WO2012096057A1 - Dual-shaft rotor pump - Google Patents

Dual-shaft rotor pump Download PDF

Info

Publication number
WO2012096057A1
WO2012096057A1 PCT/JP2011/076849 JP2011076849W WO2012096057A1 WO 2012096057 A1 WO2012096057 A1 WO 2012096057A1 JP 2011076849 W JP2011076849 W JP 2011076849W WO 2012096057 A1 WO2012096057 A1 WO 2012096057A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
rotor
fluid
shaft
rotors
Prior art date
Application number
PCT/JP2011/076849
Other languages
French (fr)
Japanese (ja)
Inventor
志郎 谷川
Original Assignee
アネスト岩田株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アネスト岩田株式会社 filed Critical アネスト岩田株式会社
Publication of WO2012096057A1 publication Critical patent/WO2012096057A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/123Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running

Definitions

  • the present invention relates to a biaxial rotor pump, and particularly relates to a shaft seal in a mechanical dry vacuum pump or the like called a roots type, a screw type, a claw type or the like having a biaxial rotating shaft.
  • the present invention relates to a twin-shaft rotor pump that can reduce the pressure load (differential pressure) and extend the life of the shaft seal.
  • a fluid pump such as a vacuum pump
  • a root type in which a plurality of vertical rotors (rotors) rotate at high speed in a casing to discharge air
  • a pump having a biaxial rotating shaft, such as a screw type that compresses and discharges air confined in between, and a claw type in which a rotor having a projection similar to a claw rotates in a casing to discharge air are known.
  • a claw-type pump generally has two rotors having one or two claw-shaped protrusions, and each rotor has It is attached to each of two other shafts.
  • the two rotors are arranged so as to engage with each other when the two shafts rotate in opposite directions, and are housed in a casing provided with a suction port and a discharge port.
  • the two shafts that support the two rotors are provided with bearings and shaft seals, respectively.
  • a ball bearing In the two-shaft rotor pump, a ball bearing is generally used as a bearing. For this reason, a shaft seal is provided between the rotor and the ball bearing. This shaft seal serves to prevent the leakage of the lubricating material used in the bearing, such as grease and lubricating oil, and the lubricating material used in the gears described above, to the compression chamber and to receive differential pressure between the compression chamber and the bearing. Plays.
  • the present invention provides a casing, two rotating shafts provided in the casing, two rotors attached to the two rotating shafts and rotatable, and the two rotating shafts.
  • a casing two rotating shafts provided in the casing, and two rotors attached to the two rotating shafts and capable of rotating in opposite directions to each other.
  • a bearing and shaft seal provided on each of the two rotating shafts, and the two rotors cooperate to compress and discharge the fluid in the casing.
  • a communication passage that communicates the inside and the bearing is provided, and the open end inside the casing of the communication passage is at a position that is opened and closed by the rotation of the rotor so that the release timing is at least part of the fluid compression period. It is provided.
  • compression chamber that performs compression in the casing formed by the rotor is communicated during a part of the compression period, so that the differential pressure between the compression chamber and the bearing is reduced, and the pressure of the shaft seal is reduced.
  • the load is reduced and the life of the shaft seal can be extended.
  • the communication path is not always open and is opened only during compression, the fluid can be prevented from reciprocating in the communication path, and power loss due to wasteful fluid movement can be prevented. it can.
  • the bearing lubricant can be prevented from flowing into the compression chamber due to the reciprocating movement of the fluid in the communication path.
  • the communication path may include a communication groove that communicates between the bearings provided on each of the two rotating shafts, and a communication hole that communicates the inside of the communication groove and the inside of the casing.
  • the casing additional member united with the casing is provided in the casing lower part, and the said communication groove is good to be provided in the said casing additional member.
  • the casing inner side open end of the said communicating path is good to be provided in the position where the ratio of the pressure of the said compressed fluid and the said bearing becomes 1.2 or less during the compression period of the said fluid.
  • the casing, the two rotary shafts provided in the casing, the two rotors attached to the two rotary shafts and rotatable, and the two rotary shafts are provided.
  • a two-shaft rotor pump having a bearing and a shaft seal, wherein the two rotors cooperate to compress and discharge the fluid in the casing, thereby reducing the pressure load on the shaft seal and reducing the shaft seal. It is possible to provide a two-shaft rotor pump capable of extending life and preventing generation of power loss due to wasteful fluid movement.
  • FIG. 2 is a cross-sectional view passing through a compression chamber of a claw-type biaxial rotor pump in a state where the rotor in FIG.
  • FIG. 2 is a cross-sectional view passing through a compression chamber of a claw-type biaxial rotor pump in a state where the rotor in FIG.
  • FIG. 2 is a cross-sectional view taken along line bb in FIG.
  • FIG. 2 is a cross-sectional view taken along the line aa in FIG.
  • FIG. 1 is a cross-sectional view passing through a compression chamber of a claw-type biaxial rotor pump according to an embodiment.
  • 4 is a cross-sectional view taken along the line bb in FIG. 1
  • FIG. 5 is a cross-sectional view taken along the line aa in FIG. In FIG. 4, a state where a communication hole 30 described later is closed by the rotor 6 is shown.
  • the claw type biaxial rotor pump 1 is provided with two shafts 2 and 4.
  • a rotor 6 having claw-like protrusions 10a and 10b is attached to the shaft 2 at two locations.
  • a rotor 8 having claw-like projections 12a and 12b at two locations is attached to the shaft 4. Is attached.
  • the shafts 2 and 4 and the rotors 6 and 8 are accommodated in the casing 14.
  • the shaft 2 is housed in the casing 14 and is rotatably supported by the casing 14 by a plurality of bearings 24.
  • the shaft 4 is also housed in the casing 14 and supported by the casing 14 so as to be rotatable in the direction opposite to the shaft 2 by a plurality of bearings (not shown but referred to as bearings 44 for convenience).
  • a shaft seal 26 is provided between the bearing 24 and the rotor 6.
  • a shaft seal (not shown, but referred to as a shaft seal 46 for convenience) is provided between the bearing 44 and the rotor 8.
  • an oil seal or a labyrinth seal can be applied.
  • the rotors 6 and 8 cooperate with the shaft 2 and the shaft 4 by driving means (not shown) when the pump 1 is used. By rotating in the reverse direction, it rotates in the directions indicated by arrows A and B in the chamber 16 formed in the casing 14, respectively. Due to the rotation and the configuration of the chamber 16 and the rotors 4 and 6, a compression chamber 22 is formed between the rotors 4 and 6 and the chamber wall surface 16a. The form of the compression chamber 22 varies depending on the rotation of the rotors 4 and 6.
  • reference numeral 18 denotes a suction port provided on the lower surface of the casing 14, and sucks a fluid to be compressed from the outside into the chamber 16 from the outside.
  • Reference numeral 20 denotes a suction port provided on the upper surface of the casing 14. This is a discharge port for discharging the compressed fluid upward.
  • the suction port 18 and the discharge port 20 are opened and closed by the rotor 4 and the rotor 6 as the rotor 4 and the rotor 6 rotate.
  • a communication groove 28 is provided below the bearing 24.
  • the communication groove 28 communicates between the bearing 24 and the bearing 44.
  • a communication hole 30 is provided for communicating between the chamber 16 formed in the casing 14 and the communication groove 28.
  • the opening surface of the communication hole 30 to the chamber 16 is provided at a position that is opened and closed by the rotor 6 as the rotor 6 rotates.
  • the casing additional member 14a integrated with the casing 14 can be provided in the lower part of the casing 14, and the communication groove
  • the communication groove 28 and the communication hole 30 form a communication path between the chamber 16 and the bearing 24, and the communication path is opened and closed by the rotation of the rotor 6.
  • the communication groove 28 and the communication hole 30 form a communication path between the chamber 16 and the bearing 44, and the communication path is opened and closed by the rotation of the rotor 6. That is, the state where the compression chamber 22 formed in the chamber 16 and the bearing 24 and the bearing 44 can communicate with each other by the rotation of the rotor 6 is switched.
  • the communication groove 28 communicates the bearing 24 and the bearing 44, and the communication passage between the bearings 24 and 44 and the chamber 16 is formed by providing one communication hole 30, Other forms may be used as long as communication paths are provided between the respective bearings 24, 44 and the chamber 16 and the communication paths are opened and closed by the rotation of the rotor 6. For example, a first communication path that communicates between the bearing 24 and the chamber 16 and a second communication path that communicates between the bearing 44 and the chamber 16 may be provided separately.
  • the rotors 4 and 6 attached to the two shafts 2 and 4 rotate in opposite directions to capture the fluid to be compressed sucked from the suction port 18. And compress. Specifically, while the rotors 4 and 6 make one rotation, the rotor 4 and the rotor 6 open only the suction port 18 and the fluid is sucked into the compression chamber 22 formed in the chamber 16. Both the suction port 18 and the discharge port 20 are closed and the fluid is compressed, and then only the discharge port 20 is opened and the compressed fluid is discharged. By repeating the above operation, the fluid that is continuously sucked can be compressed. In FIG.
  • the portion indicated by 22a in the compression chamber 22 is a portion where both the supply port 18 and the discharge port 20 are closed and the fluid is compressed. Further, in FIG. 1, the portion indicated by 22 b in the compression chamber 22 is a portion where only the supply port 18 is opened and fluid is supplied.
  • FIG. 2 is a cross-sectional view through the compression chamber of the claw-type biaxial rotor pump in a state where the rotors 4 and 6 in FIG. 1 are rotated by about 20 °.
  • FIG. 3 is a cross-sectional view passing through the compression chamber of the claw-type biaxial rotor pump in a state where the rotors 4 and 6 in FIG. 1 are rotated by about 45 °.
  • the portion indicated by 22a in the compression chamber 22 is a portion related to compression.
  • the portion is referred to as the compression chamber 22a, and the portion of the compression chamber 22a will be described.
  • the fluid supplied from the supply port 18 first moves to the compression chamber 22a, which is a portion where the supply port 18 is closed by the rotation of the rotors 4 and 6. At this time, the communication hole 30 is closed by the rotor 6.
  • the communication hole 30 is opened and closed in the order of closing ⁇ opening ⁇ closing. That is, during compression of the fluid, the compression chamber 22a and the bearings 24 and 44 are communicated only during a part of the period.
  • the compression chamber 22a and the bearings 24 and 44 are communicated with each other during a part of the compression, the differential pressure between the compression chamber 22a and the bearings 24 and 44 is reduced, and the shaft seals 26 and 46 The pressure load is reduced, and the life of the shaft seals 26 and 46 can be extended. Furthermore, the communication path formed by the communication groove 28 and the communication hole 30 is not always opened, and is opened only at the time of compression. It is possible to prevent the occurrence of power loss due to. At the same time, the bearing lubricant can be prevented from flowing into the compression chamber due to the reciprocating movement of the fluid in the communication path. In order to prolong the service life of the shaft seal 26, the position of the open portion 32 of the communication hole 30 is preferably provided at a position where the pressure ratio between the compression chamber 22a and the bearings 24 and 44 is about 1.2 or less.
  • the claw type biaxial rotor pump has been described.
  • the present invention can be similarly applied to a root type, a screw type, and other biaxial rotor pumps.
  • a casing two rotating shafts provided in the casing, two rotors attached to the two rotating shafts and rotatable, and bearings and shaft seals provided on the two rotating shafts, respectively.
  • a two-shaft rotor pump in which the two rotors cooperate to compress and discharge the fluid in the casing, thereby reducing the pressure load on the shaft seal and extending the life of the shaft seal.
  • it can be used as a two-shaft rotor pump that can prevent the occurrence of power loss due to wasteful fluid movement.

Abstract

A dual-shaft rotor pump having a casing, two rotary shafts provided within the casing, two rotors provided respectively on the two rotary shafts and capable of rotating in mutually opposing directions, and shaft bearings and shaft seals provided on each of the two rotary shafts, with the two rotors working together to compress and discharge a fluid within the casing, wherein a connecting passage is provided connecting the interior of the casing and each of the aforementioned shaft bearings, and the open end on the casing-interior side of the connecting passage is provided at a location where it is opened/closed by the rotation of the rotors such that the connecting passage is open during at least part of the fluid compression period.

Description

2軸式ロータポンプ2-axis rotor pump
 本発明は、2軸式ロータポンプに関するものであって、特に、2軸の回転軸を有する例えばルーツ型、スクリュー型、クロー型等と称される機械式ドライ真空ポンプ等における、軸シールにかかる圧力負荷(差圧)を低減し、軸シールの寿命延長を可能とした2軸式ロータポンプに関するものである。 The present invention relates to a biaxial rotor pump, and particularly relates to a shaft seal in a mechanical dry vacuum pump or the like called a roots type, a screw type, a claw type or the like having a biaxial rotating shaft. The present invention relates to a twin-shaft rotor pump that can reduce the pressure load (differential pressure) and extend the life of the shaft seal.
 真空ポンプのような流体ポンプとして、例えば複数の繭型ロータ(回転子)がケーシング内で高速回転して空気を排出するルーツ型、複数のスクリュー(ネジ)型のロータを回転させながらケーシングとの間に閉じこめた空気を圧縮し、排出するようにしたスクリュー型、爪に似た突起を有したロータがケーシング内で回転して空気を排出するクロー型など、2軸の回転軸を有するポンプが知られている。 As a fluid pump such as a vacuum pump, for example, a root type in which a plurality of vertical rotors (rotors) rotate at high speed in a casing to discharge air, and a plurality of screw (screw) type rotors while rotating with a casing A pump having a biaxial rotating shaft, such as a screw type that compresses and discharges air confined in between, and a claw type in which a rotor having a projection similar to a claw rotates in a casing to discharge air Are known.
 このような2軸の回転軸を有する2軸式ロータポンプのうち、例えばクロー型のポンプは、一般的に、1又は2の爪状の突起を有するロータを2つ有し、それぞれのロータが別2つの軸にそれぞれ取り付けられている。また、前記2つのロータは、前記2つの軸が反対方向に回転するときに相互係合するように配置されており、吸入口と排出口を供えたケーシング内に収納されている。なお、前記2つのロータを支持する前記2つの軸にはそれぞれ軸受及び軸シールが設けられている。 Among such two-shaft rotor pumps having two rotating shafts, for example, a claw-type pump generally has two rotors having one or two claw-shaped protrusions, and each rotor has It is attached to each of two other shafts. The two rotors are arranged so as to engage with each other when the two shafts rotate in opposite directions, and are housed in a casing provided with a suction port and a discharge port. The two shafts that support the two rotors are provided with bearings and shaft seals, respectively.
 このようなクロー型の2軸式ロータポンプでは、ケーシング内に吸引される流体は、前記吸入口を通ってケーシング内に吸い込まれる。そして、2つのロータの爪状の突起間(以下、圧縮室と称する)に一定体積の流体を捕捉して圧縮し、圧縮した流体を排出口から排出する。
 このようなクロー型の2軸式ロータポンプは、例えば特許文献1等に開示されており、一般的に使用されているものである。
In such a claw type biaxial rotor pump, the fluid sucked into the casing is sucked into the casing through the suction port. Then, a fixed volume of fluid is captured and compressed between the claw-like projections of the two rotors (hereinafter referred to as a compression chamber), and the compressed fluid is discharged from the discharge port.
Such a claw-type two-shaft rotor pump is disclosed in, for example, Patent Document 1 and is generally used.
特開平6-101673号公報JP-A-6-101673
 ところで、例えば前述したようなクロー型や、スクリュー型、ルーツ型その他の2軸式ロータポンプにおいては、各軸の回転位相(同期)や中心を常に正確に維持するために、一般的に金属製のギアが使用される。この金属製のギアは、歯が破損しない限り正確に同期を保ちながら駆動力を伝達できるが、摩耗が起こるため、オイル、グリス、固体潤滑剤等の潤滑物質を用いた潤滑が必要である。 By the way, for example, in the claw type, screw type, roots type and other biaxial rotor pumps as described above, in order to always maintain the rotational phase (synchronization) and center of each axis accurately, it is generally made of metal. The gear is used. This metal gear can transmit the driving force while maintaining accurate synchronization as long as the teeth are not damaged. However, since wear occurs, lubrication using a lubricating material such as oil, grease, or solid lubricant is necessary.
 また、前記2軸式ロータポンプにあっては、軸受として玉軸受が一般的に用いられており、このためロータと玉軸受との間に軸シールを設けている。この軸シールは、軸受で用いられるグリスや潤滑油等の潤滑物質、及び前述のギアで使用される潤滑物質の圧縮室への漏洩を防止するとともに、圧縮室と軸受との差圧を受ける役割を果たしている。 In the two-shaft rotor pump, a ball bearing is generally used as a bearing. For this reason, a shaft seal is provided between the rotor and the ball bearing. This shaft seal serves to prevent the leakage of the lubricating material used in the bearing, such as grease and lubricating oil, and the lubricating material used in the gears described above, to the compression chamber and to receive differential pressure between the compression chamber and the bearing. Plays.
 しかしながら、このような2軸式ロータポンプでは、軸シールが受ける圧力負荷が高いため、軸シール寿命の減少や、差圧による前記潤滑物質の圧縮室への漏洩が発生する可能性がある。 However, in such a two-shaft rotor pump, the pressure load received by the shaft seal is high, so that there is a possibility that the life of the shaft seal will be reduced and the lubricating material may leak into the compression chamber due to the differential pressure.
 そこで、軸受と圧縮室とを常時連通した流路を設けることによって、該流路の作用により軸受と圧縮室との差圧をなくした状態とし、軸シールは前記潤滑物質の圧縮室への漏洩を防止する目的にのみ使用することが考えられ、このような技術は既に実現されている。 Therefore, by providing a flow path that always communicates the bearing and the compression chamber, the pressure difference between the bearing and the compression chamber is eliminated by the action of the flow path, and the shaft seal leaks into the compression chamber. Such a technique has already been realized.
 しかしながら、軸受と圧縮室とを常時連通した流路を設けた場合、軸シールの圧力負荷は軽減されるものの、前記流路内の流体の往復移動に伴う前記潤滑物質の圧縮室への漏洩が生じる可能性があるとともに、前記流路内の無駄な流体移動に伴う動力損失が発生する。 However, when a flow path in which the bearing and the compression chamber are always in communication is provided, the pressure load on the shaft seal is reduced, but leakage of the lubricating material to the compression chamber due to the reciprocating movement of the fluid in the flow path is reduced. There is a possibility that this will occur, and power loss will occur due to wasteful fluid movement in the flow path.
 従って、本発明は従来技術の問題点に鑑み、ケーシングと、該ケーシング内に設けられた2つの回転軸と、該2つの回転軸それぞれに取り付けられて回転可能な2つのロータと、前記2つの回転軸それぞれに設けられた軸受及び軸シールとを有し、前記2つのロータが協働して前記ケーシング内の流体を圧縮して排出する2軸式ロータポンプにおいて、前記軸シールにかかる圧力負荷を低減して軸シールの寿命延長を可能とするとともに、無駄な流体移動に伴う動力損失の発生を防止することができる2軸式ロータポンプを提供することを目的とする。 Therefore, in view of the problems of the prior art, the present invention provides a casing, two rotating shafts provided in the casing, two rotors attached to the two rotating shafts and rotatable, and the two rotating shafts. A pressure load applied to the shaft seal in a two-shaft rotor pump having a bearing and a shaft seal provided on each rotary shaft, wherein the two rotors cooperate to compress and discharge the fluid in the casing It is an object of the present invention to provide a two-shaft rotor pump that can extend the life of the shaft seal by reducing the above and prevent generation of power loss due to wasteful fluid movement.
 上記の課題を解決するために、本発明においては、ケーシングと、該ケーシング内に設けられた2つの回転軸と、該2つの回転軸それぞれに取り付けられて互いに逆方向に回転可能な2つのロータと、前記2つの回転軸それぞれに設けられた軸受及び軸シールとを有し、前記2つのロータが協働して前記ケーシング内の流体を圧縮して排出する2軸式ロータポンプにおいて、前記ケーシング内と前記軸受それぞれとを連通する連通路を設け、前記連通路のケーシング内側の開放端は、前記ロータの回転によって、開放タイミングが流体の圧縮期間の少なくとも一部となるように開閉する位置に設けられていることを特徴とする。 In order to solve the above problems, in the present invention, a casing, two rotating shafts provided in the casing, and two rotors attached to the two rotating shafts and capable of rotating in opposite directions to each other. And a bearing and shaft seal provided on each of the two rotating shafts, and the two rotors cooperate to compress and discharge the fluid in the casing. A communication passage that communicates the inside and the bearing is provided, and the open end inside the casing of the communication passage is at a position that is opened and closed by the rotation of the rotor so that the release timing is at least part of the fluid compression period. It is provided.
 これにより、圧縮中一部の期間において前記ロータによって形成されるケーシング内の圧縮を行う部分(圧縮室)とが連通されるため、圧縮室と軸受との差圧が小さくなり、軸シールの圧力負荷が小さくなって、軸シールの寿命延長が可能となる。 As a result, a portion (compression chamber) that performs compression in the casing formed by the rotor is communicated during a part of the compression period, so that the differential pressure between the compression chamber and the bearing is reduced, and the pressure of the shaft seal is reduced. The load is reduced and the life of the shaft seal can be extended.
 さらに、前記連通路は、常時開放されておらず、圧縮時にのみ開放ため該連通路内は流体の往復移動を防止することができ、無駄な流体移動に伴う動力損失の発生を防止することができる。また同時に、前記連通路内の流体の往復移動に伴う軸受用潤滑物質の圧縮室への流入を防止することができる。 Furthermore, since the communication path is not always open and is opened only during compression, the fluid can be prevented from reciprocating in the communication path, and power loss due to wasteful fluid movement can be prevented. it can. At the same time, the bearing lubricant can be prevented from flowing into the compression chamber due to the reciprocating movement of the fluid in the communication path.
 また、前記連通路は、前記2つの回転軸それぞれに設けられた軸受間を連通する連通溝と、該連通溝内と前記ケーシング内とを連通する連通穴と、から構成されているとよい。
 これにより、2つのそれぞれに必要な連通路の一部を共通化することができ、簡単な構成で発明を実施することができる。
Further, the communication path may include a communication groove that communicates between the bearings provided on each of the two rotating shafts, and a communication hole that communicates the inside of the communication groove and the inside of the casing.
Thereby, a part of communication path required for each of the two can be shared, and the invention can be implemented with a simple configuration.
 また、前記ケーシング下部に、ケーシングと一体となったケーシング追加部材を設け、前記連通溝は、前記ケーシング追加部材に設けられているとよい。
 これにより、連通溝を有さない従来のクロー型2軸式ロータポンプを改造して本発明の実施をすることが容易になる。
Moreover, the casing additional member united with the casing is provided in the casing lower part, and the said communication groove is good to be provided in the said casing additional member.
This makes it easier to implement the present invention by modifying a conventional claw-type biaxial rotor pump that does not have a communication groove.
 また、前記連通路のケーシング内側開放端は、前記流体の圧縮期間中に、圧縮された前記流体と前記軸受との圧力の比が1.2以下となる位置に設けられているとよい。
 これにより、軸シールの長寿命化を確実に達成することができる。
Moreover, the casing inner side open end of the said communicating path is good to be provided in the position where the ratio of the pressure of the said compressed fluid and the said bearing becomes 1.2 or less during the compression period of the said fluid.
Thereby, the lifetime improvement of a shaft seal can be achieved reliably.
 本発明によれば、ケーシングと、該ケーシング内に設けられた2つの回転軸と、該2つの回転軸それぞれに取り付けられて回転可能な2つのロータと、前記2つの回転軸それぞれに設けられた軸受及び軸シールとを有し、前記2つのロータが協働して前記ケーシング内の流体を圧縮して排出する2軸式ロータポンプにおいて、前記軸シールにかかる圧力負荷を低減して軸シールの寿命延長を可能とするとともに、無駄な流体移動に伴う動力損失の発生を防止することができる2軸式ロータポンプを提供することができる。 According to the present invention, the casing, the two rotary shafts provided in the casing, the two rotors attached to the two rotary shafts and rotatable, and the two rotary shafts are provided. A two-shaft rotor pump having a bearing and a shaft seal, wherein the two rotors cooperate to compress and discharge the fluid in the casing, thereby reducing the pressure load on the shaft seal and reducing the shaft seal. It is possible to provide a two-shaft rotor pump capable of extending life and preventing generation of power loss due to wasteful fluid movement.
実施例に係るクロー型2軸式ロータポンプの圧縮室を通る横断面図である。It is a cross-sectional view which passes along the compression chamber of the claw type biaxial rotor pump which concerns on an Example. 図1におけるロータが約20°回転した状態におけるクロー型2軸式ロータポンプの圧縮室を通る横断面図である。FIG. 2 is a cross-sectional view passing through a compression chamber of a claw-type biaxial rotor pump in a state where the rotor in FIG. 図1におけるロータが約45°回転した状態におけるクロー型2軸式ロータポンプの圧縮室を通る横断面図である。FIG. 2 is a cross-sectional view passing through a compression chamber of a claw-type biaxial rotor pump in a state where the rotor in FIG. 図1におけるb-b断面図である。FIG. 2 is a cross-sectional view taken along line bb in FIG. 図1におけるa-a断面図である。FIG. 2 is a cross-sectional view taken along the line aa in FIG.
 以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
 図1、図4及び図5を用いて、実施例に係るクロー型2軸式ロータポンプの構成について説明する。
 図1は、実施例に係るクロー型2軸式ロータポンプの圧縮室を通る横断面図である。図4は、図1におけるb-b断面図であり、図5は、図1におけるa-a断面図である。図4においては、後述する連通穴30がロータ6によって閉じている状態を示している。
The configuration of the claw-type biaxial rotor pump according to the embodiment will be described with reference to FIGS. 1, 4, and 5.
FIG. 1 is a cross-sectional view passing through a compression chamber of a claw-type biaxial rotor pump according to an embodiment. 4 is a cross-sectional view taken along the line bb in FIG. 1, and FIG. 5 is a cross-sectional view taken along the line aa in FIG. In FIG. 4, a state where a communication hole 30 described later is closed by the rotor 6 is shown.
 実施例に係るクロー型2軸式ロータポンプ1は、2つの軸2、4が設けられている。軸2には、2箇所に爪状の突起部10a、10bを有したロータ6が取り付けられており、同様に軸4には、2箇所に爪状の突起部12a、12bを有したロータ8が取り付けられている。そして、これらの軸2及び4、ロータ6及び8は、ケーシング14内に収納されている。 The claw type biaxial rotor pump 1 according to the embodiment is provided with two shafts 2 and 4. A rotor 6 having claw- like protrusions 10a and 10b is attached to the shaft 2 at two locations. Similarly, a rotor 8 having claw- like projections 12a and 12b at two locations is attached to the shaft 4. Is attached. The shafts 2 and 4 and the rotors 6 and 8 are accommodated in the casing 14.
 また、軸2は、ケーシング14内に収納されるとともに、複数の軸受(ベアリング)24によって、ケーシング14に回転可能に支持されている。同様に軸4も、ケーシング14内に収納されるとともに、複数の軸受(不図示であるが便宜上軸受44と称する)によって、ケーシング14に軸2と逆方向に回転可能に支持されている。軸受24とロータ6との間には軸シール26が設けられている。同様に、軸受44とロータ8との間には軸シール(不図示であるが便宜上軸シール46と称する)が設けられている。軸シール26、46としては、例えばオイルシール、ラビリンスシール等を適用することができる。 The shaft 2 is housed in the casing 14 and is rotatably supported by the casing 14 by a plurality of bearings 24. Similarly, the shaft 4 is also housed in the casing 14 and supported by the casing 14 so as to be rotatable in the direction opposite to the shaft 2 by a plurality of bearings (not shown but referred to as bearings 44 for convenience). A shaft seal 26 is provided between the bearing 24 and the rotor 6. Similarly, a shaft seal (not shown, but referred to as a shaft seal 46 for convenience) is provided between the bearing 44 and the rotor 8. As the shaft seals 26 and 46, for example, an oil seal or a labyrinth seal can be applied.
 このような構成により、図1に示したクロー型2軸式ロータポンプ1においては、ロータ6及び8は、ポンプ1の使用時には駆動手段(不図示)により軸2及び軸4を協働して逆方向に回転することによって、ケーシング14内に形成されるチャンバ16内でそれぞれ矢印A、Bで示した方向に回転する。該回転及びチャンバ16、ロータ4、6の構成により、ロータ4、6とチャンバ壁面16aとの間には圧縮室22が形成される。圧縮室22の形態は、ロータ4、6の回転により変動する。 With such a configuration, in the claw-type biaxial rotor pump 1 shown in FIG. 1, the rotors 6 and 8 cooperate with the shaft 2 and the shaft 4 by driving means (not shown) when the pump 1 is used. By rotating in the reverse direction, it rotates in the directions indicated by arrows A and B in the chamber 16 formed in the casing 14, respectively. Due to the rotation and the configuration of the chamber 16 and the rotors 4 and 6, a compression chamber 22 is formed between the rotors 4 and 6 and the chamber wall surface 16a. The form of the compression chamber 22 varies depending on the rotation of the rotors 4 and 6.
 また、図1において、18はケーシング14の下面に設けられ、外部からチャンバ16内に下から圧縮対象の流体を吸入する吸入口であり、20はケーシング14の上面に設けられ、チャンバ16内から圧縮後の流体を上に排出する排出口である。吸入口18及び排出口20は、ロータ4、ロータ6の回転に連れて、ロータ4、ロータ6によって開閉されるものである。 In FIG. 1, reference numeral 18 denotes a suction port provided on the lower surface of the casing 14, and sucks a fluid to be compressed from the outside into the chamber 16 from the outside. Reference numeral 20 denotes a suction port provided on the upper surface of the casing 14. This is a discharge port for discharging the compressed fluid upward. The suction port 18 and the discharge port 20 are opened and closed by the rotor 4 and the rotor 6 as the rotor 4 and the rotor 6 rotate.
 また、本発明に特徴的な構成として、軸受24の下方に連通溝28が設けられている。
 連通溝28は、軸受24と軸受44との間を連通している。さらに、ケーシング14内に形成されるチャンバ16と、連通溝28内とを連通する連通穴30が設けられている。連通穴30のチャンバ16への開口面は、ロータ6が回転することによりロータ6によって開閉する位置に設けられる。
As a characteristic configuration of the present invention, a communication groove 28 is provided below the bearing 24.
The communication groove 28 communicates between the bearing 24 and the bearing 44. Furthermore, a communication hole 30 is provided for communicating between the chamber 16 formed in the casing 14 and the communication groove 28. The opening surface of the communication hole 30 to the chamber 16 is provided at a position that is opened and closed by the rotor 6 as the rotor 6 rotates.
 なお、図4に示したようにケーシング14の下部にケーシング14と一体化したケーシング追加部材14aを設け、ケーシング追加部材14aに連通溝28を設けることもできる。この場合、連通溝28を有さないクロー型2軸式ロータポンプを改造して本発明の実施をすることが容易となる。 In addition, as shown in FIG. 4, the casing additional member 14a integrated with the casing 14 can be provided in the lower part of the casing 14, and the communication groove | channel 28 can also be provided in the casing additional member 14a. In this case, it becomes easy to implement the present invention by remodeling a claw type biaxial rotor pump that does not have the communication groove 28.
 即ち、連通溝28及び連通穴30によって、チャンバ16と軸受24との連通路が形成され、該連通路はロータ6の回転によって開閉される。同様に連通溝28及び連通穴30によってチャンバ16と軸受44との連通路が形成され、該連通路はロータ6の回転によって開閉される。つまり、ロータ6の回転によってチャンバ16内に形成される圧縮室22と、軸受24及び軸受44との連通可能、連通不能の状態が切り替わる。 That is, the communication groove 28 and the communication hole 30 form a communication path between the chamber 16 and the bearing 24, and the communication path is opened and closed by the rotation of the rotor 6. Similarly, the communication groove 28 and the communication hole 30 form a communication path between the chamber 16 and the bearing 44, and the communication path is opened and closed by the rotation of the rotor 6. That is, the state where the compression chamber 22 formed in the chamber 16 and the bearing 24 and the bearing 44 can communicate with each other by the rotation of the rotor 6 is switched.
 なお、本実施例においては、連通溝28を軸受24と軸受44とを連通するものとし、1つの連通穴30を設けることで、軸受24及び44とチャンバ16との連通路を形成したが、それぞれの軸受24、44とチャンバ16内との間に連通路が設けられ、ロータ6の回転により該連通路が開閉される形態であればその他の形態でもよい。例えば、軸受24とチャンバ16内を連通する第1の連通路と、軸受44とチャンバ16内を連通する第2の連通路とを別個に設けることも可能である。 In the present embodiment, the communication groove 28 communicates the bearing 24 and the bearing 44, and the communication passage between the bearings 24 and 44 and the chamber 16 is formed by providing one communication hole 30, Other forms may be used as long as communication paths are provided between the respective bearings 24, 44 and the chamber 16 and the communication paths are opened and closed by the rotation of the rotor 6. For example, a first communication path that communicates between the bearing 24 and the chamber 16 and a second communication path that communicates between the bearing 44 and the chamber 16 may be provided separately.
 以上の構成のクロー型2軸式ロータポンプ1では、2本の軸2、4に取り付けられたロータ4、6がそれぞれ逆方向に回転し、吸入口18から吸入された圧縮対象の流体を捕捉し圧縮する。具体的には、ロータ4、6が一回転する間に、ロータ4、ロータ6によって、吸入口18のみが開放されて前記流体がチャンバ16内に形成される圧縮室22内に吸入され、次いで吸入口18及び排出口20ともに閉止されて前記流体が圧縮され、次いで排出口20のみが開放されて圧縮された前記流体が排出される。以上の動作を繰り返すことで連続的に吸入される流体を圧縮することができる。図1において、圧縮室22のうち22aで示した部分は、供給口18及び排出口20の何れも閉止されており流体が圧縮されている部分である。また、図1において圧縮室22のうち22bで示した部分は、供給口18のみが開放されており、流体が供給されている部分である。 In the claw-type biaxial rotor pump 1 having the above-described configuration, the rotors 4 and 6 attached to the two shafts 2 and 4 rotate in opposite directions to capture the fluid to be compressed sucked from the suction port 18. And compress. Specifically, while the rotors 4 and 6 make one rotation, the rotor 4 and the rotor 6 open only the suction port 18 and the fluid is sucked into the compression chamber 22 formed in the chamber 16. Both the suction port 18 and the discharge port 20 are closed and the fluid is compressed, and then only the discharge port 20 is opened and the compressed fluid is discharged. By repeating the above operation, the fluid that is continuously sucked can be compressed. In FIG. 1, the portion indicated by 22a in the compression chamber 22 is a portion where both the supply port 18 and the discharge port 20 are closed and the fluid is compressed. Further, in FIG. 1, the portion indicated by 22 b in the compression chamber 22 is a portion where only the supply port 18 is opened and fluid is supplied.
 次に、クロー型2軸式ロータポンプ1の動作時における連通溝28及び連通穴30の作用について説明する。
 図2は、図1におけるロータ4、6が約20°回転した状態におけるクロー型2軸式ロータポンプの圧縮室を通る横断面図である。図3は、図1におけるロータ4、6が約45°回転した状態におけるクロー型2軸式ロータポンプの圧縮室を通る横断面図である。
Next, the operation of the communication groove 28 and the communication hole 30 during the operation of the claw type biaxial rotor pump 1 will be described.
FIG. 2 is a cross-sectional view through the compression chamber of the claw-type biaxial rotor pump in a state where the rotors 4 and 6 in FIG. 1 are rotated by about 20 °. FIG. 3 is a cross-sectional view passing through the compression chamber of the claw-type biaxial rotor pump in a state where the rotors 4 and 6 in FIG. 1 are rotated by about 45 °.
 図1~図3において、圧縮室22のうち、22aで示した部分が圧縮に係る部分であり、当該部分を圧縮室22aと称し、圧縮室22aの部分について説明する。
 供給口18から供給された流体は、まず、ロータ4及び6の回転により供給口18が閉じられた部分である圧縮室22aに移動する。このとき、連通穴30は、ロータ6によって閉じられている。
1 to 3, the portion indicated by 22a in the compression chamber 22 is a portion related to compression. The portion is referred to as the compression chamber 22a, and the portion of the compression chamber 22a will be described.
The fluid supplied from the supply port 18 first moves to the compression chamber 22a, which is a portion where the supply port 18 is closed by the rotation of the rotors 4 and 6. At this time, the communication hole 30 is closed by the rotor 6.
 そして、ロータ4及び6が回転することにより、ロータ6の位置が、図1に示したように連通穴30の上端とずれた位置に移動すると、連通穴30及び連通溝28により圧縮室22aと軸受24及び軸受44が連通する。
 そして、ロータ4及びロータ6の回転が継続し、図2に示したように連通穴30が開放された状態が継続する。
 そして、さらにロータ4及びロータ6が回転すると、図3に示したように、ロータ6の位置が連通穴30を閉じる位置に移動する。
 その後、さらにロータ4及びロータ6が回転することにより圧縮室22aが排出口20に開放され、流体は排出口20より排出される。
Then, when the rotor 4 and 6 are rotated and the position of the rotor 6 is moved to a position shifted from the upper end of the communication hole 30 as shown in FIG. The bearing 24 and the bearing 44 communicate with each other.
Then, the rotation of the rotor 4 and the rotor 6 continues, and the state where the communication hole 30 is opened as shown in FIG. 2 continues.
When the rotor 4 and the rotor 6 further rotate, the position of the rotor 6 moves to a position where the communication hole 30 is closed as shown in FIG.
Thereafter, the rotation of the rotor 4 and the rotor 6 further opens the compression chamber 22 a to the discharge port 20, and the fluid is discharged from the discharge port 20.
 即ち、圧縮室22a内で流体が圧縮される間、連通穴30は閉止→開放→閉止の順で開閉される。つまり、流体の圧縮中において、一部の期間のみ圧縮室22aと軸受24、44とが連通される。 That is, while the fluid is compressed in the compression chamber 22a, the communication hole 30 is opened and closed in the order of closing → opening → closing. That is, during compression of the fluid, the compression chamber 22a and the bearings 24 and 44 are communicated only during a part of the period.
 本発明によれば、圧縮中一部の期間において圧縮室22aと軸受24、44とが連通されるため、圧縮室22aと軸受24、44との差圧が小さくなり、軸シール26、46の圧力負荷が小さくなり、軸シール26、46の寿命延長が可能となる。
 さらに、連通溝28及び連通穴30によって形成される連通路は、常時開放されておらず、圧縮時にのみ開放するため該連通路内は流体の往復移動を防止することができ、無駄な流体移動に伴う動力損失の発生を防止することができる。また同時に、前記連通路内の流体の往復移動に伴う軸受用潤滑物質の圧縮室への流入を防止することができる。
 なお、軸シール26の長寿命化のため、連通穴30の開放部32の位置は、圧縮室22aと軸受24、44との圧力比が1.2以下程度となる位置に設けることが好ましい。
According to the present invention, since the compression chamber 22a and the bearings 24 and 44 are communicated with each other during a part of the compression, the differential pressure between the compression chamber 22a and the bearings 24 and 44 is reduced, and the shaft seals 26 and 46 The pressure load is reduced, and the life of the shaft seals 26 and 46 can be extended.
Furthermore, the communication path formed by the communication groove 28 and the communication hole 30 is not always opened, and is opened only at the time of compression. It is possible to prevent the occurrence of power loss due to. At the same time, the bearing lubricant can be prevented from flowing into the compression chamber due to the reciprocating movement of the fluid in the communication path.
In order to prolong the service life of the shaft seal 26, the position of the open portion 32 of the communication hole 30 is preferably provided at a position where the pressure ratio between the compression chamber 22a and the bearings 24 and 44 is about 1.2 or less.
 なお、本実施例においては、クロー型の2軸式ロータポンプについて説明したが、本発明はルーツ型、スクリュー型、その他の2軸式ロータポンプについても同様に適用可能である。 In the present embodiment, the claw type biaxial rotor pump has been described. However, the present invention can be similarly applied to a root type, a screw type, and other biaxial rotor pumps.
 ケーシングと、該ケーシング内に設けられた2つの回転軸と、該2つの回転軸それぞれに取り付けられて回転可能な2つのロータと、前記2つの回転軸それぞれに設けられた軸受及び軸シールとを有し、前記2つのロータが協働して前記ケーシング内の流体を圧縮して排出する2軸式ロータポンプにおいて、前記軸シールにかかる圧力負荷を低減して軸シールの寿命延長を可能とするとともに、無駄な流体移動に伴う動力損失の発生を防止することができる2軸式ロータポンプとして利用することができる。
 
A casing, two rotating shafts provided in the casing, two rotors attached to the two rotating shafts and rotatable, and bearings and shaft seals provided on the two rotating shafts, respectively. And a two-shaft rotor pump in which the two rotors cooperate to compress and discharge the fluid in the casing, thereby reducing the pressure load on the shaft seal and extending the life of the shaft seal. In addition, it can be used as a two-shaft rotor pump that can prevent the occurrence of power loss due to wasteful fluid movement.
 

Claims (4)

  1.  ケーシングと、該ケーシング内に設けられた2つの回転軸と、該2つの回転軸それぞれに取り付けられて互いに逆方向に回転可能な2つのロータと、前記2つの回転軸それぞれに設けられた軸受及び軸シールとを有し、前記2つのロータが協働して前記ケーシング内の流体を圧縮して排出する2軸式ロータポンプにおいて、
     前記ケーシング内と前記軸受それぞれとを連通する連通路を設け、
     前記連通路のケーシング内側の開放端は、前記ロータの回転によって、開放タイミングが流体の圧縮期間の少なくとも一部となるように開閉する位置に設けられていることを特徴とする2軸式ロータポンプ。
    A casing, two rotating shafts provided in the casing, two rotors attached to the two rotating shafts and capable of rotating in opposite directions, a bearing provided on each of the two rotating shafts, and A two-shaft rotor pump having a shaft seal, wherein the two rotors cooperate to compress and discharge the fluid in the casing;
    Providing a communication path for communicating the inside of the casing and each of the bearings;
    The open end inside the casing of the communication path is provided at a position that opens and closes by the rotation of the rotor so that the opening timing is at least part of the fluid compression period. .
  2.  前記連通路は、前記2つの回転軸それぞれに設けられた軸受間を連通する連通溝と、
     該連通溝内と前記ケーシング内とを連通する連通穴と、から構成されていることを特徴とする請求項1記載の2軸式ロータポンプ。
    The communication path includes a communication groove that communicates between the bearings provided on each of the two rotating shafts;
    2. The twin-shaft rotor pump according to claim 1, wherein the two-shaft rotor pump includes a communication hole that communicates the inside of the communication groove and the inside of the casing.
  3.  前記ケーシング下部に、ケーシングと一体となったケーシング追加部材を設け、
     前記連通溝は、前記ケーシング追加部材に設けられていることを特徴とする請求項2記載の2軸式ロータポンプ。
    In the lower part of the casing, a casing additional member integrated with the casing is provided,
    The biaxial rotor pump according to claim 2, wherein the communication groove is provided in the casing additional member.
  4.  前記連通路のケーシング内側開放端は、前記流体の圧縮期間中に、圧縮された前記流体と前記軸受との圧力の比が1.2以下となる位置に設けられていることを特徴とする請求項1~3何れかに記載の2軸式ロータポンプ。 The casing inner open end of the communication path is provided at a position where a ratio of pressure between the compressed fluid and the bearing is 1.2 or less during a compression period of the fluid. Item 4. The biaxial rotor pump according to any one of Items 1 to 3.
PCT/JP2011/076849 2011-01-11 2011-11-22 Dual-shaft rotor pump WO2012096057A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-003332 2011-01-11
JP2011003332A JP5389833B2 (en) 2011-01-11 2011-01-11 2-axis rotor pump

Publications (1)

Publication Number Publication Date
WO2012096057A1 true WO2012096057A1 (en) 2012-07-19

Family

ID=46506974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076849 WO2012096057A1 (en) 2011-01-11 2011-11-22 Dual-shaft rotor pump

Country Status (2)

Country Link
JP (1) JP5389833B2 (en)
WO (1) WO2012096057A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB782955A (en) * 1955-08-30 1957-09-18 Hanomag Ag Improvements in and relating to root's blowers
JPS57140590A (en) * 1980-12-18 1982-08-31 Pfeiffer Vakuumtechnik Rotary piston pump
US4917583A (en) * 1987-05-15 1990-04-17 Leybold Aktiengesellschaft Bearing support for a twin-shaft pump
JPH0526038B2 (en) * 1984-04-20 1993-04-14 Hitachi Ltd

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB782955A (en) * 1955-08-30 1957-09-18 Hanomag Ag Improvements in and relating to root's blowers
JPS57140590A (en) * 1980-12-18 1982-08-31 Pfeiffer Vakuumtechnik Rotary piston pump
JPH0526038B2 (en) * 1984-04-20 1993-04-14 Hitachi Ltd
US4917583A (en) * 1987-05-15 1990-04-17 Leybold Aktiengesellschaft Bearing support for a twin-shaft pump

Also Published As

Publication number Publication date
JP5389833B2 (en) 2014-01-15
JP2012145017A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
US7758326B2 (en) Scroll fluid machine
EP1975410B1 (en) Rotor shaft sealing method and structure of oil-free rotary compressor
CN103189650B (en) Scroll compressor
JP5178668B2 (en) Scroll compressor
KR20180031390A (en) A co-rotating scroll compressor having back pressure structure
EP1975411A1 (en) Rotor shaft sealing structure of oil-free rotary compressor
EP3091231A1 (en) Open type compressor
US20080131302A1 (en) Oil-free fluid machine having two or more rotors
KR20110128230A (en) Vane rotary type compressor
JP4882643B2 (en) Scroll type expander
KR19990072320A (en) Vane-type fluid machine
JP5178612B2 (en) Screw compressor
JP2015090102A (en) Claw pump
JP5389833B2 (en) 2-axis rotor pump
KR20110131751A (en) Scroll compressor
US6663367B2 (en) Shaft seal structure of vacuum pumps
JP6906887B2 (en) Scroll fluid machine
CN107893758B (en) Scroll compressor and air conditioner with same
CN105874205A (en) Compressor
JP5781334B2 (en) Oil rotary vacuum pump
JP2011012638A (en) Scroll compressor
KR100830943B1 (en) Oil supply structure of scroll compressor
JP2006241993A (en) Scroll compressor
JP4726914B2 (en) Scroll fluid machinery
JP7089957B2 (en) Open compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855412

Country of ref document: EP

Kind code of ref document: A1