであることを示しているか否かを判断する。そして、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成されたものであると判断された場合には、ステップexS102において、上記各実施の形態で示した動画像復号方法により復号を行う。また、ストリームタイプ、または、ビデオストリーム属性情報が、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠するものであることを示している場合には、ステップexS103において、従来の規格に準拠した動画像復号方法により復号を行う。
 このように、ストリームタイプ、または、ビデオストリーム属性情報に新たな固有値を設定することにより、復号する際に、上記各実施の形態で示した動画像復号化方法または装置で復号可能であるかを判断することができる。したがって、異なる規格に準拠する多重化データが入力された場合であっても、適切な復号化方法または装置を選択することができるため、エラーを生じることなく復号することが可能となる。また、本実施の形態で示した動画像符号化方法または装置、または、動画像復号方法または装置を、上述したいずれの機器・システムに用いることも可能である。
 (実施の形態7)
 上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図35に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
 例えば符号化処理を行う場合には、LSIex500は、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有する制御部ex501の制御に基づいて、AV I/Oex509によりマイクex117やカメラex113等からAV信号を入力する。入力されたAV信号は、一旦SDRAM等の外部のメモリex511に蓄積される。制御部ex501の制御に基づいて、蓄積したデータは処理量や処理速度に応じて適宜複数回に分けるなどされ信号処理部ex507に送られ、信号処理部ex507において音声信号の符号化および/または映像信号の符号化が行われる。ここで映像信号の符号化処理は上記各実施の形態で説明した符号化処理である。信号処理部ex507ではさらに、場合により符号化された音声データと符号化された映像データを多重化するなどの処理を行い、ストリームI/Oex506から外部に出力する。この出力された多重化データは、基地局ex107に向けて送信されたり、または記録メディアex215に書き込まれたりする。なお、多重化する際には同期するよう、一旦バッファex508にデータを蓄積するとよい。
 なお、上記では、メモリex511がLSIex500の外部の構成として説明したが、LSIex500の内部に含まれる構成であってもよい。バッファex508も1つに限ったものではなく、複数のバッファを備えていてもよい。また、LSIex500は1チップ化されてもよいし、複数チップ化されてもよい。
 また、上記では、制御部ex501が、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有するとしているが、制御部ex501の構成は、この構成に限らない。例えば、信号処理部ex507がさらにCPUを備える構成であってもよい。信号処理部ex507の内部にもCPUを設けることにより、処理速度をより向上させることが可能になる。また、他の例として、CPUex502が信号処理部ex507、または信号処理部ex507の一部である例えば音声信号処理部を備える構成であってもよい。このような場合には、制御部ex501は、信号処理部ex507、またはその一部を有するCPUex502を備える構成となる。
 なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。
 (実施の形態8)
 上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
 この課題を解決するために、テレビex300、LSIex500などの動画像復号化装置は、映像データがどの規格に準拠するものであるかを識別し、規格に応じて駆動周波数を切替える構成とする。図36は、本実施の形態における構成ex800を示している。駆動周波数切替え部ex803は、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合には、駆動周波数を高く設定する。そして、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801に対し、映像データを復号するよう指示する。一方、映像データが、従来の規格に準拠する映像データである場合には、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合に比べ、駆動周波数を低く設定する。そして、従来の規格に準拠する復号処理部ex802に対し、映像データを復号するよう指示する。
 より具体的には、駆動周波数切替え部ex803は、図35のCPUex502と駆動周波数制御部ex512から構成される。また、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801、および、従来の規格に準拠する復号処理部ex802は、図35の信号処理部ex507に該当する。CPUex502は、映像データがどの規格に準拠するものであるかを識別する。そして、CPUex502からの信号に基づいて、駆動周波数制御部ex512は、駆動周波数を設定する。また、CPUex502からの信号に基づいて、信号処理部ex507は、映像データの復号を行う。ここで、映像データの識別には、例えば、実施の形態6で記載した識別情報を利用することが考えられる。識別情報に関しては、実施の形態6で記載したものに限られず、映像データがどの規格に準拠するか識別できる情報であればよい。例えば、映像データがテレビに利用されるものであるか、ディスクに利用されるものであるかなどを識別する外部信号に基づいて、映像データがどの規格に準拠するものであるか識別可能である場合には、このような外部信号に基づいて識別してもよい。また、CPUex502における駆動周波数の選択は、例えば、図38のような映像データの規格と、駆動周波数とを対応付けたルックアップテーブルに基づいて行うことが考えられる。ルックアップテーブルを、バッファex508や、LSIの内部メモリに格納しておき、CPUex502がこのルックアップテーブルを参照することにより、駆動周波数を選択することが可能である。
 図37は、本実施の形態の方法を実施するステップを示している。まず、ステップexS200では、信号処理部ex507において、多重化データから識別情報を取得する。次に、ステップexS201では、CPUex502において、識別情報に基づいて映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものであるか否かを識別する。映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合には、ステップexS202において、駆動周波数を高く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、高い駆動周波数に設定される。一方、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、ステップexS203において、駆動周波数を低く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合に比べ、低い駆動周波数に設定される。
 さらに、駆動周波数の切替えに連動して、LSIex500またはLSIex500を含む装置に与える電圧を変更することにより、省電力効果をより高めることが可能である。例えば、駆動周波数を低く設定する場合には、これに伴い、駆動周波数を高く設定している場合に比べ、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することが考えられる。
 また、駆動周波数の設定方法は、復号する際の処理量が大きい場合に、駆動周波数を高く設定し、復号する際の処理量が小さい場合に、駆動周波数を低く設定すればよく、上述した設定方法に限らない。例えば、MPEG4-AVC規格に準拠する映像データを復号する処理量の方が、上記各実施の形態で示した動画像符号化方法または装置により生成された映像データを復号する処理量よりも大きい場合には、駆動周波数の設定を上述した場合の逆にすることが考えられる。
 さらに、駆動周波数の設定方法は、駆動周波数を低くする構成に限らない。例えば、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を高く設定し、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することも考えられる。また、他の例としては、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、CPUex502の駆動を停止させることなく、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、処理に余裕があるため、CPUex502の駆動を一時停止させることも考えられる。識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合であっても、処理に余裕があれば、CPUex502の駆動を一時停止させることも考えられる。この場合は、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合に比べて、停止時間を短く設定することが考えられる。
 このように、映像データが準拠する規格に応じて、駆動周波数を切替えることにより、省電力化を図ることが可能になる。また、電池を用いてLSIex500またはLSIex500を含む装置を駆動している場合には、省電力化に伴い、電池の寿命を長くすることが可能である。
 (実施の形態9)
 テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
 この課題を解決するために、上記各実施の形態で示した動画像復号方法を実行するための復号処理部と、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する復号処理部とを一部共有化する構成とする。この構成例を図39(a)のex900に示す。例えば、上記各実施の形態で示した動画像復号方法と、MPEG4-AVC規格に準拠する動画像復号方法とは、エントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償などの処理において処理内容が一部共通する。共通する処理内容については、MPEG4-AVC規格に対応する復号処理部ex902を共有し、MPEG4-AVC規格に対応しない、本発明特有の他の処理内容については、専用の復号処理部ex901を用いるという構成が考えられる。特に、本発明は、量子化および逆量子化に特徴を有していることから、例えば、逆量子化については専用の復号処理部ex901を用い、それ以外のエントロピー符号化、デブロッキング・フィルタ、動き補償のいずれか、または、全ての処理については、復号処理部を共有することが考えられる。復号処理部の共有化に関しては、共通する処理内容については、上記各実施の形態で示した動画像復号化方法を実行するための復号処理部を共有し、MPEG4-AVC規格に特有の処理内容については、専用の復号処理部を用いる構成であってもよい。
 また、処理を一部共有化する他の例を図39(b)のex1000に示す。この例では、本発明に特有の処理内容に対応した専用の復号処理部ex1001と、他の従来規格に特有の処理内容に対応した専用の復号処理部ex1002と、本発明の動画像復号方法と他の従来規格の動画像復号方法とに共通する処理内容に対応した共用の復号処理部ex1003とを用いる構成としている。ここで、専用の復号処理部ex1001、ex1002は、必ずしも本発明、または、他の従来規格に特有の処理内容に特化したものではなく、他の汎用処理を実行できるものであってもよい。また、本実施の形態の構成を、LSIex500で実装することも可能である。
 このように、本発明の動画像復号方法と、従来の規格の動画像復号方法とで共通する処理内容について、復号処理部を共有することにより、LSIの回路規模を小さくし、かつ、コストを低減することが可能である。
 図40は、本発明の画像符号化方法に必須の処理からなるフローチャートである。つまり、本発明の画像符号化方法には、図8に示したS212およびS216が必須である。
 図41は、本発明の画像復号化方法に必須の処理からなるフローチャートである。つまり、本発明の画像復号化方法には、図13に示したS1214およびS1216が必須である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明は、動画像の符号化方法および符号化装置、並びに、復号化方法および復号化装置に適用できる。特に、予測モードに応じて変換行列の要素の値を切り替えて周波数変換または周波数逆変換を行う画面内符号化装置および画面内復号化装置等に適用できる。
 101 制御部
 102 変換部
 103 逆変換部
 104、206 予測部
 105 予測変換制御部
 106 画像データ供給部
 107 差分部
 108、204 加算部
 109 フレームメモリ
 110 可変長符号化部
 200 第1変換部
 201 可変長復号化部
 202 逆量子化部
 203 逆変換部
 205 逆変換係数切り替え制御部
 210、400 分割部
 220 第2変換部
 230、420 統合部
 410 第2逆変換部
 430 第1逆変換部
 1000 画像符号化装置
 2000、2001 画像復号化装置

Claims (12)

  1.  画像信号と予測画像信号との誤差信号を周波数係数に変換する画像符号化方法であって、
     前記誤差信号の期待値の分布に適合するように、所定の期待値の分布を有する誤差信号の変換に用いられる予め保持された変換行列の要素の並びまたは要素の符号を変更する変更ステップと、
     要素の並びまたは要素の符号が変更された変換行列を用いて、前記誤差信号を前記周波数係数に変換する変換ステップと
     を含む画像符号化方法。
  2.  さらに、
     画面内予測における予測の方位を決定する決定ステップを含み、
     前記変更ステップでは、前記誤差信号の期待値の分布に関連する前記予測の方位に基づいて、前記変換行列の要素の並びまたは要素の符号を変更する
     請求項1記載の画像符号化方法。
  3.  前記変更ステップでは、前記誤差信号の期待値の分布に関連する符号化ブロック境界に基づいて、前記変換行列の要素の並びまたは要素の符号を変更する
     請求項1記載の画像符号化方法。
  4.  前記変更ステップでは、前記変換行列の行ごとに要素を逆順に並べ替える
     請求項1~3のいずれか1項に記載の画像符号化方法。
  5.  前記変更ステップでは、前記変換行列の奇数行ごとに要素を逆順に並べ替える
     請求項1~3のいずれか1項に記載の画像符号化方法。
  6.  前記変更ステップでは、前記変換行列の奇数列の要素の符号を反転させ、
     前記変換ステップでは、他の変換行列と、要素の符号が反転させられた前記変換行列とを用いて、前記誤差信号を多段階で前記周波数係数に変換する
     請求項1~3のいずれか1項に記載の画像符号化方法。
  7.  前記変更ステップでは、前記変換行列のi行j列(i+jは奇数、0≦i,j<N)の要素の符号を反転させ、
     前記変換ステップでは、他の変換行列と、要素の符号が反転させられた前記変換行列とを用いて、前記誤差信号を多段階で前記周波数係数に変換する
     請求項1~3のいずれか1項に記載の画像符号化方法。
  8.  画像信号と予測画像信号との誤差信号を周波数係数に変換する画像符号化方法であって、
     前記誤差信号の期待値の分布に適合するように前記誤差信号の入力順序を変更し、所定の分布の期待値を有する誤差信号の変換に用いられる予め保持された変換行列を用いて、入力順序が変更された前記誤差信号を前記周波数係数に変換する変換ステップ
     を含む画像符号化方法。
  9.  画像信号と予測画像信号との誤差信号を変換することにより得られる周波数係数を復号する画像復号化方法であって、
     前記誤差信号の期待値の分布に適合するように、所定の期待値の分布を有する誤差信号から得られる周波数係数の逆変換に用いられる予め保持された変換行列の要素の並びまたは要素の符号を変更する変更ステップと、
     要素の並びまたは要素の符号が変更された変換行列を用いて、前記周波数係数を前記誤差信号に逆変換する逆変換ステップと
     を含む画像復号化方法。
  10.  画像信号と予測画像信号との誤差信号を周波数係数に変換する画像符号化装置であって、
     前記誤差信号の期待値の分布に適合するように、所定の期待値の分布を有する誤差信号の変換に用いられる予め保持された変換行列の要素の並びまたは要素の符号を変更する変更部と、
     要素の並びまたは要素の符号が変更された変換行列を用いて、前記誤差信号を前記周波数係数に変換する変換部と
     を備える画像符号化装置。
  11.  画像信号と予測画像信号との誤差信号を変換することにより得られる周波数係数を復号する画像復号化装置であって、
     前記誤差信号の期待値の分布に適合するように、所定の期待値の分布を有する誤差信号から得られる周波数係数の逆変換に用いられる予め保持された変換行列の要素の並びまたは要素の符号を変更する変更部と、
     要素の並びまたは要素の符号が変更された変換行列を用いて、前記周波数係数を前記誤差信号に逆変換する逆変換部と
     を備える画像復号化装置。
  12.  画像信号と予測画像信号との誤差信号を周波数係数に変換する画像符号化装置と、前記周波数係数を復号する画像復号化装置とを備える画像符号化復号化装置であって、
     前記画像符号化装置は、
     前記誤差信号の期待値の分布に適合するように、所定の期待値の分布を有する誤差信号の変換に用いられる予め保持された第1変換行列の要素の並びまたは要素の符号を変更する第1変更部と、
     要素の並びまたは要素の符号が変更された第1変換行列を用いて、前記誤差信号を前記周波数係数に変換する変換部と
     を含み、
     前記画像復号化装置は、
     前記誤差信号の期待値の分布に適合するように、前記所定の期待値の分布を有する誤差信号から得られる周波数係数の逆変換に用いられる予め保持された第2変換行列の要素の並びまたは要素の符号を変更する第2変更部と、
     要素の並びまたは要素の符号が変更された第2変換行列を用いて、前記周波数係数を前記誤差信号に逆変換する逆変換部と
     を含む
     画像符号化復号化装置。
PCT/JP2012/000177 2011-01-14 2012-01-13 画像符号化方法、画像符号化装置、画像復号化方法、画像復号化装置および画像符号化復号化装置 WO2012096194A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161432686P 2011-01-14 2011-01-14
US61/432,686 2011-01-14

Publications (1)

Publication Number Publication Date
WO2012096194A1 true WO2012096194A1 (ja) 2012-07-19

Family

ID=46507097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000177 WO2012096194A1 (ja) 2011-01-14 2012-01-13 画像符号化方法、画像符号化装置、画像復号化方法、画像復号化装置および画像符号化復号化装置

Country Status (1)

Country Link
WO (1) WO2012096194A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140064361A1 (en) * 2012-09-04 2014-03-06 Qualcomm Incorporated Transform basis adjustment in scalable video coding
WO2017142085A1 (ja) * 2016-02-17 2017-08-24 日本放送協会 符号化装置、復号装置及びプログラム
JP2018121318A (ja) * 2016-02-17 2018-08-02 日本放送協会 符号化装置、復号装置及びプログラム
JP2021090221A (ja) * 2016-05-24 2021-06-10 日本放送協会 符号化装置、復号装置及びプログラム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363750A (ja) * 2003-06-03 2004-12-24 Mitsubishi Electric Corp 画像変換装置および画像変換方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363750A (ja) * 2003-06-03 2004-12-24 Mitsubishi Electric Corp 画像変換装置および画像変換方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KEN MCCANN ET AL.: "Samsung's Response to the Call for Proposals on Video Compression Technology", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11 1ST MEETING, [JCTVC-A124], April 2010 (2010-04-01), DRESDEN, DE, pages 21 - 22 *
XIN ZHAO ET AL.: "Mode-dependent residual reordering for Intra prediction residual", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11 2ND MEETING, [JCTVC-B102], 21 July 2010 (2010-07-21) - 28 July 2010 (2010-07-28), GENEVA, CH *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10194158B2 (en) 2012-09-04 2019-01-29 Qualcomm Incorporated Transform basis adjustment in scalable video coding
CN104604224A (zh) * 2012-09-04 2015-05-06 高通股份有限公司 可缩放视频译码中的变换基底调整
JP2015530830A (ja) * 2012-09-04 2015-10-15 クゥアルコム・インコーポレイテッドQualcomm Incorporated スケーラブルビデオ符号化における変換基準の調整
US20140064361A1 (en) * 2012-09-04 2014-03-06 Qualcomm Incorporated Transform basis adjustment in scalable video coding
CN104604224B (zh) * 2012-09-04 2019-05-10 高通股份有限公司 可缩放视频译码中的变换基底调整
JP2023072035A (ja) * 2016-02-17 2023-05-23 日本放送協会 復号装置及びプログラム
JP2022023859A (ja) * 2016-02-17 2022-02-08 日本放送協会 符号化装置、復号装置及びプログラム
JP2018121318A (ja) * 2016-02-17 2018-08-02 日本放送協会 符号化装置、復号装置及びプログラム
EP3419291A4 (en) * 2016-02-17 2020-01-29 Nippon Hoso Kyokai CODING DEVICE, DECODING DEVICE, AND PROGRAM
CN112055204A (zh) * 2016-02-17 2020-12-08 日本放送协会 编码装置、解码装置以及程序
JP7506211B2 (ja) 2016-02-17 2024-06-25 日本放送協会 復号装置及びプログラム
US11153572B2 (en) 2016-02-17 2021-10-19 Nippon Roso Kyokai Encoding device, decoding device, and program
CN108702504A (zh) * 2016-02-17 2018-10-23 日本放送协会 编码装置、解码装置以及程序
JP7202769B2 (ja) 2016-02-17 2023-01-12 日本放送協会 符号化装置、復号装置及びプログラム
JP7246449B2 (ja) 2016-02-17 2023-03-27 日本放送協会 符号化装置、復号装置及びプログラム
WO2017142085A1 (ja) * 2016-02-17 2017-08-24 日本放送協会 符号化装置、復号装置及びプログラム
US11750822B2 (en) 2016-02-17 2023-09-05 Nippon Hoso Kyokai Encoding device, decoding device, and program
CN112055204B (zh) * 2016-02-17 2024-05-28 日本放送协会 编码装置、解码装置以及程序
JP7449253B2 (ja) 2016-05-24 2024-03-13 日本放送協会 符号化装置、復号装置及びプログラム
JP2021090221A (ja) * 2016-05-24 2021-06-10 日本放送協会 符号化装置、復号装置及びプログラム

Similar Documents

Publication Publication Date Title
JP6145952B2 (ja) 送信方法およびシステム
JP6222589B2 (ja) 復号方法及び復号装置
JP6074743B2 (ja) 画像復号方法及び画像復号装置
WO2012108205A1 (ja) 画像符号化方法、画像符号化装置、画像復号方法、画像復号装置および画像符号化復号装置
KR102071574B1 (ko) 화상 부호화 방법, 화상 부호화 장치, 화상 복호화 방법, 화상 복호화 장치, 및 화상 부호화 복호화 장치
WO2013011640A1 (ja) 画像符号化方法、画像復号方法、画像符号化装置、画像復号装置および画像符号化復号装置
WO2012042893A1 (ja) 画像復号方法、画像符号化方法、画像復号装置、画像符号化装置、プログラムおよび集積回路
WO2012042884A1 (ja) 画像復号方法、画像符号化方法、画像復号装置、画像符号化装置、プログラムおよび集積回路
KR20130139224A (ko) 화상 부호화 방법, 화상 복호 방법, 화상 부호화 장치, 화상 복호 장치 및 화상 부호화 복호 장치
WO2012164939A1 (ja) 画像符号化方法および画像復号化方法
KR102130046B1 (ko) 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치
WO2012014461A1 (ja) 符号化方法および復号化方法
JP6399433B2 (ja) 画像符号化方法、画像復号方法、画像符号化装置及び画像復号装置
WO2012114693A1 (ja) 算術復号方法および算術符号化方法
WO2012096194A1 (ja) 画像符号化方法、画像符号化装置、画像復号化方法、画像復号化装置および画像符号化復号化装置
JP5873029B2 (ja) 動画像符号化方法及び動画像復号化方法
WO2011132400A1 (ja) 画像符号化方法及び画像復号化方法
WO2013014884A1 (ja) 動画像符号化方法、動画像符号化装置、動画像復号化方法、および動画像復号化装置
WO2011108240A1 (ja) 画像符号化方法および画像復号方法
WO2015001700A1 (ja) 画像符号化方法、及び、画像符号化装置
WO2012077347A1 (ja) 復号方法
WO2012096156A1 (ja) 画像符号化方法、画像復号方法、画像符号化装置及び画像復号装置
WO2012014426A1 (ja) 復号化方法および符号化方法
WO2012090502A1 (ja) 画像符号化方法、および画像復号化方法
WO2013069258A1 (ja) 画像復号方法、画像符号化方法、画像復号装置、画像符号化装置、および画像符号化復号装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12734704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP