WO2012093441A1 - Door control system for elevator - Google Patents

Door control system for elevator Download PDF

Info

Publication number
WO2012093441A1
WO2012093441A1 PCT/JP2011/006927 JP2011006927W WO2012093441A1 WO 2012093441 A1 WO2012093441 A1 WO 2012093441A1 JP 2011006927 W JP2011006927 W JP 2011006927W WO 2012093441 A1 WO2012093441 A1 WO 2012093441A1
Authority
WO
WIPO (PCT)
Prior art keywords
engagement
door
torque
elevator
output
Prior art date
Application number
PCT/JP2011/006927
Other languages
French (fr)
Japanese (ja)
Inventor
政之 垣尾
宇都宮 健児
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112011104681.2T priority Critical patent/DE112011104681B4/en
Priority to JP2012551751A priority patent/JP5575272B2/en
Priority to KR1020137017481A priority patent/KR101506416B1/en
Priority to CN201180064076.5A priority patent/CN103282300B/en
Publication of WO2012093441A1 publication Critical patent/WO2012093441A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B13/00Doors, gates, or other apparatus controlling access to, or exit from, cages or lift well landings
    • B66B13/02Door or gate operation
    • B66B13/14Control systems or devices
    • B66B13/143Control systems or devices electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B13/00Doors, gates, or other apparatus controlling access to, or exit from, cages or lift well landings
    • B66B13/02Door or gate operation
    • B66B13/14Control systems or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B13/00Doors, gates, or other apparatus controlling access to, or exit from, cages or lift well landings
    • B66B13/02Door or gate operation
    • B66B13/12Arrangements for effecting simultaneous opening or closing of cage and landing doors

Definitions

  • the present invention relates to a control device for opening / closing an elevator door, and to a technique for detecting engagement between a car-side door and a landing-side door.
  • an elevator door is composed of a total of four doors, two left and right car doors provided on the car side and two left and right landing doors provided on the landing side.
  • the car side door and the landing side door are engaged to open and close in conjunction.
  • the car side door and the drive belt provided on the upper portion of the door are connected by a connecting tool.
  • the drive belt is endless and has an elliptical shape that is long in the horizontal direction, and is wound around and stretched around both of the two wrapping wheels provided in the door upper device. With this configuration, the drive belt is rotated by the rotation of the winding wheel, so that the door is opened and closed.
  • Patent Document 1 discloses a technique for reducing a useless low-speed driving time by providing a detector for detecting an engagement gap and controlling a door according to the output of the detector.
  • Patent Document 2 discloses a technique for detecting an engagement position from a change in torque of an electric motor.
  • Patent Document 3 discloses a technique for estimating the mass from changes in the torque and angular velocity of the electric motor and detecting the engagement position.
  • JP 03-293283 A (page 8, FIG. 1) JP 2007-15787 A (page 6) JP 2009-214952 A
  • Patent Document 1 If the technique shown in the above-mentioned Patent Document 1 is used, it is possible to surely reduce the useless low-speed driving time and improve the operation efficiency of the elevator. However, since it is necessary to newly provide a sensor for detecting the engagement gap, there is a problem that the apparatus becomes complicated and large. In addition, a sensor for detecting such an engagement gap is generally expensive.
  • Japanese Patent Laid-Open No. 2004-228561 determines engagement from changes in motor torque and angular velocity during engagement.
  • This technology uses the information of the motor speed sensor and current sensor (the control current is almost proportional to the torque) necessary for normal control to determine the engagement of the door. Therefore, there is an advantage that the apparatus can be prevented from becoming complicated, large and expensive.
  • speed fluctuations and torque fluctuations are also caused by factors other than the engagement of the doors, such as friction generated in the lower part of the car-side door and the landing-side door, clogging of the door and the sill, etc. There was a problem.
  • the degree of fluctuation in speed and torque due to engagement also depends on the degree of contact of the engagement device (engagement vane and engagement roller), the spring constant of the drive belt, friction with the rails of the car-side door and the landing-side door, Since it fluctuates due to various factors such as the control algorithm of the electric motor for driving the vehicle, there is also a problem that it is unclear how to set the threshold value for detecting the engagement. Furthermore, since the detection threshold is unclear, it is necessary to evaluate the detection of engagement including not only sensor information at the time of engagement but also sensor information for a predetermined period before and after the engagement.
  • the engagement cannot be detected in real time, and in the above-mentioned patent document, the engagement position is detected after the door opening operation is completed, and the engagement position is stored for each floor.
  • a technique for changing the door angular velocity pattern using the stored engagement position is used.
  • Patent Document 3 has a problem that the update of mass estimation is delayed at low angular acceleration. In order to minimize the impact due to the engagement near the engagement, control of driving the car side door at a constant speed or low angular acceleration is common, so Patent Document 3 needs to be implemented under special control. There was a problem with it.
  • the present invention includes a car-side door that opens and closes an entrance / exit of a car of an elevator, a landing-side door that opens and closes an entrance / exit of a landing on each floor, an electric motor that opens and closes the car-side door, the car-side door, and the landing-side
  • An elevator door control system having an engagement device provided between the door and opening / closing the landing side door in conjunction with the opening / closing operation of the car side door by opening / closing driving of the electric motor, Means for calculating in advance an identification line for identifying before and after engagement between the car side door and the landing side door, using rotation detection means for detecting rotation and torque detection means for detecting the torque of the electric motor;
  • a storage means for storing the identification line, and using the rotation detection means and the output of the torque detection means obtained when the door is actually opened and closed, and the identification line
  • a elevator door control system characterized by comprising a means for sensing the engagement between the door and the landing-side door.
  • the present invention provides an elevator door control system comprising: a rotation detection unit that detects rotation of the electric motor; a current sensor that detects torque of the electric motor; the rotation detection unit; and the current sensor.
  • Means for calculating an identification line that statistically separates the time-series data obtained before and after engagement with the landing-side door, storage means for storing the identification line, and rotation detection means obtained by newly opening and closing And the output of the current sensor and the identification line are used to detect the engagement with the landing-side door. Even if there is a fluctuation, it is possible to quickly detect the engagement between the car side door and the landing side door.
  • the door opening time can be reduced, and after the door is engaged, the low speed section can be reduced to shift to the acceleration operation, so that the low noise and low vibration performance due to the low speed engagement is maintained, There is a remarkable effect that the operation efficiency of the elevator can be improved.
  • FIG. 2 is a block diagram showing a control algorithm in Embodiment 1.
  • FIG. It is a figure which shows the example of the mechanical door closing force depending on a door position. The amount of movement of the car side door from the door opening and the area before and after the engagement is guaranteed. It is an ideal angular acceleration and torque plane before and after engagement when the door is opened.
  • the engagement position is detected from the intersection of the obtained identification line and the new time-series data of angular acceleration and torque. It is a plane of actual angular acceleration and torque before and after engagement when the door is opened. It is a figure which shows the improvement effect of the angular velocity pattern by this invention. It is a plane of actual angular velocity and torque integration before and after engagement when the door is opened. It is a plane of angular acceleration and torque that vary with a low-pass filter. It is the figure which showed the method of determining an identification line by selecting two points each before and after engagement. It is the figure which showed the identification line which changes with how to select the point after engagement. It is the figure which showed the method of determining an identification line by selection of 2 points
  • FIG. 20 is a block diagram showing a control algorithm in the eighth embodiment. It is a block diagram which shows the control algorithm in Embodiment 1 in case a motor is an induction motor or an embedded magnet synchronous motor.
  • FIG. 20 is a block diagram showing a control algorithm in Embodiment 8 when the electric motor is an induction motor or an embedded magnet synchronous motor.
  • FIG. 1 to 3 show the configuration of an elevator door device according to Embodiment 1 of the present invention.
  • FIG. 1 is a front view showing a car-side door of an elevator
  • FIG. 2 is a front view showing a landing-side door of the elevator
  • FIG. 3 is a top view showing a relationship between the car-side door and the landing-side door.
  • an engagement vane 2 for engaging the landing-side door 6 is installed on one of the two car-side doors 1.
  • an engagement roller 7 is provided on one of the two landing-side doors 6 so as to correspond thereto.
  • the engagement vane 2 installed on one of the car-side doors 1 sandwiches and holds the engagement roller 7 installed on one of the landing-side doors 6.
  • the landing door 6 is opened and closed in conjunction with the opening and closing operation of the car side door 1.
  • the engagement vanes 2 and the engagement rollers 7 are collectively referred to as an engagement device. Further, since the two landing-side doors 6 are connected, when the landing-side door 6 on the side where the engagement roller 7 is installed is operated by the electric motor 5 via the engagement vane 2 and the engagement roller 7, the other side The landing side door 6 also moves in the opposite direction to open and close the doorway.
  • the elevator door device has the electric motor 5 installed in the car-side door 1, and has a mechanism for engaging and closing the landing-side door 6 on each floor.
  • the engagement vane 2 and the engagement roller 7 need to be installed so that they do not come into contact with each other when the elevator car 8 is running. It is installed to become. Since the elevator car 8 has a structure that moves not only in the vertical (running) direction but also in the left and right front-rear direction due to uneven load and vibration, the engagement gap 9 needs to be wide to some extent so as to absorb the vibration.
  • FIG. 5 is a block diagram showing an internal configuration of the door controller 4 provided in the elevator door device according to Embodiment 1 of the present invention.
  • the door controller 4 includes an angular velocity pattern generator 12, a subtractor 20, a speed controller 13, a subtractor 21, a current controller 14, differentiators 22, 23, and a gain. 24, a known torque converter 15, a subtractor 19, an identification line calculator 17, a door engagement detector 16, and a storage means 3 are provided.
  • a door controller 4 is connected to the electric motor 5, and a rotation detecting means 10 that detects the rotation of the electric motor 5 is connected.
  • the rotation detection means is also connected to a current sensor 11 that detects torque generated by the electric motor 5.
  • the angular velocity pattern generator 12 outputs an angular velocity command value to the subtracter 20. From the output angular velocity command value, the rotational angular velocity value obtained by differentiating the rotational angle detected by the rotation detecting means 10 with the differentiator 22 is subtracted by the subtractor 20 to obtain the angular velocity deviation.
  • the speed controller 13 uses the angular speed deviation to obtain a current command value that causes the actual angular speed to follow the angular speed command value.
  • the obtained current command value is calculated by the subtractor 21 and the current value detected by the current sensor 11, and the deviation is output from the subtractor 21.
  • the drive voltage 18 is determined by the current controller 14 based on the deviation, and the electric motor 5 is driven by the drive voltage 18.
  • the torque constant Ke is multiplied by the gain 24 by the angular acceleration obtained by the differentiation process by the differentiator 22 and the current value detected by the current sensor 11 ( A product obtained by multiplying the output of the current sensor 11 by a gain 24 is referred to as torque detecting means), and an identification line for separating before and after engagement is calculated using the torque of the obtained electric motor.
  • the torque due to the mechanical door closing force (same as “known torque” described below; the same applies hereinafter) is a value corresponding to the position of the door as shown in FIG. 6, and the rotation angle ( Based on the position information), the known torque converter 15 calculates the position-dependent torque added to the electric motor 5.
  • Torque ⁇ (k) is calculated from a value obtained by subtracting the known torque from the output of the gain 24 (torque obtained from the current sensor 11) by the subtractor 19. If such subtraction is not performed and the ratio of the known torque to the output of the gain 24 is large, the engagement is erroneously detected.
  • the calculation of the torque ⁇ (k) may be detected correctly without performing the processing in the subtracter 19. However, by performing subtraction, it is possible to reduce the possibility of erroneously detecting engagement when the ratio of the known torque to the output of the torque detection means 24 is large.
  • the torque of the electric motor 5 is calculated.
  • the torque is proportional to the current. Therefore, the torque can be calculated by using the gain 24 for the current value detected by the current sensor 11. is there.
  • the slip amount can be derived by calculating the voltage and frequency of the drive voltage 18 to the motor and the angular velocity of the motor from the rotation detecting means 10, and the torque can be calculated from the equation (1).
  • Torque_im is the torque of the induction motor
  • s is the slip amount
  • V is the drive voltage
  • f is the frequency of the drive voltage
  • p is the number of poles
  • r1 and r2 are circuits used in the equivalent circuit of the motor. It is a constant.
  • the coefficient 3 is a value when the circuit constant of the equivalent circuit is determined for each phase, and is 1 when the three phases are collectively set as the circuit constant.
  • Torque_ipm is the torque of the interior permanent magnet synchronous motor
  • ⁇ a is the flux linkage by the permanent magnet
  • L d and L q are the two-phase inductances when the coordinates are converted, and are constants given in advance
  • i d and i q are two-phase current values obtained by coordinate transformation of the current values obtained by the current sensor 11. Therefore, the torque is calculated by the formula (2) in the special torque detecting means 44 shown in FIG. 18 in the embedded magnet synchronous motor.
  • the special torque detection means 44 calculates the torque by the equation (1), and when the embedded magnet synchronous motor is selected, the special torque detection means 44.
  • the torque is calculated by the equation (2).
  • inertia (moment of inertia) in the rotation direction of the motor due to the mass of the door and running resistance used in the engagement detection algorithm which is a feature of the present invention will be described. Assuming that the distance from the rotating shaft of the electric motor to the center of gravity of the door is constant, the inertia of the rotating shaft of the electric motor in terms of the mass of the door and the mass of the door have a constant ratio. Further, the running resistance and the mass caused by the friction when driving the door also have a constant ratio.
  • J and T fluctuate before and after such a rapid increase in mass, and before engagement, they are related from J b and T b. After the combination, it changes to a constant such as J a and T a .
  • a J b ⁇ J a, T b ⁇ T a a constant such as J a and T a.
  • the slope of the straight line (straight line before engagement) it is possible to determine the T b is the J b and the intercept.
  • J a and T a after engagement are all time-series data from X + ⁇ to fully open, or a few sampled points where it is guaranteed that they are not engaged, as in the calculation method before engagement.
  • J a that is the slope of the straight line) and T a that is the intercept can be obtained.
  • the time series data of the angular acceleration obtained by the rotation detecting means 10 and the torque obtained by the current sensor 11 are considered, and these time series data are drawn in the relationship diagram between the angular acceleration and torque shown in FIG. (Hereinafter, in FIG. 9 and FIG. 13, the locus 25 is similarly indicated by an arrow. In FIG. 12, the locus 38 of the relationship diagram between the angular velocity and the torque integration is indicated by an arrow). Since the inertia and the running resistance change due to the engagement, the group 26 before the engagement and the group 27 after the engagement become linear, and the identification line 28 can be identified by a straight line. Since the group 26 before engagement and the group 27 after engagement are both linear, they are V-shaped around the vicinity of the engagement, and may be linearly separable using an appropriate method. Recognize.
  • a non-linear identification line is obtained.
  • a non-linear identification line may be used as long as it can be separated with high reliability near the engagement.
  • the inertia (moment of inertia) and the running resistance of the control object fluctuate before and after the engagement, by evaluating the fluctuating angular acceleration and torque, and has a good discrimination performance.
  • an identification line can be defined, it is possible to identify before and after engagement.
  • the straight line representing the pre-engagement and the straight line representing the post-engagement are divided into two, the relationship with the group before the engagement.
  • An identification line 28 identifying the group after joining can be constructed.
  • the identification line calculator 17 pre-calculates the equation (4) using the inertia derived from the time series data of the angular acceleration and torque, and the angular acceleration newly obtained as shown in FIG. 9 when the door is actually opened and closed. When the torque and time series data are superimposed, the intersection 29 intersecting with the equation (4) is estimated to be engaged, so that immediate engagement detection is possible.
  • the identification line 28 derived here is stored in the storage means 3.
  • the door engagement detector 16 has an angular acceleration a (k) and a torque ⁇ (k) that change in real time when the door is actually opened and closed, and tan (4) calculated in advance and stored in the storage means 3.
  • (J b ⁇ T a ⁇ J a ⁇ T b ⁇ (T a ⁇ T b ) ⁇ tan ((tan ⁇ 1 (J a ) + Tan ⁇ 1 (J b )) / 2) / (J b ⁇ J a ) is held, and it is continuously detected whether or not it is engaged as the angular acceleration and torque change.
  • acceleration is started immediately, so it is possible to respond quickly to changes in the engagement gap caused by the inclination of the car due to the in-car load. Acceleration is possible after proper and sensitive engagement detection.
  • FIG. 10 shows an example of door engagement detection using the present invention.
  • the door movement distance until the engagement can be measured, the time from the actual engagement until the engagement is detected, and the conventional engagement detection.
  • the shortening amount 31 from the timing 30 where acceleration was performed without performing the acceleration detection to when the engagement was detected is known.
  • the amount of shortening 31 can be found by looking at the time, and the amount of time shortening by engagement detection can be seen by looking at the position of the door at each time. From this result, it was confirmed that engagement was detected in real time and the door opening time was reduced.
  • the remaining door opening distance and the angular velocity pattern up to the fully opened position are recalculated by the angular velocity pattern generator 12 in accordance with the engagement detection.
  • the angular velocity pattern 33 in FIG. 11 by immediately accelerating 42 after detecting the engagement, the low speed section is shortened, and the driving time at the maximum speed is adjusted slightly longer than the conventional speed pattern 32.
  • the maximum opening width of the door is given in the specification, and the movement distance of the door is measured by the rotation detecting means 10, so that the maximum driving time can be extended or shortened by being sent to the subtracter 20 as a speed command value. As a result, the door opening time is shortened like the shortening time 43 when fully opened.
  • the identification line calculator 17 detects the engagement between the car-side door 1 and the landing-side door 6, and uses the door engagement detector 16 and the new time acceleration and torque time-series data.
  • the output of the angular velocity pattern generator 12 can be changed as appropriate according to the engaged door position. This makes it possible to detect different engagements under the respective conditions, and after engagement, it is possible to reduce the low speed section and shift to acceleration operation, so that low noise and low vibration performance due to low speed engagement are maintained. As a result, useless low-speed driving time can be reduced, and the operation efficiency of the elevator can be improved.
  • the current of the electric motor 5 is detected and the torque of the electric motor 5 is obtained.
  • the torque may be directly obtained using a torque sensor.
  • the torque used for the engagement detection may be a current command value that is an output of the speed controller 13, and the angular acceleration is derived using a secondary differential filter other than that using the primary differentiators 22 and 23. But it ’s okay.
  • the angular acceleration was obtained from the rotation detecting means 10 using the primary differentiators 22 and 23, the angular acceleration measured by the angular accelerometer was obtained by using only the primary differentiator 23, and the angular acceleration measured by the angular accelerometer was directly obtained. The one used may be used.
  • the area calculation before and after the engagement can be calculated every time considering the running resistance that fluctuates due to deterioration and installation conditions, but once every few times or once every few weeks It is also possible to carry out learning with a value learned at the factory or once at the time of installation or at the factory.
  • the rotation detecting means 10 of the electric motor 5 used in the present embodiment may be a resolver or encoder that is an angle meter.
  • the position, speed, acceleration, and the like of a door or a gear or belt between the door and the motor may be measured and converted into a rotation direction to serve as a rotation detection unit.
  • sensorless drive control using this information (reference: Shinnaka “Permanent Magnet Synchronous Motor Vector Control Technology, Volume 2-Sensorless Drive Control” No. 1 ”, Denpa Shimbun, December 15, 2008, p.28-29).
  • Obtaining the rotation information of the electric motor 5 in this way is advantageous in terms of the cost of mounting the rotation detecting means 10, the cost of maintenance, and the mounting space.
  • a linear drive linear motor or pneumatic / hydraulic actuator is used, and a position sensor, a speed sensor, an acceleration sensor, etc. are used instead of the rotation detection means 10. It may be used.
  • the car-side door 1 that opens and closes the entrance / exit of the elevator car 8 the landing-side door 6 that opens and closes the entrance / exit of the landing on each floor, and the car-side door 1 are opened and closed.
  • An electric motor 5 is provided between the car-side door 1 and the landing-side door 6, and has an engagement device that opens and closes the landing-side door 6 in conjunction with the opening and closing operation of the car-side door 1 by opening and closing driving of the electric motor 5.
  • the rotation detection means 10 for detecting the rotation of the electric motor 5 the current sensor 11 for detecting the torque of the electric motor 5
  • the angular acceleration information obtained from the output of the rotation detection means 10 the current sensor 11 Since the door engagement detector 16 is provided with the torque information to be input as input, it can be seen that the engagement can be detected in real time and the door opening time can be reduced.
  • the angular velocity pattern generator 12 that generates the rotational angular velocity of the electric motor 5 is provided and the output of the angular velocity pattern generator 12 is changed from the output of the door engagement detector 16.
  • Different engagement detection is possible under each condition, and after engagement, it is possible to reduce the low speed section and shift to acceleration operation, so it is useless while maintaining low noise and low vibration performance due to low speed engagement.
  • the low-speed driving time can be reduced and the operation efficiency of the elevator can be improved.
  • the door engagement detector is an electric current. Since the input obtained by subtracting the output of the known torque converter 15 from the torque information obtained from the sensor 11 can be removed in advance, the known torque determined by the door position can be removed in advance, so that highly accurate detection is possible. Become.
  • a straight line that bisects the straight line representing before and after the engagement into two equal angles is selected for the construction of the identification line 28.
  • the accuracy of the engagement detection varies depending on the mechanical specifications.
  • the identification line 28 may be constructed using a weighted angle instead of an equal angle for the purpose of preventing false detection or speeding up engagement detection. .
  • the identification line 28 is also a method of constructing the identification line 28 by adding a mechanical door closing force for the landing side door 37 to the landing side door 37 in order to increase the difference or ratio between the inertia before and after the engagement and the running resistance.
  • the mechanical door closing force for the landing-side door uses a weight and a pulley to change gravity into a force in the door closing direction or generate a force in the door closing direction by a spring force.
  • the identification line 28 may be constructed using a mechanical door closing force for the landing side door.
  • Embodiment 2 the time series data of angular acceleration and torque before and after engagement are viewed as a group, and a straight line that statistically separates the group from each other is constructed as the identification line 28.
  • the plane that separates the groups from each other maximizes the margin (the plane that selects the smallest distance among all the linear distances between the elements that constitute the group and the group, and if the data can be linearly identified, The minimum distance is equally divided, that is, a plane including a point to be maximized).
  • the identification line is configured by the method of the present embodiment based on the angular acceleration and torque variation measured in the present embodiment, the engagement can be identified even with unlearned new data. However, since the present embodiment uses two dimensions of angular acceleration and torque, the identification line is a straight line.
  • the elements of the group before and after the engagement of the data to be learned (determining whether the elements of the group are before or after engagement).
  • labeling is performed using a position where it can be surely engaged or not engaged.
  • the engagement gap is expressed in a format such as X ⁇ ⁇ (cage-side door movement amount with the fully closed state as the origin)
  • X ⁇ is the group 26 before engagement.
  • X + ⁇ it can be seen that the group 27 is engaged.
  • the identification line 28 is determined using the angular acceleration and torque data that have been labeled before and after the engagement, but it is not necessary to limit to the method of the present embodiment for the determination.
  • general pattern recognition algorithms such as vector machine (SVM), hidden Markov model (HMM), and DP matching
  • the features to be identified for example, the group 26 before engagement and the group 27 after engagement are linear).
  • SVM vector machine
  • HMM hidden Markov model
  • DP matching the features to be identified (for example, the group 26 before engagement and the group 27 after engagement are linear). Can be determined.
  • identification methods such as principal component analysis and k-means (k-means) are pre-labeled and do not use information, the reliability of the identification line is reduced, but the identification line can be set. is there.
  • the method of maximizing the margin for determining the identification line but also for the purpose of suppressing vibrations, for the purpose of giving a likelihood until acceleration after engagement
  • a method of slightly shifting the identification line to the side after engagement when viewed from the group before joining In order to satisfy this, a method is conceivable in which the weight of the distance from the group after engagement to the identification line is made smaller than the distance from the group before engagement to the identification line.
  • the data range before and after the engagement is part of the section where the noise resistance is strong because the transition is not transitional or the external force is not applied in all the sections before and after the engagement. It is also possible to select by selecting.
  • the intersection 29 of the time series data 25 and the identification line 28 represents immediately after the engagement, and the time series data is the intersection 29.
  • the value exceeds the value it is possible to identify whether or not it is engaged, that is, to detect that it is engaged.
  • the identification line is set by using the angular acceleration and the torque, but the angular velocity and the torque integrated value can be used as the other state variables obtained by the rotation detecting means 10 and the current sensor 11.
  • An identification line 28 similar to 1 can be defined.
  • the angular velocity and torque integral value can remove minute noise generated by the time series data of angular acceleration and torque by averaging and can enhance noise resistance. Also, if the angular velocity is obtained by differentiating to calculate the angular acceleration, the influence of the delay due to the use of the filter occurs, but the influence can be removed.
  • the identification line 28 can be configured by the same method as in the first and second embodiments.
  • Such an identification line can be configured by using another state variable such as an angle or a differential value of torque, and can detect engagement regardless of the selection of the state variable.
  • Embodiment 4 the angular acceleration is obtained by using the rotation detecting means 10, but the angular acceleration information sometimes has a lot of noise, so it is necessary to use a low-pass filter.
  • the time-series data as a whole approaches the start side of the door opening as shown in FIG.
  • the position of X- ⁇ and the actual engagement position also approach the door opening start side.
  • the identification line 28 is not affected by variations in the X- ⁇ position or the actual engagement position, the detection is delayed.
  • the order of the low-pass filter is lowered or the cut-off frequency is increased, the noise resistance is weakened, so that there is a high possibility that engagement is erroneously detected due to minute noise.
  • the amount of noise varies depending on the device and the environment in which the device is placed. If the above-mentioned relationship is considered and the low-pass filter is designed with a lower order or a higher cut-off frequency, false detection will occur due to noise. If the order of the low-pass filter is increased or the cut-off frequency is reduced to prevent erroneous detection, engagement detection without erroneous detection can be performed.
  • Embodiment 5 In this embodiment, two arbitrary points are taken from the group before the engagement, and two arbitrary points are taken from the group that is guaranteed after the engagement, and a straight line is drawn using the two points before the engagement, and the inclination thereof And the intercepts are J b and T b . Similarly, J a and T a are derived using the two points after engagement. Using them, an identification line is formed by Equation (4). However, since the two points before and after the engagement are as far as possible from each other, it is not a straight line that captures the local inclination (inertia) and intercept (running resistance) after the engagement and after the engagement. The average straight line before and after the engagement can be expressed, and the performance of the identification line is improved.
  • the fifth embodiment it is not necessary to perform a complicated calculation with a large amount of calculation like the least square method in order to calculate the inertia and the running resistance, and variables can be held with a relatively small memory. .
  • the same effect as in the first to fourth embodiments can be obtained, and an identification line that does not cause erroneous identification can be drawn with a relatively small memory and calculation amount.
  • an identification line having a maximum margin is configured using two arbitrary points from the group before engagement and one point near X + ⁇ in the group that is guaranteed after engagement. However, if the two points before the engagement are as far as possible, local inertia and running resistance are not captured, and the performance of the identification line is improved. Further, as shown in FIG. 15, as the point after engagement becomes farther from X + ⁇ (see arrow 34 in FIG. 15), the identification line becomes farther from the group before engagement (see arrow 35 in FIG. 15). X + ⁇ is better.
  • the identification line is determined using the angular acceleration and the torque at the point where the maximum torque before engagement is obtained at one of the two points before engagement, the slope is the same as the group before engagement, and the intercept is Since it is larger than the group before the engagement, the intersection point 29 does not intersect with the group before the engagement, and erroneous identification is eliminated.
  • the same effect as in the fifth embodiment can be obtained, and an identification line that does not cause erroneous identification can be drawn with a relatively small memory and calculation amount.
  • Embodiment 7 FIG.
  • an identification line is configured using two arbitrary points from the group before engagement. However, if the two points before the engagement and the two points after the engagement are as far apart as possible, local inertia and running resistance are not captured, and the performance of the identification line is improved.
  • the inertia and running resistance change from the state of only the car-side door to the one including the landing-side door by engagement. At this time, the mass ratio of the car side door + the landing side door 37 is only about twice from the car side door (if the mass ratio is known in advance with high accuracy, it is better to use it).
  • the inertia and running resistance after the combination are also simply doubled.
  • the representative line before engagement is represented by 36
  • the representative line after engagement in which the inclination and intercept of 36 are doubled is represented by 37.
  • the same effects as those of the sixth embodiment can be obtained, and an identification line that does not cause erroneous identification can be drawn with a minimum memory and a calculation amount.
  • FIG. 17 is a block diagram showing an internal configuration of the door controller 4 provided in the elevator door device according to the eighth embodiment.
  • components having the same functions as those in FIG. 5 are denoted by the same reference numerals, and description thereof is omitted here. 17 differs from the configuration in FIG. 5 in that a speed controller 41 is provided in place of the speed controller 13 in FIG. 5 and that there is a difference between the current controller 14 and the motor 5.
  • an overload detector 39 is added, and a door engagement detector / mass estimator 40 is provided instead of the door engagement detector 16.
  • FIG. 19 is a block diagram showing an internal configuration of the door controller 4 provided in the door device of the elevator according to the eighth embodiment when the electric motor is an induction motor or an embedded magnet synchronous motor. 19, components having functions equivalent to those in FIG. 18 are denoted by the same reference numerals, and description thereof is omitted here. 18 is different from the configuration in FIG. 19 in that a speed controller 41 is provided instead of the speed controller 13 in FIG. 18, and that there is a difference between the current controller 14 and the electric motor 5. In addition, an overload detector 39 is added, and a door engagement detector / mass estimator 40 is provided instead of the door engagement detector 16.
  • the door engagement detector / mass estimator 40 calculates using the method of the fifth embodiment by utilizing the fact that the ratio of inertia and mass is constant along with the engagement position detected by the door engagement detector 17. It is possible to estimate the mass before and after engagement from the estimated inertia before and after engagement.
  • the output of the speed controller 41 is changed by the output of the door engagement detector / mass estimator 40.
  • the angular velocity pattern generator 12 outputs an angular velocity command value to the electric motor 5, and the rotation angle detected by the rotation detecting means 10 from the output angular velocity command value is determined by the differentiator 22.
  • the rotational angular velocity obtained by the differentiation process is subtracted by the subtractor 20 to calculate an angular velocity deviation, and the speed controller 41 calculates a current command value such that the actual angular velocity follows the commanded angular velocity based on this angular velocity deviation.
  • the current command value is appropriately changed according to the output of the door engagement detector / mass estimator 40.
  • An example of the speed controller 41 is a PI speed controller G (s) as shown in Expression (5).
  • G (s) K sp + K si / s (5)
  • the followability to the command value of the current controller 14 is set higher than that of the speed controller 41.
  • the speed controller 41 is a PI speed controller as shown in Equation (5) under this condition
  • the cross frequency ⁇ c that is an index indicating the followability of the speed controller 41 is as shown in Equation (6).
  • ⁇ c K sp / J (6)
  • the control proportional gain K sp is changed depending on the difference in the door mass on each floor and the presence or absence of the landing side door 6 being engaged. be able to. Thereby, the followability of the control system can be kept constant regardless of the difference in the door mass on each floor and the presence or absence of the landing-side door 6, and finer control is possible.
  • Integral proportional gain K si is, for example, “Theory and design of AC servo system” (reference: Hidehiko Sugimoto, 2 others, “Theory and design of AC servo system”, 7th edition, General Electronic Publishing According to the company, July 10, 2005, p.153-157), it is set so as to satisfy equation (7).
  • K si K sp ⁇ ⁇ c / 5 (7)
  • the setting of the overload detector 39 is changed by the output of the door engagement detection / mass estimator 40.
  • the overload detector 39 determines that a human body is in contact with or sandwiched between the car side door 1 or the landing side door 6 and reverses the movement of the door. Means. Thereby, it can prevent that a big load is applied to a human body.
  • the value of the abnormality detection threshold value of the overload detector 39 is changed according to the output of the door engagement detector / mass estimator 40.
  • the torque of the electric motor 5 varies depending on the mass of the car-side door 1 and the mass of the landing-side door 6, it is desirable to change the abnormality detection threshold for detecting overload. If the present invention is used, the mass of the door moved by the electric motor 5 can be estimated, so that the overload detection threshold is increased when the estimated door mass is large, and the overload detection threshold is decreased when the estimated door mass is small. Can do. This makes it possible to detect overload with high reliability. As described above, in the eighth embodiment, the same effects as in the first to seventh embodiments can be obtained, and the following effects can be further obtained.
  • a speed controller 41 that controls the electric motor 5 from the difference between the output of the angular velocity pattern generator 12 and the rotational speed obtained from the rotation detecting means 10, and the proportional gain of the speed controller 41 is set. Since it is changed according to the door mass estimated value based on the output of the door engagement detection / mass estimator 40, the speed control system can be optimally changed according to different door masses at each floor and before and after the engagement. The same vibration and noise performance can be obtained regardless of the door mass.
  • the output of the door engagement detection / mass estimator 40 has an overload detector 39 that detects an abnormality when the torque of the electric motor 5 exceeds a predetermined detection threshold. Since the abnormality detection threshold value of the overload detector 39 is changed, an overload detection threshold value can be set according to different door masses at each floor and before and after the engagement, so that highly accurate overload detection can be performed.

Abstract

Provided is a door control system for an elevator comprising: a car door configured to open/close the doorway of the elevator car; elevator hall doors configured to open/close the elevator hall doorways of each floor; a motor configured to drive open/close operation of the car door; an engaging device provided between the car door and the elevator hall doors in order to allow an open/close operation of the elevator hall doors in conjunction with the open/close operation of the car door driven by the motor. In order to promptly detect engagement of the elevator car door and any of the elevator hall doors so as to speed up the open/close operation, this door control system for the elevator comprises: a means configured to previously calculate an area before and after engagement of the car door and the elevator hall door using the output of a rotation detecting means configured to detect rotation of the motor and output of a torque detecting means configured to detect the torque of the motor; a memory means configured to store the result of the calculation; and a means configured to detect engagement of the car door and the elevator hall door using the output of the rotation detecting means and the output of the torque detecting means upon actual open/close operation of the doors and the result of the calculation stored in the memory means.

Description

エレベーターのドア制御システムElevator door control system
この発明は、エレベーターのドアの開閉における制御装置に関するものであり、かご側ドアと乗り場側ドアの係合を検知する技術に関するものである。 The present invention relates to a control device for opening / closing an elevator door, and to a technique for detecting engagement between a car-side door and a landing-side door.
一般的に、エレベーターのドアは、かご側に設けられた左右2枚のかご側ドアと乗り場側に設けられた左右2枚の乗り場側ドアとの合計4枚のドアから構成されており、ドアの開閉時には、かご側ドアと乗り場側ドアが係合されて、連動して開閉する機構となっている。かご側ドアとドア上部に設けられた駆動ベルトとは連結具によって連結されている。当該駆動ベルトは、無端状で水平方向に長い楕円形をしており、ドア上部装置に設けられている2つの巻掛車の双方に巻き掛けられて張設されている。この構成により、巻掛車の回転により駆動ベルトが回転することにより、ドアが開閉する仕組みになっている。このとき、かご側ドアと乗り場側ドアは全閉時には接触していないため、係合するまではドアを低速で動かす必要がある(図4参照)。これは高速で動作させた場合、係合時に衝突による大きな音や振動が発生するためである。
また、乗り場側ドアの係合の可否は不明なため、係合ギャップ(図3参照)が機械的仕様上、最も大きい場合でも、係合が終了しているはずの位置まで、かご側ドア1(図1参照)が動いてから加速動作に移行する。したがって、かなり長い時間の低速駆動時間が生じ(図4参照)、結果としてエレベーターの運行効率が低下するという問題があった。
これに対し特許文献1では、係合ギャップを検出する検出器を設け、検出器の出力に応じてドアを制御することで無駄な低速駆動時間を減らす技術が開示されている。
また特許文献2には、電動機のトルク変化から係合位置を検出する技術が開示されている。
さらに特許文献3には、電動機のトルクと角速度の変化から質量を推定し、係合位置を検出する技術が開示されている。
In general, an elevator door is composed of a total of four doors, two left and right car doors provided on the car side and two left and right landing doors provided on the landing side. When the car is opened and closed, the car side door and the landing side door are engaged to open and close in conjunction. The car side door and the drive belt provided on the upper portion of the door are connected by a connecting tool. The drive belt is endless and has an elliptical shape that is long in the horizontal direction, and is wound around and stretched around both of the two wrapping wheels provided in the door upper device. With this configuration, the drive belt is rotated by the rotation of the winding wheel, so that the door is opened and closed. At this time, since the car side door and the landing side door are not in contact when fully closed, it is necessary to move the door at a low speed until the door is engaged (see FIG. 4). This is because, when operated at a high speed, a loud sound or vibration is generated due to a collision during engagement.
In addition, since it is unclear whether or not the landing side door can be engaged, even if the engagement gap (see FIG. 3) is the largest in the mechanical specification, the car side door 1 is moved to the position where the engagement should have ended. After the movement (see FIG. 1), the acceleration operation is started. Therefore, a considerably long low-speed driving time occurs (see FIG. 4), and as a result, there is a problem that the operation efficiency of the elevator is lowered.
On the other hand, Patent Document 1 discloses a technique for reducing a useless low-speed driving time by providing a detector for detecting an engagement gap and controlling a door according to the output of the detector.
Patent Document 2 discloses a technique for detecting an engagement position from a change in torque of an electric motor.
Further, Patent Document 3 discloses a technique for estimating the mass from changes in the torque and angular velocity of the electric motor and detecting the engagement position.
特開平03-293283号公報(8頁、図1)JP 03-293283 A (page 8, FIG. 1) 特開2007-15787号号公報(6頁)JP 2007-15787 A (page 6) 特開2009-214952号公報JP 2009-214952 A
上記の特許文献1に示される技術を用いると、確かに無駄な低速駆動時間を減らすことができ、エレベーターの運行効率を良くすることができる。しかしながら、新たに係合ギャップを検出するセンサを設ける必要があるため、装置が複雑化及び大型化するという問題点があった。また、そのような係合ギャップを検出するセンサは一般に高価であるという問題点もあった。 If the technique shown in the above-mentioned Patent Document 1 is used, it is possible to surely reduce the useless low-speed driving time and improve the operation efficiency of the elevator. However, since it is necessary to newly provide a sensor for detecting the engagement gap, there is a problem that the apparatus becomes complicated and large. In addition, a sensor for detecting such an engagement gap is generally expensive.
また、特許文献2は、係合時の電動機トルクや角速度の変化から係合を判断するものである。この技術は、通常の制御にもともと必要な電動機の速度センサや電流センサ(その制御電流はトルクにほぼ比例する。)の情報を利用してドアの係合を判断する技術であり、新たなセンサを必要としないため、装置の複雑化、大型化及び高価格化を防止できるという利点がある。しかしながら、速度の変動やトルクの変動は、ドアの係合以外の要因、例えばかご側ドアや乗り場側ドアの下部で生じる摩擦、ドアと敷居のゴミ詰まり等によっても生じるため、誤検出が生じやすいという問題点があった。 Japanese Patent Laid-Open No. 2004-228561 determines engagement from changes in motor torque and angular velocity during engagement. This technology uses the information of the motor speed sensor and current sensor (the control current is almost proportional to the torque) necessary for normal control to determine the engagement of the door. Therefore, there is an advantage that the apparatus can be prevented from becoming complicated, large and expensive. However, speed fluctuations and torque fluctuations are also caused by factors other than the engagement of the doors, such as friction generated in the lower part of the car-side door and the landing-side door, clogging of the door and the sill, etc. There was a problem.
また、係合による速度やトルクの変動度合いも、係合装置(係合ベーンと係合ローラ)の接触の具合、駆動ベルトのばね定数、かご側ドアや乗り場側ドアのレールとの摩擦、巻掛車を駆動するための電動機の制御アルゴリズムなど種々の要因で変動するため、係合を検知するための閾値をどのように設定すればよいか不明確であるという問題点もあった。
さらに、検知閾値が不明確であるがゆえに、係合の検知は、係合時のセンサ情報だけではなく、係合前後における一定期間以上のセンサ情報を含めて評価する必要が生じる。従って、係合の検知をリアルタイムに行うことはできず、上記の特許文献においても、一通り戸開動作を行ってから係合位置を検知し、その係合位置を各階ごとに記憶しておくことで、以降はその記憶された係合位置を利用してドア角速度パターンを変更する技術となっている。
In addition, the degree of fluctuation in speed and torque due to engagement also depends on the degree of contact of the engagement device (engagement vane and engagement roller), the spring constant of the drive belt, friction with the rails of the car-side door and the landing-side door, Since it fluctuates due to various factors such as the control algorithm of the electric motor for driving the vehicle, there is also a problem that it is unclear how to set the threshold value for detecting the engagement.
Furthermore, since the detection threshold is unclear, it is necessary to evaluate the detection of engagement including not only sensor information at the time of engagement but also sensor information for a predetermined period before and after the engagement. Accordingly, the engagement cannot be detected in real time, and in the above-mentioned patent document, the engagement position is detected after the door opening operation is completed, and the engagement position is stored for each floor. Thus, hereinafter, a technique for changing the door angular velocity pattern using the stored engagement position is used.
しかしながら、エレベーターのかごは乗客の乗り込み位置などによっても傾きが生じるため、同じ階であっても、乗客の有無や乗り込み位置によってかご側ドアと乗り場側ドアの位置関係が変化し、係合位置も変化する。したがって通常運転時においては、以前の開閉動作時に得られた係合位置は正しくなくなり、係合前に加速動作に移行したり、係合後も低速期間が継続したりするという問題点もあった。
また、特許文献3に示される技術は、低角加速度では質量推定の更新が遅れるという問題があった。係合付近では係合による衝撃を最小限に抑えるために、一定速度もしくは低角加速度でかご側ドアを駆動させる制御が一般的なため、特許文献3は特殊な制御の下で実施する必要があるとの問題があった。
However, since the elevator car is inclined depending on the passenger's boarding position, etc., even on the same floor, the positional relationship between the car side door and the landing side door changes depending on the presence or absence of the passenger and the boarding position, and the engagement position also Change. Therefore, during normal operation, the engagement position obtained during the previous opening / closing operation is not correct, and there is a problem that the operation shifts to the acceleration operation before the engagement or the low speed period continues after the engagement. .
Further, the technique disclosed in Patent Document 3 has a problem that the update of mass estimation is delayed at low angular acceleration. In order to minimize the impact due to the engagement near the engagement, control of driving the car side door at a constant speed or low angular acceleration is common, so Patent Document 3 needs to be implemented under special control. There was a problem with it.
この発明は、エレベーターのかごの出入口を開閉するかご側ドアと、各階床の乗り場の出入口を開閉する乗り場側ドアと、前記かご側ドアを開閉駆動する電動機と、前記かご側ドアと前記乗り場側ドアとの間に設けられ、前記電動機の開閉駆動による前記かご側ドアの開閉動作に連動して前記乗り場側ドアを開閉動作する係合装置を有するエレベーターのドア制御システムであって、前記電動機の回転を検出する回転検出手段と、前記電動機のトルクを検出するトルク検出手段とを用いて、あらかじめ、前記かご側ドアと乗り場側ドアとの係合の前後を識別する識別線を計算する手段と、その識別線を保存する記憶手段を持ち、実際のドア開閉時に得られる前記回転検出手段と前記トルク検出手段の出力と、前記識別線とを用いて、前記かご側ドアと乗り場側ドアとの係合を検知する手段とを備えたことを特徴とするエレベーターのドア制御システムである。 The present invention includes a car-side door that opens and closes an entrance / exit of a car of an elevator, a landing-side door that opens and closes an entrance / exit of a landing on each floor, an electric motor that opens and closes the car-side door, the car-side door, and the landing-side An elevator door control system having an engagement device provided between the door and opening / closing the landing side door in conjunction with the opening / closing operation of the car side door by opening / closing driving of the electric motor, Means for calculating in advance an identification line for identifying before and after engagement between the car side door and the landing side door, using rotation detection means for detecting rotation and torque detection means for detecting the torque of the electric motor; A storage means for storing the identification line, and using the rotation detection means and the output of the torque detection means obtained when the door is actually opened and closed, and the identification line, A elevator door control system characterized by comprising a means for sensing the engagement between the door and the landing-side door.
この発明は、上述のように、エレベーターのドア制御システムにおいて、前記電動機の回転を検出する回転検出手段と、前記電動機のトルクを検出する電流センサと、前記回転検出手段と前記電流センサとから得られる時系列データを前記乗り場側ドアとの係合前後で統計的に分離する識別線を計算する手段と、前記識別線を保存する記憶手段と、新たに開閉することによって得られる前記回転検出手段と前記電流センサの出力と前記識別線を用いて、前記乗り場側ドアと係合したことを検知するようにしたので、制御手法によらず、また、階床や偏荷重などよってドアの係合距離の変動があっても、かご側ドアと乗り場側ドアの係合を素早く検知できる。従って、戸開時間を減らすことができ、また、ドア係合後、低速区間を減らして加速動作に移行することができるので、低速での係合による低騒音と低振動性能を保持したまま、エレベーターの運行効率を良くすることができるという顕著な効果を奏する。 As described above, the present invention provides an elevator door control system comprising: a rotation detection unit that detects rotation of the electric motor; a current sensor that detects torque of the electric motor; the rotation detection unit; and the current sensor. Means for calculating an identification line that statistically separates the time-series data obtained before and after engagement with the landing-side door, storage means for storing the identification line, and rotation detection means obtained by newly opening and closing And the output of the current sensor and the identification line are used to detect the engagement with the landing-side door. Even if there is a fluctuation, it is possible to quickly detect the engagement between the car side door and the landing side door. Therefore, the door opening time can be reduced, and after the door is engaged, the low speed section can be reduced to shift to the acceleration operation, so that the low noise and low vibration performance due to the low speed engagement is maintained, There is a remarkable effect that the operation efficiency of the elevator can be improved.
一般的なエレベーターのかご側ドア装置の正面図である。It is a front view of the car side door apparatus of a common elevator. 一般的なエレベーターの乗り場側ドア装置の正面図である。It is a front view of the landing side door device of a general elevator. かご側ドア装置と乗り場側ドア装置の関係を示す上面図である。It is a top view which shows the relationship between a car side door apparatus and a landing side door apparatus. 一般的なエレベーターのドア開時の角速度パターンを示す図である。It is a figure which shows the angular velocity pattern at the time of the door opening of a general elevator. 実施の形態1における制御アルゴリズムを示すブロック線図である。2 is a block diagram showing a control algorithm in Embodiment 1. FIG. ドア位置に依存ずる機械的戸閉力の例を示す図である。It is a figure which shows the example of the mechanical door closing force depending on a door position. かご側ドアの戸開からの移動量と、係合前及び係合後が保障される領域。The amount of movement of the car side door from the door opening and the area before and after the engagement is guaranteed. 戸開時の係合前後の理想的な角加速度とトルクの平面である。It is an ideal angular acceleration and torque plane before and after engagement when the door is opened. 求めた識別線と、新たな角加速度とトルクの時系列データの交点から係合位置を検知する。The engagement position is detected from the intersection of the obtained identification line and the new time-series data of angular acceleration and torque. 戸開時の係合前後の実際の角加速度とトルクの平面である。It is a plane of actual angular acceleration and torque before and after engagement when the door is opened. 本発明による角速度パターンの改善効果を示す図である。It is a figure which shows the improvement effect of the angular velocity pattern by this invention. 戸開時の係合前後の実際の角速度とトルク積分の平面である。It is a plane of actual angular velocity and torque integration before and after engagement when the door is opened. ローパスフィルタにより変動する角加速度とトルクの平面である。It is a plane of angular acceleration and torque that vary with a low-pass filter. 係合前と係合後をそれぞれ2点選択することにより識別線を決定する手法を示した図である。It is the figure which showed the method of determining an identification line by selecting two points each before and after engagement. 係合後の点の選び方により変動する識別線を示した図である。It is the figure which showed the identification line which changes with how to select the point after engagement. 係合前2点の選択により識別線を決定する手法を示した図である。It is the figure which showed the method of determining an identification line by selection of 2 points | pieces before engagement. 実施の形態8における制御アルゴリズムを示すブロック線図である。FIG. 20 is a block diagram showing a control algorithm in the eighth embodiment. 電動機が誘導電動機もしくは埋込磁石同期型電動機の場合の、実施の形態1における制御アルゴリズムを示すブロック線図である。It is a block diagram which shows the control algorithm in Embodiment 1 in case a motor is an induction motor or an embedded magnet synchronous motor. 電動機が誘導電動機もしくは埋込磁石同期型電動機の場合の、実施の形態8における制御アルゴリズムを示すブロック線図である。FIG. 20 is a block diagram showing a control algorithm in Embodiment 8 when the electric motor is an induction motor or an embedded magnet synchronous motor.
実施の形態1.
図1~3は、本発明の実施の形態1に係るエレベーターのドア装置の構成を示したものである。図1はエレベーターのかご側ドアを示した正面図、図2はエレベーターの乗り場側ドアを示した正面図、図3はかご側ドアと乗り場側ドアの関係を示す上面図である。
以下、構成について説明する。図1および図3に示すように、2枚のかご側ドア1の一方には、乗り場側ドア6を係合するための係合ベーン2が設置されている。また、それに対応するように、乗り場側ドア6の2枚のうちの一方に係合ローラ7が設けられている。エレベーターのかご8がある階で停止すると、かご側ドア1の一方に設置された係合ベーン2が、乗り場側ドア6の一方に設置された係合ローラ7を挟み込んで把持する機構となっており、かご側ドア1の開閉動作に連動して、乗り場側ドア6を開閉動作するように構成されている。これらの係合ベーン2と係合ローラ7はまとめて係合装置と呼ばれる。
また、2枚の乗り場側ドア6は繋がっているため、係合ローラ7が設置された側の乗り場側ドア6が、電動機5によって係合ベーン2及び係合ローラ7を介して動作すると、他方の乗り場側ドア6も反対方向に動作して出入り口を開閉する。
Embodiment 1 FIG.
1 to 3 show the configuration of an elevator door device according to Embodiment 1 of the present invention. FIG. 1 is a front view showing a car-side door of an elevator, FIG. 2 is a front view showing a landing-side door of the elevator, and FIG. 3 is a top view showing a relationship between the car-side door and the landing-side door.
The configuration will be described below. As shown in FIGS. 1 and 3, an engagement vane 2 for engaging the landing-side door 6 is installed on one of the two car-side doors 1. In addition, an engagement roller 7 is provided on one of the two landing-side doors 6 so as to correspond thereto. When the elevator car 8 stops on the floor, the engagement vane 2 installed on one of the car-side doors 1 sandwiches and holds the engagement roller 7 installed on one of the landing-side doors 6. The landing door 6 is opened and closed in conjunction with the opening and closing operation of the car side door 1. The engagement vanes 2 and the engagement rollers 7 are collectively referred to as an engagement device.
Further, since the two landing-side doors 6 are connected, when the landing-side door 6 on the side where the engagement roller 7 is installed is operated by the electric motor 5 via the engagement vane 2 and the engagement roller 7, the other side The landing side door 6 also moves in the opposite direction to open and close the doorway.
このように、エレベーターのドア装置は、かご側ドア1に電動機5が設置されており、各階で乗り場側ドア6を係合し連動して開閉する機構となっている。一方、係合ベーン2と係合ローラ7は、エレベーターのかご8が走行している時には接触しないように設置される必要があるため、図3に示すようにお互いが係合ギャップ9を有する関係になるように設置される。エレベーターのかご8は上下(走行)方向だけでなく左右前後方向にも偏荷重や振動により動く構造となっているため、係合ギャップ9はその振れを吸収できるようにある程度広くとる必要がある。 As described above, the elevator door device has the electric motor 5 installed in the car-side door 1, and has a mechanism for engaging and closing the landing-side door 6 on each floor. On the other hand, the engagement vane 2 and the engagement roller 7 need to be installed so that they do not come into contact with each other when the elevator car 8 is running. It is installed to become. Since the elevator car 8 has a structure that moves not only in the vertical (running) direction but also in the left and right front-rear direction due to uneven load and vibration, the engagement gap 9 needs to be wide to some extent so as to absorb the vibration.
図5は、本発明の実施の形態1に係るエレベーターのドア装置に設けられたドアコントローラ4の内部構成を示したブロック図である。図5に示すように、ドアコントローラ4には、角速度パターン生成器12と、減算器20と、速度制御器13と、減算器21と、電流制御器14と、微分器22、23と、ゲイン24と、既知トルク変換器15と、減算器19と、識別線計算機17と、ドア係合検知器16と、記憶手段3とが設けられている。また、図5において、電動機5にはドアコントローラ4が接続されており、電動機5の回転を検出する回転検出手段10が接続されている。ここで、回転検出手段は、また、電動機5で発生させるトルクを検出する電流センサ11が接続されている。 FIG. 5 is a block diagram showing an internal configuration of the door controller 4 provided in the elevator door device according to Embodiment 1 of the present invention. As shown in FIG. 5, the door controller 4 includes an angular velocity pattern generator 12, a subtractor 20, a speed controller 13, a subtractor 21, a current controller 14, differentiators 22, 23, and a gain. 24, a known torque converter 15, a subtractor 19, an identification line calculator 17, a door engagement detector 16, and a storage means 3 are provided. In FIG. 5, a door controller 4 is connected to the electric motor 5, and a rotation detecting means 10 that detects the rotation of the electric motor 5 is connected. Here, the rotation detection means is also connected to a current sensor 11 that detects torque generated by the electric motor 5.
ドアコントローラ4では、角速度パターン生成器12により、減算器20への角速度指令値が出力される。出力された角速度指令値から、回転検出手段10で検出された回転角度を微分器22で微分処理して得られる回転角速度の値を、減算器20で引き算し、角速度偏差を求める。速度制御器13では、この角速度偏差を用いて、実角速度が角速度指令値に追従するような電流指令値を求める。求められた電流指令値は、電流センサ11で検出された電流値と減算器21で演算され、減算器21からはその偏差が出力される。次に、その偏差に基づいて、電流制御器14によって駆動電圧18が決められ、この駆動電圧18により電動機5が駆動される。 In the door controller 4, the angular velocity pattern generator 12 outputs an angular velocity command value to the subtracter 20. From the output angular velocity command value, the rotational angular velocity value obtained by differentiating the rotational angle detected by the rotation detecting means 10 with the differentiator 22 is subtracted by the subtractor 20 to obtain the angular velocity deviation. The speed controller 13 uses the angular speed deviation to obtain a current command value that causes the actual angular speed to follow the angular speed command value. The obtained current command value is calculated by the subtractor 21 and the current value detected by the current sensor 11, and the deviation is output from the subtractor 21. Next, the drive voltage 18 is determined by the current controller 14 based on the deviation, and the electric motor 5 is driven by the drive voltage 18.
図5に示す本発明特有の識別線計算機17では、微分器22により微分処理されて得られた角加速度と、電流センサ11によって検出された電流値に、トルク定数Keがゲイン24によって乗算され(電流センサ11の出力にゲイン24をかけ合わせたものをトルク検出手段と呼ぶ)、得られた電動機のトルクを用いて係合前後を分離する識別線を計算する。機械的戸閉力によるトルク(以下に説明する「既知トルク」と同じ。以下同様)は、図6に示すようにドアの位置に応じた値となり、回転検出手段10によって検出された回転角度(位置情報)を基にすることにより、電動機5に付加される位置依存のトルクとして、既知トルク変換器15によって計算される。図6に示す機械的戸閉力によるトルクは、バネやおもりの自重によって発生する機械的戸閉力の違いによって変動するため、機械的戸閉力を発生させる構成要素の組み合わせの違いによって、パターンが1から4のように変動する。ゲイン24の出力(電流センサ11から得られるトルク)から既知トルクを減算器19によって引いた値によりトルクτ(k)が計算される。もし、このような減算を行わず、ゲイン24の出力に対する既知トルクの割合が大きい場合、係合を誤検知してしまう。 In the identification line calculator 17 unique to the present invention shown in FIG. 5, the torque constant Ke is multiplied by the gain 24 by the angular acceleration obtained by the differentiation process by the differentiator 22 and the current value detected by the current sensor 11 ( A product obtained by multiplying the output of the current sensor 11 by a gain 24 is referred to as torque detecting means), and an identification line for separating before and after engagement is calculated using the torque of the obtained electric motor. The torque due to the mechanical door closing force (same as “known torque” described below; the same applies hereinafter) is a value corresponding to the position of the door as shown in FIG. 6, and the rotation angle ( Based on the position information), the known torque converter 15 calculates the position-dependent torque added to the electric motor 5. The torque due to the mechanical door closing force shown in FIG. 6 varies depending on the difference in the mechanical door closing force generated by the weight of the spring or the weight, so that the pattern varies depending on the combination of components that generate the mechanical door closing force. Fluctuates as 1 to 4. Torque τ (k) is calculated from a value obtained by subtracting the known torque from the output of the gain 24 (torque obtained from the current sensor 11) by the subtractor 19. If such subtraction is not performed and the ratio of the known torque to the output of the gain 24 is large, the engagement is erroneously detected.
前記トルクτ(k)の計算は、減算機19での処理を行わなくても、正しく検知できる場合もある。しかし、減算を行うことで、トルク検出手段24の出力に対する既知トルクの割合が大きい場合、係合を誤検知してしまう可能性を減らすことができる。 The calculation of the torque τ (k) may be detected correctly without performing the processing in the subtracter 19. However, by performing subtraction, it is possible to reduce the possibility of erroneously detecting engagement when the ratio of the known torque to the output of the torque detection means 24 is large.
図18に示す特殊トルク検出手段44では、電動機5のトルクを計算する。一般的に、電動機5が直流電動機や永久磁石同期型電動機である場合、そのトルクは電流に比例するため、電流センサ11によって検出された電流値にゲイン24を用いることでトルクの計算が可能である。一方、誘導電動機はすべり量によって出力されるトルクが変動してしまうため、電流だけではトルクが計算できない。ここで、電動機への駆動電圧18の電圧及び周波数や、回転検出手段10から電動機の角速度を計算することですべり量を導出し、式(1)からトルクを計算できる。
Figure JPOXMLDOC01-appb-I000001
ここで、Torque_imは誘導電動機のトルク、sはすべり量、Vは駆動電圧18、fは駆動電圧18の周波数、pは極数、r1及びr2及びx1及びx2は電動機の等価回路で用いられる回路定数である。なお、係数の3は等価回路の回路定数が1相毎に決定された場合の値であり、3相をまとめて回路定数とした場合は1となる。
In the special torque detection means 44 shown in FIG. 18, the torque of the electric motor 5 is calculated. Generally, when the motor 5 is a DC motor or a permanent magnet synchronous motor, the torque is proportional to the current. Therefore, the torque can be calculated by using the gain 24 for the current value detected by the current sensor 11. is there. On the other hand, since the torque output from the induction motor varies depending on the slip amount, the torque cannot be calculated only by the current. Here, the slip amount can be derived by calculating the voltage and frequency of the drive voltage 18 to the motor and the angular velocity of the motor from the rotation detecting means 10, and the torque can be calculated from the equation (1).
Figure JPOXMLDOC01-appb-I000001
Here, Torque_im is the torque of the induction motor, s is the slip amount, V is the drive voltage 18, f is the frequency of the drive voltage 18, p is the number of poles, r1 and r2, and x1 and x2 are circuits used in the equivalent circuit of the motor. It is a constant. The coefficient 3 is a value when the circuit constant of the equivalent circuit is determined for each phase, and is 1 when the three phases are collectively set as the circuit constant.
また,埋込磁石同期型電動機でも同様に電流だけではトルクが計算できない。埋込磁石同期型電動機では、リラクタンストルクが発生するため、式(2)からトルクを計算できる。
Figure JPOXMLDOC01-appb-I000002
ここで、Torque_ipmは埋込磁石同期型電動機電動機のトルク、Ψaは永久磁石による鎖交磁束、Ld及びLqは座標変換した際の2相のインダクタンスであり事前に与えられる定数である。id及びiqは電流センサ11で得られた電流値を座標変換して得られる2相の電流値である。そのため、埋込磁石同期型電動機での図18に示す特殊トルク検出手段44では式(2)でトルクが計算される。
Similarly, torque cannot be calculated only with current in an embedded magnet synchronous motor. In the embedded magnet synchronous motor, since reluctance torque is generated, the torque can be calculated from the equation (2).
Figure JPOXMLDOC01-appb-I000002
Here, Torque_ipm is the torque of the interior permanent magnet synchronous motor, Ψ a is the flux linkage by the permanent magnet, L d and L q are the two-phase inductances when the coordinates are converted, and are constants given in advance. i d and i q are two-phase current values obtained by coordinate transformation of the current values obtained by the current sensor 11. Therefore, the torque is calculated by the formula (2) in the special torque detecting means 44 shown in FIG. 18 in the embedded magnet synchronous motor.
なお、電動機選択フラグ45で事前に誘導電動機を選択した場合は、特殊トルク検出手段44において式(1)でトルクを計算し、埋込磁石同期型電動機を選択した場合は、特殊トルク検出手段44において式(2)でトルクを計算する。 When the induction motor is selected in advance by the motor selection flag 45, the special torque detection means 44 calculates the torque by the equation (1), and when the embedded magnet synchronous motor is selected, the special torque detection means 44. The torque is calculated by the equation (2).
次に、本発明の特徴である係合検知アルゴリズムで用いる、ドアの質量による電動機の回転方向のイナーシャ(慣性モーメント)と走行抵抗について示す。
電動機の回転軸からドアの重心までの距離が一定であるとした場合、ドアの質量による電動機の回転軸換算のイナーシャとドアの質量は一定の比となる。また、ドアを駆動させるときの摩擦によって生じる走行抵抗と質量も一定の比となる。ここで、ドアの質量を一定であるとし、その際のイナーシャをJ、走行抵抗をT、電動機5の検出トルクをτ(k)、電動機5の検出角加速度をa(k)とすると、式(3)が成立する。また、kはセンサの検出値のk番目のサンプリング値であることを示している。
τ(k)=J×a(k)+T・・・式(3)
ここで、電動機5で駆動させるドアの質量は係合前後において、かご側ドアのみから、かご側ドアと乗り場側ドアを含めたものに変動する。また、イナーシャと質量の比、走行抵抗と質量の比が一定であるため、このように質量が急激に増加するとJやTはその前後で変動し、係合前はJとTから係合後はJとTのような定数に変動することになる。ここで、J<Ja、 T<Taとなる。
Next, inertia (moment of inertia) in the rotation direction of the motor due to the mass of the door and running resistance used in the engagement detection algorithm which is a feature of the present invention will be described.
Assuming that the distance from the rotating shaft of the electric motor to the center of gravity of the door is constant, the inertia of the rotating shaft of the electric motor in terms of the mass of the door and the mass of the door have a constant ratio. Further, the running resistance and the mass caused by the friction when driving the door also have a constant ratio. Here, assuming that the mass of the door is constant, the inertia at that time is J, the running resistance is T, the detected torque of the motor 5 is τ (k), and the detected angular acceleration of the motor 5 is a (k). (3) is established. K indicates the kth sampling value of the detection value of the sensor.
τ (k) = J × a (k) + T (3)
Here, the mass of the door driven by the electric motor 5 varies from only the car-side door to the one including the car-side door and the landing-side door before and after the engagement. In addition, since the ratio of inertia to mass and the ratio of running resistance to mass are constant, J and T fluctuate before and after such a rapid increase in mass, and before engagement, they are related from J b and T b. After the combination, it changes to a constant such as J a and T a . Here, a J b <J a, T b <T a.
この定数を求めるために、係合前後を分離できる時系列データの区間を用いる。係合する区間を図7に示すような、X[mm]を中心として±α[mm]の区間にあるとする。ここで、戸開からX-αまでは、係合していないことが保障されており、戸開からX+α以降からドア全開までは、係合していることが保障される。そのような係合していないことが保障される区間のみの角加速度とトルクの時系列データを用い、その区間の時系列データ全てもしくはサンプリングされた数点を最小二乗法などで直線近似することにより、もしくは同区間上で角加速度やトルクが最大や最小となる端点、もしくは端点付近の数点の平均を用いて、直線を引くことにより、その直線(係合前の直線)の傾きであるJと切片であるTを求める事ができる。 In order to obtain this constant, a section of time-series data that can separate before and after engagement is used. Assume that the section to be engaged is in a section of ± α [mm] with X [mm] as the center as shown in FIG. Here, it is guaranteed that the door is not engaged from the door opening to X−α, and the door is guaranteed to be engaged from the door opening to X + α and after the door is fully opened. Use time-series data of angular acceleration and torque only for the section that is guaranteed not to be engaged, and linearly approximate all the time-series data of the section or several sampled points using the least squares method, etc. Or the average of several points near or at the end point where the angular acceleration or torque is maximum or minimum on the same section, or by drawing a straight line, the slope of the straight line (straight line before engagement) it is possible to determine the T b is the J b and the intercept.
また、係合後のJとTも係合前の計算手法と同様に、係合していないことが保障されるX+αから全開までの区間の時系列データ全て、もしくはサンプリングされた数点を最小二乗法などで直線近似することにより、もしくは角加速度やトルクが最大や最小となる端点、もしくは端点付近の数点の平均を用いて、直線を引くことにより、その直線(係合後の直線)の傾きであるJと切片であるTを求める事ができる。もし、ここでゲイン24の出力(電流センサ11から得られるトルク)から既知トルクを減算器19によって引いた値によりトルクτ(k)を計算しなければ、ゲイン24の出力に対する既知トルクの割合が大きくなってしまい、係合前のJとTと係合後のJとTがドアのみの値を正しく表せなくなってしまう。 In addition, J a and T a after engagement are all time-series data from X + α to fully open, or a few sampled points where it is guaranteed that they are not engaged, as in the calculation method before engagement. By approximating the straight line using the least squares method, or by drawing a straight line using the average of several points near or at the end point where the angular acceleration or torque is maximum or minimum, J a that is the slope of the straight line) and T a that is the intercept can be obtained. If the torque τ (k) is not calculated by the value obtained by subtracting the known torque from the output of the gain 24 (torque obtained from the current sensor 11) by the subtractor 19, the ratio of the known torque to the output of the gain 24 is becomes large, J a and T a post J b and T b and the engagement of the front engagement can no longer represented the value of only the door correctly.
ここで回転検出手段10によって得られた角加速度、電流センサ11で得られたトルクの時系列データを考え、これらの時系列データを図8に示した角加速度とトルクの関係図中に描き矢印で示す軌跡25を考える(以下、図9、図13でも同様に軌跡25は矢印で示す。また、図12では、角速度とトルク積分の関係図の軌跡38を矢印で示す。)。係合によってイナーシャと走行抵抗が変動するため、係合前の群26、係合後の群27が直線状になり、識別線28は直線で識別できるようになる。係合前の群26と係合後の群27はどちらも直線状であるため、係合付近を中心としたV字型になっており、適切な手法を用いれば線形分離可能であることがわかる。 Here, the time series data of the angular acceleration obtained by the rotation detecting means 10 and the torque obtained by the current sensor 11 are considered, and these time series data are drawn in the relationship diagram between the angular acceleration and torque shown in FIG. (Hereinafter, in FIG. 9 and FIG. 13, the locus 25 is similarly indicated by an arrow. In FIG. 12, the locus 38 of the relationship diagram between the angular velocity and the torque integration is indicated by an arrow). Since the inertia and the running resistance change due to the engagement, the group 26 before the engagement and the group 27 after the engagement become linear, and the identification line 28 can be identified by a straight line. Since the group 26 before engagement and the group 27 after engagement are both linear, they are V-shaped around the vicinity of the engagement, and may be linearly separable using an appropriate method. Recognize.
もし、ここで電動機5の回転方向へのトルクの伝達が非線形であったり、回転検出手段10が非線形な伝達要素を通して固定されていたりした場合には、曲線状になることもある。その際は回転方向へのねじりバネやダンパを考慮した方が良い。それらの手法では、非線形な識別線になるが、係合付近で信頼性が高く分離できれば非線形な識別線でも良い。 If the torque transmission in the rotation direction of the electric motor 5 is non-linear here, or if the rotation detecting means 10 is fixed through a non-linear transmission element, it may be curved. In that case, it is better to consider torsion springs and dampers in the rotational direction. In these methods, a non-linear identification line is obtained. However, a non-linear identification line may be used as long as it can be separated with high reliability near the engagement.
本実施の形態においては、係合の前後で制御対象のイナーシャ(慣性モーメント)や走行抵抗などが変動したことを、角加速度、トルクが変動したことで評価しており、良好な識別性能を持つ識別線を定義することができるため、係合の前後が識別可能となる。
ここで、例えば係合前後の2直線を式(4)のように、係合前を表す直線と、係合後を表す直線が成す角度を2等分すれば、係合前の群と係合後の群を識別する識別線28が構築できる。

τ=tan((tan-1(J)+tan-1(J))/2)×a
+(J×T-J×T-(T-T
×tan((tan-1(J)+tan-1(J))/2)/(J-J)・・・式(4)

式(4)は、式が簡易かつ単純であるがゆえに計算量が少なくてすむ。
In this embodiment, it is evaluated that the inertia (moment of inertia) and the running resistance of the control object fluctuate before and after the engagement, by evaluating the fluctuating angular acceleration and torque, and has a good discrimination performance. Since an identification line can be defined, it is possible to identify before and after engagement.
Here, for example, if the two straight lines before and after the engagement are divided into two equal parts as shown in Equation (4), the straight line representing the pre-engagement and the straight line representing the post-engagement are divided into two, the relationship with the group before the engagement. An identification line 28 identifying the group after joining can be constructed.

τ = tan ((tan −1 (J a ) + tan −1 (J b )) / 2) × a
+ (J b × T a -J a × T b- (T a -T b )
X tan ((tan -1 (J a ) + tan -1 (J b )) / 2) / (J b -J a ) (4)

Formula (4) requires a small amount of calculation because the formula is simple and simple.
識別線計算機17が角加速度とトルクの時系列データから導かれたイナーシャを用いて式(4)をあらかじめ計算した上で、実際のドア開閉時に図9に示すように新たに得られた角加速度とトルクの時系列データと重ね合わせると、式(4)と交差する交点29が、係合したと推定されるタイミングとなり、即時的な係合検知が可能となる。ここで導出された識別線28は記憶手段3に記憶される。 The identification line calculator 17 pre-calculates the equation (4) using the inertia derived from the time series data of the angular acceleration and torque, and the angular acceleration newly obtained as shown in FIG. 9 when the door is actually opened and closed. When the torque and time series data are superimposed, the intersection 29 intersecting with the equation (4) is estimated to be engaged, so that immediate engagement detection is possible. The identification line 28 derived here is stored in the storage means 3.
ドア係合検知器16は、実際のドア開閉時にリアルタイムに変動する角加速度a(k)、トルクτ(k)、及び、あらかじめ計算され記憶手段3に記憶されている式(4)のtan((tan-1(J)+tan-1(J))/2)、(J×T-J×T-(T-T) ×tan((tan-1(J)+tan-1(J))/2)/(J-J)の値を保持しており、角加速度、トルクの変動に伴い、逐次的に係合したか否かを検知し続け、係合していると検知した際には即座に加速を開始する。そのため、かご内偏荷重によるかごの傾きによって生じる係合ギャップの変動に対しても素早く対応することが可能であり、時間的及び位置的に適切な係合検知後に加速が可能となる。 The door engagement detector 16 has an angular acceleration a (k) and a torque τ (k) that change in real time when the door is actually opened and closed, and tan (4) calculated in advance and stored in the storage means 3. (Tan −1 (J a ) + tan −1 (J b )) / 2), (J b × T a −J a × T b − (T a −T b ) × tan ((tan −1 (J a ) + Tan −1 (J b )) / 2) / (J b −J a ) is held, and it is continuously detected whether or not it is engaged as the angular acceleration and torque change. When it is detected that it is engaged, acceleration is started immediately, so it is possible to respond quickly to changes in the engagement gap caused by the inclination of the car due to the in-car load. Acceleration is possible after proper and sensitive engagement detection.
図10に、本発明を用いたドア係合検知の一例を示す。この検知結果では、実験機を用いて検知をしているため、係合までのドア移動距離が実測でき、実際に係合してから係合検知するまでの時間と、従来の係合検知を行わずに加速していたタイミング30から係合検知を行った際の加速タイミングまでの短縮量31がわかる。短縮量31は、時間で見れば時間の短縮量がわかり、それぞれの時間におけるドアの位置を見れば、係合検知による距離の短縮量がわかる。この結果から、リアルタイムに係合検知ができ、戸開時間が減っていることが確認できた。 FIG. 10 shows an example of door engagement detection using the present invention. In this detection result, since the detection is performed using an experimental machine, the door movement distance until the engagement can be measured, the time from the actual engagement until the engagement is detected, and the conventional engagement detection. The shortening amount 31 from the timing 30 where acceleration was performed without performing the acceleration detection to when the engagement was detected is known. The amount of shortening 31 can be found by looking at the time, and the amount of time shortening by engagement detection can be seen by looking at the position of the door at each time. From this result, it was confirmed that engagement was detected in real time and the door opening time was reduced.
このように係合検知に伴い、全開位置までの残戸開距離及び角速度パターンが角速度パターン生成器12により再計算される。図11の角速度パターン33に示すように、係合検知後即加速42することにより、低速区間を短くし、従来の速度パターン32に比べて、最高速での駆動時間を少し伸ばすように調整される。ドアの最大開き幅は仕様で与えられており、ドアの移動距離は回転検出手段10で計測されるため、速度指令値として減算器20に送られることによって最高速の駆動時間の延長もしくは短縮が実現され結果的に全開時の短縮時間43のように、戸開時間が短縮される。 As described above, the remaining door opening distance and the angular velocity pattern up to the fully opened position are recalculated by the angular velocity pattern generator 12 in accordance with the engagement detection. As shown in the angular velocity pattern 33 in FIG. 11, by immediately accelerating 42 after detecting the engagement, the low speed section is shortened, and the driving time at the maximum speed is adjusted slightly longer than the conventional speed pattern 32. The The maximum opening width of the door is given in the specification, and the movement distance of the door is measured by the rotation detecting means 10, so that the maximum driving time can be extended or shortened by being sent to the subtracter 20 as a speed command value. As a result, the door opening time is shortened like the shortening time 43 when fully opened.
以上のように、本発明においては識別線計算機17で、かご側ドア1と乗り場側ドア6の係合を検知し、ドア係合検知器16と新たな角加速度とトルクの時系列データを用いて、係合したドア位置に応じて角速度パターン生成器12の出力を適時変更することができる。これにより、その都度の条件で異なる係合検知が可能となり、係合後、低速区間を減らして加速動作に移行することができるので、低速での係合による低騒音と低振動性能を保持したまま、無駄な低速駆動時間を減らすことができ、エレベーターの運行効率を良くすることができる。 As described above, in the present invention, the identification line calculator 17 detects the engagement between the car-side door 1 and the landing-side door 6, and uses the door engagement detector 16 and the new time acceleration and torque time-series data. Thus, the output of the angular velocity pattern generator 12 can be changed as appropriate according to the engaged door position. This makes it possible to detect different engagements under the respective conditions, and after engagement, it is possible to reduce the low speed section and shift to acceleration operation, so that low noise and low vibration performance due to low speed engagement are maintained. As a result, useless low-speed driving time can be reduced, and the operation efficiency of the elevator can be improved.
なお、本実施の形態では、電動機5の電流を検出して電動機5のトルクを求めたが、トルクセンサを用いてトルクを直接求めても良い。また、係合検知に用いるトルクは、速度制御器13の出力である電流指令値でもよく、角加速度の導出は一次微分器22と23を用いたもの以外の二次微分フィルタを用いたものなどでも良い。また、回転検出手段10から一次微分器22と23を用いて角加速度を求めたが、角速度計で計測した角速度に一次微分器23のみを用いたもの、角加速度計で計測した角加速度を直接用いたものでもよい。 In the present embodiment, the current of the electric motor 5 is detected and the torque of the electric motor 5 is obtained. However, the torque may be directly obtained using a torque sensor. Further, the torque used for the engagement detection may be a current command value that is an output of the speed controller 13, and the angular acceleration is derived using a secondary differential filter other than that using the primary differentiators 22 and 23. But it ’s okay. Further, although the angular acceleration was obtained from the rotation detecting means 10 using the primary differentiators 22 and 23, the angular acceleration measured by the angular accelerometer was obtained by using only the primary differentiator 23, and the angular acceleration measured by the angular accelerometer was directly obtained. The one used may be used.
また、係合前後の領域計算の更新は、劣化や据付状態によって変動する走行抵抗を考慮して、毎回領域の計算を行うことも可能だが、数回に一回の学習や数週に一回の学習、または据え付けた際のみ一回の学習、または工場で学習した値でも実施可能である。 In addition, the area calculation before and after the engagement can be calculated every time considering the running resistance that fluctuates due to deterioration and installation conditions, but once every few times or once every few weeks It is also possible to carry out learning with a value learned at the factory or once at the time of installation or at the factory.
また、本実施の形態で用いた電動機5の回転検出手段10は、角度計であるレゾルバやエンコーダでもよい。また、ドアやドアとモータの間にあるギアやベルトの位置、速度、加速度などを計測し、回転方向に変換し回転検出手段としてもよい。また、電動機内部に発生する速度起電力が角度情報を含んでいることに着目し、これを利用したセンサレス駆動制御(参考文献:新中「永久磁石同期モータのベクトル制御技術・下巻-センサレス駆動制御の真髄-」、第1版、電波新聞社、2008年12月15日、p.28-29)を行ってもよい。このように電動機5の回転情報を得ると、回転検出手段10を取り付けるコスト及び、保守するコスト、取り付けスペースの点で有利となる。
また、本実施の形態で用いた回転駆動する電動機5の代わりに、直線駆動するリニアモータや空気圧・油圧アクチュエータなどを用いて、回転検出手段10の代わりに位置センサ、速度センサ、加速度センサ等を用いても良い。
Further, the rotation detecting means 10 of the electric motor 5 used in the present embodiment may be a resolver or encoder that is an angle meter. Alternatively, the position, speed, acceleration, and the like of a door or a gear or belt between the door and the motor may be measured and converted into a rotation direction to serve as a rotation detection unit. In addition, paying attention to the fact that the speed electromotive force generated inside the motor includes angle information, sensorless drive control using this information (reference: Shinnaka “Permanent Magnet Synchronous Motor Vector Control Technology, Volume 2-Sensorless Drive Control” No. 1 ”, Denpa Shimbun, December 15, 2008, p.28-29). Obtaining the rotation information of the electric motor 5 in this way is advantageous in terms of the cost of mounting the rotation detecting means 10, the cost of maintenance, and the mounting space.
Further, instead of the rotation-driven electric motor 5 used in the present embodiment, a linear drive linear motor or pneumatic / hydraulic actuator is used, and a position sensor, a speed sensor, an acceleration sensor, etc. are used instead of the rotation detection means 10. It may be used.
以上のように、本実施の形態においては、エレベーターのかご8の出入口を開閉するかご側ドア1と、各階床の乗り場の出入口を開閉する乗り場側ドア6と、かご側ドア1を開閉駆動する電動機5と、かご側ドア1と乗り場側ドア6との間に設けられ、電動機5の開閉駆動によるかご側ドア1の開閉動作に連動して乗り場側ドア6を開閉動作する係合装置を有するエレベーターのドア制御システムにおいて、電動機5の回転を検出する回転検出手段10と、電動機5のトルクを検出する電流センサ11と、回転検出手段10の出力から得られる角加速度情報と電流センサ11から得られるトルク情報とを入力としてドア係合検知器16とを有するようにしたので、リアルタイムに係合検知ができ、戸開時間が減らせることがわかる。 As described above, in the present embodiment, the car-side door 1 that opens and closes the entrance / exit of the elevator car 8, the landing-side door 6 that opens and closes the entrance / exit of the landing on each floor, and the car-side door 1 are opened and closed. An electric motor 5 is provided between the car-side door 1 and the landing-side door 6, and has an engagement device that opens and closes the landing-side door 6 in conjunction with the opening and closing operation of the car-side door 1 by opening and closing driving of the electric motor 5. In the elevator door control system, the rotation detection means 10 for detecting the rotation of the electric motor 5, the current sensor 11 for detecting the torque of the electric motor 5, the angular acceleration information obtained from the output of the rotation detection means 10, and the current sensor 11 Since the door engagement detector 16 is provided with the torque information to be input as input, it can be seen that the engagement can be detected in real time and the door opening time can be reduced.
また、本実施の形態においては、電動機5の回転角速度を生成する角速度パターン生成器12を有し、ドア係合検知器16の出力から角速度パターン生成器12の出力を変更するようにしたので、その都度の条件で異なる係合検知が可能となり、係合後、低速区間を減らして加速動作に移行することができるので、低速での係合による低騒音と低振動性能を保持したまま、無駄な低速駆動時間を減らすことができ、エレベーターの運行効率を良くすることができる。 Further, in the present embodiment, since the angular velocity pattern generator 12 that generates the rotational angular velocity of the electric motor 5 is provided and the output of the angular velocity pattern generator 12 is changed from the output of the door engagement detector 16, Different engagement detection is possible under each condition, and after engagement, it is possible to reduce the low speed section and shift to acceleration operation, so it is useless while maintaining low noise and low vibration performance due to low speed engagement. The low-speed driving time can be reduced and the operation efficiency of the elevator can be improved.
また、本実施の形態においては、回転検出手段10の出力から得られる位置情報により電動機5が負荷される位置依存のトルクを計算する既知トルク変換器15を有し、ドア係合検知器が電流センサ11から得られるトルク情報から既知トルク変換器15の出力を減じたものを入力とするようにしたので、ドア位置によって決まる既知のトルクを予め取り除くことができるので、高精度な検知が可能となる。 Further, in the present embodiment, there is a known torque converter 15 that calculates a position-dependent torque on which the electric motor 5 is loaded based on position information obtained from the output of the rotation detecting means 10, and the door engagement detector is an electric current. Since the input obtained by subtracting the output of the known torque converter 15 from the torque information obtained from the sensor 11 can be removed in advance, the known torque determined by the door position can be removed in advance, so that highly accurate detection is possible. Become.
また、本実施の形態においては、識別線28の構築のために係合前後を表す直線を等角度に2等分する直線を選んだが、機械的仕様によって係合検知の精度は変動する。それらの機械的仕様を考慮して、誤検知を防止したり、係合検知を早めたりすることを目的として、等角度ではなく、重み付けをした角度を用いて識別線28を構築しても良い。 In the present embodiment, a straight line that bisects the straight line representing before and after the engagement into two equal angles is selected for the construction of the identification line 28. However, the accuracy of the engagement detection varies depending on the mechanical specifications. In consideration of their mechanical specifications, the identification line 28 may be constructed using a weighted angle instead of an equal angle for the purpose of preventing false detection or speeding up engagement detection. .
また、係合前後のイナーシャと走行抵抗の差もしくは比を大きくするために、乗り場側ドア37に乗り場側ドア用機械的戸閉力を付加し、識別線28を構築する手法もある。乗り場側ドア用機械的戸閉力は、おもりとプーリーを用いて重力を戸閉方向の力に変えたり、バネ力で戸閉方向の力を発生させたりするものである。係合の誤検知を防止したり、係合検知を早めたりすることを目的として、乗り場側ドア用機械的戸閉力を用いて識別線28を構築しても良い。 There is also a method of constructing the identification line 28 by adding a mechanical door closing force for the landing side door 37 to the landing side door 37 in order to increase the difference or ratio between the inertia before and after the engagement and the running resistance. The mechanical door closing force for the landing-side door uses a weight and a pulley to change gravity into a force in the door closing direction or generate a force in the door closing direction by a spring force. For the purpose of preventing erroneous detection of engagement or speeding up detection of engagement, the identification line 28 may be constructed using a mechanical door closing force for the landing side door.
実施の形態2.
本実施の形態では、係合前後の角加速度とトルクの時系列データを群と見て、統計的に群と群を分離する直線を識別線28として構築する。
ここで、群と群を分離する平面をマージン最大化(群と群を構成する要素間の全ての直線距離の中で最小の距離を最大に選ぶ平面であり、線形識別できるデータであれば、この最小の距離を等分割、つまり最大化する点を含む平面となる。)という手法で計算することを考える。
Embodiment 2. FIG.
In the present embodiment, the time series data of angular acceleration and torque before and after engagement are viewed as a group, and a straight line that statistically separates the group from each other is constructed as the identification line 28.
Here, the plane that separates the groups from each other maximizes the margin (the plane that selects the smallest distance among all the linear distances between the elements that constitute the group and the group, and if the data can be linearly identified, The minimum distance is equally divided, that is, a plane including a point to be maximized).
本実施の形態において測定される角加速度とトルクの変動によって識別線を本実施の形態の手法で構成すれば、未学習の新規データでも係合を識別することができるようになる。ただし、本実施の形態では角加速度とトルクの2次元を用いるので、識別線は直線になる。 If the identification line is configured by the method of the present embodiment based on the angular acceleration and torque variation measured in the present embodiment, the engagement can be identified even with unlearned new data. However, since the present embodiment uses two dimensions of angular acceleration and torque, the identification line is a straight line.
本実施の形態においては、学習するデータの係合前後の群の要素のラベル付け(群の要素が係合前であるのか係合後であるのか決めること)が必要となる。そのラベル付け手法として、係合していること、していないことが確実にわかる位置を用いてラベル付けを行う。係合ギャップがX±α(全閉状態を原点としたかご側ドア移動量)のような形式で表される場合、X-αまでは係合前の群26であることがわかる。一方、X+α以降は係合後の群27であることがわかる。 In this embodiment, it is necessary to label the elements of the group before and after the engagement of the data to be learned (determining whether the elements of the group are before or after engagement). As a labeling method, labeling is performed using a position where it can be surely engaged or not engaged. When the engagement gap is expressed in a format such as X ± α (cage-side door movement amount with the fully closed state as the origin), it can be seen that X−α is the group 26 before engagement. On the other hand, after X + α, it can be seen that the group 27 is engaged.
このように、係合前後のラベル付けができた角加速度、トルクのデータを用いて、識別線28を決定するが、その決定のために本実施の形態の手法に限定する必要はなく、サポートベクターマシン(SVM)や隠れマルコフモデル(HMM)やDPマッチングなど、その他の一般的なパターン認識アルゴリズムでも識別対象の特徴(例えば、係合前の群26と係合後の群27が直線状になるなど)を使えば決定できる。また、主成分分析やk-平均法(k-means)などの識別手法は事前にラベル付けをして情報を使わないため、識別線の信頼性は低くなるが、識別線の設定は可能である。 Thus, the identification line 28 is determined using the angular acceleration and torque data that have been labeled before and after the engagement, but it is not necessary to limit to the method of the present embodiment for the determination. In other general pattern recognition algorithms such as vector machine (SVM), hidden Markov model (HMM), and DP matching, the features to be identified (for example, the group 26 before engagement and the group 27 after engagement are linear). Can be determined. In addition, since identification methods such as principal component analysis and k-means (k-means) are pre-labeled and do not use information, the reliability of the identification line is reduced, but the identification line can be set. is there.
さらに、識別線を決定するためにマージンを最大化するという手法だけではなく、振動を抑制するなどの目的のために、係合の後加速するまでに尤度を持たせることを目的として、係合前の群から見て係合後の側に若干、識別線をずらす手法もある。これを満たすために、係合後の群から識別線までの距離の重みを係合前の群から識別線までの距離に比べて小さくするという手法が考えられる。さらに、係合前と係合後のデータ範囲は、係合前・係合後の全部の区間でも過渡的でなかったり、外力が加わらなかったりの理由で、ノイズ耐性が強くなる一部の区間を抜き出して選択したりしても良い。 Furthermore, not only the method of maximizing the margin for determining the identification line, but also for the purpose of suppressing vibrations, for the purpose of giving a likelihood until acceleration after engagement, There is also a method of slightly shifting the identification line to the side after engagement when viewed from the group before joining. In order to satisfy this, a method is conceivable in which the weight of the distance from the group after engagement to the identification line is made smaller than the distance from the group before engagement to the identification line. In addition, the data range before and after the engagement is part of the section where the noise resistance is strong because the transition is not transitional or the external force is not applied in all the sections before and after the engagement. It is also possible to select by selecting.
ここで、識別線は係合前の群と係合後の群からのマージンが最大であるため、時系列データ25と識別線28の交点29は係合直後を表し、時系列データが交点29を超えた際に、係合しているか否かを識別、つまり係合したことを検知することができる。 Here, since the identification line has the largest margin from the group before the engagement and the group after the engagement, the intersection 29 of the time series data 25 and the identification line 28 represents immediately after the engagement, and the time series data is the intersection 29. When the value exceeds the value, it is possible to identify whether or not it is engaged, that is, to detect that it is engaged.
実施の形態3.
実施の形態1及び2では角加速度とトルクを用い識別線を設定したが、回転検出手段10と電流センサ11で得られるその他の状態変数として、角速度とトルク積分値を用いても、実施の形態1と同様の識別線28が定義できる。角速度やトルク積分値は、角加速度とトルクの時系列データで生じた微小なノイズを積分による平均化で取り除くことが可能であり、ノイズ耐性を強化できる。また、もし、角加速度を計算するために角速度を微分して求めていた場合、フィルタを使うことによる遅れの影響が生じるが、その影響を取り除くこともできる。
Embodiment 3 FIG.
In the first and second embodiments, the identification line is set by using the angular acceleration and the torque, but the angular velocity and the torque integrated value can be used as the other state variables obtained by the rotation detecting means 10 and the current sensor 11. An identification line 28 similar to 1 can be defined. The angular velocity and torque integral value can remove minute noise generated by the time series data of angular acceleration and torque by averaging and can enhance noise resistance. Also, if the angular velocity is obtained by differentiating to calculate the angular acceleration, the influence of the delay due to the use of the filter occurs, but the influence can be removed.
図12に示すように、角速度-トルク積分値平面において、識別線28は実施の形態1及び2と同等な手法により構成できる。このような識別線は、角度やトルクの微分値など他の状態変数を用いて設定したものでも構成でき、状態変数の選択によらず係合の検知が可能となる。 As shown in FIG. 12, in the angular velocity-torque integral value plane, the identification line 28 can be configured by the same method as in the first and second embodiments. Such an identification line can be configured by using another state variable such as an angle or a differential value of torque, and can detect engagement regardless of the selection of the state variable.
実施の形態4.
実施の形態1では、回転検出手段10を用いて角加速度を求めたが、角加速度情報は時にノイズを多く持つため、ローパスフィルタを使う必要がある。その際、ローパスフィルタの次数が大きかったり、カットオフ周波数が低かったりした場合、ローパスフィルタが持つ位相遅れの性質により、図13のように時系列データが全体的に戸開の開始側に寄り、X-αの位置や実際の係合位置も戸開の開始側に寄る。しかし、識別線28はX-αの位置や実際の係合位置の変動には影響を受けないため、検知が遅くなる方向となる。ただし、ローパスフィルタの次数を下げたり、カットオフ周波数を高くしたりすると、ノイズ耐性が弱くなるため、微小なノイズにより係合を誤検知してしまう可能性が高くなる。
Embodiment 4 FIG.
In the first embodiment, the angular acceleration is obtained by using the rotation detecting means 10, but the angular acceleration information sometimes has a lot of noise, so it is necessary to use a low-pass filter. At that time, when the order of the low-pass filter is large or the cut-off frequency is low, due to the nature of the phase delay of the low-pass filter, the time-series data as a whole approaches the start side of the door opening as shown in FIG. The position of X-α and the actual engagement position also approach the door opening start side. However, since the identification line 28 is not affected by variations in the X-α position or the actual engagement position, the detection is delayed. However, if the order of the low-pass filter is lowered or the cut-off frequency is increased, the noise resistance is weakened, so that there is a high possibility that engagement is erroneously detected due to minute noise.
ノイズの量は装置及び装置の置かれた環境により変動するが、以上の関係を考えて、ローパスフィルタの次数を低めもしくは、カットオフ周波数を高めから設計し、ノイズにより誤検知をするのであれば、ローパスフィルタの次数を高めたり、カットオフ周波数を小さくしたりして、誤検知をしないように設計すれば、誤検知のない係合検知ができるようになる。 The amount of noise varies depending on the device and the environment in which the device is placed.If the above-mentioned relationship is considered and the low-pass filter is designed with a lower order or a higher cut-off frequency, false detection will occur due to noise. If the order of the low-pass filter is increased or the cut-off frequency is reduced to prevent erroneous detection, engagement detection without erroneous detection can be performed.
実施の形態5.
本実施の形態では、係合前の群から任意の2点と、また係合後が保障される群から任意の2点を取り、係合前の2点を用いて直線を描き、その傾きと切片をJ、Tとする。同様に、係合後の2点を用いて、J、Tを導く。それらを用いて、式(4)にて識別線を構成する。但し、係合前と係合後の2点は出来る限り離れている方が、係合前と係合後の局所的な傾き(イナーシャ)と切片(走行抵抗)を捉えた直線とならないため、係合前と係合後の平均的な直線を表せていることになり、識別線の性能が良くなる。
以上のような、本実施の形態5においては、イナーシャと走行抵抗を計算するのに最小二乗法のような複雑で計算量の多い計算をする必要がなく、比較的小さなメモリで変数が保持できる。
以上のように、本実施の形態5においては、実施の形態1~4と同様の効果が得られるとともに、比較的小さなメモリと計算量で誤識別をしないような識別線が引けるようになる。
Embodiment 5 FIG.
In this embodiment, two arbitrary points are taken from the group before the engagement, and two arbitrary points are taken from the group that is guaranteed after the engagement, and a straight line is drawn using the two points before the engagement, and the inclination thereof And the intercepts are J b and T b . Similarly, J a and T a are derived using the two points after engagement. Using them, an identification line is formed by Equation (4). However, since the two points before and after the engagement are as far as possible from each other, it is not a straight line that captures the local inclination (inertia) and intercept (running resistance) after the engagement and after the engagement. The average straight line before and after the engagement can be expressed, and the performance of the identification line is improved.
As described above, in the fifth embodiment, it is not necessary to perform a complicated calculation with a large amount of calculation like the least square method in order to calculate the inertia and the running resistance, and variables can be held with a relatively small memory. .
As described above, in the fifth embodiment, the same effect as in the first to fourth embodiments can be obtained, and an identification line that does not cause erroneous identification can be drawn with a relatively small memory and calculation amount.
実施の形態6.
本実施の形態では、係合前の群から任意の2点と、また係合後が保障される群でX+α付近の1点とを使ってマージン最大となる識別線を構成する。但し、係合前の2点は出来る限り離れている方が、局所的なイナーシャと走行抵抗を捉えることがなく、識別線の性能が良くなる。また、図15に示すように係合後の1点はX+αから離れるにつれて(図15中の矢印34参照)、識別線が係合前の群から遠くなる(図15中の矢印35参照)ため、X+αの方が良い。
Embodiment 6 FIG.
In the present embodiment, an identification line having a maximum margin is configured using two arbitrary points from the group before engagement and one point near X + α in the group that is guaranteed after engagement. However, if the two points before the engagement are as far as possible, local inertia and running resistance are not captured, and the performance of the identification line is improved. Further, as shown in FIG. 15, as the point after engagement becomes farther from X + α (see arrow 34 in FIG. 15), the identification line becomes farther from the group before engagement (see arrow 35 in FIG. 15). X + α is better.
また、係合前の2点の内、1点を係合前の最大トルクを取る点の角加速度とトルクを用いて識別線を決めれば、傾きが係合前の群と同様で、切片が係合前の群より大きいため、係合前の群と交点29が交差することはなく、誤識別がなくなる。
以上のように、本実施の形態6においては、実施の形態5と同様の効果が得られるとともに、比較的小さなメモリ・計算量で誤識別をしないような識別線が引けるようになる。
Also, if the identification line is determined using the angular acceleration and the torque at the point where the maximum torque before engagement is obtained at one of the two points before engagement, the slope is the same as the group before engagement, and the intercept is Since it is larger than the group before the engagement, the intersection point 29 does not intersect with the group before the engagement, and erroneous identification is eliminated.
As described above, in the sixth embodiment, the same effect as in the fifth embodiment can be obtained, and an identification line that does not cause erroneous identification can be drawn with a relatively small memory and calculation amount.
実施の形態7.
本実施の形態では、図16に示すように係合前の群から任意の2点を使って識別線を構成する。但し、係合前の2点と係合後の2点はそれぞれ出来る限り離れている方が、局所的なイナーシャと走行抵抗を捉えることがなく、識別線の性能が良くなる。イナーシャと走行抵抗は係合によって、かご側ドアだけの状態から、乗り場側ドアを含めたものに変動する。その際、かご側ドアのみから、かご側ドア+乗り場側ドア37の質量比は2倍程度であり(質量比が精度良く事前にわかっていた場合、それを用いた方が良い。)、係合後のイナーシャと走行抵抗も単純にそれぞれ2倍程度となる。そのため、式(4)を用いて、識別線を導出すると、識別線のイナーシャと走行抵抗は係合前のそれぞれ(1+2)/2/1=3/2倍程度となる。図16では、係合前の代表線を36と表し、36の傾きと切片が2倍となる係合後の代表線を37と表す。
Embodiment 7 FIG.
In the present embodiment, as shown in FIG. 16, an identification line is configured using two arbitrary points from the group before engagement. However, if the two points before the engagement and the two points after the engagement are as far apart as possible, local inertia and running resistance are not captured, and the performance of the identification line is improved. The inertia and running resistance change from the state of only the car-side door to the one including the landing-side door by engagement. At this time, the mass ratio of the car side door + the landing side door 37 is only about twice from the car side door (if the mass ratio is known in advance with high accuracy, it is better to use it). The inertia and running resistance after the combination are also simply doubled. Therefore, when the identification line is derived using the equation (4), the inertia and running resistance of the identification line are about (1 + 2) / 2/1 = 3/2 times before the engagement. In FIG. 16, the representative line before engagement is represented by 36, and the representative line after engagement in which the inclination and intercept of 36 are doubled is represented by 37.
また、本実施の形態7では、係合後の群から任意の2点を使って識別線を構成してもよい。但し、係合前の2点と係合後の2点はそれぞれ出来る限り離れている方が、局所的なイナーシャと走行抵抗を捉えることがなく、識別線の性能が良くなる。その際、係合前のイナーシャと走行抵抗は質量比から係合後のそれぞれ1/2倍程度であり、識別線のイナーシャと走行抵抗は係合後のそれぞれ(1+1/2)/2/1=3/4倍程度となる。
以上のように、本実施の形態7においては、実施の形態6と同様の効果が得られるとともに、最小のメモリ及び計算量で誤識別をしないような識別線が引けるようになる。
In the seventh embodiment, an identification line may be configured using two arbitrary points from the group after engagement. However, if the two points before the engagement and the two points after the engagement are as far apart as possible, local inertia and running resistance are not captured, and the performance of the identification line is improved. At that time, the inertia and the running resistance before the engagement are about 1/2 times after the engagement from the mass ratio, and the inertia and the running resistance of the identification line are each (1 + 1/2) / 2/1 after the engagement. = About 3/4 times.
As described above, in the seventh embodiment, the same effects as those of the sixth embodiment can be obtained, and an identification line that does not cause erroneous identification can be drawn with a minimum memory and a calculation amount.
実施の形態8.
図17は、本実施の形態8にかかるエレベーターのドア装置に設けられたドアコントローラ4の内部構成を示したブロック線図である。図17において、図5と同等の機能を持つものは同一符号を付して示し、ここではそれらの説明を省略する。図5と図17の構成の違いとしては、図17においては、図5の速度制御器13の代わりに、速度制御器41が設けられていることと、電流制御器14と電動機5との間に、過負荷検出器39が追加されていること、また、ドア係合検知器16の代わりにドア係合検知・質量推定器40が設けられていることである。
Embodiment 8 FIG.
FIG. 17 is a block diagram showing an internal configuration of the door controller 4 provided in the elevator door device according to the eighth embodiment. In FIG. 17, components having the same functions as those in FIG. 5 are denoted by the same reference numerals, and description thereof is omitted here. 17 differs from the configuration in FIG. 5 in that a speed controller 41 is provided in place of the speed controller 13 in FIG. 5 and that there is a difference between the current controller 14 and the motor 5. In addition, an overload detector 39 is added, and a door engagement detector / mass estimator 40 is provided instead of the door engagement detector 16.
図19は、電動機が誘導電動機や埋込磁石同期型電動機の場合に、本実施の形態8にかかるエレベーターのドア装置に設けられたドアコントローラ4の内部構成を示したブロック線図である。図19において、図18と同等の機能を持つものは同一符号を付して示し、ここではそれらの説明を省略する。図18と図19の構成の違いとしては、図19においては、図18の速度制御器13の代わりに、速度制御器41が設けられていることと、電流制御器14と電動機5との間に、過負荷検出器39が追加されていること、また、ドア係合検知器16の代わりにドア係合検知・質量推定器40が設けられていることである。 FIG. 19 is a block diagram showing an internal configuration of the door controller 4 provided in the door device of the elevator according to the eighth embodiment when the electric motor is an induction motor or an embedded magnet synchronous motor. 19, components having functions equivalent to those in FIG. 18 are denoted by the same reference numerals, and description thereof is omitted here. 18 is different from the configuration in FIG. 19 in that a speed controller 41 is provided instead of the speed controller 13 in FIG. 18, and that there is a difference between the current controller 14 and the electric motor 5. In addition, an overload detector 39 is added, and a door engagement detector / mass estimator 40 is provided instead of the door engagement detector 16.
ドア係合検知・質量推定器40では、ドア係合検知器17で検知した係合位置と共に、イナーシャと質量の比が一定であることを利用して、実施の形態5の手法を用いて計算した係合前、係合後の推定されたイナーシャからそれぞれ係合前、係合後の質量を推定することが可能となる。 The door engagement detector / mass estimator 40 calculates using the method of the fifth embodiment by utilizing the fact that the ratio of inertia and mass is constant along with the engagement position detected by the door engagement detector 17. It is possible to estimate the mass before and after engagement from the estimated inertia before and after engagement.
本実施の形態8では、速度制御器41の出力がドア係合検知・質量推定器40の出力によって変更される。なお、本実施の形態においても、角速度パターン生成器12により、電動機5への角速度指令値が出力され、出力された角速度指令値から、回転検出手段10で検出された回転角度を微分器22で微分処理して得られる回転角速度を、減算器20で減算し、角速度偏差を計算し、速度制御器41が、この角速度偏差に基づき、実角速度が指令角速度に追従するような電流指令値を計算する。このとき、本実施の形態においては、当該電流指令値が、ドア係合検知・質量推定器40の出力によって適宜変更される。速度制御器41の一例としては、式(5)に示すようなPI速度制御器G(s)がある。本実施の形態では、式(5)のPI速度制御器が用いられる場合を例として説明するが、本発明の適用がPI制御器に限られるものではなく、同等の動作を行うものであれば、他の速度制御器を用いてもよい。
G(s)=Ksp+Ksi/s・・・式(5)
In the eighth embodiment, the output of the speed controller 41 is changed by the output of the door engagement detector / mass estimator 40. Also in the present embodiment, the angular velocity pattern generator 12 outputs an angular velocity command value to the electric motor 5, and the rotation angle detected by the rotation detecting means 10 from the output angular velocity command value is determined by the differentiator 22. The rotational angular velocity obtained by the differentiation process is subtracted by the subtractor 20 to calculate an angular velocity deviation, and the speed controller 41 calculates a current command value such that the actual angular velocity follows the commanded angular velocity based on this angular velocity deviation. To do. At this time, in the present embodiment, the current command value is appropriately changed according to the output of the door engagement detector / mass estimator 40. An example of the speed controller 41 is a PI speed controller G (s) as shown in Expression (5). In the present embodiment, the case where the PI speed controller of Formula (5) is used will be described as an example. However, the application of the present invention is not limited to the PI controller, and any equivalent operation can be performed. Other speed controllers may be used.
G (s) = K sp + K si / s (5)
一般的に、電流制御器14の指令値に対する追従性は、速度制御器41よりも高く設定される。この条件下で速度制御器41が式(5)のようなPI速度制御器であると仮定すると、速度制御器41の追従性を示す指標である交差周波数ωは式(6)のようになる。
ω=Ksp/J・・・式(6)
In general, the followability to the command value of the current controller 14 is set higher than that of the speed controller 41. Assuming that the speed controller 41 is a PI speed controller as shown in Equation (5) under this condition, the cross frequency ω c that is an index indicating the followability of the speed controller 41 is as shown in Equation (6). Become.
ω c = K sp / J (6)
式(6)より制御系の追従性を一定に保ちたい場合は、イナーシャJに合わせて比例ゲインKspを変更するのが望ましいことが分かる。本発明によれば、ドア係合検知・質量推定器40によりイナーシャJを推定できるので、各階のドア質量の違い、また、乗り場側ドア6の係合の有無によって制御比例ゲインKspを変更することができる。これにより、各階のドア質量の違い、乗り場側ドア6の係合の有無に関わらず、制御系の追従性を一定に保つことができ、よりきめ細かい制御が可能となる。 If you want to keep the follow-up of the control system from the equation (6) constant, it can be seen it is desirable to change the proportional gain K sp in accordance with the inertia J. According to the present invention, since the inertia J can be estimated by the door engagement detection / mass estimator 40, the control proportional gain Ksp is changed depending on the difference in the door mass on each floor and the presence or absence of the landing side door 6 being engaged. be able to. Thereby, the followability of the control system can be kept constant regardless of the difference in the door mass on each floor and the presence or absence of the landing-side door 6, and finer control is possible.
積分比例ゲインKsiは、例えば、「ACサーボシステムの理論と設計の実際」(参考文献:杉本英彦、外2名、「ACサーボシステムの理論と設計の実際」、第7版、総合電子出版社、2005年7月10日、p.153-157)によれば、式(7)を満たすように設定される。
si=Ksp×ω/5・・・式(7)
Integral proportional gain K si is, for example, “Theory and design of AC servo system” (reference: Hidehiko Sugimoto, 2 others, “Theory and design of AC servo system”, 7th edition, General Electronic Publishing According to the company, July 10, 2005, p.153-157), it is set so as to satisfy equation (7).
K si = K sp × ω c / 5 (7)
また、本実施の形態では、過負荷検出器39の設定がドア係合検知・質量推定器40の出力によって変更される。過負荷検出器39は、トルクが予め設定された所定の異常検知閾値より大きくなると、かご側ドア1もしくは乗り場側ドア6に人体が接触あるいは挟まれたなどと判断し、ドアの動きを反転させるための手段である。これにより、人体に大きな負荷がかかることを防止することができる。本実施の形態においては、ドア係合検知・質量推定器40の出力に応じて、過負荷検出器39の異常検知閾値の値を変更させる。 In the present embodiment, the setting of the overload detector 39 is changed by the output of the door engagement detection / mass estimator 40. When the torque exceeds a predetermined abnormality detection threshold set in advance, the overload detector 39 determines that a human body is in contact with or sandwiched between the car side door 1 or the landing side door 6 and reverses the movement of the door. Means. Thereby, it can prevent that a big load is applied to a human body. In the present embodiment, the value of the abnormality detection threshold value of the overload detector 39 is changed according to the output of the door engagement detector / mass estimator 40.
電動機5のトルクは、かご側ドア1の質量や乗り場側ドア6の質量によって変わるので、過負荷を検出するための異常検知閾値も変更させることが望ましい。本発明を用いれば、電動機5が動かすドアの質量が推定できるので、推定ドア質量が大きい場合には過負荷検出閾値を大きくし、推定ドア質量が小さい場合には過負荷検出閾値を小さくすることができる。これにより、信頼性の高い過負荷検出が可能となる。
以上のように、本実施の形態8においては、実施の形態1~7と同様の効果が得られるとともに、さらに以下の効果を得ることができる。
Since the torque of the electric motor 5 varies depending on the mass of the car-side door 1 and the mass of the landing-side door 6, it is desirable to change the abnormality detection threshold for detecting overload. If the present invention is used, the mass of the door moved by the electric motor 5 can be estimated, so that the overload detection threshold is increased when the estimated door mass is large, and the overload detection threshold is decreased when the estimated door mass is small. Can do. This makes it possible to detect overload with high reliability.
As described above, in the eighth embodiment, the same effects as in the first to seventh embodiments can be obtained, and the following effects can be further obtained.
本実施の形態においては、角速度パターン生成器12の出力と回転検出手段10から得られる回転速度との差から電動機5を制御する速度制御器41を有し、当該速度制御器41の比例ゲインをドア係合検知・質量推定器40の出力に基づいてドア質量推定値に対応して変更するようにしたので、各階や係合前後で異なるドア質量に応じて速度制御系を最適に変更できるので、ドア質量によらず同等な振動や騒音性能を得ることができる。 In the present embodiment, there is a speed controller 41 that controls the electric motor 5 from the difference between the output of the angular velocity pattern generator 12 and the rotational speed obtained from the rotation detecting means 10, and the proportional gain of the speed controller 41 is set. Since it is changed according to the door mass estimated value based on the output of the door engagement detection / mass estimator 40, the speed control system can be optimally changed according to different door masses at each floor and before and after the engagement. The same vibration and noise performance can be obtained regardless of the door mass.
 また、本実施の形態においては、電動機5のトルクが所定の検知閾値以上になった場合に異常であると検知する過負荷検出器39を有しドア係合検知・質量推定器40の出力から過負荷検出器39の異常検知閾値を変更するようにしたので、各階や係合前後で異なるドア質量に応じて過負荷検出の閾値を設定できるので、精度の高い過負荷検出が可能となる。

Further, in the present embodiment, the output of the door engagement detection / mass estimator 40 has an overload detector 39 that detects an abnormality when the torque of the electric motor 5 exceeds a predetermined detection threshold. Since the abnormality detection threshold value of the overload detector 39 is changed, an overload detection threshold value can be set according to different door masses at each floor and before and after the engagement, so that highly accurate overload detection can be performed.

 1 かご側ドア、2 係合ベーン、3 記憶手段、4 ドアコントローラ、5 電動機、6 乗り場側ドア、7 係合ローラ(2と7を合わせて係合装置)、8 かご、9 係合ギャップ、10 回転検出手段、11 電流センサ、12 角速度パターン生成器、13 速度制御器、14 電流制御器、 15 既知トルク変換器、16 ドア係合検知器17 識別線計算機、18 駆動電圧、19 減算器、20 減算器、21 減算器、22 微分器、23 微分器、24 ゲイン、25 軌跡、26 係合前の群、27 係合後の群、28 識別線、29 交点、30 係合検知を行わずに加速していたタイミング、31 本技術による短縮量、32 従来の係合検知無しの角速度パターン、33 係合検知後即加速の角速度パターン、34 X+αから離れる方向に選んだ際の係合後の一点の変動、35 係合後の一点が遠くなった際の識別線の変動、36 係合前を代表する直線、37 係合後を代表する直線、38 角速度とトルク積分の時系列データの軌跡、39 過負荷検出器、40 ドア係合検知・質量推定器、41 速度制御器、42 係合検知後即加速、43 全開時の短縮時間、44 特殊トルク検出手段、45 電動機選択フラグ。 1 car side door, 2 engagement vanes, 3 storage means, 4 door controller, 5 electric motor, 6 landing side door, 7 engagement roller (2 and 7 together engagement device), 8 car, 9 engagement gap, 10 rotation detection means, 11 current sensor, 12 angular velocity pattern generator, 13 speed controller, 14 current controller, 15 known torque converter, 16 door engagement detector 17, identification line calculator, 18 drive voltage, 19 subtractor, 20 subtractor, 21 subtractor, 22 differentiator, 23 differentiator, 24 gain, 25 trajectory, 26 group before engagement, 27 group after engagement, 28 identification line, 29 intersection point, 30 engagement detection is not performed Acceleration timing, 31 Reduction amount by this technology, 32 Angular velocity pattern without conventional engagement detection, 33 Angular velocity pattern immediately after engagement detection , 34 Fluctuation of one point after engagement when selected in a direction away from X + α, 35 Fluctuation of identification line when one point after engagement is far away, 36 Straight line representing before engagement, 37 After engagement Typical straight line, 38 Angular velocity and torque integration time-series data locus, 39 Overload detector, 40 Door engagement detection / mass estimator, 41 Speed controller, 42 Immediate acceleration after engagement detection, 43 Shortening when fully open Time, 44 special torque detection means, 45 motor selection flag.

Claims (15)

  1. エレベーターのかごの出入口を開閉するかご側ドアと、各階床の乗り場の出入口を開閉する乗り場側ドアと、前記かご側ドアを開閉駆動する電動機と、前記かご側ドアと前記乗り場側ドアとの間に設けられ、前記電動機の開閉駆動による前記かご側ドアの開閉動作に連動して前記乗り場側ドアを開閉動作する係合装置を有するエレベーターのドア制御システムであって、
    前記電動機の回転を検出する回転検出手段の出力と、前記電動機のトルクを検出するトルク検出手段の出力とを用いて、あらかじめ、前記かご側ドアと乗り場側ドアとの係合の前後を識別する識別線を計算する手段と、
    前記識別線を保存する記憶手段と、
    実際のドア開閉時に得られる前記回転検出手段の出力及び前記トルク検出手段の出力と、
    前記記憶手段に保存された識別線とを用いて、前記かご側ドアと乗り場側ドアとの係合を検知するドア係合検知器と、
    を備えたことを特徴とするエレベーターのドア制御システム。
    A car-side door that opens and closes the entrance / exit of the elevator car, a landing-side door that opens and closes the entrance / exit of each floor floor, an electric motor that opens and closes the car-side door, and the car-side door and the landing-side door An elevator door control system having an engagement device that opens and closes the landing side door in conjunction with the opening and closing operation of the car side door by opening and closing drive of the electric motor,
    Using the output of the rotation detection means for detecting the rotation of the electric motor and the output of the torque detection means for detecting the torque of the electric motor, the front and rear of the engagement between the car side door and the landing side door are identified in advance. Means for calculating the identification line;
    Storage means for storing the identification line;
    The output of the rotation detection means and the output of the torque detection means obtained at the time of actual door opening and closing;
    A door engagement detector for detecting engagement between the car side door and the landing side door using an identification line stored in the storage means;
    An elevator door control system characterized by comprising:
  2. 前記電動機の回転速度を指示する角速度パターン生成器を有し、前記ドア係合検知器の出力を用いて、前記角速度パターン生成器の出力を変更することを特徴とする請求項1に記載のエレベーターのドア制御システム。 2. The elevator according to claim 1, further comprising an angular velocity pattern generator that indicates a rotation speed of the electric motor, and changing an output of the angular velocity pattern generator using an output of the door engagement detector. Door control system.
  3. 前記回転検出手段の出力から得られる時系列データと、前記トルクを検出する電流センサから得られる時系列データの中で、係合していること及びしていないことが機械的仕様から保障される区間のデータを用いて、前記係合の前後を識別する識別線をあらかじめ計算する手段を持ち、その識別線を記憶する装置と、その記憶した情報と、実際のドア開閉時に前記電動機の回転検出手段の出力から得られる時系列データと、前記電流センサの出力から得られる時系列データとを用いて、係合したことをリアルタイムに検知するドア係合検知手段を持つことを特徴とする請求項1又は2に記載のエレベーターのドア制御システム。 In the time series data obtained from the output of the rotation detecting means and the time series data obtained from the current sensor for detecting the torque, it is ensured from the mechanical specifications that it is engaged or not engaged. A means for pre-calculating an identification line for identifying before and after the engagement using the data of the section, a device for storing the identification line, the stored information, and the rotation detection of the motor when the door is actually opened and closed 2. A door engagement detecting means for detecting engagement in real time using time series data obtained from the output of the means and time series data obtained from the output of the current sensor. The elevator door control system according to 1 or 2.
  4. 前記回転検出手段の出力から得られる位置情報と、前記電動機を駆動する駆動電圧及び前記位置情報からトルクを計算する特殊トルク検出手段と、前記位置情報に依存して機械的に出力される既知トルクを事前に計算する機能を持つ既知トルク変換器とを有することを特徴とする請求項1又は2に記載のエレベーターのドア制御システム。 Position information obtained from the output of the rotation detection means, drive voltage for driving the electric motor, special torque detection means for calculating torque from the position information, and known torque mechanically output depending on the position information The elevator door control system according to claim 1, further comprising: a known torque converter having a function of calculating in advance.
  5. 前記回転検出手段から得られた角加速度の時系列データと、前記トルク検出手段から得られたトルクの時系列データから、係合していること及びしていないことが機械的仕様により保障される区間のデータから得られる係合前、係合後が保障される区間の時系列データを用いて、係合前、係合後のイナーシャと走行抵抗を導出し、前記係合によって駆動対象がかご側ドアだけから、乗り場側ドアを含めたものになることを利用して、識別線を構成したことを特徴とする請求項1又は2に記載のエレベーターのドア制御システム。 From the time series data of the angular acceleration obtained from the rotation detection means and the time series data of the torque obtained from the torque detection means, it is ensured by the mechanical specifications that it is engaged. Using the time series data of the section that guarantees the pre-engagement and post-engagement obtained from the data of the section, the inertia and running resistance before and after the engagement are derived, and the car is driven by the engagement. The elevator door control system according to claim 1 or 2, wherein an identification line is configured by using only a side door to include a landing side door.
  6. ローパスフィルタの次数やカットオフ周波数を変更することを特徴とする請求項1又は2に記載のエレベーターのドア制御システム。 The elevator door control system according to claim 1 or 2, wherein the order of the low-pass filter and the cutoff frequency are changed.
  7. 前記回転検出手段の出力から得られる位置情報により、前記電動機に付加される位置依存のトルクを計算する既知トルク変換器を有し、前記既知トルク変換器の出力と、前記回転検出手段から得られた角加速度の時系列データと、前記トルク検出手段から得られたトルクの時系列データを用いて、係合していること及びしていないことが機械的仕様により保障される区間のデータを選択し、得られる係合前と係合後が保障される区間の時系列データを用いて求めた係合前、係合後のイナーシャと走行抵抗からドア係合及びドア質量を推定するドア係合検知・ドア質量推定器を持つことを特徴とする請求項1又は2に記載のエレベーターのドア制御システム。 A known torque converter for calculating a position-dependent torque applied to the electric motor based on position information obtained from the output of the rotation detection means; and the output of the known torque converter and the rotation detection means Using the time-series data of the angular acceleration and the time-series data of the torque obtained from the torque detection means, the data of the section in which it is guaranteed by the mechanical specifications that it is engaged or not engaged is selected. The door engagement and the door mass are estimated from the inertia and the running resistance before and after the engagement obtained using the time series data of the section in which the pre-engagement and the post-engagement are guaranteed. The elevator door control system according to claim 1, further comprising a detection / door mass estimator.
  8. 前記回転検出手段から得られた時系列データと、前記トルク検出手段から得られたトルクの時系列データから、係合していること及びしていないことが機械的仕様により保障される区間のデータを選択し、得られる係合前と係合後が保障される区間の時系列データを用いて、係合前と係合後を代表する直線をそれぞれ導出し、係合前の直線と、係合後の直線が成す角度を2等分する直線を前記識別線とすることを特徴とする請求項1又は2に記載のエレベーターのドア制御システム。 From the time series data obtained from the rotation detecting means and the time series data of the torque obtained from the torque detecting means, data of a section in which engagement and non-engagement are guaranteed by mechanical specifications Using the obtained time-series data of the sections in which the pre-engagement and post-engagement are ensured, the straight lines representing the pre-engagement and post-engagement are derived respectively, The elevator door control system according to claim 1 or 2, wherein a straight line that bisects an angle formed by the combined straight line is defined as the identification line.
  9. 前記回転検出手段から得られた時系列データと、前記トルク検出手段から得られたトルクの時系列データから、係合していること及びしていないことが機械的仕様により保障される区間のデータを選択し、得られる係合前と係合後が保障される区間の時系列データを用いて、係合前と係合後を代表する直線をそれぞれ導出し、係合前の直線と、係合後の直線が成す角度を、等角度ではなく、重み付けをした角度を用いて前記識別線を構成することを特徴とする請求項1又は2に記載のエレベーターのドア制御システム。 From the time series data obtained from the rotation detecting means and the time series data of the torque obtained from the torque detecting means, data of a section in which engagement and non-engagement are guaranteed by mechanical specifications Using the obtained time-series data of the sections in which the pre-engagement and post-engagement are ensured, the straight lines representing the pre-engagement and post-engagement are derived respectively, 3. The elevator door control system according to claim 1, wherein the identification line is configured by using a weighted angle instead of an equal angle as an angle formed by the combined straight line.
  10. 係合前は2点の角加速度とトルクの情報、係合後は2点の角加速度とトルクの情報を用いて前記識別線を構成することを特徴とする請求項1又は2に記載のエレベーターのドア制御システム。 The elevator according to claim 1 or 2, wherein the identification line is configured using information on angular acceleration and torque at two points before engagement and information on angular acceleration and torque at two points after engagement. Door control system.
  11. 係合前は2点の角加速度とトルクの情報、係合後は1点の角加速度とトルクの情報を用いて前記識別線を構成することを特徴とする請求項1又は2に記載のエレベーターのドア制御システム。 The elevator according to claim 1 or 2, wherein the identification line is configured using information on angular acceleration and torque at two points before engagement and information on angular acceleration and torque at one point after engagement. Door control system.
  12. 係合前の2点の角加速度とトルクの情報と係合前後の質量比の情報を用いて前記識別線を構成することを特徴とする請求項1又は2に記載のエレベーターのドア制御システム。 3. The elevator door control system according to claim 1, wherein the identification line is configured using information on angular acceleration and torque at two points before engagement and information on a mass ratio before and after engagement. 4.
  13. 係合後の2点の角加速度とトルクの情報と係合前後の質量比の情報を用いて前記識別線を構成することを特徴とする請求項1又は2に記載のエレベーターのドア制御システム。 3. The elevator door control system according to claim 1, wherein the identification line is configured using information on angular acceleration and torque at two points after engagement and information on a mass ratio before and after engagement. 4.
  14. 前記角速度パターン生成器の出力と、前記回転検出手段から得られる回転速度との差から前記電動機を制御する速度制御器を有し、係合していること及びしていないことが機械的仕様により保障される区間のデータを選択し、得られる係合前と係合後が保障される区間の時系列データを用いて求めた係合前、係合後のイナーシャと走行抵抗からドア係合及びドア質量を推定するドア係合検知・質量推定器の出力を、前記速度制御器に入力することを特徴とする請求項1又は2に記載のエレベーターのドア制御システム。 It has a speed controller that controls the electric motor from the difference between the output of the angular velocity pattern generator and the rotational speed obtained from the rotation detecting means, and it is not engaged according to the mechanical specifications. Select the data of the section to be guaranteed, and the door engagement and the engagement from the inertia and running resistance before and after the engagement obtained using the obtained time series data of the section before and after the engagement is guaranteed. 3. The elevator door control system according to claim 1, wherein an output of a door engagement detection / mass estimator for estimating a door mass is input to the speed controller. 4.
  15. 前記電動機のトルクが所定の値以上になった場合に異常であると検知する過負荷検出器を有し、係合していること及びしていないことが機械的仕様により保障される区間のデータを選択し、得られる係合前と係合後が保障される区間の時系列データを用いて求めた係合前、係合後のイナーシャからドア係合及びドア質量を推定するドア係合検知・質量推定器の出力から、前記過負荷検出器の異常検知閾値を変更することを特徴とする請求項1又は2に記載のエレベーターのドア制御システム。 Data of a section that has an overload detector that detects an abnormality when the torque of the electric motor exceeds a predetermined value, and that is ensured by mechanical specifications to be engaged and not engaged Door engagement detection that estimates the door engagement and door mass from the pre-engagement and post-engagement inertias obtained using the time series data of the sections where the pre-engagement and post-engagement guarantees are obtained. The elevator door control system according to claim 1 or 2, wherein an abnormality detection threshold value of the overload detector is changed from an output of the mass estimator.
PCT/JP2011/006927 2011-01-06 2011-12-12 Door control system for elevator WO2012093441A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112011104681.2T DE112011104681B4 (en) 2011-01-06 2011-12-12 ELEVATOR DOOR CONTROL SYSTEM
JP2012551751A JP5575272B2 (en) 2011-01-06 2011-12-12 Elevator door control system
KR1020137017481A KR101506416B1 (en) 2011-01-06 2011-12-12 Elevator door control system
CN201180064076.5A CN103282300B (en) 2011-01-06 2011-12-12 Door control system for elevator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011001351 2011-01-06
JP2011-001351 2011-01-06

Publications (1)

Publication Number Publication Date
WO2012093441A1 true WO2012093441A1 (en) 2012-07-12

Family

ID=46457311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006927 WO2012093441A1 (en) 2011-01-06 2011-12-12 Door control system for elevator

Country Status (5)

Country Link
JP (1) JP5575272B2 (en)
KR (1) KR101506416B1 (en)
CN (1) CN103282300B (en)
DE (1) DE112011104681B4 (en)
WO (1) WO2012093441A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697199A (en) * 2020-12-11 2021-04-23 安徽中科智能高技术有限责任公司 Subway shielding door dynamic performance comprehensive detector and detection method
CN112805234A (en) * 2018-09-21 2021-05-14 因温特奥股份公司 Elevator car, elevator installation, method for operating an elevator installation, and door drive

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101700554B1 (en) * 2013-03-12 2017-01-26 미쓰비시덴키 가부시키가이샤 Elevator door control device
US9834414B2 (en) * 2015-06-17 2017-12-05 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling elevator door systems
EP3138804A1 (en) * 2015-09-07 2017-03-08 Siemens Aktiengesellschaft Method for automatically detecting a coupling line
KR102060362B1 (en) 2018-05-21 2019-12-30 현대엘리베이터주식회사 Apparatus of controlling impact of elevator door
KR102130510B1 (en) 2018-06-26 2020-07-06 현대엘리베이터주식회사 Apparatus for elevator platform door
CN108946409B (en) * 2018-07-25 2020-07-10 日立楼宇技术(广州)有限公司 Elevator car door operation control method and device, elevator and storage medium
JP6629398B1 (en) * 2018-08-23 2020-01-15 東芝エレベータ株式会社 Elevator door control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001430A (en) * 2008-08-25 2009-01-08 Mitsubishi Electric Corp Door controller of elevator
JP2009214952A (en) * 2008-03-07 2009-09-24 Mitsubishi Electric Corp Door device of elevator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186589A (en) * 1989-12-16 1991-08-14 Mitsubishi Electric Corp Controller for elevator door
JP2504275B2 (en) 1990-04-09 1996-06-05 三菱電機株式会社 Elevator door device
JP4289570B2 (en) * 1998-11-30 2009-07-01 三菱電機株式会社 Elevator door control device
JP2002003116A (en) * 2000-06-23 2002-01-09 Mitsubishi Electric Building Techno Service Co Ltd Control device of elevator door
JP2007015787A (en) * 2005-07-05 2007-01-25 Toshiba Elevator Co Ltd Elevator door device, door control device and door control method
JP4855839B2 (en) * 2006-06-09 2012-01-18 株式会社日立製作所 Elevator door device
JP4834747B2 (en) 2009-03-03 2011-12-14 株式会社日立製作所 Elevator door control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214952A (en) * 2008-03-07 2009-09-24 Mitsubishi Electric Corp Door device of elevator
JP2009001430A (en) * 2008-08-25 2009-01-08 Mitsubishi Electric Corp Door controller of elevator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805234A (en) * 2018-09-21 2021-05-14 因温特奥股份公司 Elevator car, elevator installation, method for operating an elevator installation, and door drive
US11679960B2 (en) 2018-09-21 2023-06-20 Inventio Ag Elevator car, elevator installation, method for operating an elevator system and door drive
CN112697199A (en) * 2020-12-11 2021-04-23 安徽中科智能高技术有限责任公司 Subway shielding door dynamic performance comprehensive detector and detection method

Also Published As

Publication number Publication date
CN103282300B (en) 2015-03-11
DE112011104681T5 (en) 2013-10-02
CN103282300A (en) 2013-09-04
JPWO2012093441A1 (en) 2014-06-09
KR101506416B1 (en) 2015-03-26
DE112011104681B4 (en) 2021-12-02
KR20130101120A (en) 2013-09-12
JP5575272B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5575272B2 (en) Elevator door control system
JP5465251B2 (en) Elevator door equipment
JP4218403B2 (en) Vehicle door control device
JP4937163B2 (en) Elevator door equipment
JP5375964B2 (en) Elevator door control device
EP1652634A1 (en) Robot arm control method and control device
US8433538B2 (en) Method and device for balancing production-related inaccuracies of the magnetic wheel of an electromotive drive of a vehicle
US11091950B2 (en) Door control device and door control method
US7714526B2 (en) Control device for a closure member of a vehicle
CN109399430B (en) Elevator landing door control method
JP2007104777A (en) Electric vehicle drive controller
JP2017203724A (en) Bogie vibration characteristic grasping method, idling slip re-adhesion control method, bogie vibration characteristic grasping device and idling slip re-adhesion control device
JP5828452B2 (en) Electric vehicle control device
JP2012116653A (en) Elevator door control device
JP6265866B2 (en) Elevator door control device and elevator door control method
KR102440458B1 (en) Control Device for Multi-layer Sliding Roof
JP2020010447A (en) Electric motor control device and collision detection method
CN103492301A (en) Elevator apparatus
JP5353583B2 (en) Elevator door control device
JP2006083526A (en) Automatic door device and contact detection device used for the automatic door device
JP2010132427A (en) Control device for elevator door
JP4263990B2 (en) Floating railway drive control system
JP2023038793A (en) Inverter controller
CN115973871A (en) Elevator door opening and closing resistance detection and driving force compensation method
JP2005020859A (en) Electric rolling stock controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854653

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012551751

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137017481

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120111046812

Country of ref document: DE

Ref document number: 112011104681

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854653

Country of ref document: EP

Kind code of ref document: A1