WO2012096037A1 - Method for detecting intermolecular interaction, and kit for use therein - Google Patents

Method for detecting intermolecular interaction, and kit for use therein Download PDF

Info

Publication number
WO2012096037A1
WO2012096037A1 PCT/JP2011/072947 JP2011072947W WO2012096037A1 WO 2012096037 A1 WO2012096037 A1 WO 2012096037A1 JP 2011072947 W JP2011072947 W JP 2011072947W WO 2012096037 A1 WO2012096037 A1 WO 2012096037A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
ligand
bottom peak
analyte
peak wavelength
Prior art date
Application number
PCT/JP2011/072947
Other languages
French (fr)
Japanese (ja)
Inventor
義一 栗原
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012552628A priority Critical patent/JPWO2012096037A1/en
Publication of WO2012096037A1 publication Critical patent/WO2012096037A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • G01N2021/058Flat flow cell

Definitions

  • the present invention relates to a detection method for detecting an intermolecular interaction, particularly an intermolecular interaction such as a biomolecule or an organic polymer, and a kit used therefor.
  • a substrate 102 provided with an optical thin film 104 is used.
  • the spectral intensity of the white light itself reference light
  • the spectral intensity of the reflected light is represented by a solid line 108.
  • n 0 d (2k ⁇ 1) ⁇ / 4, where n 0 and d are the refractive index and thickness of the optical thin film 104, k is a natural number, and ⁇ is the wavelength.
  • the attenuation of the reflected light due to the interference becomes the largest at the wavelength ⁇ satisfying the relational expression.
  • a reflection spectrum 110 having a bottom peak (minimum portion in the spectrum curve) represented by a solid line is obtained as shown in FIG.
  • a ligand 120 (a substance that can specifically bind to the substance to be analyzed by the intermolecular interaction) is provided on the optical thin film 104.
  • the optical thickness 112 at the site where the ligand 120 is provided changes, the optical path length changes, and the interference wavelength (detection intensity by the spectroscope becomes the smallest due to the reflection interference effect). Wavelength) also changes. That is, the position of the bottom peak of the spectral intensity distribution of the reflected light is shifted, and as a result, as shown in FIG. 5, the reflected spectrum 110 is shifted to the reflected spectrum 122 (see the dotted line portion).
  • the ligand 120 and the analyte (analyte substance) 130 in the sample solution are bonded as shown in FIG.
  • the optical thickness 112 at the site where the analyte 130 is bonded further changes.
  • the analyte 130 partially adheres to the ligand 120 to generate a heterogeneous layer.
  • This macroscopic layer is macroscopically determined to have a predetermined optical thickness corresponding to the amount of the analyte 130 deposited. It is replaced with a homogeneous layer having a thickness.
  • the optical thickness of the homogeneous layer through which incident light passes changes depending on the amount of the analyte 130 attached.
  • the reflection spectrum 122 is shifted to the reflection spectrum 132 (refer to the one-dot chain line portion).
  • the change ⁇ 1 ′ between the bottom peak wavelength ⁇ 0 of the reflection spectrum 122 (the wavelength at which the reflectance becomes a minimum value) and the bottom peak wavelength ⁇ 1 ′ of the reflection spectrum 132 are detected. It is possible to detect the intermolecular interaction with 130, that is, the presence of the ligand 120 in the sample, and to detect the progress of the intermolecular interaction.
  • the change in the bottom peak wavelength due to the ligand 120 can be confirmed at the time point 140, which is the first shoulder portion on the curve, as shown in FIG.
  • the time 142 which is the second shoulder portion above, a change in the bottom peak wavelength due to the binding between the ligand 120 and the analyte 130 can be confirmed.
  • the conventional method is suitable for the measurement of the analyte 130 having a low concentration in the sample solution because the change ⁇ 1 ′ of the bottom peak wavelength caused by the presence of the analyte 130 is very small and the detection sensitivity is limited. Absent. Further, the data actually output by the detection device that detects the spectral intensity of the reflected light repeats minute fluctuations as shown in FIG. 7A, and this reflectance is used to determine the bottom peak position. An operation such as fitting an approximate curve to the data (see FIG. 7B) and obtaining the minimum value of the approximate curve as the above-described bottom peak position is required.
  • the bottom peak position is likely to be inaccurate in the method of determining the bottom peak position using the approximate curve as described above.
  • the peak wavelength change ⁇ may change differently from the progress of intermolecular interaction. In such a case, the bottom peak wavelength change ⁇ accurately indicates the progress of intermolecular interaction. There is a problem that it is no longer suitable as a value for judging.
  • An object of the present invention is to provide a method for detecting an intermolecular interaction that solves the above-described problems.
  • the inventor has developed a fluorescent dye that emits fluorescence having a spectral intensity distribution that satisfies a specific relationship with the spectral intensity distribution of reflected light in a state where a ligand is formed on the optical thin film (the state shown in FIG. 3B),
  • the analyte 130 is labeled with a fluorescent dye having a maximum fluorescence wavelength ⁇ f on the shorter wavelength side than the bottom peak wavelength ⁇ 0 , and the spectrum of the measurement light including both the fluorescence and the reflected light is measured.
  • the spectrum of the fluorescent dye acts so as to exaggerate the change in the bottom peak wavelength, so that the change amount ⁇ of the bottom peak wavelength ⁇ 1 of the spectrum from the bottom peak wavelength ⁇ 0 is increased. 1 is easily observed than the conventional variation [Delta] [lambda] 1 ', found to be able to realize a method of detecting molecular interactions, such problems were solved as described above, thereby completing the present invention .
  • a detection member having a ligand on the optical thin film; a light source that emits light distributed over a predetermined wavelength range; a spectroscope that detects a spectral intensity of the received light; and a light source that transmits light from the light source to the detection member.
  • a detection device comprising one light transmission path and a light transmission unit having a second light transmission path for transmitting light from the light source from the detection member to the spectrometer, Spectroscopy calculated by transmitting light from the light source to the detection member through the first and second light transmission paths, receiving light through the detection member, measuring the spectral intensity with the spectroscope, and the like.
  • a method for detecting an intermolecular interaction comprising:
  • Item 2 The method for detecting an intermolecular interaction according to Item 1, wherein the complex is formed by binding an analyte labeled with the fluorescent dye to the ligand.
  • Item 4 The detection of an intermolecular interaction according to any one of Items 1 to 3, wherein the fluorescent dye has a maximum fluorescence wavelength ( ⁇ f ) on a shorter wavelength side than the bottom peak wavelength ( ⁇ 0 ). Method.
  • Item 6 The method for detecting an intermolecular interaction according to any one of Items 1 to 5, comprising at least a component for producing a detection member having the ligand and the fluorescent dye. Kit used for.
  • an analyte when an analyte is present by using a fluorescent dye having a maximum fluorescence wavelength ( ⁇ f ) so as to overlap a valley of a spectral intensity distribution in a wavelength region around the bottom peak wavelength ( ⁇ 0 ).
  • the bottom peak wavelength of the observed spectral intensity distribution shifts to the longer wavelength side than before, that is, the amount of change in the bottom peak wavelength becomes larger than before.
  • the valley portion of the spectral intensity distribution graph observed when the analyte is present becomes steep, and the bottom peak wavelength can be easily specified. As a result, even if the concentration of the analyte is low, it can be detected with higher sensitivity than before, and quantitative analysis can be easily performed.
  • (A) is a diagram of a reflection spectrum obtained by detection
  • (B) is a diagram of a higher-order function approximating the reflection spectrum. It is an example of a spectrum which shows the rough relationship between the wavelength by the method of this embodiment, and a reflectance.
  • FIG. 1 is a schematic diagram schematically illustrating the configuration of an intermolecular interaction detection apparatus 1 to which an intermolecular interaction detection method according to an embodiment of the present invention can be applied.
  • the detection apparatus 1 mainly includes a detection member 10, a white light source 20, a spectroscope 30, a light transmission unit 40, a control device 50, and the like.
  • the detection member 10 basically includes a sensor chip 12 and a flow cell 14.
  • the sensor chip 12 has a silicon substrate 12a having a rectangular shape.
  • a SiN (silicon nitride) film 12b is deposited on the silicon substrate 12a.
  • the SiN film 12b is an example of the optical thin film 104.
  • the flow cell 14 is a transparent member made of silicone rubber.
  • a groove 14 a is formed in the flow cell 14.
  • a sealed channel 14b is formed (see FIG. 1). Both end portions of the groove 14a are exposed from the surface of the flow cell 14, one end portion is connected to the liquid feeding portion, and functions as an inlet 14c to which various solutions 60 such as a sample solution are supplied, and the other end portion Is connected to the waste liquid section and functions as an outlet 14d for various solutions 60 such as sample solutions.
  • the ligand 16 that binds to the analyte 62 is bound to the bottom of the groove 14a of the flow cell 14, that is, the surface of the sensor chip 12 (see FIG. 1).
  • the flow cell 14 can be replaced with respect to the sensor chip 12, and the flow cell 14 can be used in a disposable manner.
  • the surface of the sensor chip 12 may be modified with a silane coupling agent or the like. In this case, the flow cell 14 can be easily replaced.
  • the light transmission unit 40 includes a first optical fiber 41 as a first light transmission path for guiding white light from the white light source 20 to the closed flow path 14 b of the flow cell 14, and white light from the first optical fiber 41. And a second optical fiber 42 as a second light transmission path for guiding reflected light by light irradiation from the sealed flow path 14b of the flow cell 1 to the spectroscope 30. As shown in FIG. 1, the end surfaces of the first and second optical fibers 41 and 42 are disposed in close contact with each other on the upper surface of the flow cell 14 and above the sealed flow path 14b.
  • the white light source 20 is composed of a halogen lamp and a housing for storing the halogen lamp.
  • the housing is provided with a connection port for connecting the first optical fiber 41.
  • the white light emitted from the white light source 20 includes excitation light of a fluorescent dye described later.
  • a white light source is used.
  • the present invention is not limited to this, and any light source may be used as long as it emits light distributed over a wavelength range in which a change in bottom peak wavelength described later can be detected.
  • the first optical fiber 41 is for guiding the white light emitted from the white light source 20 to the flow cell 14, and when the white light source 20 is turned on, the white light is sealed through the first optical fiber 41. Irradiate the path 14b.
  • the end of the first optical fiber 41 on the white light source 20 side is connected to a connection port of the white light source 20.
  • the optical fiber 41 connected to the connection port is arranged so that the light incident end face faces the halogen lamp 21.
  • the second optical fiber 42 is for guiding light from the flow cell 14 to the spectroscope 30, and the measurement light when the white light of the white light source 20 irradiates the sealed flow path 14 b is guided to the spectroscope 30 and detected. It is possible to do.
  • the end of the second optical fiber 42 on the spectroscope 30 side is connected to a connection port that receives light from the spectroscope 30.
  • the spectroscope 30 detects the light intensity of the light at fixed wavelength intervals included in the light received by the light receiving unit, and outputs the light intensity to the control device 50 as the spectral intensity. In the present embodiment, the reflected light from the detection member 10 is received by the spectroscope 30.
  • a light transmissive member is used as the detection member 10, and the light from the white light source 20 is detected by the detection member.
  • the spectroscope 30 may be arranged so as to receive the light that has been irradiated to the light 10 and transmitted through the detection member 10, and the spectral intensity of the transmitted light may be detected.
  • Each of the optical fibers 41 and 42 has a structure in which fine fibers are bundled. And the edge part by the side of the flow cell 14 of the 1st optical fiber 41 and the 2nd optical fiber 42 is faced compoundly so that each fine fiber may become one bundle. That is, the fine fibers constituting the first optical fiber 41 are distributed in the center on the end face on the flow cell 14 side, and the fine fibers constituting the second optical fiber 42 are bundles of fine fibers of the first optical fiber 41. It is distributed around it to surround it.
  • the control device 50 is composed of, for example, a PC (Personal Computer), receives an input of detection operation execution from an operator, and outputs a detection operation control execution command to the detection device 10. Thereby, the control apparatus 50 functions as a control part.
  • a PC Personal Computer
  • control device 50 receives the detection data of the spectral intensity of the white light serving as a reference and the spectral intensity of the reflected light based on the measurement from the spectroscope 30, and calculates the reflectance for each wavelength band based on these, Calculate the reflection spectrum. Thereby, the control apparatus 50 functions as a calculation part.
  • a microcomputer (not shown) performs control to switch on / off the white light source 20 according to a control command of the control device 50, or performs temperature control of a temperature control unit according to a set temperature command of the control device 50. To do.
  • the temperature control unit (not shown) includes, for example, a temperature adjustment element that performs heating and cooling, such as a Peltier element, and a temperature detection element, and these are provided together with the detection member 10. And the control apparatus 50 detects the temperature of the detection member 10 with a temperature detection element through a microcomputer, and performs temperature control so that it may become preset temperature by the heating or cooling by a temperature control element.
  • the control device 50 sends a command to the microcomputer so that the preset temperature is set in advance, and the microcomputer performs temperature control of the temperature control unit. After the temperature of the detection member 10 is stabilized by warm air, liquid feeding of the sample solution or the like is started.
  • the first optical fiber 41 guides the white light of the white light source 20 to the sealed flow path 14b of the flow cell 14 and irradiates it. Then, the measurement light is received by the spectrometer 30 through the second optical fiber 42, and the spectral intensity is detected. This spectral intensity is transmitted to the control device 50.
  • the control device 50 determines whether or not to continue the measurement. If not, the process is terminated.
  • the measurement time may be set in advance, and it may be determined whether or not the measurement time has elapsed, or the measurement end input is set as a setting for continuing the measurement until the measurement end input is received. The presence or absence may be determined.
  • the measurement of the spectral intensity with respect to the measurement light is performed again.
  • the control device 50 acquires the spectral intensity data of the measurement light.
  • the control device 50 reflects each wavelength by dividing the light intensity of the measurement light by the measurement intensity of the reference light for each wavelength band by the spectral intensity of the white light (reference light) and the spectral intensity of the measurement light.
  • the reflectance spectrum can be calculated by obtaining the rate.
  • the spectral intensity data of the reference light may be measured and held in advance when the apparatus is assembled and adjusted, or may be acquired by other means.
  • the control device 50 periodically acquires spectral intensity data of measurement light by repeated measurement. Thus, the reflection spectrum is periodically calculated, the bottom peak wavelength is further calculated, and the time-series change is recorded.
  • the calculation for determining the bottom peak wavelength can be simplified.
  • a correction calculation as described below may be used.
  • the waveform has an irregular shape in which minute irregularities are repeated, and the bottom peak wavelength is calculated and specified. In some cases, it is difficult to do this (FIG. 7A).
  • the waveform of the reflection spectrum 72 can be made smooth as shown in FIG. The approximation may be performed by any known method. And the solution (minimum value) is calculated
  • Step 1 calculating a bottom peak wavelength ( ⁇ 0 ) of spectral reflectance in a state where the complex of the ligand and the analyte is not formed;
  • Step 2 Spectral reflectance in a state where a complex of the ligand, a fluorescent dye having a maximum fluorescence wavelength ( ⁇ f ) on the shorter wavelength side than the bottom peak wavelength ( ⁇ 0 ), and an analyte is formed. Calculating a bottom peak wavelength ( ⁇ 1 ).
  • the step 2 includes two different modes to which the fluorescent dye is to be bound.
  • the complex is bound to the ligand 120 with the analyte 130 (fluorescently labeled analyte 230) labeled with the fluorescent dye 200.
  • the complex is further labeled with the fluorescent dye 200.
  • the ligand 120 (fluorescently labeled ligand 240) is formed by binding.
  • step 1 the measurement of the reflection spectrum and the calculation of the bottom peak wavelength performed periodically as described above are step 1 in which ⁇ 0 is obtained as follows, and in the first embodiment, ⁇ 1 is as follows: Step A for obtaining ⁇ 1A , and in the second embodiment, ⁇ 1 is performed so as to include Step B for obtaining ⁇ 1B as described below.
  • Step 1 ⁇ 0 acquisition step
  • an aqueous solution for example, an appropriate buffer solution
  • an aqueous solution that does not contain the fluorescently labeled analyte 230, the fluorescently labeled ligand 240, or the like from the liquid feeding part to the sealed flow path 14b of the flow cell 14.
  • an aqueous solution for example, an appropriate buffer solution
  • the spectral intensity data of the measurement light is acquired by the means as described above.
  • the calculated bottom peak wavelength is ⁇ 0 .
  • the spectral intensity data of the measurement light is obtained by the means as described above, the calculated bottom peak wavelength is ⁇ 1A , and the difference between the bottom peak wavelength ⁇ 1A and the bottom peak wavelength ⁇ 0 is The amount of change in the bottom peak wavelength is ⁇ 1A .
  • the aqueous solution containing the analyte 130 is supplied from the liquid feeding section to the sealed flow path 14b of the flow cell 14, and the inlet 14c passes through the sealed flow path 14b to the outlet 14d. Distributed. Then, the analyte 130 is captured by the immobilized ligand 120. Subsequently, an aqueous solution containing the fluorescently labeled ligand 240 is supplied from the liquid feeding section to the sealed flow path 14b of the flow cell 14, and is circulated from the inlet 14c to the outlet 14d via the sealed path 14b.
  • the fluorescently labeled ligand 240 further binds to the analyte 130 bound to the immobilized ligand 120, and the optical thickness 112 is larger than that in the ⁇ 0 acquisition step (and more than in the ⁇ 1A acquisition step). Become thicker.
  • the spectral intensity data of the measurement light is acquired by the means as described above.
  • the calculated bottom peak wavelength is ⁇ 1B
  • the difference between the bottom peak wavelength ⁇ 1B and the bottom peak wavelength ⁇ 0 is the change amount ⁇ 1B of the bottom peak wavelength.
  • FIG. 8 A typical example of the spectral spectrum 81 obtained in step 1 and the spectral spectrum 82 obtained in step 2 are shown in FIG.
  • the spectral spectrum 82 obtained in Step 2 is different from the spectral spectrum 81 having the valley obtained in Step 1 in that the valley is shifted to the long wavelength side and the valley of the spectral spectrum 82 is obtained.
  • a shoulder portion S derived from the fluorescent dye is formed on the short wavelength side.
  • the spectral intensity of the fluorescent dye is indicated by a dotted line, and the maximum fluorescent wavelength of the fluorescent dye overlaps with the valley in the spectral intensity distribution in the wavelength region around the bottom peak wavelength ⁇ 0 .
  • the shoulder portion S By forming the shoulder portion S, the bottom of the valley of the spectrum 82 is pushed to the longer wavelength side as a whole, and the bottom peak wavelength ⁇ 1 of the spectrum 82 is the case where no fluorescent dye is included. Compared to the bottom peak wavelength ⁇ 1 ′ in the spectrum after the analyte coupling, the bottom peak wavelength moves to the longer wavelength side, and the shift width of the bottom peak wavelength becomes large. Further, by forming the shoulder portion S, the valley portion of the spectral spectrum 82 becomes steeper than the valley portion of the spectral spectrum 81, and the reflectance at the bottom peak wavelength is lower in the region where the reflectance is lower than the shoulder portion S. When the difference in reflectance (h1 and h2 in FIG.
  • Fluorescent dye used in this embodiment is a spectral intensity distribution that satisfies a specific relationship with the spectral intensity distribution of reflected light in the state of FIG. 3B when irradiated with predetermined excitation light (incident light). And fluorescent dyes (fluorescent molecules or fluorophores) that emit fluorescence. More specifically, a fluorescent dye having a maximum fluorescence wavelength ( ⁇ f ) is used so as to overlap a valley portion of the spectral intensity distribution in a wavelength region around the bottom peak wavelength ( ⁇ 0 ) described above.
  • a fluorescent dye having a maximum fluorescence wavelength ( ⁇ f ) on the shorter wavelength side than the bottom peak wavelength ( ⁇ 0 ) is used.
  • the maximum fluorescence wavelength ⁇ f of an appropriate fluorescent dye is the bottom peak wavelength ⁇ 0 acquired as data in advance, or the bottom peak wavelength expected from the thickness and refractive index of the optical thin film 104 (for example, the SiN film 12b). It can be set by taking ⁇ 0 into consideration.
  • the maximum fluorescence wavelength of the fluorescent dye is not necessarily must be in a shorter wavelength than the bottom peak wavelength lambda 0, the bottom peak wavelength lambda 0 same or bottom peak wavelength and lambda 0 It may be on the long wavelength side within a predetermined range. Also in this case, the bottom peak wavelength ⁇ 1 can be shifted to a longer wavelength side than the bottom peak wavelength ⁇ 1 ′ when no fluorescent dye is used.
  • the absolute value of the difference ⁇ f between the maximum fluorescence wavelength ( ⁇ f ) and the bottom peak wavelength ( ⁇ 0 ) of the fluorescent dye is preferably within 80 nm.
  • Maximum fluorescence wavelength of the fluorescent dye detailed reason for the bottom peak wavelength lambda 1 even in the long wavelength side within a predetermined range than or equal bottom peak wavelength lambda 0 and the bottom peak wavelength lambda 0 is shifted to the long wavelength side is not available However, if the maximum fluorescence wavelength of the fluorescent dye is close to the bottom peak wavelength ⁇ 0 to some extent, the short wavelength component of the fluorescent dye contributes to the same spectral spectrum deformation as described above. .
  • Fluorescent dyes such as those described above can be selected from among general fluorescent dyes used in various measurement systems (fluorescent labeling method, etc.) that satisfy a specific target condition.
  • fluorescent dye candidates include fluorescent dyes of the fluorescein family (Integrated DNA Technologies), polyhalofluorescein family fluorescent dyes (Applied Biosystems Japan Co., Ltd.), and hexachlorofluorescein family fluorescent dyes.
  • rare earth complex fluorescent dyes such as Eu and Tb (for example, ATBTA-Eu 3+ ), blue fluorescent protein (BFP), cyan fluorescent protein (CFP), and green fluorescent protein.
  • BFP blue fluorescent protein
  • CFP cyan fluorescent protein
  • GFP green fluorescent protein
  • YFP yellow fluorescent protein
  • DsRed red fluorescent protein
  • APC Allophycocyanin
  • APC Allophycocyanin
  • fluorescent fine particles such as latex and silica
  • the analyte 130 is a substance to be analyzed in which a substance that specifically binds to the analyte 130 (that is, a substance that becomes the ligand 120) exists.
  • biomolecules such as proteins (including polypeptides, oligopeptides, etc.), nucleic acids (including DNA, RNA, polynucleotides, oligonucleotides, PNA (peptide nucleic acids), etc.), lipids, sugars, drug substances, endocrine disruptions
  • a foreign substance or the like that binds to a biomolecule such as a chemical substance can be used as the analyte 130.
  • an appropriate substance that specifically binds to the analyte 130 is selected.
  • the protein serving as its antibody is a nucleic acid having a complementary base sequence if the analyte 130 is a nucleic acid, and if the analyte 130 is a sugar, A binding lectin (protein) or the like is used as the ligand 120.
  • Fluorescently labeled analyte and fluorescently labeled ligand In the first embodiment, “fluorescently labeled analyte” 230 that is the analyte 130 to which the fluorescent dye 200 is linked is used. On the other hand, in the second embodiment, a “fluorescently labeled ligand” 240 that is the ligand 120 to which the fluorescent dye 200 is linked is used.
  • the ligand of the fluorescently labeled ligand 240 may be the same as or different from the ligand of the immobilized ligand 120 as long as an immobilized ligand-analyte-fluorescently labeled ligand complex can be formed.
  • the fluorescently labeled ligand 240 may be a monoclonal antibody or a polyclonal antibody, but when the immobilized ligand 120 is a monoclonal antibody, the fluorescently labeled ligand 240 is It is desirable that the antibody is a monoclonal antibody that recognizes an epitope that the immobilized ligand does not recognize, or a polyclonal antibody.
  • the fluorescently labeled analyte 230 and the fluorescently labeled ligand 240 can be produced according to a known method.
  • the analyte 130 or the ligand 120 is a protein or a nucleic acid
  • the functional group possessed by the selected fluorescent dye 200 and the functional group possessed by the analyte 130 or ligand 120 are directly used using a predetermined reagent.
  • the fluorescence-labeled analyte 230 or the fluorescence-labeled ligand 240 is obtained by binding indirectly (through another molecule such as a linker).
  • the collected sample is prepared by reacting with a predetermined reagent inside or outside the detection apparatus 1.
  • An aqueous solution containing the fluorescently labeled analyte 230 is prepared.
  • the fluorescently labeled ligand 240 is used in the second embodiment, before starting the ⁇ 1B acquisition step, for example, the fluorescently labeled ligand 240 is set in the detection apparatus 1 as a separately prepared reagent. Prepare an aqueous solution containing it.
  • the optical thin film 104 constituting the sensor chip 12 is formed of a material having a refractive index and a thickness such that a bottom peak observed when white light is used is in an appropriate range.
  • the optical thin film 104 is preferably a SiN film 12b.
  • the refractive index of SiN is about 2.0 to 2.5 at a wavelength range of about 400 to 800 nm in the visible region.
  • the bottom peak is about 400 nm to 800 nm. Can be adjusted to the range.
  • the surface of the sensor chip 12 is treated with a silane coupling agent and modified with an amino group, followed by treatment with NHS (N-hydroxysuccinimide) -PEG4-biotin, and biotin is added to the amino group. After binding and reacting this biotin with avidin, a biotinylated antibody or nucleic acid is reacted to produce a sensor chip 12 having an antibody or nucleic acid as the ligand 120 on the surface.
  • a modification can be performed by setting the sensor chip 12 having an unmodified surface in the detection apparatus 1 and then sequentially feeding the reagent and the cleaning liquid for the modification as described above.
  • a sensor chip 12 that is a component for producing the detection member 10 having the ligand 120 and a fluorescent dye 200 are set. If it prepares, it will become easy to use for those who want to detect.
  • the fluorescently labeled analyte 230 may be set instead of the fluorescent dye 200.
  • the fluorescently labeled ligand 240 is set instead of the fluorescent dye 200. You may do it. In any case, since a suitable combination of the fluorescent dye 200 and the sensor chip 12 is set, the user does not get lost in the combination of the fluorescent dye 200 and the sensor chip 12.
  • Example 1 SiN sensor chip surface amino group modification
  • SiN silicon nitride
  • 3-APTES ((3-Aminopropyl) triethoxysilane: manufactured by Shin-Etsu Chemical Co., Ltd.) was gradually dropped into a mixed solution of 9.5 ml ethanol and 0.5 ml of ultrapure water, and the mixture was allowed to stand at room temperature for 1 hour. Stir. The SiN sensor chip was immersed therein and further stirred at room temperature for 1 hour.
  • the SiN sensor chip thus treated was washed with ethanol and ultrapure water, and then water droplets were removed by nitrogen blowing, followed by drying at 80 ° C. for 1 hour with a dryer. In this way, amino group modification was performed on the surface of the SiN sensor chip.
  • Step 2 Surface biotin modification of SiN sensor chip
  • NHS-PEG4-Biotin (ThermoFisher Scientific KK) was prepared with 10 ml of 10 mM sodium borate buffer (pH 8.5) so as to be 200 ⁇ g / ml, and the sensor chip modified with amino group in step 1 was prepared. It was immersed for 1 hour at room temperature to introduce biotin onto the surface.
  • Step 3 Preparation for RIfS measurement
  • the RifS type intermolecular interaction measurement device MI-Affinity; manufactured by Konica Minolta Opto
  • the sensor chip manufactured in step 2 a groove having a width of 2.5 mm, a length of 16 mm, and a depth of 0.1 mm, and a flow cell having a through hole having a diameter of 1 mm at both ends of the groove (Konica Minolta Opto Co., Ltd.)
  • the liquid was allowed to pass over the sensor chip through the chip cover provided in the measuring device.
  • PBS buffer pH 7.4; manufactured by Nacalai Tesque Co., Ltd.
  • Step 4 Antigen-antibody reaction between primary antibody and antigen by RIfS method
  • a sample prepared by adjusting NeutrAvidin (manufactured by ThermoFisher Scientific KK) to 100 ⁇ g / ml using the PBS buffer is passed through the injector provided in the measuring device to the sensor chip that has been prepared for measurement in step 3. Introduced. Subsequently, a sample prepared by using a biotinylated anti- ⁇ -fetoprotein (AFP) antibody (clone 1D5; manufactured by Mikuli Immuno Laboratory Co., Ltd.) as a primary antibody at 10 ⁇ g / ml using the PBS buffer was introduced.
  • AFP biotinylated anti- ⁇ -fetoprotein
  • AFP manufactured by Acris Antibodies GmbH
  • a sample prepared at 10 ⁇ g / ml using the PBS buffer were introduced.
  • the bottom peak wavelength after introducing the antigen was ⁇ 1 ′ .
  • Step 5 Antigen-antibody reaction between antigen and secondary antibody by RIfS method
  • various anti-AFP antibodies clone 6D2; manufactured by Mikuri Immuno Laboratory Co., Ltd.
  • Four samples of antibodies modified with a fluorescent dye were prepared. Each sample prepared to 10 ⁇ g / ml using the above PBS buffer was introduced into the prepared antibody.
  • the bottom peak wavelength after the introduction of the fluorochrome-labeled secondary antibody was lambda 1.
  • the amount of change in the bottom peak wavelength due to the introduction of the secondary antibody was measured with ⁇ being the difference between ⁇ 1 and ⁇ 0 .
  • Example 2 The antigen-antibody reaction was detected by the RIfS method in the same manner as in Example 1 except that the step 5 ′ was changed to the step 5 ′.
  • Step 5 ' Antigen-antibody reaction of antigen and secondary antibody by RIfS method
  • Four samples of antibodies modified with a fluorescent dye were prepared. Each sample prepared to 10 ⁇ g / ml using the above PBS buffer was introduced into the prepared antibody.
  • the bottom peak wavelength after the introduction of the fluorochrome-labeled secondary antibody was lambda 1.
  • the amount of change in the bottom peak wavelength due to the introduction of the secondary antibody was measured with ⁇ being the difference between ⁇ 1 and ⁇ 0 .
  • Example 3 The antigen-antibody reaction was detected by the RIfS method in the same manner as in Example 1 except that the step 5 ′ was changed to the step 5 ′.
  • Step 5 ' Antigen-antibody reaction of antigen and secondary antibody by RIfS method
  • various anti-AFP antibodies clone 6D2; manufactured by Mikuli Immuno Laboratory Co., Ltd.
  • Four samples of antibodies modified with a fluorescent dye were prepared. Each sample prepared to 10 ⁇ g / ml using the above PBS buffer was introduced into the prepared antibody.
  • the bottom peak wavelength after the introduction of the fluorochrome-labeled secondary antibody was lambda 1.
  • the amount of change in the bottom peak wavelength due to the introduction of the secondary antibody was measured with ⁇ being the difference between ⁇ 1 and ⁇ 0 .
  • the antigen-antibody reaction was detected by the RIfS method in the same manner as in Example 1 except that the step 5 ′ was changed to the step 5 ′.
  • Step 5 ' Antigen-antibody reaction of antigen and secondary antibody by RIfS method
  • various anti-AFP antibodies clone 6D2; manufactured by Mikuli Immuno Laboratory Co., Ltd.
  • Four samples of antibodies modified with a fluorescent dye were prepared. Each sample prepared to 10 ⁇ g / ml using the above PBS buffer was introduced into the prepared antibody.
  • the bottom peak wavelength after the introduction of the fluorochrome-labeled secondary antibody was lambda 1.
  • the amount of change in the bottom peak wavelength due to the introduction of the secondary antibody was measured with ⁇ being the difference between ⁇ 1 and ⁇ 0 .
  • step 4 When step 4 was completed, the bottom peak wavelength change amount (difference between ⁇ 1 ′ and ⁇ 0 ) ⁇ ′ due to the conventional antigen-antibody reaction alone was measured.
  • Step 5 Antigen-antibody reaction of antigen and secondary antibody by RIfS method
  • an anti-AFP antibody (clone 6D2; manufactured by Mikuli Immuno Laboratory Co., Ltd.) as a secondary antibody was introduced to a concentration of 10 ⁇ g / ml using the PBS buffer.
  • the bottom peak wavelength after the introduction of the secondary antibody with lambda 1.
  • the amount of change in the bottom peak wavelength due to the introduction of the secondary antibody was measured with ⁇ being the difference between ⁇ 1 and ⁇ 0 .
  • the difference between the maximum fluorescence wavelength ( ⁇ f ) and the bottom peak wavelength ( ⁇ 0 ) of the fluorescent dye is 0 nm with respect to the RIfS bottom peak wavelength (570 nm) in a state where no ligand is attached to SiN.
  • the RIfS system measures the spectrum of the measurement light including both fluorescence and reflected light. Acts to push the reflection spectrum of the measurement object to the longer wavelength side, and as a result, the change in the bottom peak wavelength is exaggerated and ⁇ is observed to be large (Example 1, Example 2).
  • a 555 nm fluorescent dye closest to the bottom peak wavelength of SiN is most effective.
  • the bottom peak wavelength becomes stable and easy to detect, so that the stability of the baseline is also expected to increase.
  • the maximum fluorescence wavelength (lambda f) was used fluorescent dye with the longer wavelength side than the bottom peak wavelength (lambda 0)
  • the maximum fluorescence wavelength (lambda f) is a bottom peak wavelength (lambda 0) shorter than
  • the change width ⁇ of the bottom peak wavelength is larger than that when no fluorescent dye is used.
  • this is more effective than detecting only the reaction with the antigen against the immobilized antibody as shown in Comparative Example 1, which is a conventional method of using RIfS.
  • Detection apparatus 10 Detection member 12 Sensor chip 12a Silicon substrate 12b SiN (silicon nitride) film

Abstract

A method for detecting an intermolecular interaction is provided in which bottom wavelengths are easier to calculate and a larger change in bottom wavelength is obtained than in conventional methods. Also provided is a kit for use in the method. The method, which is for detecting an intermolecular interaction, is characterized by including: a step in which the wavelength (λ0) corresponding to the bottom of spectral reflectance for the state in which a composite of a ligand with an analyte has not been formed is calculated; and a step in which the wavelength (λ1) corresponding to the bottom of spectral reflectance for the state in which a composite of the ligand, a fluorescent colorant that has a maximum fluorescent wavelength (λf) on the shorter wavelength side than the bottom wavelength (λ0), and the analyte has been formed is calculated.

Description

分子間相互作用の検出方法及びこれに使用されるキットMethod for detecting intermolecular interaction and kit used therefor
 本発明は分子間相互作用、特に生体分子や有機高分子などの分子間相互作用を検出するための検出方法及びこれに使用されるキットに関する。 The present invention relates to a detection method for detecting an intermolecular interaction, particularly an intermolecular interaction such as a biomolecule or an organic polymer, and a kit used therefor.
 従来、抗原抗体反応などの生体分子同士の分子間相互作用や、有機高分子同士の分子間相互作用などの結合の測定は、一般的に、放射性物質や蛍光体などの標識を用いることで行われてきた。この標識には手間がかかり、特にタンパク質への標識は方法が煩雑な場合や標識によりタンパク質の性質が変化する場合があった。そこで、近年、生体分子や有機高分子間の結合を、簡便に標識を用いることなく直接的に検出する手段として、光学薄膜の干渉色変化を利用したRIfS方式(Reflectometric Interference Spectroscopy:反射型干渉分光法)が提案され、実用化もされている。RIfS方式の基本原理は特許文献1や非特許文献1などに言及されている。 Conventionally, measurement of binding such as intermolecular interaction between biomolecules such as antigen-antibody reaction and intermolecular interaction between organic macromolecules is generally performed by using a label such as radioactive substance or phosphor. I have been. This labeling takes time, and in particular, labeling a protein may involve a complicated method or the property of the protein may change depending on the labeling. Therefore, in recent years, as a means for directly detecting the binding between biomolecules and organic polymers without using a label, the RIFS method (Reflectometric Interference® Spectroscopy: reflection interference spectroscopy using the interference color change of an optical thin film). Method) has been proposed and put into practical use. The basic principle of the RIfS method is mentioned in Patent Document 1, Non-Patent Document 1, and the like.
 従来のRIfS方式について簡単に説明すると、この方式では、図3に示すように、光学薄膜104が設けられた基板102が用いられる。図3(A)に示すように、基板102上の光学薄膜104に対し白色光を照射した場合、図4の典型的な一例に示すとおり、白色光そのもの(基準光)の分光強度は実線106で表され、その反射光の分光強度は実線108で表される。このとき、n0d=(2k-1)λ/4[式中、n0およびdはそれぞれ光学薄膜104の屈折率および厚さであり、kは自然数であり、λは波長である。]の関係式を満たす波長λにおいて、干渉による反射光の減衰が最も大きくなる。照射した白色光とその反射光との各分光強度から反射率を求めると、図5に示すとおり、実線で表されたボトムピーク(スペクトル曲線における極小部)を有する反射スペクトル110が得られる。 The conventional RIfS method will be briefly described. In this method, as shown in FIG. 3, a substrate 102 provided with an optical thin film 104 is used. As shown in FIG. 3A, when the optical thin film 104 on the substrate 102 is irradiated with white light, the spectral intensity of the white light itself (reference light) is shown by a solid line 106 as shown in a typical example of FIG. The spectral intensity of the reflected light is represented by a solid line 108. At this time, n 0 d = (2k−1) λ / 4, where n 0 and d are the refractive index and thickness of the optical thin film 104, k is a natural number, and λ is the wavelength. ], The attenuation of the reflected light due to the interference becomes the largest at the wavelength λ satisfying the relational expression. When the reflectance is obtained from the spectral intensities of the irradiated white light and the reflected light, a reflection spectrum 110 having a bottom peak (minimum portion in the spectrum curve) represented by a solid line is obtained as shown in FIG.
 分子間相互作用を検出するにあたっては、図3(B)に示すとおり、光学薄膜104上にリガンド120(分析対象物質と分子間相互作用により特異的に結合しうる物質)が設けられる。光学薄膜104上にリガンド120を設けると、リガンド120が設けられた部位における光学的厚さ112が変化して光路長が変化し、反射干渉効果により干渉波長(分光器による検出強度が最も小さくなる波長)も変化する。すなわち、反射光の分光強度分布のボトムピークの位置がシフトし、その結果図5に示すとおり、反射スペクトル110が反射スペクトル122(点線部参照)にシフトする。この状態において、光学薄膜104上にサンプル溶液を流すと、図3(C)に示すとおり、リガンド120とサンプル溶液中のアナライト(分析対象物質)130とが結合する。リガンド120とアナライト130とが結合すると、アナライト130が結合した部位における光学的厚さ112がさらに変化する。リガンド120に対してアナライト130が部分的に付着することによって不均質な層が生成されるが、この不均質層は巨視的にみればアナライト130の付着量に応じた所定の光学的厚さを有する均質層に置き換えられる。従って、入射光の通過する均質層の光学的厚さがアナライト130の付着量に応じて変化することとなる。これによって、図5に示すとおり、反射スペクトル122が反射スペクトル132(1点鎖線部参照)にシフトする。そして、反射スペクトル122のボトムピーク波長(反射率が極小値となる波長)λ0と反射スペクトル132のボトムピーク波長λ1'との変化量Δλ1'を検出することにより、リガンド120とアナライト130との分子間相互作用、すなわちサンプル中のリガンド120の存在を検出したり、分子間相互作用の進捗度を検出したりすることができるようになっている。 In detecting the intermolecular interaction, as shown in FIG. 3B, a ligand 120 (a substance that can specifically bind to the substance to be analyzed by the intermolecular interaction) is provided on the optical thin film 104. When the ligand 120 is provided on the optical thin film 104, the optical thickness 112 at the site where the ligand 120 is provided changes, the optical path length changes, and the interference wavelength (detection intensity by the spectroscope becomes the smallest due to the reflection interference effect). Wavelength) also changes. That is, the position of the bottom peak of the spectral intensity distribution of the reflected light is shifted, and as a result, as shown in FIG. 5, the reflected spectrum 110 is shifted to the reflected spectrum 122 (see the dotted line portion). In this state, when the sample solution is caused to flow over the optical thin film 104, the ligand 120 and the analyte (analyte substance) 130 in the sample solution are bonded as shown in FIG. When the ligand 120 and the analyte 130 are bonded, the optical thickness 112 at the site where the analyte 130 is bonded further changes. The analyte 130 partially adheres to the ligand 120 to generate a heterogeneous layer. This macroscopic layer is macroscopically determined to have a predetermined optical thickness corresponding to the amount of the analyte 130 deposited. It is replaced with a homogeneous layer having a thickness. Accordingly, the optical thickness of the homogeneous layer through which incident light passes changes depending on the amount of the analyte 130 attached. As a result, as shown in FIG. 5, the reflection spectrum 122 is shifted to the reflection spectrum 132 (refer to the one-dot chain line portion). Then, by detecting the change Δλ 1 ′ between the bottom peak wavelength λ 0 of the reflection spectrum 122 (the wavelength at which the reflectance becomes a minimum value) and the bottom peak wavelength λ 1 ′ of the reflection spectrum 132, the ligand 120 and the analyte are detected. It is possible to detect the intermolecular interaction with 130, that is, the presence of the ligand 120 in the sample, and to detect the progress of the intermolecular interaction.
 ボトムピーク波長の変化の推移を経時的に観測すると、図6に示すとおり、曲線上の第1のショルダー部である時点140において、リガンド120によるボトムピーク波長の変化を確認することができ、曲線上の第2のショルダー部である時点142において、リガンド120とアナライト130との結合によるボトムピーク波長の変化を確認することができる。 When the transition of the change in the bottom peak wavelength is observed over time, the change in the bottom peak wavelength due to the ligand 120 can be confirmed at the time point 140, which is the first shoulder portion on the curve, as shown in FIG. At the time 142, which is the second shoulder portion above, a change in the bottom peak wavelength due to the binding between the ligand 120 and the analyte 130 can be confirmed.
特許第3786073号公報Japanese Patent No. 3778673
 従来の方法は、アナライト130の存在により生じるボトムピーク波長の変化量Δλ1'が微少であり、検出感度には限界があるため、サンプル溶液中の濃度が低いアナライト130の測定には適さない。また、反射光の分光強度を検出する検出装置によって実際に出力されるデータは、図7(A)に示すように、微小な変動を繰り返しており、ボトムピーク位置を定めるには、この反射率データに近似曲線をフィッティングし(図7(B)参照)、その近似曲線の極小値を上述のボトムピーク位置として求めるなどの演算が必要となる。しかも、ボトムピーク付近は反射率の変化が小さいため、上述のような近似曲線を用いてボトムピーク位置を決定する方法では、原理上、ボトムピークの位置が不正確になりやすく、結果として、ボトムピーク波長の変化量Δλは、分子間相互作用の進捗度とは異なった変化をすることがあり、このような場合は、ボトムピーク波長の変化量Δλは、分子間相互作用の進捗度を正確に判断するための値として適当ではなくなってしまうという問題があった。 The conventional method is suitable for the measurement of the analyte 130 having a low concentration in the sample solution because the change Δλ 1 ′ of the bottom peak wavelength caused by the presence of the analyte 130 is very small and the detection sensitivity is limited. Absent. Further, the data actually output by the detection device that detects the spectral intensity of the reflected light repeats minute fluctuations as shown in FIG. 7A, and this reflectance is used to determine the bottom peak position. An operation such as fitting an approximate curve to the data (see FIG. 7B) and obtaining the minimum value of the approximate curve as the above-described bottom peak position is required. Moreover, since the reflectance change is small near the bottom peak, in principle, the bottom peak position is likely to be inaccurate in the method of determining the bottom peak position using the approximate curve as described above. The peak wavelength change Δλ may change differently from the progress of intermolecular interaction. In such a case, the bottom peak wavelength change Δλ accurately indicates the progress of intermolecular interaction. There is a problem that it is no longer suitable as a value for judging.
 本発明は、上記のような課題を解決した分子間相互作用の検出方法を提供することを目的とする。 An object of the present invention is to provide a method for detecting an intermolecular interaction that solves the above-described problems.
 本発明者は、光学薄膜にリガンドが形成された状態(図3(B)に示す状態)における反射光の分光強度分布と特定の関係を満たす分光強度分布を有する蛍光を発する蛍光色素、典型的には、ボトムピーク波長λ0よりも短波長側に最大蛍光波長λfを有する蛍光色素を用いてアナライト130を標識し、当該蛍光と反射光との両方を含む測定光のスペクトルを測定するようにすると、蛍光色素が加わることによって、蛍光色素のスペクトルがボトムピーク波長の変化を誇張するように作用する結果、そのスペクトルのボトムピーク波長λ1の前記ボトムピーク波長λ0からの変化量Δλ1が従来の変化量Δλ1'よりも観測しやすくなり、前記のような課題を解決した分子間相互作用の検出方法を実現できることを見出し、本発明を完成させるに至った。 The inventor has developed a fluorescent dye that emits fluorescence having a spectral intensity distribution that satisfies a specific relationship with the spectral intensity distribution of reflected light in a state where a ligand is formed on the optical thin film (the state shown in FIG. 3B), In this method, the analyte 130 is labeled with a fluorescent dye having a maximum fluorescence wavelength λ f on the shorter wavelength side than the bottom peak wavelength λ 0 , and the spectrum of the measurement light including both the fluorescence and the reflected light is measured. Then, when the fluorescent dye is added, the spectrum of the fluorescent dye acts so as to exaggerate the change in the bottom peak wavelength, so that the change amount Δλ of the bottom peak wavelength λ 1 of the spectrum from the bottom peak wavelength λ 0 is increased. 1 is easily observed than the conventional variation [Delta] [lambda] 1 ', found to be able to realize a method of detecting molecular interactions, such problems were solved as described above, thereby completing the present invention .
 すなわち、本発明は以下の実施形態を包含する。
 [1]
 光学薄膜上にリガンドを有する検出部材と、所定の波長域にわたって分布する光を発光する光源と、受光する光の分光強度を検出する分光器と、前記光源から前記検出部材に光を伝達する第一の光伝達経路と前記検出部材から前記分光器に前記光源からの光を伝達する第二の光伝達経路を有する光伝達部とを備える検出装置を用い、
 前記第一及び第二の光伝達経路により、前記光源からの光を前記検出部材に伝達し前記検出部材を介して光を受光してその分光強度を前記分光器で測定し、算出される分光強度分布のボトムピーク波長の変化によって、前記リガンドとアナライトとの分子間相互作用を検出する方法であって、
 前記リガンドとアナライトとの複合体が形成されていない状態における分光強度分布のボトムピーク波長(λ0)を算出する工程、および
 前記リガンドと、前記ボトムピーク波長(λ0)前後の波長域における分光強度分布の谷部に重なるように最大蛍光波長(λf)を有する蛍光色素と、アナライトとの複合体が形成された状態における分光強度分布のボトムピーク波長(λ1)を算出する工程
 を含むことを特徴とする、分子間相互作用の検出方法。
That is, the present invention includes the following embodiments.
[1]
A detection member having a ligand on the optical thin film; a light source that emits light distributed over a predetermined wavelength range; a spectroscope that detects a spectral intensity of the received light; and a light source that transmits light from the light source to the detection member. Using a detection device comprising one light transmission path and a light transmission unit having a second light transmission path for transmitting light from the light source from the detection member to the spectrometer,
Spectroscopy calculated by transmitting light from the light source to the detection member through the first and second light transmission paths, receiving light through the detection member, measuring the spectral intensity with the spectroscope, and the like. A method for detecting an intermolecular interaction between the ligand and the analyte by changing a bottom peak wavelength of an intensity distribution,
Calculating a bottom peak wavelength (λ 0 ) of a spectral intensity distribution in a state where a complex of the ligand and the analyte is not formed; and in a wavelength region around the ligand and the bottom peak wavelength (λ 0 ) A step of calculating the bottom peak wavelength (λ 1 ) of the spectral intensity distribution in a state in which the complex of the fluorescent dye having the maximum fluorescence wavelength (λ f ) and the analyte is formed so as to overlap the valley of the spectral intensity distribution A method for detecting an intermolecular interaction, comprising:
 [2]
 前記複合体が、前記リガンドに、前記蛍光色素で標識されたアナライトが結合することにより形成される、上記項1に記載の分子間相互作用の検出方法。
[2]
Item 2. The method for detecting an intermolecular interaction according to Item 1, wherein the complex is formed by binding an analyte labeled with the fluorescent dye to the ligand.
 [3]
 前記複合体が、前記リガンドに前記アナライトが結合した後、さらに前記アナライトに前記蛍光色素で標識されたリガンドが結合することにより形成される、上記項1に記載の分子間相互作用の検出方法。
[3]
The detection of an intermolecular interaction according to Item 1, wherein the complex is formed by binding of the analyte to the ligand and further binding of the ligand labeled with the fluorescent dye to the analyte. Method.
 [4]
 前記蛍光色素は、前記ボトムピーク波長(λ0)よりも短波長側に最大蛍光波長(λf)を有するものである上記項1~3のいずれか一項に記載の分子間相互作用の検出方法。
[4]
Item 4. The detection of an intermolecular interaction according to any one of Items 1 to 3, wherein the fluorescent dye has a maximum fluorescence wavelength (λ f ) on a shorter wavelength side than the bottom peak wavelength (λ 0 ). Method.
 [5]
 前記蛍光色素の最大蛍光波長(λf)と前記ボトムピーク波長(λ0)の差Δλf(=λ0-λf)が0nm<Δλf≦100nmの関係を満たす、上記項4に記載の分子間相互作用の検出方法。
[5]
The difference Δλ f (= λ 0 −λ f ) between the maximum fluorescence wavelength (λ f ) of the fluorescent dye and the bottom peak wavelength (λ 0 ) satisfies a relationship of 0 nm <Δλ f ≦ 100 nm. Method for detecting intermolecular interactions.
 [6]
 少なくとも、前記リガンドを有する検出部材を作製するための構成部材と、前記蛍光色素とを含むことを特徴とする、上記項1~5のいずれかに一項に記載の分子間相互作用の検出方法のために使用されるキット。
[6]
Item 6. The method for detecting an intermolecular interaction according to any one of Items 1 to 5, comprising at least a component for producing a detection member having the ligand and the fluorescent dye. Kit used for.
 本発明においては、ボトムピーク波長(λ0)前後の波長域における分光強度分布の谷部に重なるように最大蛍光波長(λf)を有する蛍光色素を用いることにより、アナライトが存在する場合に観測される分光強度分布のボトムピーク波長が従来よりも長波長側にシフトする、つまりボトムピーク波長の変化量が従来よりも大きくなる。また、アナライトが存在する場合に観測される分光強度分布グラフの谷部が急峻になり、ボトムピーク波長を特定しやすくなる。その結果、アナライトが低濃度であっても従来よりも高感度で検出することができ、また定量的な分析も行いやすくなる。 In the present invention, when an analyte is present by using a fluorescent dye having a maximum fluorescence wavelength (λ f ) so as to overlap a valley of a spectral intensity distribution in a wavelength region around the bottom peak wavelength (λ 0 ). The bottom peak wavelength of the observed spectral intensity distribution shifts to the longer wavelength side than before, that is, the amount of change in the bottom peak wavelength becomes larger than before. Further, the valley portion of the spectral intensity distribution graph observed when the analyte is present becomes steep, and the bottom peak wavelength can be easily specified. As a result, even if the concentration of the analyte is low, it can be detected with higher sensitivity than before, and quantitative analysis can be easily performed.
分子間相互作用の検出装置の概略構成を示す図面である。It is drawing which shows schematic structure of the detection apparatus of an intermolecular interaction. 検出部材の概略構成を示す図面である。It is drawing which shows schematic structure of a detection member. RIfS方式の概略を順番に説明した図面である。特に、(C)は従来の態様に見られる状態、(D)および(E)はそれぞれ本実施形態の第1および第2の態様で見られる状態を示す。It is drawing which demonstrated the outline of the RIfS system in order. In particular, (C) shows the state seen in the conventional mode, and (D) and (E) show the state seen in the first and second modes of the present embodiment, respectively. 波長と分光強度との概略的な関係を示すスペクトル例である。It is an example of a spectrum which shows the rough relationship between a wavelength and spectral intensity. 従来の方法による波長と反射率との概略的な関係を示すスペクトル例である。It is an example of a spectrum which shows the rough relationship between the wavelength by the conventional method, and a reflectance. ボトムピーク波長の変化の概略的な推移を示すグラフである。It is a graph which shows the rough transition of the change of a bottom peak wavelength. (A)は検出により得られた反射スペクトルの線図であり、(B)は反射スペクトルを近似した高次関数の線図である。(A) is a diagram of a reflection spectrum obtained by detection, and (B) is a diagram of a higher-order function approximating the reflection spectrum. 本実施形態の方法による波長と反射率との概略的な関係を示すスペクトル例である。It is an example of a spectrum which shows the rough relationship between the wavelength by the method of this embodiment, and a reflectance.
 以下、図面を参照しながら本発明の好ましい実施形態について説明する。
 (分子間相互作用の検出装置の構成)
 図1は本発明の一実施形態である分子間相互作用の検出方法が適用され得る分子間相互作用の検出装置1の構成を簡略的に図示した模式図である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
(Configuration of intermolecular interaction detector)
FIG. 1 is a schematic diagram schematically illustrating the configuration of an intermolecular interaction detection apparatus 1 to which an intermolecular interaction detection method according to an embodiment of the present invention can be applied.
 図1に示すように、検出装置1は、主に、検出部材10,白色光源20,分光器30,光伝達部40,制御装置50などから構成されている。
 検出部材10は基本的にはセンサーチップ12,フローセル14から構成されている。
As shown in FIG. 1, the detection apparatus 1 mainly includes a detection member 10, a white light source 20, a spectroscope 30, a light transmission unit 40, a control device 50, and the like.
The detection member 10 basically includes a sensor chip 12 and a flow cell 14.
 図2に示すとおり、センサーチップ12は矩形状を呈したシリコン基板12aを有している。シリコン基板12a上にはSiN(窒化シリコン)膜12bが蒸着されている。SiN膜12bは光学薄膜104の一例である。 As shown in FIG. 2, the sensor chip 12 has a silicon substrate 12a having a rectangular shape. A SiN (silicon nitride) film 12b is deposited on the silicon substrate 12a. The SiN film 12b is an example of the optical thin film 104.
 フローセル14はシリコーンゴム製の透明な部材である。フローセル14には溝14aが形成されている。フローセル14をセンサーチップ12に密着させると、密閉流路14bが形成される(図1参照)。溝14aの両端部はフローセル14の表面から露出しており、一方の端部が送液部に接続されてサンプル溶液等の各種溶液60が供給される流入口14cとして機能し、他方の端部は廃液部に接続されてサンプル溶液等の各種溶液60の流出口14dとして機能するようになっている。また、フローセル14の溝14aの底部、すなわちセンサーチップ12の表面には、アナライト62と結合するリガンド16が結合されている(図1参照)。 The flow cell 14 is a transparent member made of silicone rubber. A groove 14 a is formed in the flow cell 14. When the flow cell 14 is brought into close contact with the sensor chip 12, a sealed channel 14b is formed (see FIG. 1). Both end portions of the groove 14a are exposed from the surface of the flow cell 14, one end portion is connected to the liquid feeding portion, and functions as an inlet 14c to which various solutions 60 such as a sample solution are supplied, and the other end portion Is connected to the waste liquid section and functions as an outlet 14d for various solutions 60 such as sample solutions. The ligand 16 that binds to the analyte 62 is bound to the bottom of the groove 14a of the flow cell 14, that is, the surface of the sensor chip 12 (see FIG. 1).
 検出部材10では、センサーチップ12に対しフローセル14を貼り替え可能となっており、フローセル14はディスポーザブル(使い捨て)使用が可能となっている。センサーチップ12の表面には、シランカップリング剤などにより、表面修飾をおこなってもよく、この場合フローセル14の貼り替えが容易となる。 In the detection member 10, the flow cell 14 can be replaced with respect to the sensor chip 12, and the flow cell 14 can be used in a disposable manner. The surface of the sensor chip 12 may be modified with a silane coupling agent or the like. In this case, the flow cell 14 can be easily replaced.
 光伝達部40は、白色光源20からの白色光をフローセル14の密閉流路14bに導くための第一の光伝達経路としての第一の光ファイバ41と、第一の光ファイバ41からの白色光の照射による反射光をフローセル1の密閉流路14bから分光器30に導くための第二の光伝達経路としての第二の光ファイバ42とを備えている。図1に示すとおり、フローセル14の上面であって密閉流路14bの上方に、上記第一及び第二の光ファイバ41,42の端部端面が密着して設置されている。 The light transmission unit 40 includes a first optical fiber 41 as a first light transmission path for guiding white light from the white light source 20 to the closed flow path 14 b of the flow cell 14, and white light from the first optical fiber 41. And a second optical fiber 42 as a second light transmission path for guiding reflected light by light irradiation from the sealed flow path 14b of the flow cell 1 to the spectroscope 30. As shown in FIG. 1, the end surfaces of the first and second optical fibers 41 and 42 are disposed in close contact with each other on the upper surface of the flow cell 14 and above the sealed flow path 14b.
 白色光源20は、ハロゲンランプと、これを格納する筐体とから構成されている。筐体には、第一の光ファイバ41を接続するための接続ポートが設けられている。この白色光源20から発せられる白色光には、後述する蛍光色素の励起光が含まれている。なお、本実施形態では白色光源を用いているが、これに限るものではなく、後述するボトムピーク波長の変化が検出でき得る波長域にわたって分布する光を発光する光源であればよい。 The white light source 20 is composed of a halogen lamp and a housing for storing the halogen lamp. The housing is provided with a connection port for connecting the first optical fiber 41. The white light emitted from the white light source 20 includes excitation light of a fluorescent dye described later. In this embodiment, a white light source is used. However, the present invention is not limited to this, and any light source may be used as long as it emits light distributed over a wavelength range in which a change in bottom peak wavelength described later can be detected.
 第一の光ファイバ41は、白色光源20から発せられた白色光をフローセル14まで導くためのものであり、白色光源20が点灯すると、その白色光が第一の光ファイバ41を介して密閉流路14bを照射する。上記第一の光ファイバ41の白色光源20側の端部は、当該白色光源20の接続ポートに接続されている。接続ポートに接続された光ファイバ41は光入射端面がハロゲンランプ21に対向するように配置されている。 The first optical fiber 41 is for guiding the white light emitted from the white light source 20 to the flow cell 14, and when the white light source 20 is turned on, the white light is sealed through the first optical fiber 41. Irradiate the path 14b. The end of the first optical fiber 41 on the white light source 20 side is connected to a connection port of the white light source 20. The optical fiber 41 connected to the connection port is arranged so that the light incident end face faces the halogen lamp 21.
 第二の光ファイバ42は、フローセル14から分光器30に光を導くためのものであり、白色光源20の白色光が密閉流路14bを照射した時の測定光を分光器30に導いて検出することを可能としている。上記第二の光ファイバ42の分光器30側の端部は、当該分光器30の受光を行う接続ポートに接続されている。この分光器30は、受光部で受光する光に含まれる一定の波長間隔ごとの光について光強度を検出し、分光強度として制御装置50に出力する。なお、本実施形態においては、検出部材10からの反射光を分光器30で受光するようにしているが、検出部材10として光透過性のものを用いて、白色光源20からの光を検出部材10に照射し、検出部材10を透過してきた光を受光するように分光器30を配置し、透過光の分光強度を検出するようにしても構わない。 The second optical fiber 42 is for guiding light from the flow cell 14 to the spectroscope 30, and the measurement light when the white light of the white light source 20 irradiates the sealed flow path 14 b is guided to the spectroscope 30 and detected. It is possible to do. The end of the second optical fiber 42 on the spectroscope 30 side is connected to a connection port that receives light from the spectroscope 30. The spectroscope 30 detects the light intensity of the light at fixed wavelength intervals included in the light received by the light receiving unit, and outputs the light intensity to the control device 50 as the spectral intensity. In the present embodiment, the reflected light from the detection member 10 is received by the spectroscope 30. However, a light transmissive member is used as the detection member 10, and the light from the white light source 20 is detected by the detection member. The spectroscope 30 may be arranged so as to receive the light that has been irradiated to the light 10 and transmitted through the detection member 10, and the spectral intensity of the transmitted light may be detected.
 上記各光ファイバ41,42は、いずれも微細ファイバを束ねた構造となっている。そして、第一の光ファイバ41と第二の光ファイバ42のフローセル14側の端部は、各々の微細ファイバが一つの束となるように複合的に寄り合わされている。即ち、第一の光ファイバ41を構成する微細ファイバは、フローセル14側の端面において中央に分布し、第二の光ファイバ42を構成する微細ファイバは第一の光ファイバ41の微細ファイバの束を取り囲むようにその周囲に分布している。 Each of the optical fibers 41 and 42 has a structure in which fine fibers are bundled. And the edge part by the side of the flow cell 14 of the 1st optical fiber 41 and the 2nd optical fiber 42 is faced compoundly so that each fine fiber may become one bundle. That is, the fine fibers constituting the first optical fiber 41 are distributed in the center on the end face on the flow cell 14 side, and the fine fibers constituting the second optical fiber 42 are bundles of fine fibers of the first optical fiber 41. It is distributed around it to surround it.
 制御装置50は、例えばPC(Personal Computer)から構成され、オペレータから検出動作の実行の入力を受け付けて、検出装置10への検出動作制御の実行指令を出力する。これにより、制御装置50は、制御部として機能する。 The control device 50 is composed of, for example, a PC (Personal Computer), receives an input of detection operation execution from an operator, and outputs a detection operation control execution command to the detection device 10. Thereby, the control apparatus 50 functions as a control part.
 また、制御装置50は、分光器30から基準となる白色光の分光強度や測定に基づく反射光の分光強度の検出データを受信し、これらに基づいて各波長帯域ごとの反射率を算出し、反射スペクトルを算出する。これにより、制御装置50は、算出部として機能する。 Further, the control device 50 receives the detection data of the spectral intensity of the white light serving as a reference and the spectral intensity of the reflected light based on the measurement from the spectroscope 30, and calculates the reflectance for each wavelength band based on these, Calculate the reflection spectrum. Thereby, the control apparatus 50 functions as a calculation part.
 マイコン(図示せず)は、制御装置50の制御指令に応じて白色光源20の点灯と消灯を切り換える制御を行ったり、制御装置50の設定温度指令に応じて温度制御部の温度制御を行ったりする。 A microcomputer (not shown) performs control to switch on / off the white light source 20 according to a control command of the control device 50, or performs temperature control of a temperature control unit according to a set temperature command of the control device 50. To do.
 温度制御部(図示せず)は、例えば、ペルチェ素子のような加温と冷却を行う温度調節素子と温度検出素子とからなり、これらは検出部材10に併設される。そして、制御装置50が、マイコンを通じて温度検出素子により検出部材10の温度を検出し、温度調節素子による加温又は冷却によって、設定温度となるように温度制御を実行する。 The temperature control unit (not shown) includes, for example, a temperature adjustment element that performs heating and cooling, such as a Peltier element, and a temperature detection element, and these are provided together with the detection member 10. And the control apparatus 50 detects the temperature of the detection member 10 with a temperature detection element through a microcomputer, and performs temperature control so that it may become preset temperature by the heating or cooling by a temperature control element.
 検出を行う際には予め検出部材10の暖気が行われる。即ち、制御装置50は、予め定めた設定温度となるようマイコンに指令を送り、マイコンは温度制御部の温度制御を実行する。暖気により検出部材10の温度が安定してから、試料溶液等の送液を始める。 When detecting, the detection member 10 is warmed up in advance. That is, the control device 50 sends a command to the microcomputer so that the preset temperature is set in advance, and the microcomputer performs temperature control of the temperature control unit. After the temperature of the detection member 10 is stabilized by warm air, liquid feeding of the sample solution or the like is started.
 分光強度を測定する際、第一の光ファイバ41が白色光源20の白色光をフローセル14の密閉流路14bに導いて照射する。そして、第二の光ファイバ42を通じて測定光が分光器30に受光され、分光強度が検出される。この分光強度は制御装置50に送信される。 When measuring the spectral intensity, the first optical fiber 41 guides the white light of the white light source 20 to the sealed flow path 14b of the flow cell 14 and irradiates it. Then, the measurement light is received by the spectrometer 30 through the second optical fiber 42, and the spectral intensity is detected. This spectral intensity is transmitted to the control device 50.
 次に、制御装置50において、測定を継続するか判定を行い、継続しない場合には処理を終了する。かかる判定は、例えば、予め測定時間が設定され、当該測定時間が経過したか否かを判定しても良いし、測定の終了の入力を受けるまで測定を継続する設定として、測定終了の入力の有無を判定しても良い。測定を継続する場合には、再び、測定光に対する分光強度の測定が実行される。 Next, the control device 50 determines whether or not to continue the measurement. If not, the process is terminated. For example, the measurement time may be set in advance, and it may be determined whether or not the measurement time has elapsed, or the measurement end input is set as a setting for continuing the measurement until the measurement end input is received. The presence or absence may be determined. When the measurement is continued, the measurement of the spectral intensity with respect to the measurement light is performed again.
 制御装置50は、測定光の分光強度データを取得する。制御装置50は、白色光(基準光)の分光強度と測定光の分光強度とにより、同一の波長帯域ごとに測定光の光強度を基準光の測定強度で除算することで各波長ごとに反射率を求めて反射スペクトルを算出することができる。基準光の分光強度データは、あらかじめ装置組み立て調整時に測定して保有していたものでもよいし、その他の手段により取得したものでもよい。制御装置50は、繰り返される計測により、周期的に測定光の分光強度データを取得する。そして、これにより、周期的に反射スペクトルを算出し、さらに、そのボトムピーク波長を算出して、時系列的な変化を記録する。 The control device 50 acquires the spectral intensity data of the measurement light. The control device 50 reflects each wavelength by dividing the light intensity of the measurement light by the measurement intensity of the reference light for each wavelength band by the spectral intensity of the white light (reference light) and the spectral intensity of the measurement light. The reflectance spectrum can be calculated by obtaining the rate. The spectral intensity data of the reference light may be measured and held in advance when the apparatus is assembled and adjusted, or may be acquired by other means. The control device 50 periodically acquires spectral intensity data of measurement light by repeated measurement. Thus, the reflection spectrum is periodically calculated, the bottom peak wavelength is further calculated, and the time-series change is recorded.
 なお、本実施形態によれば、後述するように、反射スペクトルからボトムピーク波長を決定することが比較的容易になるため、ボトムピーク波長の決定のための演算を簡略化し得るが、より精度を高めるために、以下に述べるような補正演算を用いてもよい。 According to this embodiment, as will be described later, since it becomes relatively easy to determine the bottom peak wavelength from the reflection spectrum, the calculation for determining the bottom peak wavelength can be simplified. In order to increase, a correction calculation as described below may be used.
 すなわち、基準光の分光強度データと測定光の分光強度データから反射スペクトル72を算出すると、その波形は微小な凹凸が繰り返されるような不規則な形状を呈しており、ボトムピーク波長を算出・特定するのが困難な状態となっている場合がある(図7(A))。このとき、たとえば、反射スペクトル72を高次関数で近似すると、図7(B)に示すように、反射スペクトル72の波形を滑らかにすることができる。当該近似は公知のいずれの手法によるものであってもよい。そして、かかる高次多項式からその解(最小値)を求めて、これをボトムピーク波長の値として特定することができる。 In other words, when the reflection spectrum 72 is calculated from the spectral intensity data of the reference light and the spectral intensity data of the measurement light, the waveform has an irregular shape in which minute irregularities are repeated, and the bottom peak wavelength is calculated and specified. In some cases, it is difficult to do this (FIG. 7A). At this time, for example, when the reflection spectrum 72 is approximated by a high-order function, the waveform of the reflection spectrum 72 can be made smooth as shown in FIG. The approximation may be performed by any known method. And the solution (minimum value) is calculated | required from this higher order polynomial, and this can be specified as a value of a bottom peak wavelength.
 (分子間相互作用の検出方法)
 本実施形態の分子間相互作用の検出方法には、
 工程1:前記リガンドとアナライトとの複合体が形成されていない状態における分光反射率のボトムピーク波長(λ0)を算出する工程と、
 工程2:前記リガンドと、前記ボトムピーク波長(λ0)よりも短波長側に最大蛍光波長(λf)を有する蛍光色素と、アナライトとの複合体が形成された状態における分光反射率のボトムピーク波長(λ1)を算出する工程とが含まれる。
(Method for detecting intermolecular interactions)
In the detection method of the intermolecular interaction of this embodiment,
Step 1: calculating a bottom peak wavelength (λ 0 ) of spectral reflectance in a state where the complex of the ligand and the analyte is not formed;
Step 2: Spectral reflectance in a state where a complex of the ligand, a fluorescent dye having a maximum fluorescence wavelength (λ f ) on the shorter wavelength side than the bottom peak wavelength (λ 0 ), and an analyte is formed. Calculating a bottom peak wavelength (λ 1 ).
 上記工程2には、蛍光色素を結合させる対象の異なる2つの態様が含まれる。第1の態様(工程2A)では、図3(D)に示すように、前記複合体が、前記リガンド120に、前記蛍光色素200で標識されたアナライト130(蛍光標識アナライト230)が結合することにより形成されるようにする。第2の態様(工程2B)では、図3(E)に示すように、前記複合体が、前記リガンド120に前記アナライト130が結合した後、さらに前記アナライト130に前記蛍光色素200で標識されたリガンド120(蛍光標識リガンド240)が結合することにより形成されるようにする。 The step 2 includes two different modes to which the fluorescent dye is to be bound. In the first embodiment (Step 2A), as shown in FIG. 3D, the complex is bound to the ligand 120 with the analyte 130 (fluorescently labeled analyte 230) labeled with the fluorescent dye 200. To be formed. In the second embodiment (step 2B), as shown in FIG. 3E, after the analyte 130 is bound to the ligand 120, the complex is further labeled with the fluorescent dye 200. The ligand 120 (fluorescently labeled ligand 240) is formed by binding.
 より具体的には、上述した周期的に行われる反射スペクトルの測定およびボトムピーク波長の算出が、下記のようにしてλ0を取得する工程1と、第1態様においてはλ1として下記のようなλ1Aを取得する工程A、第2態様においてはλ1として下記のようなλ1Bを取得する工程Bとを含むように行われる。 More specifically, the measurement of the reflection spectrum and the calculation of the bottom peak wavelength performed periodically as described above are step 1 in which λ 0 is obtained as follows, and in the first embodiment, λ 1 is as follows: Step A for obtaining λ 1A , and in the second embodiment, λ 1 is performed so as to include Step B for obtaining λ 1B as described below.
 (工程1:λ0取得工程)
 光学薄膜104の表面にリガンド120が結合されている状態において、送液部からフローセル14の密閉流路14bに、蛍光標識アナライト230や蛍光標識リガンド240などを含まない水溶液(たとえば適切な緩衝液)が供給され、流入口14cから密閉流路14bを経て流出口14dに流通される。このように密閉流路14bが水溶液で満たされた状態において、前述したような手段により測定光の分光強度データを取得する。算出されるボトムピーク波長がλ0となる。
(Step 1: λ 0 acquisition step)
In a state where the ligand 120 is bonded to the surface of the optical thin film 104, an aqueous solution (for example, an appropriate buffer solution) that does not contain the fluorescently labeled analyte 230, the fluorescently labeled ligand 240, or the like from the liquid feeding part to the sealed flow path 14b of the flow cell 14. ) And is circulated from the inlet 14c to the outlet 14d through the sealed channel 14b. Thus, in the state where the sealed channel 14b is filled with the aqueous solution, the spectral intensity data of the measurement light is acquired by the means as described above. The calculated bottom peak wavelength is λ 0 .
 (工程2A:λ1A取得工程)
 第1態様では、上記λ0取得工程の後、送液部からフローセル14の密閉流路14bに、蛍光標識アナライト230を含む水溶液が供給され、流入口14cから密閉流路14bを経て流出口14dに流通される。すると、蛍光標識アナライト230が固定化リガンド120に捕捉され、λ0取得工程のときよりも光学的厚さ112が厚くなる。このような状態において、前述したような手段により測定光の分光強度データを取得する、算出されるボトムピーク波長がλ1Aとなり、当該ボトムピーク波長λ1Aと前記ボトムピーク波長λ0との差がボトムピーク波長の変化量Δλ1Aとなる。
(Process 2A: λ 1A acquisition process)
In the first aspect, after the λ 0 acquisition step, an aqueous solution containing the fluorescently labeled analyte 230 is supplied from the liquid feeding unit to the sealed flow path 14b of the flow cell 14, and the flow outlet 14c passes through the closed flow path 14b. 14d. Then, the fluorescently labeled analyte 230 is captured by the immobilized ligand 120, and the optical thickness 112 becomes thicker than in the λ 0 acquisition step. In such a state, the spectral intensity data of the measurement light is obtained by the means as described above, the calculated bottom peak wavelength is λ 1A , and the difference between the bottom peak wavelength λ 1A and the bottom peak wavelength λ 0 is The amount of change in the bottom peak wavelength is Δλ 1A .
 (工程2B:λ1B取得工程)
 第2態様では、上記λ0取得工程の後、送液部からフローセル14の密閉流路14bに、アナライト130を含む水溶液が供給され、流入口14cから密閉流路14bを経て流出口14dに流通される。すると、アナライト130が固定化リガンド120に捕捉される。つづいて、送液部からフローセル14の密閉流路14bに、蛍光標識リガンド240を含む水溶液が供給され、流入口14cから密閉流路14bを経て流出口14dに流通される。すると、蛍光標識リガンド240が、固定化リガンド120に結合しているアナライト130にさらに結合し、λ0取得工程のときよりも(さらにλ1A取得工程のときよりも)光学的厚さ112が厚くなる。このような状態において、前述したような手段により測定光の分光強度データを取得する。算出されるボトムピーク波長がλ1Bとなり、当該ボトムピーク波長λ1Bと前記ボトムピーク波長λ0との差がボトムピーク波長の変化量Δλ1Bとなる。
(Process 2B: λ 1B acquisition process)
In the second aspect, after the λ 0 acquisition step, the aqueous solution containing the analyte 130 is supplied from the liquid feeding section to the sealed flow path 14b of the flow cell 14, and the inlet 14c passes through the sealed flow path 14b to the outlet 14d. Distributed. Then, the analyte 130 is captured by the immobilized ligand 120. Subsequently, an aqueous solution containing the fluorescently labeled ligand 240 is supplied from the liquid feeding section to the sealed flow path 14b of the flow cell 14, and is circulated from the inlet 14c to the outlet 14d via the sealed path 14b. Then, the fluorescently labeled ligand 240 further binds to the analyte 130 bound to the immobilized ligand 120, and the optical thickness 112 is larger than that in the λ 0 acquisition step (and more than in the λ 1A acquisition step). Become thicker. In such a state, the spectral intensity data of the measurement light is acquired by the means as described above. The calculated bottom peak wavelength is λ 1B , and the difference between the bottom peak wavelength λ 1B and the bottom peak wavelength λ 0 is the change amount Δλ 1B of the bottom peak wavelength.
 (ボトムピーク波長の典型的な変化)
 工程1で得られる分光スペクトル81と、工程2で得られる分光スペクトル82の典型例を図8に示す。図8に示すように、工程1で得られる谷部を有する分光スペクトル81に対して、工程2で得られる分光スペクトル82は、谷部が長波長側にシフトするとともに、分光スペクトル82の谷部の短波長側に蛍光色素に由来するショルダー部Sが形成される。なお、図8には蛍光色素の分光強度を点線で示しており、蛍光色素の最大蛍光波長は、ボトムピーク波長λ0前後の波長域における分光強度分布における谷部に重なっている。ショルダー部Sが形成されることによって、分光スペクトル82の谷底部は全体的に長波長側へと押しやられた格好になり、分光スペクトル82のボトムピーク波長λ1は蛍光色素が含まれない場合のアナライト結合後の分光スペクトルにおけるボトムピーク波長λ1'に比べて、ボトムピーク波長が長波長側に移動し、ボトムピーク波長のシフト幅が大きくなる。また、ショルダー部Sが形成されることによって、分光スペクトル82の谷部は分光スペクトル81の谷部よりも急峻になり、ショルダー部Sよりも反射率が低い領域において、ボトムピーク波長における反射率からの反射率の差(図8のh1、h2)が同じになるところで比較すると、分光スペクトル81の谷部の幅w1よりも、分光スペクトル82の谷部の幅w2の方が狭くなる。従って、アナライト結合後のボトムピーク波長λ1の特定がしやすくなり、ボトムピーク波長の変化量も把握しやすくなる。このため、ボトムピーク波長を特定するための演算も容易になる。
(Typical change in bottom peak wavelength)
A typical example of the spectral spectrum 81 obtained in step 1 and the spectral spectrum 82 obtained in step 2 are shown in FIG. As shown in FIG. 8, the spectral spectrum 82 obtained in Step 2 is different from the spectral spectrum 81 having the valley obtained in Step 1 in that the valley is shifted to the long wavelength side and the valley of the spectral spectrum 82 is obtained. A shoulder portion S derived from the fluorescent dye is formed on the short wavelength side. In FIG. 8, the spectral intensity of the fluorescent dye is indicated by a dotted line, and the maximum fluorescent wavelength of the fluorescent dye overlaps with the valley in the spectral intensity distribution in the wavelength region around the bottom peak wavelength λ 0 . By forming the shoulder portion S, the bottom of the valley of the spectrum 82 is pushed to the longer wavelength side as a whole, and the bottom peak wavelength λ 1 of the spectrum 82 is the case where no fluorescent dye is included. Compared to the bottom peak wavelength λ 1 ′ in the spectrum after the analyte coupling, the bottom peak wavelength moves to the longer wavelength side, and the shift width of the bottom peak wavelength becomes large. Further, by forming the shoulder portion S, the valley portion of the spectral spectrum 82 becomes steeper than the valley portion of the spectral spectrum 81, and the reflectance at the bottom peak wavelength is lower in the region where the reflectance is lower than the shoulder portion S. When the difference in reflectance (h1 and h2 in FIG. 8) becomes the same, the width w2 of the valley of the spectrum 82 is narrower than the width w1 of the valley of the spectrum 81. Therefore, it is easy to specify the bottom peak wavelength λ 1 after the analyte coupling, and it is easy to grasp the amount of change in the bottom peak wavelength. For this reason, the calculation for specifying the bottom peak wavelength is also facilitated.
 ・蛍光色素
 本実施形態で用いる蛍光色素としては、所定の励起光(入射光)を照射したときに、図3(B)の状態における反射光の分光強度分布と特定の関係を満たす分光強度分布を有する蛍光を発する蛍光色素(蛍光分子または蛍光団)が挙げられる。より詳しくは、上述したボトムピーク波長(λ0)前後の波長域における分光強度分布の谷部に重なるように最大蛍光波長(λf)を有する蛍光色素を用いる。
Fluorescent dye The fluorescent dye used in this embodiment is a spectral intensity distribution that satisfies a specific relationship with the spectral intensity distribution of reflected light in the state of FIG. 3B when irradiated with predetermined excitation light (incident light). And fluorescent dyes (fluorescent molecules or fluorophores) that emit fluorescence. More specifically, a fluorescent dye having a maximum fluorescence wavelength (λ f ) is used so as to overlap a valley portion of the spectral intensity distribution in a wavelength region around the bottom peak wavelength (λ 0 ) described above.
 代表的には、ボトムピーク波長(λ0)よりも短波長側に最大蛍光波長(λf)を有する蛍光色素が用いられる。この蛍光色素の最大蛍光波長(λf)とボトムピーク波長(λ0)の差Δλf(=λ0-λf)は、0nm<Δλf(=λ0-λf)≦100nmの関係を満たすことが好ましく、0nm<Δλf≦50nmの関係を満たすことがより好ましい。この場合の適切な蛍光色素の最大蛍光波長λfは、あらかじめデータとして取得されているボトムピーク波長λ0、あるいは光学薄膜104(たとえばSiN膜12b)の厚さと屈折率から予想されるボトムピーク波長λ0を勘案することにより設定することができる。 Typically, a fluorescent dye having a maximum fluorescence wavelength (λ f ) on the shorter wavelength side than the bottom peak wavelength (λ 0 ) is used. The difference Δλ f (= λ 0 −λ f ) between the maximum fluorescence wavelength (λ f ) and the bottom peak wavelength (λ 0 ) of this fluorescent dye has a relationship of 0 nm <Δλ f (= λ 0 −λ f ) ≦ 100 nm. It is preferable to satisfy, and it is more preferable to satisfy the relationship of 0 nm <Δλ f ≦ 50 nm. In this case, the maximum fluorescence wavelength λ f of an appropriate fluorescent dye is the bottom peak wavelength λ 0 acquired as data in advance, or the bottom peak wavelength expected from the thickness and refractive index of the optical thin film 104 (for example, the SiN film 12b). It can be set by taking λ 0 into consideration.
 一方、本発明者らの検討によれば、蛍光色素の最大蛍光波長は必ずしもボトムピーク波長λ0よりも短波長になければならない訳ではなく、ボトムピーク波長λ0と同じかボトムピーク波長λ0よりも所定範囲内で長波長側にあってもよい。この場合もボトムピーク波長λ1を、蛍光色素を用いない場合のボトムピーク波長λ1'よりも長波長側にシフトさせることができる。この場合の蛍光色素の最大蛍光波長(λf)とボトムピーク波長(λ0)の差Δλfの絶対値は80nm以内とすることが好ましい。蛍光色素の最大蛍光波長が、ボトムピーク波長λ0と同じかボトムピーク波長λ0よりも所定範囲内で長波長側にあってもボトムピーク波長λ1が長波長側にシフトする詳しい理由は不明であるが、蛍光色素の最大蛍光波長がある程度ボトムピーク波長λ0に近ければ、蛍光色素の短波長成分が寄与することで、上述したのと同様の分光スペクトルの変形を発現させるものと思われる。 On the other hand, according to the study of the present inventors, the maximum fluorescence wavelength of the fluorescent dye is not necessarily must be in a shorter wavelength than the bottom peak wavelength lambda 0, the bottom peak wavelength lambda 0 same or bottom peak wavelength and lambda 0 It may be on the long wavelength side within a predetermined range. Also in this case, the bottom peak wavelength λ 1 can be shifted to a longer wavelength side than the bottom peak wavelength λ 1 ′ when no fluorescent dye is used. In this case, the absolute value of the difference Δλ f between the maximum fluorescence wavelength (λ f ) and the bottom peak wavelength (λ 0 ) of the fluorescent dye is preferably within 80 nm. Maximum fluorescence wavelength of the fluorescent dye, detailed reason for the bottom peak wavelength lambda 1 even in the long wavelength side within a predetermined range than or equal bottom peak wavelength lambda 0 and the bottom peak wavelength lambda 0 is shifted to the long wavelength side is not available However, if the maximum fluorescence wavelength of the fluorescent dye is close to the bottom peak wavelength λ 0 to some extent, the short wavelength component of the fluorescent dye contributes to the same spectral spectrum deformation as described above. .
 上記のような蛍光色素は、各種の測定系(蛍光標識法等)で用いられている一般的な蛍光色素のうち、目的とする特定の条件を満たすものの中から選択することができる。蛍光色素の候補となる蛍光色素としては、たとえば、フルオレセイン・ファミリーの蛍光色素(Integrated DNA Technologies社)、ポリハロフルオレセイン・ファミリーの蛍光色素(アプライドバイオシステムズジャパン(株))、ヘキサクロロフルオレセイン・ファミリーの蛍光色素(アプライドバイオシステムズジャパン(株))、クマリン・ファミリーの蛍光色素(インビトロジェン(株))、ローダミン・ファミリーの蛍光色素(GEヘルスケア バイオサイエンス(株))、シアニン・ファミリーの蛍光色素、インドカルボシアニン・ファミリーの蛍光色素、オキサジン・ファミリーの蛍光色素、チアジン・ファミリーの蛍光色素、スクアライン・ファミリーの蛍光色素、キレート化ランタニド・ファミリーの蛍光色素、BODIPY(登録商標)・ファミリーの蛍光色素(インビトロジェン(株))、ナフタレンスルホン酸・ファミリーの蛍光色素、ピレン・ファミリーの蛍光色素、トリフェニルメタン・ファミリーの蛍光色素、Alexa Fluor(登録商標)色素シリーズ(インビトロジェン(株))などの有機蛍光色素が挙げられる。 Fluorescent dyes such as those described above can be selected from among general fluorescent dyes used in various measurement systems (fluorescent labeling method, etc.) that satisfy a specific target condition. Examples of fluorescent dye candidates include fluorescent dyes of the fluorescein family (Integrated DNA Technologies), polyhalofluorescein family fluorescent dyes (Applied Biosystems Japan Co., Ltd.), and hexachlorofluorescein family fluorescent dyes. Dye (Applied Biosystems Japan), Coumarin Family Fluorescent Dye (Invitrogen), Rhodamine Family Fluorescent Dye (GE Healthcare Biosciences), Cyanine Family Fluorescent Dye, Indian Carbo Cyanine family fluorescent dye, oxazine family fluorescent dye, thiazine family fluorescent dye, squaraine family fluorescent dye, chelated lanthanide family fluorescent dye, BODIPY (registered trademark) Family fluorescent dyes (Invitrogen Corporation), naphthalenesulfonic acid family fluorescent dyes, pyrene family fluorescent dyes, triphenylmethane family fluorescent dyes, Alexa Fluor (registered trademark) dye series (Invitrogen Corporation) And organic fluorescent dyes.
 また、上記のような有機蛍光色素以外にも、Eu、Tb等の希土類錯体系の蛍光色素(たとえばATBTA-Eu3+)、青色蛍光タンパク質(BFP)、シアン蛍光タンパク質(CFP)、緑色蛍光タンパク質(GFP)、黄色蛍光タンパク質(YFP)、赤色蛍光タンパク質(DsRed)またはAllophycocyanin(APC;LyoFlogen(登録商標))などに代表される蛍光タンパク質、ラテックスやシリカなどの蛍光微粒子なども、使用可能な蛍光色素の候補となり得る。 In addition to the organic fluorescent dyes described above, rare earth complex fluorescent dyes such as Eu and Tb (for example, ATBTA-Eu 3+ ), blue fluorescent protein (BFP), cyan fluorescent protein (CFP), and green fluorescent protein. (GFP), yellow fluorescent protein (YFP), red fluorescent protein (DsRed), fluorescent protein typified by Allophycocyanin (APC; LyoFlogen (registered trademark)), fluorescent fine particles such as latex and silica can also be used Can be a candidate for a dye.
 特に、Alexa Fluor488、Alexa Fluor 514、Alexa Fluor 532、Alexa Fluor 546、Alexa Fluor 555、Alexa Fluor 568、Alexa Fluor 594 Cy3、フルオレセイン・ファミリー、ローダミン・ファミリー、GFPから選択されるいずれかの蛍光色素を用いることが好ましい。 In particular, Alexa Fluor 488, Alexa Fluor 514, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 555, Alexa Fluor 568, Alexa Fluor 594 Cy3, a fluorescent dye selected from the fluorescein family, and a rhodamine family, GFP It is preferable.
 ・アナライトおよびリガンド
 アナライト130は、それと特異的に結合する物質(すなわちリガンド120となる物質)が存在する、分析対象とする物質である。たとえば、タンパク質(ポリペプチド、オリゴペプチド等を含む),核酸(DNA、RNA、ポリヌクレオチド、オリゴヌクレオチド、PNA(ペプチド核酸)等を含む),脂質,糖などの生体分子や、薬剤物質,内分泌錯乱化学物質などの生体分子と結合する外来物質などをアナライト130とすることができる。一方、リガンド120としては、アナライト130に応じてそれと特異的に結合する適切な物質が選択される。たとえば、アナライト130が抗原となるタンパク質ないしペプチドであればその抗体となるタンパク質が、アナライト130が核酸であればそれと相補的な塩基配列を有する核酸が、アナライト130が糖であればそれと結合するレクチン(タンパク質)などが、リガンド120として使用される。
Analyte and Ligand The analyte 130 is a substance to be analyzed in which a substance that specifically binds to the analyte 130 (that is, a substance that becomes the ligand 120) exists. For example, biomolecules such as proteins (including polypeptides, oligopeptides, etc.), nucleic acids (including DNA, RNA, polynucleotides, oligonucleotides, PNA (peptide nucleic acids), etc.), lipids, sugars, drug substances, endocrine disruptions A foreign substance or the like that binds to a biomolecule such as a chemical substance can be used as the analyte 130. On the other hand, as the ligand 120, an appropriate substance that specifically binds to the analyte 130 is selected. For example, if the analyte 130 is a protein or peptide serving as an antigen, the protein serving as its antibody is a nucleic acid having a complementary base sequence if the analyte 130 is a nucleic acid, and if the analyte 130 is a sugar, A binding lectin (protein) or the like is used as the ligand 120.
 ・蛍光標識アナライトおよび蛍光標識リガンド
 第1態様では、蛍光色素200が連結されたアナライト130である「蛍光標識アナライト」230を用いる。一方、第2態様では、蛍光色素200が連結されたリガンド120である「蛍光標識リガンド」240を用いる。固定化リガンド-アナライト-蛍光標識リガンドの複合体が形成可能であれば、蛍光標識リガンド240のリガンドは、固定化リガンド120のリガンドと同じものであっても異なるものであってもよい。たとえば、固定化リガンド120がポリクローナル抗体である場合、蛍光標識リガンド240はモノクローナル抗体であってもポリクローナル抗体であってもよいが、固定化リガンド120がモノクローナル抗体である場合、蛍光標識リガンド240はその固定化リガンドが認識しないエピトープを認識するモノクローナル抗体であるか、またはポリクローナル抗体であることが望ましい。
Fluorescently labeled analyte and fluorescently labeled ligand In the first embodiment, “fluorescently labeled analyte” 230 that is the analyte 130 to which the fluorescent dye 200 is linked is used. On the other hand, in the second embodiment, a “fluorescently labeled ligand” 240 that is the ligand 120 to which the fluorescent dye 200 is linked is used. The ligand of the fluorescently labeled ligand 240 may be the same as or different from the ligand of the immobilized ligand 120 as long as an immobilized ligand-analyte-fluorescently labeled ligand complex can be formed. For example, when the immobilized ligand 120 is a polyclonal antibody, the fluorescently labeled ligand 240 may be a monoclonal antibody or a polyclonal antibody, but when the immobilized ligand 120 is a monoclonal antibody, the fluorescently labeled ligand 240 is It is desirable that the antibody is a monoclonal antibody that recognizes an epitope that the immobilized ligand does not recognize, or a polyclonal antibody.
 蛍光標識アナライト230および蛍光標識リガンド240は公知の手法に従って作製することができる。たとえば、アナライト130またはリガンド120がタンパク質または核酸である場合、所定の試薬を用いて、選択された蛍光色素200が有する官能基と当該アナライト130またはリガンド120が有する官能基とを直接的にまたは間接的に(リンカー等の他の分子を介して)結合させることにより、蛍光標識アナライト230または蛍光標識リガンド240が得られる。 The fluorescently labeled analyte 230 and the fluorescently labeled ligand 240 can be produced according to a known method. For example, when the analyte 130 or the ligand 120 is a protein or a nucleic acid, the functional group possessed by the selected fluorescent dye 200 and the functional group possessed by the analyte 130 or ligand 120 are directly used using a predetermined reagent. Alternatively, the fluorescence-labeled analyte 230 or the fluorescence-labeled ligand 240 is obtained by binding indirectly (through another molecule such as a linker).
 第1態様において蛍光標識アナライト230を用いる場合、前記λ1A取得工程を開始する前に、たとえば、採取した試料を検出装置1の内部または外部で所定の試薬と反応させて調製するなどして、蛍光標識アナライト230を含む水溶液を準備しておく。一方、第2態様において蛍光標識リガンド240を用いる場合、前記λ1B取得工程を開始する前に、たとえば、別途調製された試薬として検出装置1にセットしておくなどして、蛍光標識リガンド240を含む水溶液を準備しておく。 When the fluorescently labeled analyte 230 is used in the first aspect, before starting the λ 1A acquisition step, for example, the collected sample is prepared by reacting with a predetermined reagent inside or outside the detection apparatus 1. An aqueous solution containing the fluorescently labeled analyte 230 is prepared. On the other hand, when the fluorescently labeled ligand 240 is used in the second embodiment, before starting the λ 1B acquisition step, for example, the fluorescently labeled ligand 240 is set in the detection apparatus 1 as a separately prepared reagent. Prepare an aqueous solution containing it.
 ・センサーチップ
 センサーチップ12を構成する光学薄膜104は、白色光を用いたときに観測されるボトムピークが適切な範囲となるような屈折率および厚みを有する材質で形成される。たとえば、光学薄膜104はSiN膜12bとすることが好ましい。SiNの屈折率は可視稿領域の波長約400から800nmの範囲において約2.0~2.5であり、SiN膜の膜厚を約45~90nmとすることにより、ボトムピークをおよそ400nm~800nmの範囲に調節することができる。
Sensor chip The optical thin film 104 constituting the sensor chip 12 is formed of a material having a refractive index and a thickness such that a bottom peak observed when white light is used is in an appropriate range. For example, the optical thin film 104 is preferably a SiN film 12b. The refractive index of SiN is about 2.0 to 2.5 at a wavelength range of about 400 to 800 nm in the visible region. By setting the thickness of the SiN film to about 45 to 90 nm, the bottom peak is about 400 nm to 800 nm. Can be adjusted to the range.
 また、センサーチップ12の表面は、前記λ0取得工程の開始に先だって、アナライト130に応じたリガンド120が結合しているように修飾しておく必要がある。たとえば、無修飾のSiN膜12bの表面をシランカップリング剤で処理してアミノ基で修飾し、つづいてNHS(N-ヒドロキシコハク酸イミド)-PEG4-ビオチンで処理して当該アミノ基にビオチンを結合させ、このビオチンにアビジンを反応させた後に、ビオチン化した抗体もしくは核酸を反応させることにより、表面にリガンド120として抗体もしくは核酸を有するセンサーチップ12を作製することができる。このような修飾は、表面が無修飾のセンサーチップ12を検出装置1にセットした後、上記のような修飾のための試薬や洗浄液を順次送液することによって行うことができる。 Further, it is necessary to modify the surface of the sensor chip 12 so that the ligand 120 corresponding to the analyte 130 is bonded prior to the start of the λ 0 acquisition step. For example, the surface of the unmodified SiN film 12b is treated with a silane coupling agent and modified with an amino group, followed by treatment with NHS (N-hydroxysuccinimide) -PEG4-biotin, and biotin is added to the amino group. After binding and reacting this biotin with avidin, a biotinylated antibody or nucleic acid is reacted to produce a sensor chip 12 having an antibody or nucleic acid as the ligand 120 on the surface. Such a modification can be performed by setting the sensor chip 12 having an unmodified surface in the detection apparatus 1 and then sequentially feeding the reagent and the cleaning liquid for the modification as described above.
 ・キット
 本実施形態の分子間相互作用の検出装置に用いられる検出用キットとして、リガンド120を有する検出部材10を作製するための構成部材であるセンサーチップ12と、蛍光色素200とをセットしたものを準備しておくと、検出を行おうとする者にとって利用しやすくなる。上述した第1の態様においては、蛍光色素200の代わりに蛍光標識アナライト230をセットしていてもよいし、上述した第2の態様においては、蛍光色素200に代えて蛍光標識リガンド240をセットしていてもよい。いずれにしても、蛍光色素200とセンサーチップ12との組合せとして適したものがセットされているので、使用者は、蛍光色素200とセンサーチップ12との組合せで迷うことがない。
Kit As a detection kit used in the intermolecular interaction detection apparatus of the present embodiment, a sensor chip 12 that is a component for producing the detection member 10 having the ligand 120 and a fluorescent dye 200 are set. If it prepares, it will become easy to use for those who want to detect. In the first aspect described above, the fluorescently labeled analyte 230 may be set instead of the fluorescent dye 200. In the second aspect described above, the fluorescently labeled ligand 240 is set instead of the fluorescent dye 200. You may do it. In any case, since a suitable combination of the fluorescent dye 200 and the sensor chip 12 is set, the user does not get lost in the combination of the fluorescent dye 200 and the sensor chip 12.
 [実施例1]
 (工程1:SiNセンサーチップの表面アミノ基修飾)
 シリコンウエハ(100)の上に、光学薄膜として窒化ケイ素(SiN)を66.5nmの厚さになるようにCVD蒸着してSiNセンサーチップを作製した。
[Example 1]
(Step 1: SiN sensor chip surface amino group modification)
On the silicon wafer (100), silicon nitride (SiN) as an optical thin film was CVD-deposited to a thickness of 66.5 nm to produce a SiN sensor chip.
 100μlの3-APTES((3-Aminopropyl)triethoxysilane:信越化学工業(株)製)を9.5mlエタノール、0.5mlの超純水との混合溶液中に徐々に滴下し、室温にて1時間撹拌した。そこに上記SiNセンサーチップを浸漬し、更に室温にて1時間撹拌した。 100 μl of 3-APTES ((3-Aminopropyl) triethoxysilane: manufactured by Shin-Etsu Chemical Co., Ltd.) was gradually dropped into a mixed solution of 9.5 ml ethanol and 0.5 ml of ultrapure water, and the mixture was allowed to stand at room temperature for 1 hour. Stir. The SiN sensor chip was immersed therein and further stirred at room temperature for 1 hour.
 このように処理したSiNセンサーチップを、エタノール、超純水で洗浄した後に、窒素ブローにより水滴を除去した後、乾燥器により80℃にて1時間乾燥を行った。こうして、SiNセンサーチップ表面へのアミノ基修飾を行った。 The SiN sensor chip thus treated was washed with ethanol and ultrapure water, and then water droplets were removed by nitrogen blowing, followed by drying at 80 ° C. for 1 hour with a dryer. In this way, amino group modification was performed on the surface of the SiN sensor chip.
 (工程2:SiNセンサーチップの表面ビオチン修飾)
 NHS-PEG4-Biotin(ThermoFisherScientific K.K.製)を200μg/mlになるよう、10mMホウ酸ナトリウムバッファー(pH8.5)10mlにて調製を行い、工程1によりアミノ基修飾を行ったセンサーチップを室温にて1時間浸漬し、表面へのビオチンの導入を行った。
(Step 2: Surface biotin modification of SiN sensor chip)
NHS-PEG4-Biotin (ThermoFisher Scientific KK) was prepared with 10 ml of 10 mM sodium borate buffer (pH 8.5) so as to be 200 μg / ml, and the sensor chip modified with amino group in step 1 was prepared. It was immersed for 1 hour at room temperature to introduce biotin onto the surface.
 (工程3:RIfS測定の準備)
 RIfS方式の分子間相互作用測定装置(MI-Affinity;コニカミノルタオプト(株)製)の電源を入れて光源が安定するまで約20分間待機した。また、工程2により作製したセンサーチップと、幅2.5mm×長さ16mm×深さ0.1mmの溝及びこの溝の両末端にそれぞれ直径1mmの貫通口を有するフローセル(コニカミノルタオプト(株)製)とをセットし、上記測定装置が備えているチップカバーを通してセンサーチップ上に液体を通過させる事が可能な状態にした。シリンジポンプ(Econoflo70-2205;Harvard Apparatus製)により、測定装置外部からPBSバッファー(pH7.4;ナカライテスク(株)製)を20μl/minの流量で20分間送液し、測定基準となる分光反射率が最小となる波長λ0(ベースライン)が約570nm付近で安定するのを確認した。
(Step 3: Preparation for RIfS measurement)
The RifS type intermolecular interaction measurement device (MI-Affinity; manufactured by Konica Minolta Opto) was turned on and waited for about 20 minutes until the light source was stabilized. In addition, the sensor chip manufactured in step 2, a groove having a width of 2.5 mm, a length of 16 mm, and a depth of 0.1 mm, and a flow cell having a through hole having a diameter of 1 mm at both ends of the groove (Konica Minolta Opto Co., Ltd.) The liquid was allowed to pass over the sensor chip through the chip cover provided in the measuring device. Using a syringe pump (Econoflo 70-2205; manufactured by Harvard Apparatus), PBS buffer (pH 7.4; manufactured by Nacalai Tesque Co., Ltd.) is fed from the outside of the measuring apparatus at a flow rate of 20 μl / min for 20 minutes, and spectral reflection as a measurement standard It was confirmed that the wavelength λ 0 (baseline) at which the rate is minimum is stable in the vicinity of about 570 nm.
 (工程4:RIfS方式による一次抗体と抗原との抗原抗体反応)
 工程3により、測定準備を完了したセンサーチップに対して、上記測定装置が備えているインジェクターを通して、NeutrAvidin(ThermoFisherScientific K.K.製)を、上記PBSバッファーを用いて100μg/mlに調製したサンプルを導入した。続いて、一次抗体としてビオチン化抗αフェトプロテイン(AFP)抗体(clone1D5;ミクリ免疫研究所(株)製)を、上記PBSバッファーを用いて10μg/mlに調製したサンプルを導入した。続いて抗原としてAFP(AcrisAntibodiesGmbH製)を、上記PBSバッファーを用いて10μg/mlに調製したサンプルを導入した。抗原を導入した後のボトムピーク波長をλ1'とした。
(Step 4: Antigen-antibody reaction between primary antibody and antigen by RIfS method)
A sample prepared by adjusting NeutrAvidin (manufactured by ThermoFisher Scientific KK) to 100 μg / ml using the PBS buffer is passed through the injector provided in the measuring device to the sensor chip that has been prepared for measurement in step 3. Introduced. Subsequently, a sample prepared by using a biotinylated anti-α-fetoprotein (AFP) antibody (clone 1D5; manufactured by Mikuli Immuno Laboratory Co., Ltd.) as a primary antibody at 10 μg / ml using the PBS buffer was introduced. Subsequently, AFP (manufactured by Acris Antibodies GmbH) as an antigen and a sample prepared at 10 μg / ml using the PBS buffer were introduced. The bottom peak wavelength after introducing the antigen was λ 1 ′ .
 (工程5:RIfS方式による抗原と二次抗体の抗原抗体反応)
 工程4に引き続き、二次抗体として抗AFP抗体(clone6D2;ミクリ免疫研究所(株)製)をそれぞれAlexa Fluor 488 Monoclonal Antibody Labeling Kit(Invitrogen製、最大蛍光波長λf=515nm)を利用して各種蛍光色素を修飾した抗体4サンプルを調製した。調製した抗体に対して上記PBSバッファーを用いて10μg/mlに調製した各サンプルを導入した。蛍光色素標識二次抗体を導入した後のボトムピーク波長をλ1とした。λ1とλ0の差をΔλとして二次抗体導入によるボトムピーク波長変化量を測定した。
(Step 5: Antigen-antibody reaction between antigen and secondary antibody by RIfS method)
Subsequent to step 4, various anti-AFP antibodies (clone 6D2; manufactured by Mikuri Immuno Laboratory Co., Ltd.) are used as secondary antibodies using Alexa Fluor 488 Monoclonal Antibody Labeling Kit (manufactured by Invitrogen, maximum fluorescence wavelength λ f = 515 nm). Four samples of antibodies modified with a fluorescent dye were prepared. Each sample prepared to 10 μg / ml using the above PBS buffer was introduced into the prepared antibody. The bottom peak wavelength after the introduction of the fluorochrome-labeled secondary antibody was lambda 1. The amount of change in the bottom peak wavelength due to the introduction of the secondary antibody was measured with Δλ being the difference between λ 1 and λ 0 .
 [実施例2]
 上記工程5に変えて、下記工程5´を行うように変更した以外は実施例1と同様にRIfS方式による抗原抗体反応の検出を行った。
 (工程5´:RIfS方式による抗原と二次抗体の抗原抗体反応)
 工程4に引き続き、二次抗体として抗AFP抗体(clone6D2;ミクリ免疫研究所(株)製)をそれぞれAlexa Fluor 555 Monoclonal Antibody Labeling Kit(Invitrogen製、最大蛍光波長λf=565nm)を利用して各種蛍光色素を修飾した抗体4サンプルを調製した。調製した抗体に対して上記PBSバッファーを用いて10μg/mlに調製した各サンプルを導入した。蛍光色素標識二次抗体を導入した後のボトムピーク波長をλ1とした。λ1とλ0の差をΔλとして二次抗体導入によるボトムピーク波長変化量を測定した。
[Example 2]
The antigen-antibody reaction was detected by the RIfS method in the same manner as in Example 1 except that the step 5 ′ was changed to the step 5 ′.
(Step 5 ': Antigen-antibody reaction of antigen and secondary antibody by RIfS method)
Subsequent to step 4, various anti-AFP antibodies (clone 6D2; manufactured by Mikuli Immuno Laboratory Co., Ltd.) are used as secondary antibodies using Alexa Fluor 555 Monoclonal Antibody Labeling Kit (manufactured by Invitrogen, maximum fluorescence wavelength λ f = 565 nm). Four samples of antibodies modified with a fluorescent dye were prepared. Each sample prepared to 10 μg / ml using the above PBS buffer was introduced into the prepared antibody. The bottom peak wavelength after the introduction of the fluorochrome-labeled secondary antibody was lambda 1. The amount of change in the bottom peak wavelength due to the introduction of the secondary antibody was measured with Δλ being the difference between λ 1 and λ 0 .
 [実施例3] 
 上記工程5に変えて、下記工程5´を行うように変更した以外は実施例1と同様にRIfS方式による抗原抗体反応の検出を行った。
 (工程5´:RIfS方式による抗原と二次抗体の抗原抗体反応)
 工程4に引き続き、二次抗体として抗AFP抗体(clone6D2;ミクリ免疫研究所(株)製)をそれぞれAlexa Fluor 594 Monoclonal Antibody Labeling Kit(Invitrogen製、最大蛍光波長λf=617nm)を利用して各種蛍光色素を修飾した抗体4サンプルを調製した。調製した抗体に対して上記PBSバッファーを用いて10μg/mlに調製した各サンプルを導入した。蛍光色素標識二次抗体を導入した後のボトムピーク波長をλ1とした。λ1とλ0の差をΔλとして二次抗体導入によるボトムピーク波長変化量を測定した。
 [実施例4]
[Example 3]
The antigen-antibody reaction was detected by the RIfS method in the same manner as in Example 1 except that the step 5 ′ was changed to the step 5 ′.
(Step 5 ': Antigen-antibody reaction of antigen and secondary antibody by RIfS method)
Subsequent to step 4, various anti-AFP antibodies (clone 6D2; manufactured by Mikuli Immuno Laboratory Co., Ltd.) are used as secondary antibodies using Alexa Fluor 594 Monoclonal Antibody Labeling Kit (manufactured by Invitrogen, maximum fluorescence wavelength λ f = 617 nm). Four samples of antibodies modified with a fluorescent dye were prepared. Each sample prepared to 10 μg / ml using the above PBS buffer was introduced into the prepared antibody. The bottom peak wavelength after the introduction of the fluorochrome-labeled secondary antibody was lambda 1. The amount of change in the bottom peak wavelength due to the introduction of the secondary antibody was measured with Δλ being the difference between λ 1 and λ 0 .
[Example 4]
 上記工程5に変えて、下記工程5´を行うように変更した以外は実施例1と同様にRIfS方式による抗原抗体反応の検出を行った。
 (工程5´:RIfS方式による抗原と二次抗体の抗原抗体反応)
 工程4に引き続き、二次抗体として抗AFP抗体(clone6D2;ミクリ免疫研究所(株)製)をそれぞれAlexa Fluor 647 Monoclonal Antibody Labeling Kit(Invitrogen製、最大蛍光波長λf=665nm)を利用して各種蛍光色素を修飾した抗体4サンプルを調製した。調製した抗体に対して上記PBSバッファーを用いて10μg/mlに調製した各サンプルを導入した。蛍光色素標識二次抗体を導入した後のボトムピーク波長をλ1とした。λ1とλ0の差をΔλとして二次抗体導入によるボトムピーク波長変化量を測定した。
The antigen-antibody reaction was detected by the RIfS method in the same manner as in Example 1 except that the step 5 ′ was changed to the step 5 ′.
(Step 5 ': Antigen-antibody reaction of antigen and secondary antibody by RIfS method)
Subsequent to step 4, various anti-AFP antibodies (clone 6D2; manufactured by Mikuli Immuno Laboratory Co., Ltd.) are used as secondary antibodies using Alexa Fluor 647 Monoclonal Antibody Labeling Kit (manufactured by Invitrogen, maximum fluorescence wavelength λ f = 665 nm). Four samples of antibodies modified with a fluorescent dye were prepared. Each sample prepared to 10 μg / ml using the above PBS buffer was introduced into the prepared antibody. The bottom peak wavelength after the introduction of the fluorochrome-labeled secondary antibody was lambda 1. The amount of change in the bottom peak wavelength due to the introduction of the secondary antibody was measured with Δλ being the difference between λ 1 and λ 0 .
 [比較例1]
 上記工程4を終えた時点で、従来の抗原抗体反応のみによるボトムピーク波長変化量(λ1'とλ0の差)Δλ'を測定した。
[Comparative Example 1]
When step 4 was completed, the bottom peak wavelength change amount (difference between λ 1 ′ and λ 0 ) Δλ ′ due to the conventional antigen-antibody reaction alone was measured.
 [比較例2]
 上記工程5に変えて、下記工程5´を行うように変更した以外は実施例1と同様にRIfS方式による抗原抗体反応の検出を行った。
[Comparative Example 2]
The antigen-antibody reaction was detected by the RIfS method in the same manner as in Example 1 except that the step 5 ′ was changed to the step 5 ′.
 (工程5´:RIfS方式による抗原と二次抗体の抗原抗体反応)
 工程4に引き続き、二次抗体として抗AFP抗体(clone6D2;ミクリ免疫研究所(株)製)を前記PBSバッファーを用いて10μg/mlに調製した溶液を導入した。二次抗体を導入した後のボトムピーク波長をλ1とした。λ1とλ0の差をΔλとして二次抗体導入によるボトムピーク波長変化量を測定した。
(Step 5 ': Antigen-antibody reaction of antigen and secondary antibody by RIfS method)
Subsequent to step 4, an anti-AFP antibody (clone 6D2; manufactured by Mikuli Immuno Laboratory Co., Ltd.) as a secondary antibody was introduced to a concentration of 10 μg / ml using the PBS buffer. The bottom peak wavelength after the introduction of the secondary antibody with lambda 1. The amount of change in the bottom peak wavelength due to the introduction of the secondary antibody was measured with Δλ being the difference between λ 1 and λ 0 .
 RIfS方式を利用して測定した、実施例1~4および比較例2におけるΔλ(λ1-λ0)の値および比較例1におけるΔλ'(λ1'-λ0)の値、ならびにボトムピーク波長の検出値の安定性の指標として、前者ではλ1検出時の二次抗体導入後、後者ではλ1'検出時の抗原導入後、それぞれ反応が平衡状態に達した後に継続的に検出を行った際の、連続して検出されるボトムピーク波長の値50点の標準偏差を算出した結果(ベースラインの安定性)とを表1に示した。 The value of Δλ (λ 10 ) in Examples 1 to 4 and Comparative Example 2, the value of Δλ ′ (λ 1 ′0 ) in Comparative Example 1, and the bottom peak measured using the RIfS method As an indicator of the stability of the detection value of the wavelength, the former is followed by the secondary antibody introduction at the time of λ 1 detection, and the latter is introduced after the antigen introduction at the time of λ 1 ′ detection, after the reaction reaches an equilibrium state. Table 1 shows the results (baseline stability) of calculating the standard deviation of the 50 continuously detected bottom peak wavelength values.
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、SiNにリガンドを何も付けていない状態のRIfSボトムピーク波長(570nm)に対して、蛍光色素の最大蛍光波長(λf)とボトムピーク波長(λ0)の差が0nm<(λ0-λf)≦100nmの関係式を満たすAlexa488,Alexa555による標識を行うことで、RIfSシステムが蛍光と反射光との両方を含む測定光のスペクトルを測定するので、蛍光色素のスペクトルが測定対象の反射スペクトルを長波長側に押しやるように作用し、結果的にボトムピーク波長の変化が誇張され、Δλが大きく観察されている(実施例1、実施例2)。特に、SiNのボトムピーク波長に最も近い555nmの蛍光色素は最も効果が高い。また、蛍光色素が反射率のボトムピーク付近のスペクトルが急峻になることで、ボトムピーク波長が安定して検出しやすくなるため、ベースラインの安定性も増すものと思われる。一方、最大蛍光波長(λf)がボトムピーク波長(λ0)よりも長波長側にある蛍光色素を用いた場合は、最大蛍光波長(λf)がボトムピーク波長(λ0)よりも短波長にある蛍光色素を用いた場合ほどではないが、ボトムピーク波長の変化幅Δλが蛍光色素を用いない場合に比べて大きくなっている。もちろん、従来のRIfSの使用法である、比較例1に示したような固相化した抗体に対する抗原との反応のみを検出するよりも有効であることは明らかである。
Figure JPOXMLDOC01-appb-T000001
From the results of Table 1, the difference between the maximum fluorescence wavelength (λ f ) and the bottom peak wavelength (λ 0 ) of the fluorescent dye is 0 nm with respect to the RIfS bottom peak wavelength (570 nm) in a state where no ligand is attached to SiN. <By labeling with Alexa 488 and Alexa 555 satisfying the relational expression of <(λ 0 −λ f ) ≦ 100 nm, the RIfS system measures the spectrum of the measurement light including both fluorescence and reflected light. Acts to push the reflection spectrum of the measurement object to the longer wavelength side, and as a result, the change in the bottom peak wavelength is exaggerated and Δλ is observed to be large (Example 1, Example 2). In particular, a 555 nm fluorescent dye closest to the bottom peak wavelength of SiN is most effective. Moreover, since the spectrum near the bottom peak of the reflectance of the fluorescent dye becomes steep, the bottom peak wavelength becomes stable and easy to detect, so that the stability of the baseline is also expected to increase. On the other hand, when the maximum fluorescence wavelength (lambda f) was used fluorescent dye with the longer wavelength side than the bottom peak wavelength (lambda 0), the maximum fluorescence wavelength (lambda f) is a bottom peak wavelength (lambda 0) shorter than Although not as much as when a fluorescent dye having a wavelength is used, the change width Δλ of the bottom peak wavelength is larger than that when no fluorescent dye is used. Of course, it is clear that this is more effective than detecting only the reaction with the antigen against the immobilized antibody as shown in Comparative Example 1, which is a conventional method of using RIfS.
  1  検出装置
 10  検出部材
 12  センサーチップ
 12a シリコン基板
 12b SiN(窒化シリコン)膜
 14  フローセル
 14a 溝
 14b 密閉流路
 14c 流入口
 14d 流出口
 16  リガンド
 20  白色光源
 30  分光器
 40  光伝達部
 41  第一の光ファイバ
 42  第二の光ファイバ
 50  制御装置
 60  水溶液
 62  アナライト
100  検出部材
102  基板
104  光学薄膜
112  光学的厚さ
120  リガンド
130  アナライト
200  蛍光色素
230  蛍光標識アナライト
240  蛍光標識リガンド
106  分光強度(基準光)
108  分光強度(反射光)
110  反射スペクトル(図3(A)の状態)
122  反射スペクトル(図3(B)の状態)
132  反射スペクトル(図3(C)の状態)
140  第1のショルダー部
142  第2のショルダー部
 72  反射スペクトル
 81  工程1で得られる分光スペクトル
 82  工程2で得られる分光スペクトル
DESCRIPTION OF SYMBOLS 1 Detection apparatus 10 Detection member 12 Sensor chip 12a Silicon substrate 12b SiN (silicon nitride) film | membrane 14 Flow cell 14a Groove 14b Sealed flow path 14c Inlet 14d Outlet 16 Ligand 20 White light source 30 Spectroscope 40 Light transmission part 41 First light Fiber 42 second optical fiber 50 controller 60 aqueous solution 62 analyte 100 detection member 102 substrate 104 optical thin film 112 optical thickness 120 ligand 130 analyte 200 fluorescent dye 230 fluorescent label analyte 240 fluorescent label ligand 106 spectral intensity (reference) light)
108 Spectral intensity (reflected light)
110 Reflection spectrum (state of FIG. 3A)
122 Reflection spectrum (state of FIG. 3B)
132 Reflection spectrum (state of FIG. 3C)
140 First shoulder portion 142 Second shoulder portion 72 Reflection spectrum 81 Spectral spectrum obtained in step 1 82 Spectral spectrum obtained in step 2

Claims (6)

  1.  光学薄膜上にリガンドを有する検出部材と、所定の波長域にわたって分布する光を発光する光源と、受光する光の分光強度を検出する分光器と、前記光源から前記検出部材に光を伝達する第一の光伝達経路と前記検出部材から前記分光器に前記光源からの光を伝達する第二の光伝達経路を有する光伝達部とを備える検出装置を用い、
     前記第一及び第二の光伝達経路により、前記光源からの光を前記検出部材に伝達し前記検出部材を介して光を受光してその分光強度を前記分光器で測定し、算出される分光強度分布のボトムピーク波長の変化によって、前記リガンドとアナライトとの分子間相互作用を検出する方法であって、
     前記リガンドとアナライトとの複合体が形成されていない状態における分光強度分布のボトムピーク波長(λ0)を算出する工程、および
     前記リガンドと、前記ボトムピーク波長(λ0)前後の波長域における分光強度分布の谷部に重なるように最大蛍光波長(λf)を有する蛍光色素と、アナライトとの複合体が形成された状態における分光強度分布のボトムピーク波長(λ1)を算出する工程
     を含むことを特徴とする、分子間相互作用の検出方法。
    A detection member having a ligand on the optical thin film; a light source that emits light distributed over a predetermined wavelength range; a spectroscope that detects a spectral intensity of the received light; and a light source that transmits light from the light source to the detection member. Using a detection device comprising one light transmission path and a light transmission unit having a second light transmission path for transmitting light from the light source from the detection member to the spectrometer,
    Spectroscopy calculated by transmitting light from the light source to the detection member through the first and second light transmission paths, receiving light through the detection member, measuring the spectral intensity with the spectroscope, and the like. A method for detecting an intermolecular interaction between the ligand and the analyte by changing a bottom peak wavelength of an intensity distribution,
    Calculating a bottom peak wavelength (λ 0 ) of a spectral intensity distribution in a state where a complex of the ligand and the analyte is not formed; and in a wavelength region around the ligand and the bottom peak wavelength (λ 0 ) A step of calculating the bottom peak wavelength (λ 1 ) of the spectral intensity distribution in a state in which the complex of the fluorescent dye having the maximum fluorescence wavelength (λ f ) and the analyte is formed so as to overlap the valley of the spectral intensity distribution A method for detecting an intermolecular interaction, comprising:
  2.  前記複合体が、前記リガンドに、前記蛍光色素で標識されたアナライトが結合することにより形成される、請求項1に記載の分子間相互作用の検出方法。 The method for detecting an intermolecular interaction according to claim 1, wherein the complex is formed by binding an analyte labeled with the fluorescent dye to the ligand.
  3.  前記複合体が、前記リガンドに前記アナライトが結合した後、さらに前記アナライトに前記蛍光色素で標識されたリガンドが結合することにより形成される、請求項1に記載の分子間相互作用の検出方法。 The detection of an intermolecular interaction according to claim 1, wherein the complex is formed by binding of the analyte to the ligand and further binding of the ligand labeled with the fluorescent dye to the analyte. Method.
  4.  前記蛍光色素は、前記ボトムピーク波長(λ0)よりも短波長側に最大蛍光波長(λf)を有するものである請求項1~3のいずれか一項に記載の分子間相互作用の検出方法。 The detection of an intermolecular interaction according to any one of claims 1 to 3, wherein the fluorescent dye has a maximum fluorescence wavelength (λ f ) on a shorter wavelength side than the bottom peak wavelength (λ 0 ). Method.
  5.  前記蛍光色素の最大蛍光波長(λf)と前記ボトムピーク波長(λ0)の差Δλf(=λ0-λf)が0nm<Δλf≦100nmの関係を満たす、請求項4に記載の分子間相互作用の検出方法。 The difference Δλ f (= λ 0 −λ f ) between the maximum fluorescence wavelength (λ f ) and the bottom peak wavelength (λ 0 ) of the fluorescent dye satisfies the relationship of 0 nm <Δλ f ≦ 100 nm. Method for detecting intermolecular interactions.
  6.  少なくとも、前記リガンドを有する検出部材を作製するための構成部材と、前記蛍光色素とを含むことを特徴とする、請求項1~5のいずれかに一項に記載の分子間相互作用の検出方法のために使用されるキット。 The method for detecting an intermolecular interaction according to any one of claims 1 to 5, comprising at least a constituent member for producing a detection member having the ligand and the fluorescent dye. Kit used for.
PCT/JP2011/072947 2011-01-12 2011-10-05 Method for detecting intermolecular interaction, and kit for use therein WO2012096037A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012552628A JPWO2012096037A1 (en) 2011-01-12 2011-10-05 Method for detecting intermolecular interaction and kit used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011003851 2011-01-12
JP2011-003851 2011-01-12

Publications (1)

Publication Number Publication Date
WO2012096037A1 true WO2012096037A1 (en) 2012-07-19

Family

ID=46506954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072947 WO2012096037A1 (en) 2011-01-12 2011-10-05 Method for detecting intermolecular interaction, and kit for use therein

Country Status (2)

Country Link
JP (1) JPWO2012096037A1 (en)
WO (1) WO2012096037A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046156A1 (en) * 2012-09-24 2014-03-27 コニカミノルタ株式会社 Method for measuring intermolecular interaction, method for measuring optical film thickness, measurement system, and measurement program
JP2016031317A (en) * 2014-07-29 2016-03-07 シスメックス株式会社 Determination device, determination program, and determination method of type of target peptide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307141A (en) * 1997-04-14 1998-11-17 Boehringer Mannheim Gmbh Method for simultaneously detecting mutual reaction of organism molecule using plasmon resonance and fluorescent detection
JP2004518124A (en) * 2001-01-19 2004-06-17 マサチユセツツ・インスチチユート・オブ・テクノロジイ Fluorescence, reflectance and light scattering spectroscopic systems and methods for measuring tissue characteristics
JP3786073B2 (en) * 2002-10-10 2006-06-14 株式会社日立製作所 Biochemical sensor kit and measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307141A (en) * 1997-04-14 1998-11-17 Boehringer Mannheim Gmbh Method for simultaneously detecting mutual reaction of organism molecule using plasmon resonance and fluorescent detection
JP2004518124A (en) * 2001-01-19 2004-06-17 マサチユセツツ・インスチチユート・オブ・テクノロジイ Fluorescence, reflectance and light scattering spectroscopic systems and methods for measuring tissue characteristics
JP3786073B2 (en) * 2002-10-10 2006-06-14 株式会社日立製作所 Biochemical sensor kit and measuring device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JULIA RENTZ DUPUIS ET AL.: "Hyperspectral Fourier transform spectrometer for reflection spectroscopy and spectral self-interference fluorescence microscopy", APPLIED OPTICS, vol. 47, no. 9, 2008, pages 1223 - 1234 *
LEV MOISEEV ET AL.: "DNA conformation on surfaces measured by fluorescence self- interference", PNAS, vol. 103, no. 8, 2006, pages 2623 - 2628 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046156A1 (en) * 2012-09-24 2014-03-27 コニカミノルタ株式会社 Method for measuring intermolecular interaction, method for measuring optical film thickness, measurement system, and measurement program
JP2016031317A (en) * 2014-07-29 2016-03-07 シスメックス株式会社 Determination device, determination program, and determination method of type of target peptide

Also Published As

Publication number Publication date
JPWO2012096037A1 (en) 2014-06-09

Similar Documents

Publication Publication Date Title
Gohring et al. Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor
FI76432C (en) Method and apparatus for determining elements in solution with a light conductor
US6274872B1 (en) Process and device for carrying out quantitative, fluorescence affinity tests
US8804125B2 (en) Detection method for intermolecular interaction and detection device thereof
US5340715A (en) Multiple surface evanescent wave sensor with a reference
US4368047A (en) Process for conducting fluorescence immunoassays without added labels and employing attenuated internal reflection
EP0184600A1 (en) Method for optically ascertaining parameters of species in a liquid analyte
AU2015236470B2 (en) Bioassay system and method for detecting analytes in body fluids
Sinibaldi et al. Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves
HUT76406A (en) Process for detecting evanescently excited luminescence
AU2009255777A1 (en) Concentration assay
Rizzo et al. Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices
JP2007501403A (en) Optical fiber array biochip based on spectral change rule of white light reflection interference
EP2653853A1 (en) Intermolecular interaction measurement method, measurement system for use in the method, and program
Angelopoulou et al. Directly immersible silicon photonic probes: Application to rapid SARS-CoV-2 serological testing
CN107430123B (en) Method for detecting analyte-ligand binding on a sensor surface
WO2012096037A1 (en) Method for detecting intermolecular interaction, and kit for use therein
JP2013509569A (en) A method for directly measuring molecular interactions by detecting light reflected from multilayer functionalized dielectrics
JP2004125748A (en) Sensor
WO2023178432A1 (en) Optical analysis on digital microfluidic (dmf) cartridges
JP5459143B2 (en) Method for correcting fluorescence signal measured by SPFS (surface plasmon excitation enhanced fluorescence spectroscopy), assay method using the same, structure used in these methods, and surface plasmon resonance sensor
TWI545313B (en) Method for measuring real-time kinetics of chemical reactions
Petrou et al. Interferometry-Based Immunoassays
JP2014106215A (en) Sensor chip and measuring apparatus
JP5565125B2 (en) SPFS (surface plasmon excitation enhanced fluorescence spectroscopy) or measurement method using the same, and surface plasmon resonance sensor for the measurement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012552628

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855611

Country of ref document: EP

Kind code of ref document: A1