WO2012093836A2 - Composite beam having concrete member precasted or casted in place and construction method using same - Google Patents

Composite beam having concrete member precasted or casted in place and construction method using same Download PDF

Info

Publication number
WO2012093836A2
WO2012093836A2 PCT/KR2012/000048 KR2012000048W WO2012093836A2 WO 2012093836 A2 WO2012093836 A2 WO 2012093836A2 KR 2012000048 W KR2012000048 W KR 2012000048W WO 2012093836 A2 WO2012093836 A2 WO 2012093836A2
Authority
WO
WIPO (PCT)
Prior art keywords
concrete member
steel frame
composite beam
plate
embedded
Prior art date
Application number
PCT/KR2012/000048
Other languages
French (fr)
Korean (ko)
Other versions
WO2012093836A3 (en
Inventor
김점한
조영상
Original Assignee
주식회사 네오크로스구조엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 네오크로스구조엔지니어링 filed Critical 주식회사 네오크로스구조엔지니어링
Publication of WO2012093836A2 publication Critical patent/WO2012093836A2/en
Publication of WO2012093836A3 publication Critical patent/WO2012093836A3/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • E04C3/293Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/30Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts being composed of two or more materials; Composite steel and concrete constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/20Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of concrete or other stone-like material, e.g. with reinforcements or tensioning members
    • E04C3/26Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of concrete or other stone-like material, e.g. with reinforcements or tensioning members prestressed
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0452H- or I-shaped

Definitions

  • the present invention relates to a composite beam, and more specifically, because the weight is small, the weight is easy, the workability is excellent, the logistics cost, such as transport cost is reduced, because the concrete consumption is small, eco-friendly, fastening with the pillar
  • the invention relates to a composite beam that is easy and provides enough space for the operator to step on the slab, eliminates the risk of injury to the operator, and can unify deck plate specifications.
  • the present invention also relates to a construction method of such a composite beam.
  • the beam is a structure that is installed to connect the column and the pillar to support the load, and supports the load transmitted from the slab.
  • a beam is typically a steel frame having a cross section of an “industrial” shape, a concrete member placed to enclose the steel frame, steel bars embedded in the concrete member along the longitudinal direction of the steel frame, and lower flanges and steel bars of the steel frame. Stirrups embedded in the concrete member to surround the.
  • the beam 10 has a problem that the operator is very inconvenient during slab construction because the stub 11 protrudes on the upper surface of the concrete member 12.
  • the protruding stirrup 11 often causes a worker to not only have a lack of space to step on the foot, but also to stumble or injure the protruding stub 11.
  • the concrete member 12 is manufactured by PC (precast) at the factory, when the beam 10 is rigidly welded to the column 20, the upper and lower flange welding work or the web of the concrete member 12 is performed by the precast concrete member 12.
  • the high-strength bolt 23 fastening operation is difficult.
  • the deck plate (d) is installed to be mounted on the upper surface and the upper flange 13 of the concrete member (12).
  • the length of the deck plate d mounted on the upper surface of the concrete member 12 and the deck plate d mounted on the upper flange 13 due to the protruding stub 11 should be different. That is, the deck plate (d) to be mounted on the upper surface of the concrete member 12 should have a shorter length than the deck plate (d) to be mounted on the upper flange 13, and therefore, the construction site is mounted on the upper flange (13)
  • the compressive stress is applied to the lower portion of the beam cross-section and the tensile stress is applied to the upper portion of the beam cross-section.
  • the compressive stress acts on the upper end of the beam cross section by the load of the slab or the like, and the tensile stress acts on the lower end of the beam end face.
  • the present invention has been designed to solve the above problems, and has an object of providing a composite beam, which is easy to lift due to its small weight, which is excellent in workability and reduces logistics costs such as transportation costs.
  • Another object of the present invention is to provide an environment-friendly composite beam because the concrete consumption is small.
  • Still another object of the present invention is to provide a composite beam that is easy to fasten with a pillar.
  • Still another object of the present invention is to provide a composite beam that provides a sufficient space for the operator to step on the slab and eliminates the risk of injury to the operator.
  • Another object of the present invention to provide a construction method using such a composite beam.
  • the composite beam according to the present invention includes a steel frame which is formed in the longitudinal direction to form the entire length of the beam and has a ' ⁇ ' shape cross section; A concrete member for embedding a portion of the web of the steel frame and the lower flange therein; Reinforcing bars embedded in the concrete member along the length direction; And a stub disposed at predetermined intervals along the longitudinal direction and installed to surround the lower flange of the steel frame and the reinforcing steel.
  • the upper flange of the steel frame is exposed to the outside without being embedded in the concrete member, the stirrup is embedded in the concrete member is not exposed to the outside.
  • the concrete member may be installed only at both ends of the steel frame without being installed at the center of the steel frame.
  • the lower flange or the web may be provided with a stud or at least a part of the reinforcing bar may be welded to the web and coupled.
  • the steel frame is formed long in the longitudinal direction to constitute the entire length of the beam having a ' ⁇ ' shape; A concrete member coupled to the bottom surface of the lower flange of the steel frame; Reinforcing bars embedded in the concrete member along the length direction; And a stub disposed at predetermined intervals along the length direction and installed to surround the reinforcing bars.
  • the upper flange and web of the steel frame are exposed to the outside without being embedded in the concrete member, and the stub is embedded in the concrete member and is not exposed to the outside.
  • the width w1 of the concrete member may be equal to the width w2 of the lower flange.
  • the concrete member may be installed only at both ends of the steel frame without being installed at the center of the steel frame.
  • a stud may be installed on the lower surface of the lower flange to increase the bonding force with the concrete member.
  • the steel frame is formed long in the longitudinal direction to constitute the entire length of the beam; A plate whose upper surface is coupled to the lower end of the steel frame; And a concrete member in which the plate is embedded so that the upper surface of the plate is exposed to the outside. At this time, the steel frame is exposed to the outside without being embedded in the concrete member.
  • the steel frame may have at least one of a cross section of an 'engine' shape, a cross section of a 'T' shape, and a cross section of which a width of the lower flange is narrower than that of the upper flange.
  • the composite beam may include a stub installed to be embedded in the concrete member at predetermined intervals along the longitudinal direction.
  • the stub is connected to the bolt and the concrete member and the plate and the steel frame by both ends thereof penetrate the plate and the lower flange.
  • the plate and the concrete member may be installed only at both ends of the steel frame and may not be installed at the center of the steel frame.
  • the steel frame may have a cross section having a central portion at an industrial shape and both ends thereof having a cross section having a T shape. At this time, the steel frame and the plate may be formed to extend more toward the pillar than the concrete member.
  • a method of constructing a composite beam includes: installing a pillar; And connecting the composite beam to a pillar.
  • the deck plate for constructing the slab is mounted on the upper flange of the composite beam and is not mounted on the concrete member, and thus the length of the deck plate can be unified.
  • the assembly and the steel frame can be combined in the field or factory.
  • the concrete member preferably extends further towards the column than the concrete surface of the column.
  • FIG. 1 is a perspective view showing a composite beam according to the prior art.
  • FIG. 2 is a cross-sectional view taken along line AA ′ of FIG. 1.
  • FIG. 3 is a plan view illustrating the composite beam of FIG. 1 and shows a deck plate installed.
  • FIG. 4 is a front view showing that the composite beam of FIG. 1 is connected to a pillar.
  • FIG. 5 is an exploded perspective view showing a composite beam and a pillar according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view taken along line BB ′ of FIG. 5.
  • FIG. 7 is a front view illustrating that the composite beam and the pillar of FIG. 5 are connected.
  • FIG. 8 is a perspective view showing a composite beam according to a second exemplary embodiment of the present invention.
  • FIG. 9 is a cross-sectional view taken along line CC ′ of FIG. 8.
  • FIG. 10 is a perspective view showing a composite beam according to a third exemplary embodiment of the present invention.
  • FIG. 11 is a cross-sectional view taken along line D-D 'of FIG. 10.
  • FIG. 12 is an exploded perspective view showing a composite beam according to a fourth embodiment of the present invention.
  • FIG. 13 is a cross-sectional view illustrating the composite beam of FIG. 12.
  • 14 and 15 are cross-sectional views showing steel frames that can be used in the composite beam of FIG. 12, respectively.
  • 16 is a perspective view showing a composite beam according to a fifth embodiment of the present invention.
  • 17 is a cross-sectional view illustrating the composite beam of FIG. 16.
  • FIG. 18 is a perspective view showing a composite beam according to a sixth embodiment of the present invention.
  • FIG. 19 is a perspective view showing a composite beam according to a seventh embodiment of the present invention.
  • FIG. 20 is a perspective view showing a composite beam according to an eighth embodiment of the present invention.
  • 21 is a perspective view showing a composite beam according to a ninth embodiment of the present invention.
  • FIG. 22 is a perspective view showing a composite beam according to a tenth embodiment of the present invention.
  • FIG. 23 is a front view illustrating that a composite beam according to an eleventh embodiment of the present invention is coupled to a pillar.
  • FIG. 24 is a cross-sectional view taken along line H-H 'of FIG. 23.
  • FIG. 5 is an exploded perspective view illustrating a composite beam and a pillar according to the first embodiment of the present invention
  • FIG. 6 is a cross-sectional view taken along line BB ′ of FIG. 5.
  • the composite beam 100 is a steel frame 30 having a ' ⁇ ' cross-sectional shape, the concrete member 40, the reinforcing steel bar 50 disposed along the longitudinal direction of the steel frame 30, and the lower
  • the stub 55 is installed to surround the flange 33 and the reinforcing bar 50.
  • Steel frame 30 is formed long in the longitudinal direction to form the entire length of the beam 100, and has a cross section of the ' ⁇ ' shape.
  • the steel frame 30 includes an upper flange 31, a web 32, and a lower flange 33.
  • Both ends of the steel frame 30 is preferably exposed to the outside without being embedded in the concrete member (40). Through holes 35 are formed in the exposed both ends, and fastening bolts 23 are inserted into the through holes 35.
  • the fastening bolt 23 is inserted into the coupling hole 25 and the through hole 15 formed in the connecting portion 22 of the pillar 20 and then coupled to the nut to couple the beam 100 and the pillar 20.
  • the concrete member 40 is installed along the longitudinal direction of the steel frame 30.
  • the concrete member 40 embeds a portion of the web 32 and the lower flange 33 therein.
  • the concrete member 40 does not extend to both ends of the steel frame 30 but extends only to a portion proximate to both ends, to the surface of the concrete of the pillar 20 when the pillar 20 is covered with concrete, or It is preferable to extend approximately 10 mm further toward the pillar 20 than the surface of the concrete.
  • a tension force is applied to the upper ends of the steel beams and a compressive force is generated at the lower ends of the steel beams when the gravity direction is applied.
  • a compressive force is generated at the lower ends of the steel beams when the gravity direction is applied.
  • the compressive stress acts on the lower portion of the neutral axis and the tensile stress acts on the upper portion of the neutral axis. Since concrete is strong in compressive stress and weak in tensile stress, it is preferable to install only up to the neutral axis or below the neutral axis. Therefore, the web 32 and the upper flange 31 above the neutral shaft are exposed to the outside without being embedded in the concrete member 40. An upper slab (not shown in the figure) is placed on the exposed portion. When the upper slab is completed, the upper slab is subjected to compressive stress and the lower flange 33 is subjected to tensile stress.
  • the composite beam 100 can reduce the manufacturing cost of the composite beam 100 and reduce the amount of CO 2 generated by reducing the amount of concrete used, and improves the construction and logistics by reducing the weight of the composite beam 100 Reduce costs
  • both ends of the steel frame 30 is exposed to the outside and the concrete member 40 embeds only a part of the web 32 therein, it is easy to connect the composite beam 100 and the pillar 20. That is, as shown in Figure 7, since the relatively wide space is secured to the flange 21 side direction of the column 20, the coupling work using the fastening bolt 23 is facilitated. Conventionally, since the concrete member 12 embeds the web 32 and the upper flange 31 therein, sufficient space cannot be secured on the lateral side of the flange 21.
  • Reinforcing bar 50 is embedded in the concrete member 40 along the longitudinal direction of the steel frame (30).
  • concrete is poured in a state where tension is applied to the reinforcing bar 50, and thus the reinforcing bar 50 applies a compressive force to the concrete member 40.
  • the rebar 50 is preferably arranged around the lower flange 33. At least some of the reinforcing bars 50 are preferably welded to the web 32 to be joined, in order to integrate the concrete member 40 and the steel frame 30.
  • the studs 57 to the lower flange 33 May be installed.
  • the stud 57 protrudes from the lower flange 33 to integrate the steel frame 30 and the concrete member 40.
  • the stud 57 is preferably installed on the bottom surface of the lower flange 33, but may be installed on the web 32.
  • Stirrups 55 are installed at predetermined intervals along the longitudinal direction of the steel frame 30.
  • Stirrup 55 is preferably installed to surround the lower flange 33 and the reinforcing bar (50).
  • the stub 55 is embedded inside the concrete member 40 and is not exposed to the outside. Therefore, the problem caused by exposing the stirrup to the outside, that is, the worker falls over the stirrup, or the problem of insufficient space to step on the foot due to the stirrup can be solved.
  • FIG. 8 is a perspective view illustrating a composite beam according to a second exemplary embodiment of the present invention
  • FIG. 9 is a cross-sectional view taken along line CC ′ of FIG. 8.
  • the composite beam 200 is a steel frame 30 having a ' ⁇ ' shape cross section
  • the concrete member 140 is installed coupled to the lower surface of the lower flange 33
  • the concrete member 140 It includes a reinforcing bar 50 embedded therein, and a stub 55 installed to surround the reinforcing bar.
  • the steel frame 30 is the same as the configuration of the steel frame 30 of the first embodiment will be omitted here. 8 and 9, the same reference numerals as those in FIGS. 5 to 7 denote the same components having the same function.
  • Concrete member 140 is installed on the lower surface of the lower flange 33 along the longitudinal direction of the steel frame (30). Accordingly, the web 32 and the upper flange 31 are exposed to the outside without being embedded in the concrete member 140.
  • the width of the concrete member 140 is formed longer than the width of the lower flange 33.
  • the concrete member 140 does not extend to both ends of the steel frame 30 and extends only to a portion near the both ends.
  • a stud 57 is provided on the lower surface of the lower flange 33.
  • Reinforcing bar 50 is installed to be embedded in the concrete member 140 along the longitudinal direction of the steel frame (30). When the composite beam 200 is manufactured in a prestressed manner, the reinforcement bar 50 applies a compressive force to the concrete member 140.
  • Stirrups 55 are installed at predetermined intervals along the longitudinal direction of the steel frame 30. Stirrups 55 are preferably installed to surround the reinforcing bar (50). The stub 55 is embedded in the concrete member 140 and is not exposed to the outside.
  • FIG. 10 is a perspective view illustrating a composite beam according to a third exemplary embodiment of the present invention
  • FIG. 11 is a cross-sectional view taken along line D-D 'of FIG. 10.
  • the composite beam 300 is a steel frame 30 having an 'industrial' shape, a concrete member 240 installed to be coupled to the lower surface of the lower flange 33, and reinforcement embedded in the concrete member 240. Reinforcing bar 50 and a stub (55) is installed to surround the reinforcing bar (50).
  • the same reference numerals as those in FIGS. 5 to 9 among the reference numerals of FIGS. 10 and 11 denote the same components having the same functions.
  • the composite beam 300 has the characteristic that the width W1 of the concrete member 240 is the same as the width W2 of the lower flange 33, compared to the composite beam 200 of the second embodiment. The remaining configuration is the same as the composite beam 200.
  • FIG. 12 is an exploded perspective view illustrating a composite beam according to a fourth exemplary embodiment of the present invention
  • FIG. 13 is a cross-sectional view illustrating the composite beam. 12 and 13, the same reference numerals as the reference numerals of FIGS. 1 to 11 denote the same components having the same function.
  • the composite beam 350 is a steel frame 30 having a cross section of an “industrial” shape, a concrete member 360, and a plate installed on an upper surface of the concrete member 360 and coupled to a lower surface of the lower flange 33 ( 370 and a reinforcing bar 50 embedded in the concrete member 360.
  • the steel frame 30 and the reinforcing bar 50 are the same as the steel frame 30 and the reinforcing bar 50 of the above-described embodiment, so description thereof will be omitted herein.
  • the plate 370 is installed to be embedded in the upper surface of the concrete member 360, the upper surface of the plate 370 is exposed to the outside is coupled to the lower flange 33.
  • the plate 370 may be made of steel, and thus the plate 370 may be welded to the lower surface of the lower flange 33 by welding.
  • other plates herein may be made of steel.
  • a plurality of studs 57 may be installed on the bottom surface of the plate 370.
  • the studs 57 increase the coupling force between the concrete member 360 and the plate 370.
  • the assembly of the plate 370 and the concrete member 360 and the steel frame 30 are manufactured, respectively, and then coupled by welding or the like.
  • the assembly of the assembly and the steel frame 30 may be performed at a site or a factory.
  • the plate 370 is preferably formed to extend further outward (ie, pillar side) than the concrete member 360, in order to weld the plate 370 to the column.
  • the strength of the plate 370 can be made larger than that of the steel frame 30.
  • the steel frame 30 having a cross section of the ' ⁇ ' shape instead of the steel frame 30 having a cross section of the ' ⁇ ' shape, the steel frame having a cross section of the 'T' shape (30a in FIG. 14) may be used. That is, by making the strength of the plate 370 larger than that of the steel frame 30, the steel frame 30a having a 'T' shape without the lower flange 33 can be used, thereby reducing the manufacturing cost of the steel frame. to be.
  • the combination of the steel frame 30a and the plate 370 may couple the lower end of the web 32 and the plate 370 by welding or the like.
  • steel frame 30, 30a as shown in Figure 15, it is also possible to use a steel frame (30b) narrower than the upper flange 31 of the lower flange (33b).
  • the combination of the steel frame 30b and the plate 370 may couple the lower surface of the lower flange 33b to the plate 370 by welding or the like.
  • FIG. 16 is an exploded perspective view illustrating a composite beam according to a fifth embodiment of the present invention
  • FIG. 17 is a cross-sectional view illustrating the composite beam. 16 and 17, the same reference numerals as those of Figs. 1 to 15 denote the same components having the same functions.
  • the composite beam 450 is a steel frame 30c having a ' ⁇ ' shape cross section, a concrete member 360, a plate installed on the upper surface of the concrete member 360 and coupled to the lower surface of the lower flange 33 ( 470, a reinforcing bar 50 embedded in the concrete member 360, and a stub 55a embedded in the concrete member 360.
  • the concrete member 360 and the reinforcing bar 50 are the same as the concrete member 360 and the reinforcing bar 50 of the fourth embodiment, description thereof will be omitted herein.
  • both ends of the steel frame 30c extends more than both ends of the concrete member 360 is the same as the above-described embodiment.
  • the plate 470 is installed to be embedded in the upper surface of the concrete member 360, the upper surface of the plate 470 is exposed to the outside. Although not shown in the drawings, a stud may be installed on the bottom surface of the plate 470.
  • the plate 470 is coupled to the bottom surface of the lower flange 33 by the stub 55a and the bolt 56.
  • the plate 470 may be made of steel or the like. Accordingly, the bottom surface of the plate 470 and the lower flange 33 may be welded together with the bolt 56.
  • the assembly of the plate 470 and the concrete member 360 and the steel frame 30c may be respectively manufactured and then combined at a site or a factory.
  • the plate 470 is preferably formed to extend further outward (ie, pillar side) than the concrete member 360, to weld the plate 470 to the column.
  • the stub 55a is installed at predetermined intervals along the longitudinal direction of the steel frame 30c. Both ends of the stirrup 55a pass through the through holes 54 and 34, and are then fastened to the bolt 56. Therefore, the stub 55a serves to couple the steel frame 30c with the plate 470 and the concrete member 360.
  • the composite beam 450 may use the steel frame 30b instead of the steel frame 30c, which will be easily understood by those skilled in the art with reference to the contents of the present specification.
  • FIG. 18 is a perspective view showing a composite beam according to a sixth embodiment of the present invention.
  • the composite beam 400 is a steel frame 30 having a 'engine' shaped cross section, the concrete member 340, the reinforcing steel bar 50 embedded in the interior of the concrete member 340, and The stub 55 is installed to surround the flange 33 and the reinforcing bar 50.
  • the composite beam 400 is the same as the composite beam 100 except that the concrete member 340 is not formed at the center of the steel frame 30 as compared with the composite beam 100 of the first embodiment.
  • a cross-sectional view taken along line E-E 'of FIG. 12 is the same as that of FIG. 6, and the same reference numerals of FIGS. 5 to 7 in FIG. 18 denote the same components having the same function.
  • Concrete member 340 is installed along the longitudinal direction of the steel frame 30, it is not installed in the central portion of the steel frame (30). As is known, the bending moment is largely applied to the center of the beam and the shear force is largely applied to both ends of the beam. Since the concrete has a small resistance to the bending moment, the concrete does not have a concrete member 340 in the center of the beam. The concrete member 340 is installed only at both ends. Therefore, the composite beam 400 can reduce the amount of concrete used to lower the manufacturing cost of the composite beam 400, reduce the amount of CO 2 generated, and improve the construction and reduce the logistics cost by reducing the weight of the composite beam 400 It has the feature that it can.
  • FIG. 19 is a perspective view showing a composite beam according to a seventh embodiment of the present invention.
  • the composite beam 500 is a steel frame 30 having a ' ⁇ ' shape, the concrete member 440, the reinforcing bar 50 embedded in the concrete member 440, and reinforcement
  • the stub 55 is installed to surround the reinforcing bar 50.
  • the composite beam 500 is the same as the composite beam 200 except that the concrete member 440 is not formed at the center of the steel frame 30 as compared with the composite beam 200 of the second embodiment.
  • 19 is the same as that of FIG. 9, and the same reference numerals as those of FIGS. 8 and 9 in FIG. 19 denote the same components having the same functions.
  • FIG. 20 is a perspective view showing a composite beam according to an eighth embodiment of the present invention.
  • the composite beam 600 is a steel frame 30 having a ' ⁇ ' shape cross section, the concrete member 540, the reinforcing bars 50 embedded in the concrete member 540, and reinforcement
  • the stub 55 is installed to surround the reinforcing bar 50.
  • the composite beam 600 is the same as the composite beam 300 except that the concrete member 540 is not formed at the center of the steel frame 30 as compared with the composite beam 300 of the third embodiment.
  • the cross-sectional view taken along line G-G 'of FIG. 20 is the same as that of FIG. 11, and the same reference numerals as those of FIGS. 10 and 11 in FIG.
  • 21 is an exploded perspective view illustrating a composite beam according to a ninth embodiment of the present invention.
  • the composite beam 550 is a steel frame 30 having a 'engine' shaped cross section, a concrete member 380, a plate installed on the upper surface of the concrete member 380 and coupled to the lower surface of the lower flange 33 ( 375 and reinforcing bars 50 embedded in the concrete member 380.
  • the steel frame 30 and the reinforcing bar 50 are the same as the steel frame 30 and the reinforcing bar 50 of the above-described embodiment, so description thereof will be omitted herein.
  • the composite beam 550 is the same as the composite beam 350 according to the fourth embodiment except that the concrete member 380 is not installed at the center and the concrete member 380 is installed only at both ends. Therefore, the cross section of both ends of the composite beam 550 is the same as FIG.
  • a steel frame having a 'T' shape cross section (30a of FIG. 14), or a steel frame 30b having a narrower width than the upper flange 31 may be used.
  • FIG. 22 is an exploded perspective view showing a composite beam according to a tenth embodiment of the present invention.
  • the same reference numerals as used in FIGS. 1 to 21 denote the same components having the same functions.
  • the composite beam 650 is a steel frame (30d) having a cross section of the ' ⁇ ' shape, the concrete member 380, the plate is installed on the upper surface of the concrete member 380 and coupled to the lower surface of the lower flange 33 ( 475, a reinforcing bar 50 embedded in the concrete member 380, and a stirrup 55a embedded in the concrete member 380.
  • the rebar 50 and the stub 55a are the same as the rebar 50 and the stub 55a of the composite beam 450, respectively.
  • the composite beam 650 is the same as the composite beam 450 according to the fifth embodiment except that the concrete member 380 is not installed at the center portion and the concrete member 380 is installed only at both ends. Therefore, the cross section of both ends of the composite beam 650 is the same as FIG.
  • the steel frame 30b of which the width of the lower flange 33b is narrower than that of the upper flange 31 may be used.
  • FIG. 23 is a front view illustrating a composite beam coupled to a pillar according to an eleventh embodiment of the present invention
  • FIG. 24 is a cross-sectional view taken along line H-H 'of FIG.
  • the same reference numerals as those of Figs. 1 to 22 denote the same components having the same functions.
  • the composite beam 700 is a steel frame, the concrete member 380, the plate 376 is installed on the upper surface of the concrete member 380 and coupled to the lower end of the web 32 and the inside of the concrete member 380 Buried rebar 50 is included.
  • the concrete member 380 and the rebar 50 are the same as the concrete member 380 and the rebar 50 of the ninth embodiment, respectively.
  • Both ends of the steel frame is made of steel frame 30a having a 'T' shaped cross section, and the central portion of the steel frame is made of steel frame 30 having a cross section of an 'engine' shape.
  • Connection coupling of the steel frame 30a and the steel frame 30 may be made by the connecting plate 38 and the bolt 39, or by welding the connecting plate 38 to the steel frame (30a) (30).
  • Plate 376 is welded to the bottom of web 32.
  • the plate 376 is installed to be embedded in the upper surface of the concrete member 380, the upper surface of the plate 376 is exposed to the outside is coupled to the web 32.
  • the plate 376 is preferably formed to extend further to both sides than the end of the concrete member 380, which is a combination of the plate 376 and the pillar 20, and the combination of the plate 376 and the lower flange 33
  • the plate 376 and the lower flange 33 may be joined by the connecting plate 38 and the bolt 39 or by welding the connecting plate 38.
  • the concrete member 380 preferably extends further toward the pillar 20 by a predetermined distance S than the concrete surface 27 of the pillar 20, more preferably the distance S is approximately 10 mm. .
  • the present invention has the following effects.
  • the weight is small, the weight is easy to provide a composite beam is excellent in workability and the logistics cost such as transportation costs are reduced.
  • the present invention provides a composite beam capable of unifying the specifications of the deck plate used in slab work. This can increase the efficiency of slab casting and reduce the work time.

Abstract

A composite beam according to the present invention has a low weight such that the composite beam may be easily lifted. Therefore, the constructability thereof is superior and transport fees thereof or the like are reduced. In addition, concrete consumption is small such that the composite beam is environmentally-friendly and may be easily coupled with columns.

Description

프리캐스트 또는 현장 타설로 만들어진 콘크리트 부재를 구비하는 복합빔 및, 그 시공방법Composite beam having concrete member made by precast or cast in place, and construction method
본 발명은 복합빔에 관한 것으로서, 더욱 구체적으로는 중량이 작기 때문에 양중(揚重)이 용이하여 시공성이 우수하고 운반비 등의 물류비용이 감소하며, 콘크리트 소모량이 작기 때문에 친환경적이고, 기둥과의 체결이 용이하며, 슬래브 작업시 작업자가 발을 디딜 수 있는 충분한 공간을 제공하고 작업자의 부상 위험을 없애며, 데크 플레이트의 규격을 통일할 수 있는, 복합빔에 관한 것이다. 또한, 본 발명은 이러한 복합빔의 시공방법에 대한 것이기도 하다. The present invention relates to a composite beam, and more specifically, because the weight is small, the weight is easy, the workability is excellent, the logistics cost, such as transport cost is reduced, because the concrete consumption is small, eco-friendly, fastening with the pillar The invention relates to a composite beam that is easy and provides enough space for the operator to step on the slab, eliminates the risk of injury to the operator, and can unify deck plate specifications. The present invention also relates to a construction method of such a composite beam.
본 출원은 2011년 1월 6일에 출원된 한국특허출원 제10-2011-0001530호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims priority based on Korean Patent Application No. 10-2011-0001530 filed on January 6, 2011, and all the contents disclosed in the specification and drawings of the application are incorporated in this application.
일반적으로, 빔(beam)은 하중을 지지하기 위해 기둥과 기둥을 연결하도록 설치되는 구조물로서, 슬래브로부터 전달되는 하중을 지지한다. 이러한 빔은 통상적으로, '工' 형상의 단면을 가지는 철골과, 상기 철골을 감싸도록 타설된 콘크리트 부재와, 철골의 길이방향을 따라 콘크리트 부재의 내부에 매설된 철근 및, 철골의 하부 플랜지 및 철근을 감싸도록 콘크리트 부재에 매설된 스터럽 등을 포함한다.In general, the beam (beam) is a structure that is installed to connect the column and the pillar to support the load, and supports the load transmitted from the slab. Such a beam is typically a steel frame having a cross section of an “industrial” shape, a concrete member placed to enclose the steel frame, steel bars embedded in the concrete member along the longitudinal direction of the steel frame, and lower flanges and steel bars of the steel frame. Stirrups embedded in the concrete member to surround the.
슬래브가 완성된 경우, 빔이 기둥에 강접 체결된 경우에는 빔의 양단부와 빔의 중앙에 휨모멘트가 크게 작용하고 빔의 양단부에 전단력이 크게 작용한다. 한편, 콘크리트는 압축력에는 강하나 인장저항력은 작다. 본 출원인은 이러한 점에 착안하여, 도 1 및 도 2에 나타난 바와 같이, 빔(10)의 중앙에는 콘크리트를 적게 타설하여 단면적을 작게 하고 빔(10)의 양단부에는 콘크리트 단면적이 크게 되도록 한 바 있다. 상기 빔(10)은 양단부에 작용하는 모멘트 및 전단력에 효과적으로 대응할 수 있으면서도 콘크리트의 사용량을 줄일 수 있다는 장점을 가진다. When the slab is completed, when the beam is firmly fastened to the pillar, the bending moment is largely applied at both ends of the beam and the center of the beam, and the shear force is greatly applied at both ends of the beam. On the other hand, concrete is strong in compressive force but small in tensile resistance. In light of this, the present applicant, as shown in Figs. 1 and 2, places less concrete in the center of the beam 10 so as to reduce the cross-sectional area and to increase the concrete cross-sectional area at both ends of the beam 10. . The beam 10 has the advantage of being able to effectively cope with the moment and shear force acting on both ends while reducing the amount of concrete used.
그러나, 상기 빔(10)은 스터럽(11)이 콘크리트 부재(12)의 윗면에 돌출되기 때문에 슬래브 시공시 작업자가 매우 불편하다는 문제점이 있다. 슬래브 시공시, 돌출된 스터럽(11) 때문에 작업자가 발을 디딜 공간이 부족할 뿐만 아니라, 돌출된 스터럽(11)에 걸려 넘어지거나 부상을 당하는 경우가 종종 발생한다. 그리고, 콘크리트 부재(12)를 공장에서 PC(프리캐스트)로 제작하는 경우에 빔(10)을 기둥(20)에 강접시, 프리캐스트된 콘크리트 부재(12)에 의해 상하 플랜지 용접작업이나 웨브의 고력볼트(23) 체결작업이 어렵다는 문제점이 있다. However, the beam 10 has a problem that the operator is very inconvenient during slab construction because the stub 11 protrudes on the upper surface of the concrete member 12. At the time of slab construction, the protruding stirrup 11 often causes a worker to not only have a lack of space to step on the foot, but also to stumble or injure the protruding stub 11. In the case where the concrete member 12 is manufactured by PC (precast) at the factory, when the beam 10 is rigidly welded to the column 20, the upper and lower flange welding work or the web of the concrete member 12 is performed by the precast concrete member 12. There is a problem that the high-strength bolt 23 fastening operation is difficult.
또한, 도 3에 나타난 바와 같이, 슬래브를 시공하기 위해서 데크 플레이트(d)를 설치하는데, 데크 플레이트(d)는 콘크리트 부재(12)의 상면과 상부 플랜지(13)에 거치되도록 설치된다. In addition, as shown in Figure 3, to install the deck plate (d) for the construction of the slab, the deck plate (d) is installed to be mounted on the upper surface and the upper flange 13 of the concrete member (12).
그런데, 돌출된 스터럽(11)으로 인해서 콘크리트 부재(12)의 상면에 거치되는 데크 플레이트(d)와 상부 플랜지(13)에 거치되는 데크 플레이트(d)는 그 길이가 달라져야 한다. 즉, 콘크리트 부재(12)의 상면에 거치될 데크 플레이트(d)는 상부 플랜지(13)에 거치될 데크 플레이트(d) 보다 그 길이가 짧아야 하고, 이에 따라 공사 현장에서는 상부 플랜지(13)에 거치되는 데크 플레이트(d)를 소정 길이만큼 절단하여 콘크리트 부재(12)의 상면에 거치될 데크 플레이트(d)를 만들고 있다. 따라서, 상기 절단에 소요되는 시간만큼 공사가 지연되고 비효율적이게 된다. However, the length of the deck plate d mounted on the upper surface of the concrete member 12 and the deck plate d mounted on the upper flange 13 due to the protruding stub 11 should be different. That is, the deck plate (d) to be mounted on the upper surface of the concrete member 12 should have a shorter length than the deck plate (d) to be mounted on the upper flange 13, and therefore, the construction site is mounted on the upper flange (13) The deck plate (d) to be cut by a predetermined length to make the deck plate (d) to be mounted on the upper surface of the concrete member (12). Therefore, the construction is delayed and inefficient by the time required for the cutting.
한편, 일반적으로 중력방향 하중이 작용하는 강접보(강접빔) 혹은 프리스트레스 방식으로 빔(보)를 제조하는 경우, 빔 단면의 하부에는 압축응력이 작용하고 빔 단면의 상부에는 인장응력이 작용한다. 이러한 빔에 슬래브가 시공되면 슬래브 등의 하중에 의해 빔 단면의 상부에는 압축응력이 작용하게 되고 빔 단면의 하부에는 인장응력이 작용하게 된다. On the other hand, in general, when the beam (beam) is manufactured in a rigid beam (steel beam) or prestressed method in which the gravity load acts, the compressive stress is applied to the lower portion of the beam cross-section and the tensile stress is applied to the upper portion of the beam cross-section. When the slab is constructed on the beam, the compressive stress acts on the upper end of the beam cross section by the load of the slab or the like, and the tensile stress acts on the lower end of the beam end face.
따라서, 일반적으로 중력방향 하중이 작용하는 강접보 혹은 프리스트레스 방식으로 보를 제조할 때, 인장응력이 작용하는 부분 즉, 중립축(中立軸, neutral axis)의 윗부분까지 콘크리트를 반드시 타설할 필요는 없다. 상기 인장응력이 작용하는 부분에 콘크리트를 타설하지 않더라도 슬래브가 시공되면 고정하중 및 활하중에 의해 상부 슬래브가 압축응력을 받기 때문이다. Therefore, in general, when manufacturing a beam in a rigid beam or prestressed manner in which gravity load is applied, it is not necessary to pour concrete to the portion where the tensile stress acts, that is, the upper part of the neutral axis. This is because the upper slab receives the compressive stress due to the fixed load and the live load even when the slab is constructed even if the concrete is not poured on the portion where the tensile stress is applied.
아울러, 도 1 및 도 4에 나타난 바와 같이, 빔 제작시 콘크리트를 인장응력이 작용하는 부분 예를 들어, 상부 플랜지(13)까지 타설한 경우에는, 기둥(20)의 플랜지(21)와 콘크리트 부재(12) 사이의 좁은 공간에서 볼트(23)를 관통공(15) 및 결합공(25)에 설치해야 하기 때문에 작업이 용이하지 않고 작업속도가 떨어진다는 문제점이 있다. In addition, as shown in Figures 1 and 4, when the concrete is cast to the portion where the tensile stress acts, for example, the upper flange 13, the flange 21 and the concrete member of the column 20 Since the bolt 23 must be installed in the through hole 15 and the coupling hole 25 in the narrow space between the 12, the work is not easy and the working speed is lowered.
본 발명은 상기 문제점들을 해결하기 위해 고안된 것으로서, 중량이 작기 때문에 양중(揚重)이 용이하여 시공성이 우수하고 운반비 등의 물류비용이 감소되는, 복합빔을 제공하는데 그 목적이 있다.The present invention has been designed to solve the above problems, and has an object of providing a composite beam, which is easy to lift due to its small weight, which is excellent in workability and reduces logistics costs such as transportation costs.
본 발명의 또 다른 목적은 콘크리트 소모량이 작기 때문에 친환경적인 복합빔을 제공하는데 있다.Another object of the present invention is to provide an environment-friendly composite beam because the concrete consumption is small.
본 발명의 또 다른 목적은 기둥과의 체결이 용이한 복합빔을 제공하는데 있다.Still another object of the present invention is to provide a composite beam that is easy to fasten with a pillar.
본 발명의 또 다른 목적은 슬래브 작업시 작업자가 발을 디딜 수 있는 충분한 공간을 제공하고 작업자의 부상 위험을 없앨 수 있는 복합빔을 제공하는데 있다.Still another object of the present invention is to provide a composite beam that provides a sufficient space for the operator to step on the slab and eliminates the risk of injury to the operator.
본 발명의 또 다른 목적은 슬래브 작업시 사용되는 데크 플레이트의 규격을 통일할 수 있는 복합빔을 제공하는데 있다.It is still another object of the present invention to provide a composite beam capable of unifying the specifications of the deck plate used in slab operation.
본 발명의 또 다른 목적은 이러한 복합빔을 이용한 시공방법을 제공하는데 있다. Another object of the present invention to provide a construction method using such a composite beam.
상기 목적을 달성하기 위해 본 발명에 따른 복합빔은, 빔의 전체 길이를 구성하도록 길이방향으로 길게 형성되고 '工' 형상의 단면을 가진 철골; 철골의 웨브의 일부와 하부 플랜지를 그 내부에 매설하는 콘크리트 부재; 상기 길이방향을 따라 콘크리트 부재의 내부에 매설된 보강철근; 및, 상기 길이방향을 따라 소정간격으로 배치되고, 철골의 하부 플랜지와 보강철근을 감싸도록 설치되는 스터럽;을 포함한다. 상기 철골의 상부 플랜지는 콘크리트 부재에 매설되지 않고 외부에 노출되며, 스터럽은 콘크리트 부재에 매설되어 외부에 노출되지 않는다. In order to achieve the above object, the composite beam according to the present invention includes a steel frame which is formed in the longitudinal direction to form the entire length of the beam and has a '工' shape cross section; A concrete member for embedding a portion of the web of the steel frame and the lower flange therein; Reinforcing bars embedded in the concrete member along the length direction; And a stub disposed at predetermined intervals along the longitudinal direction and installed to surround the lower flange of the steel frame and the reinforcing steel. The upper flange of the steel frame is exposed to the outside without being embedded in the concrete member, the stirrup is embedded in the concrete member is not exposed to the outside.
상기 콘크리트 부재는 철골의 중앙부에는 설치되지 않고 철골의 양쪽 끝단에만 설치될 수 있다. The concrete member may be installed only at both ends of the steel frame without being installed at the center of the steel frame.
또한, 콘크리트 부재와 철골의 결합력을 높이기 위하여 하부 플랜지 또는 웨브에 스터드가 구비되거나 보강 철근의 적어도 일부가 웨브에 용접되어 결합될 수 있다. In addition, in order to increase the coupling force between the concrete member and the steel frame, the lower flange or the web may be provided with a stud or at least a part of the reinforcing bar may be welded to the web and coupled.
한편, 본 발명에 따른 복합빔은, 빔의 전체 길이를 구성하도록 길이방향으로 길게 형성되고 '工' 형상의 단면을 가진 철골; 철골의 하부 플랜지의 아랫면에 결합되어 설치된 콘크리트 부재; 상기 길이방향을 따라 콘크리트 부재의 내부에 매설된 보강철근; 및, 상기 길이방향을 따라 소정간격으로 배치되고, 보강철근을 감싸도록 설치되는 스터럽;을 포함할 수 있다. 상기 철골의 상부 플랜지와 웨브는 콘크리트 부재에 매설되지 않고 외부에 노출되며, 스터럽은 콘크리트 부재에 매설되어 외부에 노출되지 않는다. On the other hand, the composite beam according to the present invention, the steel frame is formed long in the longitudinal direction to constitute the entire length of the beam having a '工' shape; A concrete member coupled to the bottom surface of the lower flange of the steel frame; Reinforcing bars embedded in the concrete member along the length direction; And a stub disposed at predetermined intervals along the length direction and installed to surround the reinforcing bars. The upper flange and web of the steel frame are exposed to the outside without being embedded in the concrete member, and the stub is embedded in the concrete member and is not exposed to the outside.
상기 콘크리트 부재의 폭(w1)은 하부 플랜지의 폭(w2)과 동일할 수 있다.The width w1 of the concrete member may be equal to the width w2 of the lower flange.
또한, 콘크리트 부재는 철골의 중앙부에는 설치되지 않고 철골의 양쪽 끝단에만 설치될 수 있다. In addition, the concrete member may be installed only at both ends of the steel frame without being installed at the center of the steel frame.
아울러, 콘크리트 부재와의 결합력을 높이기 위하여 하부 플랜지의 아랫면에는 스터드가 설치될 수 있다. In addition, a stud may be installed on the lower surface of the lower flange to increase the bonding force with the concrete member.
또한, 본 발명에 따른 복합빔은, 빔의 전체 길이를 구성하도록 길이방향으로 길게 형성된 철골; 그 상면이 철골의 하단과 결합된 플레이트; 및 플레이트의 상면이 외부에 노출되도록 플레이트가 매설된 콘크리트 부재;를 포함할 수 있다. 이 때, 상기 철골은 콘크리트 부재에 매설되지 않고 외부에 노출된다. In addition, the composite beam according to the present invention, the steel frame is formed long in the longitudinal direction to constitute the entire length of the beam; A plate whose upper surface is coupled to the lower end of the steel frame; And a concrete member in which the plate is embedded so that the upper surface of the plate is exposed to the outside. At this time, the steel frame is exposed to the outside without being embedded in the concrete member.
상기 철골은 '工' 형상의 단면, 'T' 형상의 단면, 상부 플렌지 보다 하부 플렌지의 폭이 좁은 단면 중 적어도 어느 하나를 가질 수 있다. The steel frame may have at least one of a cross section of an 'engine' shape, a cross section of a 'T' shape, and a cross section of which a width of the lower flange is narrower than that of the upper flange.
상기 복합빔은 상기 길이방향을 따라 소정 간격으로 콘크리트 부재에 매설되도록 설치되는 스터럽을 포함할 수 있다. 상기 스터럽은 그 양끝단이 플레이트와 하부 플렌지를 관통한 후, 볼트에 체결됨으로써 콘크리트 부재와 플레이트 및 철골을 결합시킨다. The composite beam may include a stub installed to be embedded in the concrete member at predetermined intervals along the longitudinal direction. The stub is connected to the bolt and the concrete member and the plate and the steel frame by both ends thereof penetrate the plate and the lower flange.
상기 플레이트와 콘크리트 부재는 철골의 양끝단부에만 설치되고 철골의 중앙부에는 설치되지 않을 수 있다. The plate and the concrete member may be installed only at both ends of the steel frame and may not be installed at the center of the steel frame.
상기 철골은 그 중앙부가 '工' 형상의 단면을 가지고 그 양끝단부가 'T' 형상의 단면을 가질 수도 있다. 이 때, 철골과 플레이트는 콘크리트 부재 보다 기둥 쪽으로 더 연장되도록 형성될 수 있다. The steel frame may have a cross section having a central portion at an industrial shape and both ends thereof having a cross section having a T shape. At this time, the steel frame and the plate may be formed to extend more toward the pillar than the concrete member.
본 발명의 다른 측면인 복합빔의 시공방법은, 기둥을 설치하는 단계; 및, 상기 복합빔을 기둥에 연결하는 단계;를 포함한다. According to another aspect of the present invention, a method of constructing a composite beam includes: installing a pillar; And connecting the composite beam to a pillar.
이 때, 상기 슬래브를 시공하기 위한 데크 플레이트는 상기 복합빔의 상부 플랜지에 거치되고 콘크리트 부재에는 거치되지 않는 것이 바람직하고, 이에 따라 데크 플레이트의 길이를 통일할 수 있다.At this time, it is preferable that the deck plate for constructing the slab is mounted on the upper flange of the composite beam and is not mounted on the concrete member, and thus the length of the deck plate can be unified.
상기 플레이트와 콘크리트 부재의 조립체를 제조하고 철골을 제조한 후, 상기 조립체와 철골을 현장 또는 공장에서 결합할 수 있다.After manufacturing the assembly of the plate and the concrete member and manufacturing the steel frame, the assembly and the steel frame can be combined in the field or factory.
상기 콘크리트 부재는 기둥의 콘크리트 표면 보다 기둥 쪽으로 더 연장되는 것이 바람직하다.The concrete member preferably extends further towards the column than the concrete surface of the column.
본 발명은 아래 도면들에 의해 구체적으로 설명될 것이지만, 이러한 도면은 본 발명의 바람직한 실시예를 나타낸 것이므로 본 발명의 기술사상이 그 도면에만 한정되어 해석되어서는 아니된다. The present invention will be described in detail with reference to the following drawings, but these drawings illustrate preferred embodiments of the present invention, and the technical concept of the present invention is not limited to the drawings and should not be interpreted.
도 1은 종래 기술에 따른 복합빔을 보여주는 사시도이다. 1 is a perspective view showing a composite beam according to the prior art.
도 2는 도 1의 A-A' 단면도이다. FIG. 2 is a cross-sectional view taken along line AA ′ of FIG. 1.
도 3은 도 1의 복합빔을 보여주는 평면도로서, 데크 플레이트가 설치된 것을 보여준다. FIG. 3 is a plan view illustrating the composite beam of FIG. 1 and shows a deck plate installed. FIG.
도 4는 도 1의 복합빔이 기둥과 연결된 것을 보여주는 정면도이다.4 is a front view showing that the composite beam of FIG. 1 is connected to a pillar.
도 5는 본 발명의 제1 실시예에 따른 복합빔과 기둥을 보여주는 분해 사시도이다. 5 is an exploded perspective view showing a composite beam and a pillar according to the first embodiment of the present invention.
도 6은 도 5의 B-B' 단면도이다. FIG. 6 is a cross-sectional view taken along line BB ′ of FIG. 5.
도 7은 도 5의 복합빔과 기둥이 연결된 것을 보여주는 정면도이다. 7 is a front view illustrating that the composite beam and the pillar of FIG. 5 are connected.
도 8은 본 발명의 제2 실시예에 따른 복합빔을 보여주는 사시도이다.8 is a perspective view showing a composite beam according to a second exemplary embodiment of the present invention.
도 9는 도 8의 C-C' 단면도이다. FIG. 9 is a cross-sectional view taken along line CC ′ of FIG. 8.
도 10은 본 발명의 제3 실시예에 따른 복합빔을 보여주는 사시도이다.10 is a perspective view showing a composite beam according to a third exemplary embodiment of the present invention.
도 11은 도 10의 D-D' 단면도이다. FIG. 11 is a cross-sectional view taken along line D-D 'of FIG. 10.
도 12는 본 발명의 제4 실시예에 따른 복합빔을 보여주는 분해 사시도이다.12 is an exploded perspective view showing a composite beam according to a fourth embodiment of the present invention.
도 13은 도 12의 복합빔을 보여주는 단면도이다.13 is a cross-sectional view illustrating the composite beam of FIG. 12.
도 14와 도 15는 각각 도 12의 복합빔에 사용될 수 있는 철골을 보여주는 단면도이다.14 and 15 are cross-sectional views showing steel frames that can be used in the composite beam of FIG. 12, respectively.
도 16은 본 발명의 제5 실시예에 따른 복합빔을 보여주는 사시도이다.16 is a perspective view showing a composite beam according to a fifth embodiment of the present invention.
도 17은 도 16의 복합빔을 보여주는 단면도이다.17 is a cross-sectional view illustrating the composite beam of FIG. 16.
도 18은 본 발명의 제6 실시예에 따른 복합빔을 보여주는 사시도이다.18 is a perspective view showing a composite beam according to a sixth embodiment of the present invention.
도 19는 본 발명의 제7 실시예에 따른 복합빔을 보여주는 사시도이다.19 is a perspective view showing a composite beam according to a seventh embodiment of the present invention.
도 20은 본 발명의 제8 실시예에 따른 복합빔을 보여주는 사시도이다.20 is a perspective view showing a composite beam according to an eighth embodiment of the present invention.
도 21은 본 발명의 제9 실시예에 따른 복합빔을 보여주는 사시도이다.21 is a perspective view showing a composite beam according to a ninth embodiment of the present invention.
도 22는 본 발명의 제10 실시예에 따른 복합빔을 보여주는 사시도이다.22 is a perspective view showing a composite beam according to a tenth embodiment of the present invention.
도 23은 본 발명의 제11 실시예에 따른 복합빔이 기둥에 결합된 것을 보여주는 정면도이다.FIG. 23 is a front view illustrating that a composite beam according to an eleventh embodiment of the present invention is coupled to a pillar.
도 24는 도 23의 H-H' 단면도이다. FIG. 24 is a cross-sectional view taken along line H-H 'of FIG. 23.
이하, 첨부된 도면들을 참조로 본 발명의 바람직한 실시예에 대해서 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
도 5는 본 발명의 제1 실시예에 따른 복합빔과 기둥을 보여주는 분해 사시도이고, 도 6은 도 5의 B-B' 단면도이다. 5 is an exploded perspective view illustrating a composite beam and a pillar according to the first embodiment of the present invention, and FIG. 6 is a cross-sectional view taken along line BB ′ of FIG. 5.
도면을 참조하면, 복합빔(100)은 '工' 단면 형상을 가진 철골(30)과, 콘크리트 부재(40)와, 철골(30)의 길이방향을 따라 배치된 보강철근(50) 및, 하부 플랜지(33)와 보강철근(50)을 감싸도록 설치되는 스터럽(55)을 포함한다.Referring to the drawings, the composite beam 100 is a steel frame 30 having a '工' cross-sectional shape, the concrete member 40, the reinforcing steel bar 50 disposed along the longitudinal direction of the steel frame 30, and the lower The stub 55 is installed to surround the flange 33 and the reinforcing bar 50.
철골(30)은 빔(100)의 전체 길이를 구성하도록 길이방향으로 길게 형성되고, '工' 형상의 단면을 가진다. 철골(30)은 상부 플랜지(31)와, 웨브(32) 및, 하부 플랜지(33)를 포함한다. Steel frame 30 is formed long in the longitudinal direction to form the entire length of the beam 100, and has a cross section of the '工' shape. The steel frame 30 includes an upper flange 31, a web 32, and a lower flange 33.
철골(30)의 양단부는 콘크리트 부재(40)에 매설되지 않고 외부에 노출되는 것이 바람직하다. 상기 노출된 양단부에는 관통공(35)이 형성되는데, 관통공(35)에는 체결볼트(23)가 삽입된다. 체결볼트(23)는 기둥(20)의 연결부(22)에 형성된 결합공(25) 및 관통공(15)에 삽입된 후, 너트와 체결됨으로써 빔(100)과 기둥(20)을 결합시킨다. Both ends of the steel frame 30 is preferably exposed to the outside without being embedded in the concrete member (40). Through holes 35 are formed in the exposed both ends, and fastening bolts 23 are inserted into the through holes 35. The fastening bolt 23 is inserted into the coupling hole 25 and the through hole 15 formed in the connecting portion 22 of the pillar 20 and then coupled to the nut to couple the beam 100 and the pillar 20.
콘크리트 부재(40)는 철골(30)의 길이방향을 따라 설치된다. 콘크리트 부재(40)는 웨브(32)의 일부와 하부 플랜지(33)를 그 내부에 매설한다. 또한, 콘크리트 부재(40)는 철골(30)의 양끝단부까지 연장되지 않고 상기 양단부에 근접한 부분까지만 연장되는데, 기둥(20)을 콘크리트로 피복할 경우에 기둥(20)의 콘크리트의 표면까지, 또는 상기 콘크리트의 표면 보다 기둥(20) 쪽으로 대략 10mm 정도 더 연장되는 것이 바람직하다. The concrete member 40 is installed along the longitudinal direction of the steel frame 30. The concrete member 40 embeds a portion of the web 32 and the lower flange 33 therein. In addition, the concrete member 40 does not extend to both ends of the steel frame 30 but extends only to a portion proximate to both ends, to the surface of the concrete of the pillar 20 when the pillar 20 is covered with concrete, or It is preferable to extend approximately 10 mm further toward the pillar 20 than the surface of the concrete.
일반적으로, 중력방향 하중 작용시 강접보의 양단부의 상부에는 인장력이 작용하고, 상기 양단부의 하부에는 압축력이 발생하는데 중립축이 철골빔의 외부에 위치하므로 양단부의 콘크리트를 철골빔 상부플랜지까지 연장시키지 않아도 전단력을 철골빔이 부담하면 구조내력상 안전하다.In general, a tension force is applied to the upper ends of the steel beams and a compressive force is generated at the lower ends of the steel beams when the gravity direction is applied. When the steel beam bears the shear force, it is safe in structural strength.
복합빔을 프리스트레스 방식으로 제조하는 경우에도 중립축을 중심으로 중립축의 하부에는 압축응력이 작용하고 중립축의 상부에는 인장응력이 작용한다. 콘크리트는 압축응력에 강하고 인장응력에 약하기 때문에 중립축까지 혹은 중립축의 아래 쪽까지만 설치되는 것이 바람직하다. 따라서, 중립축 보다 위쪽의 웨브(32)와 상부 플랜지(31)는 콘크리트 부재(40)에 매설되지 않고 외부에 노출된다. 상기 노출된 부분에는 상부슬래브(도면에 미도시)가 타설되는데, 상부슬래브가 완성되면 상부슬래브는 압축응력을 받게 되고 하부 플랜지(33)는 인장응력을 받게 된다.Even when the composite beam is manufactured in a prestressed manner, the compressive stress acts on the lower portion of the neutral axis and the tensile stress acts on the upper portion of the neutral axis. Since concrete is strong in compressive stress and weak in tensile stress, it is preferable to install only up to the neutral axis or below the neutral axis. Therefore, the web 32 and the upper flange 31 above the neutral shaft are exposed to the outside without being embedded in the concrete member 40. An upper slab (not shown in the figure) is placed on the exposed portion. When the upper slab is completed, the upper slab is subjected to compressive stress and the lower flange 33 is subjected to tensile stress.
또한, 이와 같이 복합빔(100)은 콘크리트 사용량을 줄임으로써 복합빔(100)의 제조단가를 낮출 수 있고 CO2 발생량을 줄일 수 있으며, 복합빔(100)의 중량을 줄임으로써 시공성을 향상시키고 물류 비용을 줄일 수 있다. In addition, the composite beam 100 can reduce the manufacturing cost of the composite beam 100 and reduce the amount of CO 2 generated by reducing the amount of concrete used, and improves the construction and logistics by reducing the weight of the composite beam 100 Reduce costs
아울러, 철골(30)의 양단부가 외부에 노출되고 콘크리트 부재(40)가 웨브(32)의 일부만을 그 내부에 매설하기 때문에 복합빔(100)과 기둥(20)의 연결작업이 용이해진다. 즉, 도 7에 나타난 바와 같이, 기둥(20)의 플랜지(21) 측방향에 비교적 넓은 공간이 확보되기 때문에 체결볼트(23)를 이용한 결합작업이 용이해진다. 기존에는 콘크리트 부재(12)가 웨브(32) 및 상부 플랜지(31)를 그 내부에 매설했기 때문에 플랜지(21)의 측방향 쪽에 충분한 공간이 확보될 수 없었다. In addition, since both ends of the steel frame 30 is exposed to the outside and the concrete member 40 embeds only a part of the web 32 therein, it is easy to connect the composite beam 100 and the pillar 20. That is, as shown in Figure 7, since the relatively wide space is secured to the flange 21 side direction of the column 20, the coupling work using the fastening bolt 23 is facilitated. Conventionally, since the concrete member 12 embeds the web 32 and the upper flange 31 therein, sufficient space cannot be secured on the lateral side of the flange 21.
나아가, 기존에는 콘크리트가 상부플랜지(도 1, 3의 13)까지 타설되고 스터럽(11)이 외부에 노출되기 때문에 콘크리트 부재(12)에 거치되는 데크 플레이트(d)와 상부 플랜지(13)에 거치되는 데크 플레이트(d)의 길이가 달라야 했다(이러한 문제점은 '배경기술'에서 설명된 바 있다.). 본 발명에서는 모든 데크 플레이트(d)가 상부 플랜지(31)에 거치되기 때문에 상기 문제점을 해결할 수 있고 데크 플레이트(도 3의 d)의 규격을 통일시킬 수 있다. Furthermore, in the past, concrete is poured to the upper flange (13 of Figs. 1 and 3) and the stirrup 11 is exposed to the outside, so it is mounted on the deck plate (d) and the upper flange 13 mounted on the concrete member 12. The length of the deck plate (d) was to be different (this problem has been described in the background art). In the present invention, because all the deck plate (d) is mounted on the upper flange 31 can solve the above problems and can unify the standard of the deck plate (d in FIG. 3).
보강철근(50)은 철골(30)의 길이방향을 따라 콘크리트 부재(40)의 내부에 매설된다. 프리스트레스 방식으로 복합빔(100)을 제작하는 경우, 보강철근(50)에 텐션이 인가된 상태에서 콘크리트가 타설되고, 이에 따라 보강철근(50)은 콘크리트 부재(40)에 압축력을 인가하게 된다. Reinforcing bar 50 is embedded in the concrete member 40 along the longitudinal direction of the steel frame (30). When manufacturing the composite beam 100 in a prestressed manner, concrete is poured in a state where tension is applied to the reinforcing bar 50, and thus the reinforcing bar 50 applies a compressive force to the concrete member 40.
보강철근(50)은 하부 플랜지(33)의 주위에 배치되는 것이 바람직하다. 보강철근(50) 중의 적어도 일부는 웨브(32)에 용접되어 결합되는 것이 바람직한데, 이것은 콘크리트 부재(40)와 철골(30)을 일체화시키기 위함이다. The rebar 50 is preferably arranged around the lower flange 33. At least some of the reinforcing bars 50 are preferably welded to the web 32 to be joined, in order to integrate the concrete member 40 and the steel frame 30.
한편, 보강철근(50) 중의 일부가 웨브(32)에 용접되는 것에 대한 대안으로써 또는 보강철근(50) 중의 일부가 웨브(32)에 용접되는 것과 함께, 하부플랜지(33)에 스터드(57)가 설치될 수도 있다. 스터드(57)는 하부 플랜지(33)로부터 돌출됨으로써 철골(30)과 콘크리트 부재(40)를 일체화시킨다. 스터드(57)는 하부 플랜지(33)의 아랫면에 설치되는 것이 바람직하지만, 웨브(32)에 설치될 수도 있다. On the other hand, as an alternative to welding some of the rebar 50 to the web 32 or welding some of the rebar 50 to the web 32, the studs 57 to the lower flange 33. May be installed. The stud 57 protrudes from the lower flange 33 to integrate the steel frame 30 and the concrete member 40. The stud 57 is preferably installed on the bottom surface of the lower flange 33, but may be installed on the web 32.
스터럽(55)은 철골(30)의 길이방향을 따라 소정 간격으로 설치된다. 스터럽(55)은 하부 플랜지(33)와 보강철근(50)을 감싸도록 설치되는 것이 바람직하다. 스터럽(55)은 콘크리트 부재(40)의 내부에 매설되고 외부에 노출되지 않는다. 따라서, 스터럽이 외부에 노출됨으로써 발생되는 문제점 즉, 작업자가 스터럽에 걸려서 넘어지거나 스터럽 때문에 발을 디딜 공간이 부족해지는 등의 문제점을 해결할 수 있다. Stirrups 55 are installed at predetermined intervals along the longitudinal direction of the steel frame 30. Stirrup 55 is preferably installed to surround the lower flange 33 and the reinforcing bar (50). The stub 55 is embedded inside the concrete member 40 and is not exposed to the outside. Therefore, the problem caused by exposing the stirrup to the outside, that is, the worker falls over the stirrup, or the problem of insufficient space to step on the foot due to the stirrup can be solved.
도 8은 본 발명의 제2 실시예에 따른 복합빔을 보여주는 사시도이고, 도 9는 도 8의 C-C' 단면도이다.8 is a perspective view illustrating a composite beam according to a second exemplary embodiment of the present invention, and FIG. 9 is a cross-sectional view taken along line CC ′ of FIG. 8.
도면을 참조하면, 상기 복합빔(200)은 '工' 형상의 단면을 가진 철골(30)과, 하부 플랜지(33)의 아랫면에 결합되어 설치된 콘크리트 부재(140)와, 콘크리트 부재(140)의 내부에 매설된 보강철근(50) 및, 보강철근을 감싸도록 설치되는 스터럽(55)을 포함한다. 한편, 철골(30)은 제1 실시예의 철골(30)과 그 구성이 동일하므로 여기서는 설명을 생략하기로 한다. 그리고, 도 8, 9의 참조부호 중에서 도 5 내지 7의 참조부호와 동일한 것은 동일한 기능을 하는 동일한 구성요소를 나타낸다.Referring to the drawings, the composite beam 200 is a steel frame 30 having a '工' shape cross section, the concrete member 140 is installed coupled to the lower surface of the lower flange 33, and the concrete member 140 It includes a reinforcing bar 50 embedded therein, and a stub 55 installed to surround the reinforcing bar. On the other hand, the steel frame 30 is the same as the configuration of the steel frame 30 of the first embodiment will be omitted here. 8 and 9, the same reference numerals as those in FIGS. 5 to 7 denote the same components having the same function.
콘크리트 부재(140)는 철골(30)의 길이방향을 따라 하부 플랜지(33)의 아랫면에 설치된다. 따라서, 웨브(32)와 상부 플랜지(31)는 콘크리트 부재(140)에 매설되지 않고 외부에 노출된다. 콘크리트 부재(140)의 폭은 하부 플랜지(33)의 폭보다 길게 형성된다. Concrete member 140 is installed on the lower surface of the lower flange 33 along the longitudinal direction of the steel frame (30). Accordingly, the web 32 and the upper flange 31 are exposed to the outside without being embedded in the concrete member 140. The width of the concrete member 140 is formed longer than the width of the lower flange 33.
콘크리트 부재(140)는 철골(30)의 양단부까지 연장되지 않고 상기 양단부에 근접한 부분까지만 연장되는 것이 바람직하다. 또한, 콘크리트 부재(140)와 철골(30)을 일체화시키기 위해서 하부 플랜지(33)의 아랫면에는 스터드(57)가 설치되는 것이 바람직하다. It is preferable that the concrete member 140 does not extend to both ends of the steel frame 30 and extends only to a portion near the both ends. In addition, in order to integrate the concrete member 140 and the steel frame 30, it is preferable that a stud 57 is provided on the lower surface of the lower flange 33.
보강철근(50)은 철골(30)의 길이방향을 따라 콘크리트 부재(140)의 내부에 매설되도록 설치된다. 복합빔(200)이 프리스트레스 방식으로 제조되는 경우, 보강철근(50)은 콘크리트 부재(140)에 압축력을 인가한다. Reinforcing bar 50 is installed to be embedded in the concrete member 140 along the longitudinal direction of the steel frame (30). When the composite beam 200 is manufactured in a prestressed manner, the reinforcement bar 50 applies a compressive force to the concrete member 140.
스터럽(55)은 철골(30)의 길이방향을 따라 소정 간격으로 설치된다. 스터럽(55)은 보강철근(50)을 감싸도록 설치되는 것이 바람직하다. 스터럽(55)은 콘크리트 부재(140)의 내부에 매설되고 외부에 노출되지 않는다. Stirrups 55 are installed at predetermined intervals along the longitudinal direction of the steel frame 30. Stirrups 55 are preferably installed to surround the reinforcing bar (50). The stub 55 is embedded in the concrete member 140 and is not exposed to the outside.
도 10은 본 발명의 제3 실시예에 따른 복합빔을 보여주는 사시도이고, 도 11은 도 10의 D-D' 단면도이다.10 is a perspective view illustrating a composite beam according to a third exemplary embodiment of the present invention, and FIG. 11 is a cross-sectional view taken along line D-D 'of FIG. 10.
상기 복합빔(300)은 '工' 형상의 단면을 가진 철골(30)과, 하부 플랜지(33)의 아랫면에 결합되어 설치된 콘크리트 부재(240)와, 콘크리트 부재(240)의 내부에 매설된 보강철근(50) 및, 보강철근(50)을 감싸도록 설치되는 스터럽(55)을 포함한다. 도 10, 11의 참조부호 중에서 도 5 내지 9의 참조부호와 동일한 것은 동일한 기능을 하는 동일한 구성요소를 나타낸다. 그리고, 복합빔(300)은, 제2 실시예의 복합빔(200)에 비하여, 콘크리트 부재(240)의 폭(W1)이 하부 플랜지(33)의 폭(W2)과 동일하다는 특징을 가지고, 그 나머지 구성은 복합빔(200)과 동일하다.The composite beam 300 is a steel frame 30 having an 'industrial' shape, a concrete member 240 installed to be coupled to the lower surface of the lower flange 33, and reinforcement embedded in the concrete member 240. Reinforcing bar 50 and a stub (55) is installed to surround the reinforcing bar (50). The same reference numerals as those in FIGS. 5 to 9 among the reference numerals of FIGS. 10 and 11 denote the same components having the same functions. In addition, the composite beam 300 has the characteristic that the width W1 of the concrete member 240 is the same as the width W2 of the lower flange 33, compared to the composite beam 200 of the second embodiment. The remaining configuration is the same as the composite beam 200.
한편, 도 12는 본 발명의 제4 실시예에 따른 복합빔을 보여주는 분해 사시도이고, 도 13은 상기 복합빔을 보여주는 단면도이다. 도 12와 도 13에서 도 1 내지 도 11의 참조부호와 동일한 참조부호는 동일한 기능을 하는 동일한 구성요소를 나타낸다.12 is an exploded perspective view illustrating a composite beam according to a fourth exemplary embodiment of the present invention, and FIG. 13 is a cross-sectional view illustrating the composite beam. 12 and 13, the same reference numerals as the reference numerals of FIGS. 1 to 11 denote the same components having the same function.
상기 복합빔(350)은 '工' 형상의 단면을 가진 철골(30)과, 콘크리트 부재(360)와, 콘크리트 부재(360)의 상면에 설치되고 하부 플렌지(33)의 아랫면에 결합된 플레이트(370)와, 콘크리트 부재(360)의 내부에 매설된 보강철근(50)을 포함한다. 상기 구성요소 중에서 철골(30)과 보강철근(50)은 전술한 실시예의 철골(30) 및 보강철근(50)과 각각 동일하므로 여기서는 설명을 생략하기로 한다. The composite beam 350 is a steel frame 30 having a cross section of an “industrial” shape, a concrete member 360, and a plate installed on an upper surface of the concrete member 360 and coupled to a lower surface of the lower flange 33 ( 370 and a reinforcing bar 50 embedded in the concrete member 360. Of the above components, the steel frame 30 and the reinforcing bar 50 are the same as the steel frame 30 and the reinforcing bar 50 of the above-described embodiment, so description thereof will be omitted herein.
플레이트(370)는 콘크리트 부재(360)의 상면에 매립되도록 설치되되, 플레이트(370)의 상면은 외부에 노출되어 하부 플렌지(33)와 결합된다. 플레이트(370)는 스틸 등으로 이루어질 수 있고, 이에 따라 플레이트(370)는 하부 플렌지(33)의 아랫면에 용접으로 결합될 수 있다. 상기 플레이트(370) 뿐만 아니라, 본 명세서의 다른 플레이트도 스틸로 만들어질 수 있다. The plate 370 is installed to be embedded in the upper surface of the concrete member 360, the upper surface of the plate 370 is exposed to the outside is coupled to the lower flange 33. The plate 370 may be made of steel, and thus the plate 370 may be welded to the lower surface of the lower flange 33 by welding. In addition to the plate 370, other plates herein may be made of steel.
플레이트(370)의 하면에는 다수의 스터드(57)가 설치될 수 있는데, 스터드(57)는 콘크리트 부재(360)와 플레이트(370)의 결합력을 크게 한다. A plurality of studs 57 may be installed on the bottom surface of the plate 370. The studs 57 increase the coupling force between the concrete member 360 and the plate 370.
플레이트(370)와 콘크리트 부재(360)의 조립체와 철골(30)은 각각 제조된 후 용접 등의 방법으로 결합되는데, 상기 조립체와 철골(30)의 결합은 현장이나 공장에서 이루어질 수 있다. The assembly of the plate 370 and the concrete member 360 and the steel frame 30 are manufactured, respectively, and then coupled by welding or the like. The assembly of the assembly and the steel frame 30 may be performed at a site or a factory.
플레이트(370)는 콘크리트 부재(360) 보다 바깥쪽(즉, 기둥쪽)으로 더 연장되도록 형성되는 것이 바람직한데, 이것은 플레이트(370)를 기둥에 용접시키기 위해서이다. The plate 370 is preferably formed to extend further outward (ie, pillar side) than the concrete member 360, in order to weld the plate 370 to the column.
한편, 최근에는 제강 기술의 발전으로 이러한 플레이트(370)의 강도를 철골(30)의 강도보다 더 크게 제조할 수 있게 되었다. 따라서, '工' 형상의 단면을 가진 철골(30) 대신에 'T' 형상의 단면을 가진 철골(도 14의 30a)을 사용할 수 있다. 즉, 플레이트(370)의 강도를 철골(30)의 강도보다 더 크게 함으로써 하부 플렌지(33)가 없는 'T' 형상의 철골(30a)을 사용할 수 있고 이에 따라 철골의 제조비용을 줄일 수 있어서 경제적이다. 철골(30a)과 플레이트(370)의 결합은 웨브(32)의 하단과 플레이트(370)를 용접 등으로 결합시킬 수 있다. On the other hand, recently, with the development of steelmaking technology, the strength of the plate 370 can be made larger than that of the steel frame 30. Thus, instead of the steel frame 30 having a cross section of the '工' shape, the steel frame having a cross section of the 'T' shape (30a in FIG. 14) may be used. That is, by making the strength of the plate 370 larger than that of the steel frame 30, the steel frame 30a having a 'T' shape without the lower flange 33 can be used, thereby reducing the manufacturing cost of the steel frame. to be. The combination of the steel frame 30a and the plate 370 may couple the lower end of the web 32 and the plate 370 by welding or the like.
또한, 상기 철골(30)(30a)에 대한 대안으로서, 도 15에 나타난 바와 같이, 상부 플렌지(31) 보다 하부 플렌지(33b)의 폭이 좁은 철골(30b)을 사용할 수도 있다. 철골(30b)과 플레이트(370)의 결합은 하부 플렌지(33b)의 아랫면과 플레이트(370)를 용접 등으로 결합시킬 수 있다.In addition, as an alternative to the steel frame 30, 30a, as shown in Figure 15, it is also possible to use a steel frame (30b) narrower than the upper flange 31 of the lower flange (33b). The combination of the steel frame 30b and the plate 370 may couple the lower surface of the lower flange 33b to the plate 370 by welding or the like.
한편, 도 16은 본 발명의 제5 실시예에 따른 복합빔을 보여주는 분해 사시도이고, 도 17은 상기 복합빔을 보여주는 단면도이다. 도 16과 도 17에서 도 1 내지 도 15의 참조부호와 동일한 참조부호는 동일한 기능을 하는 동일한 구성요소를 나타낸다.16 is an exploded perspective view illustrating a composite beam according to a fifth embodiment of the present invention, and FIG. 17 is a cross-sectional view illustrating the composite beam. 16 and 17, the same reference numerals as those of Figs. 1 to 15 denote the same components having the same functions.
상기 복합빔(450)은 '工' 형상의 단면을 가진 철골(30c)과, 콘크리트 부재(360)와, 콘크리트 부재(360)의 상면에 설치되고 하부 플렌지(33)의 아랫면에 결합된 플레이트(470)와, 콘크리트 부재(360)의 내부에 매설된 보강철근(50) 및, 콘크리트 부재(360)의 내부에 매설되는 스터럽(55a)을 포함한다. 상기 구성요소 중에서 콘크리트 부재(360)와 보강철근(50)은 제4 실시예의 콘크리트 부재(360) 및 보강철근(50)과 각각 동일하므로 여기서는 설명을 생략하기로 한다. 또한, 철골(30c)의 양끝단이 콘크리트 부재(360)의 양끝단 보다 더 연장되는 것은 전술한 실시예와 동일하다. The composite beam 450 is a steel frame 30c having a '工' shape cross section, a concrete member 360, a plate installed on the upper surface of the concrete member 360 and coupled to the lower surface of the lower flange 33 ( 470, a reinforcing bar 50 embedded in the concrete member 360, and a stub 55a embedded in the concrete member 360. Among the components, since the concrete member 360 and the reinforcing bar 50 are the same as the concrete member 360 and the reinforcing bar 50 of the fourth embodiment, description thereof will be omitted herein. In addition, both ends of the steel frame 30c extends more than both ends of the concrete member 360 is the same as the above-described embodiment.
플레이트(470)는 콘크리트 부재(360)의 상면에 매립되도록 설치되되, 플레이트(470)의 상면은 외부에 노출된다. 비록, 도면에는 도시되지 않았지만, 플레이트(470)의 하면에는 스터드가 설치될 수도 있다. The plate 470 is installed to be embedded in the upper surface of the concrete member 360, the upper surface of the plate 470 is exposed to the outside. Although not shown in the drawings, a stud may be installed on the bottom surface of the plate 470.
플레이트(470)는 스터럽(55a) 및 볼트(56)에 의해서 하부 플렌지(33)의 아랫면에 결합된다. 플레이트(470)는 스틸 등으로 이루어질 수 있다. 따라서, 상기 볼트(56)에 의한 결합과 함께 플레이트(470)와 하부 플렌지(33)의 아랫면을 용접시킬 수도 있다. 플레이트(470)와 콘크리트 부재(360)의 조립체와 철골(30c)은 각각 제조된 후 현장이나 공장에서 결합될 수 있다.The plate 470 is coupled to the bottom surface of the lower flange 33 by the stub 55a and the bolt 56. The plate 470 may be made of steel or the like. Accordingly, the bottom surface of the plate 470 and the lower flange 33 may be welded together with the bolt 56. The assembly of the plate 470 and the concrete member 360 and the steel frame 30c may be respectively manufactured and then combined at a site or a factory.
플레이트(470)는 콘크리트 부재(360) 보다 바깥쪽(즉, 기둥쪽)으로 더 연장되도록 형성되는 것이 바람직한데, 이것은 플레이트(470)를 기둥에 용접시키기 위해서이다. The plate 470 is preferably formed to extend further outward (ie, pillar side) than the concrete member 360, to weld the plate 470 to the column.
스터럽(55a)은 철골(30c)의 길이방향을 따라 소정 간격으로 설치된다. 스터럽(55a)은 그 양끝단이 관통공(54)(34)을 관통한 후, 볼트(56)에 체결된다. 따라서, 스터럽(55a)은 철골(30c)과 플레이트(470) 및 콘크리트 부재(360)를 결합시키는 역할을 한다. The stub 55a is installed at predetermined intervals along the longitudinal direction of the steel frame 30c. Both ends of the stirrup 55a pass through the through holes 54 and 34, and are then fastened to the bolt 56. Therefore, the stub 55a serves to couple the steel frame 30c with the plate 470 and the concrete member 360.
한편, 복합빔(450)은 철골(30c) 대신에 철골(30b)을 사용할 수도 있는데, 이러한 점은 본 명세서의 내용을 참조한 당업자가 쉽게 알 수 있을 것이다. Meanwhile, the composite beam 450 may use the steel frame 30b instead of the steel frame 30c, which will be easily understood by those skilled in the art with reference to the contents of the present specification.
도 18은 본 발명의 제6 실시예에 따른 복합빔을 보여주는 사시도이다.18 is a perspective view showing a composite beam according to a sixth embodiment of the present invention.
도면을 참조하면, 복합빔(400)은 '工' 형상의 단면을 가진 철골(30)과, 콘크리트 부재(340)와, 콘크리트 부재(340)의 내부에 매설된 보강철근(50) 및, 하부 플랜지(33)와 보강철근(50)을 감싸도록 설치되는 스터럽(55)을 포함한다. Referring to the drawings, the composite beam 400 is a steel frame 30 having a 'engine' shaped cross section, the concrete member 340, the reinforcing steel bar 50 embedded in the interior of the concrete member 340, and The stub 55 is installed to surround the flange 33 and the reinforcing bar 50.
복합빔(400)은, 제1 실시예의 복합빔(100)과 비교하여, 콘크리트 부재(340)가 철골(30)의 중앙부에 형성되지 않는다는 점을 제외하면 복합빔(100)과 동일하다. 도 12의 E-E' 단면은 도 6과 동일하고, 도 18의 참조부호 중에서 도 5 내지 7의 참조부호와 동일한 것은 동일한 기능을 하는 동일한 구성요소를 나타낸다.The composite beam 400 is the same as the composite beam 100 except that the concrete member 340 is not formed at the center of the steel frame 30 as compared with the composite beam 100 of the first embodiment. A cross-sectional view taken along line E-E 'of FIG. 12 is the same as that of FIG. 6, and the same reference numerals of FIGS. 5 to 7 in FIG. 18 denote the same components having the same function.
콘크리트 부재(340)는 철골(30)의 길이방향을 따라 설치되는데, 철골(30)의 중앙부에는 설치되지 않는다. 알려진 바와 같이, 빔의 중앙에는 휨모멘트가 크게 작용하고 빔의 양단부에는 전단력이 크게 작용하는 바, 콘크리트는 휨모멘트에 대한 저항력이 작기 때문에 빔의 중앙에는 콘크리트 부재(340)를 설치하지 않고 빔의 양단부에만 콘크리트 부재(340)를 설치한다. 따라서, 복합빔(400)은 콘크리트 사용량을 줄여 복합빔(400)의 제조단가를 낮출 수 있고 CO2 발생량을 줄일 수 있으며, 복합빔(400)의 중량을 줄임으로써 시공성을 향상시키고 물류 비용을 줄일 수 있다는 특징을 가진다. Concrete member 340 is installed along the longitudinal direction of the steel frame 30, it is not installed in the central portion of the steel frame (30). As is known, the bending moment is largely applied to the center of the beam and the shear force is largely applied to both ends of the beam. Since the concrete has a small resistance to the bending moment, the concrete does not have a concrete member 340 in the center of the beam. The concrete member 340 is installed only at both ends. Therefore, the composite beam 400 can reduce the amount of concrete used to lower the manufacturing cost of the composite beam 400, reduce the amount of CO 2 generated, and improve the construction and reduce the logistics cost by reducing the weight of the composite beam 400 It has the feature that it can.
도 19는 본 발명의 제7 실시예에 따른 복합빔을 보여주는 사시도이다.19 is a perspective view showing a composite beam according to a seventh embodiment of the present invention.
도면을 참조하면, 복합빔(500)은 '工' 형상의 단면을 가진 철골(30)과, 콘크리트 부재(440)와, 콘크리트 부재(440)의 내부에 매설된 보강철근(50) 및, 보강철근(50)을 감싸도록 설치되는 스터럽(55)을 포함한다. Referring to the drawings, the composite beam 500 is a steel frame 30 having a '工' shape, the concrete member 440, the reinforcing bar 50 embedded in the concrete member 440, and reinforcement The stub 55 is installed to surround the reinforcing bar 50.
복합빔(500)은, 제2 실시예의 복합빔(200)과 비교하여, 콘크리트 부재(440)가 철골(30)의 중앙부에 형성되지 않는다는 점을 제외하면 복합빔(200)과 동일하다. 도 19의 F-F' 단면은 도 9와 동일하고, 도 19의 참조부호 중에서 도 8, 9의 참조부호와 동일한 것은 동일한 기능을 하는 동일한 구성요소를 나타낸다.The composite beam 500 is the same as the composite beam 200 except that the concrete member 440 is not formed at the center of the steel frame 30 as compared with the composite beam 200 of the second embodiment. 19 is the same as that of FIG. 9, and the same reference numerals as those of FIGS. 8 and 9 in FIG. 19 denote the same components having the same functions.
도 20은 본 발명의 제8 실시예에 따른 복합빔을 보여주는 사시도이다.20 is a perspective view showing a composite beam according to an eighth embodiment of the present invention.
도면을 참조하면, 복합빔(600)은 '工' 형상의 단면을 가진 철골(30)과, 콘크리트 부재(540)와, 콘크리트 부재(540)의 내부에 매설된 보강철근(50) 및, 보강철근(50)을 감싸도록 설치되는 스터럽(55)을 포함한다. Referring to the drawings, the composite beam 600 is a steel frame 30 having a '工' shape cross section, the concrete member 540, the reinforcing bars 50 embedded in the concrete member 540, and reinforcement The stub 55 is installed to surround the reinforcing bar 50.
복합빔(600)은, 제3 실시예의 복합빔(300)과 비교하여, 콘크리트 부재(540)가 철골(30)의 중앙부에 형성되지 않는다는 점을 제외하면 복합빔(300)과 동일하다. 도 20의 G-G' 단면은 도 11과 동일하고, 도 20의 참조부호 중에서 도 10, 11의 참조부호와 동일한 것은 동일한 기능을 하는 동일한 구성요소를 나타낸다. The composite beam 600 is the same as the composite beam 300 except that the concrete member 540 is not formed at the center of the steel frame 30 as compared with the composite beam 300 of the third embodiment. The cross-sectional view taken along line G-G 'of FIG. 20 is the same as that of FIG. 11, and the same reference numerals as those of FIGS. 10 and 11 in FIG.
한편, 도 21은 본 발명의 제9 실시예에 따른 복합빔을 보여주는 분해 사시도이다. 21 is an exploded perspective view illustrating a composite beam according to a ninth embodiment of the present invention.
상기 복합빔(550)은 '工' 형상의 단면을 가진 철골(30)과, 콘크리트 부재(380)와, 콘크리트 부재(380)의 상면에 설치되고 하부 플렌지(33)의 아랫면에 결합된 플레이트(375)와, 콘크리트 부재(380)의 내부에 매설된 보강철근(50)을 포함한다. 상기 구성요소 중에서 철골(30)과 보강철근(50)은 전술한 실시예의 철골(30) 및 보강철근(50)과 각각 동일하므로 여기서는 설명을 생략하기로 한다. The composite beam 550 is a steel frame 30 having a 'engine' shaped cross section, a concrete member 380, a plate installed on the upper surface of the concrete member 380 and coupled to the lower surface of the lower flange 33 ( 375 and reinforcing bars 50 embedded in the concrete member 380. Of the above components, the steel frame 30 and the reinforcing bar 50 are the same as the steel frame 30 and the reinforcing bar 50 of the above-described embodiment, so description thereof will be omitted herein.
상기 복합빔(550)은 중앙부에 콘크리트 부재(380)가 설치되지 않고 양단부에만 콘크리트 부재(380)가 설치된다는 점을 제외하면 제4 실시예에 따른 복합빔(350)과 동일하다. 따라서, 복합빔(550)의 양단부의 단면은 도 13과 동일하다. The composite beam 550 is the same as the composite beam 350 according to the fourth embodiment except that the concrete member 380 is not installed at the center and the concrete member 380 is installed only at both ends. Therefore, the cross section of both ends of the composite beam 550 is the same as FIG.
한편, 철골(30)을 대신하여 'T' 형상의 단면을 가진 철골(도 14의 30a), 또는 상부 플렌지(31) 보다 하부 플렌지(33b)의 폭이 좁은 철골(30b)을 사용할 수도 있다. Meanwhile, instead of the steel frame 30, a steel frame having a 'T' shape cross section (30a of FIG. 14), or a steel frame 30b having a narrower width than the upper flange 31 may be used.
도 22는 본 발명의 제10 실시예에 따른 복합빔을 보여주는 분해 사시도이다. 도 22에서 도 1 내지 도 21의 참조부호와 동일한 참조부호는 동일한 기능을 하는 동일한 구성요소를 나타낸다. 22 is an exploded perspective view showing a composite beam according to a tenth embodiment of the present invention. In FIG. 22, the same reference numerals as used in FIGS. 1 to 21 denote the same components having the same functions.
상기 복합빔(650)은 '工' 형상의 단면을 가진 철골(30d)과, 콘크리트 부재(380)와, 콘크리트 부재(380)의 상면에 설치되고 하부 플렌지(33)의 아랫면에 결합된 플레이트(475)와, 콘크리트 부재(380)의 내부에 매설된 보강철근(50) 및, 콘크리트 부재(380)의 내부에 매설되는 스터럽(55a)을 포함한다.The composite beam 650 is a steel frame (30d) having a cross section of the '工' shape, the concrete member 380, the plate is installed on the upper surface of the concrete member 380 and coupled to the lower surface of the lower flange 33 ( 475, a reinforcing bar 50 embedded in the concrete member 380, and a stirrup 55a embedded in the concrete member 380.
상기 구성요소 중에서 보강철근(50) 및 스터럽(55a)은 복합빔(450)의 보강철근(50) 및 스터럽(55a)과 각각 동일하다. 그리고, 상기 복합빔(650)은 중앙부에 콘크리트 부재(380)가 설치되지 않고 양단부에만 콘크리트 부재(380)가 설치된다는 점을 제외하면 제5 실시예에 따른 복합빔(450)과 동일하다. 따라서, 복합빔(650)의 양단부의 단면은 도 17과 동일하다. Among the components, the rebar 50 and the stub 55a are the same as the rebar 50 and the stub 55a of the composite beam 450, respectively. The composite beam 650 is the same as the composite beam 450 according to the fifth embodiment except that the concrete member 380 is not installed at the center portion and the concrete member 380 is installed only at both ends. Therefore, the cross section of both ends of the composite beam 650 is the same as FIG.
한편, 철골(30d)을 대신하여 상부 플렌지(31) 보다 하부 플렌지(33b)의 폭이 좁은 철골(30b)을 사용할 수도 있다. Meanwhile, instead of the steel frame 30d, the steel frame 30b of which the width of the lower flange 33b is narrower than that of the upper flange 31 may be used.
도 23은 본 발명의 제11 실시예에 따른 복합빔이 기둥에 결합된 것을 보여주는 정면도이고, 도 24는 도 23의 H-H' 단면도이다. 도 23에서 도 1 내지 도 22의 참조부호와 동일한 참조부호는 동일한 기능을 하는 동일한 구성요소를 나타낸다. FIG. 23 is a front view illustrating a composite beam coupled to a pillar according to an eleventh embodiment of the present invention, and FIG. 24 is a cross-sectional view taken along line H-H 'of FIG. In Fig. 23, the same reference numerals as those of Figs. 1 to 22 denote the same components having the same functions.
상기 복합빔(700)은 철골과, 콘크리트 부재(380)와, 콘크리트 부재(380)의 상면에 설치되고 웨브(32)의 하단에 결합된 플레이트(376)와, 콘크리트 부재(380)의 내부에 매설된 보강철근(50)을 포함한다. 상기 구성요소 중에서 콘크리트 부재(380)와 보강철근(50)은 제9 실시예의 콘크리트 부재(380) 및 보강철근(50)과 각각 동일하다. The composite beam 700 is a steel frame, the concrete member 380, the plate 376 is installed on the upper surface of the concrete member 380 and coupled to the lower end of the web 32 and the inside of the concrete member 380 Buried rebar 50 is included. Among the components, the concrete member 380 and the rebar 50 are the same as the concrete member 380 and the rebar 50 of the ninth embodiment, respectively.
상기 철골의 양단부는 'T'형상의 단면을 가진 철골(30a)로 이루어지고 상기 철골의 중앙부는 '工' 형상의 단면을 가진 철골(30)로 이루어진다. 철골(30a)과 철골(30)의 연결 결합은 연결판(38) 및 볼트(39)에 의해 이루어지거나, 연결판(38)을 철골(30a)(30)에 용접시키는 것에 의해서 이루어질 수 있다. Both ends of the steel frame is made of steel frame 30a having a 'T' shaped cross section, and the central portion of the steel frame is made of steel frame 30 having a cross section of an 'engine' shape. Connection coupling of the steel frame 30a and the steel frame 30 may be made by the connecting plate 38 and the bolt 39, or by welding the connecting plate 38 to the steel frame (30a) (30).
플레이트(376)는 웨브(32)의 하단에 용접으로 결합된다. 플레이트(376)는 콘크리트 부재(380)의 상면에 매설되도록 설치되는데, 플레이트(376)의 상면은 외부에 노출되어 웨브(32)와 결합된다. Plate 376 is welded to the bottom of web 32. The plate 376 is installed to be embedded in the upper surface of the concrete member 380, the upper surface of the plate 376 is exposed to the outside is coupled to the web 32.
플레이트(376)는 콘크리트 부재(380)의 끝단보다 양쪽으로 더 연장되도록 형성되는 것이 바람직한데, 이것은 플레이트(376)와 기둥(20)의 결합 및, 플레이트(376)와 하부 플렌지(33)의 결합을 위해서이다. 플레이트(376)와 하부 플렌지(33)는 연결판(38) 및 볼트(39)에 의해서 결합되거나, 연결판(38)을 용접시켜서 결합될 수 있다.The plate 376 is preferably formed to extend further to both sides than the end of the concrete member 380, which is a combination of the plate 376 and the pillar 20, and the combination of the plate 376 and the lower flange 33 For The plate 376 and the lower flange 33 may be joined by the connecting plate 38 and the bolt 39 or by welding the connecting plate 38.
또한, 콘크리트 부재(380)는 기둥(20)의 콘크리트면(27) 보다 소정거리(S) 만큼 기둥(20) 쪽으로 더 연장되는 것이 바람직한데, 더욱 바람직하게는 상기 거리(S)가 대략 10mm이다. In addition, the concrete member 380 preferably extends further toward the pillar 20 by a predetermined distance S than the concrete surface 27 of the pillar 20, more preferably the distance S is approximately 10 mm. .
본 발명은 다음과 같은 효과를 가진다.The present invention has the following effects.
첫째, 중량이 작기 때문에 양중(揚重)이 용이하여 시공성이 우수하고 운반비 등의 물류비용이 감소되는 복합빔을 제공한다. First, since the weight is small, the weight is easy to provide a composite beam is excellent in workability and the logistics cost such as transportation costs are reduced.
둘째, 콘크리트 소모량이 작기 때문에 친환경적인 복합빔을 제공한다. Second, because the concrete consumption is small, it provides an environment-friendly composite beam.
셋째, 기둥과의 체결이 용이한 복합빔을 제공한다. Third, it provides a composite beam easy to fasten with the pillar.
넷째, 슬래브 작업시 작업자가 발을 디딜 수 있는 충분한 공간을 제공하고 작업자의 부상 위험을 없앨 수 있는 복합빔을 제공한다. Fourth, it provides a composite beam to provide enough space for the operator to step on the slab work and eliminate the risk of injury to the operator.
다섯째, 슬래브 작업시 사용되는 데크 플레이트의 규격을 통일할 수 있는 복합빔을 제공한다. 이에 따라 슬래브 타설 작업의 효율성을 높일 수 있고 작업 시간을 줄일 수 있다. Fifth, the present invention provides a composite beam capable of unifying the specifications of the deck plate used in slab work. This can increase the efficiency of slab casting and reduce the work time.
여섯째, 이러한 복합빔을 이용한 시공방법을 제공한다.Sixth, a construction method using such a composite beam is provided.

Claims (18)

  1. 빔의 전체 길이를 구성하도록 길이방향으로 길게 형성된 철골;Steel frame formed long in the longitudinal direction to constitute the entire length of the beam;
    철골의 웨브의 일부와 하부 플랜지를 그 내부에 매설하는 콘크리트 부재;A concrete member for embedding a portion of the web of the steel frame and the lower flange therein;
    상기 길이방향을 따라 콘크리트 부재의 내부에 매설된 보강철근; 및Reinforcing bars embedded in the concrete member along the length direction; And
    상기 길이방향을 따라 소정간격으로 배치되고, 철골의 하부 플랜지와 보강철근을 감싸도록 설치되는 스터럽;을 포함하고,It is disposed at a predetermined interval along the longitudinal direction, the stub is installed to surround the lower flange and reinforcing steel of the steel frame; includes;
    상기 철골의 상부 플랜지는 콘크리트 부재에 매설되지 않고 외부에 노출되며, 스터럽은 콘크리트 부재에 매설되어 외부에 노출되지 않는 것을 특징으로 하는 복합빔. The upper flange of the steel frame is exposed to the outside without being embedded in the concrete member, the stirrup is embedded in the concrete member, characterized in that not exposed to the outside.
  2. 제1항에 있어서,The method of claim 1,
    콘크리트 부재는 철골의 중앙부에는 설치되지 않고 철골의 양쪽 끝단부에만 설치되는 것을 특징으로 하는 복합빔. The concrete member is not installed in the center of the steel frame composite beam, characterized in that it is installed only at both ends of the steel frame.
  3. 제1항에 있어서,The method of claim 1,
    콘크리트 부재와 철골의 결합력을 높이기 위하여 하부 플랜지 또는 웨브에 스터드가 구비되거나 보강 철근의 적어도 일부가 웨브에 용접되어 결합된 것을 특징으로 하는 복합빔. A composite beam, characterized in that a stud is provided on the lower flange or web to increase the bonding force between the concrete member and the steel frame, or at least a part of the reinforcing bar is welded to the web and joined.
  4. 빔의 전체 길이를 구성하도록 길이방향으로 길게 형성된 철골;Steel frame formed long in the longitudinal direction to constitute the entire length of the beam;
    철골의 하부 플랜지의 아랫면에 결합되어 설치된 콘크리트 부재;A concrete member coupled to the bottom surface of the lower flange of the steel frame;
    상기 길이방향을 따라 콘크리트 부재의 내부에 매설된 보강철근; 및Reinforcing bars embedded in the concrete member along the length direction; And
    상기 길이방향을 따라 소정간격으로 배치되고, 보강철근을 감싸도록 설치되는 스터럽;을 포함하고,It is disposed at a predetermined interval along the longitudinal direction, the stub is installed to surround the reinforcing steel;
    상기 철골의 상부 플랜지와 웨브는 콘크리트 부재에 매설되지 않고 외부에 노출되며, 스터럽은 콘크리트 부재에 매설되어 외부에 노출되지 않는 것을 특징으로 하는 복합빔. The upper flange and the web of the steel frame is exposed to the outside without being embedded in the concrete member, the stub is embedded in the concrete member, characterized in that not exposed to the outside.
  5. 제4항에 있어서,The method of claim 4, wherein
    콘크리트 부재의 폭(w1)이 하부 플랜지의 폭(w2)과 동일한 것을 특징으로 하는 복합빔.And the width w1 of the concrete member is equal to the width w2 of the lower flange.
  6. 제4항에 있어서,The method of claim 4, wherein
    콘크리트 부재는 철골의 중앙부에는 설치되지 않고 철골의 양쪽 끝단에만 설치되는 것을 특징으로 하는 복합빔. The concrete member is not installed in the center of the steel frame composite beam, characterized in that it is installed only at both ends of the steel frame.
  7. 제4항에 있어서,The method of claim 4, wherein
    콘크리트 부재와의 결합력을 높이기 위하여 하부 플랜지의 아랫면에는 스터드가 설치된 것을 특징으로 하는 복합빔. Composite beam, characterized in that the stud is installed on the lower surface of the lower flange to increase the bonding force with the concrete member.
  8. 빔의 전체 길이를 구성하도록 길이방향으로 길게 형성된 철골;Steel frame formed long in the longitudinal direction to constitute the entire length of the beam;
    그 상면이 철골의 하단과 결합된 플레이트; 및A plate whose upper surface is coupled to the lower end of the steel frame; And
    플레이트의 상면이 외부에 노출되도록 플레이트가 매설된 콘크리트 부재;를 포함하고,It includes; a concrete member embedded with a plate so that the upper surface of the plate is exposed to the outside,
    상기 철골은 콘크리트 부재에 매설되지 않고 외부에 노출되는 것을 특징으로 하는 복합빔. The steel frame is a composite beam, characterized in that exposed to the outside without being embedded in the concrete member.
  9. 제8항에 있어서,The method of claim 8,
    철골은 '工' 형상의 단면, 'T' 형상의 단면, 상부 플렌지 보다 하부 플렌지의 폭이 좁은 단면 중 적어도 어느 하나를 가지는 것을 특징으로 하는 복합빔. Steel frame is a composite beam characterized in that it has at least one of the cross section of the 'engine' shape, the cross section of the 'T' shape, the cross section of the lower flange narrower than the upper flange.
  10. 제8항에 있어서,The method of claim 8,
    상기 길이방향을 따라 소정 간격으로 콘크리트 부재에 매설되도록 설치되는 스터럽을 포함하고, It includes a stub installed to be embedded in the concrete member at a predetermined interval along the longitudinal direction,
    상기 철골은 상부 플렌지와, 하부 플렌지 및, 상부 플렌지와 하부 플렌지를 연결하는 웨브를 포함하며, The steel frame includes an upper flange, a lower flange, and a web connecting the upper flange and the lower flange,
    상기 스터럽은 그 양끝단이 플레이트와 하부 플렌지를 관통한 후 볼트에 체결됨으로써 콘크리트 부재와 플레이트 및 철골을 결합시키는 것을 특징으로 하는 복합빔. The stirrup is characterized in that both ends of the plate and the lower flange penetrates the bolt and then joins the concrete member, the plate and the steel frame.
  11. 제8항에 있어서,The method of claim 8,
    플레이트와 콘크리트 부재는 철골의 양끝단부에만 설치되고 철골의 중앙부에는 설치되지 않은 것을 특징으로 하는 복합빔. The plate and the concrete member is installed only at both ends of the steel frame, the composite beam, characterized in that not installed in the center of the steel frame.
  12. 제11항에 있어서,The method of claim 11,
    철골은 그 중앙부가 '工' 형상의 단면을 가지고 그 양끝단부가 'T' 형상의 단면을 가지는 것을 특징으로 하는 복합빔. Steel frame is a composite beam, characterized in that the central portion has a cross section of the 'engine' shape and both ends have a 'T' shape cross section.
  13. 제12항에 있어서,The method of claim 12,
    철골과 플레이트는 콘크리트 부재 보다 기둥 쪽으로 더 연장되도록 형성되는 것을 특징으로 하는 복합빔. Steel and plate is a composite beam, characterized in that formed to extend more toward the pillar than the concrete member.
  14. 제8항에 있어서,The method of claim 8,
    콘크리트 부재는 기둥의 콘크리트 표면 보다 기둥 쪽으로 더 연장되도록 형성되고, 철골과 플레이트는 콘크리트 부재 보다 기둥 쪽으로 더 연장되도록 형성되는 것을 특징으로 하는 복합빔. And the concrete member is formed to extend further toward the column than the concrete surface of the column, and the steel frame and the plate are formed to extend more toward the column than the concrete member.
  15. 기둥을 설치하는 단계; 및Installing a column; And
    제1항 내지 제14항 중 어느 한 항의 복합빔을 기둥에 연결하는 단계;를 포함하는 것을 특징으로 하는 복합빔의 시공방법. 15. A method of constructing a composite beam, comprising: connecting the composite beam of any one of claims 1 to 14 to a column.
  16. 제15항에 있어서, The method of claim 15,
    슬래브를 시공하기 위한 데크 플레이트는 상기 복합빔의 상부 플랜지에 거치되고 콘크리트 부재에는 거치되지 않는 것을 특징으로 하는 복합빔의 시공방법. Deck plate for constructing the slab is mounted on the upper flange of the composite beam, it is not mounted on the concrete member construction method of the composite beam.
  17. 제15항에 있어서, The method of claim 15,
    복합빔은 제8항 내지 제14항의 복합빔 중 어느 하나이고, The compound beam is any one of the compound beam of claim 8,
    플레이트와 콘크리트 부재의 조립체를 제조하고 철골을 제조한 후, 상기 조립체와 철골을 결합하는 것을 특징으로 하는 복합빔의 시공방법. After manufacturing the assembly of the plate and the concrete member and manufacturing the steel frame, the construction method of the composite beam characterized in that the assembly and the steel frame combined.
  18. 제17항에 있어서, The method of claim 17,
    콘크리트 부재는 기둥의 콘크리트 표면 보다 기둥 쪽으로 더 연장되는 것을 특징으로 하는 복합빔의 시공방법.The method of constructing a composite beam, characterized in that the concrete member extends further toward the column than the concrete surface of the column.
PCT/KR2012/000048 2011-01-06 2012-01-03 Composite beam having concrete member precasted or casted in place and construction method using same WO2012093836A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110001530A KR101049880B1 (en) 2011-01-06 2011-01-06 Composite beam having concrete member precasted or casted in place and, construction methods using the same
KR10-2011-0001530 2011-01-06

Publications (2)

Publication Number Publication Date
WO2012093836A2 true WO2012093836A2 (en) 2012-07-12
WO2012093836A3 WO2012093836A3 (en) 2012-11-08

Family

ID=44923713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000048 WO2012093836A2 (en) 2011-01-06 2012-01-03 Composite beam having concrete member precasted or casted in place and construction method using same

Country Status (2)

Country Link
KR (1) KR101049880B1 (en)
WO (1) WO2012093836A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016065689A1 (en) * 2014-10-31 2016-05-06 华南理工大学 Recycled hybrid beam with built-in i-shaped steel having discontinuous top flange and construction process therefor
WO2018208247A1 (en) * 2017-05-11 2018-11-15 Onesteel Yapi Teknolojileri Ltd. Sti. A steel beam embodiment with reinforced lower head

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101407512B1 (en) * 2012-02-23 2014-06-17 재단법인 포항산업과학연구원 Steel composite beam for reducing story height, slim floor structure and construction method using the same
KR101636246B1 (en) * 2015-05-07 2016-07-06 서울시립대학교 산학협력단 Steel-PC hybrid beam and manufacturing method thereof
KR102152299B1 (en) * 2018-11-14 2020-09-04 이경훈 Long span structure and construction method using bending beam
KR102107666B1 (en) * 2018-11-14 2020-05-07 이경훈 Long Span Composite Beam And Long Span Structure Construction Method Using The Same
KR102085794B1 (en) * 2018-11-14 2020-03-06 이경훈 Long span steel beam bending construction method
KR102278450B1 (en) * 2019-12-09 2021-07-19 목포대학교 산학협력단 Truss hybrid beam with wide Precast concrete lower flange
KR102491762B1 (en) * 2020-07-27 2023-01-30 주식회사 덕암테크 the reinforcement member for half slim composite beam, the improved half slim composite beam and the improved half slim composite beam structure using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401671B1 (en) * 2000-09-16 2003-10-11 (주) 동양구조안전기술 Composite beam with prestressed precast concrete panel
KR100486772B1 (en) * 2002-12-05 2005-05-03 주식회사 노빌테크 Honeycomb Type Composite Beam Stiffened with Prestressed Concrete Panel having Novel Connecting Structure
KR100596072B1 (en) * 2004-05-31 2006-07-06 주식회사 노빌테크 Composite Beam Stiffened with Prestressed Concrete Panel Having Embedded Lower Flange and Constructing Method thereof
KR100888941B1 (en) * 2008-10-20 2009-03-16 (주)크로스구조연구소기술사사무소 Concrete-composite crossbeam and construction methods using the same
KR101112195B1 (en) * 2008-12-10 2012-02-24 경희대학교 산학협력단 Steel-concrete composite crossbeam having wire mesh and construction method using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016065689A1 (en) * 2014-10-31 2016-05-06 华南理工大学 Recycled hybrid beam with built-in i-shaped steel having discontinuous top flange and construction process therefor
US10072417B2 (en) 2014-10-31 2018-09-11 South China University Of Technology Reinforced compound concrete beam containing demolished concrete lumps
WO2018208247A1 (en) * 2017-05-11 2018-11-15 Onesteel Yapi Teknolojileri Ltd. Sti. A steel beam embodiment with reinforced lower head
EA038408B1 (en) * 2017-05-11 2021-08-24 Ванстил Япи Текноложилери Лтд. Шти. Method of reinforcing a lower head of a steel beam

Also Published As

Publication number Publication date
KR101049880B1 (en) 2011-07-15
WO2012093836A3 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
WO2012093836A2 (en) Composite beam having concrete member precasted or casted in place and construction method using same
WO2009142416A9 (en) Strengthening member for reinforced concrete beam end coupling, and a structural-element construction method employing the same
WO2012044097A2 (en) Floor slab structure for bridge
WO2021167415A1 (en) Beam form for non-dismantling structure
WO2010047461A1 (en) Steel-concrete composite beam and construction method using same
WO2012057510A2 (en) Structure for constructing a high-rise building having a reinforced concrete structure comprising a steel frame
WO2016129826A1 (en) Safety-enhanced pc truss wall structure, and underground-structure construction method using same
WO2019054703A1 (en) Cip wall forming apparatus and construction method using same
WO2009104904A2 (en) Fit-together type of precast concrete lining and bridging structural body
WO2021066294A1 (en) Method for constructing prefabricated wall by means of prefabricated wall modules
WO2012036335A1 (en) Connection method between steel-plate concrete structure and different structure
WO2016111458A1 (en) Steel beam attachment structure
KR20030082668A (en) Construction method for SRC structured high rise building
WO2018074814A1 (en) Connection structure of precast beam and column and method for connecting beam and column by using same
WO2016143979A1 (en) Mega column and construction method therefor
WO2016171444A1 (en) Structure for supporting square bars of tower structure and construction method therefor
WO2016171374A1 (en) Beam-penetration column joint part and method for concurrently constructing upper and lower parts of building by using same
WO2015147414A1 (en) Prefabricated steel frame for steel-concrete composite member
JPH07331618A (en) Method for reinforcing prestressed bridge by lower cable
WO2018190444A1 (en) Prefabricated double composite plate girder bridge and construction method therefor
WO2016111459A1 (en) Pillar bracket
WO2020242094A1 (en) Pc beam-column joint
WO2020101237A1 (en) Prefabricated wall module
WO2023282541A1 (en) Pc slab connection device and pc slab connection structure using same
WO2019208936A1 (en) Beam-girder joint for prefabricated steel frame assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732157

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12732157

Country of ref document: EP

Kind code of ref document: A2