WO2012093867A2 - Antenna and electronic device having same - Google Patents

Antenna and electronic device having same Download PDF

Info

Publication number
WO2012093867A2
WO2012093867A2 PCT/KR2012/000113 KR2012000113W WO2012093867A2 WO 2012093867 A2 WO2012093867 A2 WO 2012093867A2 KR 2012000113 W KR2012000113 W KR 2012000113W WO 2012093867 A2 WO2012093867 A2 WO 2012093867A2
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiator
carrier
present
electronic device
Prior art date
Application number
PCT/KR2012/000113
Other languages
French (fr)
Korean (ko)
Other versions
WO2012093867A3 (en
Inventor
류병훈
성원모
오상진
박정미
Original Assignee
주식회사 이엠따블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엠따블유 filed Critical 주식회사 이엠따블유
Publication of WO2012093867A2 publication Critical patent/WO2012093867A2/en
Publication of WO2012093867A3 publication Critical patent/WO2012093867A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C5/00Processes for producing special ornamental bodies
    • B44C5/04Ornamental plaques, e.g. decorative panels, decorative veneers
    • B44C5/0407Ornamental plaques, e.g. decorative panels, decorative veneers containing glass elements
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Definitions

  • the present invention relates to an antenna and an electronic device including the same by applying an LDS processing method having an indirect feeding type structure through via hole processing to an antenna carrier so as to be insensitive to external factors affecting antenna performance.
  • IT information technology
  • the electronic device is essentially equipped with an antenna for transmitting and receiving wireless signals, which are classified into an external antenna and an internal antenna according to the mounting position in the electronic device.
  • an external antenna for example, a rod antenna or a helical antenna
  • a rod antenna or a helical antenna is formed by protruding from the electronic device, so that the risk of breakage is large and it is not used due to design vulnerability, but instead, it is mounted inside the electronic device.
  • Built-in antennas are widely used.
  • an antenna carrier which is a three-dimensional structure, is formed in order to realize desired radiation characteristics by spaced apart from the main board of the electronic device and the antenna radiator at a predetermined interval, and to reduce the SAR. I use it.
  • An antenna radiator for transmitting and receiving signals of a specific frequency band is formed on the surface of the antenna carrier to be electrically connected to the feeder and the ground of the main board.
  • LDS laser direct structuring
  • the LS processing method after the upper and lower surfaces of the carrier are metallized, when the metallized upper and lower surfaces are electrically connected, the sides of the carrier are metallized to connect the upper and lower surfaces, and the side of the carrier is laser irradiated. It is not easy to select the angle, so there is a high possibility of disconnection, and there is a problem that even if metallization wears out, disconnection occurs.In addition, the laser irradiation angle or the number of LS machining is increased for the processing of the side of the carrier even in the machining procedure It can also lead to a rise in manufacturing costs.
  • the performance of the antenna using the LPS processing method is sensitive to external factors (for example, when the electronic device is held by the hand or close to the head, the reception sensitivity decreases, etc.).
  • the benefits of the LDS processing method which maximizes the volume, are not realized by reducing the advantages of the LDS antenna structure or switching the design direction to a general press type.
  • Embodiments of the present invention to provide an antenna to which the LDS processing method is insensitive to external factors affecting the antenna performance.
  • embodiments of the present invention to provide an antenna that solves the problem of disconnection of the side of the antenna carrier while maximizing the advantages of the LDS processing method.
  • An antenna according to an exemplary embodiment of the present invention may include: an antenna carrier on which at least one first via hole and a second via hole are respectively formed, and firstly formed on both surfaces of the antenna carrier and electrically connected to each other through the first via hole. And a second radiator which is formed on both sides of the radiator and the antenna carrier, respectively, and is electrically connected through the second via hole, wherein the first radiator and the second radiator are spaced apart from each other.
  • Embodiments of the present invention provide the structure of the indirect feeding through the via hole to the antenna carrier, while maximizing the advantages of the LDS processing method while solving the problem of disconnection of the side of the antenna carrier and at the same time insensitive to external factors It is possible to provide an antenna.
  • FIG. 1 is a perspective view showing the structure of a typical press type antenna.
  • FIG. 2 is a view showing the bottom of a typical press type antenna.
  • FIG. 3 is a diagram illustrating the current distribution of the ground portion of the antenna illustrated in FIGS. 1 and 2 in the state where an external factor is applied.
  • FIG. 4 is a plan view illustrating a structure of an antenna according to an exemplary embodiment of the present invention.
  • FIG. 5 is a bottom view illustrating a structure of an antenna according to an exemplary embodiment of the present invention.
  • FIG. 6 is a sectional perspective view taken along line II ′ of FIG. 5;
  • FIG. 9 is a diagram illustrating a current distribution of a ground part of an electronic device including an antenna of the present invention in a state where an external factor is applied.
  • connection or coupling similarly include not only directly connected to or coupled from one component to another, but also transmitted through other components.
  • the antenna performance of a general press type and the antenna performance in a state in which free and external factors are applied The antenna structure and its performance according to the present invention will be described in detail.
  • the external factor refers to a state when the electronic device including the antenna is held by the hand (HAND) or when the electronic device including the antenna is near the head (HEAD).
  • the free state refers to a basic state in which external factors do not act on the antenna.
  • FIG. 1 is a perspective view illustrating a structure of a typical press type antenna
  • FIG. 2 is a view illustrating a bottom surface of a typical press type antenna
  • FIG. 3 is a state in which external factors are applied to FIGS. 1 and 2.
  • Figure is a diagram showing the current distribution in the ground portion of the antenna shown in.
  • a typical press type antenna 100 includes an antenna carrier 102 and a radiator 104, as shown in Figures 1 and 2.
  • the antenna 100 has a Planar Inverted-F Antenna (PIFA) structure in which the radiator 104 is configured in an inverted F-shape.
  • PIFA Planar Inverted-F Antenna
  • the antenna carrier 102 is used to space desired intervals between the main board of the electronic device and the radiator of the antenna to implement desired radiation characteristics and to reduce the electromagnetic wave absorption rate.
  • the radiator 104 is manufactured separately from the antenna carrier 102 and mechanically coupled to the antenna carrier 102 by press working.
  • a portion (A) and B portion (B) of the radiator 104 is bent to the bottom of the antenna carrier 102 serves to mechanically couple the radiator 104 and the antenna carrier 102.
  • the radiator 104 is electrically connected to a feeding part (not shown) of the main board through the portion A, and is connected to the ground portion of the main board through the portion B.
  • Table 1 shows simulation results of the antenna performance shown in FIGS. 1 and 2.
  • TRP Total Radiated Power
  • TIS Total Isotropic Sensitivity
  • HAND external factor
  • the average value (AVE) for each frequency in the DCS band shows that the TRP (21.86) in the external factor is reduced compared to the TRP (23.91) in the free state, and the TIS (-106) in the free state. It can be seen that the TIS (-103) in a state in which an external factor acts was reduced compared to Thus, it can be seen that the performance difference between the two states is 2.05 for TRP and 3.26 for TIS.
  • FIG. 4 is a plan view showing the structure of an antenna according to an embodiment of the present invention
  • Figure 5 is a bottom view showing the structure of an antenna according to an embodiment of the present invention
  • Figure 6 is a cross-sectional view taken along line II 'of FIG. Perspective view.
  • an antenna 200 includes an antenna carrier 202, a first radiator 204, and a second radiator 206.
  • the antenna 200 is manufactured by Laser Direct Structuring (LDS), which implements a radiator through a plating process after processing the surface of the antenna carrier 202 using a laser.
  • LDS resin injection molding may be applied to the antenna carrier 202.
  • the antenna carrier 202 is formed with a plurality of via holes 208 penetrating the antenna carrier 202 so that a predetermined radiator can be connected.
  • the first and second radiators 204, 206 of the antenna 200 are also formed on the top surface of the antenna carrier 202, as shown in FIG. 4, respectively, and as shown in FIG. 5, of the antenna carrier 202. It is also formed on the bottom surface.
  • the first radiator 204 formed on the top and bottom surfaces of the antenna carrier 202 is electrically connected to some of the via holes 208, and is connected to the top and bottom surfaces of the antenna carrier 202.
  • the formed second radiator 204 is electrically connected through further via holes 208. That is, the first radiators 204 and the second radiators 206 are connected through different via holes 208, respectively.
  • the C portion C of the first radiator 204 formed on the bottom surface of the antenna carrier 202 is electrically connected to a feeding part (not shown) of the main board to receive power
  • the second The D portion D of the radiator 206 is electrically connected to the ground portion of the main board.
  • the C portion C of the first radiator 204 may be connected to the ground portion of the main board
  • the D portion D of the second radiator 206 may be connected to the feed portion of the main board.
  • the C portion (C) of the first radiator 204 and the D portion (D) of the second radiator 206 are connected to the first feed portion and the second feed portion, respectively, Both may be connected to ground.
  • the first radiator 204 formed on the lower surface of the antenna carrier 202 is electrically connected to the first radiator 204 and the via holes 208 formed on the upper surface.
  • the via hole 208 penetrating through the antenna carrier 208 is electrically plated during the LDS process to electrically connect the first radiator 204 formed on the upper and lower surfaces of the antenna carrier 208. .
  • the first radiator 204 and the second radiator 206 are spaced apart by a predetermined distance from each of the upper and lower surfaces of the antenna carrier 202.
  • a plurality of second radiators 206 are formed on the upper surface of the antenna carrier 202 with respect to each of the via holes.
  • the first radiator 204 is formed in a shape that surrounds the second radiator 206 spaced apart from the second radiator 206. That is, the first radiator 204 connected to the feeder part of the main board is electrically separated from the second radiator 206 connected to the ground part. Therefore, the antenna 200 has a structure in which the feed part and the ground part are not directly connected, but are indirectly connected through electrical coupling between the first radiator 204 and the second radiator 206.
  • the separation distance between the first radiator 204 and the second radiator 206 should be considered the area, length, etc. of the radiator, and may vary according to the intention of the antenna designer. However, the separation distance should be set to be equal to or less than a distance that can cause coupling by the electromagnetic field between the first radiator 204 and the second radiator 206.
  • the via hole 208 is formed in a shape that widens in the opening direction of the lower surface of the antenna carrier 202.
  • the inside of the via hole 208 may be plated.
  • the via hole 208 may be formed in a shape that widens in the opening direction of the upper surface of the antenna carrier 202.
  • it may be plated up to the inside of the via hole 208.
  • the radiator is formed on the upper and lower surfaces of the antenna carrier by LDS processing, and the sides of the antenna carrier are metallized to electrically connect the radiators formed on the upper and lower surfaces of the antenna carrier.
  • a disconnection problem may occur in which the side surface of the antenna carrier is not properly plated, and thus the radiators formed on the top and bottom surfaces of the antenna carrier are not electrically connected.
  • the embodiment of the present invention connects the radiators formed on the upper and lower surfaces of the antenna carrier 202 through the via holes 208 formed through the antenna carrier 202, the radiator is limited to the antenna carrier space. It can solve the problem of disconnection on the side of the antenna carrier while still utilizing the advantages of the LDS processing method that maximizes the volume of the antenna.
  • FIG 7 and 8 are views illustrating the first radiator and the second radiator separated from the antenna of the present invention.
  • the first radiators 204 formed on the upper and lower surfaces of the antenna carrier are electrically connected to each other through via holes.
  • the second radiators 206 formed on the top and bottom surfaces of the antenna carrier are also electrically connected to each other via via holes.
  • the first radiator 204 and the second radiator 206 are physically separated from each other.
  • the C portion C of the first radiator 204 is connected to the power supply portion, and the D portion D of the second radiator 206 is connected to the ground portion.
  • the C portion C of the first radiator 204 may be connected to the ground portion of the main board, and the D portion D of the second radiator 206 may be connected to the feed portion of the main board.
  • the C portion C of the first radiator 204 and the D portion D of the second radiator 206 are connected to the first feed portion and the second feed portion, respectively. Both may be connected to ground.
  • the performance of the antenna of the present invention is improved and is insensitive to external factors. Will be described later.
  • Table 2 shows simulation results of the antenna performance of the present invention.
  • TRP Total Radiated Power
  • TIS Total Isotropic Sensitivity
  • HAND external factor
  • the average value (AVE) for each frequency in the DCS band shows that the TRP (23.68) of the external factor is reduced and the TIS (-106) of the free state compared to the TRP (24.19) of the free state. It can be seen that the TIS (-104) in the state where an external factor acted was reduced compared to). Also, it can be seen that the performance difference between the two states is 0.51 for TRP and 2.63 for TIS.
  • the difference between the free state and the external factor applied state in the DCS band is -2.05 and -3.26 for TRP and TIS, respectively.
  • the difference between the free state and the external factor applied state in the DCS band is -0.51 and -2.63 for the TRP and TIS, respectively.
  • the antenna of the present invention has a smaller change in TRP and TIS between a free state and a state where external factors are applied as compared to a general PIFA antenna. That is, compared with the general PIFA antenna, it is less affected by external factors.
  • FIG. 9 is a diagram illustrating a current distribution of a ground part of an electronic device including an antenna of the present invention in a state where an external factor is applied.
  • Table 3 shows a comparison between the performance of a general PIFA antenna and the performance of the antenna of the present invention in a free state
  • Table 4 shows a comparison of the performance of a general PIFA antenna and the performance of an antenna of the present invention in an external factor. Drawing.
  • the TRP and TIS of the antenna of the present invention are generally improved compared to the TRP and TIS of the PIFA antenna in the free state. Accordingly, looking at the average value (AVE) of TRP and TIS in the DCS band, the antenna of the present invention is improved by 0.3 for TRP and 0.2 for TIS compared to PIFA antenna. Also, in the PCS band, the average value (AVE) of TRP and TIS is improved by 0.31 for TRP and 0.27 for TIS.
  • the TRP and TIS of the antenna of the present invention as a whole improved compared to the TRP and TIS of the PIFA antenna even when the external factors are applied. Accordingly, when looking at the average value (AVE) of TRP and TIS in the DCS band, the antenna of the present invention is improved by 1.82 for TRP and 0.86 for TIS compared to the PIFA antenna. In addition, in the PCS band, the average value (AVE) of TRP and TIS is improved by 0.45 for TRP and 0.09 for TIS.
  • the antenna of the present invention shows a higher performance than the conventional PIFA antenna in each of the free state or the external factor applied state.
  • the antenna according to the embodiment of the present invention electrically connects the first radiator and the second radiator formed on the upper and lower surfaces of the antenna carrier using via holes, respectively, and the first radiator and the second radiator.
  • an electronic device including an antenna according to an embodiment of the present invention has a higher antenna performance than an electronic device including a general PIFA antenna, and is free even when held by a hand or close to a head.
  • the performance change is small compared to the state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

Disclosed are an antenna and an electronic device having same. The antenna according to an embodiment of the present invention comprises: an antenna carrier with at least one of each of first via holes and second via holes formed thereon; first radiators formed on each of the two sides of the antenna carrier and connecting electrically through the first via holes; and second radiators formed on each of the two sides of the antenna carriers and connecting electrically through the second via holes, wherein the first radiators and the second radiators are separated from each other. Thus, the present invention provides an antenna having a novel structure that maximizes the strengths of LDS processing method while resolving the problem of disconnection on the side surfaces of the antenna carrier, and is, at the same time, insensitive to the external factors.

Description

안테나 및 이를 포함하는 전자 장치Antenna and electronic device including same
본 발명은 안테나 성능에 영향을 미치는 외부요인에 둔감하도록 안테나 캐리어에 비아홀 가공을 통한 간접 급전 형태의 구조를 갖는 엘디에스 가공법을 적용한 안테나 및 이를 포함하는 전자 장치에 관한 것이다.The present invention relates to an antenna and an electronic device including the same by applying an LDS processing method having an indirect feeding type structure through via hole processing to an antenna carrier so as to be insensitive to external factors affecting antenna performance.
최근, IT(Information Technology) 기술이 비약적으로 발전하면서, 무선 데이터 통신을 통해 음성, 영상, 무선인터넷, GPS 서비스 등 다양한 서비스를 제공하는 전자 장치(예를 들어, 휴대폰, 스마트폰 등)가 개발되고 있다.Recently, with the development of information technology (IT) technology, electronic devices (for example, mobile phones, smartphones, etc.) that provide various services such as voice, video, wireless internet, and GPS services through wireless data communication have been developed. have.
이러한 전자 장치에는 무선 신호의 송수신을 위해 필수적으로 안테나가 장착되는데, 안테나는 전자 장치에서의 장착 위치에 따라 외장형 안테나와 내장형 안테나로 구분된다.The electronic device is essentially equipped with an antenna for transmitting and receiving wireless signals, which are classified into an external antenna and an internal antenna according to the mounting position in the electronic device.
이들 중 외장형 안테나(예를 들어, 로드 안테나 또는 헬리컬 안테나 등)의 경우, 전자 장치로부터 돌출되어 형성되기 때문에 파손의 위험이 크고 디자인적 취약성으로 인해 잘 사용되지 않으며, 그 대신 전자 장치의 내부에 실장되는 내장형 안테나가 널리 사용되고 있다.Among them, an external antenna (for example, a rod antenna or a helical antenna) is formed by protruding from the electronic device, so that the risk of breakage is large and it is not used due to design vulnerability, but instead, it is mounted inside the electronic device. Built-in antennas are widely used.
내장형 안테나의 경우, 전자 장치의 메인보드와 안테나 방사체 사이를 일정 간격 이격하여 원하는 방사 특성을 구현하고, 전자파 흡수율(Spacific Absorption Rate : SAR)을 감소시키기 위해 입체 형상의 구조물인 안테나 캐리어(carrier)를 이용한다.In the case of the built-in antenna, an antenna carrier, which is a three-dimensional structure, is formed in order to realize desired radiation characteristics by spaced apart from the main board of the electronic device and the antenna radiator at a predetermined interval, and to reduce the SAR. I use it.
이러한 안테나 캐리어의 표면에는 특정 주파수대의 신호를 송수신하는 안테나 방사체가 형성되어 메인보드의 급전부 및 접지부와 전기적으로 접속된다.An antenna radiator for transmitting and receiving signals of a specific frequency band is formed on the surface of the antenna carrier to be electrically connected to the feeder and the ground of the main board.
상기 안테나 캐리어의 표면에 안테나 방사체를 형성하는 방법으로는 캐리어 표면에 직접 도금하는 방식(에칭에 의한 도금 또는 인쇄 도금 방식)과 별도로 안테나 방사체를 제작하여 기계적으로 캐리어에 결합하는 프레스 방식(Press Type)이 주로 사용되어 왔다.As a method of forming an antenna radiator on the surface of the antenna carrier, a press method of manufacturing an antenna radiator and mechanically coupling it to a carrier separately from a method of directly plating the surface of the carrier (plating or printing plating by etching). This has been used mainly.
한편, 최근에는 엘디에스(LDS : Laser Direct Structuring) 가공법이 개발되었는데, 이는 중금속 복합체를 포함하는 재료를 이용하여 안테나 캐리어를 사출성형한 후, 캐리어 표면에 레이저를 조사하여 방사체 패턴이 형성될 부분의 금속 시드를 노출시킨 후 이 부분을 도금하여 금속화하는 방법을 말한다. 이러한, 엘디에스 가공법에 의하면, 제한된 캐리어 공간에 방사체의 체적을 극대화하여 다양한 주파수대의 안테나를 제조할 수 있을 뿐 아니라, 안테나 제조 시간 및 제조 공정을 단축할 수 있고 생산성을 향상할 수 있는 장점이 있다.Recently, a laser direct structuring (LDS) processing method has been developed, which is formed by injection molding an antenna carrier using a material containing a heavy metal composite, and irradiating a laser to the surface of the carrier to form a radiator pattern. After exposing the metal seed, this part is plated and metallized. According to the LDS processing method, not only the antenna of various frequency bands can be manufactured by maximizing the volume of the radiator in a limited carrier space, but also the antenna manufacturing time and manufacturing process can be shortened and productivity can be improved. .
그러나, 엘디에스 가공법에 의하면, 캐리어의 상부면과 하부면을 금속화 한 후, 금속화된 상하부면을 전기적으로 접속할 때 캐리어의 옆면을 금속화하여 상하부면을 잇게 되는데, 캐리어의 옆면은 레이저 조사 각도 선택이 용이하지 않아 단선이 발생할 가능성이 높았고, 금속화 되더라도 마모되어 단선이 발생하게 되는 문제점이 있으며, 가공 절차에 있어서도 캐리어 옆면 가공을 위해 레이저 조사각을 늘이거나 엘디에스 가공 횟수를 늘이게 되어 제조원가 상승의 원인이 되기도 한다.However, according to the LS processing method, after the upper and lower surfaces of the carrier are metallized, when the metallized upper and lower surfaces are electrically connected, the sides of the carrier are metallized to connect the upper and lower surfaces, and the side of the carrier is laser irradiated. It is not easy to select the angle, so there is a high possibility of disconnection, and there is a problem that even if metallization wears out, disconnection occurs.In addition, the laser irradiation angle or the number of LS machining is increased for the processing of the side of the carrier even in the machining procedure It can also lead to a rise in manufacturing costs.
한편, 상기 엘디에스 가공법을 활용한 안테나의 성능이 외부 요인에 민감하게 반응(예를 들어, 전자 장치를 손으로 잡거나 머리 부분에 근접하였을 때의 수신 감도 저하 등)하는 경우가 발생하는데, 이 경우 엘디에스 안테나 구조의 장점을 축소시키거나 일반 프레스 방식(Press Type)으로 설계 방향을 전환하게 됨으로써 체적을 극대화하는 엘디에스 가공법의 장점을 살리지 못하는 경우가 많다.On the other hand, when the performance of the antenna using the LPS processing method is sensitive to external factors (for example, when the electronic device is held by the hand or close to the head, the reception sensitivity decreases, etc.). In many cases, the benefits of the LDS processing method, which maximizes the volume, are not realized by reducing the advantages of the LDS antenna structure or switching the design direction to a general press type.
따라서, 엘디에스 가공법의 장점을 최대한 활용하면서도 안테나 캐리어 옆면의 단선문제를 해결함과 동시에 외부 요인에 둔감한 새로운 구조의 엘디에스 가공법을 적용한 안테나 개발이 절실히 요구된다.Therefore, while maximizing the advantages of the LDS processing method while solving the problem of disconnection of the side of the antenna carrier, there is an urgent need for the development of an antenna applying a new LDS processing method insensitive to external factors.
본 발명의 실시 예들은 안테나 성능에 영향을 미치는 외부 요인에 둔감한, 엘디에스 가공법을 적용한 안테나를 제공하고자 한다.Embodiments of the present invention to provide an antenna to which the LDS processing method is insensitive to external factors affecting the antenna performance.
또한, 본 발명의 실시 예들은 엘디에스 가공법의 장점을 최대한 활용하면서도 안테나 캐리어 옆면의 단선 문제를 해결한 안테나를 제공하고자 한다.In addition, embodiments of the present invention to provide an antenna that solves the problem of disconnection of the side of the antenna carrier while maximizing the advantages of the LDS processing method.
본 발명의 실시 예들에 의한 다른 기술적 해결 과제는 하기의 설명에 의해 이해될 수 있으며, 이는 특허청구범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있다.Another technical problem according to embodiments of the present invention can be understood by the following description, which can be realized by the means and combinations thereof shown in the claims.
본 발명의 실시 예에 따른 안테나는 적어도 하나의 제1 비어 홀 및 제2 비어 홀이 각각 형성되는 안테나 캐리어, 상기 안테나 캐리어의 양면에 각각 형성되어 상기 제1 비어 홀을 통해 전기적으로 연결되는 제1 방사체 및 상기 안테나 캐리어의 양면에 각각 형성되어 상기 제2 비어 홀을 통해 전기적으로 연결되는 제2 방사체를 포함하며, 상기 제1 방사체 및 제2 방사체는 서로 이격된다.An antenna according to an exemplary embodiment of the present invention may include: an antenna carrier on which at least one first via hole and a second via hole are respectively formed, and firstly formed on both surfaces of the antenna carrier and electrically connected to each other through the first via hole. And a second radiator which is formed on both sides of the radiator and the antenna carrier, respectively, and is electrically connected through the second via hole, wherein the first radiator and the second radiator are spaced apart from each other.
본 발명의 실시 예들은 안테나 캐리어에 비아 홀을 통한 간접 급전 형태의 구조를 제공하므로, 엘디에스 가공법의 장점을 최대한 활용하면서도 안테나 캐리어 옆면의 단선 문제를 해결함과 동시에 외부 요인에 둔감한 새로운 구조의 안테나를 제공할 수 있게 된다.Embodiments of the present invention provide the structure of the indirect feeding through the via hole to the antenna carrier, while maximizing the advantages of the LDS processing method while solving the problem of disconnection of the side of the antenna carrier and at the same time insensitive to external factors It is possible to provide an antenna.
도1은 일반적인 프레스 타입(Press Type)의 안테나의 구조를 도시한 사시도이다.1 is a perspective view showing the structure of a typical press type antenna.
도2는 일반적인 프레스 타입의 안테나의 저면을 도시한 도면이다.2 is a view showing the bottom of a typical press type antenna.
도3은 외부 요인이 적용된 상태에서 도1과 도2에 도시된 안테나의 접지부 전류 분포를 나타낸 도면이다.FIG. 3 is a diagram illustrating the current distribution of the ground portion of the antenna illustrated in FIGS. 1 and 2 in the state where an external factor is applied.
도4는 본 발명의 실시 예에 따른 안테나의 구조를 나타내는 평면도이다.4 is a plan view illustrating a structure of an antenna according to an exemplary embodiment of the present invention.
도5는 본 발명의 실시 예에 따른 안테나의 구조를 나타내는 저면도이다.5 is a bottom view illustrating a structure of an antenna according to an exemplary embodiment of the present invention.
도6은 도5의 I-I'에 대한 단면 사시도이다.FIG. 6 is a sectional perspective view taken along line II ′ of FIG. 5;
도7과 도8은 본 발명의 안테나에서 제1 방사체 및 제2 방사체만 분리하여 도시한 도면이다.7 and 8 illustrate only the first radiator and the second radiator separated from the antenna of the present invention.
도9는 외부 요인이 적용된 상태에서 본 발명의 안테나를 포함하는 전자 장치의 접지부의 전류 분포를 나타내는 도면이다.9 is a diagram illustrating a current distribution of a ground part of an electronic device including an antenna of the present invention in a state where an external factor is applied.
이하, 첨부된 도면들을 참조하여 본 발명의 실시 예에 대해 구체적으로 설명하기로 한다. 그러나 이는 예시적 실시 예에 불과하며 본 발명은 이에 제한되지 않는다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, this is only an exemplary embodiment and the present invention is not limited thereto.
본 발명을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to the intention or custom of a user or an operator. Therefore, the definition should be made based on the contents throughout the specification.
이하의 설명에 있어서, 연결 또는 결합 이와 유사한 의미의 용어는 일 구성요소에서 다른 구성요소로 직접 연결 또는 결합되는 것뿐만이 아니라 다른 구성요소를 거쳐 전달되는 것도 포함한다. In the following description, the terms connection or coupling similarly include not only directly connected to or coupled from one component to another, but also transmitted through other components.
이하, 본 발명의 실시 예에 따른 안테나의 개선된 효과를 이해하기 쉽게 설명하기 위해, 먼저 일반적인 프레스 타입(Press Type)의 안테나 구조 및 프리(FREE) 상태와 외부 요인이 적용된 상태에서의 안테나 성능을 설명하고, 본 발명에 따른 안테나 구조 및 그 성능을 비교 설명하기로 한다. 여기서, 외부 요인이란, 안테나가 포함되는 전자 장치를 손(HAND)으로 잡았을 때 또는 머리(HEAD) 주변으로 근접시켰을 때의 상태를 가리키는 것으로 이하에서는 "외부 요인"이라는 명칭으로 통일해 사용하기로 한다. 또한, 프리 상태는 안테나에 외부 요인이 작용하지 않는 기본적인 상태를 가리킨다.Hereinafter, in order to easily understand the improved effect of the antenna according to an embodiment of the present invention, first, the antenna performance of a general press type and the antenna performance in a state in which free and external factors are applied The antenna structure and its performance according to the present invention will be described in detail. Here, the external factor refers to a state when the electronic device including the antenna is held by the hand (HAND) or when the electronic device including the antenna is near the head (HEAD). . In addition, the free state refers to a basic state in which external factors do not act on the antenna.
도1은 일반적인 프레스 타입(Press Type)의 안테나의 구조를 도시한 사시도이고, 도2는 일반적인 프레스 타입의 안테나의 저면을 도시한 도면이며, 도3은 외부 요인이 적용된 상태에서 도1과 도2에 도시된 안테나의 접지부 전류 분포를 나타낸 도면이다.FIG. 1 is a perspective view illustrating a structure of a typical press type antenna, FIG. 2 is a view illustrating a bottom surface of a typical press type antenna, and FIG. 3 is a state in which external factors are applied to FIGS. 1 and 2. Figure is a diagram showing the current distribution in the ground portion of the antenna shown in.
일반적인 프레스 타입 안테나(100)는 도1과 도2에 도시된 바와 같이, 안테나 캐리어(carrier)(102) 및 방사체(104)를 포함한다. 여기서, 안테나(100)는 방사체(104)가 역 에프자 형상으로 구성되는 PIFA(Planar Inverted-F Antenna) 구조를 갖는다. 또한, 안테나 캐리어(102)는 전자 장치의 메인보드와 안테나의 방사체 사이를 일정 간격 이격하여 원하는 방사 특성을 구현하고, 전자파 흡수율을 감소시키기 위해 사용된다.A typical press type antenna 100 includes an antenna carrier 102 and a radiator 104, as shown in Figures 1 and 2. Here, the antenna 100 has a Planar Inverted-F Antenna (PIFA) structure in which the radiator 104 is configured in an inverted F-shape. In addition, the antenna carrier 102 is used to space desired intervals between the main board of the electronic device and the radiator of the antenna to implement desired radiation characteristics and to reduce the electromagnetic wave absorption rate.
상기 안테나(100)에서, 방사체(104)는 안테나 캐리어(102)와는 별도로 제작되며 프레스 가공에 의해 안테나 캐리어(102)에 기계적으로 결합된다. In the antenna 100, the radiator 104 is manufactured separately from the antenna carrier 102 and mechanically coupled to the antenna carrier 102 by press working.
한편, 방사체(104)의 A부분(A)과 B부분(B)은 안테나 캐리어(102)의 저면까지 절곡되어 방사체(104)와 안테나 캐리어(102)를 기계적으로 결합시키는 역할을 한다. 또한, 방사체(104)는 A부분(A)을 통해 메인 보드의 급전부(미도시)와 전기적으로 연결되고, B부분(B)을 통해 메인 보드의 접지부와 연결된다.On the other hand, A portion (A) and B portion (B) of the radiator 104 is bent to the bottom of the antenna carrier 102 serves to mechanically couple the radiator 104 and the antenna carrier 102. In addition, the radiator 104 is electrically connected to a feeding part (not shown) of the main board through the portion A, and is connected to the ground portion of the main board through the portion B.
이하, 표1을 참조하여 상기 프레스 타입의 PIFA 안테나(100)의 성능을 설명하면 다음과 같다. 여기서, 표1은 도1과 도2에 도시된 안테나 성능의 시뮬레이션 결과를 나타낸다.Hereinafter, referring to Table 1, the performance of the press type PIFA antenna 100 will be described. Here, Table 1 shows simulation results of the antenna performance shown in FIGS. 1 and 2.
표 1
Figure PCTKR2012000113-appb-T000001
Table 1
Figure PCTKR2012000113-appb-T000001
먼저, TRP(Total Radiated Power)는 안테나의 총 방사 전력을 가리키고, TIS(Total Isotropic Sensitivity)는 안테나의 총 등방성 강도를 의미하는데, 즉, 안테나의 수신 강도를 가리킨다. 또한, 프리 상태는 안테나에 외부 요인이 작용하지 않는 기본적인 상태를 가리키고, 외부 요인(HAND)은 전자 장치를 손으로 잡았을 때의 상태를 가리킨다.First, TRP (Total Radiated Power) refers to the total radiated power of the antenna, and TIS (Total Isotropic Sensitivity) refers to the total isotropic strength of the antenna, that is, the reception strength of the antenna. In addition, the free state indicates a basic state in which an external factor does not act on the antenna, and the external factor (HAND) indicates a state when the electronic device is held by hand.
표1을 참조하여 DCS대역에서 각 주파수에 대한 평균값(AVE)을 보면, 프리 상태의 TRP(23.91)에 비해 외부 요인이 작용한 상태의 TRP(21.86)가 감소하였고, 프리 상태의 TIS(-106)에 비해 외부 요인이 작용한 상태의 TIS(-103)가 감소한 것을 알 수 있다. 따라서, 두 상태 간에 성능 차이는 TRP에 대해 2.05만큼의 차이가 나고, TIS에 대해 3.26만큼의 차이가 난다는 것을 알 수 있다.Referring to Table 1, the average value (AVE) for each frequency in the DCS band shows that the TRP (21.86) in the external factor is reduced compared to the TRP (23.91) in the free state, and the TIS (-106) in the free state. It can be seen that the TIS (-103) in a state in which an external factor acts was reduced compared to Thus, it can be seen that the performance difference between the two states is 2.05 for TRP and 3.26 for TIS.
한편, PCS대역에서 프리 상태와 외부 요인이 작용한 상태 간에 평균값(AVE)을 보면, 두 상태 간의 성능 차이는 TRP가 3.28만큼 나타나고, TIS가 2.87만큼 나타나는 것을 알 수 있다.On the other hand, if the average value (AVE) between the free state and the external factor in the PCS band, the performance difference between the two states can be seen that the TRP by 3.28, TIS by 2.87.
도3을 참조하면, 프레스 타입의 PIFA 안테나(100)를 포함하는 전자 장치에서, 외부 요인이 적용된 상태에서 접지부의 전류는 불균일하게 분포함을 알 수 있다.Referring to FIG. 3, it can be seen that in an electronic device including a press type PIFA antenna 100, currents of the ground portion are unevenly distributed in the state where an external factor is applied.
이하, 일반적인 프레스 타입의 PIFA 안테나(100)와 비교하기 위해 본 발명의 실시 예에 따른 안테나를 자세히 후술하도록 하겠다.Hereinafter, an antenna according to an embodiment of the present invention will be described in detail below in order to compare with a general press type PIFA antenna 100.
도4는 본 발명의 실시 예에 따른 안테나의 구조를 나타내는 평면도이고, 도5는 본 발명의 실시 예에 따른 안테나의 구조를 나타내는 저면도이며, 도6은 도5의 I-I'에 대한 단면 사시도이다.4 is a plan view showing the structure of an antenna according to an embodiment of the present invention, Figure 5 is a bottom view showing the structure of an antenna according to an embodiment of the present invention, Figure 6 is a cross-sectional view taken along line II 'of FIG. Perspective view.
도4 및 도5를 참조하면, 본 발명의 실시 예에 따른 안테나(200)는 안테나 캐리어(202), 제1 방사체(204) 및 제2 방사체(206)를 포함한다. 4 and 5, an antenna 200 according to an embodiment of the present invention includes an antenna carrier 202, a first radiator 204, and a second radiator 206.
안테나(200)는, 레이저를 이용하여 안테나 캐리어(202)의 표면을 가공한 후 도금 공정을 거쳐 방사체를 구현하는 LDS(Laser Direct Structuring )에 의해 제조된다. 이때, 안테나 캐리어(202)에는 LDS 수지 사출 성형물이 적용될 수 있다.The antenna 200 is manufactured by Laser Direct Structuring (LDS), which implements a radiator through a plating process after processing the surface of the antenna carrier 202 using a laser. In this case, the LDS resin injection molding may be applied to the antenna carrier 202.
안테나 캐리어(202)에는 소정의 방사체가 연결될 수 있도록 안테나 캐리어(202)를 관통하는 복수의 비어 홀(via hole)(208)들이 형성된다.The antenna carrier 202 is formed with a plurality of via holes 208 penetrating the antenna carrier 202 so that a predetermined radiator can be connected.
안테나(200)의 제1 및 제2 방사체(204,206)는 각각 도4에 도시된 바와 같이, 안테나 캐리어(202)의 상부면에도 형성되고, 도5에 도시된 바와 같이, 안테나 캐리어(202)의 하부면에도 형성된다. 그리고, 안테나 캐리어(202)의 상부면과 하부면에 형성된 제1 방사체(204)는 상기 비어 홀(208)들 중 일부를 통해 전기적으로 연결되고, 안테나 캐리어(202)의 상부면과 하부면에 형성된 제2 방사체(204)는 또 다른 비어 홀(208)들을 통해 전기적으로 연결된다. 즉, 제1 방사체(204)들과 제2 방사체(206)들은 각각 다른 비어 홀(208)들을 통해 연결된다.The first and second radiators 204, 206 of the antenna 200 are also formed on the top surface of the antenna carrier 202, as shown in FIG. 4, respectively, and as shown in FIG. 5, of the antenna carrier 202. It is also formed on the bottom surface. The first radiator 204 formed on the top and bottom surfaces of the antenna carrier 202 is electrically connected to some of the via holes 208, and is connected to the top and bottom surfaces of the antenna carrier 202. The formed second radiator 204 is electrically connected through further via holes 208. That is, the first radiators 204 and the second radiators 206 are connected through different via holes 208, respectively.
도5를 보면, 안테나 캐리어(202)의 저면에 형성되어 있는 제1 방사체(204)의 C부분(C)은 메인 보드의 급전부(미도시)와 전기적으로 연결되어 전원을 인가받고, 제2 방사체(206)의 D부분(D)은 메인 보드의 접지부와 전기적으로 연결된다. 이와 반대로, 제1 방사체(204)의 C부분(C)은 메인 보드의 접지부와 연결되고, 제2 방사체(206)의 D부분(D)은 메인 보드의 급전부와 연결될 수도 있다. 한편, 2개의 급전을 이용하는 안테나 구조에서는, 제1 방사체(204)의 C부분(C)과 제2 방사체(206)의 D부분(D)이 각각 제1 급전부와 제2 급전부와 연결되거나 모두 접지부와 연결될 수도 있다.Referring to FIG. 5, the C portion C of the first radiator 204 formed on the bottom surface of the antenna carrier 202 is electrically connected to a feeding part (not shown) of the main board to receive power, and the second The D portion D of the radiator 206 is electrically connected to the ground portion of the main board. On the contrary, the C portion C of the first radiator 204 may be connected to the ground portion of the main board, and the D portion D of the second radiator 206 may be connected to the feed portion of the main board. On the other hand, in the antenna structure using two feeds, the C portion (C) of the first radiator 204 and the D portion (D) of the second radiator 206 are connected to the first feed portion and the second feed portion, respectively, Both may be connected to ground.
여기서, 안테나 캐리어(202)의 하부면에 형성되는 제1 방사체(204)는 상부면에 형성되는 제1 방사체(204)와 비어 홀(208)들을 통해 전기적으로 연결된다. 도6을 보면, 안테나 캐리어(208)를 관통하는 비어 홀(208)은 LDS 공정 시에 도금되어 안테나 캐리어(208)의 상부면과 하부면에 형성되는 제1 방사체(204)를 전기적으로 연결한다.Here, the first radiator 204 formed on the lower surface of the antenna carrier 202 is electrically connected to the first radiator 204 and the via holes 208 formed on the upper surface. Referring to FIG. 6, the via hole 208 penetrating through the antenna carrier 208 is electrically plated during the LDS process to electrically connect the first radiator 204 formed on the upper and lower surfaces of the antenna carrier 208. .
한편, 안테나 캐리어(202)의 하부면에 형성되는 제2 방사체(206) 및 상부면에 형성되는 제2 방사체(206)는 도6에 도시된 제1 방사체(204)와 같이, 비어 홀(208)을 통해 전기적으로 연결된다.On the other hand, the second radiator 206 formed on the lower surface of the antenna carrier 202 and the second radiator 206 formed on the upper surface of the via hole 208, like the first radiator 204 shown in FIG. Is electrically connected).
그런데, 도4와 도5에 도시된 바와 같이, 제1 방사체(204)와 제2 방사체(206)는 안테나 캐리어(202)의 상부면과 하부면 각각에서 소정의 간격만큼 이격되어 있다. 좀 더 구체적으로 살펴보면, 제2 방사체(206)는 안테나 캐리어(202)의 상부면에 비어 홀들 각각을 중심으로 복수 개가 형성된다. 그리고, 제1 방사체(204)는 상기 제2 방사체(206)로부터 이격되어 제2 방사체(206)를 에워싸는 형상으로 형성된다. 즉, 메인 보드의 급전부와 연결되는 제1 방사체(204)는 접지부와 연결되는 제2 방사체(206)와 전기적으로 분리된다. 따라서, 안테나(200)는 급전부와 접지부가 직접 연결되지 않고, 제1 방사체(204)와 제2 방사체(206) 간의 전기적 커플링을 통해 간접적으로 연결되는 구조를 갖게 된다.However, as shown in FIGS. 4 and 5, the first radiator 204 and the second radiator 206 are spaced apart by a predetermined distance from each of the upper and lower surfaces of the antenna carrier 202. In more detail, a plurality of second radiators 206 are formed on the upper surface of the antenna carrier 202 with respect to each of the via holes. The first radiator 204 is formed in a shape that surrounds the second radiator 206 spaced apart from the second radiator 206. That is, the first radiator 204 connected to the feeder part of the main board is electrically separated from the second radiator 206 connected to the ground part. Therefore, the antenna 200 has a structure in which the feed part and the ground part are not directly connected, but are indirectly connected through electrical coupling between the first radiator 204 and the second radiator 206.
제1 방사체(204)와 제2 방사체(206) 사이의 이격 거리는 방사체의 면적, 길이 등이 고려되어야 하며, 안테나 설계자의 의도에 따라 달라질 수 있다. 다만, 이격 거리는 제1 방사체(204)와 제2 방사체(206) 사이에 전자계에 의한 커플링이 발생할 수 있는 정도의 거리 이하로 설정되어야 한다.The separation distance between the first radiator 204 and the second radiator 206 should be considered the area, length, etc. of the radiator, and may vary according to the intention of the antenna designer. However, the separation distance should be set to be equal to or less than a distance that can cause coupling by the electromagnetic field between the first radiator 204 and the second radiator 206.
이와 같이, 제1 방사체(204)와 제2 방사체(206) 사이에는 소정의 이격이 존재하므로, 둘 사이에는 전자계에 따른 커플링이 발생하고, 제2 방사체(206)는 커플링에 의해 제1 방사체(204)로부터 간접적으로 급전을 받게 된다.As such, since a predetermined distance exists between the first radiator 204 and the second radiator 206, a coupling according to an electromagnetic field occurs between the two radiators, and the second radiator 206 is connected to the first radiator by the coupling. Power is indirectly received from the radiator 204.
한편, 도6을 보면, 비어 홀(208)은 안테나 캐리어(202)의 하부면의 개구 방향으로 넓어지는 형상으로 형성된다. 이 경우, 안테나 캐리어(202)의 하부면을 도금할 때 비어 홀(208)의 내부까지 도금할 수 있다. 또한, 비어 홀(208)이 안테나 캐리어(202)의 상부면의 개구 방향으로 넓어지는 형상으로 형성될 수도 있음은 당연하다. 물론, 이때에는 안테나 캐리어(202)의 상부면을 도금할 때 비어 홀(208)의 내부까지 도금할 수 있다.On the other hand, referring to Figure 6, the via hole 208 is formed in a shape that widens in the opening direction of the lower surface of the antenna carrier 202. In this case, when the lower surface of the antenna carrier 202 is plated, the inside of the via hole 208 may be plated. In addition, the via hole 208 may be formed in a shape that widens in the opening direction of the upper surface of the antenna carrier 202. Of course, in this case, when plating the upper surface of the antenna carrier 202, it may be plated up to the inside of the via hole 208.
종래에는 LDS 가공법에 의해 안테나 캐리어의 상부면과 하부면에 방사체를 형성하고, 안테나 캐리어의 옆면을 금속화하여 안테나 캐리어의 상부면과 하부면에 형성된 방사체를 전기적으로 연결하였다. 이에 따라, 안테나 캐리어 옆면이 제대로 도금되지 못하여 안테나 캐리어의 상부면과 하부면에 형성된 방사체가 전기적으로 연결되지 못하는 단선 문제가 발생할 수 있었다. 그러나, 본 발명의 실시 예는 안테나 캐리어(202)를 관통하여 형성되는 비아 홀(208)을 통해 안테나 캐리어(202)의 상부면과 하부면에 형성되는 방사체를 연결하므로, 제한된 안테나 캐리어 공간에 방사체의 체적을 극대화하는 엘디에스 가공법의 장점을 그대로 활용하면서도 안테나 캐리어 옆면의 단선 문제를 해결할 수 있다.Conventionally, the radiator is formed on the upper and lower surfaces of the antenna carrier by LDS processing, and the sides of the antenna carrier are metallized to electrically connect the radiators formed on the upper and lower surfaces of the antenna carrier. As a result, a disconnection problem may occur in which the side surface of the antenna carrier is not properly plated, and thus the radiators formed on the top and bottom surfaces of the antenna carrier are not electrically connected. However, since the embodiment of the present invention connects the radiators formed on the upper and lower surfaces of the antenna carrier 202 through the via holes 208 formed through the antenna carrier 202, the radiator is limited to the antenna carrier space. It can solve the problem of disconnection on the side of the antenna carrier while still utilizing the advantages of the LDS processing method that maximizes the volume of the antenna.
도7과 도8은 본 발명의 안테나에서 제1 방사체 및 제2 방사체만 분리하여 도시한 도면이다.7 and 8 are views illustrating the first radiator and the second radiator separated from the antenna of the present invention.
도7과 도8을 참조하면, 안테나 캐리어의 상부면과 하부면에 형성되는 제1 방사체(204)는 비어 홀을 통해 서로 전기적으로 연결되어 있다. 마찬가지로, 안테나 캐리어의 상부면과 하부면에 형성되는 제2 방사체(206)도 비어 홀을 통해 서로 전기적으로 연결되어 있다. 그러나, 제1 방사체(204)와 제2 방사체(206)는 서로 물리적으로 분리되어 있다. 7 and 8, the first radiators 204 formed on the upper and lower surfaces of the antenna carrier are electrically connected to each other through via holes. Similarly, the second radiators 206 formed on the top and bottom surfaces of the antenna carrier are also electrically connected to each other via via holes. However, the first radiator 204 and the second radiator 206 are physically separated from each other.
여기서, 제1 방사체(204)의 C부분(C)은 급전부와 연결되고, 제2 방사체(206)의 D부분(D)은 접지부와 연결된다. 이와 반대로, 제1 방사체(204)의 C부분(C)은 메인 보드의 접지부와 연결되고, 제2 방사체(206)의 D부분(D)은 메인 보드의 급전부와 연결될 수도 있다. 또한, 2개의 급전을 이용하는 안테나 구조에서는, 제1 방사체(204)의 C부분(C)과 제2 방사체(206)의 D부분(D)이 각각 제1 급전부와 제2 급전부와 연결되거나 모두 접지부와 연결될 수도 있다.Here, the C portion C of the first radiator 204 is connected to the power supply portion, and the D portion D of the second radiator 206 is connected to the ground portion. On the contrary, the C portion C of the first radiator 204 may be connected to the ground portion of the main board, and the D portion D of the second radiator 206 may be connected to the feed portion of the main board. Further, in the antenna structure using two feeds, the C portion C of the first radiator 204 and the D portion D of the second radiator 206 are connected to the first feed portion and the second feed portion, respectively. Both may be connected to ground.
이와 같이 비어 홀 가공을 이용하여 제1 방사체(204)와 제2 방사체(206) 사이에 간접 급전 방식을 적용하는 경우 본 발명의 안테나의 성능은 향상되며 외부 요인에 둔감해지는데, 이에 대한 자세한 내용은 후술하도록 하겠다.As such, when the indirect feeding method is applied between the first radiator 204 and the second radiator 206 by using the via hole processing, the performance of the antenna of the present invention is improved and is insensitive to external factors. Will be described later.
표2는 본 발명의 안테나 성능의 시뮬레이션 결과를 나타낸 도면이다.Table 2 shows simulation results of the antenna performance of the present invention.
표 2
Figure PCTKR2012000113-appb-T000002
TABLE 2
Figure PCTKR2012000113-appb-T000002
먼저, TRP(Total Radiated Power)는 안테나의 총 방사 전력을 가리키고, TIS(Total Isotropic Sensitivity)는 안테나의 총 등방성 강도를 의미하는데, 즉, 안테나의 수신 강도를 가리킨다. 또한, 프리 상태는 안테나에 외부 요인이 작용하지 않는 기본적인 상태를 가리키고, 외부 요인(HAND)은 전자 장치를 손으로 잡았을 때의 상태를 가리킨다.First, TRP (Total Radiated Power) refers to the total radiated power of the antenna, and TIS (Total Isotropic Sensitivity) refers to the total isotropic strength of the antenna, that is, the reception strength of the antenna. In addition, the free state indicates a basic state in which an external factor does not act on the antenna, and the external factor (HAND) indicates a state when the electronic device is held by hand.
표2를 참조하여 DCS대역에서 각 주파수에 대한 평균값(AVE)을 보면, 프리 상태의 TRP(24.19)에 비해 외부 요인이 작용한 상태의 TRP(23.68)가 감소하였고, 프리 상태의 TIS(-106)에 비해 외부 요인이 작용한 상태의 TIS(-104)가 감소한 것을 알 수 있다. 또한, 두 상태 간에 성능 차이는 TRP에 대해 0.51만큼의 차이가 나고, TIS에 대해서는 2.63만큼의 차이가 나는 것을 알 수 있다.Referring to Table 2, the average value (AVE) for each frequency in the DCS band shows that the TRP (23.68) of the external factor is reduced and the TIS (-106) of the free state compared to the TRP (24.19) of the free state. It can be seen that the TIS (-104) in the state where an external factor acted was reduced compared to). Also, it can be seen that the performance difference between the two states is 0.51 for TRP and 2.63 for TIS.
한편, PCS대역에서 프리 상태와 외부 요인이 작용한 상태 간에 평균값(AVE)을 보면, 두 상태 간의 성능 차이는 TRP에 대해 3.14만큼 차이가 나고, TIS에 대해 3.05만큼 차이가 나는 것을 알 수 있다.On the other hand, when the average value (AVE) between the free state and the external factor is applied in the PCS band, it can be seen that the performance difference between the two states differs by 3.14 for the TRP and 3.05 for the TIS.
상기 본 발명의 안테나의 시뮬레이션 결과와 표2에 나타난 일반적인 PIFA 안테나의 시뮬레이션 결과를 비교하면 다음과 같다.The simulation results of the antenna of the present invention and the simulation results of the general PIFA antenna shown in Table 2 are as follows.
먼저, PIFA 안테나를 보면, DCS 대역에서 프리 상태와 외부 요인이 적용된 상태 간의 차이가 TRP와 TIS에 대해 각각 -2.05와 -3.26가 나온다.First, looking at the PIFA antenna, the difference between the free state and the external factor applied state in the DCS band is -2.05 and -3.26 for TRP and TIS, respectively.
반면, 본 발명의 안테나를 보면, DCS 대역에서 프리 상태와 외부 요인이 적용된 상태 간의 차이가 TRP와 TIS에 대해 각각 -0.51과 -2.63이 나온다. On the other hand, in the antenna of the present invention, the difference between the free state and the external factor applied state in the DCS band is -0.51 and -2.63 for the TRP and TIS, respectively.
이와 같이, 본 발명의 안테나는 일반적인 PIFA 안테나에 비해 프리 상태와 외부 요인이 적용된 상태 간에 TRP와 TIS의 변화가 작다는 것을 알 수 있다. 즉, 일반적인 PIFA 안테나에 비해 외부 요인에 의한 영향을 덜 받는 장점을 갖는다.As described above, it can be seen that the antenna of the present invention has a smaller change in TRP and TIS between a free state and a state where external factors are applied as compared to a general PIFA antenna. That is, compared with the general PIFA antenna, it is less affected by external factors.
도9는 외부 요인이 적용된 상태에서 본 발명의 안테나를 포함하는 전자 장치의 접지부의 전류 분포를 나타내는 도면이다.9 is a diagram illustrating a current distribution of a ground part of an electronic device including an antenna of the present invention in a state where an external factor is applied.
일반적인 PIFA 안테나를 포함하는 전자 장치의 접지부의 전류 분포를 나타내는 도3과 도9를 비교하면, 상대적으로 본 발명의 안테나를 포함하는 전자 장치의 접지부에서 전류 분포가 균일하게 나타나는 것을 알 수 있다. 즉, 본 발명의 실시 예는 일반적인 PIFA 안테나보다 외부 요인에 강한 안테나를 구현하게 된다.Comparing Fig. 3 and Fig. 9 showing the current distribution of the ground portion of the electronic device including the general PIFA antenna, it can be seen that the current distribution appears uniformly at the ground portion of the electronic device including the antenna of the present invention. That is, the embodiment of the present invention implements an antenna that is stronger in external factors than the general PIFA antenna.
이하, 일반적인 PIFA안테나와 본 발명의 안테나의 성능을 구체적으로 비교하여 설명하도록 하겠다.Hereinafter, the performance of a general PIFA antenna and the antenna of the present invention will be described in detail.
표3은 프리 상태에서 일반적인 PIFA 안테나의 성능과 본 발명의 안테나의 성능을 비교 도시한 도면이고, 표4는 외부 요인이 적용된 상태에서 일반적인 PIFA 안테나의 성능과 본 발명의 안테나의 성능을 비교 도시한 도면이다.Table 3 shows a comparison between the performance of a general PIFA antenna and the performance of the antenna of the present invention in a free state, and Table 4 shows a comparison of the performance of a general PIFA antenna and the performance of an antenna of the present invention in an external factor. Drawing.
표 3
Figure PCTKR2012000113-appb-T000003
TABLE 3
Figure PCTKR2012000113-appb-T000003
먼저, 표3을 참조하면, 프리 상태에서 PIFA 안테나의 TRP 및 TIS에 비해 본 발명의 안테나의 TRP 및 TIS가 전반적으로 향상되었음을 알 수 있다. 이에 따라, DCS 대역에서 TRP와 TIS의 평균값(AVE)을 보면, 본 발명의 안테나가 PIFA 안테나에 비해 TRP에 대해 0.3만큼 향상되었고, TIS에 대해 0.2만큼 향상되었다. 또한, PCS 대역에서도 TRP와 TIS의 평균값(AVE)을 보면, TRP에 대해 0.31만큼 향상되었고, TIS에 대해 0.27만큼 향상되었다.First, referring to Table 3, it can be seen that the TRP and TIS of the antenna of the present invention are generally improved compared to the TRP and TIS of the PIFA antenna in the free state. Accordingly, looking at the average value (AVE) of TRP and TIS in the DCS band, the antenna of the present invention is improved by 0.3 for TRP and 0.2 for TIS compared to PIFA antenna. Also, in the PCS band, the average value (AVE) of TRP and TIS is improved by 0.31 for TRP and 0.27 for TIS.
표 4
Figure PCTKR2012000113-appb-T000004
Table 4
Figure PCTKR2012000113-appb-T000004
한편, 표4를 참조하면, 외부 요인이 적용된 상태에서도 PIFA 안테나의 TRP 및 TIS에 비해 본 발명의 안테나의 TRP 및 TIS가 전반적으로 향상되었음을 알 수 있다. 이에 따라, DCS 대역에서 TRP와 TIS의 평균값(AVE)을 보면, 본 발명의 안테나가 PIFA 안테나에 비해 TRP에 대해서는 1.82만큼 향상되었고, TIS에 대해서는 0.86만큼 향상되었다. 또한, PCS 대역에서도 TRP와 TIS의 평균값(AVE)을 보면, TRP에 대해 0.45만큼 향상되었고, TIS에 대해 0.09만큼 향상되었다.On the other hand, referring to Table 4, it can be seen that the TRP and TIS of the antenna of the present invention as a whole improved compared to the TRP and TIS of the PIFA antenna even when the external factors are applied. Accordingly, when looking at the average value (AVE) of TRP and TIS in the DCS band, the antenna of the present invention is improved by 1.82 for TRP and 0.86 for TIS compared to the PIFA antenna. In addition, in the PCS band, the average value (AVE) of TRP and TIS is improved by 0.45 for TRP and 0.09 for TIS.
이와 같이, TRP와 TIS 수치를 비교해 본 결과, 본 발명의 안테나는 프리 상태 또는 외부 요인이 적용된 상태 각각에서 일반적인 PIFA 안테나에 비해 높은 성능을 보여주고 있다.Thus, as a result of comparing the TRP and TIS value, the antenna of the present invention shows a higher performance than the conventional PIFA antenna in each of the free state or the external factor applied state.
이를 정리하면, 본 발명의 실시 예에 따른 안테나는 비아 홀을 이용하여 안테나 캐리어의 상부면과 하부면에 형성되는 제1 방사체와 제2 방사체를 각각 전기적으로 연결하고, 상기 제1 방사체와 제2 방사체 사이에는 전자계를 통한 간접 급전 방식을 적용함으로써, 일반적인 PIFA 안테나에 비해 높은 성능을 보이며 외부 요인에 따른 성능 변화가 작아진다.In summary, the antenna according to the embodiment of the present invention electrically connects the first radiator and the second radiator formed on the upper and lower surfaces of the antenna carrier using via holes, respectively, and the first radiator and the second radiator. By applying an indirect feeding method through the electromagnetic field between the radiators, the performance is higher than that of the general PIFA antenna, and the performance change due to external factors is small.
이에 따라, 본 발명의 실시 예에 따른 안테나를 포함하는 전자 장치는 일반적인 PIFA 안테나를 포함하는 전자 장치보다 높은 안테나 성능을 가지며, 손(HAND)으로 잡았을 때 또는 머리(HEAD) 주변으로 근접시켰을 때에도 프리 상태와 비교하여 성능 변화가 작다.Accordingly, an electronic device including an antenna according to an embodiment of the present invention has a higher antenna performance than an electronic device including a general PIFA antenna, and is free even when held by a hand or close to a head. The performance change is small compared to the state.
이상에서 대표적인 실시 예를 통하여 본 발명에 대하여 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시 예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시 예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Although the present invention has been described in detail with reference to exemplary embodiments above, those skilled in the art to which the present invention pertains can make various modifications without departing from the scope of the present invention. Will understand. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.

Claims (4)

  1. 적어도 하나의 제1 비어 홀 및 제2 비어 홀이 각각 형성되는 안테나 캐리어;An antenna carrier having at least one first via hole and a second via hole respectively formed;
    상기 안테나 캐리어의 상부면과 하부면에 각각 형성되어 상기 제1 비어 홀을 통해 전기적으로 연결되는 제1 방사체; 및First radiators formed on upper and lower surfaces of the antenna carrier and electrically connected to each other through the first via hole; And
    상기 안테나 캐리어의 상부면과 하부면에 각각 형성되어 상기 제2 비어 홀을 통해 전기적으로 연결되는 제2 방사체;Second radiators formed on upper and lower surfaces of the antenna carrier and electrically connected to each other through the second via hole;
    를 포함하며,Including;
    상기 제1 방사체 및 제2 방사체는 서로 이격되는, 안테나.And the first radiator and the second radiator are spaced apart from each other.
  2. 제 1 항에 있어서, 상기 비어 홀은 상기 안테나 캐리어의 상부면 또는 하부면의 개구 방향으로 넓어지는 형상으로 형성되는, 안테나.The antenna of claim 1, wherein the via hole is formed to have a shape widening in an opening direction of an upper surface or a lower surface of the antenna carrier.
  3. 제 1 항에 있어서, 상기 제1 방사체 및 제2 방사체는 LDS 가공법에 의해 상기 안테나 캐리어에 형성되는, 안테나.The antenna according to claim 1, wherein the first radiator and the second radiator are formed in the antenna carrier by LDS processing.
  4. 제 1 항 내지 제 3 항 중 어느 하나의 항에 기재된 안테나를 포함하는 전자 장치.An electronic device comprising the antenna according to any one of claims 1 to 3.
PCT/KR2012/000113 2011-01-05 2012-01-05 Antenna and electronic device having same WO2012093867A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0000793 2011-01-05
KR1020110000793A KR101156486B1 (en) 2011-01-05 2011-01-05 Antenna and mobile electronic device including the same

Publications (2)

Publication Number Publication Date
WO2012093867A2 true WO2012093867A2 (en) 2012-07-12
WO2012093867A3 WO2012093867A3 (en) 2012-11-29

Family

ID=46457856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000113 WO2012093867A2 (en) 2011-01-05 2012-01-05 Antenna and electronic device having same

Country Status (2)

Country Link
KR (1) KR101156486B1 (en)
WO (1) WO2012093867A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021126823A1 (en) * 2019-12-19 2021-06-24 Avx Antenna, Inc. D/B/A Ethertronics, Inc. Laser direct structure (lds) antenna assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160100593A (en) 2015-02-16 2016-08-24 주식회사 에이티앤씨 Apparatus for generating electromagnetic field
KR20160100594A (en) 2015-02-16 2016-08-24 주식회사 에이티앤씨 Apparatus for generating electromagnetic field

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080054964A (en) * 2006-12-14 2008-06-19 스카이크로스 인코포레이티드 Built-in antenna module and manufacturing method thereof
KR20090001767U (en) * 2007-08-21 2009-02-25 (주)에이스안테나 Unified Intena for Wireless Communication
KR20090124042A (en) * 2008-05-29 2009-12-03 주식회사 케이티테크 Pattern antenna having multiple layers connected to each other and mobile telephone using the same
KR20100097318A (en) * 2009-02-26 2010-09-03 주식회사 모비텍 Multiple array pattern antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080054964A (en) * 2006-12-14 2008-06-19 스카이크로스 인코포레이티드 Built-in antenna module and manufacturing method thereof
KR20090001767U (en) * 2007-08-21 2009-02-25 (주)에이스안테나 Unified Intena for Wireless Communication
KR20090124042A (en) * 2008-05-29 2009-12-03 주식회사 케이티테크 Pattern antenna having multiple layers connected to each other and mobile telephone using the same
KR20100097318A (en) * 2009-02-26 2010-09-03 주식회사 모비텍 Multiple array pattern antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021126823A1 (en) * 2019-12-19 2021-06-24 Avx Antenna, Inc. D/B/A Ethertronics, Inc. Laser direct structure (lds) antenna assembly

Also Published As

Publication number Publication date
WO2012093867A3 (en) 2012-11-29
KR101156486B1 (en) 2012-06-18

Similar Documents

Publication Publication Date Title
WO2015016549A1 (en) Antenna device and electronic apparatus having the same
WO2016003237A1 (en) Antenna apparatus in wireless communication device
CN205828650U (en) Electronic equipment
EP2763236A2 (en) Antenna device for portable terminal
WO2010098540A2 (en) Portable terminal case with a built-in internal antenna, and method for manufacturing same
WO2011087177A1 (en) Internal mimo antenna having isolation aid
WO2009134013A2 (en) Broadband internal antenna using slow-wave structure
WO2012165797A2 (en) Antenna structure
CN106887671A (en) Mobile device
CN103904417A (en) Mobile device
US20230318180A1 (en) Antenna Structure and Electronic Device
WO2022103159A1 (en) Antenna module and wireless communication terminal comprising same
WO2015199263A1 (en) Mobile electronic device
WO2018076451A1 (en) Antenna apparatus and terminal
WO2015099388A1 (en) Embedded antenna
WO2012093867A2 (en) Antenna and electronic device having same
WO2021221361A1 (en) Antenna module and wireless communication device comprising same
WO2021118244A1 (en) Antenna module
US7825862B2 (en) Antenna device with surface antenna pattern integrally coated casing of electronic device
CN109301447B (en) Terminal
WO2022131819A1 (en) Antenna module and wireless communication device comprising same
WO2022055277A1 (en) Antenna module and wireless communication device comprising same
WO2016126038A1 (en) Antenna structure
WO2011078558A2 (en) Antenna device
WO2022131825A1 (en) Antenna module and wireless communication device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732051

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12732051

Country of ref document: EP

Kind code of ref document: A2