WO2012091342A2 - Communication method for a base station in a cooperative multi-cell communication system, base station therefor, communication method for a terminal, and terminal therefor - Google Patents

Communication method for a base station in a cooperative multi-cell communication system, base station therefor, communication method for a terminal, and terminal therefor Download PDF

Info

Publication number
WO2012091342A2
WO2012091342A2 PCT/KR2011/009814 KR2011009814W WO2012091342A2 WO 2012091342 A2 WO2012091342 A2 WO 2012091342A2 KR 2011009814 W KR2011009814 W KR 2011009814W WO 2012091342 A2 WO2012091342 A2 WO 2012091342A2
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
state information
channel state
antenna
Prior art date
Application number
PCT/KR2011/009814
Other languages
French (fr)
Korean (ko)
Other versions
WO2012091342A3 (en
Inventor
박경민
Original Assignee
(주)팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)팬택 filed Critical (주)팬택
Publication of WO2012091342A2 publication Critical patent/WO2012091342A2/en
Publication of WO2012091342A3 publication Critical patent/WO2012091342A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account

Definitions

  • the present invention relates to a cooperative multi-cell communication system in which two or more base stations cooperate to transmit a signal.
  • communication service providers are continuously attempting to expand the existing communication service market by creating a new communication service market for wireless terminals and providing reliable and inexpensive services.
  • the present invention provides a method and apparatus for transmitting information through cooperative communication between two or more base stations including two or more transmission antennas and receiving the channel information directly or indirectly from the terminal, a method for the terminal to report channel information to the base station, and the same. Provide the device.
  • a cooperative multi-cell communication system at least one base station of at least two or more base stations transmits a signal to a terminal through at least one antenna group of two or more antenna groups of different polarizations; And another base station except the at least one base station among the base stations transmits a signal to the terminal through a polarization antenna group having a polarity different from the at least one antenna group among two or more antenna groups of different polarizations. It provides a cooperative communication method of a cooperative multi-cell communication system comprising a transmission step.
  • a first base station precodes a data symbol using only components of a precoding matrix corresponding to at least one antenna group of two or more antenna groups of different polarizations, and transmits the data symbols to the terminal. Transmitting a signal; And a second base station precodes a data symbol using only components of a precoding matrix corresponding to the at least one antenna group of two or more antenna groups of different polarizations and the antenna group of a polarization having a different polarity, thereby signaling the terminal. It provides a cooperative communication method of a cooperative multi-cell communication system comprising transmitting a.
  • one base station of at least two or more base stations may transmit its own channel state information from a terminal and channel state information of another base station except the one of the base stations.
  • a receiving step of receiving channel information including; By using the channel information, at least one of two or more antenna groups of different polarizations corresponding to some of the components of the precoding matrix used by the other base station to precode the data symbol, the polarity is different.
  • a communication method of a base station comprising a transmission step of transmitting a signal to the terminal by precoding a data symbol using only components of a precoding matrix corresponding to a polarization antenna group.
  • Still another embodiment provides a method of receiving a signal transmitted through at least one antenna group of two or more antenna groups of different polarizations in at least one of at least two base stations in a cooperative multi-cell communication system; And a signal transmitted through an antenna group of a polarization having a polarity different from that of the antenna group in the at least one base station among two or more antenna groups of different polarizations of another base station except the at least one base station among the base stations. It provides a cooperative communication method of the terminal comprising the step of receiving.
  • data symbols are precoded and transmitted using only components of a precoding matrix corresponding to at least one antenna group of two or more antenna groups of different polarizations of a first base station.
  • Yet another embodiment provides a method of receiving a reference signal of a first base station in a cooperative multi-cell communication system;
  • a first base station channel state information estimating step of estimating channel state information only for n antenna pairs of the first base station reference signal when there are 2n antenna pairs of different polarized antennas in the first base station;
  • Receiving a reference signal of a second base station When there are 2m antenna pairs of different polarized antennas in the second base station, channel state information is applied only to m antenna pairs (m is a natural number greater than or equal to 1 or greater than 1) of the second base station reference signals.
  • Estimating a second base station channel state information And channel information transmitting the channel information including the first base station channel state information and the second base station channel state information to the first base station.
  • FIG. 1 is a block diagram illustrating a cooperative multi-cell communication system to which embodiments are applied.
  • FIG. 2 is a block diagram illustrating a cooperative multi-cell communication system to which embodiments are applied.
  • FIG. 3 illustrates an antenna array structure of a base station and a terminal and a propagation channel according to the cooperative multi-cell communication system of FIG. 1 or 2.
  • FIG. 4 is a conceptual diagram of rank 1 cooperative communication of each base station in a cooperative multi-cell communication system according to an embodiment.
  • FIG. 5 is a flowchart illustrating a cooperative communication method between terminals and base stations of a cooperative multi-cell communication system according to another embodiment.
  • FIG. 6 is a conceptual diagram of a cooperative multi-cell communication system according to another embodiment.
  • FIG. 7 is a conceptual diagram of a cooperative multi-cell communication system according to another embodiment.
  • FIG. 8 is a flowchart illustrating a cooperative communication method between terminals and base stations of a cooperative multi-cell communication system according to another embodiment.
  • FIG. 9 is a configuration diagram of each of the base stations and the terminal in the cooperative multi-cell communication system according to another embodiment.
  • FIG. 10 is a flowchart illustrating a communication method of a transmitting apparatus according to another embodiment.
  • FIG. 11 is a flowchart of a communication method of a receiving apparatus according to another embodiment.
  • FIGS. 12 and 13 are block diagrams illustrating a cooperative multi-cell communication system according to another embodiment.
  • FIG. 1 is a block diagram illustrating a cooperative multi-cell communication system to which embodiments are applied.
  • a coordinated multi-point transmission / reception system (CoMP) or cooperative multi-antenna transmission in which two or more transmitters cooperate to transmit a signal
  • CoMP coordinated multi-point transmission / reception system
  • cooperative multi-antenna transmission in which two or more transmitters cooperate to transmit a signal
  • a coordinated multi-antenna transmission system a cooperative multi-cell communication system (hereinafter referred to as a "cooperative multi-cell communication system").
  • the cooperative multi-cell communication system 100 to which the embodiments are applied is a cooperative multi-cell communication system in which two or more transmission terminals cooperate to transmit a signal.
  • Each transmission terminal includes two or more transmission antennas and one or more transmission terminals are provided.
  • Multi-antenna transmission may be performed by receiving channel information from a receiver.
  • Terminals using such a communication method may be terminals having weaker signal strength than cells in the center region of a cell mainly in an intercell boundary region, and are relatively close to other base stations, and thus may receive signals from two or more base stations. It may be terminals. Since two or more base stations transmit signals in a cooperative manner to these terminals, the terminal may obtain better performance than receiving signals from one base station. At this time, two base stations may cooperate or three or more base stations may cooperate.
  • the present invention can be applied not only to a single user multiple antenna (SU-MIMO) scheme but also to a multi user multiple antenna (MU-MIMO) scheme.
  • SU-MIMO single user multiple antenna
  • MU-MIMO multi user multiple antenna
  • the cooperative multi-cell communication system 100 may be widely deployed to provide various communication services such as voice and packet data.
  • Terminal 120 (User Equipment, UE) in the present specification is a generic concept that means a user terminal in wireless communication, WCDMA, UE (User Equipment) in LTE, HSPA, etc., as well as MS (Mobile Station) in GSM It should be interpreted as a concept that includes a user terminal (UT), a subscriber station (SS), and a wireless device.
  • One terminal 120 may be connected to two or more base stations (110, 112, 114) at the same time to receive the service, and the plurality of base stations (110, 112, 114) with a plurality of base stations at regular intervals according to the channel situation It may be connected to a base station having a good channel to receive service. Therefore, the base station selected as the cooperative base station should be a base station having a good channel performance for any frequency band for one terminal.
  • Base stations (110, 112, 114: base station, BS) or cell (cell) generally refers to a fixed station (fixed station) to communicate with the terminal 120, Node-B (Node-B), evolved (eNB) Node-B), BTS (Base Transceiver System), access point (Access Point) may be called other terms.
  • Node-B Node-B
  • eNB evolved Node-B
  • BTS Base Transceiver System
  • Access Point Access Point
  • the base station 110, 112, 114, or cell should be interpreted in a comprehensive sense to indicate some areas covered by a base station controller (BSC) in CDMA, a NodeB in WCDMA, and the like. It is meant to cover all of the various coverage areas, such as macrocell, microcell, picocell, femtocell, etc.
  • BSC base station controller
  • the base stations 110, 113, 114, and the terminal 120 are two transmission / reception entities used to implement the technology or the technical idea described in this specification, and are used in a generic sense and specifically referred to in a term or word. It is not limited by.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • OFDM-FDMA OFDM-FDMA
  • OFDM-TDMA OFDM-TDMA
  • OFDM-CDMA OFDM-CDMA
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • One embodiment of the present invention provides asynchronous wireless communication that evolves into Long Term Evolution (LTE) and LTE-advanced through GSM, WCDMA, HSPA, and synchronous wireless communication that evolves into CDMA, CDMA-2000 and UMB). Applicable to resource allocation.
  • LTE Long Term Evolution
  • LTE-advanced through GSM, WCDMA, HSPA, and synchronous wireless communication that evolves into CDMA, CDMA-2000 and UMB.
  • the present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
  • a cooperative multi-cell communication system (CoMP) is implemented by another transmission terminal of the same base station that is in charge of another cell, this is referred to as an intra-eNB coMP and is responsible for another cell.
  • an intra-eNB coMP When a cooperative multi-cell communication system (CoMP) is implemented by another base station, this is called an inter-cooperative multi-cell communication system (inter-eNB CoMP).
  • the transmitter may be a transmitter that belongs to another base station or a transmitter that is responsible for another cell belonging to the same base station.
  • the terminal 120 receives data from the base stations 110, 112, and 114, respectively, but since the frequency bands for receiving the federated data are the same, the terminal 120 may be regarded as receiving data from one transmission point. That is, the terminal 120 may regard the set of three base stations 110, 112, and 114 as one transmission point.
  • FIG. 2 is a block diagram illustrating another cooperative multi-cell communication system to which embodiments are applied.
  • a base station performing cooperative communication with a terminal 120 may be the macro base stations 110, 112, and 114 shown in FIG. 1. Can be located within the cell radius of one macro base station (110, 112, 114), femto cell (115), pico cell (Pico cell, 116), relay (Relay, 117), hot spot (118) Various types of micro or local base stations, such as
  • the cooperative multi-cell communication system 100 may not only perform cooperative communication between macro base stations 110, 112, and 114 but also micro base stations or pico. Even among the base stations having different driving characteristics such as the base stations 115, 116, and 117, superior system performance can be obtained through cooperative communication.
  • a base station estimates or interferes with channel conditions with neighboring base stations. It is possible to set the beamforming or precoding value by estimating.
  • the terminal 120 analyzes reference signals transmitted from each of the base stations 110 through 117 to determine a channel state of each antenna of each base station 110 through 117. After identifying each channel condition, the information is fed back to each base station 120 directly or indirectly. Base stations 110 to 117 or higher layers fed back with this information select base stations that exhibit good channel performance to form a cooperative base station set or a CoMP set, and the base stations included in the cooperative base station set or CoMP set are cooperatively transmit and receive. Will be started.
  • FIG. 3 illustrates an antenna array structure of a base station and a terminal and a propagation channel according to the cooperative multi-cell communication system of FIG. 1 or 2.
  • each of the base stations illustrated in FIGS. 1 and 2 may include an antenna array 310 including two or more antennas.
  • the base station 110 is exemplarily described, other macro or micro base stations described with reference to FIGS. 1 and 2 may be the same.
  • the terminal 120 illustrated in FIGS. 1 and 2 may also include an antenna array 320 including two or more antennas.
  • the antenna arrays 310 may use a dual polarized antenna array in which two antennas having different polarizations are alternately installed to arrange more antennas in a limited space in a communication system.
  • Antennas equally polarized in one polarity (direction) of the antennas included in the antenna arrays 310 are referred to as the first domain or the first antenna group 310a of the base station (hereinafter referred to as 'first antenna group of base station').
  • Antennas equally polarized in the other polarity (direction) may be referred to as the second domain or the second antenna group 310b of the base station (hereinafter referred to as 'the second antenna group of the base station').
  • the first antenna group 310a of the base station and the second antenna group 310b of the base station may be orthogonal, but are not limited thereto.
  • the antenna arrays 320 included in the terminal 120 are dual polarized antenna arrays in which two antennas having different polarizations are alternately installed in order to arrange more antennas in a limited space in a communication system. ) Can be used.
  • Antennas equally polarized in one direction among the antennas included in the antenna array 320 may be called a first domain or a first antenna group 320a (hereinafter, referred to as a 'first antenna group of a terminal') of a terminal.
  • the same polarized antennas in the other direction may be referred to as a second domain or a second antenna group 320b of the terminal (hereinafter, referred to as a “second antenna group of a terminal”), but is not limited thereto.
  • the first antenna group 320a of the terminal and the second antenna group 320b of the terminal may be orthogonal, but are not limited thereto.
  • a dual polarization antenna array has been described as an example, but the present invention is not limited thereto.
  • it may be a multi-polarized antenna array such as a triple polarized wave or a quadrupole polarized antenna array.
  • the base station and the terminal are not limited to including a multi-polarized antenna array such as a single polarized antenna, and may include two or more multi-polarized antenna arrays and a single array antenna. At this time, the base station and the terminal may use all of two or more multiple polarization antenna arrays or some of them selectively.
  • the base station 110 may perform dual structure precoding as described later in downlink transmission.
  • W 1 and W 2 constituting the precoding matrix may be transferred from the terminal 120 to the base station 110 through PMI1 or PMI2, which are different precoding matrix indicators, respectively. have.
  • W 1 may be a precoder matrix selected for the entire system bandwidth.
  • W 2 is selected as one precoding matrix for the entire system bandwidth or one precoding matrix for each subband, which is a subset of the system band. ) May be selected.
  • the terminal 120 may report one W 1 and a plurality of W 2 generally within a reporting period, and one digital factor indicating W 1 for all bands to which the terminal 120 intends to receive a signal.
  • the value PMI1 is reported to the base station 110, and the digital factor values PMI2 are determined to be suitable for use as W 2 in each subband after the full band is divided into several subbands. You can report it.
  • the reason for using this method is to perform precoding using a different precoder matrix for each subband.
  • W 1 and W 2 may have a structure as follows.
  • W 1 is [X n 0; 0 x n ] block diagonal matrix.
  • W 2 is a matrix that performs beam selection and performs co-phasing to correct for phase mismatch between antenna groups.
  • the precoding matrix W 1 indicated by the digital index n may be as follows.
  • W 1 (K) is a block diagonal matrix as follows.
  • the precoding matrix W 1 indicated by the digital index n may be as follows.
  • b n is beam forming vectors that perform beam forming, and may perform beam forming according to a signal transmission and reception direction. Is a column vector of zero and the same size as b n .
  • adjacent overlapping beams at b n of W 1 can be used to reduce the edge effect in frequency selective procoding.
  • b n the size of b n is 4 will be described as an example.
  • the size of b n is not limited to four.
  • the codebook is an index for selecting four adjacent beam forming vectors, and the codebook is expressed as an index of the beamforming vector selected according to PMI1 of the codebook.
  • 16 W 1 matrices for each rank [0,1,2,3], [2,3,4,5], [4,5,6,7] ,. ..., [28,29,30,31], [30,31,0,1].
  • the beams are described as being adjacent, the present invention is not limited thereto, and the W 1 matrix may be formed of non-adjacent beams.
  • two beamforming vectors may overlap each other.
  • [2,3] overlaps with [0,1,2,3] and [2,3,4,5].
  • W 1 may coincide with the spatial covariance of the dual polarized antenna array polarized at a constant distance.
  • b n are beam forming vectors that perform beam forming, and may be expressed as in the following equation.
  • each element of the codebook for reporting W 1 may be composed of a combination of a plurality of beam forming vectors.
  • W 2 simultaneously performs a process of selecting r of a plurality of beam forming vectors included in W 1 (K) and a co-phasing operation.
  • the codebook of W 2 in the case of rank 1 transmission
  • one of the vectors of four beamforming selection by W 1 or 2 for repeated selection in the case of Rank 2 transmission
  • W 2 When performing rank 1 transmission, W 2 may be defined as in the following equation.
  • Y is a beam selection vector for performing beam selection.
  • I a co-phase element that performs a phase matching operation, and may be, for example, 1 or -1, j, -j.
  • W 2 is For example, 1 or -1, j, -j can be defined as the following equation.
  • Y can be defined as follows.
  • W 2 may be defined as follows.
  • W 2 is For example, 1 or -1, j, -j can be defined as the following equation.
  • Y 1 and Y 2 are beam selection vectors for performing beam selection.
  • Y 1 selects a beamforming vector to be used for the first layer transmission when the value of PMI2 indicating W 2 is a from 4 beamforming vectors selected by W 1
  • Y 2 When the value of PMI2 indicating W 2 is a, a beamforming vector to be used for the second layer transmission is selected from four beamforming vectors selected by W 1 .
  • Y 1 and Y 2 may be defined as follows.
  • Y 1 , Y 2 are column vectors of length 4 with one value equal to 1 and the other equal to zero.
  • the phase matching element value and the beam forming vector determined by W 1 and Y 2 are transmitted antenna group Z 1.
  • a phase match element value to be used when applied to Z 2 for example, from (1, j).
  • W when performing rank 1 transmission, W may have the following structure.
  • the relationship between the terminal and the n-th base station is represented by a superscript n.
  • the relationship between the terminal and the first base station is represented by superscript 1
  • the relationship between the terminal and the second base station is represented by superscript 2.
  • W may have a structure as follows.
  • the channel matrix or the propagation channel between the base station 110 and the terminal 120 Let's do it.
  • the precoding matrix is rank1
  • the precoding matrix with rank 2 or higher for example rank 2
  • the signal received by the terminal may be as follows.
  • R b means a signal received by the first antenna group 320a of the terminal
  • R r means a signal received by the second antenna group 320b of the terminal.
  • FIG. 4 is a conceptual diagram of rank 1 cooperative communication of each base station in a cooperative multi-cell communication system according to an embodiment.
  • base stations and a terminal may perform cooperative communication as illustrated in FIGS. 1 and 2.
  • the two base stations namely, the first base station 410 and the second base station 420 are described as base stations participating in the cooperative communication, but as described above, more than two base stations cooperate with the terminal. You can also join
  • Each of the first base station 410 and the second base station 412 may include antenna arrays 410a and 410b, 412a and 412b including antennas polarized into two antenna groups as described with reference to FIG. Can be.
  • the terminal 420 may also include an antenna array (not shown in FIG. 4) including antennas polarized into two antenna groups as described with reference to FIG. 3.
  • the channel matrix and the precoding matrix of the base stations 410 and 412 and the terminal 420 are the same as described with reference to FIG. 3, but the first base station 410 is one of the base stations to distinguish between the base stations and the terminal.
  • the elements of the channel matrix and the precoding matrix related to are denoted by superscript 1, respectively, and the elements of the channel matrix and the precoding matrix associated with the second base station 412, respectively, are denoted by superscript 2.
  • the first base station 410 uses its precoding matrix to precode the data symbols and 2n the precoded data symbols (n is a natural number greater than 1 or 1), for example, 8 polarized antennas. It may propagate to the air through the antenna array 410a including them.
  • the first base station 410 uses the precoding matrix used for transmitting the terminal 420.
  • the propagation channel between the first base station 410 and the terminal 420 Can be displayed as
  • the precoding matrix used by the second base station 412 to transmit the terminal 420 is used.
  • Superscript 2 means the relationship between the terminal and the second base station, which is the same below) and indicates a propagation channel between the first base station 410 and the terminal 420. Can be displayed as
  • First base station 410 loses the channel Precoding matrix with rank 1 MIMO transmission via
  • the second base station 420 Precoding matrix with rank 1 MIMO transmission via (Superscript 1 means the relationship between the terminal and the first base station, the same below)
  • the signal received by the terminal 420 when the first base station 410 and the second base station 412 transmits the same information is as follows. May be the same.
  • the signal received by the terminal 420 may be as follows.
  • Xp means information transmitted by the transmitter p
  • X M means information transmitted by the transmitter M.
  • R b means a signal received by the first antenna group of the terminal and R r means a signal received by the second antenna group of the terminal.
  • the base stations 410 and 412 and the terminal 420 may perform cooperative communication, the following terminals may be used. There may be difficulties in the recovery of the received signal with a UE.
  • a signal received by the first antenna group of the terminal is a signal received from the first base station 410.
  • the signal received from the second base station 412 It consists of the sum of.
  • the signal received by the second antenna group of the terminal is a signal received from the first base station 410.
  • the signal received from the second base station 412 It consists of the sum of.
  • the phase mismatch between the signal received from the first base station 410 and the signal received from the second base station 412 may not be corrected, that is, the phase matching operation may not be possible.
  • the phase difference between the signals transmitted from the other base stations 410 and 412 is about 180 degrees or about 180 degrees, the signals are canceled with each other and thus the reception sensitivity of the signal may be reduced rather than the case of the single base station.
  • the basis for distinguishing the information transmitted by the two base stations 410 and 412 in each receiving antenna group is the case of the first antenna group.
  • Wow Intercorrelation or correlation in the case of a second antenna group
  • Wow It can be a difference or association between them.
  • each channel is not related to each other, there is no guarantee that the terminal 420 can distinguish signals transmitted from different base stations 410 and 412 in the cooperative multi-cell communication system 400.
  • FIG. 5 is a flowchart illustrating a cooperative communication method between terminals and base stations of a cooperative multi-cell communication system according to another embodiment.
  • the terminal 420 receives reference signals transmitted from each base station 410 and 412. (S510, S515).
  • the cooperative multi-cell communication system according to another exemplary embodiment is the cooperative multi-cell communication system 400 described with reference to FIG. 4, but is not limited thereto.
  • the base station participating in the cooperative communication may be two as shown in FIG. 5, but is not limited thereto and may be three or more.
  • the base stations participating in the cooperative communication will be described as the first base station 410 and the second base station 412 as shown in FIG. 5.
  • the terminal 420 may estimate channel states or channel matrixes for each antenna by using the received reference signals (S520).
  • the terminal 420 may estimate the downlink channel during downlink transmission.
  • the UE 410 may estimate a channel of each subband.
  • OFDM Orthogonal Frequency Division Multiple Access
  • the specific signal or symbol is variously named as a reference signal, a reference symbol, a pilot symbol, etc., but in this specification, the specific signal or symbol is referred to as a reference signal, but is not limited to the term. Do not.
  • the reference signal is not only used for the estimation of the frequency domain channel but may also be used for position estimation, control information transmission / reception, transmission / reception of scheduling information, transmission / reception of feedback information, and the like, which are necessary in a wireless communication process between the terminal and the base station.
  • reference signals in uplink transmission include DM-RS (Demodulation RS) and SRS (Sounding RS).
  • Reference signals in downlink transmission include DM-RS (Demodulation RS), CRS (Cell-specific RS), MBSFN RS, and UE-specific RS.
  • CSI-RS as a reference signal transmitted from a base station in order to obtain channel status information (CSI) of a center cell or neighbor cells in the downlink transmission.
  • the CSI-RS may be used to report a Channel Quality Indicator (CQI) / Precoder Matrix Index (PMI) / Rank Index (RI).
  • CQI Channel Quality Indicator
  • PMI Precoder Matrix Index
  • RI Rank Index
  • the terminal 420 grasps each channel state or channel matrix of each base station 410 and 412, and then directly or indirectly sends channel information or channel state information related thereto to the serving base station or the main base station.
  • the first base station 410 is fed back (S530).
  • the channel state information (CSI 1 and CSI 2 ) is a propagation channel as shown in FIG. Or indicators or indexes indicating precoding matrices suitable for this propagation channel, for example, PMI 1 and PMI 2 .
  • the first base station 410 or a higher layer which has received the feedback of the channel state information, selects base stations having good channel performance to form a cooperative base station set or a CoMP set, and includes at least one of the cooperative base station set or a CoMP set. May select a base station, for example, a second base station 412.
  • the first base station 410 transmits the information about the channel state or channel matrix corresponding to the second base station 412 to the second base station 412 corresponding to the neighboring base station or the cooperative base station in another X2 interface or one base station. It is transmitted to the link between the transport (link) responsible for inter-cell transmission (S540).
  • the X2 interface is one of the X-series interfaces for data transmission through the public data network.
  • the first base station 410 and the second base station 412 may perform cooperative MIMO communication with the terminal 420 (S560 and S565).
  • the number of the base stations participating in the cooperative communication is three or more, the three or more base stations and the terminal 420 perform the cooperative MIMO communication.
  • the base station that reports channel information from the terminal corresponds to a serving base station or a main station.
  • the first base station may be one (410).
  • a precoding delay or a processing delay may occur in the process of implementing the precoding according to the channel information.
  • a cooperative multi-cell communication system and a communication method thereof according to another embodiment capable of performing cooperative communication more effectively will be described.
  • FIG. 6 is a conceptual diagram of a cooperative multi-cell communication system according to another embodiment.
  • two or more base stations for example, two base stations 610 and 612 and a terminal 620 perform cooperative communication.
  • the first base station 610 includes an antenna array including antennas polarized into two antenna groups 610a and 610b
  • the second base station 612 includes two antenna groups 612a and 612b.
  • it may be the same as or substantially the same as the cooperative multi-cell communication system 400 according to another embodiment described with reference to FIG. 4.
  • the two base stations 610 and 612 are precoding matrices, respectively. And precoding matrices Each of the data symbols to be transmitted to the terminal 620 without precoding and By using the data symbols transmitted to the terminal 620 can be precoded.
  • the first base station 610 nulls or sets the power to the antennas corresponding to the second antenna group 610b of the first base station, so that the signal is not propagated to the air without first propagating the signal to the first base station. Only the antennas corresponding to the antenna group 610a propagate the signal to the air.
  • the second base station 612 nulls or “0” s power to antennas corresponding to the first antenna group 612a of the second base station having the same polarity as the first antenna group 610a of the first base station. In this way, the signal may be propagated to the air by only antennas corresponding to the second antenna group 612b of the second base station without propagating the signal to the air.
  • the first base station 610 sets the values of the components corresponding to the antennas corresponding to the second antenna group 610b among the components of the precoding matrix to nulling or “0” and to the first antenna.
  • the data symbols may be precoded using a precoding matrix that retains only the components corresponding to the antennas corresponding to the group 610a.
  • the second base station 612 sets the values of the components corresponding to the antennas corresponding to the first antenna group 612a of different polarity among the components of the precoding matrix to be nulling or “0”.
  • the data symbols may be precoded using a precoding matrix that maintains only the components corresponding to the antennas corresponding to the second antenna group 612b.
  • the antenna group in which the first base station 610 nulls or sets the values of the components to “0” is a co-phase element for performing phase matching. It may be an antenna group including a. Because the first base station 610 corresponds to the serving base station, the terminal 620 receives the channel state information from the terminal 620 to perform the location matching operation of the cooperative communication between the first base station 610 and the second base station 612. .
  • an antenna group in which the second base station 612 nulls or sets the value of the elements to “0” is a co-phase element in which phase matching is performed. It may be an antenna group that does not include.
  • the antenna power can be doubled.
  • the second base station 612 uses only one group 612b of the two antenna groups 612a and 612b, respectively, the antenna power can be doubled.
  • the power of the antennas is nulling or “0” or the value of the elements is nulling or “0” in the physical sense, as well as substantially propagating the signal to the air as well as when no antenna power exists at all.
  • This case includes a case in which the signal propagates in the air to an unreasonable or meaningless level.
  • the signals received by the two antenna groups of the terminal 620 are as shown in the following equation.
  • the signals received by the two antenna groups of the terminal 620 each include a co-phase element that performs a phase matching operation. Accordingly, since the first base station 610 corresponding to the serving base station selects a co-phase element, for example, 1, -1, j, and -j, the phase matching operation can be performed.
  • FIG. 7 is a conceptual diagram of a cooperative multi-cell communication system according to another embodiment.
  • two or more base stations for example, two base stations 710 and 712 and a terminal 720 perform cooperative communication.
  • the first base station 710 includes an antenna array including antennas polarized into two antenna groups 710a and 710b
  • the second base station 712 includes two antenna groups 712a and 712b.
  • it is the same as or substantially the same as the cooperative multi-cell communication system 400 according to another embodiment described with reference to FIG. 4 or the cooperative multi-cell communication system 600 according to another embodiment described with reference to FIG. 6. May be the same.
  • the two base stations 710 and 712 are precoding matrices, respectively. And the precoding matrix Without precoding the data symbols transmitted to the terminal 620 using the and By using the data symbols transmitted to the terminal 720 can be precoded.
  • the first base station 710 does not propagate a signal to the air by nulling or powering the antennas corresponding to the second antenna group 710b of the first base station to the first base station of the first base station. Only the antennas corresponding to the antenna group 710a propagate the signal to the air. Meanwhile, the second base station 712 nulls or “0” s powers to antennas corresponding to the first antenna group 712a of the second base station having the same polarity as the first antenna group 710a of the first base station. In this way, the signal may be propagated to the air by only antennas corresponding to the second antenna group 712b of the second base station without propagating the signal to the air.
  • the first base station 710 nulls or “0” values of the components corresponding to the antennas corresponding to the second antenna group 710b among the components of the precoding matrix and nulls the first antenna.
  • the data symbols may be precoded using a precoding matrix that maintains only the components corresponding to the antennas corresponding to the group 710a.
  • the second base station 712 sets the values of the components corresponding to the antennas corresponding to the first antenna group 712a of different polarity among the components of the precoding matrix to be nulling or “0”.
  • the data symbols may be precoded using a precoding matrix that maintains only the components corresponding to the antennas corresponding to the second antenna group 712b.
  • the antenna group in which the first base station 710 nulls or sets the value of the components to “0” is a co-phase element for performing phase matching. It may be an antenna group including a. Because the first base station 710 corresponds to the serving base station, the terminal 720 receives the channel state information from the terminal 720 to perform the location matching operation of the cooperative communication between the first base station 710 and the second base station 712. .
  • the antenna group in which the second base station 712 nulls or sets the value of the elements to “0” is a co-phase element for performing phase matching. It may be an antenna group that does not include.
  • the antenna power can be doubled.
  • the second base station 712 uses only one group 712b of the two antenna groups 712a and 712b, respectively, the antenna power can be doubled.
  • the signals received by the two antenna groups of the terminal 720 are as shown in the following equation.
  • the signals received by the two antenna groups of the terminal 720 each include a co-phase element that performs a phase matching operation. Accordingly, since the first base station 710 corresponding to the serving base station selects a co-phase element, for example, 1, -1, j, and -j, phase matching may be performed.
  • FIG. 8 is a flowchart illustrating a cooperative communication method between terminals and base stations of a cooperative multi-cell communication system according to another embodiment.
  • the terminal 820 receives reference signals transmitted from each base station 810, 812. (S810, S815).
  • the terminal 820 may receive all reference signals for all transmission antennas of the base stations 810 and 812, for example, eight transmission antennas.
  • the terminal 820 may receive reference signals of the polarized antennas.
  • the cooperative multi-cell communication system is a cooperative multi-cell communication system (400, 500, 600, 700) described below, but is not limited thereto.
  • the base stations participating in the cooperative communication may be two, as shown in FIGS. 5 to 7, but may be three or more. However, for convenience of description, two base stations participating in the cooperative communication will be described as the first base station 810 and the second base station 812.
  • the terminal 820 may estimate channel states or channel matrices of each antenna of the base stations 810 and 812 using the received reference signals (S820).
  • the terminal 820 identifies each channel state or channel matrix of each base station 810, 812 and then directly or indirectly corresponds to the serving base station or channel state information CSI 1 and CSI 2 .
  • the first base station 810 is fed back (S830).
  • the channel state information of the first base station 810 is a propagation channel. It may be itself or an indicator or index indicating a channel matrix suitable for this propagation channel.
  • the terminal 820 selects a precoder matrix suitable for each of the base stations 810 and 812 when using 8 transmit antennas 8Tx, and prints PMI n 1 and PMI n 2 by factoring them.
  • the channel information may be reported to the first base station 810.
  • the channel state information for the first base station 810 may be PMI1 n 1 and PMI2 n 1 which are indices for W 1 and W 2 .
  • the channel state information for the second base station 812 may also be in the same form or format as the channel state information for the first base station 810, for example, PMI1 n 2 and PMI2 n 2 .
  • the terminal 820 may identify the channel states or channel matrices of the base stations 810 and 812 and report the channel information or channel state information CSI 1 and CSI 2 (S825). In step S830, the terminal 820 may report the reported channel state information to the first base station 810.
  • the terminal 820 selects a precoder matrix suitable for each of the base stations 810 and 812 when using 8 transmit antennas 8Tx, and prints the precoder matrix to PMI n 1 and PMI n 2 .
  • the terminal 820 instead of reporting to the first base station 810, the terminal 820 generates the parameters PMI n 1 and PMI n 2 for the precoding matrix suitable for use of the four transmit antennas 4Tx as channel information.
  • PMI n 1 includes information on co-phasing a phase mismatch between signals received at two base stations.
  • the terminal 820 may generate a factor or indicator for a suitable precoding matrix when using n transmit antennas and an indicator for one precoding matrix suitable when using m transmit antennas.
  • the terminal 820 may use a total of eight transmit antennas of the first base station 810 and four transmit antennas of the second base station 812, which may be used for one precoding matrix.
  • One argument, PMI n can be created.
  • CSI-RS Channel Status Information-RS
  • This method may be applied to any type or mode of communication system or communication method regardless of cooperative multi-cell communication. For example, when only the strengths of some of the eight antennas are greater than or equal to a threshold value, only channel state information of the antennas may be estimated or only this channel state information may be transmitted to the base station. As a result, estimation and / or transmission of channel state information for unnecessary antennas can be eliminated.
  • the UE 820 estimates channel state information only for some of the channel measurement values obtained by measuring a channel through a reference signal, for example, CRS or CSI-RS, You can report them. For example, if only CRS or CSI-RS transmission antennas among the eight CRS or CSI-RS transmission antennas have strengths greater than or equal to a threshold value, only channel state information of the corresponding antennas may be estimated or only this channel state information may be transmitted to the base station. have.
  • the first base station 810 transmits information on the channel state or channel matrix corresponding to the second base station 812 to the second base station 812 corresponding to the neighboring base station or the cooperative base station (S840).
  • the first base station 810 If n is reported, the first base station 810 generates a precoding matrix using PMI n , and then prints a portion that should be used by the second base station 812 and transmits it within the X2 interface or one base station.
  • the channel state information (CSI 2 ) for the second base station 812 is transmitted to the second base station 812 through the inter-link.
  • the first base station 810 may perform cooperative MIMO communication with the terminal 820 (S850).
  • the first base station 810 precodes the data symbol by using the channel state information of the first base station 810, the channel state information of the first base station 810, and the channel state of the second base station 812. Phase correction may be performed on the data symbol using the information (S835).
  • the first base station 810 uses the antennas corresponding to the second antenna group or the precoding matrix corresponding to the second antenna group to perform data symbols using only the components. Can be precoded.
  • the precoding matrix includes a phase matching element
  • the first base station 810 performs the phase correction of the data symbol by using the channel state information of the first base station 810 and the channel state information of the second base station 812. Can be done.
  • the first base station 810 when the first base station 810 performs two-stage precoding, PMI1 t 1 and PMI2 t 1 , which are indexes for W 1 and W 2, which are channel state information for the first base station 810 at the time of “t”.
  • the two-stage precoding of the data symbols can be performed by determining the precoding matrices using.
  • the second base station 812 may perform cooperative MIMO communication with the terminal 820 (S860).
  • the second base station 812 may precode the data symbol using the channel state information of the second base station received from the first base station 810 (S855).
  • the second base station 812 uses the antennas corresponding to the first antenna group or the precoding matrix corresponding to the first antenna group only to perform data symbols. Can be precoded.
  • the second base station 812 since the components of the precoding matrix corresponding to the first antenna group do not include a phase matching element, the second base station 812 does not perform phase correction of the data symbol.
  • PMI1 t 2 and PMI2 t 2 which are indexes for W 1 and W 2, which are channel state information for the second base station 812 at the time “t”, are used.
  • the two-stage precoding of the data symbols can be performed by determining the precoding matrices using.
  • the terminal 820 is the delay of the link between the transmission end or the channel state of the first base station 810 and the second base station 812 that is responsible for the transmission between the other cells in the X2 interface or one base station at the time "t + 1"
  • the first base station 810 before updating the precoding matrix of the second base station 812, that is, receiving a reference signal from the second base station 812 and estimating the channel of the second base station 812 due to the delay in processing the information.
  • a channel of the first base station 810 may be estimated by receiving a reference signal from the reference signal.
  • the terminal 820 reports the channel state information (CSI t + 1 1 and CSI t + 1 2 ) for the first base station and the second base station to the first base station 810 in the same manner as step S830.
  • the step may be repeated (S880).
  • the terminal 820 may report the channel state information in the same manner as the step S825 of reporting the channel state information before the step S830 (S875).
  • the first base station 810 precodes the data symbol with the channel state information (CSI t + 1 1 ) of the first base station at time t + 1, and the channel for the first base station and the second base station at time t + 1.
  • the phase correction may be performed using the channel state information CSI t 2 of the second base station at time t together with the state information CSI t + 1 1 and CSI t + 1 2 (S885).
  • the first base station 810 may perform cooperative MIMO communication with the terminal 820 (S890).
  • the first base station 810 may transmit channel state information (CSI t + 1 1 and CSI) for the first base station and the second base station at time t + 1.
  • phase matching may be performed.
  • the uplink is connected to the UE in an uplink, so that the transmitting terminal capable of acquiring channel information more smoothly performs the phase correction operation. By doing this, it is possible to reduce the effect of phase correction error due to the delay of channel information exchange through the X2 interface.
  • the three or more base stations and the terminal 820 perform the cooperative MIMO communication.
  • the base stations may be configured in consideration of occurrence of a precoding delay or a processing delay in the process of implementing precoding according to channel information. Precoding or phase correction allows base stations to more efficiently collaborate and implement CoMP-compliant precoding with minimal reporting.
  • FIG. 9 is a configuration diagram of each of the base stations and the terminal in the cooperative multi-cell communication system according to another embodiment.
  • the cooperative multi-cell wireless communication system 900 may include at least two base stations 910 and 912 for performing cooperative communication with the terminal 920.
  • the terminal 920 and the base stations 910 and 912 perform transmission and reception of reference signals, exchange of channel information, and cooperative multiplex communication in the cooperative multicell wireless communication system described with reference to FIGS. 1 to 8.
  • the terminal 920 is an antenna array 921 for receiving a signal through a downlink channel, a post-decoder 922 for processing the received signal and decoding the original data symbol using a precoding matrix.
  • Antenna array 921 may use multiple antennas.
  • the antenna array 921 may form a polarized antenna array.
  • an antenna array may be implemented using a dual polarized antenna array in which two antennas having different polarizations are alternately installed.
  • the post decoder 922 corresponds to the precoders of the base stations 910 and 912 described later.
  • the post decoder 922 transfers the reference signals received from the base stations 910 and 912 to the channel information feedback device 924.
  • the channel information feedback apparatus 924 may receive the reference signals and estimate the channels of the base stations 910 and 912 by using the reference signals.
  • the channel information feedback device 924 includes channel information (hereinafter referred to as 'first channel status information') for the first base station described with reference to FIGS. 5 and 8 and channel information for the second base station (hereinafter, referred to as 'first'). Channel information, including '2 channel status information'.
  • the channel information feedback device 924 may feed back the channel information to the first base station 910 corresponding to the serving base station.
  • An indicator or identifier (PMI) indicating a precoding matrix for the first base station 910 selected from the stored codebook for the first base station 910 may be generated as the first channel state information.
  • the channel information feedback apparatus 924 generates an indicator or identifier (PMI) indicating a precoding matrix for the second base station 912 selected from the stored codebook for the second base station 912 as the second channel state information. Can be.
  • the channel information feedback device 924 selects and prints a precoder matrix suitable for each of the base stations 910 and 912 when using eight transmit antennas 8Tx as described with reference to FIG. 8.
  • PMI n 1 and PMI n 2 are generated as channel information, or the base stations 910 and 912 use the channel information PMI n 1 and PMI n 2 for a precoding matrix suitable for the use of four transmit antennas 4Tx.
  • Generate one factor PMI n for one precoding matrix suitable for use with a total of eight transmit antennas with four transmit antennas of the first base station 910 and four transmit antennas of the second base station 812 Can be generated.
  • the channel information feedback apparatus 924 may feed back one channel information including the first channel status information and the second channel status information to the first base station 910 and provide the first channel status information and the second channel status information. Separately, the first base station 910 may be fed back, or one channel information reporting the first channel state information and the second channel state information may be fed back to the first base station 910.
  • the period, channel, or format through which the channel information feedback device 924 feeds back channel information may be various.
  • the channel information feedback apparatus 924 may feed back the aforementioned various types of channel information to one of the components of the first base station 910, for example, the scheduler 940.
  • the first base station 910 includes a layer mapper 930 for mapping a codeword to a layer, and a precoder 932 for precoding the layer-mapped data symbols using a precoding matrix, and a precoded signal to the air.
  • antenna array 938 for transmitting on air.
  • the first base station 910 includes a scheduler 940 that performs resource allocation and management of the first base station, such as determining a precoding matrix, determining a MIMO transmission mode, or selecting a terminal in MU-MIMO.
  • the precoder 932 may include a first precoder 934 and a second precoder 936 for precoding data symbols.
  • the first precoder 934 and the second precoder 936 may precode the data symbols by their first precoding matrix and the second precoding matrix, respectively.
  • the precoder 932 may precode the data symbol using only the components of the antennas corresponding to the second antenna group or the precoding matrix corresponding to the second antenna group. Can be.
  • the second base station 912 also includes a layer mapper 942, a first precoder 946, and a second precoder 948, and an antenna array 950. And a scheduler 952.
  • the precoder 932 of the first base station 910 uses only components corresponding to antennas corresponding to the second antenna group or a precoding matrix corresponding to the second antenna group.
  • the data symbol is precoded
  • the precoder 944 of the second base station 912 uses the antennas corresponding to the first antenna group or the precoding matrix corresponding to the first antenna group using only the components. Can be precoded.
  • the antenna array 938 of the first base station 910 and the antenna array 950 of the second base station 912 are the dual polarized antenna arrays shown in FIGS. 3 and 4, 6, and 7. You can also implement the array using.
  • the scheduler 940 of the first base station 910 reports the channel information including the first channel state information and the second channel state information from the channel information feedback device 924 of the terminal 920 through the antenna array 938. Can receive feedback
  • the scheduler 940 of the first base station 910 uses the first precoder 934 as a basis for the first channel state information and / or the second channel state information included in the channel information reported from each terminal 920.
  • the precoding matrices of the second precoder 936 are determined and the data symbols are precoded using the precoding matrices.
  • the scheduler 940 of the first base station 910 uses PMI1 t 1 and PMI2 t 1, which are first channel state information for the first base station 910 at the time “t”. By determining the precoding matrices, two-stage precoding of the data symbol can be performed.
  • the scheduler 940 of the first base station 910 determines the precoding matrix to perform phase correction using the first channel state information for the first base station and the first channel state information for the second base station.
  • the second base station 912 may have a delay between the X-interface or a link between the transmitting end that is responsible for inter-cell transmission within one base station or processing delay of the channel state information of the first base station 910 and the second base station 912.
  • the scheduler 940 of the first base station 910 receives the channel state information (CSI t + 1 ) for the first base station and the second base station at the time t + 1.
  • Precoding specifically phase matching.
  • the scheduler 940 of the first base station 910 transmits the second channel state information CSI 2 of the second base station 812 to an X2 interface or an inter-transmission link that is responsible for inter-cell transmission within one base station. It passes to the second base station 912 through.
  • the second base station 912 may precode the data symbol with the second channel state information received from the first base station 910.
  • the first base station 910 and the second base station 912 may perform cooperative communication with the terminal 920.
  • FIG. 10 is a flowchart illustrating a communication method of a transmitting apparatus according to another embodiment.
  • a communication method 1000 of a transmitting apparatus includes a reference signal transmitting step (S1010) of transmitting a reference signal for estimating a propagation channel to a terminal and a transmitting apparatus corresponding to a serving base station.
  • the channel information receiving step of receiving channel information through another transmitting apparatus (S1020), and transmitting the air pre-coded symbols or signals through two or more antennas ( S1030) may be included.
  • the transmitting step S1030 includes a layer mapping step S1032 of mapping a codeword to a layer, a precoding step S1034 of precoding symbols, and a transmission step of propagating a precoded symbol to the air through two or more antennas (S1036). ) May be included.
  • FIG. 11 is a flowchart of a communication method of a receiving apparatus according to another embodiment.
  • a communication method 1100 of a receiving apparatus includes a reference signal receiving step S1110 for receiving reference signals from transmitting apparatuses and a channel information transmitting step of transmitting channel information to the transmitting apparatus.
  • a transmission signal reception step S1130 for receiving a signal transmitted from a transmission device is included.
  • the channel information transmitting step S1120 includes a channel estimating step S1122 for estimating a channel with transmission apparatuses using reference signals, and includes first channel state information and second channel state information based on the estimated channels.
  • a channel information generation step (S1124) of generating channel information, and a padback step (S1126) of feeding back the channel information to at least one of the transmitting apparatuses may be included.
  • one base station uses only one antenna group among the antenna groups and the other base station uses only antenna groups having different polarities.
  • transmitting the present invention is not limited thereto.
  • one base station 1200 may include at least two antenna arrays 1210 and 1212. At this time, each of the antenna arrays 1210 and 1212 of one base station 1200 is cooperative communication in the same manner as the aforementioned base stations, for example, the first base station 610 and the second base station 612 of FIG. Can be performed. At this time, each of the antenna arrays 1210 and 1212 of one base station 1200 may perform cooperative communication with another base station or perform cooperative communication between the antenna arrays 1210 and 1212.
  • each of the antenna arrays 1210 and 1212 of one base station 1200 may operate like the first base station 610 and the second base station 612 of FIG. 6. That is, one of the antenna arrays 1210 of one base station 1200 uses only one antenna group 1210b and another base station, for example, the first base station 610 of FIG. 6 has a different polarity antenna group 610a. ) Can also be used for MIMO transmission.
  • all antennas included in the two antenna arrays 1210 and 1212 are used to transmit the reference signals, but one of the antenna arrays 1210 is one antenna group during MIMO transmission. Only 1210b may be used and another antenna array 1212 may transmit signals using only another antenna group 1212a.
  • the base station 1210 may include layer mappers and precoders corresponding to each of the antenna arrays 1210 and 1212, or may include one layer mapper and a precoder shared by the antenna arrays.
  • the number of transmit antennas of the base stations is described as eight, but is not limited thereto.
  • the number of transmit antennas of the base stations may be 2n (n is 1 or a natural number greater than 1).
  • the number of transmit antennas of the terminal may also be 2n (n is 1 or a natural number greater than 1).
  • the base station and the terminal have been described as using both the transmit antennas and the receive antennas. However, only some of the antennas may be used, or all and some may be selectively used.
  • two or more antenna arrays each including two or more antenna groups in one base station may be interpreted as separate base stations as described above.
  • two or more base stations and terminals are described as performing downlink cooperative communication.
  • at least two terminals and at least one base station may perform uplink cooperative communication.
  • each antenna array of the terminals may use one of two antenna groups.
  • the base station and the terminal (s) have been described as including two antenna groups, but may include three or more antenna groups to increase the space utilization.
  • three antenna groups may be polarized by 60 degrees each.

Abstract

The present invention relates to a cooperative multi-cell communication system, to a communication method therefor, and to a device therefor.

Description

협력형 다중 셀 통신시스템에서 기지국의 통신방법 및 그 기지국, 단말의 통신방법 및 그 단말A communication method of a base station, a communication method of the base station, a terminal, and the terminal in a cooperative multi-cell communication system
본 발명은 둘 이상의 기지국들이 협력하여 신호를 전송하는 협력형 다중 셀 통신시스템에 관한 것이며, The present invention relates to a cooperative multi-cell communication system in which two or more base stations cooperate to transmit a signal.
통신 시스템이 발전해나감에 따라 사업체들 및 개인들과 같은 소비자들은 매우 다양한 무선 단말기들을 사용하게 되었다.As communication systems have evolved, consumers, such as businesses and individuals, have used a wide variety of wireless terminals.
따라서, 통신 서비스 사업자들은 무선 단말기들에 대한 새로운 통신 서비스 시장을 창출하고, 신뢰성 있으면서도 저렴한 서비스를 제공하여 기존의 통신 서비스 시장을 확대시키려는 시도를 계속하고 있다. Accordingly, communication service providers are continuously attempting to expand the existing communication service market by creating a new communication service market for wireless terminals and providing reliable and inexpensive services.
본 발명은 둘 이상의 전송 안테나들을 포함하며 단말로부터 직, 간접적으로 채널정보를 피드백받은 둘 이상의 기지국들이 협력형 통신을 통해 정보를 전달하는 방법 및 장치, 기지국에 단말이 채널정보를 보고하는 방법 및 그 장치를 제공한다. The present invention provides a method and apparatus for transmitting information through cooperative communication between two or more base stations including two or more transmission antennas and receiving the channel information directly or indirectly from the terminal, a method for the terminal to report channel information to the base station, and the same. Provide the device.
일실시예는 협력형 다중 셀 통신시스템에서, 적어도 둘 이상의 기지국들 중 적어도 하나의 기지국은 서로 다른 편파의 두 개 이상의 안테나그룹들 중 적어도 하나의 안테나 그룹을 통해 단말에 신호를 전송하는 전송단계; 및 상기 기지국들 중 상기 적어도 하나의 기지국을 제외한 다른 하나의 기지국은 서로 다른 편파의 두 개 이상의 안테나그룹들 중 상기 적어도 하나의 안테나그룹과 극성이 다른 편파의 안테나그룹을 통해 상기 단말에 신호를 전송하는 전송단계를 포함하는 협력형 다중 셀 통신시스템의 협력형 통신방법을 제공한다.In an embodiment, in a cooperative multi-cell communication system, at least one base station of at least two or more base stations transmits a signal to a terminal through at least one antenna group of two or more antenna groups of different polarizations; And another base station except the at least one base station among the base stations transmits a signal to the terminal through a polarization antenna group having a polarity different from the at least one antenna group among two or more antenna groups of different polarizations. It provides a cooperative communication method of a cooperative multi-cell communication system comprising a transmission step.
다른 실시예는 협력형 다중 셀 통신시스템에서, 제1기지국은 서로 다른 편파의 두 개 이상의 안테나그룹들 중 적어도 하나의 안테나 그룹에 대응하는 프리코딩 행렬의 구성요소들만으로 데이터심볼을 프리코딩하여 단말에 신호를 전송하는 단계; 및 제2기지국은 서로 다른 편파의 두 개 이상의 안테나그룹들 중 상기 적어도 하나의 안테나 그룹과 극성이 다른 편파의 안테나그룹에 대응하는 프리코딩 행렬의 구성요소들만으로 데이터심볼을 프리코딩하여 상기 단말에 신호를 전송하는 단계를 포함하는 협력형 다중 셀 통신시스템의 협력형 통신방법을 제공한다.According to another embodiment of the present invention, in a cooperative multi-cell communication system, a first base station precodes a data symbol using only components of a precoding matrix corresponding to at least one antenna group of two or more antenna groups of different polarizations, and transmits the data symbols to the terminal. Transmitting a signal; And a second base station precodes a data symbol using only components of a precoding matrix corresponding to the at least one antenna group of two or more antenna groups of different polarizations and the antenna group of a polarization having a different polarity, thereby signaling the terminal. It provides a cooperative communication method of a cooperative multi-cell communication system comprising transmitting a.
또다른 실시예는 협력형 다중 셀 통신시스템에서, 적어도 둘 이상의 기지국들 중 하나의 기지국은, 단말로부터 자신의 채널상태정보와 상기 기지국들 중 상기 하나의 기지국을 제외한 다른 하나의 기지국의 채널상태정보를 포함하는 채널정보를 수신하는 수신단계 및; 상기 채널정보를 이용하여, 상기 다른 하나의 기지국이 데이터심볼을 프리코딩하는데 사용하는 프리코딩 행렬의 구성요소들 중 일부에 대응되는 서로 다른 편파의 두 개 이상의 안테나 그룹 중 적어도 하나와, 극성이 다른 편파의 안테나그룹에 대응하는 프리코딩 행렬의 구성요소들만으로 데이터심볼을 프리코딩하여 상기 단말에 신호를 전송하는 전송단계를 포함하는 기지국의 통신방법을 제공한다.In another embodiment, in a cooperative multi-cell communication system, one base station of at least two or more base stations may transmit its own channel state information from a terminal and channel state information of another base station except the one of the base stations. A receiving step of receiving channel information including; By using the channel information, at least one of two or more antenna groups of different polarizations corresponding to some of the components of the precoding matrix used by the other base station to precode the data symbol, the polarity is different Provided is a communication method of a base station comprising a transmission step of transmitting a signal to the terminal by precoding a data symbol using only components of a precoding matrix corresponding to a polarization antenna group.
또다른 실시예는 협력형 다중 셀 통신시스템에서, 적어도 둘 이상의 기지국들 중 적어도 하나의 기지국에서 서로 다른 편파의 두 개 이상의 안테나그룹들 중 적어도 하나의 안테나 그룹을 통해 전송된 신호를 수신하는 단계; 및 상기 기지국들 중 상기 적어도 하나의 기지국을 제외한 다른 하나의 기지국의 서로 다른 편파의 두 개 이상의 안테나그룹들 중 상기 적어도 하나의 기지국에서 안테나그룹과 극성이 다른 편파의 안테나그룹을 통해 전송된 신호를 수신하는 단계를 포함하는 단말의 협력형 통신방법을 제공한다.Still another embodiment provides a method of receiving a signal transmitted through at least one antenna group of two or more antenna groups of different polarizations in at least one of at least two base stations in a cooperative multi-cell communication system; And a signal transmitted through an antenna group of a polarization having a polarity different from that of the antenna group in the at least one base station among two or more antenna groups of different polarizations of another base station except the at least one base station among the base stations. It provides a cooperative communication method of the terminal comprising the step of receiving.
또다른 실시예는 협력형 다중 셀 통신시스템에서, 제1기지국의 서로 다른 편파의 두 개 이상의 안테나그룹들 중 적어도 하나의 안테나 그룹에 대응하는 프리코딩 행렬의 구성요소들만으로 데이터심볼이 프리코딩되어 전송된 신호를 수신하는 단계; 및 제2기지국의 서로 다른 편파의 두 개 이상의 안테나그룹들 중 상기 적어도 하나의 안테나 그룹과 극성이 다른 편파의 안테나그룹에 대응하는 프리코딩 행렬의 구성요소들만으로 데이터심볼이 프리코딩되어 전송된 신호를 수신하는 단계를 포함하는 단말의 협력형 통신방법을 제공한다.In another embodiment, in a cooperative multi-cell communication system, data symbols are precoded and transmitted using only components of a precoding matrix corresponding to at least one antenna group of two or more antenna groups of different polarizations of a first base station. Receiving the received signal; And a data symbol precoded using only components of a precoding matrix corresponding to the at least one antenna group of the at least one antenna group of the different polarizations of the second base station and the antenna group of the polarization having a different polarity. It provides a cooperative communication method of the terminal comprising the step of receiving.
또다른 실시예는 협력형 다중 셀 통신시스템에서, 제1기지국의 참조신호를 수신하는 단계; 상기 제1기지국에서 서로 다른 편파 안테나로 이루어진 안테나쌍이 2n개일 경우 상기 제1기지국 참조신호 중 n개의 안테나쌍에 대해서만 채널상태정보를 추정하는 제1기지국 채널상태정보 추정단계; 제2기지국의 참조신호를 수신하는 단계; 상기 제2기지국에서 서로 다른 편파 안테나로 이루어진 안테나쌍이 2m개일 경우 상기 제2기지국 참조신호 중 m(m은 n과 동일하거나 동일하지 않은 1 또는 1보다 큰 자연수)개의 안테나쌍에 대해서만 채널상태정보를 추정하는 제2기지국 채널상태정보 추정단계; 및 상기 제1기지국 채널상태정보와 제2기지국 채널상태정보를 포함하는 채널정보를 제1기지국에 보고하는 채널정보 전송단계를 포함하는 것을 특징으로 하는 단말의 협력형 통신방법을 제공한다.Yet another embodiment provides a method of receiving a reference signal of a first base station in a cooperative multi-cell communication system; A first base station channel state information estimating step of estimating channel state information only for n antenna pairs of the first base station reference signal when there are 2n antenna pairs of different polarized antennas in the first base station; Receiving a reference signal of a second base station; When there are 2m antenna pairs of different polarized antennas in the second base station, channel state information is applied only to m antenna pairs (m is a natural number greater than or equal to 1 or greater than 1) of the second base station reference signals. Estimating a second base station channel state information; And channel information transmitting the channel information including the first base station channel state information and the second base station channel state information to the first base station.
도 1은 실시예들이 적용되는 협력형 다중 셀 통신시스템을 나타낸 블록도이다. 1 is a block diagram illustrating a cooperative multi-cell communication system to which embodiments are applied.
도 2는 실시예들이 적용되는 협력형 다중 셀 통신시스템을 나타낸 블록도이다. 2 is a block diagram illustrating a cooperative multi-cell communication system to which embodiments are applied.
도 3은 도1 또는 도2의 협력형 다중 셀 통신시스템의 하나의 기지국과 단말의 안테나 어레이 구조 및 그에 따른 전파채널을 도시하고 있다. FIG. 3 illustrates an antenna array structure of a base station and a terminal and a propagation channel according to the cooperative multi-cell communication system of FIG. 1 or 2.
도 4는 일실시예에 따른 협력형 다중 셀 통신시스템에서 각 기지국의 랭크 1 협력형 통신의 개념도이다. 4 is a conceptual diagram of rank 1 cooperative communication of each base station in a cooperative multi-cell communication system according to an embodiment.
도 5는 다른 실시예에 따른 협력형 다중 셀 통신시스템의 단말과 기지국들의 협력형 통신방법의 흐름도이다. 5 is a flowchart illustrating a cooperative communication method between terminals and base stations of a cooperative multi-cell communication system according to another embodiment.
도 6은 또다른 실시예에 따른 협력형 다중 셀 통신시스템의 개념도이다.6 is a conceptual diagram of a cooperative multi-cell communication system according to another embodiment.
도 7은 또다른 실시예에 따른 협력형 다중 셀 통신시스템의 개념도이다.7 is a conceptual diagram of a cooperative multi-cell communication system according to another embodiment.
도 8는 또다른 실시예에 따른 협력형 다중 셀 통신시스템의 단말과 기지국들의 협력형 통신방법의 흐름도이다. 8 is a flowchart illustrating a cooperative communication method between terminals and base stations of a cooperative multi-cell communication system according to another embodiment.
도 9는 또다른 실시예에 따른 협력형 다중 셀 통신시스템에서 기지국들과 단말 각각의 구성도이다. 9 is a configuration diagram of each of the base stations and the terminal in the cooperative multi-cell communication system according to another embodiment.
도 10은 또다른 실시예에 따른 송신장치의 통신방법의 흐름도이다.10 is a flowchart illustrating a communication method of a transmitting apparatus according to another embodiment.
도 11은 또다른 실시예에 따른 수신장치의 통신방법의 흐름도이다.11 is a flowchart of a communication method of a receiving apparatus according to another embodiment.
도 12 및 도 13은 또다른 실시예에 따른 협력형 다중 셀 통신시스템을 나타낸 블록도들이다.12 and 13 are block diagrams illustrating a cooperative multi-cell communication system according to another embodiment.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
도 1은 실시예들이 적용되는 협력형 다중 셀 통신시스템을 나타낸 블록도이다. 1 is a block diagram illustrating a cooperative multi-cell communication system to which embodiments are applied.
실시예들이 적용되는 협력형 다중 셀 통신시스템(100)은 둘 이상의 전송단이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템(이하, “협력형 다중 셀 통신시스템”이라 함)이 있다. In the cooperative multi-cell communication system 100 to which the embodiments are applied, a coordinated multi-point transmission / reception system (CoMP) or cooperative multi-antenna transmission in which two or more transmitters cooperate to transmit a signal There is a coordinated multi-antenna transmission system, a cooperative multi-cell communication system (hereinafter referred to as a "cooperative multi-cell communication system").
실시예들이 적용되는 협력형 다중 셀 통신시스템(100)은 둘 이상의 전송단이 협력하여 신호를 전송하는 협력형 다중 셀 통신시스템으로, 각 전송단이 둘 이상의 전송 안테나를 구비하고 하나 이상의 전송단이 수신단으로부터 채널 정보를 수신하여 다중 안테나 전송을 수행할 수 있다. The cooperative multi-cell communication system 100 to which the embodiments are applied is a cooperative multi-cell communication system in which two or more transmission terminals cooperate to transmit a signal. Each transmission terminal includes two or more transmission antennas and one or more transmission terminals are provided. Multi-antenna transmission may be performed by receiving channel information from a receiver.
이 협력형 다중 셀 통신시스템(100)에서 둘 이상, 예를 들어 3개의 기지국(110, 112, 114)은 하나의 사용자 단말(120)에게 협력형 송수신을 시도할 때 동일한 시간에 동일한 주파수 자원을 할당하여 서비스를 하게 된다. 즉 동일 시간에 협력형 기지국으로 선택된 3개의 기지국들(110, 112, 114)은 동일한 주파수 자원을 사용하여 하나의 사용자 단말(120)과 데이터를 송수신할 수 있다.In this cooperative multi-cell communication system 100, two or more, for example, three base stations (110, 112, 114) to the same frequency resource at the same time when attempting cooperative transmission and reception to one user terminal 120 Allocate it to service. That is, three base stations 110, 112, and 114 selected as cooperative base stations at the same time may transmit and receive data with one user terminal 120 using the same frequency resource.
이러한 통신방식을 사용하는 단말들은 주로 셀간 경계지역에 있어 셀의 중심지역에 있는 셀들에 비해 신호의 세기가 약한 단말들일 수 있으며, 다른 기지국과의 거리도 비교적 가까워 둘 이상의 기지국으로부터 신호를 받을 수 있는 단말들일 수도 있다. 둘 이상의 기지국이 이러한 단말들에게 협력형으로 신호를 전송하므로 단말이 기존 하나의 기지국으로부터 신호를 받는 것보다 더 좋은 성능을 얻을 수 있다. 이때 두 개의 기지국들이 협력할 수도 있고 세 개 이상의 기지국들이 협력할 수 있다. 또한, 단일 사용자 다중 안테나(SU-MIMO) 방식뿐만 아니라, 다중 사용자 다중 안테나(MU-MIMO) 방식에도 이를 적용할 수 있다.Terminals using such a communication method may be terminals having weaker signal strength than cells in the center region of a cell mainly in an intercell boundary region, and are relatively close to other base stations, and thus may receive signals from two or more base stations. It may be terminals. Since two or more base stations transmit signals in a cooperative manner to these terminals, the terminal may obtain better performance than receiving signals from one base station. At this time, two base stations may cooperate or three or more base stations may cooperate. In addition, the present invention can be applied not only to a single user multiple antenna (SU-MIMO) scheme but also to a multi user multiple antenna (MU-MIMO) scheme.
협력형 다중 셀 통신시스템(100)은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치될 수 있다.The cooperative multi-cell communication system 100 may be widely deployed to provide various communication services such as voice and packet data.
본 명세서에서의 단말(120; User Equipment, UE)은 무선 통신에서의 사용자 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.Terminal 120 (User Equipment, UE) in the present specification is a generic concept that means a user terminal in wireless communication, WCDMA, UE (User Equipment) in LTE, HSPA, etc., as well as MS (Mobile Station) in GSM It should be interpreted as a concept that includes a user terminal (UT), a subscriber station (SS), and a wireless device.
하나의 단말(120)은 두 개 또는 그 이상의 기지국(110, 112, 114)과 동시에 연결되어 서비스를 받을 수도 있으며, 복수의 기지국(110, 112, 114)과 일정 시간을 주기로 채널상황에 따라 가장 좋은 채널을 가지는 기지국과 연결되어 서비스를 받을 수도 있다. 따라서 협력형 기지국으로 선택되는 기지국은 한 단말에 대해 임의의 주파수 밴드에 대해 좋은 채널 성능을 가지는 기지국이어야 한다.One terminal 120 may be connected to two or more base stations (110, 112, 114) at the same time to receive the service, and the plurality of base stations (110, 112, 114) with a plurality of base stations at regular intervals according to the channel situation It may be connected to a base station having a good channel to receive service. Therefore, the base station selected as the cooperative base station should be a base station having a good channel performance for any frequency band for one terminal.
기지국(110, 112, 114: Base Station, BS) 또는 셀(cell)은 일반적으로 단말(120)과 통신하는 고정된 지점(fixed station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다. Base stations (110, 112, 114: base station, BS) or cell (cell) generally refers to a fixed station (fixed station) to communicate with the terminal 120, Node-B (Node-B), evolved (eNB) Node-B), BTS (Base Transceiver System), access point (Access Point) may be called other terms.
즉, 본 명세서에서 기지국(110, 112, 114) 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB 등이 커버하는 일부 영역을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 등 다양한 커버리지 영역을 모두 포괄하는 의미이다. That is, in the present specification, the base station 110, 112, 114, or cell should be interpreted in a comprehensive sense to indicate some areas covered by a base station controller (BSC) in CDMA, a NodeB in WCDMA, and the like. It is meant to cover all of the various coverage areas, such as macrocell, microcell, picocell, femtocell, etc.
본 명세서에서 기지국(110, 113, 114)과 단말(120)은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. In the present specification, the base stations 110, 113, 114, and the terminal 120 are two transmission / reception entities used to implement the technology or the technical idea described in this specification, and are used in a generic sense and specifically referred to in a term or word. It is not limited by.
무선통신 시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. There is no limitation on the multiple access scheme applied to the wireless communication system. Various multiple access techniques such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA Can be used.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
본 발명의 일실시예는 GSM, WCDMA, HSPA를 거쳐 LTE(Long Term Evolution) 및 LTE-advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야의) 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.One embodiment of the present invention provides asynchronous wireless communication that evolves into Long Term Evolution (LTE) and LTE-advanced through GSM, WCDMA, HSPA, and synchronous wireless communication that evolves into CDMA, CDMA-2000 and UMB). Applicable to resource allocation. The present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
한편, 본 명세서에서 다른 셀을 담당하는 동일 기지국의 다른 전송단에 의해 협력형 다중 셀 통신시스템(CoMP) 구현 시 이를 인트라 협력형 다중 셀 통신시스템(intra-eNB CoMP)이라 하며, 다른 셀을 담당하는 다른 기지국에 의해 협력형 다중 셀 통신시스템(CoMP) 구현 시 이를 인터 협력형 다중 셀 통신시스템(inter-eNB CoMP)이라 한다. Meanwhile, in the present specification, when a cooperative multi-cell communication system (CoMP) is implemented by another transmission terminal of the same base station that is in charge of another cell, this is referred to as an intra-eNB coMP and is responsible for another cell. When a cooperative multi-cell communication system (CoMP) is implemented by another base station, this is called an inter-cooperative multi-cell communication system (inter-eNB CoMP).
특히 음영 지역 또는 전파의 수신 강도가 상대적으로 약한 셀 또는 섹터 경계 지역에 위치한 단말에 보다 높은 수신 감도를 제공하고 또한 셀 간 간섭을 줄이기 위하여 또는 보다 효과적인 무전 자원 활용을 위해 또는 하나 이상의 전송단이 협력하여 신호를 전송할 수 있다. 상기에서 전송단이라 함은 다른 기지국에 속한 전송단일 수도 동일 기지국에 속하는 다른 셀을 담당하는 전송단 일 수도 있다.In particular, to provide a higher reception sensitivity to a terminal located in a cell or sector boundary area where the reception strength of the radio wave region or the radio wave is relatively weak, and to reduce the interference between cells or to use the radio resources more effectively or to cooperate with one or more transmitters. Signal can be transmitted. The transmitter may be a transmitter that belongs to another base station or a transmitter that is responsible for another cell belonging to the same base station.
단말(120)은 기지국들(110, 112, 114)로부터 각각 데이터를 수신하지만, 연합 데이터를 수신하는 주파수 대역이 동일하기 때문에, 단말 입장에서는 하나의 송신 포인트로부터 데이터를 수신하는 것으로 볼 수 있다. 즉, 단말(120)은 3개의 기지국(110, 112, 114)의 집합을 하나의 송신포인트로 간주할 수 있다.The terminal 120 receives data from the base stations 110, 112, and 114, respectively, but since the frequency bands for receiving the federated data are the same, the terminal 120 may be regarded as receiving data from one transmission point. That is, the terminal 120 may regard the set of three base stations 110, 112, and 114 as one transmission point.
도 2는 실시예들이 적용되는 다른 협력형 다중 셀 통신시스템을 나타낸 블록도이다. 2 is a block diagram illustrating another cooperative multi-cell communication system to which embodiments are applied.
도 2를 참조하면, 실시예들이 적용되는 다른 협력형 다중 셀 통신시스템(100)에서 단말(120)과 협력형 통신을 수행하는 기지국은 도 1과 도시한 매크로 기지국(110, 112, 114)일 수 있지만 하나의 매크로 기지국(110, 112, 114)의 셀 반경 내에 위치하는 펨토 셀(Femto cell, 115), 피코 셀(Pico cell, 116), 릴레이(Relay, 117), 핫스팟(Hot spot, 118)과 같은 다양한 형태의 마이크로 또는 로컬 기지국들일 수도 있다. 2, in another cooperative multi-cell communication system 100 to which embodiments are applied, a base station performing cooperative communication with a terminal 120 may be the macro base stations 110, 112, and 114 shown in FIG. 1. Can be located within the cell radius of one macro base station (110, 112, 114), femto cell (115), pico cell (Pico cell, 116), relay (Relay, 117), hot spot (118) Various types of micro or local base stations, such as
각 전송단이 둘 이상의 전송 안테나를 구비하고 MIMO 전송이 가능한 경우 협력형 다중 셀 통신시스템(100)은 매크로 기지국들(110, 112, 114) 간 협력형 통신을 수행하는 경우뿐 아니라 마이크로 기지국 또는 피코 기지국(115, 116, 117) 등 각각 다른 구동 특성을 가지는 기지국들 간에도 협력형 통신을 통해 보다 우수한 시스템 성능을 획득할 수 있다. If each transmitting end is provided with two or more transmitting antennas and MIMO transmission is possible, the cooperative multi-cell communication system 100 may not only perform cooperative communication between macro base stations 110, 112, and 114 but also micro base stations or pico. Even among the base stations having different driving characteristics such as the base stations 115, 116, and 117, superior system performance can be obtained through cooperative communication.
또는 빔형성 또는 프리코딩시 기존에 서비스받고 있는 기지국과의 채널상황만을 고려하여 빔형성 또는 프리코딩 값을 설정하였다면 협력형 다중 셀 통신시스템에서 기지국은 주변 기지국과의 채널 상황에 대한 추정값 또는 간섭값을 추정하여 빔형성 또는 프리코딩 값을 설정할 수가 있다. Alternatively, if beamforming or precoding values are set in consideration of only channel conditions with existing base stations during beamforming or precoding, in a cooperative multi-cell communication system, a base station estimates or interferes with channel conditions with neighboring base stations. It is possible to set the beamforming or precoding value by estimating.
도 1 및 도 2를 참조하면, 단말(120)은 각 기지국(110 내지 117)이 보내오는 참조신호들을 해석하여 각 기지국(110 내지 117)의 안테나별 채널 상황을 파악할 수가 있다. 각 채널상황을 파악한 후 그 정보를 직접 또는 간접적으로 각 기지국(120)에 피드백하게 된다. 이 정보를 피드백받은 기지국(110 내지 117) 또는 상위계층은 좋은 채널 성능을 보이고 있는 기지국들을 선택하여 협력형 기지국 세트 또는 CoMP 세트를 형성하고 협력형 기지국 세트 또는 CoMP 세트에 포함된 기지국들은 협력형 송수신을 개시하게 된다.1 and 2, the terminal 120 analyzes reference signals transmitted from each of the base stations 110 through 117 to determine a channel state of each antenna of each base station 110 through 117. After identifying each channel condition, the information is fed back to each base station 120 directly or indirectly. Base stations 110 to 117 or higher layers fed back with this information select base stations that exhibit good channel performance to form a cooperative base station set or a CoMP set, and the base stations included in the cooperative base station set or CoMP set are cooperatively transmit and receive. Will be started.
도 3은 도1 또는 도2의 협력형 다중 셀 통신시스템의 하나의 기지국과 단말의 안테나어레이 구조 및 그에 따른 전파채널을 도시하고 있다. 3 illustrates an antenna array structure of a base station and a terminal and a propagation channel according to the cooperative multi-cell communication system of FIG. 1 or 2.
도 3을 참조하면, 도 1 및 도 2에 도시한 기지국들 각각, 예를 들어 기지국(110)은 둘 이상의 안테나들을 포함하는 안테나 어레이(310)를 포함할 수 있다. 기지국(110)을 예시적으로 설명하나 도 1 및 도 2를 참조하여 설명한 다른 매크로 또는 마이크로 기지국들도 동일할 수 있다. 마찬가지로 도 1 및 도 2에 도시한 단말(120)도 둘 이상의 안테나들을 포함하는 안테나 어레이(320)를 포함할 수 있다. Referring to FIG. 3, each of the base stations illustrated in FIGS. 1 and 2, for example, the base station 110 may include an antenna array 310 including two or more antennas. Although the base station 110 is exemplarily described, other macro or micro base stations described with reference to FIGS. 1 and 2 may be the same. Similarly, the terminal 120 illustrated in FIGS. 1 and 2 may also include an antenna array 320 including two or more antennas.
이때 안테나 어레이들(310)은 통신시스템에서 한정된 공간에 보다 많은 안테나들을 배열하기 위해 서로 다른 편파를 가지는 두 개의 안테나들을 교차하여 설치한 이중 편파 안테나 어레이(dual polarized antenna array)를 사용할 수 있다. 안테나 어레이들(310)에 포함되는 안테나들 중 한쪽 극성(방향)으로 동일하게 편파된 안테나들을 기지국의 제1도메인 또는 제1안테나 그룹(310a, 이하, ‘기지국의 제1 안테나 그룹’이라 함)이라고 부를 수 있고 다른 쪽 극성(방향)으로 동일하게 편파된 안테나들을 기지국의 제2도메인 또는 제2안테나 그룹(310b, 이하, ‘기지국의 제2안테나 그룹’이라 함)이라고 부를 수 있으나 이 용어들에 제한되지 않는다. 이때 기지국의 제1 안테나 그룹 (310a)과 기지국의 제2 안테나 그룹(310b)은 직교할 수도 있으나 이에 제한되지 않는다. In this case, the antenna arrays 310 may use a dual polarized antenna array in which two antennas having different polarizations are alternately installed to arrange more antennas in a limited space in a communication system. Antennas equally polarized in one polarity (direction) of the antennas included in the antenna arrays 310 are referred to as the first domain or the first antenna group 310a of the base station (hereinafter referred to as 'first antenna group of base station'). Antennas equally polarized in the other polarity (direction) may be referred to as the second domain or the second antenna group 310b of the base station (hereinafter referred to as 'the second antenna group of the base station'). It is not limited to. In this case, the first antenna group 310a of the base station and the second antenna group 310b of the base station may be orthogonal, but are not limited thereto.
마찬가지로 단말(120)에 포함되는 안테나 어레이들(320)은 통신시스템에서 한정된 공간에 보다 많은 안테나들을 배열하기 위해 서로 다른 편파를 가지는 두 개의 안테나들을 교차하여 설치한 이중 편파 안테나 어레이(dual polarized antenna array)를 사용할 수 있다. 안테나 어레이들(320)에 포함되는 안테나들 중 한쪽 방향으로 동일하게 편파된 안테나들을 단말의 제1도메인 또는 제1안테나 그룹(320a, 이하, ‘단말의 제1안테나그룹’이라 함)이라고 부를 수 있고 다른 쪽 방향으로 동일하게 편파된 안테나들을 단말의 제2도메인 또는 제2안테나 그룹(320b, 이하, ‘단말의 제2안테나그룹’이라 함)이라고 부를 수 있으나 이 용어들에 제한되지 않는다. 이때 단말의 제1 안테나그룹(320a)과 단말의 제2안테나그룹(320b)은 직교할 수도 있으나 이에 제한되지 않는다. Similarly, the antenna arrays 320 included in the terminal 120 are dual polarized antenna arrays in which two antennas having different polarizations are alternately installed in order to arrange more antennas in a limited space in a communication system. ) Can be used. Antennas equally polarized in one direction among the antennas included in the antenna array 320 may be called a first domain or a first antenna group 320a (hereinafter, referred to as a 'first antenna group of a terminal') of a terminal. And the same polarized antennas in the other direction may be referred to as a second domain or a second antenna group 320b of the terminal (hereinafter, referred to as a “second antenna group of a terminal”), but is not limited thereto. In this case, the first antenna group 320a of the terminal and the second antenna group 320b of the terminal may be orthogonal, but are not limited thereto.
위 실시예에서 이중편파 안테나어레이를 예를 들어 설명하였으나 본 발명은 이에 제한되지 않는다. 예를 들어 삼중편파나 사중편파 안테나어레이와 같이 다중편파 안테나어레이일 수도 있다. 또한 기지국과 단말이 하나의 이중편파 안테나와 같은 다중편파 안테나어레이를 포함하는 것에 제한되지 않고 두 개 이상의 다중 편파 안테나어레이들 및 단일 어레이 안테나(linear array antenna)를 포함할 수 있다. 이때 기지국과 단말은 통신에 두 개 이상의 다중 편파 안테나어레이들을 모두 사용할 수도 있고 이들 중 일부를 선택적으로 사용할 수도 있다.In the above embodiment, a dual polarization antenna array has been described as an example, but the present invention is not limited thereto. For example, it may be a multi-polarized antenna array such as a triple polarized wave or a quadrupole polarized antenna array. In addition, the base station and the terminal are not limited to including a multi-polarized antenna array such as a single polarized antenna, and may include two or more multi-polarized antenna arrays and a single array antenna. At this time, the base station and the terminal may use all of two or more multiple polarization antenna arrays or some of them selectively.
한편, 기지국(110)은 하향링크 전송에서 이후 설명하는 바와 같이 이중 구조 프리코딩을 수행할 수 있다. 이 구조에서 프리코딩(프리코더) 행렬을 구성하는 W1및 W2은 각각 다른 프리코딩 행렬 인덱스들(precoder matrix indicators)인 PMI1 또는 PMI2을 통해 단말(120)로부터 기지국(110)에 전달될 수 있다.Meanwhile, the base station 110 may perform dual structure precoding as described later in downlink transmission. In this structure, W 1 and W 2 constituting the precoding matrix may be transferred from the terminal 120 to the base station 110 through PMI1 or PMI2, which are different precoding matrix indicators, respectively. have.
W1은 전체 시스템 대역(system bandwidth)에 대하여 선정된 프리코딩 행렬(precoder matrix)일 수 있다. 한편, W2은 전체 시스템 대역(system bandwidth)에 대하여 하나의 프리코딩 행렬(precoder matrix)로 선정되거나 시스템 대역의 부분 집합인 각 부대역(subband)에 대하여 각각 하나씩 다수의 프리코딩 행렬(precoder matrix)로 선정될 수도 있다. W 1 may be a precoder matrix selected for the entire system bandwidth. On the other hand, W 2 is selected as one precoding matrix for the entire system bandwidth or one precoding matrix for each subband, which is a subset of the system band. ) May be selected.
다시말해 단말(120)은 보고 주기 내에서 일반적으로 하나의 W1및 다수의 W2을 보고할 수 있으며, 단말(120)이 신호를 수신하고자 하는 전대역에 대하여 W1을 지시하는 하나의 디지털 인자값(PMI1)를 기지국(110)에 보고하며, 전대역을 여러 개의 부대역으로 분할한 후 각 부대역에서 W2로 사용되기에 적합하다고 판단되는 디지털 인자값들(PMI2)을 기지국(110)에 보고할 수 있다. 이 방식을 사용하는 이유는 각 부대역 별 다른 프리코더 행렬을 사용하여 프리코딩을 수행하기 위함이다. 각 부대역 별 다른 프리코더 행렬을 사용하기 위하여 W1및 W2은 다음과 같은 구조를 가질 수 있다. In other words, the terminal 120 may report one W 1 and a plurality of W 2 generally within a reporting period, and one digital factor indicating W 1 for all bands to which the terminal 120 intends to receive a signal. The value PMI1 is reported to the base station 110, and the digital factor values PMI2 are determined to be suitable for use as W 2 in each subband after the full band is divided into several subbands. You can report it. The reason for using this method is to perform precoding using a different precoder matrix for each subband. In order to use a different precoder matrix for each subband, W 1 and W 2 may have a structure as follows.
[수학식 1][Equation 1]
W=W1W2 W = W 1 W 2
수학식1에서, W1은 [Xn 0; 0 Xn]의 블럭대각행렬(block diagonal matrix)이다. W2는 빔 선택(beam selection)을 수행하며 안테나 그룹(antenna group) 간 위상불일치에 대해 보정하는 위상 일치(co-phasing) 작업을 수행하는 행렬이다. In Equation 1, W 1 is [X n 0; 0 x n ] block diagonal matrix. W 2 is a matrix that performs beam selection and performs co-phasing to correct for phase mismatch between antenna groups.
예를 들어 랭크 1과 2 전송을 수행하는 경우에 디지털 인덱스 n에 의해 지시되는 프리코딩 행렬 W1은 다음과 같을 수 있다. For example, when performing rank 1 and 2 transmissions, the precoding matrix W 1 indicated by the digital index n may be as follows.
[수학식 2][Equation 2]
Figure PCTKR2011009814-appb-I000001
Figure PCTKR2011009814-appb-I000001
이때 W 1 (K)는 다음과 같은 블럭대각행렬(block diagonal matrix)이다. In this case, W 1 (K) is a block diagonal matrix as follows.
[수학식 3][Equation 3]
Figure PCTKR2011009814-appb-I000002
Figure PCTKR2011009814-appb-I000002
이때
Figure PCTKR2011009814-appb-I000003
에서 X(K)
Figure PCTKR2011009814-appb-I000004
이다.
At this time
Figure PCTKR2011009814-appb-I000003
Where X (K) is
Figure PCTKR2011009814-appb-I000004
to be.
따라서, 디지털 인덱스 n에 의해 지시되는 프리코딩 행렬 W1은 다음과 같을 수 있다. Therefore, the precoding matrix W 1 indicated by the digital index n may be as follows.
[수학식 4][Equation 4]
Figure PCTKR2011009814-appb-I000005
Figure PCTKR2011009814-appb-I000005
이 때 bn은 빔 형성(beam forming)을 수행하는 빔형성벡터들(beam forming vectors)이며, 신호의 발신 및 수신 방향에 따른 빔형성(beam forming)을 수행할 수 있다.
Figure PCTKR2011009814-appb-I000006
은 0으로 구성되고 크기가 bn와동일한열벡터이다.
In this case, b n is beam forming vectors that perform beam forming, and may perform beam forming according to a signal transmission and reception direction.
Figure PCTKR2011009814-appb-I000006
Is a column vector of zero and the same size as b n .
특히 W1의 bn에서인접한빔들(adjacent overlapping beams), 예를 들어 4개의 인접한 빔들이 주파수 선택 프리코딩(frequency selective procoding)에서 엣지 효과(edge effect)를 감소하기 위해 사용될 수 있다. 편의상 본 명세서에서는 bn의 크기가 4인 경우를 예시로 들어 설명한다. bn의 크기는 4에만 국한되지 않는다. In particular, adjacent overlapping beams at b n of W 1 , for example four adjacent beams, can be used to reduce the edge effect in frequency selective procoding. For convenience, in the present specification, a case where the size of b n is 4 will be described as an example. The size of b n is not limited to four.
즉, 랭크1 및 랭크2의 경우, 코드북은 4개의 인접한 빔형성벡터(beam forming vector) 선택에 위한 인덱스이며, 코드북의 PMI1에 따라 선택되는 빔 형성 벡터의 인덱스로 코드북을 표현하면 다음과 같다.
Figure PCTKR2011009814-appb-I000007
. 따라서 각 랭크에 대해 16개의 W1행렬들은, 빔들의 인덱스만으로 표시하면, [0,1,2,3], [2,3,4,5], [4,5,6,7],.....,[28,29,30,31], [30,31,0,1]이다. 이때 빔들이 인접한 것으로 설명하였으나 이에 제한되지 않고 인접하지 않은 빔들로 W1행렬을 형성할 수도 있다.
That is, in the case of rank 1 and rank 2, the codebook is an index for selecting four adjacent beam forming vectors, and the codebook is expressed as an index of the beamforming vector selected according to PMI1 of the codebook.
Figure PCTKR2011009814-appb-I000007
. Thus, 16 W 1 matrices for each rank, [0,1,2,3], [2,3,4,5], [4,5,6,7] ,. ..., [28,29,30,31], [30,31,0,1]. In this case, although the beams are described as being adjacent, the present invention is not limited thereto, and the W 1 matrix may be formed of non-adjacent beams.
한편, W1행렬들은 인접한 행렬들끼리 두 개의 빔형성벡터들이 중첩될 수 있다. 예를 들어 [0,1,2,3]과 [2,3,4,5]의 경우 [2,3]이 중첩된다.Meanwhile, in the W 1 matrices, two beamforming vectors may overlap each other. For example, [2,3] overlaps with [0,1,2,3] and [2,3,4,5].
이때 W1은 일정한 거리로 편파된 이중 편파 안테나어레이의 공간 공분산과 일치할 수 있다.In this case, W 1 may coincide with the spatial covariance of the dual polarized antenna array polarized at a constant distance.
이 때 bn은 빔 형성(beam forming)을 수행하는 빔형성벡터들(beam forming vectors)이며, 아래의 수학식과 같이 표현할 수 있다.In this case, b n are beam forming vectors that perform beam forming, and may be expressed as in the following equation.
[수학식 5][Equation 5]
Figure PCTKR2011009814-appb-I000008
Figure PCTKR2011009814-appb-I000008
bn의 크기가 4인 보다 단순한 일례로, W1의 프리코더 행렬을 지칭하는 PMI1=n=2에 의한 W1의 형태는 다음과 같이 설정될 수 있다. the magnitude of b n as a simple example of less than 4, in the form of W 1 according to the PMI1 = n = 2 to refer to the precoder matrix W 1 may be set as follows.
[수학식 6][Equation 6]
Figure PCTKR2011009814-appb-I000009
Figure PCTKR2011009814-appb-I000009
즉, W1의 보고를 위한 코드북 각각의 요소는 다수의 빔형성 벡터들(beam forming vectors)의 조합으로 구성될 수 있다. That is, each element of the codebook for reporting W 1 may be composed of a combination of a plurality of beam forming vectors.
8개의 안테나들을 포함하는 전송단의 경우로 32개의 빔형성벡터들을 0 내지 31의 빔 인덱스들 n으로 표시하면 열벡터로 b0 32=(1,1,1,1), b1 32=(1,ej(π /16),ej(2 π /16), ej(3 π /16)}, b2 32=(1,ej(2π /16),ej(4π /16), ej(6π /16)),...,b31 32(1,ej(31π /16),ej(62π /16), ej(93π /16))와 같을 수 있다.In the case of a transmission stage including 8 antennas, when 32 beamforming vectors are represented by beam indices n of 0 to 31, b 0 32 = (1,1,1,1) and b 1 32 = ( 1, e j (π / 16) , e j (2 π / 16) , e j (3 π / 16) }, b 2 32 = (1, e j (2π / 16) , e j (4π / 16 ) , e j (6π / 16) ), ..., b 31 32 (1, e j (31π / 16) , e j (62π / 16) , e j (93π / 16) ).
W2은 W 1 (K)에 포함된 다수의 빔형성 벡터(beam forming vector) 중 r개를 선정하는 작업과 위상 일치(co-phasing) 작업을 동시에 수행한다. 다시말해 W2의 코드북은 W1에 의해 선정된 4개의 빔 형성 벡터 중 1개(랭크1 전송의 경우) 또는 2개를 반복선택(랭크2 전송의 경우) 하는 작업을 수행하며, 이와 동시에 각 전송 안테나 그룹(또는 도메인)에 사용될 빔 형성 벡터들에 적용한 위상 일치 구성요소(co-phase element)을 결정한다. W 2 simultaneously performs a process of selecting r of a plurality of beam forming vectors included in W 1 (K) and a co-phasing operation. In other words, the codebook of W 2 (in the case of rank 1 transmission), one of the vectors of four beamforming selection by W 1 or 2 for repeated selection (in the case of Rank 2 transmission) performs the task of, and at the same time each Determines the co-phase element applied to the beamforming vectors to be used for the transmit antenna group (or domain).
랭크 1전송을 수행하는 경우에 W2은 다음 수학식과 같이 정의할 수 있다. When performing rank 1 transmission, W 2 may be defined as in the following equation.
[수학식 7][Equation 7]
Figure PCTKR2011009814-appb-I000010
Figure PCTKR2011009814-appb-I000010
이때 Y는 빔 선택(beam selection)을 수행하는 빔 선택 벡터(beam selection vector)이며,
Figure PCTKR2011009814-appb-I000011
는 위상 일치 작업을 수행하는 위상 일치 요소(co-phase element)로 예를 들어 1 또는 -1, j, -j일 수 있다.
In this case, Y is a beam selection vector for performing beam selection.
Figure PCTKR2011009814-appb-I000011
Is a co-phase element that performs a phase matching operation, and may be, for example, 1 or -1, j, -j.
즉, 랭크 1전송을 수행하는 경우에 W2
Figure PCTKR2011009814-appb-I000012
가 예를 들어 1 또는 -1, j, -j일 경우 다음 수학식과 같이 정의할 수 있다.
That is, when performing rank 1 transmission, W 2 is
Figure PCTKR2011009814-appb-I000012
For example, 1 or -1, j, -j can be defined as the following equation.
[수학식 8][Equation 8]
Figure PCTKR2011009814-appb-I000013
Figure PCTKR2011009814-appb-I000013
이때
Figure PCTKR2011009814-appb-I000014
은 n번째 구성요소의 값이 1이고 나머지 구성요소의 값이 1인 4×1 선택벡터이다.
At this time
Figure PCTKR2011009814-appb-I000014
Is a 4 × 1 selection vector with a value of 1 for the nth component and a value of 1 for the remaining components.
따라서, Y은 다음과 같이 정의될 수 있다. Therefore, Y can be defined as follows.
[수학식 9][Equation 9]
Figure PCTKR2011009814-appb-I000015
Figure PCTKR2011009814-appb-I000015
랭크 2전송을 수행하는 경우에 W2은 다음과 같이 정의할 수 있다. In case of performing rank 2 transmission, W 2 may be defined as follows.
[수학식 10][Equation 10]
Figure PCTKR2011009814-appb-I000016
Figure PCTKR2011009814-appb-I000016
즉, 랭크 2전송을 수행하는 경우에 W2
Figure PCTKR2011009814-appb-I000017
가 예를 들어 1 또는 -1, j, -j일 경우 다음 수학식과 같이 정의할 수 있다.
That is, when performing rank 2 transmission, W 2 is
Figure PCTKR2011009814-appb-I000017
For example, 1 or -1, j, -j can be defined as the following equation.
[수학식 11][Equation 11]
Figure PCTKR2011009814-appb-I000018
Figure PCTKR2011009814-appb-I000018
이때 Y1,Y2은 빔 선택(beam selection)을 수행하는 빔 선택 벡터(beam selection vector)이며,
Figure PCTKR2011009814-appb-I000019
는 위상 일치 작업을 수행하는 위상 일치 요소값으로 예를 들어 1 또는 -1, j, -j일 수 있다.
In this case, Y 1 and Y 2 are beam selection vectors for performing beam selection.
Figure PCTKR2011009814-appb-I000019
Is a phase matching element value for performing the phase matching operation, and may be, for example, 1 or -1, j, -j.
이때 Y1은 W2을 지시하는 PMI2의 값이 a일 때 첫 번째 레이어(layer) 전송에 사용될 빔형성벡터를 W1이 선정한 4개의 빔형성벡터들로부터 선택하는 작업을 수행하며, Y2은 W2을 지시하는 PMI2의 값이 a 일 때 두 번째 레이어 전송에 사용될 빔형성벡터를 W1이 선정한 4개의 빔형성벡터로부터 선택하는 작업을 수행한다. In this case, Y 1 selects a beamforming vector to be used for the first layer transmission when the value of PMI2 indicating W 2 is a from 4 beamforming vectors selected by W 1 , and Y 2 When the value of PMI2 indicating W 2 is a, a beamforming vector to be used for the second layer transmission is selected from four beamforming vectors selected by W 1 .
Y1,Y2은 다음과 같이 정의될 수 있다. Y 1 and Y 2 may be defined as follows.
[수학식 12][Equation 12]
Figure PCTKR2011009814-appb-I000020
Figure PCTKR2011009814-appb-I000020
즉, Y1,Y2은 하나의 값이 1이고 나머지는 0인 길이 4의 열 벡터이다. That is, Y 1 , Y 2 are column vectors of length 4 with one value equal to 1 and the other equal to zero.
다시말해 랭크2의 경우
Figure PCTKR2011009814-appb-I000021
으로 설정되어 있으며, W1및 Y1 을 통해 선정된 빔 형성 벡터가 전송 안테나 그룹(도메인)에 적용 될 시 위상일치요소값 및 W1와 Y2 에 의해 결정된 빔 형성 벡터가 전송 안테나 그룹 Z1및 Z2에 적용될 시 사용될 위상일치요소값을 예를 들어 (1, j) 중에서 택일한다.
In other words, for rank 2
Figure PCTKR2011009814-appb-I000021
When the beamforming vector selected through W 1 and Y 1 is applied to the transmitting antenna group (domain), the phase matching element value and the beam forming vector determined by W 1 and Y 2 are transmitted antenna group Z 1. And a phase match element value to be used when applied to Z 2 , for example, from (1, j).
[수학식 13][Equation 13]
Figure PCTKR2011009814-appb-I000022
Figure PCTKR2011009814-appb-I000022
따라서 랭크 1전송을 수행하는 경우에 W는 다음과 같은 구조를 가질 수 있다. Therefore, when performing rank 1 transmission, W may have the following structure.
[수학식 14][Equation 14]
Figure PCTKR2011009814-appb-I000023
Figure PCTKR2011009814-appb-I000023
이하의 수학식들에서 단말과 제n기지국 사이의 관계는 위첨자 n으로 표시한다. 예를 들어 단말과 제1기지국 사이의 관계는 위첨자 1로 표시하고 단말과 제2기지국 사이의 관계는 위첨자 2로 표시한다. In the following equations, the relationship between the terminal and the n-th base station is represented by a superscript n. For example, the relationship between the terminal and the first base station is represented by superscript 1, and the relationship between the terminal and the second base station is represented by superscript 2.
랭크 2전송을 수행하는 경우에 W는 다음과 같은 구조를 가질 수 있다. In case of performing rank 2 transmission, W may have a structure as follows.
[수학식 15][Equation 15]
Figure PCTKR2011009814-appb-I000024
Figure PCTKR2011009814-appb-I000024
한편, 기지국(110)과 단말(120)간의 채널행렬 또는 전파채널이
Figure PCTKR2011009814-appb-I000025
라 하자. 이때 랭크1로 프리코딩 행렬
Figure PCTKR2011009814-appb-I000026
을 사용하여 프리코딩하여 신호를 단말(120)에 전송할 경우 단말(120)에서 수신되는 신호는
Figure PCTKR2011009814-appb-I000027
가 된다. 한편, 랭크2 이상, 예를 들어 랭크2로 프리코딩행렬
Figure PCTKR2011009814-appb-I000028
을 프리코딩하여 신호를 단말(120)에 전송할 경우 단말에서 수신되는 신호는 다음과 같이 될 수 있다.
Meanwhile, the channel matrix or the propagation channel between the base station 110 and the terminal 120
Figure PCTKR2011009814-appb-I000025
Let's do it. Where the precoding matrix is rank1
Figure PCTKR2011009814-appb-I000026
When the signal is transmitted to the terminal 120 by precoding using the signal received from the terminal 120
Figure PCTKR2011009814-appb-I000027
Becomes On the other hand, the precoding matrix with rank 2 or higher, for example rank 2
Figure PCTKR2011009814-appb-I000028
When the signal is transmitted to the terminal 120 by precoding the signal, the signal received by the terminal may be as follows.
[수학식 16][Equation 16]
Figure PCTKR2011009814-appb-I000029
Figure PCTKR2011009814-appb-I000029
이때 Rb는 단말의 제1안테나 그룹(320a)이 수신하는 신호를 의미하며 Rr은 단말의 제2안테나 그룹(320b)가 수신하는 신호를 의미한다.In this case, R b means a signal received by the first antenna group 320a of the terminal, and R r means a signal received by the second antenna group 320b of the terminal.
도 4는 일실시예에 따른 협력형 다중 셀 통신시스템에서 각 기지국의 랭크 1 협력형 통신의 개념도이다. 4 is a conceptual diagram of rank 1 cooperative communication of each base station in a cooperative multi-cell communication system according to an embodiment.
도 4를 참조하면, 일실시예에 따른 협력형 다중 셀 통신시스템(400)은 도 1 및 도 2에 도시한 바와 같이 기지국들과 단말이 협력형 통신을 수행할 수 있다. 이때 협력형 통신에 참여하는 기지국들을 두 개의 기지국들, 즉 제1기지국(410)과 제2기지국(420)만을 예시적으로 설명하나 전술한 바와 같이 두 개를 초과하는 기지국들이 단말과 협력형 통신에 참여할 수도 있다.Referring to FIG. 4, in the cooperative multi-cell communication system 400 according to an embodiment, base stations and a terminal may perform cooperative communication as illustrated in FIGS. 1 and 2. In this case, only the two base stations, namely, the first base station 410 and the second base station 420 are described as base stations participating in the cooperative communication, but as described above, more than two base stations cooperate with the terminal. You can also join
제1기지국(410)과 제2기지국(412) 각각은 도 3을 참조하여 설명한 바와 같이 두 개의 안테나 그룹들로 편파된 안테나들을 포함하는 안테나어레이들(410a 및 410b, 412a 및 412b)을 포함할 수 있다. 마찬가지로 단말(420)도 도 3을 참조하여 설명한 바와 같이 두 개의 안테나 그룹들로 편파된 안테나들을 포함하는 안테나어레이(도 4에 미도시)를 포함할 수 있다.Each of the first base station 410 and the second base station 412 may include antenna arrays 410a and 410b, 412a and 412b including antennas polarized into two antenna groups as described with reference to FIG. Can be. Similarly, the terminal 420 may also include an antenna array (not shown in FIG. 4) including antennas polarized into two antenna groups as described with reference to FIG. 3.
이때 기지국들(410, 412)과 단말(420)의 채널행렬과 프리코딩행렬들은 도 3을 참조하여 설명한 바와 동일하되 기지국들과 단말을 각각 구분하기 위해 기지국들 중 하나인 제1기지국(410)과 관련된 채널형렬과 프리코딩행렬의 구성요소들은 각각 위첨자 1로 표시하고 다른 하나인 제2기지국(412)과 관련된 채널형렬과 프리코딩행렬의 구성요소들은 각각 위첨자 2로 표시한다. At this time, the channel matrix and the precoding matrix of the base stations 410 and 412 and the terminal 420 are the same as described with reference to FIG. 3, but the first base station 410 is one of the base stations to distinguish between the base stations and the terminal. The elements of the channel matrix and the precoding matrix related to are denoted by superscript 1, respectively, and the elements of the channel matrix and the precoding matrix associated with the second base station 412, respectively, are denoted by superscript 2.
예를 들어 제1기지국(410)은 자신의 프리코딩 행렬을 사용하여 데이터심볼을 프리코딩하고 프리코딩된 데이터심볼을 2n개(n은 1 또는 1보다 큰 자연수), 예를 들어 8개의 편파 안테나들을 포함하는 안테나 어레이(410a)를 통하여 공중으로 전파할 수 있다. For example, the first base station 410 uses its precoding matrix to precode the data symbols and 2n the precoded data symbols (n is a natural number greater than 1 or 1), for example, 8 polarized antennas. It may propagate to the air through the antenna array 410a including them.
한편 제1기지국(410)과 제2기지국(412)이 각각 W=W1W2와 같이 표현되는 이중 구조 프리코딩(프리코더) 행렬을 사용할 수 있다. 전술한 바와 같이 제1기지국(410)이 단말(420) 전송에 사용하는 프리코딩 행렬을
Figure PCTKR2011009814-appb-I000030
로 표시하고 제1기지국(410)과 단말(420)의 전파채널을
Figure PCTKR2011009814-appb-I000031
로 표시할 수 있다. 또한 제2기지국(412)이 단말(420) 전송에 사용하는 프리코딩 행렬을
Figure PCTKR2011009814-appb-I000032
(위첨자 2는 단말과 제2기지국 사이 관계를 의미함, 이하 동일)로 표시하고 제1기지국(410)과 단말(420)의 전파 채널을
Figure PCTKR2011009814-appb-I000033
로 표시할 수 있다.
Meanwhile, the first base station 410 and the second base station 412 may use a dual structure precoding (precoder) matrix represented by W = W 1 W 2 , respectively. As described above, the first base station 410 uses the precoding matrix used for transmitting the terminal 420.
Figure PCTKR2011009814-appb-I000030
And the propagation channel between the first base station 410 and the terminal 420
Figure PCTKR2011009814-appb-I000031
Can be displayed as Also, the precoding matrix used by the second base station 412 to transmit the terminal 420 is used.
Figure PCTKR2011009814-appb-I000032
(Superscript 2 means the relationship between the terminal and the second base station, which is the same below) and indicates a propagation channel between the first base station 410 and the terminal 420.
Figure PCTKR2011009814-appb-I000033
Can be displayed as
제1기지국(410)이 전패채널
Figure PCTKR2011009814-appb-I000034
을 통해 랭크 1 MIMO 전송으로 프리코딩 행렬
Figure PCTKR2011009814-appb-I000035
을 사용하고 제2기지국(420)이 전파채널
Figure PCTKR2011009814-appb-I000036
을 통해 랭크 1 MIMO 전송으로 프리코딩 행렬
Figure PCTKR2011009814-appb-I000037
(위첨자 1는 단말과 제1기지국 사이 관계를 의미함, 이하 동일)을 사용하여 제1기지국(410)과 제2기지국(412)가 동일 정보 전송시 단말(420)이 수신하는 신호는 다음과 같을 수 있다.
First base station 410 loses the channel
Figure PCTKR2011009814-appb-I000034
Precoding matrix with rank 1 MIMO transmission via
Figure PCTKR2011009814-appb-I000035
The second base station 420
Figure PCTKR2011009814-appb-I000036
Precoding matrix with rank 1 MIMO transmission via
Figure PCTKR2011009814-appb-I000037
(Superscript 1 means the relationship between the terminal and the first base station, the same below) The signal received by the terminal 420 when the first base station 410 and the second base station 412 transmits the same information is as follows. May be the same.
[수학식 17][Equation 17]
Figure PCTKR2011009814-appb-I000038
Figure PCTKR2011009814-appb-I000038
한편, 제1기지국(410)과 제2기지국(412)가 다른 정보 전송시 단말(420)이 수신하는 신호는 다음과 같을 수 있다. Meanwhile, when the first base station 410 and the second base station 412 transmit different information, the signal received by the terminal 420 may be as follows.
[수학식 18]Equation 18
Figure PCTKR2011009814-appb-I000039
Figure PCTKR2011009814-appb-I000039
Xp는 전송단 p에 의해 전송되는 정보, XM은 전송단 M에 의해 전송되는 정보를 의미한다. 전술한 바와 같이 Rb는 단말의 제1안테나 그룹이 수신하는 신호를 의미하며 Rr은 단말의 제2안테나 그룹이 수신하는 신호를 의미한다.Xp means information transmitted by the transmitter p, X M means information transmitted by the transmitter M. As described above, R b means a signal received by the first antenna group of the terminal and R r means a signal received by the second antenna group of the terminal.
도 4를 참조하여 설명한 일실시예에 따른 협력형 다중 셀 통신시스템(400)은 기지국들(410, 412)과 단말(420)이 협력형 통신을 수행할 수 있다는 장점에도 불구하고 다음과 같은 단말의 신호의 복원(recovery of received signal with a UE)상 어려움을 가질 수 있다. In the cooperative multi-cell communication system 400 according to an embodiment described with reference to FIG. 4, although the base stations 410 and 412 and the terminal 420 may perform cooperative communication, the following terminals may be used. There may be difficulties in the recovery of the received signal with a UE.
즉 제1기지국(410)과 제2기지국(412)이 동일 정보 전송 시, 다른 기지국들(410, 412)에서 수신된 신호들 간 위상 일치(co-phasing) 작업이 불가능하여 다중 전송단 전송 이득이 줄어들 수 있다. 다시 말해 다른 기지국들(410, 412)에서 수신된 신호 간 위상 보정을 할 수 없어 기지국들이 전송한 신호를 복원할 수 없거나 복원율이 떨어질 수 있다. 예를 들어 단말의 제1안테나 그룹이 수신한 신호는 제1기지국(410)으로부터 수신된 신호
Figure PCTKR2011009814-appb-I000040
와 제2기지국(412)으로부터 수신된 신호
Figure PCTKR2011009814-appb-I000041
의 합으로 구성된다. 마찬가지로 단말의 제2안테나 그룹이 수신한 신호는 제1기지국(410)으로부터 수신된 신호
Figure PCTKR2011009814-appb-I000042
와 제2기지국(412)으로부터 수신된 신호
Figure PCTKR2011009814-appb-I000043
의 합으로 구성된다. 그런데 제1기지국(410)으로부터 수신한 신호와 제2기지국(412)로부터 수신한 신호 사이 위상 불일치를 보정할 수 없어, 즉 위상 일치 작업이 불가능할 수 있다.
That is, when the first base station 410 and the second base station 412 transmit the same information, co-phasing between signals received from other base stations 410 and 412 is impossible, so that the multi-transmitter transmit gain. This can be reduced. In other words, phase correction between signals received at the other base stations 410 and 412 may not be performed, and thus the signal transmitted by the base stations may not be recovered or the recovery rate may be reduced. For example, a signal received by the first antenna group of the terminal is a signal received from the first base station 410.
Figure PCTKR2011009814-appb-I000040
And the signal received from the second base station 412
Figure PCTKR2011009814-appb-I000041
It consists of the sum of. Similarly, the signal received by the second antenna group of the terminal is a signal received from the first base station 410.
Figure PCTKR2011009814-appb-I000042
And the signal received from the second base station 412
Figure PCTKR2011009814-appb-I000043
It consists of the sum of. However, the phase mismatch between the signal received from the first base station 410 and the signal received from the second base station 412 may not be corrected, that is, the phase matching operation may not be possible.
한편 다른 기지국들(410, 412)에서 전송된 신호 간 위상차가 180도 또는 180도 근방일 경우 신호들이 서로 상쇄되어 단일 기지국의 경우보다 오히려 신호의 수신 감도가 감소할 수 있다. Meanwhile, when the phase difference between the signals transmitted from the other base stations 410 and 412 is about 180 degrees or about 180 degrees, the signals are canceled with each other and thus the reception sensitivity of the signal may be reduced rather than the case of the single base station.
두 개의 기지국(410, 412)이 각각 다른 정보 전송 시, 각 수신 안테나 그룹에서 두 개의 기지국(410, 412)이 전송한 정보를 구분할 수 있는 근거는 제1안테나 그룹의 경우
Figure PCTKR2011009814-appb-I000044
Figure PCTKR2011009814-appb-I000045
간 차이 또는 연관성 (correlation), 제2안테나 그룹의 경우
Figure PCTKR2011009814-appb-I000046
Figure PCTKR2011009814-appb-I000047
간 차이 또는 연관성일 수 있다. 그런데 각 채널은 서로 연관성이 전혀 없음으로, 협력형 다중 셀 통신시스템(400)에서 각각 다른 기지국들(410, 412)이 전송한 신호를 단말(420)이 구분할 수 있다는 보장이 없다.
When the two base stations 410 and 412 transmit different information, the basis for distinguishing the information transmitted by the two base stations 410 and 412 in each receiving antenna group is the case of the first antenna group.
Figure PCTKR2011009814-appb-I000044
Wow
Figure PCTKR2011009814-appb-I000045
Intercorrelation or correlation, in the case of a second antenna group
Figure PCTKR2011009814-appb-I000046
Wow
Figure PCTKR2011009814-appb-I000047
It can be a difference or association between them. However, since each channel is not related to each other, there is no guarantee that the terminal 420 can distinguish signals transmitted from different base stations 410 and 412 in the cooperative multi-cell communication system 400.
도 5는 다른 실시예에 따른 협력형 다중 셀 통신시스템의 단말과 기지국들의 협력형 통신방법의 흐름도이다. 5 is a flowchart illustrating a cooperative communication method between terminals and base stations of a cooperative multi-cell communication system according to another embodiment.
도 5를 참조하면, 다른 실시예에 따른 협력형 다중 셀 통신시스템의 단말과 기지국들의 협력형 통신방법(500)에서, 단말(420)은 각 기지국(410, 412)이 보내오는 참조신호들을 수신할 수 있다(S510, S515). 이때 다른 실시예에 따른 협력형 다중 셀 통신시스템은 도 4를 참조하여 설명한 협력형 다중 셀 통신시스템(400)인 것으로 이하 설명하나 이에 제한되지 않는다. 물론 이때 협력형 통신에 참여하는 기지국들은 도 5에 도시한 바와 같이 2개일 수 있으나 이에 제한되지 않고 3개 이상일 수도 있다. 다만 설명의 편의를 위해 협력형 통신에 참여하는 기지국들을 도 5에 도시한 바와 같이 제1기지국(410)과 제2기지국(412)로 설명한다.Referring to FIG. 5, in the cooperative communication method 500 of a terminal and base stations of a cooperative multi-cell communication system according to another exemplary embodiment, the terminal 420 receives reference signals transmitted from each base station 410 and 412. (S510, S515). In this case, the cooperative multi-cell communication system according to another exemplary embodiment is the cooperative multi-cell communication system 400 described with reference to FIG. 4, but is not limited thereto. Of course, the base station participating in the cooperative communication may be two as shown in FIG. 5, but is not limited thereto and may be three or more. However, for convenience of description, the base stations participating in the cooperative communication will be described as the first base station 410 and the second base station 412 as shown in FIG. 5.
이후 단말(420)은 수신한 참조신호들을 이용하여 안테나별채널상태들또는채널행렬들을추정할수있다(S520). Thereafter, the terminal 420 may estimate channel states or channel matrixes for each antenna by using the received reference signals (S520).
예를 들어, 하향링크 전송시 단말(420)은 하향링크 채널을 추정할 수 있다. 특히 OFDM 또는 OFDMA(Orthogonal Frequency Division Multiple Access) 신호 전송시 단말(410)은 각 부대역(서브밴드)의 채널을 추정할 수 있다. For example, the terminal 420 may estimate the downlink channel during downlink transmission. In particular, when transmitting an OFDM or Orthogonal Frequency Division Multiple Access (OFDMA) signal, the UE 410 may estimate a channel of each subband.
채널의 추정을 위해 주파수-도메인 그리드 내에 규칙 또는 불규칙한 간격으로 특정 신호 또는 심볼을 삽입할 수 있다. 이때 이 특정 신호 또는 심볼을 참조신호(reference signal) 또는 참조심볼(reference symbol), 파일롯 심볼(pilot symbol) 등 다양하게 명명하나 본 명세서에서는 이 특정 신호 또는 심볼을 참조신호라 하나 그 용어에 제한되지 않는다. 물론 참조신호는 주파수 도메인 채널의 추정에만 사용되지 않고 단말과 기지국 사이의 무선통신 과정에서 필요한 위치추정, 제어정보의 송수신, 스케줄링정보의 송수신, 피드백정보의 송수신 등을 위해서 사용될 수도 있다.Certain signals or symbols may be inserted at regular or irregular intervals in the frequency-domain grid for estimation of the channel. In this case, the specific signal or symbol is variously named as a reference signal, a reference symbol, a pilot symbol, etc., but in this specification, the specific signal or symbol is referred to as a reference signal, but is not limited to the term. Do not. Of course, the reference signal is not only used for the estimation of the frequency domain channel but may also be used for position estimation, control information transmission / reception, transmission / reception of scheduling information, transmission / reception of feedback information, and the like, which are necessary in a wireless communication process between the terminal and the base station.
하향링크 또는 상향링크 전송시 각각 여러 종류의 참조신호들이 존재하며 다양한 용도로 새로운 참조신호들이 정의되고 있으며 논의되기도 한다. 예를 들어 상향링크 전송시 참조신호로 DM-RS(Demodulation RS), SRS(Sounding RS) 등이 있다. 하향링크 전송시 참조신호로 DM-RS(Demodulation RS), CRS(Cell-specific RS), MBSFN RS, UE-specific RS 등이 있다. 또한, 하향링크 전송시 단말(20)에서 중심 셀 또는 인접 셀들의 채널상태정보(Channel Status Information(CSI))를 획득하기 위하여 기지국에서 전송하는 참조신호로 CSI-RS가 있다. 이 CSI-RS는 CQI(Channel Quality Indicator)/PMI(Precoder Matrix Index)/RI(Rank Index) 등을 리포팅하는데 사용될 수 있다. 이 CSI-RS는 CSI-RS를 전송하는 기지국에 포함된 각 셀마다 서로 구분가능하도록 셀-특화(Cell-specific)되며 낮은 오버헤드를 위해 주파수와 시간에서 충분히 산재해야 한다.Different types of reference signals exist in downlink or uplink transmission, and new reference signals are defined and discussed for various purposes. For example, reference signals in uplink transmission include DM-RS (Demodulation RS) and SRS (Sounding RS). Reference signals in downlink transmission include DM-RS (Demodulation RS), CRS (Cell-specific RS), MBSFN RS, and UE-specific RS. In addition, there is a CSI-RS as a reference signal transmitted from a base station in order to obtain channel status information (CSI) of a center cell or neighbor cells in the downlink transmission. The CSI-RS may be used to report a Channel Quality Indicator (CQI) / Precoder Matrix Index (PMI) / Rank Index (RI). This CSI-RS is cell-specific to be distinguishable from each other in each cell included in the base station transmitting the CSI-RS and should be sufficiently scattered in frequency and time for low overhead.
이후 단말(420)은 각 기지국(410, 412)의 각 채널상태들 또는 채널행렬들을 파악한 후 이와 관련한 채널정보들 또는 채널상태정보들(Channel State Information)을 직접 또는 간접적으로 서빙 기지국 또는 주기지국에 해당하는 제1기지국(410)에 피드백하게 된다(S530). 이때 채널상태정보들(CSI1과 CSI2)은 도 4에 도시한 바와 같이 전파채널
Figure PCTKR2011009814-appb-I000048
이거나 이 전파채널에 적합한 프리코딩 행렬들을 지시하는 지시자들 또는 인덱스들, 인자, 예를 들어 PMI1과 PMI2일 수 있다. 이 채널상태정보들을 피드백받은 제1기지국(410) 또는 그 상위계층은 좋은 채널 성능을 보이고 있는 기지국들을 선택하여 협력형 기지국 세트 또는 CoMP 세트를 형성하고 협력형 기지국 세트 또는 CoMP 세트에 포함된 적어도 하나의 기지국, 예를 들어 제2기지국(412)을 선택할 수 있다.
Thereafter, the terminal 420 grasps each channel state or channel matrix of each base station 410 and 412, and then directly or indirectly sends channel information or channel state information related thereto to the serving base station or the main base station. The first base station 410 is fed back (S530). At this time, the channel state information (CSI 1 and CSI 2 ) is a propagation channel as shown in FIG.
Figure PCTKR2011009814-appb-I000048
Or indicators or indexes indicating precoding matrices suitable for this propagation channel, for example, PMI 1 and PMI 2 . The first base station 410 or a higher layer, which has received the feedback of the channel state information, selects base stations having good channel performance to form a cooperative base station set or a CoMP set, and includes at least one of the cooperative base station set or a CoMP set. May select a base station, for example, a second base station 412.
이후 제1기지국(410)은 인접 기지국 또는 협력 기지국에 해당하는 제2기지국(412)에 제2기지국(412)에 해당하는 채널상태 또는 채널행렬에 대한 정보를 X2 인터페이스 또는 하나의 기지국 내에서 다른 셀 간 전송을 담당하는 전송단 간 링크(link)로 전달하게 된다(S540). 이때 X2 인터페이스는 공중 데이터망을 통한 데이터 전송을 위한 X계열 인터페이스 중 하나이다.Subsequently, the first base station 410 transmits the information about the channel state or channel matrix corresponding to the second base station 412 to the second base station 412 corresponding to the neighboring base station or the cooperative base station in another X2 interface or one base station. It is transmitted to the link between the transport (link) responsible for inter-cell transmission (S540). At this time, the X2 interface is one of the X-series interfaces for data transmission through the public data network.
이후 제1기지국(410)과 제2기지국(412)은 단말(420)과 협력형 MIMO 통신을 수행할 수 있다(S560, S565). 협력형 통신에 참여하는 기지국들의 수가 3개 이상이 경우 3개 이상의 기지국들과 단말(420)이 협력형 MIMO 통신을 수행하게 된다.Thereafter, the first base station 410 and the second base station 412 may perform cooperative MIMO communication with the terminal 420 (S560 and S565). When the number of the base stations participating in the cooperative communication is three or more, the three or more base stations and the terminal 420 perform the cooperative MIMO communication.
그런데 도 5를 참조하여 설명한 협력형 다중 셀 통신방법(500)의 경우, 신호를 전송하는 기지국들(S410, 412)은 둘 이상이더라도 단말로부터 채널 정보를 보고받는 기지국은 서빙 기지국 또는 주기지국에 해당하는 제1기지국 하나(410)일 수 있다. 이 경우, 채널정보에 따라 프리코딩을 구현하는 과정에서 프리코딩 지연(precoding delay) 또는 연산 지연(processing delay)가 발생할 수 있다.However, in the cooperative multi-cell communication method 500 described with reference to FIG. 5, even if two or more base stations S410 and 412 transmit signals, the base station that reports channel information from the terminal corresponds to a serving base station or a main station. The first base station may be one (410). In this case, a precoding delay or a processing delay may occur in the process of implementing the precoding according to the channel information.
이하 도 4을 참조하여 설명한 일실시예에 따른 협력형 다중 셀 통신시스템(400)이나 도 5를 참조하여 설명한 다른 실시예에 따른 협력형 다중 셀 통신시스템의 단말과 기지국들의 협력형 통신방법(500)보다 효과적으로 협력형 통신을 수행할 수 있는 또다른 실시예에 따른 협력형 다중 셀 통신시스템 및 그 통신방법을 설명한다.Hereinafter, a cooperative communication method 500 of a terminal and base stations of a cooperative multi-cell communication system 400 according to an embodiment described with reference to FIG. 4 or a cooperative multi-cell communication system according to another embodiment described with reference to FIG. 5. A cooperative multi-cell communication system and a communication method thereof according to another embodiment capable of performing cooperative communication more effectively will be described.
도 6은 또다른 실시예에 따른 협력형 다중 셀 통신시스템의 개념도이다.6 is a conceptual diagram of a cooperative multi-cell communication system according to another embodiment.
도 6을 참조하면 또다른 실시예에 따른 협력형 다중 셀 통신시스템(600)은 둘 이상의 기지국들, 예를 들어 두 개의 기지국들(610, 612)과 단말(620)이 협력형 통신을 수행하고, 제1기지국(610))이 두 개의 안테나 그룹들(610a, 610b)로 편파된 안테나들을 포함하는 안테나어레이를 포함하며, 제2기지국(612))이 두 개의 안테나 그룹들(612a, 612b)로 편파된 안테나들을 포함하는 안테나어레이를 포함하며, 제1기지국(610)과 단말(620)의 전파채널이
Figure PCTKR2011009814-appb-I000049
이고 제1기지국(610)과 단말(620)의 전파 채널이
Figure PCTKR2011009814-appb-I000050
인 점에서 도 4를 참조하여 설명한 다른 실시예에 따른 협력형 다중 셀 통신시스템(400)과 동일하거나 실질적으로 동일할 수 있다.
Referring to FIG. 6, in a cooperative multi-cell communication system 600 according to another embodiment, two or more base stations, for example, two base stations 610 and 612 and a terminal 620 perform cooperative communication. The first base station 610 includes an antenna array including antennas polarized into two antenna groups 610a and 610b, and the second base station 612 includes two antenna groups 612a and 612b. And an antenna array including antennas polarized by the antenna, and a propagation channel between the first base station 610 and the terminal 620
Figure PCTKR2011009814-appb-I000049
And the propagation channel between the first base station 610 and the terminal 620
Figure PCTKR2011009814-appb-I000050
In this regard, it may be the same as or substantially the same as the cooperative multi-cell communication system 400 according to another embodiment described with reference to FIG. 4.
다만, 또다른 실시예에 따른 협력형 다중 셀 통신시스템(600)에서 두 개의 기지국들(610, 612)은 각각 프리코딩 행렬
Figure PCTKR2011009814-appb-I000051
과 프리코딩 행렬
Figure PCTKR2011009814-appb-I000052
을 사용하여 단말(620)에 전송하는 데이터심볼을 프리코딩하지 않고 각각
Figure PCTKR2011009814-appb-I000053
Figure PCTKR2011009814-appb-I000054
을 사용하여 단말(620)에 전송하는 데이터심볼을 프리코딩할 수 있다.
However, in the cooperative multi-cell communication system 600 according to another embodiment, the two base stations 610 and 612 are precoding matrices, respectively.
Figure PCTKR2011009814-appb-I000051
And precoding matrices
Figure PCTKR2011009814-appb-I000052
Each of the data symbols to be transmitted to the terminal 620 without precoding
Figure PCTKR2011009814-appb-I000053
and
Figure PCTKR2011009814-appb-I000054
By using the data symbols transmitted to the terminal 620 can be precoded.
즉 제1기지국(610)은 제1기지국의 제2안테나 그룹(610b)에 해당하는 안테나들에 전력을 널링(nulling) 또는“0”으로 하여 신호를 공중으로 전파하지 않고 제1기지국의 제1안테나 그룹(610a)에 해당하는 안테나들만으로 신호를 공중으로 전파한다. 한편 제2기지국(612)은 제1기지국의 제1안테나 그룹(610a)와 극성이 동일한 제2기지국의 제1안테나 그룹(612a)에 해당하는 안테나들에 전력을 널링(nulling) 또는 “0”으로 하여 신호를 공중으로 전파하지 않고 제2기지국의 제2안테나 그룹(612b)에 해당하는 안테나들만으로 신호를 공중으로 전파할 수 있다. That is, the first base station 610 nulls or sets the power to the antennas corresponding to the second antenna group 610b of the first base station, so that the signal is not propagated to the air without first propagating the signal to the first base station. Only the antennas corresponding to the antenna group 610a propagate the signal to the air. Meanwhile, the second base station 612 nulls or “0” s power to antennas corresponding to the first antenna group 612a of the second base station having the same polarity as the first antenna group 610a of the first base station. In this way, the signal may be propagated to the air by only antennas corresponding to the second antenna group 612b of the second base station without propagating the signal to the air.
다시말해 제1기지국(610)은 프리코딩 행렬의 구성요소들 중 제2안테나 그룹(610b)에 해당하는 안테나들에 대응하는 구성요소의 값들을 널링(nulling) 또는 “0”으로 하고 제1안테나 그룹(610a)에 해당하는 안테나들에 대응하는 구성요소들만을 유지하는 프리코딩 행렬을 사용하여 데이터심볼을 프리코딩할 수 있다. 반면에 제2기지국(612)은 프리코딩 행렬의 구성요소들 중 다른 극성의 제1안테나 그룹(612a)에 해당하는 안테나들에 대응하는 구성요소의 값들을 널링(nulling) 또는 “0”으로 하고 제2안테나 그룹(612b)에 해당하는 안테나들에 대응하는 구성요소들만을 유지하는 프리코딩 행렬을 사용하여 데이터심볼을 프리코딩할 수 있다.In other words, the first base station 610 sets the values of the components corresponding to the antennas corresponding to the second antenna group 610b among the components of the precoding matrix to nulling or “0” and to the first antenna. The data symbols may be precoded using a precoding matrix that retains only the components corresponding to the antennas corresponding to the group 610a. On the other hand, the second base station 612 sets the values of the components corresponding to the antennas corresponding to the first antenna group 612a of different polarity among the components of the precoding matrix to be nulling or “0”. The data symbols may be precoded using a precoding matrix that maintains only the components corresponding to the antennas corresponding to the second antenna group 612b.
이때 제1기지국(610)이 구성요소들의 값을 널링(nulling) 또는 “0”으로 하는 안테나 그룹은 위상 일치 작업을 수행하는 위상 일치 요소(co-phase element)
Figure PCTKR2011009814-appb-I000055
를 포함하는 안테나 그룹일 수 있다. 왜냐하면 제1기지국(610)이 서빙 기지국에 해당하므로 단말(620)로부터 채널상태정보를 보고받아 제1기지국(610)과 제2기지국(612)의 협력형 통신의 위치 일치 작업을 수행하기 위해서이다.
At this time, the antenna group in which the first base station 610 nulls or sets the values of the components to “0” is a co-phase element for performing phase matching.
Figure PCTKR2011009814-appb-I000055
It may be an antenna group including a. Because the first base station 610 corresponds to the serving base station, the terminal 620 receives the channel state information from the terminal 620 to perform the location matching operation of the cooperative communication between the first base station 610 and the second base station 612. .
반대로 제2기지국(612)이 구성요소들의 값을 널링(nulling) 또는 “0”으로 하는 안테나 그룹은 위상 일치 작업을 수행하는 위상 일치 요소(co-phase element)
Figure PCTKR2011009814-appb-I000056
를 포함하지 않는 안테나 그룹일 수 있다.
On the contrary, an antenna group in which the second base station 612 nulls or sets the value of the elements to “0” is a co-phase element in which phase matching is performed.
Figure PCTKR2011009814-appb-I000056
It may be an antenna group that does not include.
따라서, 제1기지국(610)이 각각 두 개의 안테나 그룹들(610a, 610b) 중 하나의 그룹(610a)만을 사용하므로 안테나 전력을 2배로 증가시킬 수 있다. 이와 마찬가지로, 제2기지국(612)이 각각 두 개의 안테나 그룹들(612a, 612b) 중 하나의 그룹(612b)만을 사용하므로 안테나 전력을 2배로 증가시킬 수 있다. Therefore, since the first base station 610 uses only one group 610a of the two antenna groups 610a and 610b, the antenna power can be doubled. Similarly, since the second base station 612 uses only one group 612b of the two antenna groups 612a and 612b, respectively, the antenna power can be doubled.
이때 안테나들의 전력이 널링(nulling) 또는 “0”이라는 것 또는 구성요소들의 값을 널링 또는 “0”으로 한다는 것은 물리적인 의미에서 전혀 안테나 전력이 존재하지 않는 경우뿐만 아니라 실질적으로 신호를 공중에 전파할 수 없거나 무의미한 정도로 신호를 공중에 전파하는 경우 등 본 실시예의 취지에 부합하는 경우를 포함한다.In this case, the power of the antennas is nulling or “0” or the value of the elements is nulling or “0” in the physical sense, as well as substantially propagating the signal to the air as well as when no antenna power exists at all. This case includes a case in which the signal propagates in the air to an unreasonable or meaningless level.
단말(620)의 두 개의 안테나 그룹들이 수신하는 신호들은 다음 수학식과 같게 된다.The signals received by the two antenna groups of the terminal 620 are as shown in the following equation.
[수학식 19][Equation 19]
Figure PCTKR2011009814-appb-I000057
Figure PCTKR2011009814-appb-I000057
이때 XP 와 XM 은 각각 다른 정보( XP ≠ XM )일 수도 있고 같은 정보( XP = XM =x)일 수 도 있다. In this case, X P and X M may be different information (X P ≠ X M ) or the same information (X P = X M = x).
단말(620)의 두 개의 안테나 그룹들이 수신하는 신호들은 각각 위상 일치 작업을 수행하는 위상 일치 요소(co-phase element)를 포함하고 있다. 따라서, 서빙 기지국에 해당하는 제1기지국(610)이 위상 일치 요소(co-phase element), 예를 들어 1, -1, j, -j를 선택하므로 위상 일치 작업을 수행할 수 있다. The signals received by the two antenna groups of the terminal 620 each include a co-phase element that performs a phase matching operation. Accordingly, since the first base station 610 corresponding to the serving base station selects a co-phase element, for example, 1, -1, j, and -j, the phase matching operation can be performed.
도 7은 또다른 실시예에 따른 협력형 다중 셀 통신시스템의 개념도이다.7 is a conceptual diagram of a cooperative multi-cell communication system according to another embodiment.
도 7을 참조하면 또다른 실시예에 따른 협력형 다중 셀 통신시스템(700)은 두 이상의 기지국들, 예를 들어 두 개의 기지국들(710, 712)과 단말(720)이 협력형 통신을 수행하고, 제1기지국(710))이 두 개의 안테나 그룹들(710a, 710b)로 편파된 안테나들을 포함하는 안테나어레이를 포함하며, 제2기지국(712))이 두 개의 안테나 그룹들(712a, 712b)로 편파된 안테나들을 포함하는 안테나어레이를 포함하며, 제1기지국(710)과 단말(720)의 전파채널이
Figure PCTKR2011009814-appb-I000058
이고 제1기지국(710)과 단말(720)의 전파 채널이
Figure PCTKR2011009814-appb-I000059
인 점에서 도 4를 참조하여 설명한 다른 실시예에 따른 협력형 다중 셀 통신시스템(400) 또는 도 6을 참조하여 설명한 또다른 실시예에 따른 협력형 다중 셀 통신시스템(600)과 동일하거나 실질적으로 동일할 수 있다.
Referring to FIG. 7, in the cooperative multi-cell communication system 700 according to another embodiment, two or more base stations, for example, two base stations 710 and 712 and a terminal 720 perform cooperative communication. The first base station 710 includes an antenna array including antennas polarized into two antenna groups 710a and 710b, and the second base station 712 includes two antenna groups 712a and 712b. And an antenna array including antennas polarized by the antenna, and a propagation channel between the first base station 710 and the terminal 720
Figure PCTKR2011009814-appb-I000058
And the propagation channel between the first base station 710 and the terminal 720
Figure PCTKR2011009814-appb-I000059
In this regard, it is the same as or substantially the same as the cooperative multi-cell communication system 400 according to another embodiment described with reference to FIG. 4 or the cooperative multi-cell communication system 600 according to another embodiment described with reference to FIG. 6. May be the same.
다만, 또다른 실시예에 따른 협력형 다중 셀 통신시스템(700)에서 두 개의 기지국들(710, 712)은 각각 프리코딩 행렬
Figure PCTKR2011009814-appb-I000060
과 프리코딩 행렬 을
Figure PCTKR2011009814-appb-I000061
사용하여 단말(620)에 전송하는 데이터심볼을 프리코딩하지 않고 각각
Figure PCTKR2011009814-appb-I000062
Figure PCTKR2011009814-appb-I000063
을 사용하여 단말(720)에 전송하는 데이터심볼을 프리코딩할 수 있다.
However, in the cooperative multi-cell communication system 700 according to another embodiment, the two base stations 710 and 712 are precoding matrices, respectively.
Figure PCTKR2011009814-appb-I000060
And the precoding matrix
Figure PCTKR2011009814-appb-I000061
Without precoding the data symbols transmitted to the terminal 620 using the
Figure PCTKR2011009814-appb-I000062
and
Figure PCTKR2011009814-appb-I000063
By using the data symbols transmitted to the terminal 720 can be precoded.
즉 제1기지국(710)은 제1기지국의 제2안테나 그룹(710b)에 해당하는 안테나들에 전력을 널링(nulling) 또는“0”으로 하여 신호를 공중으로 전파하지 않고 제1기지국의 제1안테나 그룹(710a)에 해당하는 안테나들만으로 신호를 공중으로 전파한다. 한편 제2기지국(712)은 제1기지국의 제1안테나 그룹(710a)과 극성이 동일한 제2기지국의 제1안테나 그룹(712a)에 해당하는 안테나들에 전력을 널링(nulling) 또는 “0”으로 하여 신호를 공중으로 전파하지 않고 제2기지국의 제2안테나 그룹(712b)에 해당하는 안테나들만으로 신호를 공중으로 전파할 수 있다. That is, the first base station 710 does not propagate a signal to the air by nulling or powering the antennas corresponding to the second antenna group 710b of the first base station to the first base station of the first base station. Only the antennas corresponding to the antenna group 710a propagate the signal to the air. Meanwhile, the second base station 712 nulls or “0” s powers to antennas corresponding to the first antenna group 712a of the second base station having the same polarity as the first antenna group 710a of the first base station. In this way, the signal may be propagated to the air by only antennas corresponding to the second antenna group 712b of the second base station without propagating the signal to the air.
다시말해 제1기지국(710)은 프리코딩 행렬의 구성요소들 중 제2안테나 그룹(710b)에 해당하는 안테나들에 대응하는 구성요소의 값들을 널링(nulling) 또는 “0”으로 하고 제1안테나 그룹(710a)에 해당하는 안테나들에 대응하는 구성요소들만을 유지하는 프리코딩 행렬을 사용하여 데이터심볼을 프리코딩할 수 있다. 반면에 제2기지국(712)은 프리코딩 행렬의 구성요소들 중 다른 극성의 제1안테나 그룹(712a)에 해당하는 안테나들에 대응하는 구성요소의 값들을 널링(nulling) 또는 “0”으로 하고 제2안테나 그룹(712b)에 해당하는 안테나들에 대응하는 구성요소들만을 유지하는 프리코딩 행렬을 사용하여 데이터심볼을 프리코딩할 수 있다.In other words, the first base station 710 nulls or “0” values of the components corresponding to the antennas corresponding to the second antenna group 710b among the components of the precoding matrix and nulls the first antenna. The data symbols may be precoded using a precoding matrix that maintains only the components corresponding to the antennas corresponding to the group 710a. On the other hand, the second base station 712 sets the values of the components corresponding to the antennas corresponding to the first antenna group 712a of different polarity among the components of the precoding matrix to be nulling or “0”. The data symbols may be precoded using a precoding matrix that maintains only the components corresponding to the antennas corresponding to the second antenna group 712b.
이때 제1기지국(710)이 구성요소들의 값을 널링(nulling) 또는 “0”으로 하는 안테나 그룹은 위상 일치 작업을 수행하는 위상 일치 요소(co-phase element)
Figure PCTKR2011009814-appb-I000064
를 포함하는 안테나 그룹일 수 있다. 왜냐하면 제1기지국(710)이 서빙 기지국에 해당하므로 단말(720)로부터 채널상태정보를 보고받아 제1기지국(710)과 제2기지국(712)의 협력형 통신의 위치 일치 작업을 수행하기 위해서이다.
At this time, the antenna group in which the first base station 710 nulls or sets the value of the components to “0” is a co-phase element for performing phase matching.
Figure PCTKR2011009814-appb-I000064
It may be an antenna group including a. Because the first base station 710 corresponds to the serving base station, the terminal 720 receives the channel state information from the terminal 720 to perform the location matching operation of the cooperative communication between the first base station 710 and the second base station 712. .
반대로 제2기지국(712)이 구성요소들의 값을 널링(nulling) 또는 “0”으로 하는 안테나 그룹은 위상 일치 작업을 수행하는 위상 일치 요소(co-phase element)
Figure PCTKR2011009814-appb-I000065
를 포함하지 않는 안테나 그룹일 수 있다.
On the contrary, the antenna group in which the second base station 712 nulls or sets the value of the elements to “0” is a co-phase element for performing phase matching.
Figure PCTKR2011009814-appb-I000065
It may be an antenna group that does not include.
따라서, 제1기지국(710)이 각각 두 개의 안테나 그룹들(710a, 710b) 중 하나의 그룹(710a)만을 사용하므로 안테나 전력을 2배로 증가시킬 수 있다. 이와 마찬가지로, 제2기지국(712)이 각각 두 개의 안테나 그룹들(712a, 712b) 중 하나의 그룹(712b)만을 사용하므로 안테나 전력을 2배로 증가시킬 수 있다. Therefore, since the first base station 710 uses only one group 710a of the two antenna groups 710a and 710b, the antenna power can be doubled. Similarly, since the second base station 712 uses only one group 712b of the two antenna groups 712a and 712b, respectively, the antenna power can be doubled.
단말(720)의 두 개의 안테나 그룹들이 수신하는 신호들은 다음 수학식과 같게 된다.The signals received by the two antenna groups of the terminal 720 are as shown in the following equation.
[수학식 20][Equation 20]
Figure PCTKR2011009814-appb-I000066
Figure PCTKR2011009814-appb-I000066
이때 XP 와 XM 은 각각 다른 정보( XP ≠ XM )일 수도 있고 같은 정보( XP = XM =x)일 수 도 있다. In this case, X P and X M may be different information (X P ≠ X M ) or the same information (X P = X M = x).
단말(720)의 두 개의 안테나 그룹들이 수신하는 신호들은 각각 위상 일치 작업을 수행하는 위상 일치 요소(co-phase element)를 포함하고 있다. 따라서, 서빙 기지국에 해당하는 제1기지국(710)이 위상 일치 요소(co-phase element), 예를 들어 1, -1, j, -j를 선택하므로 위상 일치 작업을 수행할 수 있다. The signals received by the two antenna groups of the terminal 720 each include a co-phase element that performs a phase matching operation. Accordingly, since the first base station 710 corresponding to the serving base station selects a co-phase element, for example, 1, -1, j, and -j, phase matching may be performed.
도 8은 또다른 실시예에 따른 협력형 다중 셀 통신시스템의 단말과 기지국들의 협력형 통신방법의 흐름도이다.8 is a flowchart illustrating a cooperative communication method between terminals and base stations of a cooperative multi-cell communication system according to another embodiment.
도 8을 참조하면, 다른 실시예에 따른 협력형 다중 셀 통신시스템의 단말과 기지국들의 협력형 통신방법(800)에서, 단말(820)은 각 기지국(810, 812)이 보내오는 참조신호들을 수신할 수 있다(S810, S815). 이때 단말(820)은 각 기지국(810, 812)의 전체 전송 안테나들, 예를 들어 8개의 전송 안테나들에 대한 참조신호를 모두 수신할 수 있다. 특히 기지국(810, 812)의 전송 안테나들이 편파되었을 때 단말(820)은 편파된 안테나들의 참조신호들을 수신할 수 있다.Referring to FIG. 8, in the cooperative communication method 800 of a terminal and base stations of a cooperative multi-cell communication system according to another exemplary embodiment, the terminal 820 receives reference signals transmitted from each base station 810, 812. (S810, S815). In this case, the terminal 820 may receive all reference signals for all transmission antennas of the base stations 810 and 812, for example, eight transmission antennas. In particular, when the transmission antennas of the base stations 810 and 812 are polarized, the terminal 820 may receive reference signals of the polarized antennas.
이때 다른 실시예에 따른 협력형 다중 셀 통신시스템은 협력형 다중 셀 통신시스템(400, 500, 600, 700)인 것으로 이하 설명하나 이에 제한되지 않는다. 몰론 이때 협력형 통신에 참여하는 기지국들은 도 5 내지 도 7에 도시한 바와 같이 2개일 수 있으나 이에 제한되지 않고 3개 이상일 수도 있다. 다만 설명의 편의를 위해 협력형 통신에 참여하는 두 개의 기지국들을 제1기지국(810)과 제2기지국(812)으로 설명한다.At this time, the cooperative multi-cell communication system according to another embodiment is a cooperative multi-cell communication system (400, 500, 600, 700) described below, but is not limited thereto. Of course, at this time, the base stations participating in the cooperative communication may be two, as shown in FIGS. 5 to 7, but may be three or more. However, for convenience of description, two base stations participating in the cooperative communication will be described as the first base station 810 and the second base station 812.
이후 단말(820)은 수신한 참조신호들을 이용하여 각 기지국(810, 812)의 안테나별 채널상태들 또는 채널행렬들을 추정할 수 있다(S820). Thereafter, the terminal 820 may estimate channel states or channel matrices of each antenna of the base stations 810 and 812 using the received reference signals (S820).
이후 단말(820)은 각 기지국(810, 812)의 각 채널상태들 또는 채널행렬들을 파악한 후 그 채널정보들 또는 채널상태정보들(CSI1과 CSI2)을 직접 또는 간접적으로 서빙 기지국에 해당하는 제1기지국(810)에 피드백하게 된다(S830). Thereafter, the terminal 820 identifies each channel state or channel matrix of each base station 810, 812 and then directly or indirectly corresponds to the serving base station or channel state information CSI 1 and CSI 2 . The first base station 810 is fed back (S830).
이때 제1기지국(810)의 채널상태정보는 전파채널
Figure PCTKR2011009814-appb-I000067
자체이거나 이 전파채널에 적합한 채널행렬을 지시하는 지시자 또는 인덱스일 수 있다. 예를 들어 단말(820)은 각 기지국들(810, 812)이 8개의 전송 안테나들(8Tx) 사용시에 적합한 프리코딩 행렬(precoder matrix)을 선정하고 이를 인자화하여 PMIn 1과 PMIn 2를 채널정보로 제1기지국(810)에 보고할 수 있다.
At this time, the channel state information of the first base station 810 is a propagation channel.
Figure PCTKR2011009814-appb-I000067
It may be itself or an indicator or index indicating a channel matrix suitable for this propagation channel. For example, the terminal 820 selects a precoder matrix suitable for each of the base stations 810 and 812 when using 8 transmit antennas 8Tx, and prints PMI n 1 and PMI n 2 by factoring them. The channel information may be reported to the first base station 810.
특히 제1기지국(810)이 이단 구조 프리코딩을 수행하는 경우 제1기지국(810)에 대한 채널상태정보는 W1과 W2에 대한 인덱스인 PMI1n 1과 PMI2n 1일 수 있다. 제2기지국(812)에 대한 채널상태정보도 제1기지국(810)에 대한 채널상태정보와 동일한 형태 또는 형식, 예를 들어 PMI1n 2과 PMI2n 2일 수 있다.In particular, when the first base station 810 performs two-stage precoding, the channel state information for the first base station 810 may be PMI1 n 1 and PMI2 n 1 which are indices for W 1 and W 2 . The channel state information for the second base station 812 may also be in the same form or format as the channel state information for the first base station 810, for example, PMI1 n 2 and PMI2 n 2 .
단말(820)은 각 기지국들(810, 812)의 각 채널상태들 또는 채널행렬들을 파악한 후 그 채널정보들 또는 채널상태정보들(CSI1과 CSI2)을 보고할 수 있다 (S825). S830단계에서 단말(820)은 보고된 채널상태정보들을 제1기지국(810)에 보고할 수 있다.The terminal 820 may identify the channel states or channel matrices of the base stations 810 and 812 and report the channel information or channel state information CSI 1 and CSI 2 (S825). In step S830, the terminal 820 may report the reported channel state information to the first base station 810.
예를 들어 단말(820)은 각 기지국들(810, 812)이 8개의 전송 안테나들(8Tx) 사용시에 적합한 프리코딩 행렬(precoder matrix)을 선정하고 이를 인자화하여 PMIn 1과 PMIn 2로 제1기지국(810)에 보고하는 대신, 단말(820)은 4개의 전송 안테나들(4Tx) 사용시에 적합한 프리코딩 행렬에 대한 인자 PMIn 1및 PMIn 2을 채널정보로 생성한다. PMIn 1및 PMIn 2에서 PMIn 1은 두 기지국들에서 수신된 신호들 간 위상 불일치를 보정의 수행(co-phasing)에 대한 정보가 포함된다. 다시말해 제1기지국의 전송 안테나가 2n개(n은 1 또는 1보다 큰 자연수)이고 제2기지국의 전송 안테나가 2m개(m은 n과 동일하거나 동일하지 않은 1 또는 1보다 큰 자연수)인 경우 단말(820)은 n개의 전송 안테나 사용시 적합한 프리코딩 행렬에 대한 인자 또는 지시자와 m개의 전송 안테나 사용시 적합한 하나의 프리코딩 행렬에 대한 지시자를 각각 생성할 수 있다. For example, the terminal 820 selects a precoder matrix suitable for each of the base stations 810 and 812 when using 8 transmit antennas 8Tx, and prints the precoder matrix to PMI n 1 and PMI n 2 . Instead of reporting to the first base station 810, the terminal 820 generates the parameters PMI n 1 and PMI n 2 for the precoding matrix suitable for use of the four transmit antennas 4Tx as channel information. In PMI n 1 and PMI n 2 , PMI n 1 includes information on co-phasing a phase mismatch between signals received at two base stations. In other words, if there are 2n transmit antennas of the first base station (n is a natural number greater than 1 or 1) and there are 2m transmit antennas of the second base station (m is a natural number greater than 1 or 1 not equal to or not equal to n). The terminal 820 may generate a factor or indicator for a suitable precoding matrix when using n transmit antennas and an indicator for one precoding matrix suitable when using m transmit antennas.
다른 예를 들어 단말(820)은 제1기지국(810)의 4개의 전송 안테나들과 제2기지국(812)의 4개의 전송 안테나들로 총 8개의 전송 안테나들을 사용시 적합한 하나의 프리코딩 행렬에 대한 하나의 인자 PMIn을 생성할 수 있다. 다시말해 제1기지국(810)의 전송 안테나가 2n개(n은 1 또는 1보다 큰 자연수)이고 제2기지국(812)의 전송 안테나가 2m개(m은 n과 동일하거나 동일하지 않은 1 또는 1보다 큰 자연수)인 경우 단말(820)은 (n+m)개의 전송 안테나 사용시 적합한 하나의 프리코딩 행렬에 대한 지시자를 생성할 수 있다. For another example, the terminal 820 may use a total of eight transmit antennas of the first base station 810 and four transmit antennas of the second base station 812, which may be used for one precoding matrix. One argument, PMI n , can be created. In other words, there are 2n transmit antennas of the first base station 810 (n is a natural number greater than 1 or 1) and 2m transmit antennas of the second base station 812 (m is 1 or 1 which is equal to or not equal to n). Greater than a natural number), the terminal 820 may generate an indicator for one precoding matrix suitable for using (n + m) transmit antennas.
위 예들을 통해 알 수 있는 바와 같이 단말(820)이 참조신호, 예를 들어 CRS(common RS) 또는 CSI-RS(Channel Status Information-RS)를 통해 채널을 측정한 안테나들 중 일부 안테나에 대해서만 채널상태정보(CSI)을 추정하고 이를 기지국들에 보고할 수 있다. 이 방법은 협력형 다중 셀 통신과 무관하게 어떤 형태 또는 모드의 통신시스템 또는 통신방법에 적용할 수도 있다. 예를 들어 8개의 안테나들 중 일부의 안테나들의 세기만이 임계값 이상인 경우 이 안테나들에 대한 채널상태정보만을 추정하거나 이 채널상태정보만을 기지국에 전송할 수도 있다. 결과적으로 불필요한 안테나들에 대한 채널상태정보의 추정 및/또는 전송을 제거할 수 있다.As can be seen through the above examples, only a portion of the antennas of the antennas in which the terminal 820 measures the channel through a reference signal, for example, common RS or CSI-RS (Channel Status Information-RS) The CSI can be estimated and reported to the base stations. This method may be applied to any type or mode of communication system or communication method regardless of cooperative multi-cell communication. For example, when only the strengths of some of the eight antennas are greater than or equal to a threshold value, only channel state information of the antennas may be estimated or only this channel state information may be transmitted to the base station. As a result, estimation and / or transmission of channel state information for unnecessary antennas can be eliminated.
또한, 위 예들을 통해 알 수 있는 바와 같이 단말(820)이 참조신호, 예를 들어 CRS 또는 CSI-RS를 통해 채널을 측정하여 얻어진 채널 측정값들 중 일부에 대해서만 채널상태정보를 추정하고 이를 기지국들에 보고할 수 있다. 예를 들어 8개의 CRS 또는 CSI-RS 전송 안테나들 중 일부 CRS 또는 CSI-RS 전송 안테나들의 세기만이 임계값 이상인 경우 해당 안테나들에 대한 채널상태정보만을 추정하거나 이 채널상태정보만을 기지국에 전송할 수도 있다.In addition, as can be seen from the above examples, the UE 820 estimates channel state information only for some of the channel measurement values obtained by measuring a channel through a reference signal, for example, CRS or CSI-RS, You can report them. For example, if only CRS or CSI-RS transmission antennas among the eight CRS or CSI-RS transmission antennas have strengths greater than or equal to a threshold value, only channel state information of the corresponding antennas may be estimated or only this channel state information may be transmitted to the base station. have.
이후 제1기지국(810)은 인접 기지국 또는 협력 기지국에 해당하는 제2기지국(812)에 제2기지국(812)에 해당하는 채널상태 또는 채널행렬에 대한 정보를 전달하게 된다(S840). 단말(820)이 제1기지국(810)의 4개의 전송 안테나들과 제2기지국(812)의 4개의 전송 안테나들로 총 8개의 전송 안테나들을 사용시 적합한 하나의 프리코딩 행렬에 대한 하나의 인자 PMIn을 보고한 경우 제1기지국(810)은 PMIn을 사용하여 프리코딩 행렬을 생성한 후 이 중 제2기지국(812)가 사용하여야 할 부분을 인자화하여 X2 인터페이스 또는 하나의 기지국 내에서 전송단 간 링크를 통해 제2기지국(812)에 제2기지국(812)에 대한 채널상태정보(CSI2)를 전달한다. Thereafter, the first base station 810 transmits information on the channel state or channel matrix corresponding to the second base station 812 to the second base station 812 corresponding to the neighboring base station or the cooperative base station (S840). One factor PMI for one precoding matrix suitable for the terminal 820 using a total of eight transmit antennas with four transmit antennas of the first base station 810 and four transmit antennas of the second base station 812. If n is reported, the first base station 810 generates a precoding matrix using PMI n , and then prints a portion that should be used by the second base station 812 and transmits it within the X2 interface or one base station. The channel state information (CSI 2 ) for the second base station 812 is transmitted to the second base station 812 through the inter-link.
이후 제1기지국(810)은 단말(820)과 협력형 MIMO 통신을 수행할 수 있다(S850). 이때 제1기지국(810)은 제1기지국(810)에 대한 채널상태정보를 이용하여 데이터심볼을 프리코딩하고 제1기지국(810)에 대한 채널상태정보와 제2기지국(812)에 대한 채널상태정보를 이용하여 데이터심볼을 위상 보정을 수행할 수 있다(S835). Thereafter, the first base station 810 may perform cooperative MIMO communication with the terminal 820 (S850). In this case, the first base station 810 precodes the data symbol by using the channel state information of the first base station 810, the channel state information of the first base station 810, and the channel state of the second base station 812. Phase correction may be performed on the data symbol using the information (S835).
다시 말해 도 6 및 도 7을 참조하여 설명한 바와 같이 제1기지국(810)은 제2안테나 그룹에 해당하는 안테나들 또는 제2안테나 그룹과 대응하는 프리코딩 행렬을 구성요소들만을 사용하여 데이터심볼을 프리코딩할 수 있다. 이때 프리코딩 행렬에는 위상 일치 요소를 포함하므로 제1기지국(810)은 제1기지국(810)에 대한 채널상태정보와 제2기지국(812)에 대한 채널상태정보를 이용하여 데이터심볼의 위상 보정을 수행할 수 있다.In other words, as described with reference to FIGS. 6 and 7, the first base station 810 uses the antennas corresponding to the second antenna group or the precoding matrix corresponding to the second antenna group to perform data symbols using only the components. Can be precoded. In this case, since the precoding matrix includes a phase matching element, the first base station 810 performs the phase correction of the data symbol by using the channel state information of the first base station 810 and the channel state information of the second base station 812. Can be done.
구체적으로 제1기지국(810)이 이단 구조 프리코딩을 수행하는 경우 “t”시점에서 제1기지국(810)에 대한 채널상태정보인 W1과 W2에 대한 인덱스인 PMI1t 1과 PMI2t 1을 사용하여 프리코딩 행렬들을 결정하여 데이터심볼의 이단 프리코딩을 수행할 수 있다.In more detail, when the first base station 810 performs two-stage precoding, PMI1 t 1 and PMI2 t 1 , which are indexes for W 1 and W 2, which are channel state information for the first base station 810 at the time of “t”. The two-stage precoding of the data symbols can be performed by determining the precoding matrices using.
이후 제2기지국(812)은 단말(820)과 협력형 MIMO 통신을 수행할 수 있다(S860). 이때 제2기지국(812)은 제1기지국(810)으로부터 전달받은 제2기지국에 대한 채널상태정보를 이용하여 데이터심볼을 프리코딩할 수 있다(S855). 다시 말해 도 6 및 도 7을 참조하여 설명한 바와 같이 제2기지국(812)은 제1안테나 그룹에 해당하는 안테나들 또는 제1안테나 그룹과 대응하는 프리코딩 행렬을 구성요소들만을 사용하여 데이터심볼을 프리코딩할 수 있다. 이때 제1안테나 그룹과 대응하는 프리코딩 행렬을 구성요소들은 위상 일치 요소를 포함하지 않으므로 제2기지국(812)는 데이터심볼의 위상 보정을 수행하지 않는다. Thereafter, the second base station 812 may perform cooperative MIMO communication with the terminal 820 (S860). In this case, the second base station 812 may precode the data symbol using the channel state information of the second base station received from the first base station 810 (S855). In other words, as described with reference to FIGS. 6 and 7, the second base station 812 uses the antennas corresponding to the first antenna group or the precoding matrix corresponding to the first antenna group only to perform data symbols. Can be precoded. In this case, since the components of the precoding matrix corresponding to the first antenna group do not include a phase matching element, the second base station 812 does not perform phase correction of the data symbol.
구체적으로 제2기지국(812)이 이단 구조 프리코딩을 수행하는 경우 “t”시점에서 제2기지국(812)에 대한 채널상태정보인 W1과 W2에 대한 인덱스인 PMI1t 2과 PMI2t 2을 사용하여 프리코딩 행렬들을 결정하여 데이터심볼의 이단 프리코딩을 수행할 수 있다.Specifically, when the second base station 812 performs two-stage precoding, PMI1 t 2 and PMI2 t 2 , which are indexes for W 1 and W 2, which are channel state information for the second base station 812 at the time “t”, are used. The two-stage precoding of the data symbols can be performed by determining the precoding matrices using.
상기 단말(820)은 “t+1”시점에 X2 인터페이스 또는 하나의 기지국 내에서 다른 셀간 전송을 담당하는 전송단 간 링크의 지연 또는 제1기지국(810) 및 제2기지국(812)의 채널상태정보의 처리지연으로 제2기지국(812)의 프리코딩 행렬의 업데이트 이전, 즉 제2기지국(812)으로부터 참조신호를 수신하여 제2기지국(812)의 채널을 추정하기 이전에 제1기지국(810)으로부터 참조신호를 수신하여 제1기지국(810)의 채널을 추정할 수 있다(S870).The terminal 820 is the delay of the link between the transmission end or the channel state of the first base station 810 and the second base station 812 that is responsible for the transmission between the other cells in the X2 interface or one base station at the time "t + 1" The first base station 810 before updating the precoding matrix of the second base station 812, that is, receiving a reference signal from the second base station 812 and estimating the channel of the second base station 812 due to the delay in processing the information. In operation S870, a channel of the first base station 810 may be estimated by receiving a reference signal from the reference signal.
S870 단계 이후에 단말(820)은 S830 단계와 동일하게 제1기지국과 제2기지국에 대한 채널상태정보들(CSIt+1 1과 CSIt+1 2)을 제1기지국(810)에 보고하는 단계를 반복할 수 있다(S880). S830 단계 이전에 채널상태정보들을 보고하는 S825 단계와 동일하게 단말(820)은 채널상태정보들을 보고할 수도 있다(S875). After step S870, the terminal 820 reports the channel state information (CSI t + 1 1 and CSI t + 1 2 ) for the first base station and the second base station to the first base station 810 in the same manner as step S830. The step may be repeated (S880). The terminal 820 may report the channel state information in the same manner as the step S825 of reporting the channel state information before the step S830 (S875).
이때 제1기지국(810)은 t+1 시점의 제1기지국에 대한 채널상태정보(CSIt+1 1)로 데이터심볼을 프리코딩하고 t+1 시점의 제1기지국과 제2기지국에 대한 채널상태정보들(CSIt+1 1과 CSIt+1 2)과 함께 t 시점의 제2기지국의 채널상태정보(CSIt 2)를 사용하여 위상 보정을 수행할 수 있다(S885). 이후 제1기지국(810)은 단말(820)과 협력형 MIMO 통신을 수행할 수 있다(S890). 구체적으로 제1기지국(810)이 이단 구조 프리코딩을 수행하는 경우 제1기지국(810)은 t+1 시점의 제1기지국과 제2기지국에 대한 채널상태정보들(CSIt+1 1과 CSIt+1 2)과 함께 “t”시점에서 제2기지국(810)에 대한 채널상태정보인 W1과 W2에 대한 인덱스인 PMI1t 2과 PMI2t 2을 사용하여 데이터심볼의 이단 프리코딩, 구체적으로 위상 일치 작업을 수행할 수 있다. 또한 널링(Nulling) 및 위상 보정 작업 시, 단말과 상향링크(uplink)로 연결되어 있어 보다 원활히 채널 정보를 습득할 수 있는 전송단이 위상 보정 작업을 수행하도록 널링하고 그렇지 않은 전송단이 위상 보정 작업을 수행하도록 하여 X2 인터페이스를 통한 채널 정보 교환 지연에 의한 위상 보정 오류 효과를 줄일 수 있다.At this time, the first base station 810 precodes the data symbol with the channel state information (CSI t + 1 1 ) of the first base station at time t + 1, and the channel for the first base station and the second base station at time t + 1. The phase correction may be performed using the channel state information CSI t 2 of the second base station at time t together with the state information CSI t + 1 1 and CSI t + 1 2 (S885). Thereafter, the first base station 810 may perform cooperative MIMO communication with the terminal 820 (S890). In detail, when the first base station 810 performs two-stage precoding, the first base station 810 may transmit channel state information (CSI t + 1 1 and CSI) for the first base station and the second base station at time t + 1. t + 1 2 ) and two- stage precoding of data symbols using PMI1 t 2 and PMI2 t 2, which are indexes for W 1 and W 2, which are channel state information for the second base station 810 at the time “t”, In more detail, phase matching may be performed. In addition, in the nulling and phase correction operations, the uplink is connected to the UE in an uplink, so that the transmitting terminal capable of acquiring channel information more smoothly performs the phase correction operation. By doing this, it is possible to reduce the effect of phase correction error due to the delay of channel information exchange through the X2 interface.
한편, 협력형 통신에 참여하는 기지국들의 수가 3개 이상이 경우 3개 이상의 기지국들과 단말(820)이 협력형 MIMO 통신을 수행하게 된다.Meanwhile, when the number of the base stations participating in the cooperative communication is three or more, the three or more base stations and the terminal 820 perform the cooperative MIMO communication.
따라서 도 8를 참조하여 설명한 협력형 다중 셀 통신방법(800)은 채널정보에 따라 프리코딩을 구현하는 과정에서 프리코딩 지연(precoding delay) 또는 연산 지연(processing delay)이 발생하는 것을 고려하여 기지국들이 프리코딩 또는 위상 보정하므로 기지국들은 보다 효과적인 협력형 통신을 할 수 있고 최소한의 보고로 CoMP에 적합한 프리코딩을 구현할 수 있다. Accordingly, in the cooperative multi-cell communication method 800 described with reference to FIG. 8, the base stations may be configured in consideration of occurrence of a precoding delay or a processing delay in the process of implementing precoding according to channel information. Precoding or phase correction allows base stations to more efficiently collaborate and implement CoMP-compliant precoding with minimal reporting.
도 9는 또다른 실시예에 따른 협력형 다중 셀 통신시스템에서 기지국들과 단말 각각의 구성도이다. 9 is a configuration diagram of each of the base stations and the terminal in the cooperative multi-cell communication system according to another embodiment.
도 9를 참조하면, 또다른 실시예에 따른 협력형 다중 셀 무선통신시스템(900)은 단말(920)과 협력형 통신을 수행하는 적어도 두개의 기지국들(910, 912)을 포함할 수 있다. 이때 단말(920)과 기지국들(910, 912)은 도 1 내지 도 8을 참조하여 설명한 협력형 다중 셀 무선통신시스템에서 참조신호의 송수신 및 채널정보들의 교환, 협력형 다중 통신을 수행한다.Referring to FIG. 9, the cooperative multi-cell wireless communication system 900 according to another embodiment may include at least two base stations 910 and 912 for performing cooperative communication with the terminal 920. In this case, the terminal 920 and the base stations 910 and 912 perform transmission and reception of reference signals, exchange of channel information, and cooperative multiplex communication in the cooperative multicell wireless communication system described with reference to FIGS. 1 to 8.
단말(920)은 하향링크 채널을 통해 신호를 수신하는 안테나 어레이(921)와 수신한 신호를 처리하고 프리코딩 행렬을 이용하여 원래의 데이터 심볼로 디코딩하는 포스트 디코더(post-decoder, 922), 채널정보 피드백장치(924)를 포함한다.The terminal 920 is an antenna array 921 for receiving a signal through a downlink channel, a post-decoder 922 for processing the received signal and decoding the original data symbol using a precoding matrix. An information feedback device 924.
안테나 어레이(921)는 다수의 안테나들을 사용할 수 있다. 이때 안테나 어레이(921)은 편파 안테나어레이를 형성할 수도 있다. 통신시스템에서 한정된 공간에 보다 많은 안테나들을 배열하기 위해 서로 다른 편파를 가지는 두 개의 안테나들을 교차하여 설치한 이중 편파 안테나 어레이(dual polarized antenna array)를 사용하여 안테나어레이를 구현할 수도 있다. Antenna array 921 may use multiple antennas. In this case, the antenna array 921 may form a polarized antenna array. In order to arrange more antennas in a limited space in a communication system, an antenna array may be implemented using a dual polarized antenna array in which two antennas having different polarizations are alternately installed.
포스트 디코더(922)는 후술하는 기지국들(910, 912)의 프리코더들에 대응된다. 포스트 디코더(922)는 기지국들(910, 912)로부터 수신한 참조신호들을 채널정보 피드백장치(924)에 전달한다.The post decoder 922 corresponds to the precoders of the base stations 910 and 912 described later. The post decoder 922 transfers the reference signals received from the base stations 910 and 912 to the channel information feedback device 924.
채널정보 피드백장치(924)는 참조신호들을 수신하고 이 참조신호들을 이용하여 기지국들(910, 912)의 채널들을 추정할 수 있다. 채널정보 피드백장치(924)는 도 5 및 도 8을 참조하여 설명한 제1기지국에 대한 채널정보(이하, ‘제1채널상태정보’라 함)와 제2기지국에 대한 채널정보(이하, ‘제2채널상태정보’라 함)를 포함하는 채널정보를 생성할 수 있다. 채널정보 피드백장치(924)는 이 채널정보들을 서빙 기지국에 해당하는 제1기지국(910)에 피드백할 수 있다. The channel information feedback apparatus 924 may receive the reference signals and estimate the channels of the base stations 910 and 912 by using the reference signals. The channel information feedback device 924 includes channel information (hereinafter referred to as 'first channel status information') for the first base station described with reference to FIGS. 5 and 8 and channel information for the second base station (hereinafter, referred to as 'first'). Channel information, including '2 channel status information'. The channel information feedback device 924 may feed back the channel information to the first base station 910 corresponding to the serving base station.
저장된제1기지국(910)에 대한 코드북으로부터 선택된 제1기지국(910)에 대한 프리코딩 행렬을 지시하는 지시자 또는 식별자(PMI)를 제1채널상태정보로 생성할 수 있다. 마찬가지로 채널정보 피드백장치(924)는 저장된 제2기지국(912)에 대한 코드북으로부터 선택된 제2기지국(912)에 대한 프리코딩 행렬을 지시하는 지시자 또는 식별자(PMI)를 제2채널상태정보로 생성할 수 있다.An indicator or identifier (PMI) indicating a precoding matrix for the first base station 910 selected from the stored codebook for the first base station 910 may be generated as the first channel state information. Similarly, the channel information feedback apparatus 924 generates an indicator or identifier (PMI) indicating a precoding matrix for the second base station 912 selected from the stored codebook for the second base station 912 as the second channel state information. Can be.
이때 채널정보 피드백장치(924)는 도 8을 참조하여 설명한 바와 같이 각 기지국들(910, 912)이 8개의 전송 안테나들(8Tx) 사용시에 적합한 프리코딩 행렬(precoder matrix)을 선정하고 이를 인자화하여 PMIn 1과 PMIn 2를 채널정보로 생성하거나 기지국들(910, 912)이 4개의 전송 안테나들(4Tx) 사용시에 적합한 프리코딩 행렬에 대한 인자 PMIn 1및 PMIn 2을 채널정보로 생성하거나, 제1기지국(910)의 4개의 전송 안테나들과 제2기지국(812)의 4개의 전송 안테나들로 총 8개의 전송 안테나들을 사용시 적합한 하나의 프리코딩 행렬에 대한 하나의 인자 PMIn을 생성할 수 있다.In this case, the channel information feedback device 924 selects and prints a precoder matrix suitable for each of the base stations 910 and 912 when using eight transmit antennas 8Tx as described with reference to FIG. 8. PMI n 1 and PMI n 2 are generated as channel information, or the base stations 910 and 912 use the channel information PMI n 1 and PMI n 2 for a precoding matrix suitable for the use of four transmit antennas 4Tx. Generate one factor PMI n for one precoding matrix suitable for use with a total of eight transmit antennas with four transmit antennas of the first base station 910 and four transmit antennas of the second base station 812 Can be generated.
채널정보 피드백장치(924)는 제1채널상태정보와 제2채널상태정보를 포함하는 하나의 채널정보를 제1기지국(910)에 피드백할 수도 있고 제1채널상태정보와 제2채널상태정보를 별도로 제1기지국(910)에 피드백할 수도 있고 제1채널상태정보와 제2채널상태정보를 보고한 하나의 채널정보를 제1기지국(910)에 피드백할 수 있다. 채널정보 피드백장치(924)가 채널정보를 피드백하는 주기나 채널, 형식은 제한되지 않고 다양할 수 있다. The channel information feedback apparatus 924 may feed back one channel information including the first channel status information and the second channel status information to the first base station 910 and provide the first channel status information and the second channel status information. Separately, the first base station 910 may be fed back, or one channel information reporting the first channel state information and the second channel state information may be fed back to the first base station 910. The period, channel, or format through which the channel information feedback device 924 feeds back channel information may be various.
채널정보 피드백장치(924)는 제1기지국(910)의 구성요소 중 하나, 예를 들어 스케줄러(940)에 전술한 다양한 형태의 채널정보를 피드백할 수 있다.The channel information feedback apparatus 924 may feed back the aforementioned various types of channel information to one of the components of the first base station 910, for example, the scheduler 940.
제1기지국(910)은 코드워드를 레이어에 맵핑하는 레이어 맵퍼(930)와 레이어 매핑된 데이터 심볼들을 프리코딩 행렬을 이용하여 프리코딩하는 포함하는 프리코더(932), 프리코딩된 신호를 공중으로(on air)으로 전송하는 안테나 어레이(938)를 포함한다. 제1기지국(910)은 프리코딩 행렬을 결정하거나 MIMO 전송모드를 결정하거나 MU-MIMO시 단말을 선택하는 등 제1기지국의 자원할당 및 관리를 수행하는 스케줄러(940)을 포함한다. The first base station 910 includes a layer mapper 930 for mapping a codeword to a layer, and a precoder 932 for precoding the layer-mapped data symbols using a precoding matrix, and a precoded signal to the air. antenna array 938 for transmitting on air. The first base station 910 includes a scheduler 940 that performs resource allocation and management of the first base station, such as determining a precoding matrix, determining a MIMO transmission mode, or selecting a terminal in MU-MIMO.
프리코더(932)는 데이터 심볼들을 프리코딩하는 제1프리코더(934)와 제2프리코더(936)를 포함할 수 있다. 이때 제1프리코더(934)과 제2프리코더(936)는 각각 자신의 제1프리코딩 행렬과 제2프리코딩 행렬에 의해 데이터 심볼들을 프리코딩할 수 있다. 도 6 및 도 7을 참조하여 설명한 바와 같이 프리코더(932)는 제2안테나 그룹에 해당하는 안테나들 또는 제2안테나 그룹과 대응하는 프리코딩 행렬을 구성요소들만을 사용하여 데이터심볼을 프리코딩할 수 있다. The precoder 932 may include a first precoder 934 and a second precoder 936 for precoding data symbols. In this case, the first precoder 934 and the second precoder 936 may precode the data symbols by their first precoding matrix and the second precoding matrix, respectively. As described with reference to FIGS. 6 and 7, the precoder 932 may precode the data symbol using only the components of the antennas corresponding to the second antenna group or the precoding matrix corresponding to the second antenna group. Can be.
제1기지국(910)과 마찬가지로 제2기지국(912)도 레이어 맵퍼(942)와 제1프리코더(946)와 제2프리코더(948)을 포함하는 프리코더(944), 안테나 어레이(950), 스케줄러(952)를 포함할 수 있다. Like the first base station 910, the second base station 912 also includes a layer mapper 942, a first precoder 946, and a second precoder 948, and an antenna array 950. And a scheduler 952.
도 6 및 도 7을 참조하여 설명한 바와 같이 제1기지국(910)의 프리코더(932)는 제2안테나 그룹에 해당하는 안테나들 또는 제2안테나 그룹과 대응하는 프리코딩 행렬을 구성요소들만을 사용하여 데이터심볼을 프리코딩하고 제2기지국(912)의 프리코더(944)는 제1안테나 그룹에 해당하는 안테나들 또는 제1안테나 그룹과 대응하는 프리코딩 행렬을 구성요소들만을 사용하여 데이터심볼을 프리코딩할 수 있다.As described with reference to FIGS. 6 and 7, the precoder 932 of the first base station 910 uses only components corresponding to antennas corresponding to the second antenna group or a precoding matrix corresponding to the second antenna group. The data symbol is precoded, and the precoder 944 of the second base station 912 uses the antennas corresponding to the first antenna group or the precoding matrix corresponding to the first antenna group using only the components. Can be precoded.
제1기지국(910)의 안테나 어레이(938)과 제2기지국(912)의 안테나 어레이(950)는 도 3 및 도 4, 도 6, 도 7에 도시한 이중 편파 안테나 어레이(dual polarized antenna array)를 사용하여 어레이를 구현할 수도 있다. The antenna array 938 of the first base station 910 and the antenna array 950 of the second base station 912 are the dual polarized antenna arrays shown in FIGS. 3 and 4, 6, and 7. You can also implement the array using.
제1기지국(910)의 스케줄러(940)은 안테나 어레이(938)을 통해 단말(920)의 채널정보 피드백장치(924)로부터 제1채널상태정보와 제2채널상태정보를 포함하는 채널정보를 보고/피드백받을 수 있다.The scheduler 940 of the first base station 910 reports the channel information including the first channel state information and the second channel state information from the channel information feedback device 924 of the terminal 920 through the antenna array 938. Can receive feedback
제1기지국(910)의 스케줄러(940)는 각 단말(920)로부터 보고받은 채널정보에 포함된 제1채널상태정보 및/또는 제2채널상태정보 기초로 이용하여 제1프리코더(934)와 제2프리코더(936)의 프리코딩 행렬들을 결정하고 그 프리코딩 행렬들을 이용하여 데이터심볼들을 프리코딩한다. 이때 도 8을 참조하여 설명한 바와 같이 제1기지국(910)의 스케줄러(940)는 “t”시점에서 제1기지국(910)에 대한 제1채널상태정보인 PMI1t 1과 PMI2t 1을 사용하여 프리코딩 행렬들을 결정하여 데이터심볼의 이단 프리코딩을 수행할 수 있다. 특히 제1기지국(910)의 스케줄러(940)는 제1기지국에 대한 제1채널상태정보와 제2기지국에 대한 제1채널상태정보를 사용하여 위상 보정을 수행하도록 프리코딩 행렬을 결정한다.The scheduler 940 of the first base station 910 uses the first precoder 934 as a basis for the first channel state information and / or the second channel state information included in the channel information reported from each terminal 920. The precoding matrices of the second precoder 936 are determined and the data symbols are precoded using the precoding matrices. In this case, as described with reference to FIG. 8, the scheduler 940 of the first base station 910 uses PMI1 t 1 and PMI2 t 1, which are first channel state information for the first base station 910 at the time “t”. By determining the precoding matrices, two-stage precoding of the data symbol can be performed. In particular, the scheduler 940 of the first base station 910 determines the precoding matrix to perform phase correction using the first channel state information for the first base station and the first channel state information for the second base station.
한편 X2 인터페이스 또는 하나의 기지국 내에서 다른 셀간 전송을 담당하는 전송단 간 링크의 지연 또는 제1기지국(910) 및 제2기지국(912)의 채널상태정보의 처리지연으로 제2기지국(912)의 프리코딩 행렬의 업데이트 이전인 “t+1”시점에, 제1기지국(910)의 스케줄러(940)는 t+1 시점의 제1기지국과 제2기지국에 대한 채널상태정보들(CSIt+1 1과 CSIt+1 2)과 함께 “t”시점에서 제2기지국(810)에 대한 채널상태정보인 W1과 W2에 대한 인덱스인 PMI1t 2과 PMI2t 2을 사용하여 데이터심볼의 이단 프리코딩, 구체적으로 위상 일치를 수행할 수 있다.On the other hand, the second base station 912 may have a delay between the X-interface or a link between the transmitting end that is responsible for inter-cell transmission within one base station or processing delay of the channel state information of the first base station 910 and the second base station 912. Before the update of the precoding matrix, the " t + 1 " point of time, the scheduler 940 of the first base station 910 receives the channel state information (CSI t + 1 ) for the first base station and the second base station at the time t + 1. 1 and CSI t + 1 2 ) together with the data symbols using the PMI1 t 2 and PMI2 t 2 indexes for W 1 and W 2, which are channel state information for the second base station 810, at the time “t”. Precoding, specifically phase matching.
한편, 제1기지국(910)의 스케줄러(940)는 제2기지국(812)의 제2채널상태정보(CSI2)를 X2 인터페이스 또는 하나의 기지국 내에서 다른 셀간 전송을 담당하는 전송단 간 링크를 통해 제2기지국(912)에 전달한다.On the other hand, the scheduler 940 of the first base station 910 transmits the second channel state information CSI 2 of the second base station 812 to an X2 interface or an inter-transmission link that is responsible for inter-cell transmission within one base station. It passes to the second base station 912 through.
제2기지국(912)는 제1기지국(910)으로부터 전달받은 제2채널상태정보로 데이터심볼을 프리코딩할 수 있다.The second base station 912 may precode the data symbol with the second channel state information received from the first base station 910.
결과적으로 제1기지국(910)과 제2기지국(912)는 단말(920)과 협력형 통신을 수행할 수 있다. As a result, the first base station 910 and the second base station 912 may perform cooperative communication with the terminal 920.
도 10은 또다른 실시예에 따른 송신장치의 통신방법의 흐름도이다.10 is a flowchart illustrating a communication method of a transmitting apparatus according to another embodiment.
도 10을 참조하면, 또다른 실시예에 따른 송신장치의 통신방법(1000)는 전파 채널을 추정하기 위한 참조신호를 단말에 전송하는 참조신호 전송단계(S1010)과 송신장치가 서빙 기지국에 해당하는 경우 단말로부터 또는 송신장치가 협력 기지국에 해당하는 경우 다른 송신장치를 통해 채널정보를 수신하는 채널정보 수신단계(S1020), 둘 이상의 안테나들을 통해 프리코딩된 심볼 또는 신호를 공중으로 전파하는 전송단계(S1030)을 포함할 수 있다. Referring to FIG. 10, a communication method 1000 of a transmitting apparatus according to another embodiment includes a reference signal transmitting step (S1010) of transmitting a reference signal for estimating a propagation channel to a terminal and a transmitting apparatus corresponding to a serving base station. In the case where the terminal or the transmitting apparatus corresponds to a cooperative base station, the channel information receiving step of receiving channel information through another transmitting apparatus (S1020), and transmitting the air pre-coded symbols or signals through two or more antennas ( S1030) may be included.
전송단계(S1030)는 코드워드를 레이어에 맵핑하는 레이어 맵핑 단계(S1032)과 심볼들을 프리코딩하는 프리코딩 단계(S1034), 둘 이상의 안테나들을 통해 프리코딩된 심볼을 공중으로 전파하는 전송단계(S1036)을 포함할 수 있다. The transmitting step S1030 includes a layer mapping step S1032 of mapping a codeword to a layer, a precoding step S1034 of precoding symbols, and a transmission step of propagating a precoded symbol to the air through two or more antennas (S1036). ) May be included.
도 10을 참조하여 설명한 각 단계들은 도 1 내지 도 9를 참조하여 설명한 바와 동일하므로 구체적인 설명을 생략한다. Each step described with reference to FIG. 10 is the same as described with reference to FIGS. 1 to 9, and thus a detailed description thereof will be omitted.
이상, 또다른 실시예에 따른 송신장치의 통신방법에 대해 기재하였으나, 이하 또다른 실시예에 따른 수신장치의 통신방법에 대해 기재한다. In the above, the communication method of the transmission apparatus according to another embodiment has been described. Hereinafter, the communication method of the reception apparatus according to another embodiment will be described.
도 11은 또다른 실시예에 따른 수신장치의 통신방법의 흐름도이다.11 is a flowchart of a communication method of a receiving apparatus according to another embodiment.
도 11를 참조하면, 또다른 실시예에 따른 수신장치의 통신방법(1100)은 송신장치들로부터 참조신호들을 수신하는 참조신호 수신단계(S1110)과 채널정보를 송신장치에 전송하는 채널정보 전송단계(S1120), 송신장치로부터 전송된 신호를 수신하는 전송신호 수신단계(S1130)을 포함한다.Referring to FIG. 11, a communication method 1100 of a receiving apparatus according to another embodiment includes a reference signal receiving step S1110 for receiving reference signals from transmitting apparatuses and a channel information transmitting step of transmitting channel information to the transmitting apparatus. In operation S1120, a transmission signal reception step S1130 for receiving a signal transmitted from a transmission device is included.
채널정보 전송단계(S1120)는 참조신호들을 이용하여 송신장치들과의 채널을 추정하는 채널추정단계(S1122), 추정된 채널들에 기초하여 제1채널상태정보와 제2채널상태정보를 포함하는 채널정보를 생성하는 채널정보 생성단계(S1124), 이 채널정보를 송신장치들 중 적어도 하나에 피드백하는 패드백단계(S1126)를 포함할 수 있다. The channel information transmitting step S1120 includes a channel estimating step S1122 for estimating a channel with transmission apparatuses using reference signals, and includes first channel state information and second channel state information based on the estimated channels. A channel information generation step (S1124) of generating channel information, and a padback step (S1126) of feeding back the channel information to at least one of the transmitting apparatuses may be included.
도 10을 참조하여 설명한 각 단계들도 도 1 내지 도 9를 참조하여 설명한 바와 동일하므로 구체적인 설명을 생략한다.  Each step described with reference to FIG. 10 is also the same as described with reference to FIGS. 1 to 9, and thus a detailed description thereof will be omitted.
이상 도면을 참조하여 실시예들을 상세히 설명하였으나 본 발명은 이에 제한되지 않는다.Although the embodiments have been described in detail with reference to the drawings, the present invention is not limited thereto.
전술한 실시예들은 두 개 이상의 기지국들이 하나의 편파 이중 안테나들을 사용하여 신호들을 전송할 때 하나의 기지국은 안테나 그룹들 중 하나의 안테나 그룹만을 사용하고 다른 기지국은 극성이 다른 안테나 그룹만을 사용하여 신호들을 전송하는 것으로 설명하였으나 본 발명은 이에 제한되지 않는다. In the above-described embodiments, when two or more base stations transmit signals using one polarized dual antennas, one base station uses only one antenna group among the antenna groups and the other base station uses only antenna groups having different polarities. Although described as transmitting, the present invention is not limited thereto.
예를 들어 도 12 및 도 13에 도시한 바와 같이 하나의 기지국(1200)이 적어도 두 개의 안테나 어레이들(1210, 1212)을 포함할 수 있다. 이때 하나의 기지국(1200)의 안테나 어레이들(1210, 1212) 각각은 전술한 기지국들, 예를 들어 도 도 6의 제1기지국(610)과 제2기지국(612)과 동일한 방식으로 협력형 통신을 수행할 수 있다. 이때 하나의 기지국(1200)의 안테나 어레이들(1210, 1212) 각각은 다른 기지국과 협력형 통신을 수행할 수도 있고 안테나 어레이들(1210, 1212) 사이 협력형 통신을 수행할 수도 있다. For example, as illustrated in FIGS. 12 and 13, one base station 1200 may include at least two antenna arrays 1210 and 1212. At this time, each of the antenna arrays 1210 and 1212 of one base station 1200 is cooperative communication in the same manner as the aforementioned base stations, for example, the first base station 610 and the second base station 612 of FIG. Can be performed. At this time, each of the antenna arrays 1210 and 1212 of one base station 1200 may perform cooperative communication with another base station or perform cooperative communication between the antenna arrays 1210 and 1212.
전자의 경우 하나의 기지국(1200)의 안테나 어레이들(1210, 1212) 각각은 전술한 도 6의 제1기지국(610)과 제2기지국(612)처럼 동작할 수 있다. 즉 하나의 기지국(1200)의 안테나 어레이들 중 하나(1210)는 하나의 안테나 그룹(1210b)만을 사용하고 다른 기지국, 예를 들어 도 6의 제1기지국(610)은 극성이 다른 안테나 그룹(610a)만을 사용하여 MIMO 전송할 수도 있다.In the former case, each of the antenna arrays 1210 and 1212 of one base station 1200 may operate like the first base station 610 and the second base station 612 of FIG. 6. That is, one of the antenna arrays 1210 of one base station 1200 uses only one antenna group 1210b and another base station, for example, the first base station 610 of FIG. 6 has a different polarity antenna group 610a. ) Can also be used for MIMO transmission.
후자의 경우 도 13에 도시한 바와 같이 참조신호들을 전송할 때는 두 개의 안테나 어레이들(1210, 1212)에 포함된 모든 안테나들을 사용하나 MIMO 전송시 안테나 어레이들 중 하나(1210)는 하나의 안테나 그룹(1210b)만을 사용하고 다른 안테나 어레이(1212)는 다른 안테나 그룹(1212a)만을 사용하여 신호들을 전송할 수 있다.In the latter case, as shown in FIG. 13, all antennas included in the two antenna arrays 1210 and 1212 are used to transmit the reference signals, but one of the antenna arrays 1210 is one antenna group during MIMO transmission. Only 1210b may be used and another antenna array 1212 may transmit signals using only another antenna group 1212a.
이때 기지국(1210)은 안테나 어레이들 안테나 어레이들(1210, 1212) 각각에 대응하는 레이어 맵퍼들과 프리코더들을 포함할 수도 있고 안테나 어레이들이 공유하는 하나의 레이어 맵퍼와 프리코더를 포함할 수도 있다. At this time, the base station 1210 may include layer mappers and precoders corresponding to each of the antenna arrays 1210 and 1212, or may include one layer mapper and a precoder shared by the antenna arrays.
전술한 실시예들에서 기지국들의 전송 안테나들의 개수가 8개인 것으로 설명하였으나 이에 제한되지 않는다. 예를 들어 기지국들의 전송 안테나들의 개수는 2n개(n은 1 또는 1보다 큰 자연수)일 수 있다. 마찬가지로 단말의 전송 안테나의 개수도 2n개(n은 1 또는 1보다 큰 자연수)일 수 있다. In the above embodiments, the number of transmit antennas of the base stations is described as eight, but is not limited thereto. For example, the number of transmit antennas of the base stations may be 2n (n is 1 or a natural number greater than 1). Similarly, the number of transmit antennas of the terminal may also be 2n (n is 1 or a natural number greater than 1).
또한, 전술한 실시예에서 기지국들과 단말이 전송 안테나들과 수신 안테나들을 모두 사용하는 것으로 설명하였으나 안테나들의 일부만을 사용하거나 전부와 일부를 선택적으로 사용할 수도 있다.In addition, in the above-described embodiment, the base station and the terminal have been described as using both the transmit antennas and the receive antennas. However, only some of the antennas may be used, or all and some may be selectively used.
따라서, 본 명세서에서 하나의 기지국에 두 개 이상의 안테나 그룹들을 각각 포함하는 2개 이상의 안테나어레이들도 전술한 바와 같이 별도의 기지국들로 해석될 수 있다.Accordingly, in the present specification, two or more antenna arrays each including two or more antenna groups in one base station may be interpreted as separate base stations as described above.
전술한 실시예에서 두 개 이상의 기지국과 단말이 하향링크 협력형 통신을 수행하는 것으로 설명하였으나 두 개 이상의 단말들과 하나 이상의 기지국이 상향링크 협력형 통신을 수행할 수 있다. 이때 단말들 각각의 안테나 어레이는 두 개의 안테나그룹 중 각각 하나씩을 사용할 수 있다. In the above-described embodiment, two or more base stations and terminals are described as performing downlink cooperative communication. However, at least two terminals and at least one base station may perform uplink cooperative communication. In this case, each antenna array of the terminals may use one of two antenna groups.
전술한 실시예에서 기지국들과 단말(들)이 두 개의 안테나그룹들을 포함하는 것으로 설명하였으나 공간활용도를 넓히기 위해 세 개 이상의 안테나그룹들을 포함할 수 있다. 예를 들어 세 개의 안테나 그룹들이 각각 60도씩 편파될 수 있다.In the above-described embodiment, the base station and the terminal (s) have been described as including two antenna groups, but may include three or more antenna groups to increase the space utilization. For example, three antenna groups may be polarized by 60 degrees each.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2010년 12월 30일 한국에 출원한 특허출원번호 제 10-2010-0138654 호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application claims priority under Patent Application No. 10-2010-0138654, filed with South Korea on December 30, 2010, pursuant to Article 119 (a) (35 USC § 119 (a)). All content is incorporated by reference in this patent application. In addition, if this patent application claims priority to a country other than the United States for the same reason, all its contents are incorporated into this patent application by reference.

Claims (17)

  1. 협력형 다중 셀 통신시스템에서, In a cooperative multi-cell communication system,
    적어도 둘 이상의 기지국들 중 적어도 하나의 기지국은 서로 다른 편파의 두 개 이상의 안테나그룹들 중 적어도 하나의 안테나 그룹을 통해 단말에 신호를 전송하는 전송단계; 및 At least one of the at least one base station of the at least one base station transmitting a signal to the terminal through at least one antenna group of two or more antenna groups of different polarization; And
    상기 기지국들 중 상기 적어도 하나의 기지국을 제외한 다른 하나의 기지국은 서로 다른 편파의 두 개 이상의 안테나그룹들 중 상기 적어도 하나의 안테나그룹과 극성이 다른 편파의 안테나그룹을 통해 상기 단말에 신호를 전송하는 전송단계를 포함하는 협력형 다중 셀 통신시스템의 협력형 통신방법.The other base station except for the at least one base station of the base station transmits a signal to the terminal through the antenna group of the polarization polarization is different from the at least one antenna group of the two or more antenna groups of different polarization Cooperative communication method of a cooperative multi-cell communication system comprising a transmission step.
  2. 협력형 다중 셀 통신시스템에서, In a cooperative multi-cell communication system,
    제1기지국은 서로 다른 편파의 두 개 이상의 안테나그룹들 중 적어도 하나의 안테나 그룹에 대응하는 프리코딩 행렬의 구성요소들만으로 데이터심볼을 프리코딩하여 단말에 신호를 전송하는 단계; 및 The first base station transmits a signal to the terminal by precoding the data symbols using only components of a precoding matrix corresponding to at least one antenna group of two or more antenna groups of different polarizations; And
    제2기지국은 서로 다른 편파의 두 개 이상의 안테나그룹들 중 상기 적어도 하나의 안테나 그룹과 극성이 다른 편파의 안테나그룹에 대응하는 프리코딩 행렬의 구성요소들만으로 데이터심볼을 프리코딩하여 상기 단말에 신호를 전송하는 단계를 포함하는 협력형 다중 셀 통신시스템의 협력형 통신방법.The second base station precodes a data symbol using only components of a precoding matrix corresponding to the at least one antenna group of two or more antenna groups of different polarizations and the antenna group of a polarization having a different polarity, thereby providing a signal to the terminal. A cooperative communication method of a cooperative multi-cell communication system comprising the step of transmitting.
  3. 제2항에 있어서,The method of claim 2,
    상기 제1기지국의 프리코딩 행렬의 구성요소들은 위상 일치 요소를 포함하며, The components of the precoding matrix of the first base station include a phase match element,
    상기 제2기지국의 프리코딩 행렬의 구성요소들은 위상 일치 요소를 포함하지 않는 것을 특징으로 하는 협력형 다중 셀 통신시스템의 협력형 통신방법.The components of the precoding matrix of the second base station do not include a phase coincidence element.
  4. 제3항에 있어서,The method of claim 3,
    상기 제1기지국은 상기 단말로부터 상기 제1기지국의 채널상태정보와 상기 제2기지국의 채널상태정보를 포함하는 채널정보를 수신하는 단계 및;Receiving, by the first base station, channel information including channel state information of the first base station and channel state information of the second base station from the terminal;
    상기 제2기지국은 상기 제1기지국으로부터 상기 제2기지국의 채널상태정보를 수신하는 단계를 추가로 포함하는 협력형 다중 셀 통신시스템의 협력형 통신방법.And the second base station further comprises receiving channel state information of the second base station from the first base station.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 제1기지국의 수신단계에서 상기 제1기지국의 채널상태정보는 상기 제1기지국의 전송 안테나가 2n개(n은 1 또는 1보다 큰 자연수)일 경우 n개의 전송 안테나 사용시 적합한 프리코딩 행렬에 대한 지시자이며, 상기 제2기지국의 채널상태정보는 상기 제2기지국의 전송 안테나가 2m개(m은 n과 동일하거나 동일하지 않은 1 또는 1보다 큰 자연수)인 경우 m개의 전송 안테나 사용시 적합한 하나의 프리코딩 행렬에 대한 지시자인 것을 특징으로 하는 협력형 다중 셀 통신시스템의 협력형 통신방법.In the receiving step of the first base station, the channel state information of the first base station corresponds to a precoding matrix suitable for using n transmit antennas when the number of transmit antennas of the first base station is 2n (n is 1 or greater than 1). The indicator indicates that the channel state information of the second base station is one free when the number of transmit antennas of the second base station is 2 m (m is a natural number larger than 1 or 1 which is equal to or not equal to n). A cooperative communication method of a cooperative multi-cell communication system, characterized in that the indicator for the coding matrix.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 제1기지국의 수신단계에서 상기 제1기지국의 전송 안테나가 2n개(n은 1 또는 1보다 큰 자연수)이고 제2기지국의 전송 안테나가 2m개(m은 n과 동일하거나 동일하지 않은 1 또는 1보다 큰 자연수)인 경우 (n+m)개의 전송 안테나 사용시 적합한 하나의 프리코딩 행렬에 대한 지시자인 것을 특징으로 하는 협력형 다중 셀 통신시스템의 협력형 통신방법. In the receiving step of the first base station, 2n transmit antennas of the first base station (n is 1 or larger than 1) and 2m transmit antennas of the second base station (m is 1 or not equal to n And a natural number greater than 1, an indicator of one precoding matrix suitable for using (n + m) transmit antennas.
  7. 제4항에 있어서,The method of claim 4, wherein
    상기 제1기지국의 전송단계에서 상기 제1기지국은 t 시점에 상기 제1기지국의 채널상태정보와 상기 제2기지국의 채널상태정보를 이용하여 데이터심볼을 프리코딩하고 t+1시점에 상기 제1기지국의 채널상태정보와 상기 제2기지국의 채널상태정보와 함께 t 시점의 제2기지국의 채널상태정보를 이용하여 데이터심볼을 프리코딩하는 것을 특징으로 하는 협력형 다중 셀 통신시스템의 협력형 통신방법. In the transmitting step of the first base station, the first base station precodes the data symbol using the channel state information of the first base station and the channel state information of the second base station at time t and the first base station at t + 1. A cooperative communication method of a cooperative multi-cell communication system, comprising precoding data symbols using channel state information of a base station and channel state information of a second base station together with channel state information of a second base station at time t. .
  8. 협력형 다중 셀 통신시스템에서, In a cooperative multi-cell communication system,
    적어도 둘 이상의 기지국들 중 하나의 기지국은, 단말로부터 자신의 채널상태정보와 상기 기지국들 중 상기 하나의 기지국을 제외한 다른 하나의 기지국의 채널상태정보를 포함하는 채널정보를 수신하는 수신단계 및;A base station of at least two or more base stations includes: receiving a channel information including channel state information of a base station and channel state information of another base station except the one of the base stations;
    상기 채널정보를 이용하여, 상기 다른 하나의 기지국이 데이터심볼을 프리코딩하는데 사용하는 프리코딩 행렬의 구성요소들 중 일부에 대응되는 서로 다른 편파의 두 개 이상의 안테나 그룹 중 적어도 하나와, 극성이 다른 편파의 안테나그룹에 대응하는 프리코딩 행렬의 구성요소들만으로 데이터심볼을 프리코딩하여 상기 단말에 신호를 전송하는 전송단계를 포함하는 기지국의 통신방법.By using the channel information, at least one of two or more antenna groups of different polarizations corresponding to some of the components of the precoding matrix used by the other base station to precode the data symbol, the polarity is different And transmitting a signal to the terminal by precoding a data symbol using only components of a precoding matrix corresponding to a polarization antenna group.
  9. 제8항에 있어서,The method of claim 8,
    자신의 프리코딩 행렬의 구성요소들은 위상 일치 요소를 포함하며, The components of its precoding matrix include phase matching elements,
    상기 다른 하나의 기지국의 프리코딩 행렬의 구성요소들은 위상 일치 요소를 포함하지 않는 것을 특징으로 하는 기지국의 통신방법.And the components of the precoding matrix of the other base station do not include a phase matching element.
  10. 제8항에 있어서,The method of claim 8,
    상기 다른 하나의 기지국에 상기 다른 하나의 기지국의 채널상태정보를 전송하는 단계를 추가로 포함하는 기지국의 통신방법.And transmitting the channel state information of the other base station to the other base station.
  11. 협력형 다중 셀 통신시스템에서, In a cooperative multi-cell communication system,
    적어도 둘 이상의 기지국들 중 적어도 하나의 기지국에서 서로 다른 편파의 두 개 이상의 안테나그룹들 중 적어도 하나의 안테나 그룹을 통해 전송된 신호를 수신하는 단계; 및 Receiving a signal transmitted through at least one antenna group of two or more antenna groups of different polarizations in at least one base station of the at least two base stations; And
    상기 기지국들 중 상기 적어도 하나의 기지국을 제외한 다른 하나의 기지국의 서로 다른 편파의 두 개 이상의 안테나그룹들 중 상기 적어도 하나의 기지국에서 안테나그룹과 극성이 다른 편파의 안테나그룹을 통해 전송된 신호를 수신하는 단계를 포함하는 단말의 협력형 통신방법.Receives a signal transmitted through an antenna group of a polarization having a polarity different from that of the antenna group in the at least one base station among two or more antenna groups of different polarizations of another base station except the at least one base station among the base stations Cooperative communication method of the terminal comprising the step of.
  12. 협력형 다중 셀 통신시스템에서, In a cooperative multi-cell communication system,
    제1기지국의 서로 다른 편파의 두 개 이상의 안테나그룹들 중 적어도 하나의 안테나 그룹에 대응하는 프리코딩 행렬의 구성요소들만으로 데이터심볼이 프리코딩되어 전송된 신호를 수신하는 단계; 및 Receiving a signal in which data symbols are precoded and transmitted using only components of a precoding matrix corresponding to at least one antenna group of two or more antenna groups of different polarizations of a first base station; And
    제2기지국의 서로 다른 편파의 두 개 이상의 안테나그룹들 중 상기 적어도 하나의 안테나 그룹과 극성이 다른 편파의 안테나그룹에 대응하는 프리코딩 행렬의 구성요소들만으로 데이터심볼이 프리코딩되어 전송된 신호를 수신하는 단계를 포함하는 단말의 협력형 통신방법.Receives a signal from which data symbols are precoded and transmitted using only components of a precoding matrix corresponding to the at least one antenna group of two or more antenna groups of different polarizations of a second base station and the antenna group of a polarization having a different polarity Cooperative communication method of the terminal comprising the step of.
  13. 제12항에 있어서,The method of claim 12,
    상기 제1기지국의 프리코딩 행렬의 구성요소들은 위상 일치 요소를 포함하며, The components of the precoding matrix of the first base station include a phase match element,
    상기 제2기지국의 프리코딩 행렬의 구성요소들은 위상 일치 요소를 포함하지 않는 것을 특징으로 하는 단말의 협력형 통신방법.The components of the precoding matrix of the second base station do not include a phase matching element.
  14. 제13항에 있어서,The method of claim 13,
    상기 제1기지국의 채널상태정보와 상기 제2기지국의 채널상태정보를 포함하는 채널정보를 상기 제1기지국에 전송하는 채널정보 전송단계를 포함하는 단말의 협력형 통신방법.And transmitting channel information including channel state information of the first base station and channel state information of the second base station to the first base station.
  15. 협력형 다중 셀 통신시스템에서,In a cooperative multi-cell communication system,
    제1기지국의 참조신호를 수신하는 단계;Receiving a reference signal of the first base station;
    상기 제1기지국에서 서로 다른 편파 안테나로 이루어진 안테나쌍이 2n개일 경우 상기 제1기지국 참조신호 중 n개의 안테나쌍에 대해서만 채널상태정보를 추정하는 제1기지국 채널상태정보 추정단계;A first base station channel state information estimating step of estimating channel state information only for n antenna pairs of the first base station reference signal when there are 2n antenna pairs of different polarized antennas in the first base station;
    제2기지국의 참조신호를 수신하는 단계;Receiving a reference signal of a second base station;
    상기 제2기지국에서 서로 다른 편파 안테나로 이루어진 안테나쌍이 2m개일 경우 상기 제2기지국 참조신호 중 m(m은 n과 동일하거나 동일하지 않은 1 또는 1보다 큰 자연수)개의 안테나쌍에 대해서만 채널상태정보를 추정하는 제2기지국 채널상태정보 추정단계; 및When there are 2m antenna pairs of different polarized antennas in the second base station, channel state information is applied only to m antenna pairs (m is a natural number greater than or equal to 1 or greater than 1) of the second base station reference signals. Estimating a second base station channel state information; And
    상기 제1기지국 채널상태정보와 제2기지국 채널상태정보를 포함하는 채널정보를 제1기지국에 보고하는 채널정보 전송단계를 포함하는 것을 특징으로 하는 단말의 협력형 통신방법.And transmitting channel information including the channel information including channel information of the first base station and channel state information of the second base station to the first base station.
  16. 제15항에 있어서,The method of claim 15,
    상기 채널정보 전송단계에서 상기 제1기지국의 채널상태정보는 2n개의 전송 안테나 사용시 적합한 프리코딩 행렬에 대한 지시자이며, In the channel information transmission step, the channel state information of the first base station is an indicator for a suitable precoding matrix when using 2n transmit antennas.
    상기 제2기지국의 채널상태정보는 2m개의 전송 안테나 사용시 적합한 하나의 프리코딩 행렬에 대한 지시자인 것을 특징으로 하는 단말의 협력형 통신방법.The channel state information of the second base station is an indicator for one precoding matrix suitable for the use of 2m transmit antennas.
  17. 제15항에 있어서,The method of claim 15,
    상기 채널정보 전송단계에서 상기 채널정보는 2(n+m)개의 전송 안테나 사용시 적합한 하나의 프리코딩 행렬에 대한 지시자인 것을 특징으로 하는 단말의 협력형 통신방법.In the channel information transmission step, the channel information is a cooperative communication method of the terminal, characterized in that the indicator for one precoding matrix suitable for using 2 (n + m) transmit antennas.
PCT/KR2011/009814 2010-12-30 2011-12-19 Communication method for a base station in a cooperative multi-cell communication system, base station therefor, communication method for a terminal, and terminal therefor WO2012091342A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0138654 2010-12-30
KR1020100138654A KR20120076891A (en) 2010-12-30 2010-12-30 Communicating method with base station and terminal, base station thereof and terminal thereof in coordinated multi-point transmission/reception system

Publications (2)

Publication Number Publication Date
WO2012091342A2 true WO2012091342A2 (en) 2012-07-05
WO2012091342A3 WO2012091342A3 (en) 2012-08-30

Family

ID=46383638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009814 WO2012091342A2 (en) 2010-12-30 2011-12-19 Communication method for a base station in a cooperative multi-cell communication system, base station therefor, communication method for a terminal, and terminal therefor

Country Status (2)

Country Link
KR (1) KR20120076891A (en)
WO (1) WO2012091342A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014052084A1 (en) * 2012-09-28 2014-04-03 Intel Corporation Periodic channel state information reporting for time division duplex (tdd) carrier aggregation systems
WO2016186462A1 (en) * 2015-05-19 2016-11-24 삼성전자 주식회사 Method and device for providing feedback signal in wireless communication system using two-dimensional antenna
WO2017146274A1 (en) * 2016-02-22 2017-08-31 한국과학기술원 Random access method in bdma system and random access method in pattern/polarized bdma system
WO2018028310A1 (en) * 2016-08-10 2018-02-15 华为技术有限公司 Method and apparatus for determining pre-coding matrix
CN114401057A (en) * 2013-03-15 2022-04-26 李尔登公司 Radio frequency calibration system and method using channel reciprocity in distributed wireless communication

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102197677B1 (en) * 2013-01-04 2020-12-31 한국전자통신연구원 Method for transmitting signal using multiple antennas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100045494A1 (en) * 2008-08-19 2010-02-25 Bruno Clerckx User terminal and base station using adapted codebook according to polarization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100045494A1 (en) * 2008-08-19 2010-02-25 Bruno Clerckx User terminal and base station using adapted codebook according to polarization

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. JANDURA ET AL.: 'Analysis of MIMO channel measurements in urban areas' 2010 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM 17 July 2010, pages 1 - 4 *
'R1-103568, Successive codebook refinement for PUCCH feedback' 3GPP TSG-RAN WG1 #61 02 July 2010, *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11019522B2 (en) 2012-09-28 2021-05-25 Apple Inc. Periodic channel state information reporting for time division duplex (TDD) carrier aggregation systems
US9161254B2 (en) 2012-09-28 2015-10-13 Intel Corporation Periodic channel state information reporting for time division duplex (TDD) carrier aggregation systems
US9848351B2 (en) 2012-09-28 2017-12-19 Intel Corporation Periodic channel state information reporting for time division duplex (TDD) carrier aggregation systems
US9848353B2 (en) 2012-09-28 2017-12-19 Intel Corporation Periodic channel state information reporting for time division duplex (TDD) carrier aggregation systems
WO2014052084A1 (en) * 2012-09-28 2014-04-03 Intel Corporation Periodic channel state information reporting for time division duplex (tdd) carrier aggregation systems
CN114401057A (en) * 2013-03-15 2022-04-26 李尔登公司 Radio frequency calibration system and method using channel reciprocity in distributed wireless communication
WO2016186462A1 (en) * 2015-05-19 2016-11-24 삼성전자 주식회사 Method and device for providing feedback signal in wireless communication system using two-dimensional antenna
CN107710640B (en) * 2015-05-19 2021-06-11 三星电子株式会社 Method and apparatus for providing feedback signal in wireless communication system using two-dimensional antenna
CN107710640A (en) * 2015-05-19 2018-02-16 三星电子株式会社 Use method, the equipment that feedback signal is provided in the wireless communication system of two-dimensional antenna
US10644776B2 (en) 2015-05-19 2020-05-05 Samsung Electronics Co., Ltd Method and device for providing feedback signal in wireless communication system using two-dimensional antenna
US10893542B2 (en) 2016-02-22 2021-01-12 Korea Advanced Institute Of Science And Technology Random access method in BDMA system and random access method in pattern/polarized BDMA system
WO2017146274A1 (en) * 2016-02-22 2017-08-31 한국과학기술원 Random access method in bdma system and random access method in pattern/polarized bdma system
US11012128B2 (en) 2016-08-10 2021-05-18 Huawei Technologies Co., Ltd. Precoding matrix determining method and apparatus
WO2018028310A1 (en) * 2016-08-10 2018-02-15 华为技术有限公司 Method and apparatus for determining pre-coding matrix

Also Published As

Publication number Publication date
KR20120076891A (en) 2012-07-10
WO2012091342A3 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
WO2017086753A1 (en) Method and device for transmitting and receiving channel state information in wireless communication system using multiple antennas
AU2016324556B2 (en) Signaling methods and apparatus for advanced MIMO communication systems
WO2018026241A1 (en) Method and apparatus for coordinating multi-point transmission in advanced wireless systems
WO2017026860A1 (en) Channel state information feedback method and apparatus
WO2015156578A1 (en) Method and apparatus for reporting channel state information in wireless communication systems
WO2011162532A2 (en) Method for transmitting channel information, device thereof, base station, and method for transmitting for base station thereof
WO2012002753A2 (en) Method, terminal, and base station for transmitting and receiving channel information
WO2018030811A1 (en) Method and apparatus for beam measurement and management in wireless systems
WO2012093742A1 (en) Terminal and base station, method thereof in wireless communication system
WO2016195335A1 (en) Method and apparatus for operating mimo measurement reference signals and feedback
WO2018074828A1 (en) Device and method for performing precoding in wireless communication system using massive antenna
WO2016028111A1 (en) Method and device for transmitting training symbol for estimating analog beam in wireless access system which supports hybrid beamforming
WO2016089124A1 (en) Method and apparatus of downlink signaling for partially precoded csi-rs and csi feedback
WO2015152624A1 (en) Apparatus and method for channel information feedback in wireless communication system
WO2017069564A1 (en) Method and device for transmitting and receiving channel state information in mobile communication system
WO2016148464A1 (en) Advanced feedback and reference signal transmissions for mimo wireless communication systems
WO2011126243A2 (en) Channel state information feedback device, method thereof, and base station
WO2016076614A1 (en) 2d active antenna array operation for wireless communication systems
WO2016068628A1 (en) Codebook design and structure for advanced wireless communication systems
WO2013172692A1 (en) Apparatus and method for channel state information codeword construction for a cellular wireless communication system
WO2016080734A1 (en) Method and apparatus for precoding channel state information reference signal
WO2016080737A1 (en) Apparatus and method for precoding channel state information reference signal
WO2015186974A1 (en) Feedback transmitting and receiving method and device in mobile communication system
WO2010098588A2 (en) Method and apparatus for multiple input multiple output (mimo) transmit beamforming
WO2010079985A2 (en) Coordinated multipoint(comp) joint transmission using channel information feedback and higher rank dedicated beam-forming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852414

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852414

Country of ref document: EP

Kind code of ref document: A2