WO2012092828A1 - 微结构准相位匹配实现多维目标波导光栅和体光栅的制备方法 - Google Patents

微结构准相位匹配实现多维目标波导光栅和体光栅的制备方法 Download PDF

Info

Publication number
WO2012092828A1
WO2012092828A1 PCT/CN2011/085067 CN2011085067W WO2012092828A1 WO 2012092828 A1 WO2012092828 A1 WO 2012092828A1 CN 2011085067 W CN2011085067 W CN 2011085067W WO 2012092828 A1 WO2012092828 A1 WO 2012092828A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
sampling
waveguide
wave vector
seed
Prior art date
Application number
PCT/CN2011/085067
Other languages
English (en)
French (fr)
Inventor
施跃春
陈向飞
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to US13/977,718 priority Critical patent/US8835204B2/en
Priority to EP11855221.5A priority patent/EP2662711B1/en
Publication of WO2012092828A1 publication Critical patent/WO2012092828A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2031Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • G02B5/1823Plural gratings positioned on the same surface, e.g. array of gratings in an overlapping or superposed manner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices

Definitions

  • the invention belongs to the field of optoelectronic technology, relates to optical fiber communication, photon integration, photoelectric sensing and other photoelectric information processing, and proposes a micro-structure Quasi-phase-matching technology (MS-QPM), and based on the technology.
  • MS-QPM micro-structure Quasi-phase-matching technology
  • waveguide Bragg gratings are used in a variety of optical communication discrete devices and photonic integrated devices because of their good wavelength selectivity.
  • a planar integrated Bragg waveguide grating filter [1] can realize multiplexing/demultiplexing or filtering of optical signals of different wavelengths, waveguide grating-assisted optical add/drop multiplexer (0ADM) [2-3], and Optical waveguide mode converters for tilted gratings, etc. [4].
  • the waveguide grating with different functions is often realized on a photonic chip, and the grating features of different functions are also different, which requires separate writing of different steps.
  • traditional low-cost holographic exposure techniques are almost impossible if you want to implement different grating directions and periods on the same chip and waveguide gratings with fine structure such as phase shift, chirp or even arbitrary grating stripe structure.
  • advanced micromachining techniques such as electron beam exposure (E-Be am ), which can control each stripe.
  • E-Be am electron beam exposure
  • the disadvantages of high cost and time consuming of electron beam exposure technology undoubtedly increase the manufacturing difficulty and process cost, and it is difficult to mass-scale industrialization.
  • Reconstruction - Equivalent ⁇ technology enables the fabrication of devices with nanometer scales using micron-scale processing precision. This method has also been successfully applied to the design and manufacture of distributed feedback (DFB) semiconductor lasers and arrays of DFB lasers [7-9], which provides a good technical bottleneck for the fabrication of high-performance semiconductor array light sources required for photonic integration. solution.
  • DFB distributed feedback
  • the present invention proposes a microstructure quasi-phase matching technique (MS_QPM) based on the prior research of the present applicant.
  • This technology provides a new waveguide grating design and manufacturing method, and also gives some new structural transformation characteristics and corresponding optical characteristics in the waveguide grating or volume grating, such as the same seed grating structure, through sampling means, etc. Effectively change the different periods of the grating and rotate the grating in different directions.
  • Reconstruction—equivalent ⁇ technique is micro-structure quasi-phase matching (MS-QPM) A special case of technology in one dimension [5].
  • the method can realize only changing the large-scale sampling structure, and the arbitrary two-dimensional or three-dimensional target grating stripe morphology can be realized while the seed grating remains unchanged. Therefore, any two-dimensional or three-dimensional equivalent grating morphology can be realized by using a two-dimensional or three-dimensional sampling structure with a micrometer order design and a uniform seed grating.
  • the structure can realize various optical characteristics of a waveguide grating or a bulk grating having a fine structure, but since the seed grating is uniform, only the sampling structure is changed, and the sampling scale is generally on the order of micrometers, so the implementation of the method is only A standard holographic exposure technique coupled with a conventional lithography technique is required to greatly reduce the process requirements and greatly increase the yield of the product.
  • a grating design based on this two- or three-dimensional sampling structure can be used to design new photonic devices.
  • a wavelength division multiplexer can be implemented.
  • the mainstream wavelength division multiplexers on the market are arrayed waveguide gratings (AWGs) and multimode interference devices ( ⁇ 1 ). These devices have high requirements for waveguide accuracy and are relatively large in scale. If this two-dimensional sampling structure is used, combined with the Bragg reflection principle of the bulk grating, a novel wavelength division multiplexer with a compact structure can be realized.
  • photonic devices can be implemented, for example, a filter capable of realizing retroreflection-free, a DFB semiconductor laser based on reconstruction-equivalent ⁇ technique for suppressing the 0-order channel, a directional coupler at any angle, and A power splitter, an optical waveguide mode converter, includes any other grating-based waveguide photonic device, and a bulk grating device.
  • the main idea of the present invention is: to propose a microstructure quasi-phase matching technique, based on which a uniform two-dimensional or three-dimensional seed grating and a required sampling structure are used to realize a target waveguide grating and a volume grating of arbitrary grating stripe morphology, and based on This is a new type of photonic device.
  • the method can utilize the two-dimensional or three-dimensional small-period seed grating and the sampling structure designed according to requirements, and realize the design and manufacture of the target waveguide grating and the bulk grating of any grating stripe morphology, thereby simplifying the manufacturing process and reducing the processing cost. And design a variety of new photonic devices based on this.
  • the preparation of the target grating is characterized in that a common waveguide grating is used as a seed grating, and the grating period is generally between 50 and 1000 nanometers; and on this basis, a two-dimensional or three-dimensional refractive index modulation sampling structure, that is, a sampling grating;
  • the grating is expanded by Fourier series and contains multiple Fourier components.
  • Each component is called a shadow grating, and one of the shadow gratings is selected as the target equivalent grating.
  • a wave vector is incident on a grating (two-dimensional or three-dimensional grating) device, a strong coupling occurs, and the light wave vector needs to be the grating wave of the device.
  • Vector matching if the grating is a seed grating, when the grating is a seed grating, when
  • A( ) is the seed grating period, which is the seed grating direction;
  • C Comp( ) is the Fourier coefficient, and 7 is the Fourier order, which represents all the Fourier components of all 2D or 3D sampled gratings, ie all shadow gratings;
  • 3 after the sampled grating contains many levels of Fourier components, ie, shadow grating, the corresponding grating wave vector is ⁇ ⁇ ), the grating morphology of all these shadow gratings is changed by changing the sampling structure; different levels of The shadow grating wave vector f din( ) is the grating wave vector of the seed grating.
  • ⁇ v( ) changes the pattern of the sampling structure: changing the pattern of the sampling structure can change the wave vector ( ⁇ f), which is equivalent to achieve any desired target grating shape; that is, when the seed grating wave vector.
  • the Fourier periodic structural component of a certain order in the sampling periodic structure is used, that is, the wave vector of the target sampling Fourier leaf grating is ⁇ 5 SJV ( )
  • this technique is similar to the quasi-phase matching technique of nonlinear optics, that is, the phase difference is zero in the optical transmission process through the additional periodic modulation structure, and the following phase matching is achieved.
  • phase of the sampled grating is also a function of space, for the phase shift of the shadow grating (with uniform sampling and seeds) Raster as an example)
  • phase of the sampled grating can be expressed as
  • the refractive index modulation intensity and apodization of the target equivalent grating are changed by the sampled pattern or shape, that is, the duty ratio; in the case of two-dimensional, the refractive index modulation intensity of the target equivalent grating is changed by changing the sampling shape.
  • the specific shape of the sample corresponding to the maximum refractive index modulation intensity of the target equivalent grating can be obtained by Fourier analysis.
  • the optical signal In the actual optical signal transmission and processing, the optical signal has a certain bandwidth, that is, the signal light is not a single-frequency point light, but a certain wavelength optical signal or a multi-wavelength optical signal with a certain signal bandwidth, and thus the period of the corresponding grating
  • the structure needs to be changed according to the actual transmission and processing of the signal light to obtain the best efficiency.
  • the grating structure that obtains the best or near-optimal efficiency is the target grating (two-dimensional or three-dimensional grating) we need, and the grating wave vector is the target grating wave vector ⁇ ).
  • the target grating is not a uniform grating, and the grating period corresponding to the wavelength of the optical signal is generally on the order of 100 nanometers. Therefore, the nano grating is required to fabricate the target grating, and the wavelength interval between the multi-wavelength optical signals is minimum. Below 1 nm, sub-nanometer precision is required to obtain a good target grating, which poses great difficulties for the manufacture of target gratings, especially for commercial mass production.
  • the fringe morphology of the target grating is in one-to-one correspondence with its grating wave vector, so objectively obtaining the core method of the target grating is how to obtain the desired target grating wave vector ⁇ ).
  • the present invention is to provide a grating structure method for realizing a target grating stripe shape or a target grating wave vector ⁇ ).
  • the grating after sampling the seed grating still has a periodic structure, which is also a superposition of a series of Fourier components according to Fourier analysis. Each Fourier component is called a shadow raster.
  • the wavevectors of these shadow gratings are the geometric vector synthesis of the wave vector of the seed grating and the sampled Fourier leaf grating wave vector.
  • the shadow vector of the wave vector of a sampled Fourier leaf grating and the seed grating wave vector can be equal to the target grating wave vector, so that the target grating can be equivalently realized.
  • the selected Fourier-level sampling Fourier leaf grating used here to equivalently implement the target grating is called the target sampling Fourier leaf grating, and the corresponding Fourier-level shadow grating in the corresponding sampling grating is called the target. Equivalent grating.
  • the wave vector of the target grating is equivalent to the geometric vector synthesis of the target sample Fourier leaf grating wave vector and the seed grating wave vector.
  • the seed grating structure adopts traditional low-cost technology, such as holographic exposure or near-field holographic exposure technology, and realizes a large-area low-cost seed grating, and the sampling periodic structure is realized by traditional lithography technology, thereby realizing in a large-area structure.
  • Various functional target gratings are described below.
  • the grating period is generally between 50-1000 nm; and on this basis, a two-dimensional refractive index modulation sampling structure is prepared. , that is, the sampling grating; the sampling grating contains a plurality of shadow gratings, and one of the shadow gratings is selected as the target equivalent grating, and the target equivalent grating can equivalently realize the target waveguide grating and the volume grating.
  • the seed grating is actually a normal two-dimensional or three-dimensional Bragg grating with a relatively small period, and the general period is on the order of 100 nanometers.
  • such a grating provides only basic grating feedback and does not provide a complex photoresponse, and is therefore referred to as a seed grating.
  • the shape of the seed grating can be arbitrary, but in the actual manufacturing process, the uniform seed grating is very convenient to manufacture by using the holographic exposure technology. Therefore, the seed grating is often selected as a uniform grating, and then the seed grating is sampled.
  • the pattern in principle, the sampling pattern can also be arbitrary.
  • the sampling pattern is also a periodic structure, referred to as a sampling periodic structure, but with a larger period relative to the seed grating, generally an order of magnitude larger than the period of the seed grating.
  • sampling structure Because of the periodicity of the sampling structure, according to equation (3), it has many Fourier components, and the periodic values of these periodic Fourier components are equal to or smaller than the period value of the sampling structure. These Fourier components are also a series of gratings. They have a larger period than the seed grating period. If a sampling structure is applied to the seed grating, a grating refractive index modulation having a sampling pattern is formed. Such a periodic refractive index modulation structure is a sampling grating (a two-dimensional or three-dimensional sampling grating) which is generally known.
  • the seed grating structure (the seed grating wave vector is unchanged) can be changed, and the sampling periodic structure is changed, and the target sampling Fourier leaf grating wave vector is used to compensate them.
  • the mismatch between the waves this principle is similar to the principle of matching the nonlinear optics, that is, the phase difference is zero in the optical transmission process by the additional periodic modulation structure, that is, the formula (5) is realized as in the present invention.
  • the bits match. Equation (5) has completely similar mathematical expressions and physical connotations to the quasi-phase matching technique in nonlinear materials.
  • An additional periodic modulation structure is utilized to compensate for phase mismatch, enabling phase matching of the final optical process.
  • a large-period sampling structure is used to compensate for the phase mismatch between the seed grating and the target grating, and the process of matching the target equivalent grating wave vector with the target grating wave vector position is called micro-structure alignment matching. Accordingly, the present technology is referred to as a microstructure timing level matching technique (MS-QPM technique).
  • the target equivalent grating with arbitrary grating stripe morphology is realized by grating structure level matching, especially the inclined/arc stripe grating and the ⁇ /phase shift grating; the sampled grating contains many stages.
  • the secondary Fourier component that is, the grating wave vector corresponding to the shadow grating is adopted( , according to the formula (4, 5), if a specific target equivalent grating topography is to be obtained, that is, a specific Fourier-level shadow grating Morphology, then by the synthesis of the grating wave vector, the corresponding sampling periodic structure is designed to obtain the grating wave vector of the shadow grating of a specific level, so as to equivalently realize the arbitrary target equivalent grating shape, the target equivalent grating It is regarded as the desired target grating.
  • the grating wave vector (5 SJV ( ) direction of the sampling structure is changed, and the target of arbitrary grating direction inclination/curve stripe is achieved.
  • Equivalent grating for the implementation of multi-dimensional phase-shift grating, phase shifting is performed on the sampling structure using equations (6) and (7);
  • formula (3) Change the sampling period and direction along the space.
  • the uniform seed grating periodic scale is on the order of 100 nanometers, which is realized by traditional holographic exposure or similar near-field holographic exposure, sampling structure period On the order of micrometers, it is implemented using conventional lithography.
  • a method for preparing a wavelength division multiplexing and demultiplexing device one of which is a multi-layer cascade of sampling structures having different sampling directions and periods or a multi-layer structure, and a target equivalent grating corresponding to each sampled grating reflects one
  • the specific Bragg wavelength, the seed grating remains uniform; or the second is to use the ⁇ seed grating as a uniformly sampled seed grating.
  • the target equivalent grating corresponding to different periodic positions in the seed grating reflects light waves of different frequencies to realize the solution of light. Multiplexing; At the same time, different wavelengths are incident at a given angle and position.
  • Light waves of different frequencies are strongly diffracted at positions corresponding to the Bragg conditions of the grating and are coupled to the same waveguide in the same direction to form a multiplexing.
  • the total cavity length of the device depends on the number of channels; the sampling period of the sampled Bragg grating when preparing the two-dimensional grating is 0. 5-20. 0 ⁇ m, the sampling of the volume grating is longer.
  • the equivalent phase shift in the target equivalent grating at 1/4 and 3/4 of the length of the grating filter cavity to form a transmission peak, and the equivalent IT phase shift is based on Equations (6) and (7) are implemented;
  • the filter cavity length is 50. 0 micrometers to 5000. 0 micrometers;
  • the refractive index modulation is 0.2 or higher (the forbidden band width of transmitted light is 40 nm or wider, which can be completely Cover a communication window).
  • a uniform seed grating and a wave vector of the seed grating are used.
  • the direction of ( ) is inclined to the axial direction of the laser waveguide cavity, and the inclination angle is 2-15 degrees.
  • the sampling structure is also inclined corresponding to the axial direction of the waveguide; thus, according to formula (4), the target equivalent grating wave vector direction and the waveguide axis are made.
  • the angle of the (?) direction and the axial inclination of the waveguide is determined by the effect of suppressing the 0th order, generally in the range of 3-15 degrees, and there is a better suppression of the 0th level effect; (specifically designed seed light
  • the parameters of the grid and sampling can be designed in accordance with the formula (4) of the present invention. 5-20 ⁇
  • the sampling period is generally 0. 5-20 microns. When the tilt angle is 10 degrees or more, the level 0 channel can be completely suppressed).
  • a uniform seed grating, a seed grating wave vector is employed.
  • the direction of ( ) is set according to the required design requirements.
  • the direction of the target sample of the Fourier leaf grating wave vector ⁇ 5 sjV (F;) in the oblique sampling structure has a certain angle with the seed grating, and the specific angle is according to the formula (4).
  • Designed to make the target equivalent grating wave vector ⁇ v ( ) direction and the waveguide axis have a specific angle required. (This specific angle is commonly used in 2-15 degrees in general design).
  • the unused sampling structure is engraved at different positions of the seed grating; the target equivalent grating wave vector ⁇ v ( ) corresponding to the different sampling structure and the incident light constitute Prague
  • the reflection angle is designed according to the formula (4), forming a directional coupler; (designing a suitable refractive index modulation, the refractive index modulation is generally in the range of 0.001 to 0.2; the refractive index modulation is larger, the diffraction efficiency is higher); This allows light at different locations to reflect only a portion of the energy, and the shape is successfully divided.
  • a uniform seed grating is used, and a common reticle is used for exposure to realize a sampling structure; the sampling pattern is designed according to formulas (3)-(7), so that the target equivalent grating is
  • the grating topography is the topography of the desired target grating.
  • any photonic device having a fine-structured waveguide grating (two-dimensional or three-dimensional grating)
  • holographic exposure is used to write a uniform seed grating, and corresponding sampling patterns are obtained according to the desired target grating and equations (3) - (7).
  • a conventional lithography technique is used to implement a sampling pattern on the seed grating to obtain a desired target grating and corresponding photonic device.
  • the lithographic portion of the photonic device is simultaneously completed as a waveguide structure or the like.
  • the seed grating of the waveguide grating filter is identical and can be realized with one holographic exposure. According to the formula (3) - (7), the overall sampling pattern required for the design is used, and the conventional photolithography technique is used to simultaneously realize the sampling grating structure on the entire chip, thereby realizing the monolithic integration of the photonic devices of various functions.
  • the invention has the beneficial effects that: the micro-structure quasi-phase matching realizes the preparation of the multi-dimensional target waveguide grating and the bulk grating, and proposes and clarifies the multi-dimensional target waveguide grating and the bulk grating microstructure quasi-phase matching technology, and designs the arbitrary based on the method.
  • Functional grating structure with stripe topography The method can utilize the two-dimensional or three-dimensional small-period seed grating and the sampling structure designed according to requirements, and realize the design and manufacture of the target waveguide grating and the volume grating of the arbitrary grating stripe morphology, thereby simplifying the manufacturing process and reducing the processing cost. And design a variety of new photonic devices based on this.
  • Fig. 1 Schematic diagram of vector synthesis of a target equivalent grating formed by the present invention, taking a uniform seed grating as an example.
  • Figure 2 is a schematic diagram showing the interaction of the incident light wave of the present invention with a target equivalent grating.
  • Figure 3 Schematic diagram of a layered sampling wavelength division multiplexer.
  • Figure 4 Schematic diagram of the ⁇ seed grating tilt sampling wavelength division multiplexer.
  • Figure 5 Schematic diagram of no retroreflective filter.
  • Figure 7 Design of a tilted waveguide grating.
  • Figure 8 Schematic diagram of the power divider and directional coupler.
  • FIG. 9 (a, b) Schematic diagram of sampling grating fabrication, (c, d)—Design example of an equivalent tilt grating of MS-QPM technology, schematic diagram of grating wave vector synthesis and coupling diffraction of light on the structure.
  • Figure 10 Schematic diagram of a planar waveguide Bragg grating fabricated by phased reticle
  • the refractive index modulation intensity and apodization of the target equivalent grating can be changed by the shape of the sample (duty cycle).
  • the relationship between the sampling shape and the refractive index modulation intensity of the target equivalent grating can be referred to the planar waveguide Bragg grating based on reconstruction-equivalent ⁇ and equivalent apodization and its laser (Patent Application No. 200910264486. 9) o
  • a suitable sampling shape can maximize the refractive index modulation intensity of the target effective grating, which can be obtained by Fourier analysis.
  • Equation 3-5 shows that the grating wavevectors of the sub-gratings of the Fourier-order sub-gratings of the sampled grating are the wave vectors (?) of the different Fourier orders of the sampling structure and the seed grating wavevectors.
  • the geometric vector is synthesized. As shown in Fig. 1, if the sampling periodic structure changes with the spatial direction, the Fourier grating grating wave vector of the sampled grating will also change accordingly. This can be equivalently realized by changing the sampling periodic structure.
  • the target equivalent grating wave vector of any structure required, that is, the target grating wave vector ( ), includes the direction and period of the grating as a function of space.
  • the sampling periodic structure is uniform, that is, the wave vector of the sampling periodic structure is a constant.
  • the direction of the sampling periodic structure is at an angle to the direction of the seed grating.
  • K n G sn + K 0 , that is, all shadow rasters will also be a uniform grating, but the grating direction has an angular rotation. If the incident light wavelength and the target equivalent grating satisfy the Bragg matching condition, then this beam will produce a strong diffraction effect in the direction satisfying the Bragg condition, as shown in Fig. 2.
  • the target grating is ⁇ or there is a phase shift.
  • the Fourier leaf grating wave vector (5 S die ( ) of the sampling structure is required to be a function of spatial variation, then the required ⁇ is obtained by changing the target sampling Fourier leaf grating wave vector (5 SJV ( ).
  • the phase of the sampled grating is also a function of space.
  • the micro-structure quasi-phase matching technique given by the present invention is a one-dimensional special case, the simplification becomes a reconstruction-equivalent ⁇ technique.
  • a seed grating such as a refractive index modulation similar to a photonic crystal
  • a seed grating of any structure that is, a seed grating wave vector.
  • the present invention is applicable to various light materials such as silicon-based materials, III-V materials.
  • the seed gratings are the same grating, but the sampling is layered sampling, that is, if the sampling of each layer is different, the target equivalent grating wave vector ⁇ v ( ) of a selected sampling grating in each layer corresponds only to A specific Bragg matching wavelength. If the light waves of different frequencies are equal to different Bragg wavelengths in the incident light wave, the light of different wavelengths will be reflected back at different angles in different places, and the light demultiplexing is realized spatially. Due to the reversibility of the optical path, if the light waves of different frequencies are incident at different angles, corresponding to the Bragg wavelengths at different positions of the sampled grating, then these light waves will be reflected back into the same direction and coupled into the same waveguide to achieve different wavelengths. The multiplexing of light waves.
  • the integrated waveguide WDM principle above is also true for the volume grating.
  • the ⁇ seed grating can be designed.
  • the sampling structure is uniform and the direction is at an angle to the seed grating.
  • the target equivalent grating wave vector ⁇ v ( ) is added by the vector, and the direction and size vary with space. Therefore, light waves of different frequencies are incident, and the Bragg conditions are satisfied at different positions and strongly diffracted in different directions, and spatially separated to realize demultiplexing of light. If light waves of different frequencies are incident at different positions at different angles, and correspond to the Bragg wavelengths at different positions of the sampled grating. Also according to the reversibility of the optical path, the reflection is coupled into the same optical waveguide in the same direction to achieve optical multiplexing.
  • an 8-channel planar waveguide wavelength division multiplexer can be designed for the structure of a multilayer sampling grating.
  • Figure 3 is shown in the specific embodiment.
  • the planar waveguide wavelength division multiplexer has a total width of 40 ⁇ m and is set to the X direction.
  • Sampling cascade The corresponding different sampling structure layers in the structure have a length of 100 micrometers, and the wavelength division multiplexer has a total length of 1200 micrometers and is set to the Z direction.
  • the wave vector direction of the seed grating is in the +Z direction of the cavity of the device with a period of 500 nm.
  • the wavelength range is from 1544 nm to 1558 nm and the channel spacing is 2 nm.
  • the incident multi-channel light is parallel to the +Z direction. Then the corresponding sampling structure pattern is shown in Table 1.
  • a Fourier +1-order shadow raster is sampled as the target equivalent grating. Since the direction of the wave vector of the seed grating and the direction of the incident light are both in the +Z direction, the angle here can be either clockwise or counterclockwise. Both sampling conditions are mirror symmetrical to the z-axis.
  • the DFB semiconductor laser designed by REC technology generally uses the + 1 or -1 channel as the resonant cavity. Because the refractive index modulation intensity of the 0-order Fourier leaf grating is relatively strong, it is easy to generate lasing, which affects the laser single-mode yield. When designing such a laser, a level 0 channel is often required to be far from the gain region. This can suppress the potential of level 0 In lasing. For the +2 level or the -2 level, the grating modulation is weak and can be neglected, and the resonance of the light is not formed in actual operation.
  • a tilted seed grating can be made, and then a tilted one-dimensional sampling is performed, and the direction of the target equivalent grating wave vector ⁇ v ( ) of the sampled grating is parallel to the waveguide axis, and other levels are It has an angle with the axial direction of the waveguide.
  • the light that can oscillate in the waveguide is only -1 or +1 (often using one of the +1 and -1 stages, so it can be optimized for one of the stages).
  • the optical resonance corresponding to other shadow gratings is suppressed by the lateral radiation of the waveguide.
  • This structure can improve the single mode of the laser based on the reconstruction-equivalent enthalpy technique.
  • the schematic is as follows ( Figure 6).
  • the level 0 grating is in the same direction as the seed grating, so that the 0-channel light that would otherwise form a light oscillation will be laterally scattered, thereby suppressing the laser light that may be formed.
  • the -1 grade grating can form a resonant cavity very well (here, the -1 level is used as an example, if the + 1 level principle is used).
  • the equivalent phase shift or equivalent ⁇ in the laser can be generated according to equations (6-7) and (3-4). This is very advantageous for single mode laser fabrication based on reconstruction-equivalent ⁇ technology.
  • the design of this grating structure is consistent with the principle of suppressing the 0-level grating design.
  • the seed grating wave vector direction here may be along the waveguide axis or other directions, but the tilted sampling is used to make the target equivalent grating wave vector ⁇ v ( ) and the waveguide axis form an angle we need.
  • the design of the specific seed grating and sampling structure follows the principle of vector synthesis.
  • a planar rectangular waveguide is prepared, the core material is erbium-doped silicon dioxide (Ge: SiO 2 ), the waveguide width is 6 ⁇ m, the thickness of the waveguide core layer is 2 ⁇ m, and the effective refractive index (n rff ) is 1. 455, if the seed The grating wave vector of the grating.
  • the ( ) direction is parallel along the axis of the cavity, that is, the grating lines are perpendicular to the axial direction.
  • the seed grating period is 500 nm, which is calculated according to the formula (4).
  • the tilt angle and the axial angle of the waveguide (the wave direction of the target equivalent grating is in the waveguide axis) is 6 degrees, etc.
  • the effect period is 532. 6 nm.
  • the sampling structure to be designed is that the sampling period is 4.221 ⁇ m, and the angle of the wave vector ⁇ 5 SJV ( ) of the sampling structure and the axial angle is 55.93 degrees.
  • an oblique raster assisted optical upload downloader (0ADM) is implemented.
  • the specific structural parameters can be found in the literature [3] - Figure 1 Schematic diagram of the integrated raster-assisted optical upload/downloader based on the uncoupler.
  • the waveguide tilt grating portion can be equivalently implemented according to formula (4) or (5).
  • the target equivalent grating wave vector ⁇ v ( ) can be rotated by an angle, so that the light wave corresponding to the Bragg matching condition will be diffracted in a specific direction. So you can design the required reflection angle and propagate in the specified direction. If the grating is weak, then the light wave that satisfies the Bragg condition will be partially reflected, and the other part will continue to propagate, and the shape will succeed. It is of course also possible to implement a device in which a power splitter and a directional coupler are combined. The principle is shown in Figure 8.
  • a 1:1 directional coupling splitter can be designed.
  • the device is 30 microns wide and is set to the X-axis direction.
  • the 50 micron is set to the Z direction. 455 ⁇
  • the waveguide core material is erbium-doped silicon dioxide (Ge: Si0 2 ), the core layer material effective refractive index is 1. 455.
  • the core layer thickness is 2 microns.
  • the wave vector direction of the seed grating is parallel along the +Z direction, and the period is 485 nm. If it is desired that the wavelength of 30 micron is 1545.
  • the refractive index is 0. 001
  • the sampling here is a square wave shape
  • the duty cycle is 0. 5 .
  • the sampling pattern is that the sampling period is 3 micrometers, and the wave vector of the sampled grating and the seed grating have an angle of 50 degrees.
  • the key to the equivalent grating morphology and device fabrication technology of the two-dimensional or three-dimensional object lies in the fabrication of the sampling grating structure.
  • the specific method is:
  • the method of engraving the grating on the wafer the steps of the implementation are divided into two steps: In the first step, a uniform grating pattern is formed on the photoresist as a seed grating by using a holographic exposure technique; the seed grating period is 500 nm, and the grating refractive index modulation is 0. 06.
  • the lithographic plate obtained in (1) is subjected to ordinary exposure, and the pattern on the lithographic plate is copied onto the photoresist on the wafer to form a sampling pattern on the photoresist.
  • the sampling period is 2 microns.
  • the corresponding sampling structure has a waviness direction of 60 degrees with the seed grating, ie (5 ⁇ and £.
  • Figure 9 (a ⁇ b) is a schematic diagram of a sampled grating writing method based on two-dimensional reconstruction and an equivalent technique.
  • the effective refractive index is 1. 06
  • the incident light wavelength is 1. 142um
  • the incident light direction is parallel to the seed grating wave vector.
  • the angle between the light and the seed grating wave vector will have strong retroreflection as shown in Fig. 9 ( c ⁇ d)
  • the device controls the directional propagation of light.
  • the phase mask may be first plated with a sampling structure, and then the ytterbium-doped silicon dioxide material and some other photosensitive materials for fabricating the planar waveguide Bragg grating are subjected to the phase mask which has been coated. One-time exposure. The mask should be placed close to the photosensitive material during exposure. After annealing, we can get the sampled grating structure we need.
  • the metal film plated on the reticle here is complementary to the sampled metal film strip of the reticle in (2) above. That is, there is no grating in the place where the coating is applied, and there is a grating in the place where there is no coating.
  • Figure 10 shows the schematic of the production.
  • Photonic devices based on microstructure quasi-phase matching technology have many materials to be realized. Generally, materials such as silicon-based silicon dioxide, polymer, S0I ridge waveguide, and some II IV can be realized by fabricating a planar waveguide Bragg grating. Group compound semiconductor materials and the like. The key to this filter is the fabrication of the sampled grating pattern, which is given in the specific implementation method 1.
  • the sample grating pattern on the second mask is transferred onto the photoresist by the double exposure method shown in FIG.
  • the lithography of the sampled Bragg grating is completed by the steps of removing the glue, fixing the glue, etching the ICP, removing the residual glue, and the like.
  • PE0 can be used to deposit ⁇ thick Si0 2 on the surface of the device. In order to eliminate the end face reflection, both ends of the device can be polished.
  • the structure of the distributed feedback semiconductor laser is an epitaxial n-type InP buffer layer, an undoped lattice-matched InGaAsP waveguide layer, a strained InGaAsP multiple quantum well, an InGaAsP grating material layer, an InGaAsP waveguide layer, and an InP on an n-type substrate material.
  • the confinement layer and the InGaAs ohmic contact layer are sequentially formed;
  • the grating of the InGaAsP grating material layer is a sampling Bragg grating, that is, an equivalent grating used as laser lasing;
  • the surface of the laser lasing equivalent grating is 200-400 nm thick Si0 2 insulation layer.
  • Mask fabrication Masks containing oblique sampling or other special sampling patterns required for equivalent sub-gratings are fabricated using conventional microelectronic processes. The sampling pattern is determined by equations (3) - (7).
  • the epitaxial material of the device is mainly fabricated by M0VPE technology, and is described as follows: First, an n-type InP buffer layer (thickness 200 nm, doping concentration about 1. lx lOW), lOOnm thick undoped crystal lattice is first epitaxially grown on the n-type substrate material.
  • InGaAsP waveguide layer lower waveguide layer
  • strained InGaAsP multiple quantum well light fluorescence wavelength 1.52 microns, 7 quantum wells: well width 8nm, 0.5% compressive strain, barrier width 10nm, lattice matching material
  • the lOOnm thick p-type lattice matches the upper waveguide layer of InGaAsP (doping concentration about 1. Ix l0 17 cm 2 ).
  • the inclined grating structure of the desired laser is then formed in the upper waveguide layer by the designed sampled variable duty mask and holographic interference exposure method.
  • p-InP and p-type InGaAs are grown by secondary epitaxy to form a ridge waveguide and a contact layer having a ridge waveguide length of 400 ⁇ m. 5 ⁇ The ridge width is 3 microns, the ridge side groove is 20 microns wide, and the depth is 1.5 microns.
  • the SiO2 is filled with Si0 2 or organic BCB to form an insulating layer by plasma enhanced chemical vapor deposition (PECVD). Finally, a Ti-Au metal P electrode was plated.
  • Both ends of the device can be coated with an AR coating and a high reflective film (HR).
  • the threshold current of the laser is typically 14 mA, and the side mode suppression ratio is over 40 dB. 4. Fabrication of bulk grating devices based on microstructure quasi-phase matching technology (Fig. 11)
  • a Verdi-5 laser is used as the recording light source, and a narrow beam emitted from the laser passes through the beam expanding system to form a wide beam.
  • the polarization beam splitting prism divides the laser beam after the beam split into two beams of polarization perpendicular to each other, selects the reflected light perpendicular to the polarization of the experimental platform as the reference light, and the horizontally polarized transmitted light as the object light, using the polarization beam splitting
  • the half wave plate in front of the mirror can adjust the intensity ratio of the reference light and the object light.
  • the horizontally polarized object light passes through the half-wave plate and becomes polarized light perpendicular to the experimental platform. After passing through the shutter 1, it passes through the mirror and then illuminates the cubic crystal. After the reference light passes through the shutter 2 and the mirror, it is irradiated onto the crystal.
  • both the shutter 1 and the shutter 2 are opened.
  • the object light and the reference light interfere in a region overlapping in the crystal to form a fully overlapping volume grating.
  • the shutter is turned off and the power of the power meter to collect the diffracted light is controlled by the computer.
  • the above steps are a method of making a conventional volume grating, and also a method for making a seed grating here.
  • sampling reticle we need to produce is consistent with the fabrication of the sampled grating, and the sampling is determined according to the target grating and equations (3) - (7). pattern.
  • a narrow beam of light from the laser is passed through a beam expander system to form a broad beam or other source of ultraviolet light, and a second exposure of the volume grating is performed against the reticle.
  • the required sampling structure is formed.
  • the refractive index of the exposed area is related to the exposure time. It is necessary to select the required exposure time for different bulk grating materials. Since the refractive index of the sampled portion is related to the effective refractive index of the bulk grating, it is necessary to control the appropriate exposure time.
  • the metal mask plate having the required sampling structure can be placed in front of the volume grating, and the double-beam interference fringes after the beam expansion are directly irradiated to the reticle and the reticle. Exposure is performed on the back volume grating to produce a sample volume grating at one time.
  • a narrow-band bulk grating filter that achieves an equivalent IT phase shift.
  • the angle between the incident light and the end face of the volume grating is 5 degrees. This normal direction is set to the Z axis.
  • the seed grating wave vector direction is parallel to the Z axis.
  • the recording medium of the volume grating is 0. 05% Fe:
  • the seed grating period is 500 nm, and the wave vector of the sampling structure (5 SJV ( ;) is the same as the seed grating. ( ).
  • the phase shift is introduced into the sampling structure to realize the equivalent IT insertion in the middle of the volume grating.
  • Phase shift The target equivalent grating period is 543.88 nm, and the sampling period is 6.197 ⁇ m.
  • the grating refractive index modulation is generally at 0. 0015. If the refractive index modulation is larger, the bandwidth of the reflected light is also larger.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Integrated Circuits (AREA)

Description

微结构准相位匹配实现多维目标波导光栅和体光栅的制备方法 一、 技术领域
本发明属于光电子技术领域, 涉及光纤通讯, 光子集成, 光电传感以及其他光电信 息处理, 提出微结构准相位匹配技术 ( Micro-structure Quasi-phase-matching technology, MS-QPM), 以及基于该技术, 利用取样结构等效实现任意的二维平面波导布 拉格光栅或者三维体光栅的目标光栅形貌, 并基于这种设计思路提出多种新型光子器件, 包括一种新型的波分复用器和无逆向反射的滤波器,倾斜波导光栅,基于重构——等效啁 啾技术 DFB激光器的 0级抑制, 以及功分器与定向耦合器。
二、 背景技术
随着网络化时代的到来, 人们对信息的需求与日倶增。 近十年来, 随着网络的不 断演进和巨大的信息传输需求,对光纤通信提出了更高的要求, 同时也促进了光纤通信技 术的发展。尤其是光通讯器件,需要新的理论和性价比更高的器件来支撑光网络的进一步 的发展。而近年来出现的光子集成技术, 顺应了时代的发展, 正开启着一个全新的光网络 时代。光子集成技术则被认为是光纤通信最前沿、最有前途的领域。在美国硅谷实验室中, 英飞朗(Infinera)公司已经用磷化铟等材料制成大量复杂的光电集成器件, 使得光通信 成本更低容量更高。在无源光器件中,波导布拉格光栅因为起很好的波长选择性而被应用 于多种光通讯分立器件及光子集成器件中。如平面集成 Bragg波导光栅滤波器【1】, 可以 实现不同波长的光信号的复用 /解复用或滤波, 波导光栅辅助的光分插复用器件 (0ADM) 【2-3】, 以及有倾斜光栅的光波导模式变换器等等【4】。在实际的设计中, 往往在一块光 子芯片上要实现不同功能的波导光栅,那么不同功能的光栅形貌也是不一样的,这就需要 不同步骤的单独刻写。 尤其是如果想在同一片芯片上实现不同光栅方向和周期以及有相 移、啁啾甚至是任意的光栅条纹结构等具有精细结构的波导光栅,则传统的低成本的全息 曝光技术几乎是不可能实现的, 所以往往需要利用先进的微加工技术, 例如, 能够控制每 一条光栅条纹的电子束曝光技术 (E-Beam)。 但电子束曝光技术高成本、 耗时等缺点无疑 增加了很多制造难度和工艺成本, 而且很难大规模产业化。
为了解决这些实际的问题, 首先由陈向飞等人在光纤光栅的制作中找到了一种可靠 的解决方法, 并将这种技术称之为 "重构——等效啁啾 (REC) 技术" 【5-6】。 重构—— 等效啁啾技术实现了利用微米量级的加工精度来制作具有纳米量级的器件。该方法也成功 应用于分布反馈 (DFB) 半导体激光器以及 DFB激光器的阵列的设计制造【7-9】, 这给光 子集成所需的高性能半导体阵列光源制造这一技术瓶颈,提供了很好的解决方案。为了进 一步解决平面光子集成中对不同形貌波导光栅的单片集成, 降低制造成本,在本发明申请 人前期研究基础上, 本发明提出一种微结构准相位匹配技术 (MS_QPM)。 该技术提供了一 种新的波导光栅设计制造方法,也给出了一些波导光栅或者体光栅中新的结构变换特性以 及对应的光学特性, 比如能在相同的种子光栅结构下,通过取样手段等效地改变光栅不同 的周期, 转动光栅不同的方向。 而重构——等效啁啾技术是微结构准相位匹配 (MS-QPM) 技术在一维情况下的一个特例【5】。该技术在数学表达上和在非线性光学材料中著名的准 相位匹配技术(QPM)有类似的描述【10、 11】, 因此也是准相位匹配技术的一个新的发现 和拓展。总而言之, 该方法能够实现仅仅改变大尺度的取样结构, 而种子光栅保持不变的 情况下,能实现任意的二维或三维目标光栅条纹形貌。所以只要利用二维或三维的按需要 设计的具有微米量级的取样结构,结合均匀的种子光栅,可以实现任意的物理可实现二维 或三维的等效光栅形貌。 该结构可以实现各种具有精细结构波导光栅或体光栅的光学特 性, 但是因为种子光栅是均匀的, 改变的仅仅是取样结构, 而取样的尺度一般在微米量级 以上,所以该方法的实现只需要标准的全息曝光技术加上一次传统的光刻技术,这样大大 缓减了对工艺的要求, 同时大幅地增加了产品的成品率。
基于这种二维或三维的取样结构的光栅设计思路,可以用来设计一些新的光子器 件。 比如可以实现波分复用器。 到目前位置, 市场上主流的波分复用器是阵列波导光栅 (AWG) 和多模干涉器件 (匪 1 )。 这些器件对波导精度的要求很高, 而且尺度比较大。 如 果利用这种二维的取样结构,结合体光栅的布拉格反射原理,则可做成结构紧凑的新型波 分复用器。 除此之外, 可以实现另外一些光子器件, 比如, 能够实现无逆反射的滤波器, 抑制 0级信道的基于重构——等效啁啾技术的 DFB半导体激光器, 任意角度的定向耦合 器和功分器, 光波导模式变换器, 同时包括其他任何基于光栅的波导光子器件, 以及体光 栅器件。我们相信,该设计方法能够在平面光子集成以及其他与光栅有关光子器件的设计 生产中开辟新的道路, 带来新的曙光。
本发明的主要思想是: 提出微结构准相位匹配技术, 基于该技术利用均匀的二维或 三维种子光栅与所需要的取样结构,实现任意光栅条纹形貌的目标波导光栅与体光栅, 以 及基于此的新型光子器件。
文献引用
[ 1] 徐迈, "集成光学波导光栅的研究进展" 《发光学报》,2005, 26( 4); 415-425.
[2] Jose M. Castro, David F. Geraghty, Seppo Honkanen, Christoph M. Greiner, Dmitri Iazikov, and Thomas W. Mossberg, Optical add-drop multiplexers based on the antisymmetric waveguide Bragg grating, (基于非对称的波导布拉格光栅的光上传 下载复用器), Appl ied Optics, 2006, 45 (6); 1236-1243.
[3] Ming Li, Yarning Wu, Jiangyi Yang, and Hongchang Qu, Return loss reduction of integrated grating-assisted optical Add/Drop multiplexer by control the reflective spectrum, (通过控制反射谱实现低的反射损耗的集成光栅辅助光上传 /下载 复用器), Journal of l ightwave technology , 2005, 23 (3): 1403-1409·
[4] Jose M. Castro, David F. Geraghty, Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings, (利用非对称的波导布拉格光栅实现模式 转换) , Optics Express, 2005, 13 (11): 4180-4184·
[5] 戴一堂, 陈向飞, 夏历, 姜典杰, 谢世钟, "一种实现具有任意目标响应的光纤 光栅", 发明专利 (申请号: CN200410007530. 5 ) .
[6] Yitang Dai, Xiangfei Chen, Li Xia, Ye j in Zhang, and Shizhong Xie, SampledBragg grating with desired response in one channel by use of reconstruction algorithm and equivalent chirp, (基于取样布拉格光栅利用重构技术与等效啁啾实现 在单一信道内的任意反射响应), Optics Letters, 2004, 29 (12): 1333-1335.
[7] Yitang Dai and Xiangfei Chen, DFB semiconductor lasers based on reconstruction-equivalent-chirp technology (基于重构一等效啁啾技术的 DFB半导体 激光器) , Optics Express, 2007, 15 (5): 2348-2353.
[8] Jingsi Li, Huan Wang, Xiangfei Chen, Zuowei Yin, Yuechun Shi, Yanqing Lu, Yitang Dai and Hongl iang Zhu, Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology. (基 于重构一等效啁啾技术的 DFB半导体激光器的实验验证) Optics Express, 2009, 17 (7): 5240-5245.
[9] Jingsi Li, Xiangfei Chen, Ningzhou, etc, Monol ithical ly integrated 30-wavelength DFB laser array. (单片集成 30波长的 DFB半导体激光器阵列), Proc. of SPIE-0SA-IEEE, 2009, SPIE 7631, 763104.
[ 10] J. A . Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan.
Interactions between l ight waves in a nonl inear dielectric. (光于非线性介质的 相互作用), Physical review, 1962, 127 (6): 1918-1939·
[ 11] Shi-ning Zhu, Yong-yuan Zhu, Nai-ben Ming, Quasi-Phase-Matched third-harmonic generation in a quasi-periodic optical superlattice. (准周其月光 学超晶格中准相位匹配三次谐波的产生), Science, 1997, 278 (843) .
三、 发明内容
本发明的目的在于, 提出和阐明微结构准相位匹配技术, 并基于该技术设计任意条 纹形貌的功能光栅结构。该方法可以利用二维或者三维的小周期种子光栅与按要求设计的 取样结构, 等效实现任意光栅条纹形貌的目标波导光栅与体光栅的设计制造和工艺方法, 从而简化制造工艺降低加工成本, 并设计基于此的多种新型光子器件。
发明具体内容和技术方案具体如下: 一种微结构准相位匹配实现多维目标波导光栅 和体光栅的制备方法,在物理可实现情况下,实现任意条纹形貌的二维波导光栅或者三维 体光栅作为目标光栅的制备, 其特征是以普通波导光栅作为种子光栅, 光栅周期一般在 50-1000纳米之间;并在此基础上现成二维或者三维的折射率调制取样结构,即取样光栅; 该取样光栅经过傅立叶级数展开含有多个傅立叶分量,每个分量称为影子光栅,选择其中 一个影子光栅作为目标等效光栅; 种子光栅波矢是 。 ( ), 那么光波矢 和种子光栅波矢 之间的波矢差 Δ 为 Ak =k -K0(f) (1) 当一个波矢为 的光入射到一个光栅 (二维或者三维光栅) 器件时, 要发生比较强 烈的耦合作用, 光波矢 需要和该器件的光栅波矢匹配, 如果该光栅是种子光栅, 当
Ak =k -K0(f) = 0 , 即光波矢和光栅波矢之间位相完全匹配时, 光与光栅的耦合作用 最大, 光栅起作用效率也最高。 这样现象也称之为布拉格衍射。
种子光栅表示为折射调制幅度的分布 Δ/ ) = Δ/^Χρ(^。· );经过任意的取样结构取 样后的取样光栅折射率调制可以表示为
Figure imgf000006_0001
其中 是取样图案, Δ«( )是种子光栅的折射调制幅度。 是空间位置矢量。 对 (2) 式进行傅立叶分析可以得到
△"s (r = ∑C„ ( ) expO'f Gsn (f) · df)An exp(;j K0 (r) · df)
"—―— (3)
= ∑ C„ (r)An exp(;j Kn (f) · df) 其中 J表示虚数, <5S„ (?)是取样周期性结构不同傅立叶级次的光栅波矢, 这些周期 性傅立叶分量称之为取样傅立叶子光栅; 。 σ)是种子光栅的光栅波矢, f。( )= ,
Mr)
A( )是种子光栅周期, 是种子光栅方向; C„( )是傅立叶系数, 7表示傅利叶的级次, 代表了所有二维或者三维取样光栅的所有傅立叶分量, 即所有影子光栅; 根据式 (3), 在经过取样后的光栅包含很多级次的傅立叶分量即影子光栅, 对应的光栅波矢为^ ^ ), 所有的这些影子光栅的光栅形貌通过改变取样结构 而改变;不同级次的影子光栅波矢 f„( )是种子光栅的光栅波矢 。 (r)和取样结构不同傅立叶级次波矢 (5S„ (?)的矢量和, 对 于其中某个傅利叶级次 (n=N), 根据公式 (3) 表示为,
^(^) = ^(^)+^0(^) (4) 使该影子光栅波矢 ^v( )等于目标光栅的波矢 ( ), 即 ^v( ) = K ); ^v( )称 为目标等效光栅波矢; 。 ( 为种子光栅波矢, (5sjV( )称为目标取样傅立叶子光栅的波 矢, ^ ^为所需要的光栅条纹形貌对应的波矢量即目标光栅的波矢; 目标等效光栅波矢
^v( )通过取样结构的图案改变: 改变取样结构的图案则可以改变波矢 (^ f), 以此等效 实现所需要的任意的目标光栅形貌;就是当种子光栅波矢 。 和所需要的二维或者三维 光栅波矢之间不匹配情况下, 则采用取样周期性结构中某一级次的傅立叶周期性结构分 量, 即目标取样傅立叶子光栅的波矢 <5SJV( )来补偿他们之间波矢的不匹配, 这种技术同 非线性光学的准位相匹配技术类似,即通过额外的周期性调制结构使光学传输过程中相位 差为零, 及实现如下的位相匹配
M =Kd -K0(f)-GsN(r) = 0 (5) 根据式 (3), 取样光栅的相位也是一个空间的函数, 对于影子光栅的相移 (以均匀 的取样和种子光栅为例) 表示成为
&xPijGsn · ]exp(j'( 。 · )) (6) 如果取样结构中有一个相移, 并且空间移动量为 A ', 那么取样光栅的相位可以表示 成为
= exp[7' sn · (r)]exp(j(K0 · r))exp(jGm · Ar ) 这样在取样光栅的傅立叶子光栅中等效地引入一个相移, 相移量为 eXp(j' „ ·Δ^'); 如果希望种子光栅是均匀的, 则 <5s„*A ' =izi, 这样一个为 相移量被引入到该取样 光栅的第 7级影子光栅中;
在取样光栅结构中, 通过取样的图案或形状即占空比来改变目标等效光栅的折射率 调制强度以及切趾;二维情况下,通过改变取样形状使目标等效光栅的折射率调制强度改 变, 该目标等效光栅的最大折射率调制强度对应的取样具体形状可以通过傅立叶分析获 得。
在实际光信号传输和处理过程中, 光信号拥有一定的带宽, 即信号光不是单频率点 光,而是带有一定信号带宽的某一波长光信号或者多波长光信号, 因此对应光栅的周期性 结构需要根据实际信号光的传输和处理情况进行改变,才能够获得最佳的作用效率。对于 实际光信号,获得最佳或者接近最佳作用效率的光栅结构就是我们所需要的目标光栅(二 维或者三维光栅), 其光栅波矢就是目标光栅波矢^ ;)。 目标光栅绝大多数情况下, 都不是均匀光栅, 而光信号波长对应的光栅周期一般为 百纳米量级, 因此制作目标光栅就需要纳米工艺, 同时多波长光信号之间的波长间隔最小 在 1纳米以下, 就需要亚纳米精度来获得性能良好的目标光栅, 这给目标光栅制造, 特别 是商业大规模生产带来很大的困难。
目标光栅的条纹形貌是和其光栅波矢是一一对应的, 因此客观上获得目标光栅的核 心方法是怎样获得所需要的目标光栅波矢^ ;)。 本发明就是给出一种实现目标光栅条 纹形貌或者目标光栅波矢^ ^ )的光栅结构方法。 对种子光栅取样后的光栅仍然具有周 期性结构, 根据傅立叶分析, 它也是一系列傅立叶分量的叠加。 每一个傅立叶分量称为 影子光栅。 这些影子光栅的波矢是种子光栅的波矢和取样傅立叶子光栅波矢的几何矢量 合成。 通过改变取样结构可以使某个取样傅立叶子光栅的波矢与种子光栅波矢矢量合成 后所对应的影子光栅波矢等于目标光栅波矢, 这样目标光栅就可以等效地实现。 在这里 用来等效实现目标光栅的某个选定的傅立叶级次的取样傅立叶子光栅我们称为目标取样 傅立叶子光栅, 对应的取样光栅中同一傅立叶级次的影子光栅, 我们称之为目标等效光 栅。 换言之, 目标光栅的波矢等于目标取样傅立叶子光栅波矢与种子光栅波矢的几何矢 量合成来等效实现。 其中种子光栅结构采用传统低成本技术, 如全息曝光或者近场全息 曝光技术实现, 现成大面积低成本种子光栅, 而取样周期性结构则采用传统光刻技术实 现, 从而在一个大面积结构中实现各种功能目标光栅。
以二维均匀波导光栅 (也可以是任意的光栅, 均匀光栅仅仅为了方便制造) 作为种 子光栅,光栅周期一般在 50-1000纳米之间;并在此基础上现成二维的折射率调制取样结 构, 即取样光栅; 该取样光栅含有多个影子光栅, 选择其中一个影子光栅作为目标等效 光栅, 该目标等效光栅可以等效地实现目标波导光栅和体光栅。 种子光栅实际上就是普 通二维或三维布拉格光栅, 周期比较小, 一般周期为百纳米量级。在本发明中, 这种光栅 只提供基本光栅反馈, 不提供复杂的光响应, 因此称为种子光栅。原则上种子光栅形貌可 以是任意的, 但是在实际的生产制造过程中, 利用全息曝光技术, 均匀的种子光栅的制造 非常方便, 因此往往选择种子光栅为均匀光栅, 再在种子光栅上做取样图案, 原则上取样 图案也可以是任意的。取样图案也是一种周期性结构, 称为取样周期性结构, 但是相对于 种子光栅,它的周期更大,一般比种子光栅的周期大一个数量级。因为取样结构的周期性, 根据公式(3), 它具有很多傅立叶分量, 这些周期性傅立叶分量的周期值等于或者小于取 样结构的周期值。这些傅立叶分量也是一系列的光栅。与种子光栅周期相比, 它们的周期 更大。如果将取样结构加在种子光栅上, 形成具有取样图案的光栅折射率调制。这样的周 期性折射率调制结构就是一般人们所熟悉的取样光栅 (二维或者三维取样光栅)。
因此, 当种子光栅波矢和目标光栅波矢之间不匹配时,可以不改变种子光栅结构(种 子光栅波矢不变), 而改变取样周期性结构, 利用目标取样傅立叶子光栅波矢来补偿他们 之间波矢的不匹配,这种原理同非线性光学的准位相匹配原理类似, 即通过额外的周期性 调制结构使光学传输过程中位相差为零, 即实现如本发明内容公式 (5) 的位相匹配。 公 式 (5) 与非线性材料中的准相位匹配技术有完全类似的数学表达形式和物理内涵, 都是 利用额外的周期性调制结构来补偿位相失配,使最终光学过程实现位相匹配。在本发明中, 是利用大周期的取样结构来补偿种子光栅与目标光栅的位相失配,使目标等效光栅波矢与 目标光栅波矢位相匹配的过程, 称为微结构准位相匹配。相应地, 本发明技术称为微结构 准位相匹配技术 (MS-QPM技术)。
在物理可实现情况下, 利用光栅结构准位相匹配实现具有任意光栅条纹形貌的目标 等效光栅, 特别是倾斜 /弧形条纹光栅、 啁啾 /相移光栅; 经过取样后的光栅包含很多级次 的傅立叶分量, 也即影子光栅对应的光栅波矢为 „( , 根据式 (4、 5), 如果要获得某 一特定的目标等效光栅形貌, 即某一特定傅立叶级次的影子光栅形貌,那么通过光栅波矢 的合成,设计相应的取样周期性结构来获得特定级次的影子光栅的光栅波矢,从而等效地 实现任意的目标等效光栅形貌, 该目标等效光栅就当作所需要的目标光栅。特别地, 对于 光栅方向的改变, 根据式 (4), 利用改变取样结构的光栅波矢 (5SJV ( )方向、 实现任意光 栅方向倾斜 /弧形条纹的目标等效光栅; 对于多维相移光栅的实现, 利用式 (6 ) 和 (7 ) 在取样结构上进行相移; 对于光栅啁啾的实现, 则根据式 (3 ) ( 4) 沿空间改变取样周期 与方向。在制备上, 均匀的种子光栅周期尺度是百纳米量级, 利用传统的全息曝光或类似 的近场全息曝光来实现, 取样结构周期在微米量级, 则利用传统的光刻实现。
制备波分复用与解复用器件的方法, 其一是具有不同取样方向和周期的取样结构的 多层级联或者称为多层结构, 每一层的取样光栅对应的目标等效光栅反射一个特定的布 拉格波长, 种子光栅保持均匀; 或者其二是利用啁啾种子光栅作为取样均匀的种子光栅, 这种种子光栅中不同周期位置所对应的目标等效光栅反射不同频率的光波实现光的解复 用; 同时不同的波长按给定的角度与位置入射,不同频率的光波在光栅对应满足布拉格条 件的位置发生强衍射而向同一方向传播耦合到同一根波导中构成复用。器件总的腔长视信 道数目而定; 制备二维光栅时取样布拉格光栅的取样周期 0. 5-20. 0微米, 体光栅的取样 光栅的周期更长。
在制备光栅滤波器时, 在光栅滤波器腔的长度的 1/4处和 3/4处, 在目标等效光栅 中有一个等效的 相移, 形成一个透射峰, 等效 IT 相移根据式 (6 )和 (7 )实现; 滤波 器腔长为 50. 0微米到 5000. 0微米;折射率调制为 0. 2或者更高(透射光的禁带宽度达到 40nm或者更宽, 可以完全覆盖一个通讯窗口)。
在制备一种能够抑制 0级的基于 REC技术的 DFB半导体激光器时, 采用均匀的种子 光栅, 种子光栅的波矢 。( )方向与激光器波导谐振腔的轴向倾斜, 倾斜角度 2-15度, 取样结构也与波导轴向做相应的倾斜; 这样根据式(4), 使目标等效光栅波矢 方向 与波导轴向平行(通常 N= ± l );种子光栅波矢 。 (?)方向与波导轴向倾斜的角度视抑制 0 级的效果来确定, 一般在 3-15度范围, 有比较好的抑制 0级效果; (具体所设计的种子光 栅与取样的参数可以按照本发明内容公式(4)来设计。取样周期一般在 0. 5-20微米。在 倾斜角度在 10度或更大的时候, 可以完全抑制 0级信道)。
在制备倾斜波导光栅以及由倾斜波导光栅为基础的光栅器件时, 采用均匀的种子光 栅, 种子光栅波矢 。( )的方向按照所需要设计要求来设定, 倾斜取样结构中的目标取样 傅立叶子光栅波矢 <5sjV (F;)的方向与种子光栅有一定的夹角, 具体角度根据式 (4) 设计 得到; 使得目标等效光栅波矢 ^v ( )方向与波导轴向有一个需要的特定夹角。 (此特定夹 角一般设计中常用到 2-15度)。
在制备任意角度和比例的功分器与定向耦合器时, 在种子光栅的不同位置刻上不用 的取样结构;不同的取样结构对应的目标等效光栅波矢 ^v ( )与入射光构成布拉格匹配条 件, 其反射角度根据式(4)设计, 形成定向耦合器; (设计合适的折射率调制, 折射率调 制一般在 0. 001到 0. 2; 折射率调制越大衍射效率越高); 这样使得不同位置的光只反射 一部分能量, 形成功分器。
制备任何体光栅滤波器以及基于体光栅的光学器件时, 采用均匀种子光栅, 利用普 通掩模版进行曝光, 实现取样结构; 取样图案根据式 (3 ) — ( 7 ) 设计, 使得目标等效 光栅的光栅形貌是所要求的目标光栅的形貌。
制备任何具有精细结构的波导光栅 (二维或者三维光栅)的光子器件时, 利用全息曝 光来刻写均匀种子光栅, 并根据所需要的目标光栅和式(3 ) - ( 7 )获得相应的取样图案, 采用传统的光刻技术在种子光栅上实现取样图案,从而获得所需要的目标光栅和相应的光 子器件。 光子器件的光刻部分如波导结构等同时完成。
制备基于重构——等效啁啾技术的多波长 DFB半导体激光器和波导布拉格光栅滤波 器单片集成时, 基于等效重构 -啁啾技术的多波长 DFB激光器和基于微结构准相位匹配的 波导光栅滤波器的种子光栅是一样的, 可以利用一次全息曝光实现。 根据式 (3 ) - ( 7 ) 设计所需要的整体的取样图案,再利用传统的光刻技术一次同时实现整个芯片上的取样光 栅结构, 从而实现多种功能的光子器件的单片集成。
本发明的有益效果是: 这是一种微结构准相位匹配实现多维目标波导光栅和体光栅 的制备,提出和阐明多维目标波导光栅和体光栅微结构准相位匹配技术,并基于该方法设 计任意条纹形貌的功能光栅结构。该方法可以利用二维或者三维的小周期种子光栅与按要 求设计的取样结构,等效实现任意光栅条纹形貌的目标波导光栅与体光栅的设计制造和工 艺方法, 从而简化制造工艺降低加工成本, 并设计基于此的多种新型光子器件。
四、 附图说明
图 1、 本发明 形成目标等效光栅的矢量合成示意图, 以均匀种子光栅 (seed grating) 为例。
图 2、 本发明 入射光波与目标等效光栅的相互作用示意图。 图 3、 分层取样波分复用器示意图。
图 4、 啁啾种子光栅倾斜取样波分复用器示意图。
图 5、 无逆反射滤波器示意图。
图 6、 具有抑制 0级的基于 REC技术的 DFB激光器。
图 7、 倾斜波导光栅的设计。
图 8、 功分器与定向耦合器原理图。
图 9、 (a、 b ) 取样光栅制作示意图, (c、 d)—个 MS-QPM技术的等效倾斜光栅的设 计实例, 光栅波矢合成示意图与光在该结构上发生的耦合衍射。
图 10、 镀膜的相位掩模版制作平面波导布拉格光栅示意图
图 11、体光栅的光栅记录装置图(摘自硕士毕业论文 《基于体全息光栅的波分复用 器件的实验研究》 北京工业大学) 五、 具体实施方式
在取样光栅结构中, 可以通过取样的形状 (占空比) 来改变目标等效光栅的折射率 调制强度以及切趾。 一维情况下, 取样形状与目标等效光栅的折射率调制强度的关系可 以参看基于重构-等效啁啾和等效切趾的平面波导布拉格光栅及其激光器 (专利申请号 200910264486. 9) o 二维情况下, 合适的取样形状可以使目标有效光栅的折射率调制强度 最大, 该取样具体形状可通过傅立叶分析获得。
公式 3-5可以看到,取样后的光栅的各级傅立叶级次的子光栅的光栅波矢 £„( )是取 样结构的不同傅立叶级次的波矢 (?)与种子光栅波矢 。的几何矢量合成而成。 如图 1 所示,如果随空间方向改变取样周期性结构,取样光栅的傅立叶子光栅波矢也会随之而改 变。这样通过改变取样周期性结构,可以等效地实现所需要的任意结构的目标等效光栅波 矢、 即目标光栅波矢 ( ) , 包括随空间改变光栅的方向和周期。
取样周期性结构是均匀的情况下, 即取样周期性结构的波矢是一个常数。 但是取样 周期性结构的方向与种子光栅的方向存在一个夹角。根据公式 (3) 和 (4), Kn = Gsn + K0 , 也就是说, 所有影子光栅也将是一个均匀的光栅, 但是光栅方向发生了一个角度的旋转。 如果入射光波长和目标等效光栅满足布拉格匹配条件,那么这束光将在满足布拉格条件的 方向产生强烈的衍射作用, 如图 2所示。
当目标光栅不是均匀的情况下, 目标光栅是啁啾的或者存在相移。 则根据本发明内 容公式(3 ) - ( 5), 需要取样结构的傅立叶子光栅波矢 (5S„ ( )是空间变化的函数, 那么所 需要的啁啾通过改变目标取样傅立叶子光栅波矢 (5SJV ( )即可。 根据公式 (3 ), 取样光栅 的相位也是一个空间的函数, 对于影子光栅的相移, 根据本发明公式(6 )和(7 )的内容, 在取样结构中引入一个相移, 空间移动量为 A ', 就可以在目标等效光栅上造成一个相应 的相移 = <5^ *八^, 这样一个为 相移量被引入到该取样光栅的第 级影子光栅中。 所有以上二维的结论和设计制造方法都可以拓展到三维情况,对于三维光栅依旧成 立, 如体光栅的设计。这种设计方法大大简化了制作复杂光栅的方法。进一步地根据公式 (4) 可以知道, 如果在光栅为一维特殊情况的时候, 本发明给出的微结构准相位匹配技 术, 则简化成为重构——等效啁啾技术。对于二维或三维点阵结构的种子光栅, 如类似光 子晶体的折射率调制, 以及任意结构的种子光栅, 即种子光栅波矢 。= 。 是空间变化 的函数, 以上的结论依然成立。 本发明内容适用于各种光材料, 如硅基材料, III-V族材 料。
以上发明内容阐述了实现微结构位相匹配和获得目标等效光栅的基本方法和过程, 但是要说明现微结构位相匹配技术的可用性,需要如下的一些具体光栅结构及其功能来说 明。
1、 波分复用光栅结构
( 1 )分层取样结构 (图 3)
种子光栅为同一个光栅, 但是取样是分层取样, 即如果每一层的取样不一样, 这样 每一层中某个选定的取样光栅的目标等效光栅波矢 ^v ( ),只对应了一个特定的布拉格匹 配波长。如果入射光波中, 不同频率的光波等于不同的布拉格波长, 这样不同波长的光将 在不同的地方, 按不同的角度反射回来, 在空间上实现光的解复用。 由于光路的可逆性, 如果将不同的频率的光波在不同的角度入射,对应了取样光栅不同位置的布拉格波长,那 么这些光波将会反射回同一个方向并耦合到同一根波导中,实现不同波长光波的复用。以 上的集成波导波分复用原理对于体光栅也是成立的。
(2) 均勾倾斜取样啁啾种子光栅的取样光栅结构 (图 4)
可以设计啁啾种子光栅, 取样结构均匀且方向与种子光栅有个角度, 那么矢量合加 而成的目标等效光栅波矢 ^v ( ) , 方向和大小随空间而变化。 所以不同频率的光波入射, 将在不同位置满足布拉格条件并按不同的方向发生强烈衍射,在空间上分开,实现光的解 复用。如果不同频率的光波按不同的角度在不同的位置入射,并对应了取样光栅不同位置 的布拉格波长。 同样根据光路的可逆性, 再反射到同一个方向耦合进同一根光波导中, 实 现光的复用。
以上的二维波导波分复用原理对于体光栅也是成立的。
例如对于多层取样光栅的结构可以设计 8信道的平面波导波分复用器。 波导芯层为 掺二氧化硅(Ge : Si02)芯层材料有效折射率为 1. 455, 种子光栅折射率调制为 0. 006。 如 图具体实施方式图 3。 平面波导波分复用器总的宽度为 40微米, 设为 X方向。 取样级联 结构中对应的不同的取样结构层长度为 100微米, 那么该波分复用器总长为 1200微米, 设为 Z方向。种子光栅的波矢 方向与器件的腔的 +Z方向, 周期为 500纳米。波长范 围在 1544纳米到 1558nm, 信道间隔是 2纳米。入射的多信道光与 +Z方向平行。那么对应 的取样结构图案为在表 1所示。
表 1.对应的反射波长 / 取样周期 /取样结构的的波矢方向 <5SJV ( )与种子光栅的波矢 。 方向的夹角 /对应的光与 Z轴反射的夹角。
Figure imgf000013_0001
这里取样傅立叶 +1级影子光栅作为目标等效光栅。 由于种子光栅的波矢方向与入射 光的方向都为 +Z 方向, 所以这里的夹角可以是顺时针, 也可以是逆时针。 两种取样情况 与 z轴镜像对称。
2、 无逆反射滤波器(图 5)
在光栅器件的 1/4处和 3/4处根据公式 (6) ( 7), 在目标等效光栅中分别产生一个 等效的 相移。 那么将产生一个窄带的透射峰。 对应的某一个信道可以通过, 如果把折 射率调制做大, 折射率调制是 0. 2或者更高, 那么透射光的禁带宽度将达到 40nm或者更 宽, 这差不多已经能够覆盖整个光通讯窗口。 由于布拉格反射的特性, 其他的反射光将从 与入射光对称的方向反射回来,并不会沿原路返回。这样可以避免原路返回的光对光源的 干扰。 因此在这样的器件中, 环形器可以被省去。而环形器在集成光子器件中的实现是比 价困难的。
3、 抑制基于重构——等效啁啾(REC)技术的 DFB半导体激光器中 0级信道 (0级影子光栅)光栅结构 (图 6)
REC技术设计的 DFB半导体激光器, 一般利用 + 1级或者 -1级信道作为谐振腔, 因为 0级傅立叶子光栅折射率调制强度比较强, 比较容易会产生激射,从而影响激光器单 模成品率。在设计这种激光器时, 往往要求 0级信道远离增益区。这样才能抑制 0级的潜 在激射。 而对于 +2级或者 -2级, 由于光栅调制比较弱而可以忽略考虑, 实际工作时也不 会形成光的谐振。为了进一步抑制 0级信道谐振, 可以做倾斜的种子光栅, 再做倾斜的一 维取样, 实现取样光栅的目标等效光栅波矢 ^v ( )的方向与波导轴向平行, 而其他级次都 与波导轴向有个夹角。这样能在波导能形成振荡的光就只有 -1级或者 +1级(往往利 用 + 1级和 -1级中的一个级次,所以可以针对其中一个级次进行优化设计)。其他影子光栅 对应的光谐振因波导侧向辐射而被抑制住。这种结构可以提高基于重构——等效啁啾技术 的激光器的单模特性。 原理图如下 (图 6)。
0级光栅是与种子光栅相同方向的,所以本来也有可能形成光振荡的 0级信道光将被 侧向散射出去, 从而抑制可能形成的激光。 -1 级光栅却能很好的形成一个谐振腔 (这里 以 -1级为例,如果利用 + 1级原理一样)。该激光器中等效相移或者等效啁啾可以根据公式 (6-7) 和 (3-4) 产生。 这对于基于重构——等效啁啾技术的单模激光器制作非常有利。
4、 倾斜波导光栅(图 7)
这种光栅结构的设计与抑制 0级光栅设计原理一致。 这里的种子光栅波矢方向可以 是沿波导轴向, 也可以是其他的方向, 只是利用倾斜的取样使得目标等效光栅波矢 ^v ( ) 与波导轴向构成一个我们所需要的角度。具体的种子光栅与取样结构的设计遵循矢量合成 的原理。
例如制备平面矩形波导, 芯层材料是掺锗二氧化硅(Ge: Si02)o 波导宽度是 6微米, 波导芯层厚度是 2微米, 有效折射率 (nrff) 为 1. 455, 如果种子光栅的光栅波矢 £。( )方 向沿腔的轴线平行, 也即, 光栅线条与轴向垂直。 种子光栅周期是 500纳米, 按公式(4) 计算得到的, 如果希望等效实现倾斜光栅, 倾斜角度与波导轴向交角(目标等效光栅的波 矢方向于波导轴向)是 6度, 等效光栅周期是 532. 6纳米。那么需要设计的取样结构为取 样周期是 4. 221微米, 取样结构的波矢 <5SJV( )方向与轴向夹角为 55. 93度。
例如实现倾斜光栅辅助的光上传下载器(0ADM)。 具体结构参数可见文献 [3] ——图 1 基于无耦合器的集成光栅辅助的光上传 /下载器的示意图。 其中波导倾斜光栅部分可以 根据公式 (4) 或 (5) 等效实现。
5、 功分器与定向耦合器(图 8)
取合适的取样光栅方向和周期, 那么目标等效光栅波矢 ^v ( )可以转动一个角度, 这样对应满足布拉格匹配条件的光波将沿特定方向发生衍射。所以可以设计所需要的反射 角, 按指定的方向传播。 如果光栅比较弱, 那么满足布拉格条件的光波将一部分反射, 另 一部分继续传播, 形成功分器。 当然也可以实现功分器和定向耦合器相结合的器件。原理 如图 8。
例如可以设计 1 : 1的定向耦合功分器。 该器件的宽为 30微米设为 X轴方向, 腔长 为 50微米设为 Z方向。 波导芯层材料为掺锗二氧化硅 (Ge : Si02) ,芯层材料有效折射率 为 1. 455。 芯层厚度是 2微米。 种子光栅的波矢 方向沿 +Z方向平行, 周期是 485 纳米。如果希望 30微米宽度的波长是 1545. 5入射光沿 +Z方向传播,其中 50%的能量经过 光栅后沿 Z轴 15. 74度反向定向传输, 另外 50% 的能量继续沿 +Z方向传播。 那么折射率 调制为 0. 001,这里的取样是方波形状, 占空比是 0. 5 。取样图案则为取样周期是 3微米, 取样光栅的波矢和种子光栅的波矢夹角是 50度。
具体制备方法:
1、本发明中, 二维或者三维目标等效光栅形貌和器件制造技术的关键, 在于取样光 栅结构的制作, 具体的方法是:
( 1 ) 首先在光刻版(光掩膜) 上, 设计并制作我们所需要的取样图案, 即按照技术 方案里面的原理设计我们所需要的取样结构。这里值得注意的是,在这里有金属膜的地方 对应有光栅区, 没有金属膜的地方对应没有光栅区。
( 2 )在晶片上刻光栅的方法, 实施的步骤共分两步: 第一步, 使用全息曝光技术在 光刻胶上形成均匀光栅图案作为种子光栅;种子光栅周期 500nm,光栅折射率调制为 0. 06。 第二步, 用(1)中所得到的光刻版进行普通曝光, 把光刻板上的图案复制到晶片上的光刻 胶上, 在光刻胶上形成取样图案。 取样周期是 2微米。 对应的取样结构得波矢方向与种子 光栅呈 60度, 即 (5^与 £。呈 60° 夹角, N=l, 如图 9 ( c ) 所示光栅波矢合成示意图。 再用 腐蚀晶片的方法, 在晶片上形成相应的取样光栅图案。 两步的曝光顺序可根据工艺互换。 图 9 (a\b)是基于二维的重构一等效啁啾技术的取样光栅刻写方法示意图。 有效折射率是 1. 06, 入射光波长是 1. 142um, 入射光方向与种子光栅波矢平行, 那么, 光与种子光栅波 矢 28度夹角将有强烈的后向反射如图 9 (c\d)。 该器件能控制光的定向传播。
( 3 )对于制作目标等效光栅也可以先在相位掩模版上镀上取样结构, 然后利用已经 镀膜的相位掩模版对掺锗的二氧化硅材料以及一些其他制作平面波导布拉格光栅的光敏 材料进行一次性曝光。曝光时掩膜版应靠近光敏材料。退火后即可获得我们所需要的取样 光栅结构。 但是需要注意的是, 这里掩模版上镀的金属膜与上述 (2 ) 中掩模版的取样金 属膜条纹呈互补关系。 即镀膜的地方没有光栅, 没有镀膜的地方有光栅。 图 10给出了制 作示意图。
2、 基于微结构准相位匹配技术的平面波导布拉格光栅器件的制作
基于微结构准相位匹配技术的光子器件的实现材料比较多, 一般制作平面波导布拉 格光栅的材料都可以实现该结构光栅, 如硅基二氧化硅、 聚合物、 S0I脊形波导, 以及一 些 I I I-V族化合物半导体材料等。此滤波器的关键在于制作取样光栅图案,制作方法在具 体实施方法 1中已给出。
下面就以 S0I脊形波导制作布拉格光栅滤波器为例来加以说明, (除开刻蚀取样 光栅结构, 具体实施方法 1中已经提到, 其他工艺与文献 "高阶布拉格光栅在 S0I脊形波导 上的光刻制作" 冉启江等, 《半导体光电》, 2009, 6 ( 30 ) 3 : 391-384 ) 类似:
( 1 )制作两块光刻掩模版。一块用于 S0I芯片上制刻脊形波导, 这块掩膜版与常规 制作的 S0I脊形波导掩膜版没有区别。第二块掩膜版上带有按要求所设计好的取样结构, 如等效啁啾、 等效相移, 倾斜取样等等。
( 2 )清洗 S0I芯片并涂上一层光刻胶,使用光刻机在第一块掩膜版下对 S0I芯片进 行曝光, 显影定影后用等离子去胶 30 s。 在 180 ° C恒温箱中对 S0I芯片进行大概 30 分 钟时间固胶。再进行 ICP刻蚀。刻蚀深度由刻蚀时间决定。用等离子去胶机在 150W的能 量下去胶 3分钟, 去除刻蚀后的残胶完成脊形波导的制作。
( 3 )再次对片子进行清洗后通过图 9所示的两次曝光法将第二块掩膜版上的取样光 栅图案转移到光刻胶上。 显影定影之后, 经过去胶、 固胶、 ICP刻蚀、 去除残胶等步骤, 完成取样布拉格光栅的光刻。 最后可以用 PECVD在器件表面沉积 Ι μ πι厚的 Si02。 为了消 除端面反射可对器件两端抛光。
3、 具有抑制 0级信道激射的基于 REC技术的 DFB半导体激光器
分布反馈半导体激光器的结构, 是在 n型衬底材料上由外延 n型 InP缓冲层、 非掺 杂晶格匹配的 InGaAsP波导层、 应变 InGaAsP多量子阱、 InGaAsP光栅材料层、 InGaAsP 波导层、 InP限制层和 InGaAs欧姆接触层顺次构成; InGaAsP光栅材料层的光栅是取样 布拉格光栅, 即为用作激光激射的等效光栅;激光激射的等效光栅的表面采用 200-400nm 厚的 Si02绝缘层。
下面描述工作波长在 1550nm范围,抑制 0级激射的 DFB半导体激光器的具体制作步 骤。
掩膜板制作: 使用普通微电子工艺制作含有等效子光栅所需要的倾斜取样或者其他 特殊取样图案的掩模板, 取样图案由公式 (3 ) - ( 7 ) 决定。
器件的外延材料主要通过 M0VPE技术制作, 描述如下: 首先在 n型衬底材料上一次 外延 n型 InP缓冲层 (厚度 200nm、 掺杂浓度约 1. lx lOW ) , lOOnm厚的非掺杂晶格匹 配 InGaAsP波导层(下波导层)、 应变 InGaAsP多量子阱 (光荧光波长 1. 52微米, 7个量 子阱: 阱宽 8nm, 0. 5%压应变, 垒宽 10nm, 晶格匹配材料) 和 lOOnm厚的 p型晶格匹配 InGaAsP (掺杂浓度约 1. Ix l017 cm 2 )上波导层。 接下来通过所设计的取样变占空比掩模板 和全息干涉曝光的方法在上波导层形成所需激光器的倾斜光栅结构。 取样光栅制作好后, 再通过二次外延生长 p-InP 和 p型 InGaAs ( 100nm, 掺杂浓度大于 lx l019cm— 2), 刻蚀形成 脊形波导和接触层, 脊波导长度为 400微米, 脊宽 3微米, 脊侧沟宽 20微米, 深 1. 5微 米。 再通过等离子加强化学汽相沉积法 (PECVD) , 将脊形周围填充 Si02或有机物 BCB形成 绝缘层。 最后镀上 Ti-Au金属 P电极。
器件两端面可分别镀上增透膜(AR)和高反膜(HR),激光器的阈值电流典型值为 14mA 左右, 边模抑制比达到 40dB以上。 4、 基于微结构准相位匹配技术的体光栅器件的制作(图 11 )
对此系统的光路具体描述如下:
( 1 )采用 Verdi-5激光器作为记录光源, 从激光器发出的窄光束经过扩束系统后形 成宽光束。
( 2)偏振分束棱镜把扩束后的激光束分成偏振态互相垂直的两束光, 选择垂直于实 验平台偏振的反射光作为参考光, 水平偏振的透射光作为物光, 利用偏振分束镜前的半 波片可以调节参考光和物光的强度比。
( 3) 水平偏振的物光经过半波片后变为垂直于实验平台的偏振光, 通过快门 1后, 经过反射镜后照射在立方块晶体上。 参考光通过快门 2和反射镜后, 照射到晶体上。
(4)记录全息光栅时, 快门 1和快门 2均打开。 物光和参考光在晶体中重叠的区域 发生干涉, 形成完全重叠型的体光栅。 整个系统中, 快门关闭、 功率计采集衍射光的功 率均由计算机控制完成。
以上步骤是制作传统的体光栅的方法, 也是我们这里制作种子光栅的方法。
对于我们这里的技术, 需要进行第二次取样曝光步骤, 具体的步骤如下: 制作我们所需要的取样掩模版与取样光栅的制作一致, 根据目标光栅和公式 (3 ) - ( 7) 来确定取样图案。
从激光器发出的窄光束经过扩束系统形成宽光束或者其他紫外光源, 并对准掩模版 对体光栅进行第二次曝光。 形成所需要的取样结构。 曝光区域的折射率大小与曝光时间 有关, 需要针对不同体光栅材料选择所需要的曝光时间, 由于取样部分的折射率大小和 体光栅的有效折射率有关, 所以要控制好合适的曝光时间。
也可以类似于具体实施方法 2中波导光栅的制作, 可以将具有所需要的取样结构的 金属掩模版放置于体光栅的前面, 在扩束后的双光束干涉条纹直接照射到掩模版和掩模 版后面的体光栅上进行曝光, 一次性制作取样体光栅。
例如实现等效 IT相移的窄带体光栅滤波器。入射光与体光栅的端面法线夹角是 5度。 该法线方向设为 Z轴。 种子光栅波矢方向与 Z轴平行。 体光栅的记录介质为 0. 05% Fe:
LiNb03 晶体, 尺寸是 5 X 5 X 5 n =2. 287。 种子光栅周期是 500纳米, 取样结构 的波矢 (5SJV ( ;)与种子光栅 。 ( )同向。 利用公式 (7), 在取样结构中引入相移, 实现体光 栅中间插入等效的 IT 相移。 目标等效光栅周期是 543. 88nm, 取样周期是 6. 197微米。 对波长 1550nm的光透射, 其他波长的光将与法线方向 5度, 并与入射光对称, 发生反射。 种子光栅折射率调制一般在 0. 0015, 如果折射率调制越大, 那么反射光的带宽也愈大。

Claims

权利要求书
1、 一种实现多维目标波导光栅和体光栅的制备方法, 在物理可实现情况下, 实现任 意条纹形貌的二维波导光栅或者三维体光栅作为目标光栅的制备, 其特征是以普通波导光 栅作为种子光栅, 该种子光栅为均匀波导光栅, 光栅周期在 50-1000纳米之间; 并在此基 础上形成二维或者三维的折射率调制的取样结构即取样光栅; 该取样光栅含有多个影子光 栅, 选择其中一个影子光栅作为目标等效光栅;
种子光栅波矢是 。 ( ), 那么光波矢 和种子光栅波矢之间的波矢差 Δ 为
Ak =k -K0(f) (1) 均匀种子光栅和任意的取样结构的取样光栅折射率调制表示为
Ans (r ) = S[f]-An(f)
(2)
其中 是取样图案, 是种子光栅的折射调制幅度; 是空间位置矢量; 对 (2) 式进行傅立叶分析得到
Ans (r)= ^ „ ( ) exp(jj Gsn (r) · df)An exp(jj K0(f)» df)
" (3) = ∑ C„ (r)An exp(;j Kn (r) · df) 其中 J表示虚数, <5S„ (?)是取样周期性结构不同傅立叶级次的光栅波矢; 。 ( )是种 子光栅的光栅波矢, 0O^^0, A( )是种子光栅周期, 。是种子光栅方向; C„( )
Mr)
是傅立叶系数, 7表示傅立叶的级次, 代表了所有二维或者三维取样光栅的所有傅立叶分 量, 即所有影子光栅; 根据式 (3), 在经过取样后的光栅包含很多级次的傅立叶分量即 影子光栅, 对应的光栅波矢为 „( ), 所有的这些影子光栅的光栅形貌由改变取样结构 而改变; 不同级次的影子光栅波矢 „ (^是种子光栅的光栅波矢 £。和取样结构不同傅 立叶级次子光栅波矢 (5S„ (?)的矢量和, 根据公式 (3) 表示为, 即目标等效光栅波矢
使该目标等效光栅波矢 ( )等于目标光栅的波矢 td (r), 即 N (r) = Kd (r);
(r)为种子光栅波矢, 0sN (F)为目标取样结构傅立叶子光栅的波矢, dd (r) 即目标光栅的波矢, 目标等效光栅波矢 ^v( )通过取样结构的图案改变: 改变取样结构的 周期分布则能够改变波矢 (5^( ), 以此等效实现所需要的任意的目标光栅形貌; 就是当种 子光栅波矢 。 ( )和所需要的二维或者三维光栅波矢之间不匹配情况下, 则采用取样结构 傅立叶分量中某一傅立叶周期性结构分量, 即目标取样结构的傅立叶子光栅的波矢 dsjV( ) 来补偿他们之间波矢的不匹配, 即通过额外的目标取样结构的周期性调制使光学传输过程 中相位差为零, 及实现如下的位相匹配
Figure imgf000019_0001
根据式 (3), 取样光栅的相位也是一个空间的函数, 对于影子光栅的相位变化, 表 示成为
exP[j<5s„ · ]exp(j'(f。 · )) (6) 如果取样结构有一个相移, 并且空间移动量为 A ', 那么取样结构的傅立叶子光栅也 会产生一个相移量, 对应的影子光栅的相位可以表示成为
exp[7<5s„•(f + Ar )] exp(j(K0 ·Γ)) ( ?) = exp|j'(5OT•( )]exp( (£。 · ))6χρ( (5 ·ΔΓ')
这样在取样光栅的傅立叶子光栅中等效地引入一个相移, 相移量为 exp(j^ ·ΑΓ ); 如果要求种子光栅是均匀的, 则 (5S„ *A ' = , 这样一个为 相移量被引入到该取样 光栅的第 7级影子光栅中;
在取样光栅结构中, 通过一个取样周期内的取样的图案或形状即占空比来改变目标 等效光栅的折射率调制强度以及切趾, 即改变傅立叶系数 C„( )。
2、 根据权利要求 1 所述的实现多维目标波导光栅和体光栅的制备方法, 其特征是在 物理可实现情况下, 利用光栅结构准位相匹配实现具有任意光栅条纹形貌的目标等效光 栅, 倾斜 /弧形条纹光栅、 啁啾 /相移光栅; 经过施加取样结构后的光栅包含很多级次的傅 立叶分量, 也即影子光栅对应的光栅波矢为 „( ), 根据式 (4) 或 (5), 如果要获得某一 特定的目标等效光栅形貌, 即某一特定傅立叶级次的影子光栅形貌, 那么通过光栅波矢的 合成, 设计相应的取样结构即取样周期性结构来获得该影子光栅的光栅波矢, 从而等效地 实现任意的目标等效光栅形貌, 该目标等效光栅就当作所需要的目标光栅; 对于光栅方向 的改变, 根据式 (4), 利用改变取样结构的光栅波矢 SJV( )方向、 实现任意光栅具有方向 倾斜或弧形条纹的目标等效光栅; 对于多维相移光栅的实现, 取样结构利用式 (5) - (7) 在取样结构上进行相移; 对于光栅啁啾的实现, 则取样结构根据式 (3) (4) 沿空间 改变取样周期与方向; 在制备上, 均匀的种子光栅周期尺度是百纳米量级, 则利用传统的 全息曝光或类似的近场全息曝光来实现, 取样结构周期在微米量级, 则利用传统的光刻实 现。
3、 根据权利要求 1 所述的实现多维目标波导光栅和体光栅的制备方法, 其特征是利 用多维目标波导光栅和体光栅制备波分复用与解复用器件时, 其一是采用具有不同取样方 向和周期的取样结构的多层级联或者称为多层取样光栅的结构, 每一层的取样光栅对应的 目标等效光栅反射一个特定的布拉格波长, 种子光栅保持均匀; 或者是取样光栅是利用啁 啾种子光栅作为取样均匀的种子光栅, 这种种子光栅中不同周期位置所对应的目标等效光 栅反射不同频率的光波实现光的解复用; 同时不同的波长按给定的角度与位置入射, 不同 频率的光波在光栅对应满足布拉格条件的位置发生强衍射而向同一方向传播耦合到同一根 波导中构成复用; 波分复用与解复用器件总的腔长视信道数目而定; 制备二维波分复用与 解复用器件光栅时取样布拉格光栅的取样周期 0. 5-20. 0 微米, 制备体光栅时取样布拉格 光栅的周期长于上述制备二维波分复用与解复用器件光栅。
4、 根据权利要求 1 所述的实现多维目标波导光栅和体光栅的制备方法, 其特征是 利用多维目标波导光栅和体光栅制备光栅滤波器时, 在光栅滤波器腔的长度的 1/4 处和 3/4 处, 使取样结构中对应的目标等效光栅中有一个等效的 II 相移, 形成一个透射峰, 等效的 IT 相移根据式 (5) - ( 7) 实现; 当滤波器腔长 50. 0微米到 5000. 0微米时; 折射 率调制 0. 2或者更高, 透射光的禁带宽度达到 40nm或者更宽, 完全覆盖一个通讯窗口。
5、 根据权利要求 1 所述的实现多维目标波导光栅和体光栅的制备方法, 其特征是利 用多维目标波导光栅和体光栅制备一种能够抑制 0级的基于重构等效啁啾技术的 DFB半导 体激光器时, 采用均匀的种子光栅, 种子光栅的波矢 。( )方向与波导轴向倾斜, 倾斜角 度 2-15 度, 取样结构也与波导轴向做相应的倾斜; 这样根据式 (4), 使取样光栅中目标 等效光栅波矢 方向与波导轴向平行, 通常 N=± l ; 种子光栅波矢 方向与波导 轴向倾斜的角度视抑制 0级的效果来确定, 一般在 2-15度范围, 有比较好的抑制 0级效 果; 具体所设计的种子光栅与取样的参数可以按照式 (4) 来设计, 取样周期在 0. 5-20微 米; 在倾斜角度在 10度或更大的时候, 能够完全抑制 0级信道。
6、 根据权利要求 1 所述的实现多维目标波导光栅和体光栅的制备方法, 其特征是在 利用多维目标波导光栅和体光栅制备倾斜波导光栅以及由倾斜波导光栅为基础的光栅器件 时, 采用均匀的种子光栅, 种子光栅波矢 。( )的方向按照所需要设计要求来设定, 倾斜 取样结构中的目标取样傅立叶子光栅波矢 0sN (r)的方向与种子光栅有一定的夹角, 具体 角度根据式 (4) 设计得到; 使得目标等效光栅波矢 ( 方向与波导轴向有一个需要的 特定夹角, 此特定夹角设计中常用 2-15度。
7、 根据权利要求 1 所述的实现多维目标波导光栅和体光栅的制备方法, 其特征是在 制备任意角度和比例的功分器与定向耦合器时, 在功分器与定向耦合器件的不同位置刻上 不用的取样结构; 不同的取样结构对应的目标等效光栅波矢 ^v ( )与入射光构成布拉格匹 配条件, 其反射角度根据式 (4) 设计, 形成定向耦合器; 设计合适的折射率调制, 折射 率调制一般在 0. 001 到 0. 2; 折射率调制越大衍射效率越高; 这样使得不同位置的光只反 射一部分能量, 形成功分器。
8、 根据权利要求 1 所述的实现多维目标波导光栅和体光栅的制备方法, 其特征是利 用多维目标波导光栅和体光栅制备任何体光栅滤波器以及基于体光栅的光学器件时, 采用 均匀种子光栅, 利用普通掩模版进行曝光, 实现取样结构; 取样图案根据式 (3) - (7) 设 计, 使得目标等效光栅的光栅形貌是所要求的目标光栅的形貌。
9、 根据权利要求 1 所述的实现多维目标波导光栅和体光栅的制备方法, 其特征是利 用多维目标波导光栅和体光栅制备任何具有精细结构的波导光栅的光子器件时, 利用全息 曝光来刻写均匀种子光栅, 并根据所需要的目标光栅和式 (3 ) - ( 7 ) 获得相应的取样图 案, 采用传统的光刻技术在种子光栅上实现取样图案, 从而获得所需要的目标光栅和相应 的光子器件.
10、 根据权利要求 1-9 之一所述的实现多维目标波导光栅和体光栅的制备方法, 其 特征是利用多维目标波导光栅和体光栅制备基于等效重构 -啁啾技术的多波长 DFB 半导体 激光器集成器件和波导布拉格光栅滤波器、 耦合器或波分复用器的集成器件时, 基于重构 等效啁啾技术的多波长 DFB激光器和基于微结构准相位匹配的波导光栅滤波器、 耦合器或 波分复用器的的种子光栅是一样的, 均利用一次全息曝光实现; 根据式 (3 ) - ( 7 ) 设计 所需要的整体的取样图案, 再利用传统的光刻技术一次同时实现整个芯片上的取样光栅结 构, 从而实现多种功能的光子器件的单片集成。
11、 根据权利要求 3 所述的实现多维目标波导光栅和体光栅的制备方法, 其特征是 利用多维目标波导光栅和体光栅制备多层取样光栅的结构、 设计 8信道的平面波导波分复 用器, 波导芯层为掺 Ge 二氧化硅 (Ge : Si02) 芯层材料, 有效折射率为 1. 455, 种子光栅 折射率调制为 0. 006; 平面波导波分复用器总的宽度为 40微米, 设为 X方向; 取样级联 结构中对应的不同的取样结构层长度为 100微米, 那么该波分复用器总长为 1200微米, 设为 Z方向; 种子光栅的波矢 方向与器件的腔的 +Z方向, 周期为 500纳米; 波长范 围在 1544纳米到 1558纳米, 信道间隔是 2纳米; 入射的多信道光与 +Z方向平行; 那么 对应的取样结构分别为:
对应的反射波长 / 取样周期 /取样结构的波矢方向 <5SJV ( )与种子光栅的波矢 £。( )方 向的夹角 /对应的光与 Z轴反射的夹角:
Figure imgf000021_0001
这里 +1 级影子光栅作为目标等效光栅; 由于种子光栅的波矢方向与入射光的方向都 为 +Z 方向, 所以这里的夹角可以是顺时针, 也可以是逆时针; 两种取样情况与 z 轴镜像 对称;
另外设计 1 : 1的定向耦合功分器的宽为 30微米设为 X轴方向, 腔长为 50微米设为 Z 方向; 波导芯层材料为掺锗二氧化硅 (Ge : Si02) ,芯层材料有效折射率为 1. 455 ; 芯层 厚度是 2微米; 种子光栅的波矢 。 ( )方向沿 +Z方向平行, 周期是 485纳米; 如果要求 30 微米宽度的波长是 1545. 5 入射光沿 +Z 方向传播, 其中 50%的能量经过光栅后沿 Z 轴 15. 74度反向定向传输, 另外 50% 的能量继续沿 +Z方向传播; 那么折射率调制为 0. 001, 这里的取样是方波形状, 占空比是 0. 5 ; 取样图案则为取样周期是 3 微米, 取样周期性 结构的波矢和种子光栅的波矢夹角是 50度。
12、 根据权利要求书 6 所述的实现多维目标波导光栅和体光栅的制备方法其特征是 制备倾斜波导光栅和抑制 0 级的基于重构——等效啁啾技术的 DFB激光器时, 对于倾斜 的波导光栅, 波导芯层为掺 Ge二氧化硅 (Ge : Si02) 芯层材料, 有效折射率为 1. 455, 单 模波导, 种子光栅折射率调制为 0. 006; 种子光栅的光栅周期是 480纳米, 周期性取样结 构的周期是 4微米; 种子光栅的波矢 £。 的方向平行于波导的轴向; 取样结构的光栅波 矢 <5SJV ( )与种子光栅的光栅波矢 的夹角是 31 度; 实现 -1 级目标等效光栅的波矢与 波导轴向夹角是 4 度; 对应的单模波导内 -1 级目标等效光栅的布拉格波长是 1. 5496 微 米, 取样结构的光栅波矢 <5SJV ( )到种子光栅的光栅波矢 £。 的夹角是顺时针或逆时针; 对于抑制 0 级的基于重构等效啁啾技术的 DFB 激光器的波导光栅设计特征是, 有效折射 率是 3. 1, 激光器腔长是 400微米, 脊条宽度是 2微米, 种子光栅的光栅周期是 238纳 米, 取样周期是 3 微米, 取样结构的波矢方向 <5SJV ( )和波导轴向夹角是 53. 67 度, 种子 光栅的波矢方向 。 与激光器波导腔的轴向夹角是 3. 67 度, 取样结构的波矢 <5SJV ( )的 方向、 种子光栅的波矢 。 (?)的方向与激光器波导腔的轴向夹角都为顺时针旋转的角度或 者都为逆时针旋转的角度; -1 级目标等效光栅的波矢方向与波导轴向平行, 其周期是 250. 27纳米, 对应的波导内布拉格波长是 1551. 71纳米。
PCT/CN2011/085067 2011-01-06 2011-12-30 微结构准相位匹配实现多维目标波导光栅和体光栅的制备方法 WO2012092828A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/977,718 US8835204B2 (en) 2011-01-06 2011-12-30 Method for manufacturing multi-dimensional target waveguide grating and volume grating with micro-structure quasi-phase-matching
EP11855221.5A EP2662711B1 (en) 2011-01-06 2011-12-30 Method for manufacturing multi-dimensional target waveguide grating and volume grating with micro-structure quasi-phase-matching

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110001786 2011-01-06
CN201110001786.5 2011-01-06

Publications (1)

Publication Number Publication Date
WO2012092828A1 true WO2012092828A1 (zh) 2012-07-12

Family

ID=44421856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/085067 WO2012092828A1 (zh) 2011-01-06 2011-12-30 微结构准相位匹配实现多维目标波导光栅和体光栅的制备方法

Country Status (4)

Country Link
US (1) US8835204B2 (zh)
EP (1) EP2662711B1 (zh)
CN (1) CN102147492B (zh)
WO (1) WO2012092828A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112327398A (zh) * 2020-11-20 2021-02-05 中国科学院上海光学精密机械研究所 一种矢量补偿体布拉格光栅角度偏转器的制备方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147492B (zh) * 2011-01-06 2012-09-26 南京大学 微结构准相位匹配实现多维目标波导光栅和体光栅的制备方法
US10020636B2 (en) 2013-06-13 2018-07-10 Applied Optoelectronics, Inc. Tunable laser with multiple in-line sections including sampled gratings
CN107046229A (zh) * 2016-02-05 2017-08-15 南京威宁锐克信息技术有限公司 一种激光器阵列的制作方法及激光器阵列
US9891436B2 (en) 2016-02-11 2018-02-13 Microsoft Technology Licensing, Llc Waveguide-based displays with anti-reflective and highly-reflective coating
TWI690802B (zh) * 2016-03-08 2020-04-11 慧榮科技股份有限公司 函式分析方法與記憶體裝置
CN105607190B (zh) * 2016-03-10 2019-01-18 北京邮电大学 一种基于add-drop型的三波导耦合双方形谐振腔的解复用装置
CN108459366A (zh) * 2017-02-20 2018-08-28 中兴通讯股份有限公司 改变光路的方法,和应用于改变光路的光栅的制作方法
US10197737B2 (en) * 2017-06-19 2019-02-05 Intel Corporation Low back reflection echelle grating
US10295723B1 (en) * 2018-05-01 2019-05-21 Facebook Technologies, Llc 2D pupil expander using holographic Bragg grating
CN108627915B (zh) * 2018-05-16 2024-03-19 德州尧鼎光电科技有限公司 一种深紫外多量子阱波导
US10302826B1 (en) * 2018-05-30 2019-05-28 Applied Materials, Inc. Controlling etch angles by substrate rotation in angled etch tools
US11480724B2 (en) * 2018-07-19 2022-10-25 Applied Materials, Inc. Variable height slanted grating method
DE102018217199A1 (de) * 2018-10-09 2020-04-09 Dr. Johannes Heidenhain Gmbh Gitterstruktur für eine diffraktive Optik
CN109188585B (zh) * 2018-10-18 2021-02-02 华北水利水电大学 一种用于光学扫描的双结构光栅器件与制作方法
CN109459813A (zh) * 2018-12-26 2019-03-12 上海鲲游光电科技有限公司 一种基于二维光栅的平面光波导
DE102019206937A1 (de) * 2019-05-14 2020-11-19 Dr. Johannes Heidenhain Gmbh Optische Positionsmesseinrichtung
CN110441848B (zh) * 2019-08-09 2021-10-22 苏州大学 亚波长金属超构光栅及中红外可调控回射器
CN110823129A (zh) * 2019-10-17 2020-02-21 湖北大学 基于π相移提升调制度图像质量的方法
CN111969413B (zh) * 2020-07-22 2024-04-12 南京大学 一种宽条形半导体激光器及其制作方法
CN111781672B (zh) * 2020-07-28 2022-02-25 中国人民解放军国防科技大学 一种二维单芯光纤光栅及其刻写方法
CN112346258B (zh) * 2020-11-06 2022-09-13 上海易维视科技有限公司 基于方波拟合的光栅可视区定标方法及系统
CN112928599B (zh) * 2021-02-07 2022-03-22 南京大学 一种单片集成的模式可调谐混沌激光器、制造和控制方法
CN113219565B (zh) * 2021-04-30 2022-03-18 中国建筑材料科学研究总院有限公司 一种消杂光窗口元件及其制备方法和应用
GB2606400A (en) * 2021-05-07 2022-11-09 Metamaterial Tech Canada Inc Device for suppressing specular reflection
CN114113167A (zh) * 2021-11-26 2022-03-01 中国科学技术大学 一种X射线Talbot-Lau光栅相衬成像方法
CN116381948B (zh) * 2023-05-19 2023-08-08 驭光科技(北京)有限公司 光波导及显示设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050033787A1 (en) * 2001-02-26 2005-02-10 Stepanov Dmitrii Yu Multi channel grating design
CN1584640A (zh) * 2004-06-03 2005-02-23 清华大学 用振幅模板实现具有目标反射响应的光纤光栅的制作方法
CN101924326A (zh) * 2010-09-14 2010-12-22 南京大学 基于特殊等效相移的dfb半导体激光器
CN102147492A (zh) * 2011-01-06 2011-08-10 南京大学 微结构准相位匹配实现多维目标波导光栅和体光栅的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703710A (en) * 1994-09-09 1997-12-30 Deacon Research Method for manipulating optical energy using poled structure
GB9710062D0 (en) * 1997-05-16 1997-07-09 British Tech Group Optical devices and methods of fabrication thereof
US6285813B1 (en) * 1997-10-03 2001-09-04 Georgia Tech Research Corporation Diffractive grating coupler and method
US6067391A (en) * 1998-09-02 2000-05-23 The United States Of America As Represented By The Secretary Of The Air Force Multiply periodic refractive index modulated optical filters
US7009759B2 (en) * 2000-05-24 2006-03-07 The Board Of Trustees Of The Leland Stanford Junior University Multiple channel optical frequency mixers for all-optical signal processing
CN1191480C (zh) * 2002-05-17 2005-03-02 清华大学 变占空比的取样光纤光栅及其切趾方法
CN1271431C (zh) * 2004-03-12 2006-08-23 清华大学 一种实现具有任意目标响应的光纤光栅
DK1743197T3 (da) * 2004-04-23 2011-11-28 Olivier M Parriaux Højeffektivt optisk diffraktionsapparat
US20080069497A1 (en) * 2006-09-15 2008-03-20 Yann Tissot Optical waveguide tap monitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050033787A1 (en) * 2001-02-26 2005-02-10 Stepanov Dmitrii Yu Multi channel grating design
CN1584640A (zh) * 2004-06-03 2005-02-23 清华大学 用振幅模板实现具有目标反射响应的光纤光栅的制作方法
CN101924326A (zh) * 2010-09-14 2010-12-22 南京大学 基于特殊等效相移的dfb半导体激光器
CN102147492A (zh) * 2011-01-06 2011-08-10 南京大学 微结构准相位匹配实现多维目标波导光栅和体光栅的制备方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
J. A . ARMSTRONG; N. BLOEMBERGEN; J.DUCUING; P.S.PERSHAN: "Interactions between light waves in a nonlinear dielectric", PHYSICAL REVIEW, vol. 127, no. 6, 1962, pages 1918 - 1939, XP000608872, DOI: doi:10.1103/PhysRev.127.1918
JINGSI LI; HUAN WANG; XIANGFEI CHEN; ZUOWEI YIN; YUECHUN SHI; YANQING LU; YITANG DAI; HONGLIANG ZHU: "Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology", OPTICS EXPRESS, vol. 17, no. 7, 2009, pages 5240 - 5245
JINGSI LI; XIANGFEI CHEN; NINGZHOU: "Monolithically integrated 30-wavelength DFB laser array", PROC.OF SPIE-OSA-IEEE, 2009, pages 763104
JOSE M. CASTRO; DAVID F. GERAGHTY: "Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings", OPTICS EXPRESS, vol. 13, no. 11, 2005, pages 4180 - 4184
JOSE M. CASTRO; DAVID F. GERAGHTY; SEPPO HONKANEN; CHRISTOPH M. GREINER; DMITRI LAZIKOV; THOMAS W. MOSSBERG: "Optical add-drop multiplexers based on the antisymmetric waveguide Bragg grating", APPLIED OPTICS, vol. 45, no. 6, 2006, pages 1236 - 1243, XP001239273, DOI: doi:10.1364/AO.45.001236
MING LI; YAMING WU; JIANGYI YANG; HONGCHANG QU: "Return loss reduction of integrated grating-assisted optical Add/Drop multiplexer by control the reflective spectrum", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 23, no. 3, 2005, pages 1403 - 1409, XP011129769, DOI: doi:10.1109/JLT.2004.839991
SHI-NING ZHU; YONG-YUAN ZHU; NAI-BEN MING: "Quasi-Phase-Matched third-harmonic generation in a quasi-periodic optical superlattice", SCIENCE, vol. 278, no. 843, 1997
XU MAI: "Chinese Journal of Luminescence", RESEARCH PROGREESS ON WAVEGUIDE GRA TINGS FOR INTEGRATED OPTICS, vol. 26, no. 4, 2005, pages 415 - 425
YITANG DAI; XIANGFEI CHEN: "DFB semiconductor lasers based on reconstruction-equivalent-chirp technology", OPTICS EXPRESS, vol. 15, no. 5, 2007, pages 2348 - 2353
YITANG DAI; XIANGFEI CHEN; LI XIA; YEJIN ZHANG; SHIZHONG XIE: "Sampled Bragg grating with desired response in one channel by use of reconstruction algorithm and equivalent chirp", OPTICS LETTERS, vol. 29, no. 12, 2004, pages 1333 - 1335
ZHOU, YATING ET AL.: "Equivalent lambda,/4 Phase Shift to Improve the Single Longitudinal Mode Property of Asymmetric Sampled Bragg Grating Semiconductor Laser", MICROWAVE PHOTONICS, 2010, pages 89 - 92, XP031832463 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112327398A (zh) * 2020-11-20 2021-02-05 中国科学院上海光学精密机械研究所 一种矢量补偿体布拉格光栅角度偏转器的制备方法

Also Published As

Publication number Publication date
EP2662711B1 (en) 2019-04-03
CN102147492B (zh) 2012-09-26
CN102147492A (zh) 2011-08-10
US20130295703A1 (en) 2013-11-07
EP2662711A1 (en) 2013-11-13
US8835204B2 (en) 2014-09-16
EP2662711A4 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
WO2012092828A1 (zh) 微结构准相位匹配实现多维目标波导光栅和体光栅的制备方法
Halir et al. Subwavelength-grating metamaterial structures for silicon photonic devices
Luque-González et al. A review of silicon subwavelength gratings: building break-through devices with anisotropic metamaterials
Cheben et al. Subwavelength integrated photonics
Ohana et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides
Halir et al. Recent advances in silicon waveguide devices using sub-wavelength gratings
US6961491B2 (en) Optical structures distributed among multiple optical waveguides
CN101750671B (zh) 基于重构-等效啁啾和等效切趾的平面波导布拉格光栅及其激光器
US20110158584A1 (en) Low-loss bloch wave guiding in open structures and highly compact efficient waveguide-crossing arrays
Zhou et al. Subwavelength engineering in silicon photonic devices
Cheben et al. A broad-band waveguide grating coupler with a subwavelength grating mirror
Tasolamprou et al. Near-infrared and optical beam steering and frequency splitting in air-holes-in-silicon inverse photonic crystals
Grineviciute et al. Angular filtering by Bragg photonic microstructures fabricated by physical vapour deposition
Saghaei et al. Sinusoidal and rectangular Bragg grating filters: design, fabrication, and comparative analysis
Li et al. High-efficiency nine-port beam splitting output enabled by a dielectric lamellar sandwiched fused-silica grating
Liu et al. High-performance grating coupler array on silicon for a perfectly-vertically mounted multicore fiber
Han 1D photonic crystals: principles and applications in silicon photonics
Zhou et al. Silicon nanophotonic devices based on resonance enhancement
US8837047B2 (en) Chip-scale slow-light buffers fashioned with leaky-mode resonant elements and methods of using leaky-mode resonant elements for delaying light
Tsang et al. Subwavelength Silicon Photonics
Mancinelli Linear and non linear coupling effects in sequence of microresonators
CN111257996B (zh) 一种双折射波导布拉格光栅反射器及其制备方法
Dideban et al. Photonic crystal channel drop filters based on circular-shaped cavities
Fainman et al. Nanophotonics for information systems
Zhan Silicon Nitride Integrated Photonic Devices and Their Applications in Astronomy and Quantum Physics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13977718

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011855221

Country of ref document: EP