WO2012093465A1 - Acryl acrylate resin production method - Google Patents

Acryl acrylate resin production method Download PDF

Info

Publication number
WO2012093465A1
WO2012093465A1 PCT/JP2011/007289 JP2011007289W WO2012093465A1 WO 2012093465 A1 WO2012093465 A1 WO 2012093465A1 JP 2011007289 W JP2011007289 W JP 2011007289W WO 2012093465 A1 WO2012093465 A1 WO 2012093465A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
monomer
acrylic
side chain
acryloyl group
Prior art date
Application number
PCT/JP2011/007289
Other languages
French (fr)
Japanese (ja)
Inventor
史延 北山
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2012551762A priority Critical patent/JP5863673B2/en
Publication of WO2012093465A1 publication Critical patent/WO2012093465A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • C08F290/126Polymers of unsaturated carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/02Stable Free Radical Polymerisation [SFRP]; Nitroxide Mediated Polymerisation [NMP] for, e.g. using 2,2,6,6-tetramethylpiperidine-1-oxyl [TEMPO]

Definitions

  • the present invention has low adhesiveness after volatilization of the solvent, low volume shrinkage during curing, surface hardness, scratch resistance, abrasion resistance, flexibility, heat resistance, mechanical strength, substrate
  • the present invention relates to a method for producing a curable resin having excellent adhesion, adhesive strength, initial adhesion, chemical resistance, water resistance, and weather resistance.
  • An acrylic acrylate resin having a (meth) acryloyl group in the side chain is used for various applications such as a photosensitive resist, a coating material, and an adhesive as a very useful raw material for improving the performance of the UV curable resin.
  • a photosensitive resist e.g., a photosensitive resist
  • a coating material e.g., a coating material
  • an adhesive e.g., an adhesive for preventing the surface hardness and scratch resistance of the coating film.
  • the surface hardness and scratch resistance of the coating film can be imparted.
  • a method for synthesizing such an acrylic acrylate resin a two-step synthesis method in which a polymer having a functional group is first synthesized and then a monomer having another functional group reactive with the functional group is reacted. Is.
  • Patent Document 1 discloses a method for synthesizing an acrylic acrylate resin having a molecular weight exceeding 1000, in which methacrylic acid is added to a glycidyl-type epoxy group-containing acrylic resin to introduce a methacryloyl group that is a polymerizable double bond. ing.
  • Patent Document 2 includes a layer of a photocurable resin composition containing an acrylic resin having a radically polymerizable unsaturated group in the side chain and a photopolymerization initiator, and substantially free of a crosslinkable compound other than the acrylic resin; And a photocurable sheet including a base sheet that is a thermoplastic acrylic resin sheet having a crosslinked rubber component, and has an excellent appearance, design, abrasion resistance, chemical resistance, and weather resistance.
  • a non-tacky photocurable sheet, a method for producing a molded product using the same, and a photocurable composition that provides such a photocurable sheet are disclosed.
  • Patent Document 3 a polymer is obtained by polymerization of a monomer component containing a monomer having a functional group modified by (meth) acrylic acid, and the number average molecular weight is reduced by modifying this polymer with (meth) acrylic acid.
  • a method for synthesizing a polymer having a (meth) acryloyl group in the side chain of 2000 to 100000 is disclosed, and is characterized by a volume shrinkage rate of less than 3% particularly at the time of three-dimensional crosslinking.
  • Patent Document 1 a copolymer of methyl methacrylate, ethyl acrylate, and glycidyl methacrylate was synthesized by solution polymerization in xylene, and then methacrylic acid. It is disclosed that an acrylic acrylate resin having a methacryloyl group in the side chain can be synthesized by adding.
  • the molecular weight of the obtained polymer in the examples, and since it is generally solution polymerization, it is difficult to obtain a higher molecular weight polymer relatively easily.
  • Patent Document 2 by synthesizing a homopolymer of glycidyl methacrylate or a copolymer of methyl methacrylate and glycidyl methacrylate by solution polymerization in methyl ethyl ketone in the examples, acrylic acid is added.
  • an acrylic acrylate resin having an acryloyl group in the side chain can be synthesized.
  • the number average molecular weight of the obtained polymer is about 15,000 to 25,000, and considering that it is solution polymerization, it is difficult to obtain a higher molecular weight polymer relatively easily. is there.
  • Patent Document 3 in the examples, a copolymer of styrene and epoxycyclohexylmethyl methacrylate was synthesized by solution polymerization in methyl isobutyl ketone, and then acrylic acid was added to the polymer solution, whereby acryloyl was added to the side chain. An acrylic acrylate resin having a group is synthesized.
  • the obtained polymer has a number average molecular weight of 5600 to 56000, detailed molecular weight data such as weight average molecular weight and polydispersity (Mw / Mn) is not described, and is generally a solution polymerization. It is difficult to obtain a higher molecular weight polymer relatively easily.
  • Patent Document 3 is a polymer that uses a large amount of styrene, and is difficult to use in applications that require weather resistance.
  • the conventional method synthesizes an acrylic acrylate resin by solution polymerization, and it is difficult to easily obtain a wide molecular weight region, particularly a high molecular weight acrylic acrylate resin.
  • high molecular weight of acrylic acrylate resin can be easily implemented, in various fields such as photosensitive resists, coating materials, adhesives, etc., the adhesiveness after volatilization of the solvent is low, and the volumetric shrinkage ratio upon curing is small. Excellent surface hardness, scratch resistance, abrasion resistance, flexibility, heat resistance, mechanical strength, adhesion to substrate, adhesive strength, initial adhesion, chemical resistance, water resistance, and weather resistance It becomes possible to provide a curable resin.
  • An object of the present invention is to provide a method for producing an acrylic acrylate resin having a wide molecular weight range, particularly a high molecular weight, which has been difficult to obtain with good productivity by the conventionally proposed solution polymerization method.
  • (meth) acryl means acryl and / or methacryl.
  • the present invention provides an acrylic acrylate resin having a (meth) acryloyl group in the side chain, wherein a (meth) acryloyl group is introduced into the side chain of the acrylic resin P having a weight average molecular weight (Mw) of 150,000 or more.
  • the present invention relates to a manufacturing method of Q.
  • the polydispersity of the acrylic resin P (Mw / Mn, Mn is the number average molecular weight) is preferably 3.0 or more.
  • both the monomer (A) and the monomer (C) are composed of a monomer containing an epoxy group, a monomer containing a hydroxyl group, and a monomer containing a carboxyl group.
  • the monomer (A) preferably contains a monomer containing an epoxy group
  • the monomer (C) contains a monomer containing a carboxyl group.
  • the present invention is characterized in that after the acrylic resin P having a weight average molecular weight (Mw) of 10,000 or more is produced by suspension polymerization, a (meth) acryloyl group is introduced into the side chain of the acrylic resin P.
  • the present invention relates to a method for producing an acrylic acrylate resin Q having a (meth) acryloyl group in the side chain.
  • the polydispersity (Mw / Mn) of the acrylic resin P obtained by suspension polymerization is preferably 1.8 or more.
  • a (meth) acryloyl group is introduced into the side chain of the acrylic resin P by reacting the acrylic resin P with the monomer (C).
  • both the monomer (A) and the monomer (C) are composed of a monomer containing an epoxy group, a monomer containing a hydroxyl group, and a monomer containing a carboxyl group.
  • the monomer (A) preferably contains a monomer containing an epoxy group
  • the monomer (C) contains a monomer containing a carboxyl group.
  • the acrylic resin P is produced by suspension polymerization, the polymerization is started after the polymerization is started in the presence of 350 ppm or less of the initial suspension stabilizer with respect to the monomer constituting the acrylic resin P.
  • the late suspension stabilizer is preferably added when the rate reaches 20 to 90%.
  • the initial suspension stabilizer is preferably a nonionic water-soluble polymer and / or a hardly water-soluble inorganic fine particle.
  • the initial suspension stabilizer is preferably a nonionic water-soluble polymer.
  • the nonionic water-soluble polymer is preferably a polyoxyethylene-polyoxypropylene block copolymer.
  • the acrylic acrylate resin Q having a (meth) acryloyl group in the obtained side chain can be easily adjusted to a wide molecular weight. It is particularly excellent in increasing the molecular weight, and such a high molecular weight acrylic acrylate resin Q is used after various solvents are volatilized when used in various fields such as photosensitive resists, coating materials and adhesives. Adhesiveness, volume shrinkage during curing, surface hardness, scratch resistance, abrasion resistance, flexibility, heat resistance, mechanical strength, adhesion to substrate, adhesive strength, initial adhesion, chemical resistance Excellent in water resistance, water resistance and weather resistance.
  • the acrylic acrylate resin Q having a (meth) acryloyl group in the side chain can be synthesized by, for example, the following two production steps.
  • the acrylic resin P is reacted with a monomer (C) for functional group conversion to a (meth) acryloyl group to obtain an acrylic acrylate resin Q having a (meth) acryloyl group in the side chain.
  • monomers having a hydroxyl group N-methylolacrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) Acrylate, etc. 2.
  • Monomers having a carboxyl group (meth) acrylic acid, acryloyloxyethyl monosuccinate, etc.
  • Monomers having an epoxy group glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, etc. 4.
  • Monomers having an aziridinyl group 2-aziridinylethyl (meth) acrylate, allyl 2-aziridinylpropionate, etc.
  • Monomers having an amino group (meth) acrylamide, diacetone acrylamide, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, etc. 6.
  • Monomers having a sulfone group 2-acrylamido-2-methylpropanesulfonic acid, etc.
  • Monomer having an isocyanate group an adduct of a radically polymerizable monomer having a diisocyanate and an active hydrogen, such as an equimolar adduct of 2,4-toluene diisocyanate and 2-hydroxyethyl acrylate
  • the monomer (A) is preferably a monomer having an epoxy group or a monomer having a hydroxyl group from the viewpoint of coloring during coating or processing, weather resistance, etc. More preferred are monomers having
  • Examples of the monomer having an epoxy group include (meth) acrylic acid esters, styrene derivatives containing an epoxy group, fumaric acid esters containing an epoxy group, and vinyl compounds containing an epoxy group.
  • Examples of the monomer having a hydroxyl group include (meth) acrylic acid esters containing a hydroxyl group, styrene derivatives containing a hydroxyl group, fumaric acid esters containing a hydroxyl group, and vinyl compounds containing a hydroxyl group. .
  • epoxy cyclomethyl acrylate epoxy cyclohexyl methyl methacrylate, glycidyl acrylate, glycidyl methacrylate, [ (4-ethenylphenyl) methyl] oxirane, 4- (glycidyloxy) styrene, 4-vinylepoxycyclohexane, diglycidyl fumarate, diepoxycyclohexylmethyl fumarate, 2-hydroxyethyl (meth) acrylate, 2- Examples include hydroxypropyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate.
  • the monomer (B) is not particularly limited as long as it is copolymerizable with the monomer (A), and various known monomers can be used.
  • the monomer (B) for example, a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 10 carbon atoms is preferred.
  • the monomer (B) include methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, and benzyl methacrylate; methyl acrylate, ethyl acrylate, Acrylic esters such as butyl acrylate and 2-ethylhexyl acrylate; vinylcyans such as acrylonitrile and methacrylonitrile; vinylarenes such as styrene, ⁇ -methylstyrene, monochlorostyrene and dichlorostyrene; maleic acid and fumaric acid And their esters; vinyl halides such as vinyl chloride, vinyl bromide and chloroprene; vinyl acetate; alkenes such as ethylene, propylene, butylene, butadiene and isobutylene; Halogenated alkenes; polyfunctional monomers such as allyl methacrylate, diallyl phthalate;
  • the monomer (A) used in the acrylic resin P is contained in an amount of 1 to 100% by weight, preferably 10 to 99.9% by weight, more preferably 10 to 98% by weight, and further preferably 10 to 60% by weight.
  • the monomer (B) is contained in an amount of 99 to 0% by weight, preferably 90 to 0.1% by weight, more preferably 90 to 2% by weight, and still more preferably 40 to 90% by weight.
  • the content of the monomer (A) is less than 1% by weight, the number of (meth) acryloyl groups introduced into the polymer side chain is small, the crosslinking density when cured is too low, and sufficient physical properties after curing, for example, , Surface hardness, abrasion resistance, heat resistance, chemical resistance, water resistance, weather resistance and the like tend to be lowered.
  • the glass transition temperature of the obtained acrylic resin P is not particularly limited, and may be arbitrarily adjusted according to the use to be used. However, the glass transition temperature is -40 to 200 ° C., preferably 0 to 175 ° C. It is preferable to adjust the usage-amount of a monomer (A) and a monomer (B).
  • the polymerization method for polymerizing the monomer (A) alone or the monomer (A) and the monomer (B) is not particularly limited, and a conventionally known polymerization method can be adopted.
  • polymerization methods such as solution polymerization, dispersion polymerization, suspension polymerization, and emulsion polymerization can be used.
  • Solvents that can be used when polymerizing monomer components using the solution polymerization method include toluene, xylene, and other high boiling aromatic solvents; ester solvents such as butyl acetate, ethyl acetate, and cellosolve acetate; Examples thereof include ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and alcohol solvents such as methanol, ethanol and isopropyl alcohol.
  • the solvent which can be used is not limited to these solvents. These solvents may be used alone or in combination of two or more. Note that the amount of the solvent used may be appropriately determined in consideration of the concentration of the product.
  • the suspension polymerization method is most preferable from the viewpoint that a wide range of molecular weight adjustment can be easily performed, and in particular, a high molecular weight polymer can be obtained.
  • the acrylic resin P When the acrylic resin P is synthesized by the suspension polymerization method, it may be carried out by a known suspension polymerization method and is not limited. In particular, when high purity is required, such as when acrylic acrylate resin Q is used for applications such as electronic parts, or used for molding processes such as secondary molding, acrylic resin is treated by suspension polymerization as described below.
  • a method for producing the resin P is preferred. That is, the presence of an initial suspension stabilizer of 350 ppm or less based on the monomer (A) alone or the polymerization of the monomer (A) and the monomer (B). Start below. Then, when the polymerization conversion rate of the monomer reaches 20 to 90%, preferably 20 to 75%, the late suspension stabilizer is added.
  • a polymer-type suspension stabilizer composed of a nonionic water-soluble polymer, water such as tribasic calcium phosphate and barium sulfate. Soluble inorganic particulate type suspension stabilizers can be used.
  • Suspension stabilizers composed of anionic water-soluble polymers include polyacrylic acid, sodium polyacrylate, potassium polyacrylate, polymethacrylic acid, polysodium methacrylate, polypotassium methacrylate, sodium methacrylate-alkyl methacrylate. An ester copolymer etc. are mentioned. Of these, sodium polyacrylate and polysodium methacrylate are preferable.
  • Water-soluble polymers such as block copolymers, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene nonyl phenyl ether, polyethylene glycol fatty acid ester, polyoxyethylene lauryl amine are listed.
  • Preferred are polyvinyl alcohol, polyoxyethylene-polyoxypropylene copolymer, and more preferred are polyoxyethylene-polyoxypropylene block copolymers.
  • suspension stabilizer composed of inorganic fine particles having poor water solubility
  • examples of the suspension stabilizer composed of inorganic fine particles having poor water solubility include barium sulfate, tricalcium phosphate, and magnesium carbonate. Tricalcium phosphate is preferred.
  • the poorly water-soluble herein means that the solubility in water at 25 ° C. is 1% by weight or less.
  • the initial suspension stabilizer of the present invention refers to a suspension stabilizer present at the start of polymerization. Since the initial suspension stabilizer is present in the system from the beginning of the polymerization, it is easily taken into the resulting granular polymer, and the initial suspension stabilizer remains in the granular polymer even after various post-treatment steps. To do. As a result, the purity of the granular polymer is lowered, and problems such as deterioration of transparency and yellowing are brought about during the molding process. For example, when a small amount of water-insoluble inorganic fine particles is used as a suspension stabilizer in a large amount from the initial stage of polymerization, transparency in the molding process is inevitably inferior because it remains inside the granular polymer. Further, when a large amount of a water-soluble polymer is used as a suspension stabilizer from the initial stage of polymerization, yellowing occurs due to thermal deterioration during the molding process by remaining inside the granular polymer.
  • the amount of the initial suspension stabilizer used is 350 ppm or less, preferably 200 ppm or less, more preferably 40 ppm or less, and most preferably the initial suspension stabilizer is not used with respect to the monomer constituting the acrylic resin P. Highly preferred.
  • the amount of the initial suspension stabilizer used is the same as that used throughout the polymerization reaction. It means the relative amount to the total amount of the mer. In the prior art, it was considered essential to initiate polymerization in the presence of a relatively large amount of initial suspension stabilizer in order to ensure polymerization stability.
  • the polymerization conversion rate is a value based on the total amount of monomers used in the entire process of the polymerization reaction. It is.
  • the initial suspension stabilizer is selected from polymer types such as anionic water-soluble polymers and nonionic water-soluble polymers, and inorganic fine particle types. These can be used alone or in combination of two or more. However, when an anionic water-soluble polymer is used, if it remains in the granular polymer, it tends to cause yellowing particularly during molding, so an initial stage selected from nonionic water-soluble polymers and poorly water-soluble inorganic fine particles It is preferred to use a suspension stabilizer. Furthermore, it is more preferable to use a nonionic water-soluble polymer as an initial suspension stabilizer because poorly water-soluble inorganic fine particles also remain in the granular polymer because it tends to deteriorate transparency during molding. .
  • a polyoxyethylene-polyoxypropylene block copolymer is most preferred because yellowing during molding is less.
  • the polyoxyethylene-polyoxypropylene block copolymer itself has good thermal stability during molding and is not easily yellowed.
  • a highly hydrophobic polyoxypropylene (PPO) chain is a monomer oil. Adsorbing to a hydrophobic surface such as droplets or polymer particles, and the hydrophilic polyoxyethylene (PEO) chain is hydrated and spreads widely in the aqueous phase, thereby exhibiting an excellent dispersion effect. As a result, the amount of the suspension stabilizer used can be greatly reduced, transparency deterioration and yellowing hardly occur during the molding process, and it is advantageous in terms of cost.
  • the late suspension stabilizer added when the polymerization conversion of the monomer reaches 20 to 90%, preferably 20 to 75%, increases the polymer ratio in the monomer oil droplets as the polymerization proceeds, Since the monomer oil droplets are added at the stage where the coalescence and dispersion of the monomer oil droplets are settled and fixed, it is difficult to remain inside the granular polymer. Therefore, purity is high and it becomes possible to suppress deterioration of transparency and yellowing during molding. If the suspension stabilizer is added later when the polymerization conversion rate is less than 20%, the suspension stabilizer is incorporated into the resulting granular polymer, leaving only a granular polymer with low purity. It is not obtained and fine powder is easily generated.
  • the late suspension stabilizer is used in an amount of 0.005 to 2.0 parts by weight, preferably 0.005 to 1.0 parts by weight, more preferably 0.005 to 0 parts per 100 parts by weight of the monomer. It is selected from the range of 2 parts by weight, but is preferably as small as possible within the range where the polymerization system is stable.
  • the late suspension stabilizer is selected from polymer types such as anionic water-soluble polymers and nonionic water-soluble polymers, and inorganic fine particle types. These can be used alone or in combination of two or more.
  • a nonionic water-soluble polymer and an inorganic fine particle type are preferable, and a nonionic water-soluble polymer is more preferable.
  • a nonionic water-soluble polymer a polyoxyethylene-polyoxypropylene block copolymer is most preferable.
  • the late suspension stabilizer can be added all at once, all at once, or continuously.
  • a suspension aid can be used in combination with the suspension stabilizer.
  • the suspension aid here is a substance also known as a dispersion aid, for example, an anionic interface such as sodium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium alkylnaphthalenesulfonate, sodium dialkylsulfosuccinate, etc.
  • Low-molecular surfactants such as activators, water-soluble inorganic salts such as boric acid, sodium carbonate, disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium sulfate, and the like.
  • disodium hydrogen phosphate is preferable.
  • the suspension aid may be present in the polymerization system from the start of the polymerization because it does not easily cause deterioration of transparency or yellowing during the molding process.
  • inorganic fine particles when used as a suspension stabilizer, the surface of the inorganic fine particles becomes amphiphilic to the interface between the monomer and water by using a low molecular surfactant as a suspension aid. The effect can be enhanced.
  • a water-soluble polymer such as polyvinyl alcohol
  • the crosslinking reaction of the hydroxyl group of polyvinyl alcohol proceeds by using an inorganic salt such as boric acid or disodium hydrogen phosphate as a suspension aid.
  • an inorganic salt such as boric acid or disodium hydrogen phosphate
  • suspension stabilizer is a nonionic water-soluble polymer
  • the crosslinking reaction between ether bonds proceeds, and the protective ability can be improved.
  • suspension aids are preferably used in combination with a suspension stabilizer because the polymerization system can be further stabilized.
  • water-soluble inorganic salts are preferable from the viewpoint of suppressing yellowing during molding.
  • the suspension aid of the present invention refers to those having a solubility in water at 25 ° C. of 2% by weight or more. In this respect, it is clearly distinguished from the above-described suspension stabilizer composed of poorly water-soluble inorganic fine particles.
  • the polymerization initiator used in the suspension polymerization of the present invention may be a well-known one for the polymerization of vinyl monomers.
  • Peroxyesters organic peroxides such as di-8,5,5-trimethylhexanoyl peroxide, dilauroyl peroxide, benzoyl peroxide, etc., and one or more of these are used. It is done. These polymerization initiators are used in an amount of 0.02 to 2% by weight based on the monomer or monomer mixture.
  • a known chain transfer agent may be used.
  • the chain transfer agent include alkyl mercaptans, alkyl sulfides, alkyl disulfides, thioglycolic acid esters such as 2-ethylhexyl thioglycolate, mercapto acids such as ⁇ -methylstyrene dimer and ⁇ -mercaptopropionic acid, benzyl mercaptan, and thiophenol.
  • Aromatic mercaptans such as thiocresol and thionaphthol.
  • the molecular weight of the polymer is not particularly limited, and may be adjusted to a molecular weight suitable for the intended use.
  • the acrylic resin P has a high molecular weight, which reduces the adhesiveness after volatilizing the solvent. , Volume shrinkage during curing is small, surface hardness, scratch resistance, abrasion resistance, flexibility, heat resistance, mechanical strength, adhesion to substrate, adhesive strength, chemical resistance, water resistance, Since it becomes curable resin excellent in weather resistance, it is preferable.
  • the initial adhesive strength is strong and the sagging is difficult, so workability is improved.
  • the molecular weight of the acrylic resin P is 10,000 or more in terms of weight average molecular weight (Mw), preferably 80,000 or more, more preferably 100,000 or more, further preferably 150,000 or more, and most preferably 200,000 or more. is there.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • handling properties solution viscosity
  • the polydispersity is 1.8 or more, preferably 2.0 or more, more preferably 2.5 or more, and most preferably 3.0 or more.
  • the method for adding the polymerization initiator and the chain transfer agent is not particularly limited, but after the polymerization initiator and the chain transfer agent are both dissolved in the monomer, the monomer is suspended in water and the polymerization reaction is carried out as it is. Is most preferred.
  • the ratio of the aqueous medium to the monomer or monomer mixture is in the range of 1: 1 to 10: 1, preferably 1: 1 to 4: 1. If the amount of the aqueous medium is too small, the dispersion of the monomers tends to be uneven, the polymerization system becomes unstable, and if it is large, the production efficiency is disadvantageous.
  • a monomer or a monomer mixture is suspended in water and a polymerization reaction is carried out as it is, or a part of the monomer or monomer mixture is washed with water.
  • the polymerization reaction is started by suspending in water, and as the polymerization reaction proceeds, the remaining monomer or monomer mixture, or the aqueous suspension of the monomer or monomer mixture is divided into one or several stages.
  • all known methods such as a method of continuously adding to a polymerization reaction tank and carrying out a polymerization reaction can be used.
  • the polymerization temperature condition is about 60 to 120 ° C., and may be a temperature suitable for the polymerization initiator used.
  • the time required for the polymerization varies depending on the kind and amount of the polymerization initiator or the polymerization temperature, but is usually 1 to 24 hours.
  • Stirring conditions may be the same as those for producing a (meth) acrylic resin by ordinary suspension polymerization.
  • a polymerization vessel equipped with a well-known stirring blade for example, a turbine blade, a fiddler blade, a propeller blade, a blue margin blade, an H-shaped blade, or the like is used, and the vessel is provided with a baffle. It is common.
  • a granular polymer can be obtained by washing, dehydrating and drying by a known method.
  • the average particle diameter of the polymer particles of the acrylic resin P obtained by suspension polymerization is not particularly limited, but is preferably 50 to 4000 ⁇ m obtained by a normal suspension polymerization operation. From the viewpoint of handling properties in the next functional group conversion step (Production Step 2), a more preferable average particle size is 50 to 1000 ⁇ m, and further preferably 50 to 800 ⁇ m.
  • the monomer (C) described in (a) to (d) below is reacted with the acrylic resin P synthesized from the monomer (A) having a functional group convertible to a (meth) acryloyl group.
  • a (meth) acryloyl group is introduced into the side chain of the acrylic resin P, and an acrylic acrylate resin Q having a (meth) acryloyl group in the side chain is obtained.
  • the acrylic resin P is a polymer synthesized from the monomer (A) having an epoxy group, an isocyanate group or an aziridinyl group, the monomer (C) having a hydroxyl group or a monomer having a carboxyl group
  • the body (C) is subjected to an addition reaction.
  • the acrylic resin P is a polymer synthesized from a monomer (A) having a hydroxyl group or a carboxyl group, a monomer (C) having an epoxy group, a monomer having an aziridinyl group (C ), An isocyanate group-containing monomer (C), or an equimolar adduct (C) of a diisocyanate compound and a hydroxyl group-containing acrylate monomer.
  • the molar fraction of the monomer (A) and the monomer (C) is preferably 0.1 to 1.5. However, if the monomer (C) remains after the reaction, the physical properties of the final product may be lowered. Thus, it is possible to control the number of (meth) acryloyl groups by controlling the molar fraction of the monomer (A) and the monomer (C), and the physical properties of the cured product are easily and preferable. Can be adjusted.
  • the solvent used in the reaction of the acrylic resin P and the monomer (C) is not particularly limited, but is preferably a solvent in which the acrylic resin P is soluble.
  • a solvent in which the acrylic resin P is soluble for example, toluene, xylene, and other high boiling aromatic solvents; ester solvents such as butyl acetate, ethyl acetate, and cellosolve acetate; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; alcohols such as methanol, ethanol, and isopropyl alcohol A solvent etc. are mentioned. These solvents may be used alone or in combination of two or more.
  • the amount of the solvent used, that is, the solid content concentration may be appropriately determined in consideration of the solution viscosity, the reaction rate, the heat removal efficiency of heat generated during the reaction, the productivity, etc.
  • the solid content concentration is 10 to 90% by weight, Preferably, it is 20 to 60% by weight.
  • the reaction temperature is not particularly limited, but is preferably in the range of 20 to 200 ° C, more preferably 40 to 140 ° C.
  • a catalyst such as triethylamine, benzyldimethylamine, methyltriethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium ion is used to promote the reaction of the monomer (C) with the side chain functional group of the acrylic resin P. It is preferable to use dye, triphenylphosphine, triphenylstibine, chromium octoate, zirconium octoate or the like.
  • the amount of the catalyst used is not particularly limited, but is preferably 0.1 to 20% by weight, more preferably 0.1 to 10% by weight, based on the reaction raw material mixture.
  • a polymerization inhibitor such as hydroquinone, methyl hydroquinone, hydroquinone monomethyl ether, catechol, pyrogallol, H-TEMPO (4-hydroxy-2,2,6,6- Tetramethylpiperidine-1-oxyl) or the like is preferably used.
  • the amount used is not particularly limited, but is preferably 0.01 to 5% by weight, more preferably 0.01 to 1% by weight, based on the reaction raw material mixture.
  • it is preferable to prevent the polymerization by reacting air or a mixed gas containing oxygen, for example, an oxygen / nitrogen mixed gas, into the reaction solution, preferably in the reaction solution. .
  • the amount of side chain (meth) acryloyl groups of acrylic acrylate resin Q is not particularly limited, and is introduced according to the intended use. What is necessary is just to adjust the (meth) acryloyl group amount. Above all, the average value of 1 to 700 g / mol calculated from the charged values has low adhesion after volatilization of the solvent, surface hardness, scratch resistance, abrasion resistance, chemical resistance, heat resistance. From the viewpoint of improving the mechanical strength and the like. A more preferable range of double bond equivalent is 1 to 600 g / mol on average.
  • the acrylic acrylate resin Q obtained by the present invention, for example, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, toluene, isopropyl alcohol, etc.
  • the acrylic resin P the acrylic acrylate resin Q can be diluted with an organic solvent and / or monomers as used in the synthesis.
  • monomers used for dilution known and commonly used monomers such as vinyl ether compounds, propenyl ether compounds, styrene derivatives, epoxy compounds, lactone compounds, oxetane compounds, (meth) acrylic acid esters and the like can be used. These may be used independently and may use multiple types together.
  • the method of curing the composition containing the acrylic acrylate resin Q having a (meth) acryloyl group in the side chain obtained by the present invention is not particularly limited, and a known method such as thermosetting or photocuring can be used. If photocuring such as ultraviolet rays is performed, a photopolymerization initiator that generates radicals by light irradiation is added as necessary.
  • the type of the photopolymerization initiator is not particularly limited, and known ones can be used. Typical examples include 1-hydroxycyclohexyl phenyl ketone and 2-hydroxy-2-methyl-1-phenylpropane-1. -One, benzyl dimethyl ketal, benzoin isopropyl ether, benzophenone and the like.
  • an initiator that does not contain an amino group in the molecule such as an acetophenone series, a benzophenone series, or an acylphosphine oxide series, is preferable.
  • care must be taken because depending on the molding method, the temperature may be temporarily higher than the boiling point of the compound during molding.
  • an oxygen polymerization-inhibiting curing inhibitor such as n-methyldiethanolamine may be added.
  • various peroxides may be added in consideration of curing using heat during molding.
  • a peroxide having a low critical temperature such as lauroyl peroxide, t-butylperoxy-2, etc. -Ethylhexanoate, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane and the like are preferably used.
  • the addition amount of the photopolymerization initiator is desirably 0.1 to 10 parts by mass with respect to 100 parts by mass of the acrylic acrylate resin Q having a (meth) acryloyl group in the side chain because the residual amount after curing affects the weather resistance. Further, 0.1 to 5 parts by weight is preferable. Especially, when using the amino type photoinitiator relevant to yellowing at the time of hardening, 1 mass part or less is desirable.
  • sensitizers modifying resins, dyes, pigments and leveling agents and repellency inhibitors, UV absorbers, light stabilizers, oxidation stabilizers, catalysts, antifoaming agents, polymerization accelerators, flame retardants, Additives such as infrared absorbers can be blended.
  • the above sensitizer accelerates the curing reaction, and examples thereof include benzophenone, benzoin isopropyl ether, and thioxanthone.
  • the energy ray source for curing the acrylic acrylate resin Q obtained by the present invention is not particularly limited, but examples include high pressure mercury lamp, electron beam, ⁇ ray, carbon arc lamp, xenon lamp, metal halide lamp, LED-UV, etc. Is mentioned.
  • the polymerization conversion rate was calculated according to the following procedure.
  • Polymerization conversion rate (%) [(Total weight of charged raw materials ⁇ solid component ratio ⁇ total weight of raw materials other than water / monomer) / weight of charged monomer] ⁇ 100 (Formula 1) The volume average particle diameter was measured using Microtrac MT3000II (manufactured by Nikkiso Co., Ltd.).
  • the molecular weight was calculated by a standard polystyrene conversion method using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a high-speed GPC device HEC-8220GPC manufactured by Tosoh Corporation
  • a column using TSK guard column SuperHZ-H manufactured by Tosoh Corporation and tetrahydrofuran as a GPC solvent were used.
  • Example 1 Manufacture of acrylic resin P-1> An 8-liter glass reactor equipped with an H-type stirrer was charged with 200 parts by weight of deionized water and 0.5 parts by weight of disodium hydrogen phosphate as a suspension aid. Next, while stirring at 250 rpm, 0.95 parts by weight of lauroyl peroxide was dissolved in the reactor, and 60 parts by weight of methyl methacrylate, 40 parts by weight of glycidyl methacrylate, and 0.35 parts by weight of 2-ethylhexyl thioglycolate. The monomer mixture was added and the temperature was raised to 60 ° C. while the inside of the reactor was purged with nitrogen to initiate polymerization. No initial suspension stabilizer was added.
  • Adekapluronic F-68 manufactured by ADEKA Corporation, polyoxyethylene-polyoxypropylene block copolymer
  • ADEKA Corporation polyoxyethylene-polyoxypropylene block copolymer
  • the polymerization conversion rate was 42%.
  • the mixture was further reacted at 60 ° C. for 60 minutes, and then heated to 80 ° C. and stirred for 3 hours to complete the polymerization.
  • the obtained polymer was washed four times with deionized water three times the amount of the resin and dried to obtain beads-like suspension polymer particles (acrylic resin P-1).
  • the average particle size of the acrylic resin P-1 was 665 ⁇ m
  • Mw was 225000
  • Mw / Mn 3.9.
  • the number of stirring was adjusted to 250 rpm, and H-- was added while bubbling nitrogen / oxygen mixed gas into the methyl ethyl ketone solution under a nitrogen stream.
  • the reaction was started by adding 0.12 parts by weight of TEMPO, 20.3 parts by weight of acrylic acid, and 9.62 parts by weight of N, N-dimethylbenzylamine. After 440 minutes from the start of the reaction, 1.20 parts by weight of N, N-dimethylbenzylamine was added and the mixture was further stirred for 100 minutes to obtain an acrylic resin Q-1 having an acryloyl group in the side chain. It was also confirmed that the reaction between the glycidyl group and acrylic acid progressed almost 100% by quantifying the remaining acrylic acid by neutralization titration with potassium hydroxide.
  • Irgacure 184 manufactured by BASF, 1-hydroxy-cyclohexyl-phenyl- was used as a photopolymerization initiator. 3 parts by weight with respect to 100 parts by weight of the pure polymer, and applied with a bar coater with a film thickness of 9 ⁇ m on a commercially available transparent acrylic film. After drying at 80 ° C.
  • a UV curing device (LC-6B, Fusion UV Systems Japan Co., Ltd.) was used to cure by irradiating with ultraviolet rays having an integrated illuminance of 467 mJ / cm 2 , and the following evaluation was performed.
  • the obtained laminated sheet conforms to the accelerated weather resistance test JIS K7102, using a sunshine weatherometer (manufactured by Suga Test Instruments, model: WEL-SUN-HC (H)) with a black panel temperature of 63 ° C and water spray. The appearance after exposure for 5000 hours under the condition of 12 minutes in 60 minutes was visually evaluated.
  • good, ⁇ : whitening or cracking ⁇ curing shrinkage (volumetric shrinkage) 3 parts by weight of Irgacure 184 with respect to 100 parts by weight of the polymer is added to the methyl ethyl ketone solution of the acrylic acrylate resin Q-1 obtained in Example 1, and applied onto a glass plate with a bar coater having a film thickness of 9 ⁇ m. After drying at 80 ° C. for 1 minute with a drier, the UV curable apparatus (LC-6B, Fusion UV Systems Japan Co., Ltd.) was used to irradiate UV light with an integrated light amount of 467 mJ / cm 2 to obtain acrylic acrylate resin Q- 1 cured product was prepared. The specific gravity at 23 ° C.
  • Adhesive strength 45 parts by weight of acrylic acrylate resin Q-1 obtained in Example 1, 10 parts by weight of acryloylmorpholine, 20 parts by weight of phenoxyethyl acrylate, isobornyl acrylate 15 parts by weight, 5 parts by weight of vinylcaprolactam and 5 parts by weight of Irgacure 184 were charged into a reaction vessel equipped with a stirrer and stirred at 50 to 60 ° C. to prepare an adhesive composition.
  • the number of stirring was adjusted to 250 rpm, 0.12 parts by weight of H-TEMPO, 20.3 parts by weight of acrylic acid, N 2 while bubbling nitrogen / oxygen mixed gas into the methyl ethyl ketone solution , N-dimethylbenzylamine 9.62 parts by weight was added to initiate the reaction. After 440 minutes from the start of the reaction, 1.20 parts by weight of N, N-dimethylbenzylamine was added and the mixture was further stirred for 100 minutes to obtain an acrylic resin Q-2 having an acryloyl group in the side chain. It was also confirmed that the reaction between the glycidyl group and acrylic acid progressed almost 100% by quantifying the remaining acrylic acid by neutralization titration with potassium hydroxide.
  • Example 2 Manufacture of acrylic resin P-3> An 8-liter glass reactor equipped with an H-type stirrer was charged with 200 parts by weight of deionized water and 0.5 parts by weight of disodium hydrogen phosphate as a suspension aid. Next, while stirring at 250 rpm, the reactor comprises 90 parts by weight of methyl methacrylate in which 0.95 parts by weight of lauroyl peroxide was dissolved, 10 parts by weight of glycidyl methacrylate, and 0.20 parts by weight of 2-ethylhexyl thioglycolate. The monomer mixture was added and the temperature was raised to 60 ° C. while the inside of the reactor was purged with nitrogen to initiate polymerization. No initial suspension stabilizer was added.
  • Adekapluronic F-68 manufactured by ADEKA Corporation, polyoxyethylene-polyoxypropylene block copolymer which is a nonionic water-soluble polymer as a late suspension stabilizer Part by weight was added.
  • the polymerization conversion rate at this point was 40%.
  • the mixture was further reacted at 60 ° C. for 65 minutes, and then heated to 80 ° C. and stirred for 3 hours to complete the polymerization.
  • the obtained polymer was washed four times with deionized water three times the amount of the resin and dried to obtain bead-like suspension polymer particles (acrylic resin P-3).
  • Example 3 Manufacture of acrylic resin P-4> An 8-liter glass reactor equipped with an H-type stirrer was charged with 200 parts by weight of deionized water and 0.5 parts by weight of disodium hydrogen phosphate as a suspension aid. Next, while stirring at 250 rpm, 0.95 parts by weight of lauroyl peroxide was dissolved in the reactor, 80 parts by weight of methyl methacrylate, 20 parts by weight of glycidyl methacrylate, and 0.25 parts by weight of 2-ethylhexyl thioglycolate. The monomer mixture was added and the temperature was raised to 60 ° C. while the inside of the reactor was purged with nitrogen to initiate polymerization. No initial suspension stabilizer was added.
  • Adekapluronic F-68 manufactured by ADEKA Corporation, polyoxyethylene-polyoxypropylene block copolymer which is a nonionic water-soluble polymer as a late suspension stabilizer Part by weight was added.
  • the polymerization conversion rate at this point was 40%.
  • the mixture was further reacted at 60 ° C. for 60 minutes, and then heated to 80 ° C. and stirred for 3 hours to complete the polymerization.
  • the obtained polymer was washed four times with deionized water three times the amount of the resin and dried to obtain bead-like suspension polymer particles (acrylic resin P-4).
  • Example 4 Synthesis of acrylic resin Q-5 having (meth) acryloyl group in side chain> To a 200 ml glass reactor equipped with a meniscus stirrer, 390 parts by weight of 1-methoxy-2-propanol and 100 parts by weight of acrylic resin P-4 were added and stirred at 300 rpm while nitrogen gas and a nitrogen / oxygen mixed gas ( The temperature was raised to 115 ° C. under an air flow (oxygen content 9%).
  • Example 5 Manufacture of acrylic resin P-5> An 8-liter glass reactor equipped with an H-type stirrer was charged with 200 parts by weight of deionized water and 0.5 parts by weight of disodium hydrogen phosphate as a suspension aid. Next, while stirring at 250 rpm, the reactor comprises 85 parts by weight of methyl methacrylate in which 0.95 parts by weight of lauroyl peroxide was dissolved, 15 parts by weight of glycidyl methacrylate, and 0.20 parts by weight of 2-ethylhexyl thioglycolate. The monomer mixture was added and the temperature was raised to 60 ° C. while the inside of the reactor was purged with nitrogen to initiate polymerization. No initial suspension stabilizer was added.
  • Adekapluronic F-68 manufactured by ADEKA Corporation, polyoxyethylene-polyoxypropylene block copolymer
  • ADEKA Corporation polyoxyethylene-polyoxypropylene block copolymer
  • the polymerization conversion rate at this point was 38%.
  • the mixture was further reacted at 60 ° C. for 65 minutes, and then heated to 80 ° C. and stirred for 3 hours to complete the polymerization.
  • the obtained polymer was washed four times with deionized water three times the amount of the resin and dried to obtain bead-like suspension polymer particles (acrylic resin P-5).
  • the average particle size of the acrylic resin P-5 was 500 ⁇ m
  • Mw was 209000
  • Mw / Mn 2.5.
  • the acrylic acrylate resin having a (meth) acryloyl group in the side chain obtained by the present invention has low tackiness after coating and drying and is non-adhesive. Therefore, a non-adhesive photocurable printing sheet that can be printed in color or design can be easily obtained.
  • a surface with good appearance, wear resistance, weather resistance and chemical resistance can be formed on the resin molded product with a design such as color or design. .
  • abrasion resistance, weather resistance, and chemical resistance are also good, a surface having good abrasion resistance, weather resistance, and chemical resistance while taking advantage of the transparency on the transparent resin. It can be formed, and can be suitably used for automobiles, railway vehicles, airplane windows, headlamp covers, windshield parts, and the like. In addition, the number of steps can be omitted compared to the case where the surface of the molded product is painted, the productivity is good, and the influence on the environment is small. Furthermore, since the transparency is good, application to the optical field is also possible. In addition, since it has excellent adhesive properties, it is suitable as various adhesives, particularly as an ultraviolet ray or electron beam curable adhesive.
  • UV curable adhesives include bonding of substances, Utilizing the difference in adhesive curing caused by irradiation, it is used for uneven image formation, printing, printed wiring and the like.
  • Other common examples include glued cut glass, glass crafts, pendant glass glue, optical lens glue, stained glass frame glue, injection needle
  • the electron beam curable adhesive include curing of magnetic recording media, curing of printing ink, lamination of food packaging film, release paper, etc. The product of the present invention is suitably used in each application. can do.

Abstract

Provided is a production method for a curable resin with little viscosity after volatilization of a solvent, low volume shrinkage during curing, and excellent surface hardness, abrasion resistance, wear resistance, flexibility, heat resistance, mechanical strength, adhesion to substrates, adhesive strength, initial adhesiveness, chemical resistance, water resistance, and weather resistance. An acryl acrylate resin having a (meth)acryloyl group on the side chain thereof is produced by introducing a (meth)acryloyl group to the side chain of an acrylic resin (P) having a weight-average molecular weight (Mw) of 150,000 min. The acryl acrylate resin with a (meth)acryloyl group on the side chain thereof is produced by first producing, by suspension polymerization, the acrylic resin having a weight-average molecular weight (Mw) of 150,000 min., and then introducing a (meth)acryloyl group to the side chain of the acrylic resin (P).

Description

アクリルアクリレート樹脂の製造方法Method for producing acrylic acrylate resin
 本発明は、溶剤を揮発させた後の粘着性が低く、硬化時の体積収縮率が小さく、表面硬度、耐擦傷性、耐磨耗性、可とう性、耐熱性、機械的強度、基材との密着力、接着強度、初期接着性、耐薬品性、耐水性、耐侯性に優れた硬化性樹脂の製造方法に関する。 The present invention has low adhesiveness after volatilization of the solvent, low volume shrinkage during curing, surface hardness, scratch resistance, abrasion resistance, flexibility, heat resistance, mechanical strength, substrate The present invention relates to a method for producing a curable resin having excellent adhesion, adhesive strength, initial adhesion, chemical resistance, water resistance, and weather resistance.
 側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂はUV硬化性樹脂の性能を向上させる非常に有用な原料として感光性レジスト、コーティング材、接着剤等、種々の用途で使用されている。例えばコーティング用途にアクリルアクリレート樹脂を使用することで、塗膜の表面硬度や耐擦傷性を付与することができる。このようなアクリルアクリレート樹脂の合成方法としては、官能基を有するポリマーをまず合成し、次にその官能基と反応性を有する別の官能基を有するモノマーを反応させるという2段階の合成方法が一般的である。 An acrylic acrylate resin having a (meth) acryloyl group in the side chain is used for various applications such as a photosensitive resist, a coating material, and an adhesive as a very useful raw material for improving the performance of the UV curable resin. For example, by using an acrylic acrylate resin for coating applications, the surface hardness and scratch resistance of the coating film can be imparted. As a method for synthesizing such an acrylic acrylate resin, a two-step synthesis method in which a polymer having a functional group is first synthesized and then a monomer having another functional group reactive with the functional group is reacted. Is.
 例えば、特許文献1には、グリシジル型エポキシ基含有アクリル樹脂にメタクリル酸を付加させて重合性二重結合であるメタクリロイル基を導入した、1000を超える分子量を持つアクリルアクリレート樹脂の合成方法が開示されている。 For example, Patent Document 1 discloses a method for synthesizing an acrylic acrylate resin having a molecular weight exceeding 1000, in which methacrylic acid is added to a glycidyl-type epoxy group-containing acrylic resin to introduce a methacryloyl group that is a polymerizable double bond. ing.
 特許文献2には、側鎖にラジカル重合性不飽和基を有するアクリル樹脂および光重合開始剤を含み、該アクリル樹脂以外の架橋性化合物を実質的に含まない光硬化性樹脂組成物の層と、架橋ゴム成分を有する熱可塑性アクリル樹脂シートである基材シートとを含む光硬化性シートが記載されており、優れた外観、意匠性、耐磨耗性、耐薬品性および耐候性を有し、粘着性のない光硬化性シート、それを用いた成形品の製造方法およびそのような光硬化性シートを与える光硬化性組成物について開示されている。 Patent Document 2 includes a layer of a photocurable resin composition containing an acrylic resin having a radically polymerizable unsaturated group in the side chain and a photopolymerization initiator, and substantially free of a crosslinkable compound other than the acrylic resin; And a photocurable sheet including a base sheet that is a thermoplastic acrylic resin sheet having a crosslinked rubber component, and has an excellent appearance, design, abrasion resistance, chemical resistance, and weather resistance. A non-tacky photocurable sheet, a method for producing a molded product using the same, and a photocurable composition that provides such a photocurable sheet are disclosed.
 特許文献3には、(メタ)アクリル酸により変性される官能基を有するモノマーを含むモノマー成分の重合によりポリマーを得て、このポリマーを(メタ)アクリル酸で変性することにより、数平均分子量が2000~100000である、側鎖に(メタ)アクリロイル基を有するポリマーの合成方法が開示されており、特に3次元架橋時の体積収縮率が3%未満と小さいことを特徴としている。 In Patent Document 3, a polymer is obtained by polymerization of a monomer component containing a monomer having a functional group modified by (meth) acrylic acid, and the number average molecular weight is reduced by modifying this polymer with (meth) acrylic acid. A method for synthesizing a polymer having a (meth) acryloyl group in the side chain of 2000 to 100000 is disclosed, and is characterized by a volume shrinkage rate of less than 3% particularly at the time of three-dimensional crosslinking.
 従来提案されているアクリルアクリレート樹脂の内、特許文献1では、実施例にて、キシレン中での溶液重合によりメタクリル酸メチルとアクリル酸エチルとメタクリル酸グリシジルの共重合体を合成した後、メタクリル酸を付加させることにより、側鎖にメタクリロイル基を有するアクリルアクリレート樹脂を合成できることを開示している。ただし、実施例中には得られたポリマーの分子量の記載がなく、また一般に溶液重合であるため、比較的簡便に、より高分子量のポリマーを得るのは困難である。 Among the conventionally proposed acrylic acrylate resins, in Patent Document 1, in the Examples, a copolymer of methyl methacrylate, ethyl acrylate, and glycidyl methacrylate was synthesized by solution polymerization in xylene, and then methacrylic acid. It is disclosed that an acrylic acrylate resin having a methacryloyl group in the side chain can be synthesized by adding. However, there is no description of the molecular weight of the obtained polymer in the examples, and since it is generally solution polymerization, it is difficult to obtain a higher molecular weight polymer relatively easily.
 特許文献2では、実施例にて、メチルエチルケトン中での溶液重合により、メタクリル酸グリシジルの単独重合体、またはメタクリル酸メチルとメタクリル酸グリシジルの共重合体を合成した後、アクリル酸を付加させることにより、側鎖にアクリロイル基を有するアクリルアクリレート樹脂を合成できることを開示している。ただし、得られたポリマーの数平均分子量は約1.5万~2.5万であり、また溶液重合であることも考慮すると、比較的簡便に、より高分子量のポリマーを得るのは困難である。 In Patent Document 2, by synthesizing a homopolymer of glycidyl methacrylate or a copolymer of methyl methacrylate and glycidyl methacrylate by solution polymerization in methyl ethyl ketone in the examples, acrylic acid is added. Discloses that an acrylic acrylate resin having an acryloyl group in the side chain can be synthesized. However, the number average molecular weight of the obtained polymer is about 15,000 to 25,000, and considering that it is solution polymerization, it is difficult to obtain a higher molecular weight polymer relatively easily. is there.
 特許文献3では、実施例にて、メチルイソブチルケトン中での溶液重合により、スチレンとエポキシシクロヘキシルメチルメタクリレートの共重合体を合成した後、このポリマー溶液にアクリル酸を加えることにより、側鎖にアクリロイル基を有するアクリルアクリレート樹脂を合成している。得られたポリマーは数平均分子量で5600~56000ではあるが、重量平均分子量や多分散度(Mw/Mn)等の詳細な分子量データに関しては記載されておらず、また、一般に溶液重合であるため、比較的簡便に、より高分子量のポリマーを得るのは困難である。また、特許文献3はスチレンを多量に使用しているポリマーであり、耐侯性が必要な用途に使用するのは困難である。 In Patent Document 3, in the examples, a copolymer of styrene and epoxycyclohexylmethyl methacrylate was synthesized by solution polymerization in methyl isobutyl ketone, and then acrylic acid was added to the polymer solution, whereby acryloyl was added to the side chain. An acrylic acrylate resin having a group is synthesized. Although the obtained polymer has a number average molecular weight of 5600 to 56000, detailed molecular weight data such as weight average molecular weight and polydispersity (Mw / Mn) is not described, and is generally a solution polymerization. It is difficult to obtain a higher molecular weight polymer relatively easily. Patent Document 3 is a polymer that uses a large amount of styrene, and is difficult to use in applications that require weather resistance.
 以上のように、従来の方法は溶液重合でアクリルアクリレート樹脂を合成しており、簡便に幅広い分子量領域、特には高分子量のアクリルアクリレート樹脂を得ることは困難であった。もしアクリルアクリレート樹脂の高分子量化が簡便に実施できれば、感光性レジスト、コーティング材、接着剤等の種々の分野において、溶剤を揮発させた後の粘着性が低く、硬化時の体積収縮率が小さく、表面硬度、耐擦傷性、耐磨耗性、可とう性、耐熱性、機械的強度、基材との密着力、接着強度、初期接着性、耐薬品性、耐水性、耐侯性に優れた硬化性樹脂を提供することが可能となる。 As described above, the conventional method synthesizes an acrylic acrylate resin by solution polymerization, and it is difficult to easily obtain a wide molecular weight region, particularly a high molecular weight acrylic acrylate resin. If high molecular weight of acrylic acrylate resin can be easily implemented, in various fields such as photosensitive resists, coating materials, adhesives, etc., the adhesiveness after volatilization of the solvent is low, and the volumetric shrinkage ratio upon curing is small. Excellent surface hardness, scratch resistance, abrasion resistance, flexibility, heat resistance, mechanical strength, adhesion to substrate, adhesive strength, initial adhesion, chemical resistance, water resistance, and weather resistance It becomes possible to provide a curable resin.
特公昭45-15630号公報Japanese Patent Publication No. 45-15630 特許4182194号公報Japanese Patent No. 4182194 特開2006-335837号公報JP 2006-335837 A
 本発明の目的は、従来提案されている溶液重合法では生産性良く得ることが困難であった、幅広い分子量領域、特には高分子量のアクリルアクリレート樹脂の製造方法を提供することである。なお、本発明において、(メタ)アクリルとはアクリルおよび/またはメタクリルをいう。 An object of the present invention is to provide a method for producing an acrylic acrylate resin having a wide molecular weight range, particularly a high molecular weight, which has been difficult to obtain with good productivity by the conventionally proposed solution polymerization method. In the present invention, (meth) acryl means acryl and / or methacryl.
 本発明は、重量平均分子量(Mw)が15万以上であるアクリル樹脂Pの側鎖に(メタ)アクリロイル基を導入することを特徴とする、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法に関する。 The present invention provides an acrylic acrylate resin having a (meth) acryloyl group in the side chain, wherein a (meth) acryloyl group is introduced into the side chain of the acrylic resin P having a weight average molecular weight (Mw) of 150,000 or more. The present invention relates to a manufacturing method of Q.
 本発明では、アクリル樹脂Pの多分散度(Mw/Mn、Mnは数平均分子量)が3.0以上であることが好ましい。 In the present invention, the polydispersity of the acrylic resin P (Mw / Mn, Mn is the number average molecular weight) is preferably 3.0 or more.
 また本発明では、(メタ)アクリロイル基に官変換可能な官能基を有する単量体(A)1~100重量%と、(メタ)アクリロイル基に変換可能な官能基を有しない単量体(B)99~0重量%の重合反応によりアクリル樹脂Pを製造した後、アクリル樹脂Pと単量体(C)を反応させることでアクリル樹脂Pの側鎖に(メタ)アクリロイル基を導入することが好ましい。また本発明では、単量体(A)、単量体(C)がともに、エポキシ基を含有する単量体、水酸基を含有する単量体、及びカルボキシル基を含有する単量体からなる群より選択される一種以上の単量体を含むことが好ましい。また本発明では、単量体(A)がエポキシ基を含有する単量体を含み、単量体(C)がカルボキシル基を含有する単量体を含むことが好ましい。また本発明では、(メタ)アクリル酸エステルのみからなる単量体を重合してアクリル樹脂Pを製造することが好ましい。 In the present invention, 1 to 100% by weight of a monomer (A) having a functional group convertible to a (meth) acryloyl group, and a monomer having no functional group convertible to a (meth) acryloyl group ( B) After the acrylic resin P is produced by a polymerization reaction of 99 to 0% by weight, the (meth) acryloyl group is introduced into the side chain of the acrylic resin P by reacting the acrylic resin P with the monomer (C). Is preferred. In the present invention, both the monomer (A) and the monomer (C) are composed of a monomer containing an epoxy group, a monomer containing a hydroxyl group, and a monomer containing a carboxyl group. It is preferable to include one or more monomers selected more. In the present invention, the monomer (A) preferably contains a monomer containing an epoxy group, and the monomer (C) contains a monomer containing a carboxyl group. Moreover, in this invention, it is preferable to polymerize the monomer which consists only of (meth) acrylic acid ester and to manufacture the acrylic resin P.
 さらに本発明は、懸濁重合により、重量平均分子量(Mw)が1万以上であるアクリル樹脂Pを製造した後、当該アクリル樹脂Pの側鎖に(メタ)アクリロイル基を導入することを特徴とする、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法に関する。また本発明では、懸濁重合により、重量平均分子量(Mw)が8万以上であるアクリル樹脂Pを製造することが好ましい。また本発明では、懸濁重合により得られたアクリル樹脂Pの多分散度(Mw/Mn)が1.8以上であることが好ましい。また本発明では、(メタ)アクリロイル基に変換可能な官能基を有する単量体(A)1~100重量%と(メタ)アクリロイル基に変換可能な官能基を有しない単量体(B)99~0重量%との懸濁重合によりアクリル樹脂Pを製造した後、アクリル樹脂Pと単量体(C)を反応させることでアクリル樹脂Pの側鎖に(メタ)アクリロイル基を導入することが好ましい。また本発明では、単量体(A)、単量体(C)がともに、エポキシ基を含有する単量体、水酸基を含有する単量体、及びカルボキシル基を含有する単量体からなる群より選択される一種以上の単量体を含むことが好ましい。また本発明では、単量体(A)がエポキシ基を含有する単量体を含み、単量体(C)がカルボキシル基を含有する単量体を含むことが好ましい。また本発明では、(メタ)アクリル酸エステルのみからなる単量体の懸濁重合によりアクリル樹脂Pを製造することが好ましい。また本発明では、アクリル樹脂Pを懸濁重合で製造するのに際し、アクリル樹脂Pを構成する単量体に対して350ppm以下の初期懸濁安定剤の存在下で重合を開始した後、重合転化率が20~90%になった時点で後期懸濁安定剤を添加することが好ましい。また本発明では、初期懸濁安定剤がノニオン系水溶性高分子、及び/または水難溶性の無機微粒子であることが好ましい。また本発明では、初期懸濁安定剤がノニオン系水溶性高分子であることが好ましい。また本発明では、初期懸濁安定剤を使用せずに重合を開始することが好ましい。また本発明では、ノニオン系水溶性高分子がポリオキシエチレン-ポリオキシプロピレンブロック共重合体であることが好ましい。 Furthermore, the present invention is characterized in that after the acrylic resin P having a weight average molecular weight (Mw) of 10,000 or more is produced by suspension polymerization, a (meth) acryloyl group is introduced into the side chain of the acrylic resin P. The present invention relates to a method for producing an acrylic acrylate resin Q having a (meth) acryloyl group in the side chain. Moreover, in this invention, it is preferable to manufacture the acrylic resin P whose weight average molecular weight (Mw) is 80,000 or more by suspension polymerization. In the present invention, the polydispersity (Mw / Mn) of the acrylic resin P obtained by suspension polymerization is preferably 1.8 or more. In the present invention, the monomer (A) having a functional group convertible to a (meth) acryloyl group (1) to 100% by weight and the monomer (B) having no functional group convertible to a (meth) acryloyl group After the acrylic resin P is produced by suspension polymerization with 99 to 0% by weight, a (meth) acryloyl group is introduced into the side chain of the acrylic resin P by reacting the acrylic resin P with the monomer (C). Is preferred. In the present invention, both the monomer (A) and the monomer (C) are composed of a monomer containing an epoxy group, a monomer containing a hydroxyl group, and a monomer containing a carboxyl group. It is preferable to include one or more monomers selected more. In the present invention, the monomer (A) preferably contains a monomer containing an epoxy group, and the monomer (C) contains a monomer containing a carboxyl group. Moreover, in this invention, it is preferable to manufacture the acrylic resin P by suspension polymerization of the monomer which consists only of (meth) acrylic acid ester. In the present invention, when the acrylic resin P is produced by suspension polymerization, the polymerization is started after the polymerization is started in the presence of 350 ppm or less of the initial suspension stabilizer with respect to the monomer constituting the acrylic resin P. The late suspension stabilizer is preferably added when the rate reaches 20 to 90%. In the present invention, the initial suspension stabilizer is preferably a nonionic water-soluble polymer and / or a hardly water-soluble inorganic fine particle. In the present invention, the initial suspension stabilizer is preferably a nonionic water-soluble polymer. In the present invention, it is preferable to start the polymerization without using an initial suspension stabilizer. In the present invention, the nonionic water-soluble polymer is preferably a polyoxyethylene-polyoxypropylene block copolymer.
 本発明の方法によると、得られる側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qについて簡便に幅広い分子量に調整することが可能である。特に高分子量化することに優れており、このような高分子量のアクリルアクリレート樹脂Qは、感光性レジスト、コーティング材、接着剤等の種々の分野において使用した場合には、溶剤を揮発させた後の粘着性、硬化時の体積収縮率、表面硬度、耐擦傷性、耐磨耗性、可とう性、耐熱性、機械的強度、基材との密着力、接着強度、初期接着性、耐薬品性、耐水性、耐侯性に優れている。 According to the method of the present invention, the acrylic acrylate resin Q having a (meth) acryloyl group in the obtained side chain can be easily adjusted to a wide molecular weight. It is particularly excellent in increasing the molecular weight, and such a high molecular weight acrylic acrylate resin Q is used after various solvents are volatilized when used in various fields such as photosensitive resists, coating materials and adhesives. Adhesiveness, volume shrinkage during curing, surface hardness, scratch resistance, abrasion resistance, flexibility, heat resistance, mechanical strength, adhesion to substrate, adhesive strength, initial adhesion, chemical resistance Excellent in water resistance, water resistance and weather resistance.
 本発明によると、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qを、たとえば、以下の2つの製造工程により合成することができる。 According to the present invention, the acrylic acrylate resin Q having a (meth) acryloyl group in the side chain can be synthesized by, for example, the following two production steps.
 <製造工程1>
 (メタ)アクリロイル基に変換可能な官能基を有する単量体(A)1~100重量%と、(メタ)アクリロイル基に変換可能な官能基を有しない単量体(B)99~0重量%を重合して、アクリル樹脂Pを得る。
<Manufacturing process 1>
1 to 100% by weight of a monomer (A) having a functional group convertible to a (meth) acryloyl group, and 99 to 0% by weight of a monomer (B) having no functional group convertible to a (meth) acryloyl group % Is polymerized to obtain an acrylic resin P.
 <製造工程2>
 アクリル樹脂Pに、(メタ)アクリロイル基に官能基変換するための単量体(C)を反応させ、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qを得る。
<Manufacturing process 2>
The acrylic resin P is reacted with a monomer (C) for functional group conversion to a (meth) acryloyl group to obtain an acrylic acrylate resin Q having a (meth) acryloyl group in the side chain.
 まずは、製造工程1について説明する。 First, the manufacturing process 1 will be described.
 上記の単量体(A)としては、以下の1~7記載のものを単独で、または2種類以上を併用して使用することができる。
1.水酸基を有する単量体:N-メチロールアクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等
2.カルボキシル基を有する単量体:(メタ)アクリル酸、アクリロイルオキシエチルモノサクシネート等
3.エポキシ基を有する単量体:グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等
4.アジリジニル基を有する単量体:2-アジリジニルエチル(メタ)アクリレート、2-アジリジニルプロピオン酸アリル等
5.アミノ基を有する単量体:(メタ)アクリルアミド、ジアセトンアクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等
6.スルホン基を有する単量体:2-アクリルアミド-2-メチルプロパンスルホン酸等
7.イソシアネート基を有する単量体:2,4-トルエンジイソシアネートと2-ヒドロキシエチルアクリレートの等モル付加物のような、ジイソシアネートと活性水素を有するラジカル重合性単量体の付加物、2-イソシアネートエチル(メタ)アクリレート等
 中でも、単量体(A)としては、塗工時や加工時の着色、耐侯性等の観点から、エポキシ基を有する単量体、水酸基を有する単量体が好ましく、エポキシ基を有する単量体がより好ましい。
As the monomer (A), those described in the following 1 to 7 can be used alone or in combination of two or more.
1. Monomers having a hydroxyl group: N-methylolacrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) Acrylate, etc. 2. Monomers having a carboxyl group: (meth) acrylic acid, acryloyloxyethyl monosuccinate, etc. 3. Monomers having an epoxy group: glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, etc. 4. Monomers having an aziridinyl group: 2-aziridinylethyl (meth) acrylate, allyl 2-aziridinylpropionate, etc. Monomers having an amino group: (meth) acrylamide, diacetone acrylamide, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, etc. 6. Monomers having a sulfone group: 2-acrylamido-2-methylpropanesulfonic acid, etc. Monomer having an isocyanate group: an adduct of a radically polymerizable monomer having a diisocyanate and an active hydrogen, such as an equimolar adduct of 2,4-toluene diisocyanate and 2-hydroxyethyl acrylate, In particular, the monomer (A) is preferably a monomer having an epoxy group or a monomer having a hydroxyl group from the viewpoint of coloring during coating or processing, weather resistance, etc. More preferred are monomers having
 エポキシ基を有する単量体としては、(メタ)アクリル酸エステル類、エポキシ基を含有するスチレン誘導体、エポキシ基を含有するフマル酸エステル類、エポキシ基を含有するビニル化合物が挙げられる。水酸基を有する単量体としては、ヒドロキシル基を含有する(メタ)アクリル酸エステル類、ヒドロキシル基を含有するスチレン誘導体、ヒドロキシル基を含有するフマル酸エステル類、ヒドロキシル基を含有するビニル化合物が挙げられる。 Examples of the monomer having an epoxy group include (meth) acrylic acid esters, styrene derivatives containing an epoxy group, fumaric acid esters containing an epoxy group, and vinyl compounds containing an epoxy group. Examples of the monomer having a hydroxyl group include (meth) acrylic acid esters containing a hydroxyl group, styrene derivatives containing a hydroxyl group, fumaric acid esters containing a hydroxyl group, and vinyl compounds containing a hydroxyl group. .
 より具体的には、エポキシシクロメチルアクリレート、エポキシシクロヘキシルメチルメタクリレート、グリシジルアクリレート、グリシジルメタクリレート、[
(4-エテニルフェニル)メチル]オキシラン、4-(グリシジルオキシ)スチレン、4-ビニルエポキシシクロへキサン、ジグリシジルフマレート、ジエポキシシクロヘキシルメチルフマレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートが挙げられる。
More specifically, epoxy cyclomethyl acrylate, epoxy cyclohexyl methyl methacrylate, glycidyl acrylate, glycidyl methacrylate, [
(4-ethenylphenyl) methyl] oxirane, 4- (glycidyloxy) styrene, 4-vinylepoxycyclohexane, diglycidyl fumarate, diepoxycyclohexylmethyl fumarate, 2-hydroxyethyl (meth) acrylate, 2- Examples include hydroxypropyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate.
 上記の単量体(B)としては、単量体(A)と共重合可能であれば特に限定されず、公知の種々のモノマーが使用可能である。単量体(B)としては、例えばアルキル基の炭素数1~10である(メタ)アクリル酸アルキルエステルが好ましい。 The monomer (B) is not particularly limited as long as it is copolymerizable with the monomer (A), and various known monomers can be used. As the monomer (B), for example, a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 10 carbon atoms is preferred.
 単量体(B)としては、具体的には、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル等のメタクリル酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル等のアクリル酸エステル類;アクリロニトリル、メタクリロニトリルなどのビニルシアン類;スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレン等のビニルアレーン類;マレイン酸、フマール酸およびそれらのエステル等;塩化ビニル、臭化ビニル、クロロプレンなどのハロゲン化ビニル類;酢酸ビニル;エチレン、プロピレン、ブチレン、ブタジエン、イソブチレンなどのアルケン類;
ハロゲン化アルケン類;アリルメタクリレート、ジアリルフタレート、トリアリルシアヌレート、モノエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ジビニルベンゼンなどの多官能性モノマーが挙げられる。これらの単量体(B)は単独で、または2種類以上を併用して使用することができる。中でも、塗工時や加工時の着色や耐侯性、耐擦傷性、耐磨耗性等の観点から、(メタ)アクリル酸エステル類が好ましい。
Specific examples of the monomer (B) include methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, and benzyl methacrylate; methyl acrylate, ethyl acrylate, Acrylic esters such as butyl acrylate and 2-ethylhexyl acrylate; vinylcyans such as acrylonitrile and methacrylonitrile; vinylarenes such as styrene, α-methylstyrene, monochlorostyrene and dichlorostyrene; maleic acid and fumaric acid And their esters; vinyl halides such as vinyl chloride, vinyl bromide and chloroprene; vinyl acetate; alkenes such as ethylene, propylene, butylene, butadiene and isobutylene;
Halogenated alkenes; polyfunctional monomers such as allyl methacrylate, diallyl phthalate, triallyl cyanurate, monoethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, and divinylbenzene. These monomers (B) can be used alone or in combination of two or more. Of these, (meth) acrylic acid esters are preferable from the viewpoints of coloring during coating and processing, weather resistance, scratch resistance, abrasion resistance, and the like.
 アクリル樹脂Pに使用される単量体(A)は、1~100重量%、好ましくは10~99.9重量%、より好ましくは10~98重量%、さらに好ましくは10~60重量%含有され、単量体(B)は、99~0重量%、好ましくは90~0.1重量%、より好ましくは90~2重量%、さらに好ましくは40~90重量%含有される。単量体(A)の含有量が1重量%未満では、ポリマー側鎖に導入される(メタ)アクリロイル基の数が少なく、硬化した時の架橋密度が低すぎ、硬化後に十分な物性、たとえば、表面硬度、耐磨耗性、耐熱性、耐薬品性、耐水性、耐侯性等が低下してしまう傾向がある。 The monomer (A) used in the acrylic resin P is contained in an amount of 1 to 100% by weight, preferably 10 to 99.9% by weight, more preferably 10 to 98% by weight, and further preferably 10 to 60% by weight. The monomer (B) is contained in an amount of 99 to 0% by weight, preferably 90 to 0.1% by weight, more preferably 90 to 2% by weight, and still more preferably 40 to 90% by weight. When the content of the monomer (A) is less than 1% by weight, the number of (meth) acryloyl groups introduced into the polymer side chain is small, the crosslinking density when cured is too low, and sufficient physical properties after curing, for example, , Surface hardness, abrasion resistance, heat resistance, chemical resistance, water resistance, weather resistance and the like tend to be lowered.
 また、得られるアクリル樹脂Pのガラス転移温度は特に限定されることなく、使用する用途に応じて任意に調整すればよいが、-40~200℃、好ましくは0~175℃となるように単量体(A)、単量体(B)の使用量を調整することが好ましい。 Further, the glass transition temperature of the obtained acrylic resin P is not particularly limited, and may be arbitrarily adjusted according to the use to be used. However, the glass transition temperature is -40 to 200 ° C., preferably 0 to 175 ° C. It is preferable to adjust the usage-amount of a monomer (A) and a monomer (B).
 単量体(A)単独、もしくは単量体(A)と単量体(B)を重合させる際の重合方法は、特に限定されるものではなく、従来公知の重合方法が採用され得る。例えば、溶液重合、分散重合、懸濁重合、乳化重合などの重合方法が使用できる。溶液重合法を用いて単量体成分を重合させる場合に用いることができる溶媒としては、トルエン、キシレン、その他高沸点の芳香族系溶媒;酢酸ブチル、酢酸エチル、セロソルブアセテートなどのエステル系溶媒;メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒、メタノール、エタノール、イソプロピルアルコールなどのアルコール系溶媒などが挙げられる。もちろん使用し得る溶媒がこれら溶媒に限定されるものではない。これら溶媒は一種のみを使用してもよいし、二種以上を混合して使用してもよい。なお、溶媒の使用量は生成物の濃度などを考慮し適宜定めればよい。上記の重合方法のうち、広範囲の分子量調整が簡便にでき、特に高分子量の重合体を得られるという観点から、懸濁重合法が最も好ましい。 The polymerization method for polymerizing the monomer (A) alone or the monomer (A) and the monomer (B) is not particularly limited, and a conventionally known polymerization method can be adopted. For example, polymerization methods such as solution polymerization, dispersion polymerization, suspension polymerization, and emulsion polymerization can be used. Solvents that can be used when polymerizing monomer components using the solution polymerization method include toluene, xylene, and other high boiling aromatic solvents; ester solvents such as butyl acetate, ethyl acetate, and cellosolve acetate; Examples thereof include ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and alcohol solvents such as methanol, ethanol and isopropyl alcohol. Of course, the solvent which can be used is not limited to these solvents. These solvents may be used alone or in combination of two or more. Note that the amount of the solvent used may be appropriately determined in consideration of the concentration of the product. Among the above polymerization methods, the suspension polymerization method is most preferable from the viewpoint that a wide range of molecular weight adjustment can be easily performed, and in particular, a high molecular weight polymer can be obtained.
 懸濁重合法でアクリル樹脂Pを合成する場合、すでに公知の懸濁重合法で実施すればよく、限定されるものではない。中でも、アクリルアクリレート樹脂Qを電子部品などの用途に使用する場合や、2次成形などの成形加工に使用する用途など、高純度が求められる場合には、以下に記載する懸濁重合法によりアクリル樹脂Pを製造する方法が好ましい。すなわち、単量体(A)単独、または単量体(A)と単量体(B)からなる単量体の重合を、該単量体に対して350ppm以下の初期懸濁安定剤の存在下で開始する。そして、該単量体の重合転化率が20~90%、好ましくは20~75%になった時点で後期懸濁安定剤を添加する。 When the acrylic resin P is synthesized by the suspension polymerization method, it may be carried out by a known suspension polymerization method and is not limited. In particular, when high purity is required, such as when acrylic acrylate resin Q is used for applications such as electronic parts, or used for molding processes such as secondary molding, acrylic resin is treated by suspension polymerization as described below. A method for producing the resin P is preferred. That is, the presence of an initial suspension stabilizer of 350 ppm or less based on the monomer (A) alone or the polymerization of the monomer (A) and the monomer (B). Start below. Then, when the polymerization conversion rate of the monomer reaches 20 to 90%, preferably 20 to 75%, the late suspension stabilizer is added.
 初期懸濁安定剤、および後期懸濁安定剤としては、アニオン系水溶性高分子、ノニオン系水溶性高分子からなる高分子タイプの懸濁安定剤、第三リン酸カルシウム、硫酸バリウムなどの水に難溶性の無機微粒子タイプの懸濁安定剤を使用することができる。 As the initial suspension stabilizer and the latter suspension stabilizer, it is difficult to use an anionic water-soluble polymer, a polymer-type suspension stabilizer composed of a nonionic water-soluble polymer, water such as tribasic calcium phosphate and barium sulfate. Soluble inorganic particulate type suspension stabilizers can be used.
 アニオン系水溶性高分子からなる懸濁安定剤としては、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリメタクリル酸、ポリメタクリル酸ナトリウム、ポリメタクリル酸カリウム、メタクリル酸ナトリウム-メタクリル酸アルキルエステル共重合体等が挙げられる。中でも、ポリアクリル酸ナトリウム、ポリメタクリル酸ナトリウムが好ましい。 Suspension stabilizers composed of anionic water-soluble polymers include polyacrylic acid, sodium polyacrylate, potassium polyacrylate, polymethacrylic acid, polysodium methacrylate, polypotassium methacrylate, sodium methacrylate-alkyl methacrylate. An ester copolymer etc. are mentioned. Of these, sodium polyacrylate and polysodium methacrylate are preferable.
 ノニオン系水溶性高分子からなる懸濁安定剤としては、ポリビニルアルコール、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン、ヒドロキシプロピルメチルセルロース、ポリエチレンオキシドなどのポリアルキレンオキシド、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレンラウリルアミン等の水溶性高分子が挙げられる。好ましくは、ポリビニルアルコール、ポリオキシエチレン-ポリオキシプロピレン共重合体、更に好ましくはポリオキシエチレン-ポリオキシプロピレンブロック共重合体である。 Examples of suspension stabilizers comprising nonionic water-soluble polymers include polyalkylene oxides such as polyvinyl alcohol, methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, polyvinyl pyrrolidone, hydroxypropyl methyl cellulose, polyethylene oxide, and polyoxyethylene-polyoxypropylene. Water-soluble polymers such as block copolymers, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene nonyl phenyl ether, polyethylene glycol fatty acid ester, polyoxyethylene lauryl amine are listed. Preferred are polyvinyl alcohol, polyoxyethylene-polyoxypropylene copolymer, and more preferred are polyoxyethylene-polyoxypropylene block copolymers.
 水難溶性の無機微粒子からなる懸濁安定剤としては、硫酸バリウム、第三リン酸カルシウム、炭酸マグネシウムが挙げられる。好ましくは第三リン酸カルシウムである。ここでの水難溶性とは、25℃の水への溶解度が1重量%以下であることをいう。 Examples of the suspension stabilizer composed of inorganic fine particles having poor water solubility include barium sulfate, tricalcium phosphate, and magnesium carbonate. Tricalcium phosphate is preferred. The poorly water-soluble herein means that the solubility in water at 25 ° C. is 1% by weight or less.
 本発明の初期懸濁安定剤とは、重合開始時に存在する懸濁安定剤をいう。初期懸濁安定剤は、重合開始時から系に存在しているため、得られる粒状重合体中に取り込まれやすく、各種後処理工程を経ても初期懸濁安定剤がそのまま粒状重合体中に残存する。その結果、粒状重合体の純度が低下したり、成形加工時には透明性の悪化や黄変等の課題をもたらす。例えば、水難溶性の無機微粒子を懸濁安定剤として多量に重合初期から使用した場合、粒状重合体内部に残存することにより、成形加工時等の透明性が必然的に劣る。また、水溶性高分子を懸濁安定剤として多量に重合初期から使用する場合には、粒状重合体内部に残存することにより、成形加工時の熱劣化による黄変がおこる。 The initial suspension stabilizer of the present invention refers to a suspension stabilizer present at the start of polymerization. Since the initial suspension stabilizer is present in the system from the beginning of the polymerization, it is easily taken into the resulting granular polymer, and the initial suspension stabilizer remains in the granular polymer even after various post-treatment steps. To do. As a result, the purity of the granular polymer is lowered, and problems such as deterioration of transparency and yellowing are brought about during the molding process. For example, when a small amount of water-insoluble inorganic fine particles is used as a suspension stabilizer in a large amount from the initial stage of polymerization, transparency in the molding process is inevitably inferior because it remains inside the granular polymer. Further, when a large amount of a water-soluble polymer is used as a suspension stabilizer from the initial stage of polymerization, yellowing occurs due to thermal deterioration during the molding process by remaining inside the granular polymer.
 そのため、初期懸濁安定剤の使用量はアクリル樹脂Pを構成する単量体に対して350ppm以下、好ましくは200ppm以下、さらに好ましくは40ppm以下、最も好ましくは初期懸濁安定剤を使用しないことが極めて好ましい。なお、後述するように重合反応の進行に伴い単量体または単量体混合物を追加して重合反応を実施する場合、初期懸濁安定剤の使用量は、重合反応の全過程で使用する単量体の総量に対する相対量を意味する。従来技術では比較的多めの初期懸濁安定剤の存在下で重合を開始することが重合安定性を確保する上で必須と考えられていたが、今回、初期懸濁安定剤を該単量体に対して350ppm以下、さらには全く使用しなくても、該単量体の重合転化率が20~90%になった時点で後期懸濁安定剤を添加することにより、重合時の重合体粒子の合一を抑制し、良好なビーズ状の粒状重合体が得られることを新たに見出した。その結果、使用する懸濁安定剤の総量を低減し、粒状重合体中に取り込まれる懸濁安定剤の量を減らすことが可能となり、不純物が少なく、成形加工時の熱劣化による透明性の悪化や黄変が少ないアクリルアクリレート樹脂Qを製造できることを見出した。なお、重合反応の進行に伴い単量体または単量体混合物を追加して重合反応を実施する場合、重合転化率は、重合反応の全過程で使用する単量体の総量を基準とした数値である。 Therefore, the amount of the initial suspension stabilizer used is 350 ppm or less, preferably 200 ppm or less, more preferably 40 ppm or less, and most preferably the initial suspension stabilizer is not used with respect to the monomer constituting the acrylic resin P. Highly preferred. As will be described later, when the polymerization reaction is carried out by adding a monomer or a monomer mixture as the polymerization reaction proceeds, the amount of the initial suspension stabilizer used is the same as that used throughout the polymerization reaction. It means the relative amount to the total amount of the mer. In the prior art, it was considered essential to initiate polymerization in the presence of a relatively large amount of initial suspension stabilizer in order to ensure polymerization stability. 350 ppm or less with respect to the polymer, and even when not used at all, by adding a late suspension stabilizer when the polymerization conversion of the monomer reaches 20 to 90%, It was newly found that a good bead-like granular polymer can be obtained. As a result, it is possible to reduce the total amount of suspension stabilizer used, reduce the amount of suspension stabilizer incorporated into the granular polymer, reduce impurities, and deteriorate transparency due to thermal deterioration during molding. It was found that an acrylic acrylate resin Q with little yellowing can be produced. In addition, when carrying out the polymerization reaction by adding a monomer or monomer mixture as the polymerization reaction proceeds, the polymerization conversion rate is a value based on the total amount of monomers used in the entire process of the polymerization reaction. It is.
 初期懸濁安定剤としてはアニオン系水溶性高分子、ノニオン系水溶性高分子などの高分子タイプ、無機微粒子タイプから選ばれる。これらは単独でも、2種以上の組み合わせでも使用できる。ただし、アニオン系水溶性高分子を用いた場合、粒状重合体中に残存した場合、特に成形加工時の黄変につながりやすいことから、ノニオン系水溶性高分子、水難溶性無機微粒子から選ばれる初期懸濁安定剤を使用することが好ましい。さらには、水難溶性無機微粒子も粒状重合体中に残存した場合、成形加工時の透明性の悪化につながりやすいことから、初期懸濁安定剤としてノニオン系水溶性高分子を使用することがより好ましい。なかでも、成形加工時の黄変がより少ないので、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体が最も好ましい。該ポリオキシエチレン-ポリオキシプロピレンブロック共重合体はそれ自体の成形加工時の熱安定性が良好であり、黄変しにくいことに加え、疎水性が高いポリオキシプロピレン(PPO)鎖がモノマー油滴や重合体粒子などの疎水性表面に吸着し、また親水性のポリオキシエチレン(PEO)鎖が水和を受けて水相に大きく広がることで優れた分散効果を発揮することが出来る。その結果、懸濁安定剤の使用量を大きく削減でき、成形加工時に透明性悪化や黄変が発生しにくいとともに、コスト面でも有利である。 The initial suspension stabilizer is selected from polymer types such as anionic water-soluble polymers and nonionic water-soluble polymers, and inorganic fine particle types. These can be used alone or in combination of two or more. However, when an anionic water-soluble polymer is used, if it remains in the granular polymer, it tends to cause yellowing particularly during molding, so an initial stage selected from nonionic water-soluble polymers and poorly water-soluble inorganic fine particles It is preferred to use a suspension stabilizer. Furthermore, it is more preferable to use a nonionic water-soluble polymer as an initial suspension stabilizer because poorly water-soluble inorganic fine particles also remain in the granular polymer because it tends to deteriorate transparency during molding. . Of these, a polyoxyethylene-polyoxypropylene block copolymer is most preferred because yellowing during molding is less. The polyoxyethylene-polyoxypropylene block copolymer itself has good thermal stability during molding and is not easily yellowed. In addition, a highly hydrophobic polyoxypropylene (PPO) chain is a monomer oil. Adsorbing to a hydrophobic surface such as droplets or polymer particles, and the hydrophilic polyoxyethylene (PEO) chain is hydrated and spreads widely in the aqueous phase, thereby exhibiting an excellent dispersion effect. As a result, the amount of the suspension stabilizer used can be greatly reduced, transparency deterioration and yellowing hardly occur during the molding process, and it is advantageous in terms of cost.
 該単量体の重合転化率が20~90%、好ましくは20~75%になった時点で添加する後期懸濁安定剤は、重合が進むにつれてモノマー油滴中のポリマー比率が高まり、ある程度個々のモノマー油滴の合一、分散が落ち着き、固定化された段階で添加するため、粒状重合体の内部には残存しにくい。そのため、純度が高く、成形加工時に透明性の悪化、黄変を抑制することが可能となる。重合転化率が20%未満の時点で後期該懸濁安定剤を添加した場合には、得られる粒状重合体の内部に懸濁安定剤が取り込まれることにより残存し、純度の低い粒状重合体しか得られず、また微粉が発生しやすい。微粉が発生した場合、得られた粒状重合体の回収時、および得られた製品パウダーのハンドリング性の悪化や粉塵爆発等の危険性を伴う。一方、重合転化率が90%を越えた時点で添加した場合には、重合系が不安定になるため、重合体粒子が合一したり、純度の低い粒状重合体しか得られない。後期懸濁安定剤の使用量は、該単量体100重量部に対して0.005~2.0重量部、好ましくは0.005~1.0重量部、さらに好ましくは0.005~0.2重量部の範囲から選択されるが、重合系が安定となる範囲内で少ない方が好ましい。0.005重量部未満では重合系が不安定となり、2.0重量部を越えると、微小な粒状重合体が生成したり、粒状重合体内部や表面に残存する懸濁安定剤の量も多くなる。そのため、得られる粒状重合体の純度の低下や、成形加工時の光学特性の悪化、および、得られた粒状重合体の回収時、および得られた製品パウダーのハンドリング性の悪化や粉塵爆発等の危険性を伴う。また、後期懸濁安定剤としてはアニオン系水溶性高分子、ノニオン系水溶性高分子などの高分子タイプ、無機微粒子タイプから選ばれる。これらは単独でも、2種以上の組み合わせでも使用できる。ただし、前記記載の初期懸濁安定剤と同様の理由により、ノニオン系水溶性高分子、無機微粒子タイプが好ましく、さらにはノニオン系水溶性高分子が好ましい。ノニオン系水溶性高分子のなかでも、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体が最も好ましい。また、後期懸濁安定剤は、一括、分括、または連続的に添加することが出来る。 The late suspension stabilizer added when the polymerization conversion of the monomer reaches 20 to 90%, preferably 20 to 75%, increases the polymer ratio in the monomer oil droplets as the polymerization proceeds, Since the monomer oil droplets are added at the stage where the coalescence and dispersion of the monomer oil droplets are settled and fixed, it is difficult to remain inside the granular polymer. Therefore, purity is high and it becomes possible to suppress deterioration of transparency and yellowing during molding. If the suspension stabilizer is added later when the polymerization conversion rate is less than 20%, the suspension stabilizer is incorporated into the resulting granular polymer, leaving only a granular polymer with low purity. It is not obtained and fine powder is easily generated. When fine powder is generated, there is a risk of deterioration of the handleability of the obtained product powder and dust explosion when the obtained granular polymer is recovered. On the other hand, when it is added when the polymerization conversion rate exceeds 90%, the polymerization system becomes unstable, so that the polymer particles are coalesced or only a granular polymer with low purity can be obtained. The late suspension stabilizer is used in an amount of 0.005 to 2.0 parts by weight, preferably 0.005 to 1.0 parts by weight, more preferably 0.005 to 0 parts per 100 parts by weight of the monomer. It is selected from the range of 2 parts by weight, but is preferably as small as possible within the range where the polymerization system is stable. If the amount is less than 0.005 parts by weight, the polymerization system becomes unstable. If the amount exceeds 2.0 parts by weight, a fine granular polymer is formed, and the amount of the suspension stabilizer remaining inside or on the surface of the granular polymer is large. Become. Therefore, the purity of the obtained granular polymer, the deterioration of the optical properties during molding, the recovery of the obtained granular polymer, the deterioration of the handling of the obtained product powder, the dust explosion, etc. With danger. The late suspension stabilizer is selected from polymer types such as anionic water-soluble polymers and nonionic water-soluble polymers, and inorganic fine particle types. These can be used alone or in combination of two or more. However, for the same reason as the initial suspension stabilizer described above, a nonionic water-soluble polymer and an inorganic fine particle type are preferable, and a nonionic water-soluble polymer is more preferable. Of the nonionic water-soluble polymers, a polyoxyethylene-polyoxypropylene block copolymer is most preferable. Further, the late suspension stabilizer can be added all at once, all at once, or continuously.
 また、懸濁安定剤と併用して、懸濁助剤を用いることもできる。ここでいう懸濁助剤とは、分散助剤としても知られている物質であり、例えば、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム等の陰イオン界面活性剤等の低分子界面活性剤、ホウ酸、炭酸ナトリウム、りん酸水素2ナトリウム、りん酸2水素ナトリウム、硫酸ナトリウム等の水溶性の無機塩などである。懸濁助剤としては、リン酸水素2ナトリウムが好ましい。懸濁助剤は、成形加工時に透明性の悪化や黄変の問題を引き起こしにくいため、重合の開始時から重合系に存在していてもよい。 Also, a suspension aid can be used in combination with the suspension stabilizer. The suspension aid here is a substance also known as a dispersion aid, for example, an anionic interface such as sodium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium alkylnaphthalenesulfonate, sodium dialkylsulfosuccinate, etc. Low-molecular surfactants such as activators, water-soluble inorganic salts such as boric acid, sodium carbonate, disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium sulfate, and the like. As the suspension aid, disodium hydrogen phosphate is preferable. The suspension aid may be present in the polymerization system from the start of the polymerization because it does not easily cause deterioration of transparency or yellowing during the molding process.
 例えば懸濁安定剤として無機微粒子を用いる場合、懸濁助剤として低分子界面活性剤を用いることで、無機微粒子表面がモノマーと水の界面に対して両親媒的に働くようになり、安定化効果を高めることができる。また、懸濁安定剤としてポリビニルアルコール等の水溶性高分子を用いる場合、懸濁助剤としてホウ酸やリン酸水素2ナトリウムなどの無機塩を用いることで、ポリビニルアルコールの水酸基の架橋反応が進み、懸濁安定剤によるモノマー油滴の保護能力を向上させることができる。懸濁安定剤がノニオン系水溶性高分子の場合についてもエーテル結合間の架橋反応が進み、保護能力を向上させることができる。これらの懸濁助剤を懸濁安定剤と併用することで、重合系をより安定化することができ好ましい。懸濁助剤のなかでも、成形加工時の黄変を抑制する点で、水溶性の無機塩が好ましい。なお本発明の懸濁助剤とは、25℃の水への溶解度が2重量%以上のものをいう。この点で、上記の水難溶性の無機微粒子からなる懸濁安定剤とは明確に区別される。 For example, when inorganic fine particles are used as a suspension stabilizer, the surface of the inorganic fine particles becomes amphiphilic to the interface between the monomer and water by using a low molecular surfactant as a suspension aid. The effect can be enhanced. In addition, when a water-soluble polymer such as polyvinyl alcohol is used as a suspension stabilizer, the crosslinking reaction of the hydroxyl group of polyvinyl alcohol proceeds by using an inorganic salt such as boric acid or disodium hydrogen phosphate as a suspension aid. The ability to protect the monomer oil droplets by the suspension stabilizer can be improved. Even in the case where the suspension stabilizer is a nonionic water-soluble polymer, the crosslinking reaction between ether bonds proceeds, and the protective ability can be improved. These suspension aids are preferably used in combination with a suspension stabilizer because the polymerization system can be further stabilized. Among the suspension aids, water-soluble inorganic salts are preferable from the viewpoint of suppressing yellowing during molding. The suspension aid of the present invention refers to those having a solubility in water at 25 ° C. of 2% by weight or more. In this respect, it is clearly distinguished from the above-described suspension stabilizer composed of poorly water-soluble inorganic fine particles.
 本発明の懸濁重合で使用する重合開始剤は、ビニル単量体の重合用として周知のものでよい。例えば2,2′-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル、ジメチル2,2′-アゾビスイソブチレート、2,2′-アゾビス(2-メチルブチロニトリル)、ジメチル2、2′-アゾビス(2-メチルプロオネート)等のアゾ化合物;ターシャリーブチルパーオキシピバレート、ターシャリーブチルパーオキシ2-エチルヘキサノエート、クミルパーオキシ2-エチルヘキサノエートなどのパーオキシエステル類;ジ8,5,5-トリメチルヘキサノイルパーオキシド、ジラウロイルパーオキサイド、ベンゾイルパーオキサイド等の有機過酸化物等を挙げることができ、これらのうち1種類または2種類以上が用いられる。これらの重合開始剤の使用量は、単量体または単量体混合物に対して0.02~2重量%で使用する。 The polymerization initiator used in the suspension polymerization of the present invention may be a well-known one for the polymerization of vinyl monomers. For example, 2,2'-azobis (2,4-dimethylvaleronitrile), azobisisobutyronitrile, dimethyl 2,2'-azobisisobutyrate, 2,2'-azobis (2-methylbutyronitrile) Azo compounds such as dimethyl 2,2′-azobis (2-methylproonate); tertiary butyl peroxypivalate, tertiary butyl peroxy 2-ethylhexanoate, cumylperoxy 2-ethylhexanoate, etc. Peroxyesters; organic peroxides such as di-8,5,5-trimethylhexanoyl peroxide, dilauroyl peroxide, benzoyl peroxide, etc., and one or more of these are used. It is done. These polymerization initiators are used in an amount of 0.02 to 2% by weight based on the monomer or monomer mixture.
 また、重合体の分子量を調節するために、周知の連鎖移動剤を用いてもよい。該連鎖移動剤としてはアルキルメルカプタン、アルキルサルファイド、アルキルジサルファイド、チオグリコール酸2-エチルヘキシルなどのチオグリコール酸エステル、α-メチルスチレンダイマー、β-メルカプトプロピオン酸などのメルカプト酸、ベンジルメルカプタン、チオフェノール、チオクレゾール、チオナフトールなどの芳香族メルカプタン等が挙げられる。 Further, in order to adjust the molecular weight of the polymer, a known chain transfer agent may be used. Examples of the chain transfer agent include alkyl mercaptans, alkyl sulfides, alkyl disulfides, thioglycolic acid esters such as 2-ethylhexyl thioglycolate, mercapto acids such as α-methylstyrene dimer and β-mercaptopropionic acid, benzyl mercaptan, and thiophenol. , Aromatic mercaptans such as thiocresol and thionaphthol.
 重合体の分子量に関しては特に限定はなく、使用用途に適した分子量に調整すればよい。なかでも、得られるアクリルアクリレート樹脂Qを塗料、インキ、コーティング材料、接着剤用途等に使用する場合には、アクリル樹脂Pを高分子量化することで、溶剤を揮発させた後の粘着性が低く、硬化時の体積収縮率が小さく、表面硬度、耐擦傷性、耐磨耗性、可とう性、耐熱性、機械的強度、基材との密着力、接着強度、耐薬品性、耐水性、耐侯性に優れた硬化性樹脂となるため、好ましい。また、接着剤として使用した場合に初期接着力が強く、タレにくいために作業性が向上する。これらの観点では、アクリル樹脂Pの分子量は、重量平均分子量(Mw)で1万以上、好ましくは8万以上、より好ましくは10万以上、さらに好ましくは15万以上、最も好ましくは20万以上である。またアクリル樹脂Pの多分散度(Mw/Mn、Mnは数平均分子量)に関しても特に限定されるものではないが、得られるアクリルアクリレート樹脂Qを溶液として使用した場合のハンドリング性(溶液粘度)と、硬化時の体積収縮率、表面硬度、耐擦傷性、耐磨耗性、可とう性、耐熱性、機械的強度、基材との密着力、接着強度、初期接着性、耐薬品性、耐水性との兼ね合いから、多分散度は1.8以上、好ましくは2.0以上、さらに好ましくは2.5以上、最も好ましくは3.0以上である。 The molecular weight of the polymer is not particularly limited, and may be adjusted to a molecular weight suitable for the intended use. In particular, when the resulting acrylic acrylate resin Q is used for paints, inks, coating materials, adhesives, etc., the acrylic resin P has a high molecular weight, which reduces the adhesiveness after volatilizing the solvent. , Volume shrinkage during curing is small, surface hardness, scratch resistance, abrasion resistance, flexibility, heat resistance, mechanical strength, adhesion to substrate, adhesive strength, chemical resistance, water resistance, Since it becomes curable resin excellent in weather resistance, it is preferable. In addition, when used as an adhesive, the initial adhesive strength is strong and the sagging is difficult, so workability is improved. From these viewpoints, the molecular weight of the acrylic resin P is 10,000 or more in terms of weight average molecular weight (Mw), preferably 80,000 or more, more preferably 100,000 or more, further preferably 150,000 or more, and most preferably 200,000 or more. is there. Further, the polydispersity of the acrylic resin P (Mw / Mn, Mn is the number average molecular weight) is not particularly limited, but handling properties (solution viscosity) when the resulting acrylic acrylate resin Q is used as a solution are as follows. Volume shrinkage during curing, surface hardness, scratch resistance, abrasion resistance, flexibility, heat resistance, mechanical strength, adhesion to substrate, adhesive strength, initial adhesiveness, chemical resistance, water resistance In view of balance with the properties, the polydispersity is 1.8 or more, preferably 2.0 or more, more preferably 2.5 or more, and most preferably 3.0 or more.
 重合開始剤および連鎖移動剤の添加方法には、とくに制限がないが、重合開始剤および連鎖移動剤の両方をモノマーに溶解したのち、モノマーを水中に懸濁させ、そのまま重合反応を実施する手法が最も好ましい。 The method for adding the polymerization initiator and the chain transfer agent is not particularly limited, but after the polymerization initiator and the chain transfer agent are both dissolved in the monomer, the monomer is suspended in water and the polymerization reaction is carried out as it is. Is most preferred.
 また、懸濁重合時に、可塑剤、滑剤、安定剤または紫外線吸収剤などの成分をモノマーに添加することも可能であるが、製造されたアクリル樹脂P、もしくは加工時や塗工時等にアクリルアクリレート樹脂Qに対してブレンドしてもよい。 It is also possible to add components such as plasticizers, lubricants, stabilizers or UV absorbers to the monomer during suspension polymerization, but the acrylic resin P produced or acrylic during processing or coating, etc. You may blend with acrylate resin Q.
 水性媒体と単量体または単量体混合物の割合は、1:1~10:1、好ましくは1:1~4:1の範囲である。水性媒体の量が少なすぎると、単量体の分散が不均一となり易く、重合系が不安定となり、多い場合には製造効率の点で不利である。 The ratio of the aqueous medium to the monomer or monomer mixture is in the range of 1: 1 to 10: 1, preferably 1: 1 to 4: 1. If the amount of the aqueous medium is too small, the dispersion of the monomers tends to be uneven, the polymerization system becomes unstable, and if it is large, the production efficiency is disadvantageous.
 また、該懸濁重合体粒子の製造には、単量体または単量体混合物を水に懸濁させ、そのまま重合反応を実施する方法や、単量体または単量体混合物の一部を水に懸濁させて重合反応を開始し、重合反応の進行にともない、残りの単量体または単量体混合物、もしくは単量体または単量体混合物の水懸濁液を一段または数段に分けて、もしくは連続的に重合反応槽へ追加して重合反応を実施する方法など、公知となっているすべての手法を用いることができる。 For the production of the suspension polymer particles, a monomer or a monomer mixture is suspended in water and a polymerization reaction is carried out as it is, or a part of the monomer or monomer mixture is washed with water. The polymerization reaction is started by suspending in water, and as the polymerization reaction proceeds, the remaining monomer or monomer mixture, or the aqueous suspension of the monomer or monomer mixture is divided into one or several stages. Alternatively, all known methods such as a method of continuously adding to a polymerization reaction tank and carrying out a polymerization reaction can be used.
 重合の温度条件は、60~120℃程度で、用いる重合開始剤に適した温度でよい。重合に要する時間は、重合開始剤の種および量、または重合温度などによって異なるが、通常1~24時間である。 The polymerization temperature condition is about 60 to 120 ° C., and may be a temperature suitable for the polymerization initiator used. The time required for the polymerization varies depending on the kind and amount of the polymerization initiator or the polymerization temperature, but is usually 1 to 24 hours.
 攪拌条件は、通常の懸濁重合で(メタ)アクリル樹脂を製造する際の条件でよい。装置としては、周知の攪拌翼例えばタービン翼、ファウドラー翼、プロペラ翼、ブルーマージン翼、H型翼等の付いた攪拌機を備えた重合容器を用い、該容器には、バッフルを付けているのが一般的である。 Stirring conditions may be the same as those for producing a (meth) acrylic resin by ordinary suspension polymerization. As an apparatus, a polymerization vessel equipped with a well-known stirring blade, for example, a turbine blade, a fiddler blade, a propeller blade, a blue margin blade, an H-shaped blade, or the like is used, and the vessel is provided with a baffle. It is common.
 懸濁重合の終了後は、周知の方法で洗浄、脱水、乾燥して粒状重合体を得ることができる。 After completion of suspension polymerization, a granular polymer can be obtained by washing, dehydrating and drying by a known method.
 懸濁重合して得られるアクリル樹脂Pの重合体粒子の平均粒子径は、とくに制限されないが通常の懸濁重合操作で得られる50~4000μmであることが好ましい。次の官能基変換工程(製造工程2)でのハンドリング性の観点からは、より好ましい平均粒子径は、50~1000μm、更に好ましくは50~800μmである。 The average particle diameter of the polymer particles of the acrylic resin P obtained by suspension polymerization is not particularly limited, but is preferably 50 to 4000 μm obtained by a normal suspension polymerization operation. From the viewpoint of handling properties in the next functional group conversion step (Production Step 2), a more preferable average particle size is 50 to 1000 μm, and further preferably 50 to 800 μm.
 次に製造工程2について説明する。 Next, manufacturing process 2 will be described.
 (メタ)アクリロイル基に変換可能な官能基を有する単量体(A)から合成されたアクリル樹脂Pに対して、以下の(イ)~(ニ)に記載の単量体(C)を反応させることでアクリル樹脂Pの側鎖に(メタ)アクリロイル基を導入して、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qを得る。 The monomer (C) described in (a) to (d) below is reacted with the acrylic resin P synthesized from the monomer (A) having a functional group convertible to a (meth) acryloyl group. Thus, a (meth) acryloyl group is introduced into the side chain of the acrylic resin P, and an acrylic acrylate resin Q having a (meth) acryloyl group in the side chain is obtained.
 (イ)アクリル樹脂Pが水酸基、またはアミノ基を有する単量体(A)から合成された重合体の場合には、(メタ)アクリル酸等のカルボキシル基を有する単量体(C)を縮合反応させる。(ロ)アクリル樹脂Pがカルボキシル基、またはスルホン基を有する単量体(A)から合成された重合体の場合には、水酸基を有する単量体(C)を縮合反応させる。(ハ)アクリル樹脂Pがエポキシ基、イソシアネート基またはアジリジニル基を有する単量体(A)から合成された重合体の場合には、水酸基を有する単量体(C)またはカルボキシル基を有する単量体(C)を付加反応させる。(ニ)アクリル樹脂Pが水酸基またはカルボキシル基を有する単量体(A)から合成された重合体の場合には、エポキシ基を有する単量体(C)、アジリジニル基を有する単量体(C)、イソシアネート基を有する単量体(C)、またはジイソシアネート化合物と水酸基含有アクリル酸エステル単量体との等モル付加物(C)を付加反応させる。 (I) When the acrylic resin P is a polymer synthesized from a monomer (A) having a hydroxyl group or an amino group, the monomer (C) having a carboxyl group such as (meth) acrylic acid is condensed. React. (B) When the acrylic resin P is a polymer synthesized from a monomer (A) having a carboxyl group or a sulfone group, the monomer (C) having a hydroxyl group is subjected to a condensation reaction. (C) In the case where the acrylic resin P is a polymer synthesized from the monomer (A) having an epoxy group, an isocyanate group or an aziridinyl group, the monomer (C) having a hydroxyl group or a monomer having a carboxyl group The body (C) is subjected to an addition reaction. (D) In the case where the acrylic resin P is a polymer synthesized from a monomer (A) having a hydroxyl group or a carboxyl group, a monomer (C) having an epoxy group, a monomer having an aziridinyl group (C ), An isocyanate group-containing monomer (C), or an equimolar adduct (C) of a diisocyanate compound and a hydroxyl group-containing acrylate monomer.
 中でも、塗工時や加工時の着色や耐侯性等の観点から、(メタ)アクリル酸等のカルボキシル基を有する単量体(C)を用いて(メタ)アクリロイル基を導入することが好ましい。 Of these, it is preferable to introduce a (meth) acryloyl group using a monomer (C) having a carboxyl group such as (meth) acrylic acid from the viewpoint of coloring and weathering resistance during coating and processing.
 また、単量体(A)と単量体(C)のモル分率は0.1~1.5であることが好ましい。ただし、反応後に単量体(C)が残存した場合、最終製品の物性が低下する可能性があるため、0.1~1.0であることがより好ましい。このように単量体(A)と単量体(C)のモル分率をコントロールすることでも、(メタ)アクリロイル基数を制御することが可能であり、硬化物の物性を容易に、好ましいものに調整することができる。 The molar fraction of the monomer (A) and the monomer (C) is preferably 0.1 to 1.5. However, if the monomer (C) remains after the reaction, the physical properties of the final product may be lowered. Thus, it is possible to control the number of (meth) acryloyl groups by controlling the molar fraction of the monomer (A) and the monomer (C), and the physical properties of the cured product are easily and preferable. Can be adjusted.
 アクリル樹脂Pと単量体(C)の反応の際に使用される溶媒は特に限定されるものではないが、アクリル樹脂Pが可溶である溶媒であることが好ましい。たとえば、トルエン、キシレン、その他高沸点の芳香族系溶媒;酢酸ブチル、酢酸エチル、セロソルブアセテートなどのエステル系溶媒;メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒、メタノール、エタノール、イソプロピルアルコールなどのアルコール系溶媒などが挙げられる。これら溶媒は一種のみを使用してもよいし、二種以上を混合して使用してもよい。なお、溶媒の使用量、すなわち固形分濃度は、溶液粘度、反応速度、反応時に生じる発熱の除熱効率、生産性などを考慮し適宜定めればよいが、固形分濃度は10~90重量%、好ましくは20~60重量%である。 The solvent used in the reaction of the acrylic resin P and the monomer (C) is not particularly limited, but is preferably a solvent in which the acrylic resin P is soluble. For example, toluene, xylene, and other high boiling aromatic solvents; ester solvents such as butyl acetate, ethyl acetate, and cellosolve acetate; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; alcohols such as methanol, ethanol, and isopropyl alcohol A solvent etc. are mentioned. These solvents may be used alone or in combination of two or more. The amount of the solvent used, that is, the solid content concentration may be appropriately determined in consideration of the solution viscosity, the reaction rate, the heat removal efficiency of heat generated during the reaction, the productivity, etc. The solid content concentration is 10 to 90% by weight, Preferably, it is 20 to 60% by weight.
 反応温度は、特に限定されるものではないが、20~200℃の範囲が好ましく、40~140℃がより好ましい。 The reaction temperature is not particularly limited, but is preferably in the range of 20 to 200 ° C, more preferably 40 to 140 ° C.
 また、アクリル樹脂Pの側鎖官能基への前記単量体(C)の反応を促進させるために触媒、例えば、トリエチルアミン、ベンジルジメチルアミン、メチルトリエチルアンモニウムクロライド、ベンジルトリメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムアイオダイド、トリフェニルフォスフィン、トリフェニルスチビン、オクタン酸クロム、オクタン酸ジルコニウム等を使用することが好ましい。該触媒の使用量は、特に限定されないが、反応原料混合物に対して好ましくは0.1~20重量%、より好ましくは0.1~10重量%である。また、官能基変換反応中の重合を防止するために、重合禁止剤、例えば、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、ピロガロール、H-TEMPO(4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル)等を使用するのが好ましい。その使用量は、特に限定されないが、反応原料混合物に対して好ましくは0.01~5重量%、さらに好ましくは0.01~1重量%である。さらには、官能基変換反応中は、反応器内、好ましくは反応溶液中に空気、もしくは酸素を含んだ混合気体、例えば酸素/窒素混合気体を吹き込みながら反応させることが、重合防止のために好ましい。 Further, a catalyst such as triethylamine, benzyldimethylamine, methyltriethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium ion is used to promote the reaction of the monomer (C) with the side chain functional group of the acrylic resin P. It is preferable to use dye, triphenylphosphine, triphenylstibine, chromium octoate, zirconium octoate or the like. The amount of the catalyst used is not particularly limited, but is preferably 0.1 to 20% by weight, more preferably 0.1 to 10% by weight, based on the reaction raw material mixture. In order to prevent polymerization during the functional group conversion reaction, a polymerization inhibitor such as hydroquinone, methyl hydroquinone, hydroquinone monomethyl ether, catechol, pyrogallol, H-TEMPO (4-hydroxy-2,2,6,6- Tetramethylpiperidine-1-oxyl) or the like is preferably used. The amount used is not particularly limited, but is preferably 0.01 to 5% by weight, more preferably 0.01 to 1% by weight, based on the reaction raw material mixture. Furthermore, during the functional group conversion reaction, it is preferable to prevent the polymerization by reacting air or a mixed gas containing oxygen, for example, an oxygen / nitrogen mixed gas, into the reaction solution, preferably in the reaction solution. .
 アクリルアクリレート樹脂Qの側鎖の(メタ)アクリロイル基の量、すなわち二重結合当量(側鎖の(メタ)アクリロイル基1個あたりの平均分子量)は特に限定されず、使用する用途に応じて導入する(メタ)アクリロイル基量を調整すればよい。中でも、仕込み値からの計算値で平均1~700g/molであることが、溶剤を揮発させた後の粘着性が低く、表面硬度、耐擦傷性、耐磨耗性、耐薬品性、耐熱性、機械的強度などの向上の観点から好ましい。さらに好ましい二重結合当量の範囲は平均1~600g/molである。また、本発明により得られるアクリルアクリレート樹脂Qを塗料化するなど、希釈する必要がある場合には、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸ブチル、トルエン、イソプロピルアルコール等、上記のアクリル樹脂P、アクリルアクリレート樹脂Qを合成した際に使用したような有機溶剤、及び/またはモノマー類で希釈することができる。 The amount of side chain (meth) acryloyl groups of acrylic acrylate resin Q, that is, the double bond equivalent (average molecular weight per side chain (meth) acryloyl group) is not particularly limited, and is introduced according to the intended use. What is necessary is just to adjust the (meth) acryloyl group amount. Above all, the average value of 1 to 700 g / mol calculated from the charged values has low adhesion after volatilization of the solvent, surface hardness, scratch resistance, abrasion resistance, chemical resistance, heat resistance. From the viewpoint of improving the mechanical strength and the like. A more preferable range of double bond equivalent is 1 to 600 g / mol on average. Further, when it is necessary to dilute the acrylic acrylate resin Q obtained by the present invention, for example, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, toluene, isopropyl alcohol, etc., the acrylic resin P, The acrylic acrylate resin Q can be diluted with an organic solvent and / or monomers as used in the synthesis.
 希釈に用いるモノマー類としては、ビニルエーテル化合物、プロペニルエーテル化合物、スチレン誘導体、エポキシ化合物、ラクトン化合物、オキセタン化合物、(メタ)アクリル酸エステル等、公知慣用のものが使用可能である。これらは単独で用いてもよく、複数種を併用してもよい。 As monomers used for dilution, known and commonly used monomers such as vinyl ether compounds, propenyl ether compounds, styrene derivatives, epoxy compounds, lactone compounds, oxetane compounds, (meth) acrylic acid esters and the like can be used. These may be used independently and may use multiple types together.
 本発明により得られる側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qを含む組成物を硬化させる方法としては特に限定されず、公知の熱硬化や光硬化等の方法を用いることができる。もし紫外線等の光硬化を実施する際には、必要に応じて、光照射によってラジカルを発生させる光重合開始剤を添加する。 The method of curing the composition containing the acrylic acrylate resin Q having a (meth) acryloyl group in the side chain obtained by the present invention is not particularly limited, and a known method such as thermosetting or photocuring can be used. If photocuring such as ultraviolet rays is performed, a photopolymerization initiator that generates radicals by light irradiation is added as necessary.
 光重合開始剤の種類は特に限定されず、公知のものが使用可能であるが、代表的な例としては、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、ベンゾインイソプロピルエーテル、ベンゾフェノン等が挙げられる。中でも、硬化時の黄変や耐候時の劣化を考慮すると、アセトフェノン系、ベンゾフェノン系、アシルホスフィンオキサイド系のような分子内にアミノ基を含まない開始剤が良い。例えば、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイドが好ましい。これらのうちには成形方法によっては成形中、一時的にその化合物の沸点以上の温度になることがあるので、注意が必要である。成形品の表面硬度を上げるため、n-メチルジエタノールアミンなどの酸素重合禁止硬化防止剤を添加してもよい。また、これらの光重合開始剤の外に、成形時の熱を利用しての硬化も考慮して、各種過酸化物を添加してもよい。光硬化性シートに過酸化物を含有させる場合には、150℃、30秒程度で硬化させる必要があるので、臨界温度の低い過酸化物、例えば、ラウロイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン等が好ましく用いられる。 The type of the photopolymerization initiator is not particularly limited, and known ones can be used. Typical examples include 1-hydroxycyclohexyl phenyl ketone and 2-hydroxy-2-methyl-1-phenylpropane-1. -One, benzyl dimethyl ketal, benzoin isopropyl ether, benzophenone and the like. In particular, in consideration of yellowing during curing and deterioration during weathering, an initiator that does not contain an amino group in the molecule, such as an acetophenone series, a benzophenone series, or an acylphosphine oxide series, is preferable. For example, 1- (4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4-Isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentyl Phosphine oxide is preferred. Of these, care must be taken because depending on the molding method, the temperature may be temporarily higher than the boiling point of the compound during molding. In order to increase the surface hardness of the molded article, an oxygen polymerization-inhibiting curing inhibitor such as n-methyldiethanolamine may be added. In addition to these photopolymerization initiators, various peroxides may be added in consideration of curing using heat during molding. When a photocurable sheet contains a peroxide, it must be cured at 150 ° C. for about 30 seconds. Therefore, a peroxide having a low critical temperature, such as lauroyl peroxide, t-butylperoxy-2, etc. -Ethylhexanoate, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane and the like are preferably used.
 光重合開始剤の添加量は、硬化後の残存量が耐候性に影響するため、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Q100質量部に対して0.1~10質量部が望ましく、さらには0.1~5重量部が好ましい。中でも、特に硬化時の黄変に関連するアミノ系の光重合開始剤を使用する場合は、1質量部以下が望ましい。 The addition amount of the photopolymerization initiator is desirably 0.1 to 10 parts by mass with respect to 100 parts by mass of the acrylic acrylate resin Q having a (meth) acryloyl group in the side chain because the residual amount after curing affects the weather resistance. Further, 0.1 to 5 parts by weight is preferable. Especially, when using the amino type photoinitiator relevant to yellowing at the time of hardening, 1 mass part or less is desirable.
 また必要に応じて、増感剤、変性用樹脂、染料、顔料およびレベリング剤やハジキ防止剤、紫外線吸収剤、光安定剤、酸化安定剤、触媒、消泡剤、重合促進剤、難燃剤、赤外線吸収剤等の添加剤を配合することができる。上記の増感剤は、硬化反応を促進するものであって、その例としてはベンゾフェノン、ベンゾインイソプロピルエーテル、チオキサントン等が挙げられる。 If necessary, sensitizers, modifying resins, dyes, pigments and leveling agents and repellency inhibitors, UV absorbers, light stabilizers, oxidation stabilizers, catalysts, antifoaming agents, polymerization accelerators, flame retardants, Additives such as infrared absorbers can be blended. The above sensitizer accelerates the curing reaction, and examples thereof include benzophenone, benzoin isopropyl ether, and thioxanthone.
 なお、本発明により得られるアクリルアクリレート樹脂Qを硬化させるエネルギー線源は特に限定されないが、例としては、高圧水銀灯、電子線、γ線、カーボンアーク灯、キセノン灯、メタルハライド灯、LED-UV等が挙げられる。 The energy ray source for curing the acrylic acrylate resin Q obtained by the present invention is not particularly limited, but examples include high pressure mercury lamp, electron beam, γ ray, carbon arc lamp, xenon lamp, metal halide lamp, LED-UV, etc. Is mentioned.
 以下、実施例および比較例に基づき本発明をさらに詳細に説明するが、これらはいずれも例示的なものであり、本発明の内容を何ら限定するものではない。 Hereinafter, the present invention will be described in more detail based on examples and comparative examples. However, these are illustrative only and do not limit the contents of the present invention.
 重合転化率は以下の手順に従い算出した。 The polymerization conversion rate was calculated according to the following procedure.
 まず、得られたスラリーの一部を採取・精秤し、それを熱風乾燥器中で120℃、1時間乾燥し、その乾燥後の重量を固形分量として精秤した。次に、乾燥前後の精秤結果の比率をスラリー中の固形成分比率として求めた。最後に、この固形成分比率を用いて、以下の数式1により重合転化率を算出した。なお、この数式1において、連鎖移動剤は仕込み単量体として取り扱った。 First, a part of the obtained slurry was collected and precisely weighed, and it was dried in a hot air dryer at 120 ° C. for 1 hour, and the weight after drying was precisely weighed as the solid content. Next, the ratio of the result of precise weighing before and after drying was determined as the ratio of solid components in the slurry. Finally, using this solid component ratio, the polymerization conversion rate was calculated by the following formula 1. In Formula 1, the chain transfer agent was handled as a charged monomer.
  重合転化率(%)
  =〔(仕込み原料総重量×固形成分比率-水・単量体以外の原料総重量)/仕込み単量体重量〕×100             (数式1)
 体積平均粒子径は、マイクロトラックMT3000II(日機装(株)製)を用いて測定した。
Polymerization conversion rate (%)
= [(Total weight of charged raw materials × solid component ratio−total weight of raw materials other than water / monomer) / weight of charged monomer] × 100 (Formula 1)
The volume average particle diameter was measured using Microtrac MT3000II (manufactured by Nikkiso Co., Ltd.).
 分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いた標準ポリスチレン換算法により算出した。本発明では、高速GPC装置(東ソー(株)製HLC-8220GPC)、カラムは東ソー(株)製TSKguardcolumn SuperHZ-H、GPC溶媒としてテトラヒドロフランを用いた。 The molecular weight was calculated by a standard polystyrene conversion method using gel permeation chromatography (GPC). In the present invention, a high-speed GPC device (HLC-8220GPC manufactured by Tosoh Corporation), a column using TSK guard column SuperHZ-H manufactured by Tosoh Corporation, and tetrahydrofuran as a GPC solvent were used.
 (実施例1)
 <アクリル樹脂P-1の製造>
 H型撹拌機を備えた8リットルガラス製反応器に脱イオン水200重量部、懸濁助剤であるリン酸水素2ナトリウム0.5重量部を仕込んだ。次に250rpmで攪拌しながら、反応器にラウロイルパーオキサイド0.95重量部を溶解させたメタクリル酸メチル60重量部、メタクリル酸グリシジル40重量部、チオグリコール酸2-エチルヘキシル0.35重量部からなるモノマー混合液を加え、反応器内を窒素置換しながら60℃に昇温して重合を開始した。初期懸濁安定剤は添加しなかった。60℃到達後60分経過時点で後期懸濁安定剤としてノニオン系水溶性高分子であるアデカプルロニックF-68(株式会社ADEKA製、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体)を0.06重量部添加した。この時点での重合転化率は42%であった。その後60℃でさらに60分反応させた後、80℃に昇温し、3時間攪拌し、重合を完結させた。得られた重合体を、樹脂量の3倍量の脱イオン水を用いた水洗を4回実施し、乾燥することでビーズ状の懸濁重合体粒子(アクリル樹脂P-1)を得た。アクリル樹脂P-1の平均粒子径は665μm、Mwは225000、Mw/Mn=3.9であった。
Example 1
<Manufacture of acrylic resin P-1>
An 8-liter glass reactor equipped with an H-type stirrer was charged with 200 parts by weight of deionized water and 0.5 parts by weight of disodium hydrogen phosphate as a suspension aid. Next, while stirring at 250 rpm, 0.95 parts by weight of lauroyl peroxide was dissolved in the reactor, and 60 parts by weight of methyl methacrylate, 40 parts by weight of glycidyl methacrylate, and 0.35 parts by weight of 2-ethylhexyl thioglycolate. The monomer mixture was added and the temperature was raised to 60 ° C. while the inside of the reactor was purged with nitrogen to initiate polymerization. No initial suspension stabilizer was added. 60 minutes after reaching 60 ° C., 0.06 of Adekapluronic F-68 (manufactured by ADEKA Corporation, polyoxyethylene-polyoxypropylene block copolymer), which is a nonionic water-soluble polymer, is used as a late suspension stabilizer. Part by weight was added. At this point, the polymerization conversion rate was 42%. Thereafter, the mixture was further reacted at 60 ° C. for 60 minutes, and then heated to 80 ° C. and stirred for 3 hours to complete the polymerization. The obtained polymer was washed four times with deionized water three times the amount of the resin and dried to obtain beads-like suspension polymer particles (acrylic resin P-1). The average particle size of the acrylic resin P-1 was 665 μm, Mw was 225000, and Mw / Mn = 3.9.
 <側鎖に(メタ)アクリロイル基を有するアクリル樹脂Q-1の合成>
 半月板状攪拌機を備えた200mlガラス製反応器にメチルエチルケトン270重量部、アクリル樹脂P-1 100重量部を加え、300rpmで攪拌しながら、窒素ガス、および窒素/酸素混合ガス(酸素含有量9%)気流下にて70℃に昇温した。70℃到達後、アクリル樹脂P-1がメチルエチルケトンに溶解したのを確認したあと、攪拌数を250rpmに調整し、窒素気流下、及び窒素/酸素混合ガスをメチルエチルケトン溶液中にバブリングしながら、H-TEMPO 0.12重量部、アクリル酸20.3重量部、N,N-ジメチルベンジルアミン9.62重量部を加え、反応を開始した。反応開始から440分後、N,N-ジメチルベンジルアミン1.20重量部を加え、さらに100分間攪拌することにより、側鎖にアクリロイル基を有するアクリル樹脂Q-1を得た。なお、水酸化カリウムによる中和滴定で残存しているアクリル酸を定量することにより、グリシジル基とアクリル酸の反応はほぼ100%進んでいることも確認した。
<Synthesis of acrylic resin Q-1 having (meth) acryloyl group in side chain>
To a 200 ml glass reactor equipped with a meniscus stirrer, 270 parts by weight of methyl ethyl ketone and 100 parts by weight of acrylic resin P-1 were added, and stirred at 300 rpm, nitrogen gas and nitrogen / oxygen mixed gas (oxygen content 9% ) The temperature was raised to 70 ° C under an air stream. After reaching 70 ° C., it was confirmed that the acrylic resin P-1 was dissolved in methyl ethyl ketone. Then, the number of stirring was adjusted to 250 rpm, and H-- was added while bubbling nitrogen / oxygen mixed gas into the methyl ethyl ketone solution under a nitrogen stream. The reaction was started by adding 0.12 parts by weight of TEMPO, 20.3 parts by weight of acrylic acid, and 9.62 parts by weight of N, N-dimethylbenzylamine. After 440 minutes from the start of the reaction, 1.20 parts by weight of N, N-dimethylbenzylamine was added and the mixture was further stirred for 100 minutes to obtain an acrylic resin Q-1 having an acryloyl group in the side chain. It was also confirmed that the reaction between the glycidyl group and acrylic acid progressed almost 100% by quantifying the remaining acrylic acid by neutralization titration with potassium hydroxide.
 実施例1で得た、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Q-1のメチルエチルケトン溶液に対して、光重合開始剤としてイルガキュア184(BASF社製、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン)をポリマー純分100重量部に対して3重量部添加し、市販の透明アクリルフィルム上に膜厚9μmのバーコーターで塗布し、乾燥機で80℃×1分乾燥後、UV硬化装置(LC-6B、フュージョンUVシステムズ・ジャパン(株))を用いて積算照度467mJ/cmの紫外線を照射して硬化させ、以下の評価を実施した。 With respect to the methyl ethyl ketone solution of acrylic acrylate resin Q-1 having a (meth) acryloyl group in the side chain obtained in Example 1, Irgacure 184 (manufactured by BASF, 1-hydroxy-cyclohexyl-phenyl-) was used as a photopolymerization initiator. 3 parts by weight with respect to 100 parts by weight of the pure polymer, and applied with a bar coater with a film thickness of 9 μm on a commercially available transparent acrylic film. After drying at 80 ° C. for 1 minute with a dryer, a UV curing device ( LC-6B, Fusion UV Systems Japan Co., Ltd.) was used to cure by irradiating with ultraviolet rays having an integrated illuminance of 467 mJ / cm 2 , and the following evaluation was performed.
 ・タック性(粘着性)
 80℃×1分乾燥で溶媒を揮発させた後、指で表面を触り、タックがあるかどうかを以下の基準で評価した。
○:べたつきがない、×:べたつきがある。
・ Tackiness (adhesiveness)
After the solvent was volatilized by drying at 80 ° C. for 1 minute, the surface was touched with a finger, and whether or not there was tack was evaluated according to the following criteria.
○: No stickiness, ×: Stickiness
 ・透明性
 コーティングフィルムの透明性を以下の基準で目視判定した。
○:透明である、×:濁りがある。
-Transparency The transparency of the coating film was visually judged according to the following criteria.
○: Transparent, x: Turbid.
 ・耐磨耗性
 磨耗試験機を用いて、スチールウール(#0000)を200g荷重下で20往復させた。磨耗試験前後の透明性の変化を目視判定し、耐磨耗性とした。
○:試験前後で透明性の悪化が少なく、耐磨耗性に優れる、×:試験前後で透明性が悪化し、耐磨耗性が劣る。
-Abrasion resistance Using a wear tester, steel wool (# 0000) was reciprocated 20 times under a load of 200 g. The change in transparency before and after the wear test was visually judged and determined as wear resistance.
○: Transparency is small before and after the test and the wear resistance is excellent. ×: Transparency deteriorates before and after the test and the wear resistance is inferior.
 ・耐侯性
 得られた積層シートを促進耐侯性試験JIS K7102に準拠し、サンシャインウェザーオメーター(スガ試験機製、型式:WEL-SUN-HC(H))を用いブラックパネル温度63℃、水スプレーを60分中12分間の条件で5000時間暴露した後の外観を目視評価した。
○:良好、×:白化またはクラック有り
 ・硬化収縮(体積収縮率)
 実施例1で得たアクリルアクリレート樹脂Q-1のメチルエチルケトン溶液に対して、イルガキュア184をポリマー純分100重量部に対して3重量部添加し、ガラス板上に膜厚9μmのバーコーターで塗布し、乾燥機で80℃×1分乾燥後、UV硬化装置(LC-6B、フュージョンUVシステムズ・ジャパン(株))を用いて積算光量467mJ/cmの紫外線を照射して、アクリルアクリレート樹脂Q-1の硬化物を作成した。得られた硬化物の硬化前後の23℃での比重を比重計で測定し、体積収縮の度合いを判定した。
○:体積収縮が小さい、×:体積収縮が大きい
 ・接着強度
 実施例1で得たアクリルアクリレート樹脂Q-1 45重量部、アクリロイルモルフォリン10重量部、フェノキシエチルアクリレート20重量部、イソボルニルアクリレート15重量部、ビニルカプロラクタム5重量部、イルガキュア184 5重量部を、攪拌機を備えた反応容器に仕込み、50~60℃で攪拌し、接着剤組成物を調製した。次に60μm厚のアプリケーターバーを用いて200μm厚の塩ビシート上に塗布した上に、20μm厚の透明な塩化ビニルフィルムを気泡が入らないように張り合わせた。これを450mJ/cmの透明フィルム側から紫外線を照射して硬化し、T-peel試験片とLap-Shear試験片を作成した。その試験片を用い、23℃、相対湿度50%の環境中でT-peel強度とLap-Shear強度を評価した。
○:接着強度が良好、×:接着強度が劣る
 上記評価結果を表1に示した。
-Weather resistance The obtained laminated sheet conforms to the accelerated weather resistance test JIS K7102, using a sunshine weatherometer (manufactured by Suga Test Instruments, model: WEL-SUN-HC (H)) with a black panel temperature of 63 ° C and water spray. The appearance after exposure for 5000 hours under the condition of 12 minutes in 60 minutes was visually evaluated.
○: good, ×: whitening or cracking ・ curing shrinkage (volumetric shrinkage)
3 parts by weight of Irgacure 184 with respect to 100 parts by weight of the polymer is added to the methyl ethyl ketone solution of the acrylic acrylate resin Q-1 obtained in Example 1, and applied onto a glass plate with a bar coater having a film thickness of 9 μm. After drying at 80 ° C. for 1 minute with a drier, the UV curable apparatus (LC-6B, Fusion UV Systems Japan Co., Ltd.) was used to irradiate UV light with an integrated light amount of 467 mJ / cm 2 to obtain acrylic acrylate resin Q- 1 cured product was prepared. The specific gravity at 23 ° C. before and after curing of the obtained cured product was measured with a hydrometer, and the degree of volume shrinkage was determined.
○: Small volume shrinkage, ×: Large volume shrinkage ・ Adhesive strength 45 parts by weight of acrylic acrylate resin Q-1 obtained in Example 1, 10 parts by weight of acryloylmorpholine, 20 parts by weight of phenoxyethyl acrylate, isobornyl acrylate 15 parts by weight, 5 parts by weight of vinylcaprolactam and 5 parts by weight of Irgacure 184 were charged into a reaction vessel equipped with a stirrer and stirred at 50 to 60 ° C. to prepare an adhesive composition. Next, using a 60 μm-thick applicator bar, it was coated on a 200 μm-thick vinyl chloride sheet, and a 20 μm-thick transparent vinyl chloride film was laminated so as not to contain air bubbles. This was cured by irradiating ultraviolet rays from the side of the transparent film of 450 mJ / cm 2 to prepare T-peel test pieces and Lap-Shear test pieces. Using the test piece, T-peel strength and Lap-Shear strength were evaluated in an environment of 23 ° C. and 50% relative humidity.
○: Adhesive strength is good, X: Adhesive strength is inferior The evaluation results are shown in Table 1.
 (比較例1)
 <アクリル樹脂P-2の製造>
 半月板状攪拌機を備えた200mlガラス製反応器にメチルエチルケトン50重量部を入れ、80℃に昇温した。窒素雰囲気下でメタクリル酸メチル60重量部、メタクリル酸グリシジル40重量部、アゾビスイソブチロニトリル0.5重量部、n-オクチルメルカプタン4重量部からなるモノマー混合液を3時間かけて滴下した。その後、メチルエチルケトン80重量部とアゾビスイソブチロニトリル0.2重量部の混合物を加え、さらに4時間重合させることで、アクリル樹脂P-2のメチルエチルケトン溶液を得た。得られたアクリル樹脂P-2のMwは3700、Mw/Mn=1.8であった。
(Comparative Example 1)
<Manufacture of acrylic resin P-2>
In a 200 ml glass reactor equipped with a meniscus stirrer, 50 parts by weight of methyl ethyl ketone was placed and heated to 80 ° C. Under a nitrogen atmosphere, a monomer mixed solution consisting of 60 parts by weight of methyl methacrylate, 40 parts by weight of glycidyl methacrylate, 0.5 parts by weight of azobisisobutyronitrile and 4 parts by weight of n-octyl mercaptan was added dropwise over 3 hours. Thereafter, a mixture of 80 parts by weight of methyl ethyl ketone and 0.2 part by weight of azobisisobutyronitrile was added and further polymerized for 4 hours to obtain a methyl ethyl ketone solution of acrylic resin P-2. Mw of the obtained acrylic resin P-2 was 3700 and Mw / Mn = 1.8.
 <側鎖に(メタ)アクリロイル基を有するアクリル樹脂Q-2の合成>
 半月板状攪拌機を備えた200mlガラス製反応器にメチルエチルケトン140重量部、上述のアクリル樹脂P-2のメチルエチルケトン溶液230重量部(ポリマー純分で100重量部)を加え、300rpmで攪拌しながら、窒素ガス、および窒素/酸素混合ガス(酸素含有量9%)気流下にて70℃に昇温した。70℃到達後、攪拌数を250rpmに調整し、窒素気流下、及び窒素/酸素混合ガスをメチルエチルケトン溶液中にバブリングしながら、H-TEMPO 0.12重量部、アクリル酸20.3重量部、N,N-ジメチルベンジルアミン9.62重量部を加え、反応を開始した。反応開始から440分後、N,N-ジメチルベンジルアミン1.20重量部を加え、さらに100分間攪拌することにより、側鎖にアクリロイル基を有するアクリル樹脂Q-2を得た。なお、水酸化カリウムによる中和滴定で残存しているアクリル酸を定量することにより、グリシジル基とアクリル酸の反応はほぼ100%進んでいることも確認した。
<Synthesis of acrylic resin Q-2 having (meth) acryloyl group in side chain>
To a 200 ml glass reactor equipped with a meniscus stirrer was added 140 parts by weight of methyl ethyl ketone and 230 parts by weight of the above-mentioned acrylic resin P-2 in methyl ethyl ketone (100 parts by weight of the pure polymer). The temperature was raised to 70 ° C. under a gas stream and a nitrogen / oxygen mixed gas (oxygen content: 9%) stream. After reaching 70 ° C., the number of stirring was adjusted to 250 rpm, 0.12 parts by weight of H-TEMPO, 20.3 parts by weight of acrylic acid, N 2 while bubbling nitrogen / oxygen mixed gas into the methyl ethyl ketone solution , N-dimethylbenzylamine 9.62 parts by weight was added to initiate the reaction. After 440 minutes from the start of the reaction, 1.20 parts by weight of N, N-dimethylbenzylamine was added and the mixture was further stirred for 100 minutes to obtain an acrylic resin Q-2 having an acryloyl group in the side chain. It was also confirmed that the reaction between the glycidyl group and acrylic acid progressed almost 100% by quantifying the remaining acrylic acid by neutralization titration with potassium hydroxide.
 (実施例2)
 <アクリル樹脂P-3の製造>
 H型撹拌機を備えた8リットルガラス製反応器に脱イオン水200重量部、懸濁助剤であるリン酸水素2ナトリウム0.5重量部を仕込んだ。次に250rpmで攪拌しながら、反応器にラウロイルパーオキサイド0.95重量部を溶解させたメタクリル酸メチル90重量部、メタクリル酸グリシジル10重量部、チオグリコール酸2-エチルヘキシル0.20重量部からなるモノマー混合液を加え、反応器内を窒素置換しながら60℃に昇温して重合を開始した。初期懸濁安定剤は添加しなかった。60℃到達後80分経過時点で後期懸濁安定剤としてノニオン系水溶性高分子であるアデカプルロニックF-68(株式会社ADEKA製、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体)を0.06重量部添加した。この時点での重合転化率は40%であった。その後60℃でさらに65分反応させた後、80℃に昇温し、3時間攪拌し、重合を完結させた。得られた重合体を、樹脂量の3倍量の脱イオン水を用いた水洗を4回実施し、乾燥することでビーズ状の懸濁重合体粒子(アクリル樹脂P-3)を得た。アクリル樹脂P-3の平均粒子径は500μm、Mwは179000、Mw/Mn=2.2であった。
(Example 2)
<Manufacture of acrylic resin P-3>
An 8-liter glass reactor equipped with an H-type stirrer was charged with 200 parts by weight of deionized water and 0.5 parts by weight of disodium hydrogen phosphate as a suspension aid. Next, while stirring at 250 rpm, the reactor comprises 90 parts by weight of methyl methacrylate in which 0.95 parts by weight of lauroyl peroxide was dissolved, 10 parts by weight of glycidyl methacrylate, and 0.20 parts by weight of 2-ethylhexyl thioglycolate. The monomer mixture was added and the temperature was raised to 60 ° C. while the inside of the reactor was purged with nitrogen to initiate polymerization. No initial suspension stabilizer was added. 80 minutes after reaching 60 ° C., 0.06 of Adekapluronic F-68 (manufactured by ADEKA Corporation, polyoxyethylene-polyoxypropylene block copolymer) which is a nonionic water-soluble polymer as a late suspension stabilizer Part by weight was added. The polymerization conversion rate at this point was 40%. Thereafter, the mixture was further reacted at 60 ° C. for 65 minutes, and then heated to 80 ° C. and stirred for 3 hours to complete the polymerization. The obtained polymer was washed four times with deionized water three times the amount of the resin and dried to obtain bead-like suspension polymer particles (acrylic resin P-3). The average particle diameter of the acrylic resin P-3 was 500 μm, Mw was 179000, and Mw / Mn = 2.2.
 <側鎖に(メタ)アクリロイル基を有するアクリル樹脂Q-3の合成>
 半月板状攪拌機を備えた200mlガラス製反応器にメチルエチルケトン270重量部、アクリル樹脂P-3 100重量部を加え、300rpmで攪拌しながら、窒素ガス、および窒素/酸素混合ガス(酸素含有量9%)気流下にて70℃に昇温した。70℃到達後、アクリル樹脂P-3がメチルエチルケトンに溶解したのを確認したあと、攪拌数を200rpmに調整し、窒素気流下、及び窒素/酸素混合ガスをメチルエチルケトン溶液中にバブリングしながら、H-TEMPO 0.5重量部、アクリル酸5.07重量部、N,N-ジメチルベンジルアミン0.219重量部を加え、反応を開始した。反応開始後、系の粘度が増加するとともに攪拌数を徐々に上げ、最終的に670rpmまで上げた。N,N-ジメチルベンジルアミン追加から420分間攪拌することにより、側鎖にアクリロイル基を有するアクリル樹脂Q-3を得た。なお、水酸化カリウムによる中和滴定で残存しているアクリル酸を定量することにより、グリシジル基とアクリル酸の反応はほぼ100%進んでいることも確認した。
<Synthesis of acrylic resin Q-3 having a (meth) acryloyl group in the side chain>
To a 200 ml glass reactor equipped with a meniscus stirrer, 270 parts by weight of methyl ethyl ketone and 100 parts by weight of acrylic resin P-3 were added, and stirred at 300 rpm, nitrogen gas and nitrogen / oxygen mixed gas (oxygen content 9% ) The temperature was raised to 70 ° C under an air stream. After reaching 70 ° C., it was confirmed that the acrylic resin P-3 was dissolved in methyl ethyl ketone. Then, the number of stirring was adjusted to 200 rpm, and H-- was added while bubbling nitrogen / oxygen mixed gas into the methyl ethyl ketone solution under a nitrogen stream. 0.5 parts by weight of TEMPO, 5.07 parts by weight of acrylic acid, and 0.219 parts by weight of N, N-dimethylbenzylamine were added to initiate the reaction. After the start of the reaction, the viscosity of the system increased, and the number of stirring was gradually increased to finally increase to 670 rpm. After adding N, N-dimethylbenzylamine, the mixture was stirred for 420 minutes to obtain acrylic resin Q-3 having an acryloyl group in the side chain. It was also confirmed that the reaction between the glycidyl group and acrylic acid progressed almost 100% by quantifying the remaining acrylic acid by neutralization titration with potassium hydroxide.
 (実施例3)
 <アクリル樹脂P-4の製造>
 H型撹拌機を備えた8リットルガラス製反応器に脱イオン水200重量部、懸濁助剤であるリン酸水素2ナトリウム0.5重量部を仕込んだ。次に250rpmで攪拌しながら、反応器にラウロイルパーオキサイド0.95重量部を溶解させたメタクリル酸メチル80重量部、メタクリル酸グリシジル20重量部、チオグリコール酸2-エチルヘキシル0.25重量部からなるモノマー混合液を加え、反応器内を窒素置換しながら60℃に昇温して重合を開始した。初期懸濁安定剤は添加しなかった。60℃到達後80分経過時点で後期懸濁安定剤としてノニオン系水溶性高分子であるアデカプルロニックF-68(株式会社ADEKA製、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体)を0.06重量部添加した。この時点での重合転化率は40%であった。その後60℃でさらに60分反応させた後、80℃に昇温し、3時間攪拌し、重合を完結させた。得られた重合体を、樹脂量の3倍量の脱イオン水を用いた水洗を4回実施し、乾燥することでビーズ状の懸濁重合体粒子(アクリル樹脂P-4)を得た。アクリル樹脂P-4の平均粒子径は550μm、Mwは240000、Mw/Mn=3.1であった。
(Example 3)
<Manufacture of acrylic resin P-4>
An 8-liter glass reactor equipped with an H-type stirrer was charged with 200 parts by weight of deionized water and 0.5 parts by weight of disodium hydrogen phosphate as a suspension aid. Next, while stirring at 250 rpm, 0.95 parts by weight of lauroyl peroxide was dissolved in the reactor, 80 parts by weight of methyl methacrylate, 20 parts by weight of glycidyl methacrylate, and 0.25 parts by weight of 2-ethylhexyl thioglycolate. The monomer mixture was added and the temperature was raised to 60 ° C. while the inside of the reactor was purged with nitrogen to initiate polymerization. No initial suspension stabilizer was added. 80 minutes after reaching 60 ° C., 0.06 of Adekapluronic F-68 (manufactured by ADEKA Corporation, polyoxyethylene-polyoxypropylene block copolymer) which is a nonionic water-soluble polymer as a late suspension stabilizer Part by weight was added. The polymerization conversion rate at this point was 40%. Thereafter, the mixture was further reacted at 60 ° C. for 60 minutes, and then heated to 80 ° C. and stirred for 3 hours to complete the polymerization. The obtained polymer was washed four times with deionized water three times the amount of the resin and dried to obtain bead-like suspension polymer particles (acrylic resin P-4). The average particle size of the acrylic resin P-4 was 550 μm, Mw was 240000, and Mw / Mn = 3.1.
 <側鎖に(メタ)アクリロイル基を有するアクリル樹脂Q-4の合成>
 半月板状攪拌機を備えた200mlガラス製反応器に1-メトキシー2-プロパノール400重量部、アクリル樹脂P-4 100重量部を加え、300rpmで攪拌しながら、窒素ガス、および窒素/酸素混合ガス(酸素含有量9%)気流下にて115℃に昇温した。115℃到達後、アクリル樹脂P-4が1-メトキシー2-プロパノールに溶解したのを確認したあと、攪拌数を300rpmに調整し、窒素気流下、及び窒素/酸素混合ガスを1-メトキシー2-プロパノール溶液中にバブリングしながら、H-TEMPO 0.5重量部、アクリル酸10.141重量部、N,N-ジメチルベンジルアミン0.439重量部を加え、反応を開始した。反応開始後、650分間攪拌することにより、側鎖にアクリロイル基を有するアクリル樹脂Q-4を得た。なお、水酸化カリウムによる中和滴定で残存しているアクリル酸を定量することにより、グリシジル基とアクリル酸の反応はほぼ100%進んでいることも確認した。
<Synthesis of acrylic resin Q-4 having (meth) acryloyl group in side chain>
To a 200 ml glass reactor equipped with a meniscus stirrer, 400 parts by weight of 1-methoxy-2-propanol and 100 parts by weight of acrylic resin P-4 were added and stirred at 300 rpm while nitrogen gas and a nitrogen / oxygen mixed gas ( The temperature was raised to 115 ° C. under an air flow (oxygen content 9%). After reaching 115 ° C., after confirming that the acrylic resin P-4 was dissolved in 1-methoxy-2-propanol, the number of stirring was adjusted to 300 rpm, and the nitrogen / oxygen mixed gas was changed to 1-methoxy-2- While bubbling into the propanol solution, 0.5 parts by weight of H-TEMPO, 10.141 parts by weight of acrylic acid, and 0.439 parts by weight of N, N-dimethylbenzylamine were added to initiate the reaction. After starting the reaction, the mixture was stirred for 650 minutes to obtain an acrylic resin Q-4 having an acryloyl group in the side chain. It was also confirmed that the reaction between the glycidyl group and acrylic acid progressed almost 100% by quantifying the remaining acrylic acid by neutralization titration with potassium hydroxide.
 (実施例4)
 <側鎖に(メタ)アクリロイル基を有するアクリル樹脂Q-5の合成>
 半月板状攪拌機を備えた200mlガラス製反応器に1-メトキシー2-プロパノール390重量部、アクリル樹脂P-4 100重量部を加え、300rpmで攪拌しながら、窒素ガス、および窒素/酸素混合ガス(酸素含有量9%)気流下にて115℃に昇温した。115℃到達後、アクリル樹脂P-4が1-メトキシー2-プロパノールに溶解したのを確認したあと、攪拌数を300rpmに調整し、窒素気流下、及び窒素/酸素混合ガスを1-メトキシー2-プロパノール溶液中にバブリングしながら、H-TEMPO 0.5重量部、アクリル酸12.169重量部、N,N-ジメチルベンジルアミン0.439重量部を加え、反応を開始した。反応開始後、610分間攪拌することにより、側鎖にアクリロイル基を有するアクリル樹脂Q-5を得た。なお、水酸化カリウムによる中和滴定で残存しているアクリル酸を定量することにより、グリシジル基とアクリル酸の反応はほぼ100%進んでいることも確認した。
Example 4
<Synthesis of acrylic resin Q-5 having (meth) acryloyl group in side chain>
To a 200 ml glass reactor equipped with a meniscus stirrer, 390 parts by weight of 1-methoxy-2-propanol and 100 parts by weight of acrylic resin P-4 were added and stirred at 300 rpm while nitrogen gas and a nitrogen / oxygen mixed gas ( The temperature was raised to 115 ° C. under an air flow (oxygen content 9%). After reaching 115 ° C., after confirming that the acrylic resin P-4 was dissolved in 1-methoxy-2-propanol, the number of stirring was adjusted to 300 rpm, and the nitrogen / oxygen mixed gas was changed to 1-methoxy-2- While bubbling into the propanol solution, 0.5 parts by weight of H-TEMPO, 12.169 parts by weight of acrylic acid, and 0.439 parts by weight of N, N-dimethylbenzylamine were added to initiate the reaction. After starting the reaction, the mixture was stirred for 610 minutes to obtain an acrylic resin Q-5 having an acryloyl group in the side chain. It was also confirmed that the reaction between the glycidyl group and acrylic acid progressed almost 100% by quantifying the remaining acrylic acid by neutralization titration with potassium hydroxide.
 (実施例5)
 <アクリル樹脂P-5の製造>
 H型撹拌機を備えた8リットルガラス製反応器に脱イオン水200重量部、懸濁助剤であるリン酸水素2ナトリウム0.5重量部を仕込んだ。次に250rpmで攪拌しながら、反応器にラウロイルパーオキサイド0.95重量部を溶解させたメタクリル酸メチル85重量部、メタクリル酸グリシジル15重量部、チオグリコール酸2-エチルヘキシル0.20重量部からなるモノマー混合液を加え、反応器内を窒素置換しながら60℃に昇温して重合を開始した。初期懸濁安定剤は添加しなかった。60℃到達後75分経過時点で後期懸濁安定剤としてノニオン系水溶性高分子であるアデカプルロニックF-68(株式会社ADEKA製、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体)を0.06重量部添加した。この時点での重合転化率は38%であった。その後60℃でさらに65分反応させた後、80℃に昇温し、3時間攪拌し、重合を完結させた。得られた重合体を、樹脂量の3倍量の脱イオン水を用いた水洗を4回実施し、乾燥することでビーズ状の懸濁重合体粒子(アクリル樹脂P-5)を得た。アクリル樹脂P-5の平均粒子径は500μm、Mwは209000、Mw/Mn=2.5であった。
(Example 5)
<Manufacture of acrylic resin P-5>
An 8-liter glass reactor equipped with an H-type stirrer was charged with 200 parts by weight of deionized water and 0.5 parts by weight of disodium hydrogen phosphate as a suspension aid. Next, while stirring at 250 rpm, the reactor comprises 85 parts by weight of methyl methacrylate in which 0.95 parts by weight of lauroyl peroxide was dissolved, 15 parts by weight of glycidyl methacrylate, and 0.20 parts by weight of 2-ethylhexyl thioglycolate. The monomer mixture was added and the temperature was raised to 60 ° C. while the inside of the reactor was purged with nitrogen to initiate polymerization. No initial suspension stabilizer was added. At the end of 75 minutes after reaching 60 ° C., 0.06 of Adekapluronic F-68 (manufactured by ADEKA Corporation, polyoxyethylene-polyoxypropylene block copolymer), which is a nonionic water-soluble polymer, is used as a late suspension stabilizer. Part by weight was added. The polymerization conversion rate at this point was 38%. Thereafter, the mixture was further reacted at 60 ° C. for 65 minutes, and then heated to 80 ° C. and stirred for 3 hours to complete the polymerization. The obtained polymer was washed four times with deionized water three times the amount of the resin and dried to obtain bead-like suspension polymer particles (acrylic resin P-5). The average particle size of the acrylic resin P-5 was 500 μm, Mw was 209000, and Mw / Mn = 2.5.
 <側鎖に(メタ)アクリロイル基を有するアクリル樹脂Q-6の合成>
 半月板状攪拌機を備えた200mlガラス製反応器に1-メトキシー2-プロパノール390重量部、アクリル樹脂P-5 100重量部を加え、300rpmで攪拌しながら、窒素ガス、および窒素/酸素混合ガス(酸素含有量9%)気流下にて115℃に昇温した。115℃到達後、アクリル樹脂P-5が1-メトキシー2-プロパノールに溶解したのを確認したあと、攪拌数を300rpmに調整し、窒素気流下、及び窒素/酸素混合ガスを1-メトキシー2-プロパノール溶液中にバブリングしながら、H-TEMPO 0.5重量部、アクリル酸9.127重量部、N,N-ジメチルベンジルアミン0.329重量部を加え、反応を開始した。反応開始後、540分間攪拌することにより、側鎖にアクリロイル基を有するアクリル樹脂Q-6を得た。なお、水酸化カリウムによる中和滴定で残存しているアクリル酸を定量することにより、グリシジル基とアクリル酸の反応はほぼ100%進んでいることも確認した。
<Synthesis of acrylic resin Q-6 having a (meth) acryloyl group in the side chain>
To a 200 ml glass reactor equipped with a meniscus stirrer, 390 parts by weight of 1-methoxy-2-propanol and 100 parts by weight of acrylic resin P-5 were added, and stirred with 300 rpm, nitrogen gas and nitrogen / oxygen mixed gas ( The temperature was raised to 115 ° C. under an air flow (oxygen content 9%). After reaching 115 ° C., after confirming that the acrylic resin P-5 was dissolved in 1-methoxy-2-propanol, the number of stirring was adjusted to 300 rpm, and the nitrogen / oxygen mixed gas was changed to 1-methoxy-2- While bubbling into the propanol solution, 0.5 parts by weight of H-TEMPO, 9.127 parts by weight of acrylic acid, and 0.329 parts by weight of N, N-dimethylbenzylamine were added to initiate the reaction. After starting the reaction, the mixture was stirred for 540 minutes to obtain an acrylic resin Q-6 having an acryloyl group in the side chain. It was also confirmed that the reaction between the glycidyl group and acrylic acid progressed almost 100% by quantifying the remaining acrylic acid by neutralization titration with potassium hydroxide.
 得られたQ-2~6を用いて、実施例1と同様の物性評価を実施し、結果を表1に示した。 Using the obtained Q-2 to 6, physical property evaluation similar to Example 1 was performed, and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上のように、本発明により得られる側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂は、塗布乾燥後のタック性が低く非粘着性である。そのため、色もしくはデザインの印刷が可能な非粘着性の光硬化性の印刷シートが容易に得られる。それを用いて射出成形時に同時成形することにより、樹脂成形品の上に、色もしくはデザイン等の意匠をもち、良好な外観、耐磨耗性、耐候性および耐薬品性を有する表面が形成できる。従って、インストルメントパネル、コンソールボックス、メーターカバー、ドアロックペゼル、ステアリングホイール、パワーウィンドウスイッチベース、センタークラスター、ダッシュボード等の自動車内装材用途、ウェザーストリップ、バンパー、バンパーガード、サイドマッドガード、ボディーパネル、スポイラー、フロントグリル、ストラットマウント、ホイールキャップ、センターピラー、ドアミラー、センターオーナメント、サイドモール、ドアモール、ウインドモール等、窓、ヘッドランプカバー、テールランプカバー、風防部品等の自動車外装材用途、AV機器や家電製品のフロントパネル、ボタン、エンブレム、表面化粧材等の用途、携帯電話等のハウジング、表示窓、ボタン等の用途、さらには家具用外装材用途、壁面、天井、床等の建築用内装材用途、サイディング等の外壁、塀、屋根、門扉、破風板等の建築用外装材用途、窓枠、扉、手摺、敷居、鴨居等の建具類の表面化粧材用途、各種ディスプレイ、レンズ、ミラー、ゴーグル、窓ガラス等の光学部材用途、あるいは電車、航空機、船舶等の自動車以外の各種乗物の内外装材用途、瓶、化粧品容器、小物入れ等の各種包装容器および材料、景品や小物等の雑貨等のその他各種用途等に好適に使用することができる。 As described above, the acrylic acrylate resin having a (meth) acryloyl group in the side chain obtained by the present invention has low tackiness after coating and drying and is non-adhesive. Therefore, a non-adhesive photocurable printing sheet that can be printed in color or design can be easily obtained. By using it at the same time as injection molding, a surface with good appearance, wear resistance, weather resistance and chemical resistance can be formed on the resin molded product with a design such as color or design. . Therefore, instrument panels, console boxes, meter covers, door lock pezels, steering wheels, power window switch bases, center clusters, dashboards and other automotive interior materials, weather strips, bumpers, bumper guards, side mud guards, body panels, spoilers, Front grills, strut mounts, wheel caps, center pillars, door mirrors, center ornaments, side moldings, door moldings, wind moldings, etc., automotive exterior materials such as windows, headlamp covers, tail lamp covers, windshield parts, AV equipment and home appliances Applications such as front panels, buttons, emblems, surface cosmetics, housings for mobile phones, display windows, buttons, etc., and furniture exterior materials, walls Architectural interior materials such as ceilings and floors, exterior walls such as siding, exterior exterior materials for buildings such as fences, roofs, gates and windbreak boards, surface decorative materials for fittings such as window frames, doors, handrails, sills, and duck Applications, optical displays such as various displays, lenses, mirrors, goggles, and window glass, or interior / exterior materials for various vehicles other than automobiles such as trains, airplanes, and ships, various packaging containers such as bottles, cosmetic containers, and accessories It can also be suitably used for various other uses such as materials, miscellaneous goods such as prizes and accessories.
 また、耐磨耗性、耐侯性、耐薬品性も良好であることから、透明樹脂の上においてはその透明性を活かしたまま良好な耐磨耗性、耐候性および耐薬品性を有する表面が形成でき、自動車や鉄道車両、飛行機等の窓やヘッドランプカバー、風防部品等に好適に使用することができる。また、成形品の表面を塗装する場合に比べて工程数を省略することができて生産性もよく、環境に対する影響も少ない。さらに、透明性が良好であることから、光学分野への応用も可能である。また、接着特性にも優れていることより、各種接着剤、特には紫外線や電子線硬化型接着剤として好適である。応用例としては、例えば、「接着応用技術、1991年、日経技術図書(株)発行、228-230頁」に記載されているが、紫外線硬化型接着剤としては、物質の接合や、光の照射によって生じる接着剤硬化の差を利用して、凹凸画像形成用途、印刷用途、プリント配線用途などで使用される。このほかの一般化している例としては、文字板作成のためのカットガラスの接着、ガラス工芸品の接着、ペンダントのガラスの接着、光学レンズの接着、ステンドグラスの組枠の接着、注射針の固定接着、ボルト・ナットなどのねじのゆるみ止め接着、電子部品の封入接着、液晶セルの封入、ガラスや透明プラスチック等の同種または異種の接着などが挙げられる。また、電子線硬化型接着剤としては、磁気記録媒体の硬化、印刷インキの硬化、食品包装フィルムのラミネーション、はく離紙等の用途を挙げることができ、本発明品はそれぞれの用途において好適に使用することができる。 In addition, since the abrasion resistance, weather resistance, and chemical resistance are also good, a surface having good abrasion resistance, weather resistance, and chemical resistance while taking advantage of the transparency on the transparent resin. It can be formed, and can be suitably used for automobiles, railway vehicles, airplane windows, headlamp covers, windshield parts, and the like. In addition, the number of steps can be omitted compared to the case where the surface of the molded product is painted, the productivity is good, and the influence on the environment is small. Furthermore, since the transparency is good, application to the optical field is also possible. In addition, since it has excellent adhesive properties, it is suitable as various adhesives, particularly as an ultraviolet ray or electron beam curable adhesive. Examples of applications are described in, for example, “Adhesion Applied Technology, 1991, Nikkei Technical Book Co., Ltd., pp. 228-230”. Examples of UV curable adhesives include bonding of substances, Utilizing the difference in adhesive curing caused by irradiation, it is used for uneven image formation, printing, printed wiring and the like. Other common examples include glued cut glass, glass crafts, pendant glass glue, optical lens glue, stained glass frame glue, injection needle Examples include fixing adhesion, adhesion prevention of screws such as bolts and nuts, encapsulation adhesion of electronic components, encapsulation of liquid crystal cells, and the same or different types of adhesion such as glass and transparent plastic. Examples of the electron beam curable adhesive include curing of magnetic recording media, curing of printing ink, lamination of food packaging film, release paper, etc. The product of the present invention is suitably used in each application. can do.

Claims (18)

  1.  重量平均分子量(Mw)が15万以上であるアクリル樹脂Pの側鎖に(メタ)アクリロイル基を導入することを特徴とする、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 A method for producing an acrylic acrylate resin Q having a (meth) acryloyl group in the side chain, wherein a (meth) acryloyl group is introduced into the side chain of the acrylic resin P having a weight average molecular weight (Mw) of 150,000 or more .
  2.  アクリル樹脂Pの多分散度(Mw/Mn、Mnは数平均分子量)が3.0以上であることを特徴とする、請求項1に記載の、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 The acrylic acrylate having a (meth) acryloyl group in a side chain according to claim 1, wherein the polydispersity of the acrylic resin P (Mw / Mn, Mn is a number average molecular weight) is 3.0 or more. Manufacturing method of resin Q.
  3.  (メタ)アクリロイル基に変換可能な官能基を有する単量体(A)1~100重量%と、(メタ)アクリロイル基に変換可能な官能基を有しない単量体(B)99~0重量%の重合反応によりアクリル樹脂Pを製造した後、アクリル樹脂Pと単量体(C)を反応させることでアクリル樹脂Pの側鎖に(メタ)アクリロイル基を導入することを特徴とする、請求項1または2に記載の、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 1 to 100% by weight of a monomer (A) having a functional group convertible to a (meth) acryloyl group, and 99 to 0% by weight of a monomer (B) having no functional group convertible to a (meth) acryloyl group %, After the acrylic resin P is produced by a polymerization reaction of%, a (meth) acryloyl group is introduced into the side chain of the acrylic resin P by reacting the acrylic resin P with the monomer (C), Item 3. The method for producing an acrylic acrylate resin Q having a (meth) acryloyl group in a side chain according to Item 1 or 2.
  4.  単量体(A)、単量体(C)がともに、エポキシ基を含有する単量体、水酸基を含有する単量体、及びカルボキシル基を含有する単量体からなる群より選択される一種以上の単量体を含むことを特徴とする、請求項3に記載の、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 The monomer (A) and the monomer (C) are both selected from the group consisting of a monomer containing an epoxy group, a monomer containing a hydroxyl group, and a monomer containing a carboxyl group The method for producing an acrylic acrylate resin Q having a (meth) acryloyl group in a side chain according to claim 3, comprising the above-mentioned monomer.
  5.  単量体(A)がエポキシ基を含有する単量体を含み、単量体(C)がカルボキシル基を含有する単量体を含むことを特徴とする、請求項3または4に記載の、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 The monomer (A) contains a monomer containing an epoxy group, and the monomer (C) contains a monomer containing a carboxyl group, according to claim 3 or 4, The manufacturing method of acrylic acrylate resin Q which has a (meth) acryloyl group in a side chain.
  6.  (メタ)アクリル酸エステルのみからなる単量体を重合してアクリル樹脂Pを製造することを特徴とする、請求項1~5いずれか一項に記載の、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 The (meth) acryloyl group is formed in the side chain according to any one of claims 1 to 5, wherein an acrylic resin P is produced by polymerizing a monomer comprising only a (meth) acrylic acid ester. The manufacturing method of acrylic acrylate resin Q which has.
  7.  懸濁重合により、重量平均分子量(Mw)が1万以上であるアクリル樹脂Pを製造した後、当該アクリル樹脂Pの側鎖に(メタ)アクリロイル基を導入することを特徴とする、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 After producing an acrylic resin P having a weight average molecular weight (Mw) of 10,000 or more by suspension polymerization, a (meth) acryloyl group is introduced into the side chain of the acrylic resin P. A method for producing an acrylic acrylate resin Q having a (meth) acryloyl group.
  8.  アクリル樹脂Pの重量平均分子量(Mw)が8万以上であることを特徴とする、請求項7に記載の、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 The method for producing an acrylic acrylate resin Q having a (meth) acryloyl group in a side chain according to claim 7, wherein the acrylic resin P has a weight average molecular weight (Mw) of 80,000 or more.
  9.  アクリル樹脂Pの多分散度(Mw/Mn)が1.8以上であることを特徴とする、請求項7または8に記載の、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 The polydispersity (Mw / Mn) of the acrylic resin P is 1.8 or more, The production of the acrylic acrylate resin Q having a (meth) acryloyl group in the side chain according to claim 7 or 8, Method.
  10.  (メタ)アクリロイル基に変換可能な官能基を有する単量体(A)1~100重量%と(メタ)アクリロイル基に変換可能な官能基を有しない単量体(B)99~0重量%との懸濁重合によりアクリル樹脂Pを製造した後、アクリル樹脂Pと単量体(C)を反応させることでアクリル樹脂Pの側鎖に(メタ)アクリロイル基を導入することを特徴とする、請求項7~9いずれか一項に記載の、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 1 to 100% by weight of monomer (A) having a functional group convertible to (meth) acryloyl group and 99 to 0% by weight of monomer (B) having no functional group convertible to (meth) acryloyl group After the acrylic resin P is produced by suspension polymerization with, the acrylic resin P and the monomer (C) are reacted to introduce a (meth) acryloyl group into the side chain of the acrylic resin P. The method for producing an acrylic acrylate resin Q having a (meth) acryloyl group in a side chain according to any one of claims 7 to 9.
  11.  単量体(A)、単量体(C)がともに、エポキシ基を含有する単量体、水酸基を含有する単量体、及びカルボキシル基を含有する単量体からなる群より選択される一種以上の単量体を含むことを特徴とする、請求項10に記載の、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 The monomer (A) and the monomer (C) are both selected from the group consisting of a monomer containing an epoxy group, a monomer containing a hydroxyl group, and a monomer containing a carboxyl group The method for producing an acrylic acrylate resin Q having a (meth) acryloyl group in a side chain according to claim 10, comprising the above monomer.
  12.  単量体(A)がエポキシ基を含有する単量体を含み、単量体(C)がカルボキシル基を含有する単量体を含むことを特徴とする、請求項10または11に記載の、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 The monomer (A) contains a monomer containing an epoxy group, and the monomer (C) contains a monomer containing a carboxyl group, according to claim 10 or 11, The manufacturing method of acrylic acrylate resin Q which has a (meth) acryloyl group in a side chain.
  13.  (メタ)アクリル酸エステルのみからなる単量体の懸濁重合によりアクリル樹脂Pを製造することを特徴とする、請求項7~12いずれか一項に記載の、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 The (meth) acryloyl group in the side chain according to any one of claims 7 to 12, wherein the acrylic resin P is produced by suspension polymerization of a monomer consisting of only a (meth) acrylic acid ester. A method for producing an acrylic acrylate resin Q having
  14.  アクリル樹脂Pを懸濁重合で製造するのに際し、アクリル樹脂Pを構成する単量体に対して350ppm以下の初期懸濁安定剤の存在下で重合を開始した後、重合転化率が20~90%になった時点で後期懸濁安定剤を添加することを特徴とする、請求項7~13いずれか一項に記載の、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 When the acrylic resin P is produced by suspension polymerization, after the polymerization is started in the presence of 350 ppm or less of the initial suspension stabilizer with respect to the monomer constituting the acrylic resin P, the polymerization conversion rate is 20 to 90%. The method for producing an acrylic acrylate resin Q having a (meth) acryloyl group in a side chain according to any one of claims 7 to 13, wherein a late suspension stabilizer is added at the time of reaching%. .
  15.  初期懸濁安定剤がノニオン系水溶性高分子、及び/または水難溶性の無機微粒子であることを特徴とする、請求項14に記載の、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 The acrylic acrylate resin Q having a (meth) acryloyl group in a side chain according to claim 14, wherein the initial suspension stabilizer is a nonionic water-soluble polymer and / or a hardly water-soluble inorganic fine particle. Manufacturing method.
  16.  初期懸濁安定剤がノニオン系水溶性高分子であることを特徴とする、請求項14に記載の、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 The method for producing an acrylic acrylate resin Q having a (meth) acryloyl group in a side chain according to claim 14, wherein the initial suspension stabilizer is a nonionic water-soluble polymer.
  17.  初期懸濁安定剤を使用せずに重合を開始することを特徴とする、請求項7~16いずれか一項に記載の、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 The method for producing an acrylic acrylate resin Q having a (meth) acryloyl group in a side chain according to any one of claims 7 to 16, wherein the polymerization is started without using an initial suspension stabilizer. .
  18.  ノニオン系水溶性高分子がポリオキシエチレン-ポリオキシプロピレンブロック共重合体であることを特徴とする、請求項15または16に記載の、側鎖に(メタ)アクリロイル基を有するアクリルアクリレート樹脂Qの製造方法。 The nonionic water-soluble polymer is a polyoxyethylene-polyoxypropylene block copolymer, and the acrylic acrylate resin Q having a (meth) acryloyl group in a side chain according to claim 15 or 16, Production method.
PCT/JP2011/007289 2011-01-06 2011-12-27 Acryl acrylate resin production method WO2012093465A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012551762A JP5863673B2 (en) 2011-01-06 2011-12-27 Method for producing acrylic acrylate resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011001345 2011-01-06
JP2011-001345 2011-01-06

Publications (1)

Publication Number Publication Date
WO2012093465A1 true WO2012093465A1 (en) 2012-07-12

Family

ID=46457333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007289 WO2012093465A1 (en) 2011-01-06 2011-12-27 Acryl acrylate resin production method

Country Status (3)

Country Link
JP (1) JP5863673B2 (en)
TW (1) TW201235364A (en)
WO (1) WO2012093465A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051915A1 (en) * 2014-09-29 2016-04-07 株式会社スリーボンド Curable resin composition
WO2017038731A1 (en) * 2015-08-28 2017-03-09 株式会社日本触媒 Organic polymer fine particles
WO2019086793A1 (en) 2017-10-30 2019-05-09 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a specific amine and a crosslinking system based on peroxide and an acrylate derivative
WO2019106292A1 (en) 2017-11-29 2019-06-06 Compagnie Generale Des Etablissements Michelin Rubber composition, the crosslinking system of which comprises a blend of peroxides and an acrylate derivative
WO2020038763A1 (en) 2018-08-23 2020-02-27 Compagnie Generale Des Etablissements Michelin Tyre having a composition comprising an ethylene-rich elastomer, a peroxide and a specific acrylate derivative
WO2020216635A1 (en) 2019-04-26 2020-10-29 Compagnie Generale Des Etablissements Michelin Tyre for a manually transportable vehicle wheel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525217A (en) * 1991-07-18 1993-02-02 Sumitomo Chem Co Ltd Production of methacrylic resin
JPH10212329A (en) * 1997-01-31 1998-08-11 Jsr Corp Radiation-curable resin composition
JP2000159821A (en) * 1998-11-27 2000-06-13 Sumitomo Chem Co Ltd Production of methyl methacrylate based polymer bead
JP2001220415A (en) * 1999-11-19 2001-08-14 Sanyo Chem Ind Ltd Method for producing water absorbing resin
JP2009161589A (en) * 2007-12-28 2009-07-23 Mitsubishi Rayon Co Ltd Syrup composition, cured material of it, and coating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525217A (en) * 1991-07-18 1993-02-02 Sumitomo Chem Co Ltd Production of methacrylic resin
JPH10212329A (en) * 1997-01-31 1998-08-11 Jsr Corp Radiation-curable resin composition
JP2000159821A (en) * 1998-11-27 2000-06-13 Sumitomo Chem Co Ltd Production of methyl methacrylate based polymer bead
JP2001220415A (en) * 1999-11-19 2001-08-14 Sanyo Chem Ind Ltd Method for producing water absorbing resin
JP2009161589A (en) * 2007-12-28 2009-07-23 Mitsubishi Rayon Co Ltd Syrup composition, cured material of it, and coating method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051915A1 (en) * 2014-09-29 2016-04-07 株式会社スリーボンド Curable resin composition
CN106715499A (en) * 2014-09-29 2017-05-24 三键有限公司 Curable resin composition
JPWO2016051915A1 (en) * 2014-09-29 2017-09-21 株式会社スリーボンド Curable resin composition
CN106715499B (en) * 2014-09-29 2019-04-16 三键有限公司 Hardening resin composition
US10774166B2 (en) 2014-09-29 2020-09-15 Three Bond Co., Ltd. Curable resin composition
WO2017038731A1 (en) * 2015-08-28 2017-03-09 株式会社日本触媒 Organic polymer fine particles
WO2019086793A1 (en) 2017-10-30 2019-05-09 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a specific amine and a crosslinking system based on peroxide and an acrylate derivative
WO2019106292A1 (en) 2017-11-29 2019-06-06 Compagnie Generale Des Etablissements Michelin Rubber composition, the crosslinking system of which comprises a blend of peroxides and an acrylate derivative
WO2020038763A1 (en) 2018-08-23 2020-02-27 Compagnie Generale Des Etablissements Michelin Tyre having a composition comprising an ethylene-rich elastomer, a peroxide and a specific acrylate derivative
FR3085166A1 (en) 2018-08-23 2020-02-28 Compagnie Generale Des Etablissements Michelin TIRE PROVIDED WITH A COMPOSITION COMPRISING AN ETHYLENE-RICH ELASTOMER, A PEROXIDE AND A SPECIFIC ACRYLATE DERIVATIVE
WO2020216635A1 (en) 2019-04-26 2020-10-29 Compagnie Generale Des Etablissements Michelin Tyre for a manually transportable vehicle wheel
FR3095447A1 (en) 2019-04-26 2020-10-30 Compagnie Generale Des Etablissements Michelin MANUALLY TRANSPORTABLE VEHICLE WHEEL BANDAGE

Also Published As

Publication number Publication date
JP5863673B2 (en) 2016-02-17
TW201235364A (en) 2012-09-01
JPWO2012093465A1 (en) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5863673B2 (en) Method for producing acrylic acrylate resin
JP3400530B2 (en) Abrasion resistant coating composition
JP5483810B2 (en) Resin composition
CN107001496B (en) Active energy ray-curable resin composition, coating material, coating film, and film
EP2371871A1 (en) Curable composition comprising inorganic oxide microparticles that are surface-modified with maleimide groups
JP2010100817A (en) Active energy ray-curable resin composition for coating and film substrate
JP5499501B2 (en) Adhesive composition
CN108276932A (en) A kind of dual cure UV glue stick for low-surface-energy material bonding
JP2010260905A (en) Photocurable composition
JP4038600B2 (en) Hydroxyalkylphenone derivatives and uses thereof
JP5762212B2 (en) Active energy ray-curable composition and method for producing the composition
JP2005240044A (en) Acrylic syrup resin composition, uv-curing acrylic sheet using the same, and production method for the sheet
JP3164431B2 (en) Abrasion resistant UV curable coating composition
JP2003048929A (en) Curable resin composition
JP3443970B2 (en) Photopolymerizable resin composition
JPH0741695A (en) Abrasion-resistant coating composition
JP2021105170A (en) Active energy ray-curable composition and method for producing the same
JP2011021179A (en) Method for producing pressure-sensitive adhesive sheet
JP2017179005A (en) Curable composition and cured product using the same
JP3782670B2 (en) Curable composition for coating, coated article, outer plate for automobile, and active energy ray-curable composition
JP2002080509A (en) Maleimide vinyl ether derivative and photocurable resin composition containing the same
JP2003212937A (en) Resin composition and cured article thereof
JP7429483B2 (en) Coating composition, adhesive or non-adhesive coating layer comprising the coating composition, and laminate comprising these coating layers
JP7443106B2 (en) Laminate and method for manufacturing the laminate
JP2017218510A (en) Active energy ray polymerizable composition and cured product of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551762

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854592

Country of ref document: EP

Kind code of ref document: A1