WO2012094869A1 - 多频段发射信号的生成方法及装置 - Google Patents

多频段发射信号的生成方法及装置 Download PDF

Info

Publication number
WO2012094869A1
WO2012094869A1 PCT/CN2011/075814 CN2011075814W WO2012094869A1 WO 2012094869 A1 WO2012094869 A1 WO 2012094869A1 CN 2011075814 W CN2011075814 W CN 2011075814W WO 2012094869 A1 WO2012094869 A1 WO 2012094869A1
Authority
WO
WIPO (PCT)
Prior art keywords
signals
band
signal
frequency bands
digital baseband
Prior art date
Application number
PCT/CN2011/075814
Other languages
English (en)
French (fr)
Inventor
黄旭
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110008527.5A external-priority patent/CN102594744B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012094869A1 publication Critical patent/WO2012094869A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4917Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for generating a multi-band transmit signal.
  • the following two methods are generally used: (1) a wideband single-to-digital converter (DAC) for outputting a wide-band baseband signal + direct up-conversion; (2) Narrowband multi-DAC output baseband signal + IF mixing + RF mixing.
  • DAC wideband single-to-digital converter
  • Narrowband multi-DAC output baseband signal + IF mixing + RF mixing the above method has its inherent drawbacks.
  • the wideband DAC in mode (1) is not conducive to miniaturization and power saving performance of mobile terminals in the scenario of coping with large bandwidth; mode (2) is added on the signal link.
  • the low-IF mixing module has a degrading effect on the signal-to-noise ratio of the resulting signal and increases product power consumption.
  • a main object of the present invention is to provide a multi-band transmission signal generation scheme to solve at least the problem that the multi-band signal synthesis method in the related art is disadvantageous to miniaturization of the mobile terminal and high power consumption and cost.
  • a method of generating a multi-band transmission signal includes the following steps: passing a plurality of digital baseband target signals through a set of channels consisting of PAM and BPF to obtain multiple signals in different frequency bands; The signals are added together to generate a multi-band transmit signal.
  • the plurality of digital baseband target signals are respectively passed through a group of channels consisting of PAM and BPF, and the plurality of signals of different frequency bands are obtained: converting the plurality of digital baseband target signals into the plurality of analog pulses through the PAM of the channel respectively
  • the amplitude modulation signal is then filtered by a plurality of analog pulse amplitude modulation signals through a plurality of BPFs having different center frequencies to obtain multiple signals in different frequency bands.
  • the frequency of the plurality of analog pulse amplitude modulated signals is controlled by a phase locked loop clock distribution circuit.
  • the method before adding the multiple signals of different frequency bands together to generate the multi-band transmission signal, the method further includes: pre-correcting the signals of the respective frequency bands to maintain the energy balance of the signals of the respective channels.
  • the sample rate of each of the plurality of digital baseband target signals is less than or equal to the frequency of the pulse signal of the PAM output corresponding thereto.
  • adding a plurality of signals of different frequency bands together to generate a multi-band transmission signal comprises: directly connecting a plurality of signals of different frequency bands through a microstrip line to generate a multi-band transmission signal.
  • the plurality of digital baseband target signals maintain a time reference consistent.
  • the bandwidth of the multi-band transmit signal is the sum of the bandwidths of the plurality of digital baseband target signals.
  • a multi-band transmission signal generating apparatus includes: a generating module configured to respectively pass a plurality of digital baseband target signals through a set of channels consisting of a PAM and a BPF to obtain a plurality of signals in different frequency bands; , is set to add multiple signals of different frequency bands together to synthesize multi-band transmit signals.
  • the generating module is further configured to convert the plurality of digital baseband target signals into a plurality of analog pulse amplitude modulation signals respectively through the PAM of the channel, and then filter the plurality of analog pulse amplitude modulation signals through a plurality of BPFs having different center frequencies to obtain Multiple signals in different frequency bands.
  • the method for synthesizing multi-band signals in the related art is disadvantageous to miniaturization of mobile terminals and power consumption and cost by using a plurality of digital baseband target signals respectively through a channel composed of PAM and BPF. Higher problems increase the signal-to-noise ratio and resource utilization of the composite signal.
  • FIG. 2 is a block diagram showing a structure of a multi-band transmit signal generating apparatus according to an embodiment of the present invention
  • a method for generating a multi-band transmit signal is provided.
  • 1 is a flowchart of a method for generating a multi-band transmit signal according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps: Step S102: Passing a plurality of digital baseband target signals respectively through a group Pulse amplitude modulator
  • Step S104 add multiple signals in different frequency bands together, Generate multi-band transmit signals.
  • PAM Pulse Amplitude Modulation
  • BPF band pass filter
  • a plurality of digital baseband target signals can be converted into a plurality of analog pulse amplitude modulation signals through PAMs of the channels thereof, and then the plurality of analog pulse amplitude modulation signals are filtered by a plurality of BPFs having different center frequencies. , get multiple signals in different frequency bands.
  • step S102 four digital baseband target signals are respectively passed through four groups by PAM and
  • each of the four digital baseband target signals needs to be converted into an analog modulated signal through the PAM in the channel, and then filtered by the BPF.
  • the center frequencies of the four BPFs in the four channels are different, so that after the synthesis, the transmission signals of the four frequency bands can be obtained.
  • the frequency of the plurality of analog pulse amplitude modulation signals is controlled by a Phase-Locked Loop (PLL) clock distribution circuit.
  • PLL Phase-Locked Loop
  • the method can make the signals in the system orderly and beat consistent, and improve the accuracy of the multi-band transmission signal.
  • the signals of the respective frequency bands may be pre-corrected separately to maintain the energy balance of the signals of the respective channels.
  • This method can ensure the energy balance of each channel signal (ie, the signal of each frequency band that synthesizes the multi-band transmitted signal). For example, in step S102, when four digital baseband target signals are respectively passed through four channels composed of PAM and BPF, in order to ensure energy balance of signals in the four channels, each of the four channels is required. The signal energy is pre-corrected. Preferably, the sample rate of each of the plurality of digital baseband target signals is less than or equal to the frequency of the pulse signal of the PAM output corresponding thereto. The method can ensure that the digital baseband target signal is not distorted after passing through the PAM, which is beneficial to improve the accuracy of the system.
  • step S104 multiple signals of different frequency bands are directly connected through the microstrip line to generate a multi-band transmission signal.
  • the method is simple and practical, and has high operability.
  • the plurality of digital baseband target signals maintain time references consistent. This method can improve the effectiveness of the system.
  • the bandwidth of the multi-band transmit signal is the sum of the bandwidths of the plurality of digital baseband target signals.
  • the bandwidths of the two digital baseband target signals are respectively Band1 and Band2
  • the bandwidth of the multi-band transmission signal generated after step S104 is "Bandl+Band2,".
  • the PAM and the BPF are used instead of the correlation.
  • the DAC and the IF frequency conversion unit realize the purpose of synthesizing the multi-band transmission signal, and improve the signal-to-noise ratio of the transmitted signal.
  • the embodiment of the present invention also provides a multi-band transmission signal generation.
  • 2 is a block diagram showing a structure of a multi-band transmission signal generating apparatus according to an embodiment of the present invention.
  • the apparatus 20 includes: a generating module 22 coupled to the synthesizing module 24 and configured to set a plurality of digital basebands.
  • the target signal passes through a set of channels consisting of PAM and BPF, respectively.
  • a synthesizing module 24 configured to add together multiple signals of different frequency bands to synthesize a multi-band transmit signal.
  • the generating module 22 respectively passes the plurality of digital baseband target signals through a set of channels composed of PAM and BPF to obtain multiple signals of different frequency bands, and the synthesizing module 24 synthesizes multiple signals of different frequency bands.
  • the method of transmitting signals in the frequency band solves the problem that the multi-band signal synthesis method in the related art is not conducive to miniaturization of the mobile terminal and high power consumption and cost, and improves the signal-to-noise ratio and resource utilization ratio of the synthesized signal.
  • the generating module 22 is further configured to convert the plurality of digital baseband target signals into a plurality of analog pulse amplitude modulation signals through the PAM of the channel, and then filter the plurality of analog pulse amplitude modulation signals through a plurality of BPFs having different center frequencies. Get multiple signals in different frequency bands.
  • the implementation process of the above embodiment will be described in detail below in conjunction with the preferred embodiments and the accompanying drawings.
  • the preferred embodiment provides a multi-band transmission signal synthesizing device, which includes a baseband processor (BBP), an adder (ADD), and a phase-locked loop clock distribution (PLL Clock Distribution). Circuitry and multiple sets of circuits consisting of PAM and BPF.
  • BBP baseband processor
  • ADD adder
  • PLL Clock Distribution phase-locked loop clock distribution
  • FIG. 3 is a schematic structural diagram of a multi-band transmission signal synthesizing apparatus according to a preferred embodiment of the present invention.
  • the three-channel small-band signal is aggregated into one wide-band signal as an example, and the method for synthesizing the multi-band transmission signal in this embodiment is performed. A simple description.
  • Bl[n], B2[n], and B3[n] represent the baseband signals to be transmitted, respectively, with a certain bandwidth, and the center frequency is 0 frequency;
  • Pl(t), P2(t ), P3(t) represents a pulse amplitude modulation signal (ie, the amplitude of each pulse varies with the amplitude of the previously input baseband signal), and the waveform P(t) of a single pulse can be implemented according to actual circuits (for example, It can be a rectangular function, or a triangular wave function, etc.;
  • fl ( t ), f2 ( t ), ⁇ ( t ) represent band-pass signals with center frequencies of fl, f2, and ⁇ ; Cl, C2, and C3 represent PAM operation.
  • the method for synthesizing the multi-band transmit signal of the preferred embodiment may include the following steps: Step 1. After the BBP processes the signal, obtain a baseband representation of the target signal, and store the data in the BBP memory in the form of a digital signal. in. Among them, BBP is connected to the PAM through a digital interface. Step 2: The PAM receives the digital information transmitted by the BBP through the digital interface (ie, the digital baseband target signal), and converts the received digital baseband signal into an analog pulse amplitude modulated signal (ie, the output pulse amplitude is proportional to the digital baseband signal) Amplitude).
  • Step 1 After the BBP processes the signal, obtain a baseband representation of the target signal, and store the data in the BBP memory in the form of a digital signal. in. Among them, BBP is connected to the PAM through a digital interface.
  • Step 2 The PAM receives the digital information transmitted by the BBP through the digital interface (ie, the digital baseband target signal), and converts the received
  • the PAM first interpolates the digital baseband signal input by the BBP by S P1 and then performs the S B1 extraction process.
  • the digital baseband signal B1[n] having the sample rate S B1 is changed to the sample rate S P digital baseband signal Bzl[n].
  • the frequency of the PAM output pulse signals P1, P2(t), P3(t) is controlled by a phase locked loop clock distribution circuit. For example, a phase lock loop (PLL) clock generation module is provided. 3 ⁇ 4.
  • Step 4 Before outputting the digital baseband signal, the BBP pre-corrects the signals of each frequency band by using the envelope of the PAM output pulse function to ensure the energy balance of the signals of each channel.
  • the pulse function is a rectangular function whose spectrum is sine (Singer function)
  • the weighting factors for the signals on the three frequency bands are: Sinc(fl), sine ( ⁇ 2 ), sine ( ⁇ )## It should be noted that this weighting operation can be performed in ⁇ , resulting in Bl/sinc( fl ), B2/sinc(f2), B3/sinc(fi), or in PAM.
  • Pl/sinc (fl), P2/sinc(f2), P3/sinc(G) are generated, or after BPF. This can be done as appropriate, in short, it can be calibrated somewhere in the link.
  • the three outputs of BBP should be aligned in time to ensure the phase consistency of each signal. For example, the time reference of each digital signal output by BBP should be the same.
  • Step 5 The PAM module outputs the amplitude modulation pulse signal and transmits it to the BPF.
  • the center frequencies of the BPFs in Figure 3 are fl, f2, and ⁇ , respectively, and the parameters such as bandwidth (generally 3db bandwidth), in-band ripple, and out-of-band rejection can be flexibly selected according to the requirements of the specific communication system.
  • Step 6 The outputs of the BPF are added together (for example, directly connected through the microstrip line), that is, a synthesized multi-band signal S is formed, and the bandwidth of the signal is the sum of the bandwidths of the signals of the three small frequency bands B1, B2, and B3. . Thereafter, the synthesized multi-band signal S can be used for conventional subsequent operations such as amplification, up-conversion, and the like.
  • the embodiments of the present invention provide a method for synthesizing a multi-band uplink transmission signal in a wireless communication system, which generates a discrete pulse signal of a specific frequency and directly generates a band pass filter on the target frequency.
  • the multi-band signal can save the low-IF frequency conversion unit and the low-pass filter, and improve the signal-to-noise ratio of the multi-band transmission signal.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Abstract

本发明公开了一种多频段发射信号的生成方法及装置,该方法包括以下步骤:将多个数字基带目标信号分别通过一组由脉冲幅度调制器和带通滤波器组成的通道,得到不同频段的多个信号;将不同频段的多个信号加在一起,生成多频段发射信号。通过本发明提高了合成信号的信噪比和资源利用率。

Description

多频段发射信号的生成方法及装置 技术领域 本发明涉及通信领域, 尤其涉及一种多频段发射信号的生成方法及装置。 背景技术 随着无线通信系统的高速发展, 第 3 代移动通信 ( The Third Generation
Mobile Communications, 简称为 3G )技术已在全球多个国家和地区得到商用, 在国际上, 4G 技术的研究在紧张地进行中。 第 4 代移动通信 ( The Fourth Generation Mobile Communications, 简称为 4G )技术的高数据率需要大宽带的 无线频谱, 然而, 当前无线频谱资源由众多系统分散占用, 可整块利用的频谱 非常稀少, 并且存在相当多的小段频谱资源分散在各个频段上。 可见, 从环保、 高性能、 容易实现等角度来考察, 如何经济高效地聚合这些离散的小频谱资源 就成了必须面对的核心问题。 介于此, 收集这些分散的小段频谱来组合成大带 宽的频率资源的技术应运而生。 在相关技术中, 对于合成多频段信号, 通常釆用以下两种方式: ( 1 ) 宽带 单数模转换器 ( Digital to Analogue Converter, 简称为 DAC ) 输出宽频段基带 信号 +直接上变频;(2 )窄带多 DAC输出基带信号 +中频混频 +射频混频。但是, 上述方式存在其固有的缺陷, 例如, 方式( 1 ) 中的宽带 DAC在应对大带宽的 场景下, 不利于移动终端的小型化和省电性能; 方式 (2 ) 在信号链路上增加 了低中频混频模块, 对最终生成信号的信噪比有恶化作用, 且增加产品功耗。 发明内容 本发明的主要目的在于提供一种多频段发射信号的生成方案, 以至少解决 上述相关技术中多频段信号的合成方法不利于移动终端的小型化且功耗及成 本较高的问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种多频段发射信号 的生成方法。 根据本发明的一种多频段发射信号的生成方法, 包括以下步骤: 将多个数 字基带目标信号分别通过一组由 PAM和 BPF组成的通道, 得到不同频段的多 个信号; 将不同频段的多个信号加在一起, 生成多频段发射信号。 优选地, 将多个数字基带目标信号分别通过一组由 PAM和 BPF组成的通 道, 得到不同频段的多个信号包括: 将多个数字基带目标信号分别通过其通道 的 PAM转换成多个模拟脉冲调幅信号, 再将多个模拟脉冲调幅信号经过中心 频率不同的多个 BPF进行滤波, 得到不同频段的多个信号。 优选地, 多个模拟脉冲调幅信号的频率由锁相环时钟分配电路来控制。 优选地, 将不同频段的多个信号加在一起, 生成多频段发射信号之前, 该 方法还包括: 分别对各频段的信号进行预修正, 以保持各通道信号的能量平衡。 优选地, 多个数字基带目标信号中的每个数字基带目标信号的样点率均小 于等于与其对应的 PAM输出的脉冲信号的频率。 优选地, 将不同频段的多个信号加在一起, 生成多频段发射信号包括: 将 不同频段的多个信号通过微带线直接相连, 生成多频段发射信号。 优选地, 多个数字基带目标信号保持时间基准一致。 优选地, 多频段发射信号的带宽为多个数字基带目标信号的带宽之和。 为了实现上述目的, 根据本发明的一个方面, 提供了一种多频段发射信号 的生成装置。 根据本发明的一种多频段发射信号的生成装置, 包括: 生成模块, 设置为 将多个数字基带目标信号分别通过一组由 PAM和 BPF组成的通道, 得到不同 频段的多个信号; 合成模块, 设置为将不同频段的多个信号加在一起, 合成多 频段发射信号。 优选地, 生成模块还设置为将多个数字基带目标信号分别通过其通道的 PAM转换成多个模拟脉冲调幅信号,再将多个模拟脉冲调幅信号经过中心频率 不同的多个 BPF进行滤波, 得到不同频段的多个信号。 通过本发明, 釆用将多个数字基带目标信号分别通过一组由 PAM和 BPF 组成的通道的方式, 解决了相关技术中多频段信号的合成方法不利于移动终端 的小型化且功耗及成本较高的问题, 提高了合成信号的信噪比和资源利用率。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不 当限定。 在附图中: 图 1是根据本发明实施例的多频段发射信号的生成方法的流程图; 图 2是根据本发明实施例的多频段发射信号的生成装置的结构框图; 图 3 是根据本发明优选实施例的多频段发射信号的合成装置的结构示意 图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不 冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 根据本发明实施例, 提供了一种多频段发射信号的生成方法。 图 1是根据 本发明实施例的多频段发射信号的生成方法的流程图, 如图 1所示, 该方法包 括以下步 4聚: 步骤 S 102 , 将多个数字基带目标信号分别通过一组由脉冲幅度调制器
( Pulse Amplitude Modulation, 简称为 PAM )和带通滤波器 ( Band Pass Filter, 简称为 BPF ) 组成的通道, 得到不同频段的多个信号; 步骤 S 104, 将不同频段的多个信号加在一起, 生成多频段发射信号。 通过上述步 4聚,釆用将多个数字基带目标信号分别通过一组由 PAM和 BPF 组成的通道的方式, 解决了相关技术中多频段信号的合成方法不利于移动终端 的小型化且功耗及成本较高的问题, 提高了合成信号的信噪比和资源利用率。 优选地, 在步骤 S 102 中, 将多个数字基带目标信号可以分别通过其通道 的 PAM转换成多个模拟脉冲调幅信号, 再将多个模拟脉冲调幅信号经过中心 频率不同的多个 BPF进行滤波, 得到不同频段的多个信号。 例如, 在步骤 S 102中, 将 4个数字基带目标信号分别通过 4组由 PAM和
BPF组成的通道时, 这 4个数字基带目标信号中的每个数字基带目标信号均需 要先通过其通道中 PAM转换成模拟^ ^冲调幅信号, 再经过 BPF进行滤波, 其 中, 4条通道中的 4个 BPF的中心频率是不相同的, 这样在合成后, 就可以得 到 4个频段的发射信号。 优选地, 多个模拟脉冲调幅信号的频率由锁相环 (Phase-Locked Loop, 简 称为 PLL ) 时钟分配电路来控制。 该方法可以使得系统中的信号有序、 节拍一 致, 提高了多频段发射信号的准确性。 优选地, 在步骤 S 104之前, 可以分别对各频段的信号进行预修正, 以保 持各通道信号的能量平衡。 该方法可以保证各通道信号 (即, 合成多频段发射 信号的每个频段信号) 能量平衡。 例如, 在步骤 S 102中, 将 4个数字基带目标信号分别通过 4组由 PAM和 BPF组成的通道时, 为了保证 4条通道中信号的能量平衡, 需要对这 4条通道 中的每条通道的信号能量进行预修正。 优选地, 多个数字基带目标信号中的每个数字基带目标信号的样点率均小 于等于与其对应的 PAM输出的脉冲信号的频率。 该方法可以保证数字基带目 标信号在经过 PAM后不失真, 有利于提高系统的精度。 优选地, 在步骤 S 104 中, 将不同频段的多个信号通过微带线直接相连, 生成多频段发射信号。 该方法简单实用、 可操作性强。 优选地, 在步骤 S 102 中, 多个数字基带目标信号保持时间基准一致。 该 方法可以提高系统的有效性。 优选地, 多频段发射信号的带宽为多个数字基带目标信号的带宽之和。 例 如, 2个数字基带目标信号的带宽分别为 Bandl、 Band2, 步骤 S 104之后生成 的多频段发射信号的带宽则为 "Bandl+Band2,,。 通过上述优选实施例, 釆用 PAM和 BPF代替相关技术中 DAC和氐中频 变频单元的方式, 实现了合成多频段发射信号的目的, 提高了发射信号的信噪 比。 对应于上述方法, 本发明实施例还提供了一种多频段发射信号的生成装 置。 图 2是根据本发明实施例的多频段发射信号的生成装置的结构框图, 如图 2所示, 该装置 20包括: 生成模块 22 , 耦合至合成模块 24 , 设置为将多个数 字基带目标信号分别通过一组由 PAM和 BPF组成的通道, 得到不同频段的多 个信号; 合成模块 24 , 设置为将不同频段的多个信号加在一起, 合成多频段发 射信号。 通过上述装置 20 , 釆用生成模块 22将多个数字基带目标信号分别通过一 组由 PAM和 BPF组成的通道, 得到不同频段的多个信号, 以及合成模块 24 将不同频段的多个信号合成多频段发射信号的方式, 解决了相关技术中多频段 信号的合成方法不利于移动终端的小型化且功耗及成本较高的问题, 提高了合 成信号的信噪比和资源利用率。 优选地, 生成模块 22 还设置为将多个数字基带目标信号分别通过其通道 的 PAM转换成多个模拟脉冲调幅信号, 再将多个模拟脉冲调幅信号经过中心 频率不同的多个 BPF进行滤波, 得到不同频段的多个信号。 下面结合优选实施例和附图对上述实施例的实现过程进行详细说明。 本优选实施例提供了一种多频段发射信号的合成装置, 该装置包括一个基 带处理器 (Base Band Processor, 简称为 BBP )、 一个加法器 (ADD )、 一个锁 相环时钟分配 ( PLL Clock Distribution )电路以及多组由 PAM和 BPF组成的电 路。 图 3 是根据本发明优选实施例的多频段发射信号的合成装置的结构示意 图, 以三路小频带信号被聚合成一路宽频带信号为例, 对本实施例中的多频段 发射信号的合成方法进行了简单的描述。如图 3所示,图中 Bl[n]、 B2[n]、 B3[n] 分别代表将要发送的基带信号, 具有一定的带宽, 中心频率都为 0频; Pl(t)、 P2(t)、 P3(t)代表脉冲调幅信号 (即, 每个脉冲的幅度是随着前面输入的基带信 号的幅度而变化的), 单个脉冲的波形 P ( t )可以根据实际的电路实现(例如, 可以是矩形函数, 也可以是三角波函数等); fl ( t )、 f2 ( t )、 β ( t ) 代表中心 频率分别为 fl、 f2、 β的带通信号; Cl、 C2、 C3代表 PAM工作时需要的工作 时钟, 分别控制 PAM1、 PAM2、 PAM3输出^ i冲的频率。 在实施过程中, 本优选实施例的多频段发射信号的合成方法可以包括以下 步骤: 步骤 1 , BBP处理完信号后, 得到目标信号的基带表示, 以数字信号的形 式保存在 BBP的存贮器中。 其中, BBP通过数字接口与 PAM连接。 步骤 2, PAM通过数字接口接收 BBP传送过来的数字信息 (即, 数字基 带目标信号), 并将接收到的数字基带信号转换成模拟脉冲调幅信号 (即, 输 出的脉冲幅度正比于数字基带信号的幅度)。 假设此时 PAM工作时输出的脉冲信号 P1 、 P2(t)、 P3(t)的频率 (即, 脉 冲周期的倒数)分别为 SP1、 SP2、 Sp3, BBP传送过来的基带信号 Bl[n]、 B2[n]、 B3[n]的样点率为 SB1、 SB2、 SB3,则需要满足 SP1>=SB1, SP2>=SB2, SP3>=SB3。 以第一路为例, PAM将 BBP输入来的数字基带信号先进行 SP1倍的插值, 再进行 SB1倍的抽取处理。 这样将样点率为 SB1的数字基带信号 Bl[n]变为了样 点率为 SP 数字基带信号 Bzl[n]。 用 Bzl[n]调制输出脉冲信号, 每个脉冲幅 度正比于 Bzl[n]对应样点的幅度。 即 PI (t) =Bzl (n) P ( t-nT ), n为整数, T为 PAM输出的永冲信号的周期。 其它两路同理。 步骤 3, PAM输出脉冲信号 P1 、 P2(t)、 P3(t)的频率由锁相环时钟分配电 路来控制。 例如, 设置锁相环 (Phase Locked Loop, 简称为 PLL) 时钟产生模 块。 ¾。图 3所示, 其中的 Cl、 C2、 C3分别为 PAM1、 PAM2、 PAM3的工作时 钟, 其输出的脉冲频率就分别等于 Cl、 C2、 C3, 即 Spi =C1, SP2=C2, SP3=C3。 它们的计算方法如下: 假设第一个小频段中心频率为 fl, 第二个小频段中心频 率为 f2, 第三个小频段中心频率为 β, 那么 Cl=fl/Nl, C2=f2/N2, C3=G/N3 , Nl、 Ν2、 Ν3都为一个常数。 步骤 4 , BBP在输出数字基带信号前, 利用 PAM输出脉冲函数的包络对 各频段信号进行预修正, 保证各通道信号的能量平衡。 例如, 不失一般性, 假 设脉冲为理想矩形脉冲, 则脉冲函数为矩形函数, 其频谱为 sine (辛格函数), 则对三个频段上的信号的加权因子为: Sinc(fl)、 sine ( ΐ2 ), sine ( β )„ 需要说 明的是,此加权操作可以在 ΒΒΡ中故,产生 Bl/sinc( fl )、B2/sinc(f2)、B3/sinc(fi), 也可以在 PAM中故, 产生 Pl/sinc ( fl )、 P2/sinc(f2)、 P3/sinc(G), 或者在 BPF 之后做。 这个可以视情况而定, 总之在链路的某一处校准就行了。 并且, BBP的三路输出在时间上要对齐, 保证各路信号的相位一致性。 例 如, BBP输出的各路数字信号的时间基准要一致。 步骤 5 , PAM模块输出调幅脉冲信号, 传送到 BPF进行滤波。 例如, 图 3 中 BPF的中心频率分别为 fl、 f2、 β, 可才艮据具体的通信系统要求来灵活选择 带宽 (一般指 3db带宽)、 带内紋波、 带外抑制等参数。 步骤 6, BPF的输出加在一起(例如, 通过微带线直接相连), 即, 形成合 成好的多频段信号 S , 此信号带宽为 B l、 B2、 B3三个小频段信号的带宽之和。 此后, 可以使用合成好的多频段信号 S进行放大、 上变频等常规的后续操作。 综上所述, 本发明实施例提供了一种无线通信系统中多频段上行发射信号 的合成方案, 釆用生成特定频率的离散脉冲信号, 并在目标频率上设置带通滤 波器的方式直接生成多频段信号, 相比于现有技术, 能够节省低中频变频单元 以及低通滤波器, 提高了多频段发射信号的信噪比。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以 用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多 个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码 来实现, 从而可以将它们存储在存储装置中由计算装置来执行, 或者将它们分 别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成 电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领 域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 内。

Claims

权 利 要 求 书
1. 一种多频段发射信号的生成方法, 包括以下步骤:
将多个数字基带目标信号分别通过一组由脉冲幅度调制器 PAM 和 带通滤波器 BPF组成的通道, 得到不同频段的多个信号;
将所述不同频段的多个信号加在一起, 生成多频段发射信号。
2. 根据权利要求 1所述的方法, 其中, 将所述多个数字基带目标信号分别 通过一组由 PAM和 BPF组成的通道, 得到所述不同频段的多个信号包 括:
将所述多个数字基带目标信号分别通过其通道的 PAM 转换成多个 模拟脉冲调幅信号, 再将所述多个模拟脉冲调幅信号经过中心频率不同 的多个 BPF进行滤波, 得到所述不同频段的多个信号。
3. 根据权利要求 2所述的方法, 其中, 所述多个模拟脉冲调幅信号的频率 由锁相环时钟分配电路来控制。
4. 根据权利要求 1所述的方法, 其中, 将所述不同频段的多个信号加在一 起, 生成所述多频段发射信号之前, 还包括:
分别对各频段的信号进行预修正, 以保持各通道信号的能量平衡。
5. 根据权利要求 1所述的方法, 其中, 所述多个数字基带目标信号中的每 个数字基带目标信号的样点率均小于等于与其对应的所述 PAM 输出的 脉冲信号的频率。
6. 根据权利要求 1所述的方法, 其中, 将所述不同频段的多个信号加在一 起, 生成所述多频段发射信号包括:
将所述不同频段的多个信号通过微带线直接相连, 生成所述多频段 发射信号。
7. 根据权利要求 1至 6中任一项所述的方法, 其中, 所述多个数字基带目 标信号保持时间基准一致。
8. 根据权利要求 7所述的方法, 其中, 所述多频段发射信号的带宽为所述 多个数字基带目标信号的带宽之和。
. 一种多频段发射信号的生成装置, 包括:
生成模块, 设置为将多个数字基带目标信号分别通过一组由脉冲幅 度调制器 PAM和带通滤波器 BPF组成的通道, 得到不同频段的多个信 号;
合成模块, 设置为将所述不同频段的多个信号加在一起, 合成多频 段发射信号。
10. 根据权利要求 9所述的生成装置, 其中, 所述生成模块还设置为将所述 多个数字基带目标信号分别通过其通道的 PAM 转换成多个模拟脉冲调 幅信号, 再将所述多个模拟脉冲调幅信号经过中心频率不同的多个 BPF 进行滤波, 得到所述不同频段的多个信号。
PCT/CN2011/075814 2011-01-14 2011-06-16 多频段发射信号的生成方法及装置 WO2012094869A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110008527.5A CN102594744B (zh) 2011-01-14 多频段发射信号的生成方法及装置
CN201110008527.5 2011-01-14

Publications (1)

Publication Number Publication Date
WO2012094869A1 true WO2012094869A1 (zh) 2012-07-19

Family

ID=46482956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075814 WO2012094869A1 (zh) 2011-01-14 2011-06-16 多频段发射信号的生成方法及装置

Country Status (1)

Country Link
WO (1) WO2012094869A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296684A (zh) * 1998-02-12 2001-05-23 金吉斯通讯公司 多接入方法和系统
CN1799206A (zh) * 2003-06-03 2006-07-05 瓦迪弗技术公司 多信道收发机系统中的近端、远端和回声消除器
CN101076957A (zh) * 2004-09-24 2007-11-21 脉冲互联有限公司 通信信号的数字合成

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296684A (zh) * 1998-02-12 2001-05-23 金吉斯通讯公司 多接入方法和系统
CN1799206A (zh) * 2003-06-03 2006-07-05 瓦迪弗技术公司 多信道收发机系统中的近端、远端和回声消除器
CN101076957A (zh) * 2004-09-24 2007-11-21 脉冲互联有限公司 通信信号的数字合成

Also Published As

Publication number Publication date
CN102594744A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
EP2822242B1 (en) Digital predistortion processing method and device
WO2013181932A1 (zh) 卫星导航信号及其生成方法、生成装置、接收方法和接收装置
CN101102116A (zh) 基于数字中频技术的多载波发射机及其多载波发射方法
WO2011137658A1 (zh) 一种fm/chirp复合频率调制方式及其实现方法
TWI398102B (zh) 多相位脈衝調變極座標發射器以及產生脈衝式包絡且於包絡內載有具相位資訊之射頻訊號之方法
CN104620510A (zh) 发射机
US10516420B1 (en) High speed digital bit generator for optical frontal interface
WO2011072592A1 (zh) 削波方法、装置和基站
US9077391B2 (en) Transmitter front-end device for generating output signals on basis of polyphase modulation
RU2553091C2 (ru) Система дуплексной высокоскоростной коротковолновой радиосвязи
KR20210045726A (ko) 무선 통신 시스템에서 복수의 밴드들에서 신호들을 송신 및 수신하기 위한 장치 및 방법
CN101562482B (zh) 光纤无线通信系统及其下行链路多业务毫米波的产生方法
JPWO2016174805A1 (ja) 無線アクセスシステム及びその制御方法
CN105471801A (zh) 一种5g移动通信数字调制信号发生装置及其发生方法
WO2012094869A1 (zh) 多频段发射信号的生成方法及装置
EP1887685B1 (en) Apparatus and method of generating a plurality of synchronized radio frequency signals
US11601319B2 (en) Digital modulator, communication device, and digital modulator control method
TWI227075B (en) Clock adjusting device at the receiving end of communication system and method thereof
CN102685055B (zh) 一种多数据流插值与抽取复用装置及方法
CN109412591A (zh) 一种x波段细步进频综生成方法及系统
Dinis et al. An FPGA-based multi-level all-digital transmitter with 1.25 GHz of bandwidth
TW201203965A (en) Multi-level pulse modulated polar transmitter and method for generating multi-level modulated envelope signals carrying phase information within
CN201114160Y (zh) 基于数字中频技术的多载波发射机
CN102594744B (zh) 多频段发射信号的生成方法及装置
CN205092913U (zh) 一种同时输出多个频道的数字电视激励器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855845

Country of ref document: EP

Kind code of ref document: A1