WO2012096128A1 - Conductive paste and solar battery cell using said conductive paste - Google Patents

Conductive paste and solar battery cell using said conductive paste Download PDF

Info

Publication number
WO2012096128A1
WO2012096128A1 PCT/JP2011/080156 JP2011080156W WO2012096128A1 WO 2012096128 A1 WO2012096128 A1 WO 2012096128A1 JP 2011080156 W JP2011080156 W JP 2011080156W WO 2012096128 A1 WO2012096128 A1 WO 2012096128A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
glass
semiconductor silicon
solar cell
layer
Prior art date
Application number
PCT/JP2011/080156
Other languages
French (fr)
Japanese (ja)
Inventor
耕治 富永
潤 濱田
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to JP2012552658A priority Critical patent/JP5910509B2/en
Priority to CN201180064818.4A priority patent/CN103298759B/en
Priority to KR1020137018765A priority patent/KR101474677B1/en
Publication of WO2012096128A1 publication Critical patent/WO2012096128A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a lead-free conductive paste that can be used as an electrode formed in a semiconductor silicon solar cell.
  • the solar cell element As an electronic component using a semiconductor silicon substrate, a solar cell element as shown in FIG. 1 is known. As shown in FIG. 1, the solar cell element is formed by forming an n-type semiconductor silicon layer 2 on the light-receiving surface side of a p-type semiconductor silicon substrate 1 having a thickness of about 200 ⁇ m, and nitriding to increase the light-receiving efficiency on the light-receiving surface side surface.
  • An antireflection film 3 such as a silicon film, and a surface electrode 4 connected to the semiconductor are formed on the antireflection film 3.
  • the present invention relates to a conductive paste for a solar cell using a semiconductor silicon substrate, and the composition of the glass frit contained in the conductive paste is substantially free of a lead component and contains 5 to 5% of SiO 2 by mass%. 15, B 2 O 3 20-40, Al 2 O 3 0-10, ZnO 30-45, RO (total of at least one selected from the group consisting of MgO, CaO, SrO and BaO) 5
  • a conductive paste comprising 0.1 to 6, R 2 O (total of at least one selected from the group consisting of Li 2 O, Na 2 O, and K 2 O) .
  • the surface resistance of the p + layer is about 20 to 30 ⁇ / ⁇ , so that the p + layer when the conductive paste of the present invention is used.
  • the surface resistance is preferably 30 ⁇ / ⁇ or less. When the surface resistance is lower, conversion efficiency is improved when used as a solar cell element.
  • the glass frit of the present invention is characterized in that the coefficient of thermal expansion at 30 ° C. to 300 ° C. is (55 to 85) ⁇ 10 ⁇ 7 / ° C. and the softening point is 550 ° C. or higher and 650 ° C. or lower.
  • the above thermal expansion coefficient means a linear expansion coefficient.
  • SiO 2 is a glass-forming component.
  • B 2 O 3 which is another glass-forming component, a stable glass can be formed, and 5 to 15% ( (The same applies to the mass% below). If it exceeds 15%, the softening point of the glass will rise, making it difficult to use as a conductive paste. More preferably, it is in the range of 7 to 13%.
  • B 2 O 3 is a glass-forming component, facilitates glass melting, suppresses an excessive increase in the thermal expansion coefficient of glass, imparts fluidity to glass during firing, and lowers the dielectric constant of glass. And 20 to 40% in the glass. If it is less than 20%, the sinterability is impaired due to insufficient fluidity of the glass, while if it exceeds 40%, the stability of the glass is lowered. More preferably, it is in the range of 25 to 35%.
  • ZnO is a component that lowers the softening point of glass and is contained in the glass at 30 to 45%. If it is less than 30%, the above effect cannot be exhibited, and if it exceeds 45%, the glass becomes unstable and crystals are likely to be formed. Further, it is preferably in the range of 35 to 42%.
  • CuO, TiO 2 , In 2 O 3 , Bi 2 O 3 , SnO 2 , TeO 2 or the like represented by a general oxide may be added.
  • substantially not containing lead hereinafter sometimes referred to as PbO
  • substantially free of PbO means an amount of PbO mixed as an impurity in the glass raw material. For example, if it is in the range of 0.3% or less in the low-melting glass, there is almost no influence on the adverse effects described above, that is, the influence on the human body and the environment, the insulation characteristics, etc., and it is not substantially affected by PbO. Become.
  • the glass frit By using the glass frit, it is possible to obtain a conductive paste having a thermal expansion coefficient of (55 to 80) ⁇ 10 ⁇ 7 / ° C. and a softening point of 550 ° C. to 650 ° C. at 30 ° C. to 300 ° C. .
  • the coefficient of thermal expansion is outside (55 to 85) ⁇ 10 ⁇ 7 / ° C., problems such as peeling and substrate warpage occur during electrode formation.
  • it is in the range of (60 to 75) ⁇ 10 ⁇ 7 / ° C.
  • the softening point exceeds 650 ° C., it does not flow sufficiently at the time of firing, so that problems such as poor adhesion to the semiconductor silicon substrate occur.
  • the softening point is preferably 580 ° C. or higher and 630 ° C. or lower.
  • the conductive paste of the present invention can be used for solar cell elements as described above. Furthermore, since the conductive paste can be baked at a low temperature, it can be used as a substrate for electronic materials such as a wiring pattern forming material using silver or aluminum or various electrodes.
  • the glass powder was prepared by weighing and mixing various inorganic raw materials so as to have the predetermined composition described in the examples. This raw material batch was put into a platinum crucible and heated and melted in an electric heating furnace at 1000 to 1300 ° C. for 1 to 2 hours. Glass was obtained. A part of the glass was poured into a mold, made into a block shape, and used for measurement of thermal properties (thermal expansion coefficient, softening point). The remaining glass was formed into flakes with a rapid cooling twin roll molding machine and sized with a pulverizer into a powder having an average particle size of 1 to 4 ⁇ m and a maximum particle size of less than 10 ⁇ m.
  • said softening point was measured using thermal analyzer TG-DTA (made by Rigaku Corporation).
  • the thermal expansion coefficient was determined from the amount of elongation at 30 to 300 ° C. when the temperature was raised at 5 ° C./min using a thermal dilatometer.
  • paste oil composed of ⁇ -terpineol and butyl carbitol acetate is mixed with ethyl cellulose as binder and the above glass powder, and aluminum powder as conductive powder at a predetermined ratio to prepare a conductive paste having a viscosity of about 500 ⁇ 50 poise. did.
  • a p-type semiconductor silicon substrate 1 was prepared, and the conductive paste prepared above was screen-printed thereon. These test pieces were dried in an oven at 140 ° C. for 10 minutes and then baked in an electric furnace at 800 ° C. for 1 minute to form an aluminum electrode layer 5 and a BSF layer 6 on the p-type semiconductor silicon substrate 1. A structure was obtained.
  • a p-type semiconductor silicon substrate 1 formed with the aluminum electrode layer 5 was immersed in an aqueous solution of sodium hydroxide, the p + layer 7 by an aluminum electrode layer 5 and the BSF layer 6 is etched to expose the surface, p +
  • the surface resistance of the layer 7 was measured with a four-probe type surface resistance measuring instrument.
  • the softening point is 550 ° C. to 650 ° C., and a suitable thermal expansion coefficient (55 to 85) ⁇ 10 ⁇ 7 / ° C. And had good adhesion to the p-type semiconductor silicon substrate 1.
  • the resistance value of the p + layer 7 related to the conversion efficiency of the solar cell element is also 26 ⁇ / ⁇ or less, and can be used as a conductive paste for semiconductor silicon solar cells.
  • Comparative Examples 1 to 4 in Table 2 out of the composition range of the present invention do not provide good adhesion to the p-type semiconductor silicon substrate 1, have a high resistance value of the p + layer 7, or glass after melting. Since it exhibits deliquescence, it cannot be applied as a conductive paste for semiconductor silicon solar cells.

Abstract

[Problem] The objective of the invention is to obtain a non-lead-containing conductive paste which can be used as an electrode formed in a semiconductor silicon solar cell. [Solution] A conductive paste for a solar cell which uses a semiconductor silicon substrate, the conductive paste characterized in that the composition of the glass frit contained in the conductive paste contains substantially no lead component, and comprises in mass%, 5-15 of SiO2, 20-40 of B2O3, 0-10 of Al2O3, 30-45 of ZnO, 5-30 of RO (total of at least one type selected from the group consisting of MgO, CaO, SrO and BaO), and 0.1-6 of R2O (total of at least one type selected from the group consisting of Li2O, Na2O and K2O).

Description

導電性ペースト及び該導電性ペーストを用いた太陽電池素子Conductive paste and solar cell element using the conductive paste
 本発明は、半導体シリコン太陽電池に形成される電極として使用可能な鉛を含まない導電性ペーストに関する。 The present invention relates to a lead-free conductive paste that can be used as an electrode formed in a semiconductor silicon solar cell.
 半導体シリコン基板を用いた電子部品として、図1に示すような太陽電池素子が知られている。図1に示すように、太陽電池素子は、厚みが200μm程度のp型半導体シリコン基板1の受光面側にn型半導体シリコン層2を形成し、受光面側表面に受光効率をあげるための窒化珪素膜などの反射防止膜3、さらにその反射防止膜3上に半導体と接続した表面電極4が形成されている。 As an electronic component using a semiconductor silicon substrate, a solar cell element as shown in FIG. 1 is known. As shown in FIG. 1, the solar cell element is formed by forming an n-type semiconductor silicon layer 2 on the light-receiving surface side of a p-type semiconductor silicon substrate 1 having a thickness of about 200 μm, and nitriding to increase the light-receiving efficiency on the light-receiving surface side surface. An antireflection film 3 such as a silicon film, and a surface electrode 4 connected to the semiconductor are formed on the antireflection film 3.
 また、p型半導体シリコン基板1の裏側には、アルミニウム電極層5が一様に形成されている。このアルミニウム電極層5は、一般に、アルミニウム粉末、ガラスフリット、エチルセルロースやアクリル樹脂などのバインダーを含む有機ビヒクルとからなるアルミニウムペースト材料を、スクリーン印刷などを用いて塗布し、600~900℃程度の温度で短時間焼成することで形成される。 Further, an aluminum electrode layer 5 is uniformly formed on the back side of the p-type semiconductor silicon substrate 1. The aluminum electrode layer 5 is generally formed by applying an aluminum paste material composed of an aluminum powder, glass frit, an organic vehicle containing a binder such as ethyl cellulose or acrylic resin by screen printing or the like, and having a temperature of about 600 to 900 ° C. It is formed by baking for a short time.
 このアルミニウムペースト材料の焼成において、アルミニウムがp型半導体シリコン基板1に拡散することで、アルミニウム電極層5とp型半導体シリコン基板1との間にBSF(Back Surface Field)層6と呼ばれるSi-Al共晶層が形成され、さらにはアルミニウムの拡散による不純物層p+層7が形成される。このp+層7は、pn接合の光起電力効果によって生成したキャリアの再結合による損失を抑制する効果をもたらし、太陽電池素子の変換効率向上に寄与する。このBSF効果に関しては、例えば特許文献1や特許文献2などに開示されているように、アルミニウムペースト材料に含まれるガラスフリットとして、鉛を含有するガラスを用いることにより、高い効果を得ることが可能であると開示されている。 In the firing of this aluminum paste material, aluminum diffuses into the p-type semiconductor silicon substrate 1, so that an Si—Al called BSF (Back Surface Field) layer 6 is formed between the aluminum electrode layer 5 and the p-type semiconductor silicon substrate 1. A eutectic layer is formed, and an impurity layer p + layer 7 is formed by diffusion of aluminum. The p + layer 7 has an effect of suppressing loss due to recombination of carriers generated by the photovoltaic effect of the pn junction, and contributes to improvement in conversion efficiency of the solar cell element. As for the BSF effect, as disclosed in, for example, Patent Document 1 and Patent Document 2, it is possible to obtain a high effect by using glass containing lead as a glass frit contained in an aluminum paste material. It is disclosed that.
特開2007-59380号公報JP 2007-59380 A 特開2003-165744号公報JP 2003-165744 A
 一般的に、p+層の表面抵抗とBSF効果には相関があり、p+層の表面抵抗が低いほどBSF効果が高く、太陽電池素子としての変換効率が高いとされている。 In general, there is a correlation between the surface resistance of the p + layer and the BSF effect, and the lower the surface resistance of the p + layer, the higher the BSF effect and the higher the conversion efficiency as a solar cell element.
 前述した鉛成分を含むガラスフリットは、アルミニウムペースト材料のような導電性ペーストに使用することにより、高いBSF効果を得ることができ、さらに上記導電性ペーストを低融点とする上で重要な成分であるものの、人体や環境に与える弊害が大きい。前述した特許文献1及び特許文献2は導電性ペーストに鉛成分を含むという問題がある。 The glass frit containing the lead component described above can be used for a conductive paste such as an aluminum paste material to obtain a high BSF effect, and is an important component for lowering the melting point of the conductive paste. However, it has a great negative effect on the human body and the environment. Patent Document 1 and Patent Document 2 described above have a problem that the conductive paste contains a lead component.
 そこで本発明は、半導体シリコン太陽電池に形成される電極として使用可能な鉛を含まない導電性ペーストを得ることを目的とした。 Therefore, an object of the present invention is to obtain a lead-free conductive paste that can be used as an electrode formed in a semiconductor silicon solar cell.
 本発明は、半導体シリコン基板を用いる太陽電池用の導電性ペーストであって、該導電性ペーストに含まれるガラスフリットの組成は、実質的に鉛成分を含まず、質量%でSiO2を5~15、B23を20~40、Al23を0~10、ZnOを30~45、RO(MgO、CaO、SrO、及びBaOからなる群から選ばれる少なくとも1種の合計)を5~30、R2O(Li2O、Na2O、及びK2Oからなる群から選ばれる少なくとも1種の合計)を0.1~6、を含むことを特徴とする導電性ペーストである。 The present invention relates to a conductive paste for a solar cell using a semiconductor silicon substrate, and the composition of the glass frit contained in the conductive paste is substantially free of a lead component and contains 5 to 5% of SiO 2 by mass%. 15, B 2 O 3 20-40, Al 2 O 3 0-10, ZnO 30-45, RO (total of at least one selected from the group consisting of MgO, CaO, SrO and BaO) 5 A conductive paste comprising 0.1 to 6, R 2 O (total of at least one selected from the group consisting of Li 2 O, Na 2 O, and K 2 O) .
 鉛を含有するガラスフリットを使用した導電性ペーストを用いた場合、p+層の表面抵抗は20~30Ω/□程度を示すことから、本発明の導電性ペーストを用いた際のp+層の表面抵抗は、30Ω/□以下とすることが好ましい。該表面抵抗が低いほど太陽電池素子として用いた場合、変換効率が向上する。 When a conductive paste using a lead-containing glass frit is used, the surface resistance of the p + layer is about 20 to 30 Ω / □, so that the p + layer when the conductive paste of the present invention is used. The surface resistance is preferably 30 Ω / □ or less. When the surface resistance is lower, conversion efficiency is improved when used as a solar cell element.
 本発明において、ガラスフリットに含有するR2O量を増加させることにより、p+層の表面抵抗を30Ω/□より低い値にすることが可能であるが、該R2Oを6質量%越えて含む場合、該R2Oのアルカリ成分が多くなることにより潮解性を呈することがあるため、本発明では該R2Oを6質量%以下とする。 In the present invention, by increasing the amount of R 2 O contained in the glass frit, the surface resistance of the p + layer can be made lower than 30 Ω / □, but the R 2 O exceeds 6% by mass. If containing Te, the order by R 2 O alkali component increases sometimes exhibit deliquescence, in the present invention to 6% by mass or less the R 2 O.
また本発明の前記ガラスフリットは、30℃~300℃における熱膨張係数が(55~85)×10-7/℃、軟化点が550℃以上650℃以下であることを特徴とする。また、本発明において上記の熱膨張係数は線膨張係数を意味するものである。 The glass frit of the present invention is characterized in that the coefficient of thermal expansion at 30 ° C. to 300 ° C. is (55 to 85) × 10 −7 / ° C. and the softening point is 550 ° C. or higher and 650 ° C. or lower. In the present invention, the above thermal expansion coefficient means a linear expansion coefficient.
 本発明により、鉛を含まないガラスフリットを含む導電性ペーストを得ることが可能である。本発明の導電性ペーストを太陽電池素子として使用することにより、高いBSF効果を得ることができる。また、半導体シリコン基板と良好な密着性を得ることができる。さらに、実質的に鉛成分を含まないため人体や環境に与える弊害がない。 According to the present invention, it is possible to obtain a conductive paste containing glass frit that does not contain lead. By using the conductive paste of the present invention as a solar cell element, a high BSF effect can be obtained. Also, good adhesion to the semiconductor silicon substrate can be obtained. Furthermore, since it does not substantially contain a lead component, there is no harmful effect on the human body and the environment.
一般的な半導体シリコン太陽電池セルの概略断面図である。It is a schematic sectional drawing of a common semiconductor silicon photovoltaic cell.
 本発明の導電性ペーストは、アルミニウム粉末とエチルセルロースやアクリル樹脂などのバインダーを含む有機ビヒクルに加えて、ガラスフリットを含み、該ガラスフリットが実質的に鉛成分を含まず、質量%でSiO2を5~15、B23を20~40、Al23を0~10、ZnOを30~45、RO(MgO、CaO、SrO、及びBaOからなる群から選ばれる少なくとも1種の合計)を5~30、R2O(Li2O、Na2O、及びK2Oからなる群から選ばれる少なくとも1種の合計)を0.1~6、を含む導電性ペーストである。 The conductive paste of the present invention contains glass frit in addition to an organic vehicle containing aluminum powder and a binder such as ethyl cellulose or acrylic resin, and the glass frit contains substantially no lead component and contains SiO 2 in mass%. 5 to 15, B 2 O 3 20 to 40, Al 2 O 3 0 to 10, ZnO 30 to 45, RO (total of at least one selected from the group consisting of MgO, CaO, SrO, and BaO) 5 to 30 and R 2 O (total of at least one selected from the group consisting of Li 2 O, Na 2 O, and K 2 O) 0.1 to 6.
 本発明のガラスフリットにおいて、SiO2はガラス形成成分であり、別のガラス形成成分であるB23と共存させることにより、安定したガラスを形成することが可能であり、5~15%(質量%、以下においても同様である)含有させる。15%を越えると、ガラスの軟化点が上昇し導電性ペーストとして使用し難くなる。より好ましくは7~13%の範囲である。 In the glass frit of the present invention, SiO 2 is a glass-forming component. By coexisting with B 2 O 3 which is another glass-forming component, a stable glass can be formed, and 5 to 15% ( (The same applies to the mass% below). If it exceeds 15%, the softening point of the glass will rise, making it difficult to use as a conductive paste. More preferably, it is in the range of 7 to 13%.
 B23はガラス形成成分であり、ガラス溶融を容易とし、ガラスの熱膨張係数の過度の上昇を抑え、かつ、焼成時にガラスに流動性を与え、ガラスの誘電率を低下させるものであり、ガラス中に20~40%含有させる。20%未満ではガラスの流動性が不充分となることにより焼結性が損なわれ、一方で40%を越えるとガラスの安定性が低下する。また、より好ましくは25~35%の範囲である。 B 2 O 3 is a glass-forming component, facilitates glass melting, suppresses an excessive increase in the thermal expansion coefficient of glass, imparts fluidity to glass during firing, and lowers the dielectric constant of glass. And 20 to 40% in the glass. If it is less than 20%, the sinterability is impaired due to insufficient fluidity of the glass, while if it exceeds 40%, the stability of the glass is lowered. More preferably, it is in the range of 25 to 35%.
 Al23は、ガラスの結晶化を抑制する成分である。ガラス中に0~10%含有させるが、10%を超えるとガラスの軟化点が上昇し導電性ペーストとして使用し難くなる。 Al 2 O 3 is a component that suppresses crystallization of glass. If it exceeds 10%, the softening point of the glass rises, making it difficult to use as a conductive paste.
 ZnOはガラスの軟化点を下げる成分で、ガラス中に30~45%含有させる。30%未満では上記作用を発揮し得ず、45%を超えるとガラスが不安定となり結晶を生じ易くなる。また、好ましくは35~42%の範囲である。 ZnO is a component that lowers the softening point of glass and is contained in the glass at 30 to 45%. If it is less than 30%, the above effect cannot be exhibited, and if it exceeds 45%, the glass becomes unstable and crystals are likely to be formed. Further, it is preferably in the range of 35 to 42%.
 RO(MgO、CaO、SrO、及びBaOからなる群から選ばれる少なくとも1種の合計)はガラスの軟化点を下げるものであり、ガラス中に5~30%含有させる。5%未満ではガラスの軟化点の低下が不十分となり焼結性が損なわれる。一方で30%を越えるとガラスの熱膨張係数が高くなりすぎることがある。より好ましくは10~27%の範囲である。 RO (total of at least one selected from the group consisting of MgO, CaO, SrO and BaO) lowers the softening point of the glass and is contained in the glass in an amount of 5 to 30%. If it is less than 5%, the softening point of the glass is not sufficiently lowered and the sinterability is impaired. On the other hand, if it exceeds 30%, the thermal expansion coefficient of the glass may become too high. More preferably, it is in the range of 10 to 27%.
 R2O(Li2O、Na2O、及びK2Oからなる群から選ばれる少なくとも1種の合計)はガラスの軟化点を下げ熱膨張係数を適宜範囲に調整するものであり、0.1~6%の範囲で含有させる。0.1%未満ではガラスの軟化点の低下が不十分となり焼結性が損なわれる。一方で6%を越えると熱膨張係数を過度に上昇させることがある。より好ましくは2~6%の範囲である。なおR2Oとして少なくともK2Oを含むのが好ましい。 R 2 O (total of at least one selected from the group consisting of Li 2 O, Na 2 O, and K 2 O) lowers the softening point of the glass and adjusts the thermal expansion coefficient to an appropriate range. It is contained in the range of 1 to 6%. If it is less than 0.1%, the softening point of the glass is not sufficiently lowered and the sinterability is impaired. On the other hand, if it exceeds 6%, the thermal expansion coefficient may be excessively increased. More preferably, it is in the range of 2 to 6%. R 2 O preferably contains at least K 2 O.
 この他にも、一般的な酸化物で表すCuO、TiO2、In23、Bi23、SnO2、TeO2などを加えてもよい。 In addition, CuO, TiO 2 , In 2 O 3 , Bi 2 O 3 , SnO 2 , TeO 2 or the like represented by a general oxide may be added.
 実質的に鉛(以下PbOと記載することもある)を含まないことにより、人体や環境に与える影響を皆無とすることができる。ここで、実質的にPbOを含まないとは、PbOがガラス原料中に不純物として混入する程度の量を意味する。例えば、低融点ガラス中における0.3%以下の範囲であれば、先述した弊害、すなわち人体、環境に対する影響、絶縁特性等に与える影響は殆どなく、実質的にPbOの影響を受けないことになる。 By substantially not containing lead (hereinafter sometimes referred to as PbO), it is possible to eliminate the influence on the human body and the environment. Here, “substantially free of PbO” means an amount of PbO mixed as an impurity in the glass raw material. For example, if it is in the range of 0.3% or less in the low-melting glass, there is almost no influence on the adverse effects described above, that is, the influence on the human body and the environment, the insulation characteristics, etc., and it is not substantially affected by PbO. Become.
 前記ガラスフリットを用いることにより、30℃~300℃における熱膨張係数が(55~80)×10-7/℃、軟化点が550℃以上650℃以下の導電性ペーストを得ることが可能となる。熱膨張係数が(55~85)×10-7/℃を外れると電極形成時に剥離、基板の反り等の問題が発生する。好ましくは、(60~75)×10-7/℃の範囲である。また、軟化点が650℃を越えると焼成時に十分に流動しないため、半導体シリコン基板との密着性が悪くなる等の問題が発生する。好ましくは上記軟化点が580℃以上630℃以下である。 By using the glass frit, it is possible to obtain a conductive paste having a thermal expansion coefficient of (55 to 80) × 10 −7 / ° C. and a softening point of 550 ° C. to 650 ° C. at 30 ° C. to 300 ° C. . If the coefficient of thermal expansion is outside (55 to 85) × 10 −7 / ° C., problems such as peeling and substrate warpage occur during electrode formation. Preferably, it is in the range of (60 to 75) × 10 −7 / ° C. Further, when the softening point exceeds 650 ° C., it does not flow sufficiently at the time of firing, so that problems such as poor adhesion to the semiconductor silicon substrate occur. The softening point is preferably 580 ° C. or higher and 630 ° C. or lower.
 本発明の導電性ペーストは、前述したように太陽電池素子に使用することが可能である。またさらに、該導電性ペーストは低温で焼成が可能であることから、銀やアルミ等を用いた配線パターンの形成材料や各種電極等、電子材料用基板としても使用できる。 The conductive paste of the present invention can be used for solar cell elements as described above. Furthermore, since the conductive paste can be baked at a low temperature, it can be used as a substrate for electronic materials such as a wiring pattern forming material using silver or aluminum or various electrodes.
 以下、実施例に基づき、説明する。 Hereinafter, description will be made based on examples.
  (導電性ペースト)
 まず、ガラス粉末は、実施例に記載した所定組成となるように各種無機原料を秤量、混合して原料バッチを作製した。この原料バッチを白金ルツボに投入し、電気加熱炉内で1000~1300℃、1~2時間で加熱溶融して表1の実施例1~5、表2の比較例1~4に示す組成のガラスを得た。ガラスの一部は型に流し込み、ブロック状にして熱物性(熱膨張係数、軟化点)測定用に供した。残余のガラスは急冷双ロール成形機にてフレーク状とし、粉砕装置で平均粒径1~4μm、最大粒径10μm未満の粉末状に整粒した。
(Conductive paste)
First, the glass powder was prepared by weighing and mixing various inorganic raw materials so as to have the predetermined composition described in the examples. This raw material batch was put into a platinum crucible and heated and melted in an electric heating furnace at 1000 to 1300 ° C. for 1 to 2 hours. Glass was obtained. A part of the glass was poured into a mold, made into a block shape, and used for measurement of thermal properties (thermal expansion coefficient, softening point). The remaining glass was formed into flakes with a rapid cooling twin roll molding machine and sized with a pulverizer into a powder having an average particle size of 1 to 4 μm and a maximum particle size of less than 10 μm.
 なお、上記の軟化点は、熱分析装置TG―DTA(リガク(株)製)を用いて測定した。また、上記の熱膨張係数は熱膨張計を用い、5℃/分で昇温したときの30~300℃での伸び量から線膨張係数を求めた。 In addition, said softening point was measured using thermal analyzer TG-DTA (made by Rigaku Corporation). The thermal expansion coefficient was determined from the amount of elongation at 30 to 300 ° C. when the temperature was raised at 5 ° C./min using a thermal dilatometer.
 次いで、αテルピネオールとブチルカルビトールアセテートからなるペーストオイルにバインダーとしてのエチルセルロースと上記ガラス粉、また導電性粉末としてアルミニウム粉末を所定比で混合し、粘度、500±50ポイズ程度の導電性ペーストを調製した。 Next, paste oil composed of α-terpineol and butyl carbitol acetate is mixed with ethyl cellulose as binder and the above glass powder, and aluminum powder as conductive powder at a predetermined ratio to prepare a conductive paste having a viscosity of about 500 ± 50 poise. did.
 次に、p型半導体シリコン基板1を準備し、その上部に上記で作製した導電性ペーストをスクリーン印刷した。これらの試験片を、140℃のオーブンで10分間乾燥させ、次に電気炉にて800℃条件下で1分間焼成し、p型半導体シリコン基板1にアルミニウム電極層5とBSF層6を形成した構造を得た。 Next, a p-type semiconductor silicon substrate 1 was prepared, and the conductive paste prepared above was screen-printed thereon. These test pieces were dried in an oven at 140 ° C. for 10 minutes and then baked in an electric furnace at 800 ° C. for 1 minute to form an aluminum electrode layer 5 and a BSF layer 6 on the p-type semiconductor silicon substrate 1. A structure was obtained.
 次に、アルミニウム電極層5のp型半導体シリコン基板1との密着性を調べるために、メンディングテープ(ニチバン製)をアルミニウム電極層5に貼り付け、剥離したときのアルミニウム電極層5の剥がれ状態を目視にて評価した。 Next, in order to investigate the adhesiveness of the aluminum electrode layer 5 to the p-type semiconductor silicon substrate 1, a peeling tape of the aluminum electrode layer 5 when a mending tape (manufactured by Nichiban) is applied to the aluminum electrode layer 5 and peeled off is used. Was visually evaluated.
 その後、アルミニウム電極層5を形成したp型半導体シリコン基板1を水酸化ナトリウム水溶液に浸漬して、アルミニウム電極層5およびBSF層6をエッチングすることでp+層7を表面に露出させ、p+層7の表面抵抗を4探針式表面抵抗測定器で測定した。 Thereafter, a p-type semiconductor silicon substrate 1 formed with the aluminum electrode layer 5 was immersed in an aqueous solution of sodium hydroxide, the p + layer 7 by an aluminum electrode layer 5 and the BSF layer 6 is etched to expose the surface, p + The surface resistance of the layer 7 was measured with a four-probe type surface resistance measuring instrument.
  (結果)
 無鉛低融点ガラス組成および、各種試験結果を表に示す。
(result)
The lead-free low melting point glass composition and various test results are shown in the table.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
なお表1及び2の接着強度の欄において、Aは接着強度が良好であったことを示し、Bは接着強度がどちらかというと良好であったことを示し、Cは接着強度が不十分であったことを示す。 In Tables 1 and 2, “A” indicates that the adhesive strength is good, “B” indicates that the adhesive strength is rather good, and “C” indicates that the adhesive strength is insufficient. Indicates that there was.
 表1における実施例1~5に示すように、本発明の組成範囲内においては、軟化点が550℃~650℃であり、好適な熱膨張係数(55~85)×10-7/℃を有しており、p型半導体シリコン基板1との密着性も良好であった。更には、太陽電池素子の変換効率に関係するp+層7の抵抗値も26Ω/□以下となり、半導体シリコン太陽電池用の導電性ペーストとして用いることが可能である。 As shown in Examples 1 to 5 in Table 1, within the composition range of the present invention, the softening point is 550 ° C. to 650 ° C., and a suitable thermal expansion coefficient (55 to 85) × 10 −7 / ° C. And had good adhesion to the p-type semiconductor silicon substrate 1. Furthermore, the resistance value of the p + layer 7 related to the conversion efficiency of the solar cell element is also 26Ω / □ or less, and can be used as a conductive paste for semiconductor silicon solar cells.
 他方、本発明の組成範囲を外れる表2における比較例1~4は、p型半導体シリコン基板1との良好な密着性が得られない、p+層7の抵抗値が高い、または溶解後にガラスが潮解性を示すなど、半導体シリコン太陽電池用の導電性ペーストとしては適用し得ないものであった。 On the other hand, Comparative Examples 1 to 4 in Table 2 out of the composition range of the present invention do not provide good adhesion to the p-type semiconductor silicon substrate 1, have a high resistance value of the p + layer 7, or glass after melting. Since it exhibits deliquescence, it cannot be applied as a conductive paste for semiconductor silicon solar cells.
1 p型半導体シリコン基板
2 n型半導体シリコン層
3 反射防止膜
4 表面電極
5 アルミニウム電極層
6 BSF層
7 P+
1 p-type semiconductor silicon substrate 2 n-type semiconductor silicon layer 3 antireflection film 4 surface electrode 5 aluminum electrode layer 6 BSF layer 7 P + layer

Claims (4)

  1. 半導体シリコン基板を用いる太陽電池用の導電性ペーストであって、該導電性ペーストに含まれるガラスフリットの組成は、実質的に鉛成分を含まず、質量%で
    SiO2を5~15、
    23を20~40、
    Al23を0~10、
    ZnOを30~45、
    RO(MgO、CaO、SrO、及びBaOからなる群から選ばれる少なくとも1種の合計)を5~30、
    2O(Li2O、Na2O、及びK2Oからなる群から選ばれる少なくとも1種の合計)を0.1~6、
    を含むことを特徴とする導電性ペースト。
    A conductive paste for a solar cell using a semiconductor silicon substrate, wherein the composition of the glass frit contained in the conductive paste is substantially free of a lead component and contains 5 to 15 SiO 2 by mass%.
    20 to 40 B 2 O 3
    Al 2 O 3 from 0 to 10,
    ZnO 30-45,
    RO (total of at least one selected from the group consisting of MgO, CaO, SrO, and BaO) is 5 to 30,
    R 2 O (total of at least one selected from the group consisting of Li 2 O, Na 2 O, and K 2 O) is 0.1 to 6,
    A conductive paste comprising:
  2. 前記ガラスフリットは、30℃~300℃における熱膨張係数が(55~85)×10-7/℃、軟化点が550℃以上650℃以下であることを特徴とする請求項1に記載の導電性ペースト。 2. The conductive material according to claim 1, wherein the glass frit has a thermal expansion coefficient of (55 to 85) × 10 −7 / ° C. at 30 ° C. to 300 ° C. and a softening point of 550 ° C. to 650 ° C. Sex paste.
  3. 請求項1又は請求項2に記載の導電性ペーストを用いることを特徴とする太陽電池素子。 The solar cell element characterized by using the electrically conductive paste of Claim 1 or Claim 2.
  4. 請求項1又は請求項2に記載の導電性ペーストを用いることを特徴とする電子材料用基板。 A substrate for electronic materials, wherein the conductive paste according to claim 1 or 2 is used.
PCT/JP2011/080156 2011-01-13 2011-12-27 Conductive paste and solar battery cell using said conductive paste WO2012096128A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012552658A JP5910509B2 (en) 2011-01-13 2011-12-27 Conductive paste and solar cell element using the conductive paste
CN201180064818.4A CN103298759B (en) 2011-01-13 2011-12-27 Conductive paste and use the solar cell device of this conductive paste
KR1020137018765A KR101474677B1 (en) 2011-01-13 2011-12-27 Conductive paste and solar battery cell using said conductive paste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011004738 2011-01-13
JP2011-004738 2011-01-13

Publications (1)

Publication Number Publication Date
WO2012096128A1 true WO2012096128A1 (en) 2012-07-19

Family

ID=46507039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080156 WO2012096128A1 (en) 2011-01-13 2011-12-27 Conductive paste and solar battery cell using said conductive paste

Country Status (5)

Country Link
JP (1) JP5910509B2 (en)
KR (1) KR101474677B1 (en)
CN (1) CN103298759B (en)
TW (1) TWI422547B (en)
WO (1) WO2012096128A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154532A (en) * 2017-03-17 2018-10-04 東洋アルミニウム株式会社 Paste composition for solar cells
CN110550864A (en) * 2019-09-29 2019-12-10 长沙新材料产业研究院有限公司 low-expansion-coefficient insulating medium slurry and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107673601B (en) * 2017-08-28 2019-10-18 广州市儒兴科技开发有限公司 A kind of PERC aluminium paste glass powder and preparation method thereof
CN115895332B (en) * 2022-12-29 2024-02-02 湖南松井新材料股份有限公司 Smooth low-blackness glass high-temperature ink and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163635A (en) * 1999-12-06 2001-06-19 Asahi Glass Co Ltd Lead-free low melting point glass for formation of barrier rib and glass ceramic composition
JP2002326839A (en) * 2001-02-28 2002-11-12 Nippon Electric Glass Co Ltd Material for forming plasma display panel barrier rib and glass compound
JP2007070196A (en) * 2005-09-09 2007-03-22 Central Glass Co Ltd Lead-free low melting-point glass
JP2009120472A (en) * 2007-10-24 2009-06-04 Nippon Electric Glass Co Ltd Dielectric material for plasma display panel
JP2010184852A (en) * 2009-01-16 2010-08-26 Hitachi Powdered Metals Co Ltd Low melting point glass composition, low-temperature sealing material using the same, and electronic component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1361199B1 (en) * 2002-04-24 2008-01-09 Central Glass Company, Limited Lead-free low-melting glass
CN100524834C (en) * 2005-06-07 2009-08-05 E.I.内穆尔杜邦公司 Aluminum thick film composition(s), electrode(s), semiconductor device(s), and methods of making thereof
CN101395723A (en) * 2006-03-07 2009-03-25 株式会社村田制作所 Conductive paste and solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163635A (en) * 1999-12-06 2001-06-19 Asahi Glass Co Ltd Lead-free low melting point glass for formation of barrier rib and glass ceramic composition
JP2002326839A (en) * 2001-02-28 2002-11-12 Nippon Electric Glass Co Ltd Material for forming plasma display panel barrier rib and glass compound
JP2007070196A (en) * 2005-09-09 2007-03-22 Central Glass Co Ltd Lead-free low melting-point glass
JP2009120472A (en) * 2007-10-24 2009-06-04 Nippon Electric Glass Co Ltd Dielectric material for plasma display panel
JP2010184852A (en) * 2009-01-16 2010-08-26 Hitachi Powdered Metals Co Ltd Low melting point glass composition, low-temperature sealing material using the same, and electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154532A (en) * 2017-03-17 2018-10-04 東洋アルミニウム株式会社 Paste composition for solar cells
CN110550864A (en) * 2019-09-29 2019-12-10 长沙新材料产业研究院有限公司 low-expansion-coefficient insulating medium slurry and preparation method thereof
CN110550864B (en) * 2019-09-29 2022-09-02 长沙新材料产业研究院有限公司 Low-expansion-coefficient insulating medium slurry and preparation method thereof

Also Published As

Publication number Publication date
JP5910509B2 (en) 2016-04-27
TWI422547B (en) 2014-01-11
KR101474677B1 (en) 2014-12-18
TW201231430A (en) 2012-08-01
CN103298759B (en) 2016-05-11
JPWO2012096128A1 (en) 2014-06-09
CN103298759A (en) 2013-09-11
KR20130100369A (en) 2013-09-10

Similar Documents

Publication Publication Date Title
JP5609319B2 (en) Low melting point glass composition and conductive paste material using the same
JP5888493B2 (en) Conductive paste and solar cell element using the conductive paste
JP5272373B2 (en) Polycrystalline Si solar cell
JP2011521018A (en) Aluminum paste and its use in the manufacture of silicon solar cells
JP2006351530A (en) Aluminum thick film composite, electrode, semiconductor device, and their manufacturing method
JP2011521401A (en) Aluminum paste and its use in the manufacture of silicon solar cells
KR20060127813A (en) Aluminum thick film composition(s), electrode(s), semiconductor device(s) and methods of making thereof
JP2011526579A (en) Glass composition for use in photovoltaic cell conductors
TW201139316A (en) Lead-free low-melting-point glass paste for insulation coating
JP5569094B2 (en) Low melting point glass composition and conductive paste material using the same
JP2012502434A (en) Use of aluminum paste and aluminum paste in the production of silicon solar cells
JP5910509B2 (en) Conductive paste and solar cell element using the conductive paste
JP2013189372A (en) Conductive paste material
JP2011035035A (en) Conductive composition for solar cell electrode
KR20170051380A (en) Electrode Paste For Solar Cell's Electrode And Solar Cell
KR20170065034A (en) Electrode Paste For Solar Cell's Electrode And Solar Cell

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180064818.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012552658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137018765

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11855477

Country of ref document: EP

Kind code of ref document: A1