WO2012090961A1 - Light emitting device, method for manufacturing light emitting device, and coating liquid - Google Patents

Light emitting device, method for manufacturing light emitting device, and coating liquid Download PDF

Info

Publication number
WO2012090961A1
WO2012090961A1 PCT/JP2011/080122 JP2011080122W WO2012090961A1 WO 2012090961 A1 WO2012090961 A1 WO 2012090961A1 JP 2011080122 W JP2011080122 W JP 2011080122W WO 2012090961 A1 WO2012090961 A1 WO 2012090961A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
emitting device
thin film
light emitting
Prior art date
Application number
PCT/JP2011/080122
Other languages
French (fr)
Japanese (ja)
Inventor
小嶋 健
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012550949A priority Critical patent/JPWO2012090961A1/en
Publication of WO2012090961A1 publication Critical patent/WO2012090961A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Definitions

  • the present invention relates to a light emitting device using a light emitting element and a phosphor, a method for manufacturing the light emitting device, and a coating solution.
  • phosphors such as YAG phosphors are arranged in the vicinity of a gallium nitride (GaN) -based blue LED (Light Emitting Diode) chip, and the blue light emitted from the blue LED chip and the phosphor are blue.
  • GaN gallium nitride
  • a technique of emitting white light by mixing yellow light emitted upon receiving light is widely used.
  • the use of such a white LED that emits white light is expanding to various fields, and among them, it is applied to a lighting device such as a headlight of an automobile that requires extremely high luminance. It is being considered.
  • a method of sealing LED chips and mounting parts using a transparent resin containing phosphor particles therein as a sealing member is generally used.
  • a transparent resin material a silicon polymer that can obtain high color uniformity and excellent in light resistance, in particular, a silicone resin using a bifunctional (D unit) silicon compound such as polydimethylsiloxane as a raw material.
  • a bifunctional (D unit) silicon compound such as polydimethylsiloxane
  • Patent Document 1 discloses a technique for improving light resistance by using a tetrafunctional (Q unit) silicon compound as a transparent resin.
  • tetrafunctional silicon compounds have poor structural flexibility and processability, they cannot withstand the stress generated when forming a transparent ceramic thin film using a condensation reaction, and are sufficient to hold phosphor particles. When a sealing portion having a sufficient thickness is formed, there is a problem that cracks are likely to occur.
  • An object of the present invention is to provide a light-emitting device, a method for manufacturing the light-emitting device, and a coating liquid that can prevent cracks from being generated when a sealing portion is formed.
  • a light-emitting device comprising a light-emitting element and a translucent thin film formed on the light-emitting element
  • the translucent thin film is made of a ceramic material containing a phosphor
  • the ceramic material is obtained by firing silsesquioxane whose composition formula is represented by (R—SiO 3/2 ) n .
  • a light-emitting device is provided in which the translucent thin film has a thickness of 5 to 200 ⁇ m.
  • R is an organic group, specifically an alkyl group or an aryl group.
  • the term “silsesquioxane” refers to those containing at least 80% silsesquioxane, and includes other components that are conventionally mixed in the synthesis process of silsesquioxane. Including
  • a light emitting device having high light resistance and capable of sealing a light emitting element with a sealing portion that does not cause cracks during formation.
  • FIG. 1 is a cross-sectional view of the light emitting device.
  • the light emitting device 100 has an LED substrate 1 having a concave cross section.
  • a metal portion 2 is provided in a concave portion (bottom portion) of the LED substrate 1, and a rectangular parallelepiped LED element 3 is disposed on the metal portion 2.
  • the LED element 3 is an example of a light emitting element that emits light of a predetermined wavelength.
  • a protruding electrode 4 is provided on the surface of the LED element 3 facing the metal portion 2, and the metal portion 2 and the LED element 3 are connected via the protruding electrode 4 (flip chip type).
  • a configuration in which one LED element 3 is provided for one LED substrate 1 is illustrated, but a plurality of LED elements 3 may be provided in a concave portion of one LED substrate 1.
  • a blue LED element is used as the LED element 3.
  • the blue LED element is formed, for example, by laminating an n-GaN-based cladding layer, an InGaN light-emitting layer, a p-GaN-based cladding layer, and a transparent electrode on a sapphire substrate.
  • the wavelength conversion part 6 is formed in the recess of the LED substrate 1 so as to seal the periphery of the LED element 3.
  • the wavelength conversion unit 6 is a translucent thin film formed by adding a phosphor to a layer of transparent ceramic material having translucency (hereinafter referred to as a transparent ceramic layer).
  • the phosphor added to the transparent ceramic layer is excited by light having a predetermined wavelength (excitation light) in the emitted light of the LED element 3, and emits fluorescence having a wavelength different from the wavelength of the excitation light.
  • the thickness of the wavelength converter 6 is preferably 5 to 200 ⁇ m, more preferably 10 to 200 ⁇ m, and still more preferably 10 to 100 ⁇ m.
  • the wavelength conversion part 6 is good also as a structure provided only in the upper surface and side surface of the LED element 3.
  • FIG. 3 As a method of providing the wavelength conversion unit 6 only around the LED element 3, a method of installing a mask when forming the wavelength conversion unit 6 is used.
  • a thin film layer 7 is formed on the upper surface and side surfaces of the wavelength conversion unit 6.
  • the thin film layer 7 is formed using a bifunctional (D unit) siloxane compound similar to the transparent resin material conventionally used for sealing the periphery of the LED element 3.
  • organosilicon polymers such as polydimethylsiloxane are preferably used.
  • the wavelength conversion unit 6 uses a so-called sol-gel method in which a sol-like mixed liquid (hereinafter referred to as a ceramic precursor liquid) obtained by mixing silsesquioxane and an organic solvent, which will be described later, is heated to a gel state and further fired.
  • a sol-like mixed liquid hereinafter referred to as a ceramic precursor liquid
  • the formed transparent ceramic layer contains a phosphor, a layered silicate mineral (layered clay mineral), and inorganic fine particles in the transparent ceramic layer.
  • Silsesquioxane serves as a binder for encapsulating phosphors, layered silicate minerals, and inorganic fine particles to form a transparent ceramic layer.
  • Silsesquioxane is a trifunctional (T unit) siloxane and is represented by a composition formula (R—SiO 3/2 ) n .
  • R is an organic group, specifically an alkyl group or an aryl group.
  • the alkyl group is preferably a methyl group or an ethyl group, and the aryl group is preferably a phenyl group.
  • Silsesquioxanes have cage, ladder, and random three-dimensional structures.
  • the silsesquioxane of this embodiment is characterized by containing a silsesquioxane having a cage structure having robustness.
  • the silicon atoms form a skeleton of a triangular prism, a pentagonal column, a hexagonal column, and a heptagonal column, respectively.
  • the phosphor is excited by the emitted light from the LED element 3 and emits fluorescence having a wavelength different from the wavelength of the emitted light.
  • a YAG (yttrium aluminum garnet) phosphor that is excited by blue light (wavelength 420 nm to 485 nm) emitted from a blue LED element and emits yellow light (wavelength 550 nm to 650 nm) is used. .
  • a YAG phosphor In order to produce such a YAG phosphor, first, an oxide of Y, Gd, Ce, Sm, Al, La, Ga, or a compound that easily becomes an oxide at a high temperature is used, and these are stoichiometrically converted. Thorough mixing is performed at a theoretical ratio to obtain a mixed raw material. Alternatively, a coprecipitated oxide obtained by firing a solution obtained by coprecipitation of oxalic acid from a solution obtained by dissolving rare earth elements of Y, Gd, Ce, and Sm in an acid at a stoichiometric ratio with aluminum oxide and gallium oxide Mix to obtain a mixed raw material.
  • the larger the particle size of the phosphor the higher the light emission efficiency (wavelength conversion efficiency), but the gap generated at the interface with the transparent ceramic material increases, and the film strength of the formed transparent ceramic layer decreases. Therefore, it is preferable to use one having an average particle diameter of 1 ⁇ m or more and 50 ⁇ m or less in consideration of the light emission efficiency and the size of the gap generated at the interface.
  • the average particle diameter of the phosphor is measured, for example, by a Coulter counter method.
  • the YAG phosphor is used, but the type of the phosphor is not limited to this, and other phosphors such as a non-garnet phosphor that does not contain Ce are used. You can also.
  • the layered silicate mineral increases the viscosity of the mixed solution by being added to the mixed solution of the ceramic precursor and the phosphor and functions to suppress the precipitation of the phosphor.
  • a swellable clay mineral having a mica structure, a kaolinite structure, a smectite structure, or the like is preferable, and a swellable smectite structure is particularly preferable.
  • the smectite structure has a card house structure in which water is added to the mixed solution and swells as the water enters between the layers, so that the viscosity of the mixed solution is greatly increased with a small amount.
  • the content of the layered silicate mineral in the transparent ceramic layer is less than 0.5% by weight, the effect of increasing the viscosity of the mixed solution cannot be obtained sufficiently.
  • the content of the layered silicate mineral exceeds 20% by weight, the strength of the transparent ceramic layer formed by heating decreases. Accordingly, the content of the layered silicate mineral is preferably 0.5 wt% or more and 20 wt% or less, and more preferably 0.5 wt% or more and 10 wt% or less.
  • a layered silicate mineral whose surface is modified (surface treatment) with an ammonium salt or the like can be used as appropriate.
  • the inorganic fine particles have a filling effect that fills the gap formed at the interface between the transparent ceramic material, the phosphor and the layered silicate mineral, a thickening effect that increases the viscosity of the mixed liquid before heating, and a transparent ceramic layer after heating. It has a film strengthening effect that improves the film strength.
  • the inorganic fine particles used in the present invention include oxide fine particles such as silicon oxide, titanium oxide and zinc oxide, and fluoride fine particles such as magnesium fluoride. In particular, it is preferable to use fine particles of silicon oxide from the viewpoint of stability with respect to the formed transparent ceramic layer.
  • the content of the inorganic fine particles in the transparent ceramic layer is less than 0.5% by weight, the respective effects described above cannot be sufficiently obtained.
  • the content of the inorganic fine particles exceeds 50% by weight, the strength of the transparent ceramic layer formed by heating decreases. Therefore, the content of the inorganic fine particles in the transparent ceramic layer is preferably 0.5% by weight or more and 50% by weight or less, and more preferably 1% by weight or more and 40% by weight or less.
  • the average particle diameter of the inorganic fine particles is measured, for example, by a Coulter counter method.
  • a material obtained by treating the surface of inorganic fine particles with a silane coupling agent or a titanium coupling agent can be used as appropriate.
  • a phosphor coating solution prepared by mixing phosphor, layered silicate mineral, and inorganic fine particles in a ceramic precursor solution in which silsesquioxane is mixed with an organic solvent (diluted)
  • the wavelength conversion part 6 which has translucency and fluorescence is formed by apply
  • organic solvent aliphatic hydrocarbons, aromatic hydrocarbons, halogen hydrocarbons, ethers, esters, alcohols, ketones and the like can be used.
  • methyl ethyl ketone, tetrahydrofuran, benzene, chloroform, ethyl ether, isopropyl ether, dibutyl ether, ethyl butyl ether, methanol, ethanol, isopropyl alcohol, ethylene glycol, propylene glycol, butanediol, glycerol, and acetone are used.
  • the mixing amount of silsesquioxane with respect to the organic solvent is preferably 5% by weight or more and 50% by weight or less, and more preferably 8% by weight or more and 40% by weight or less.
  • the procedure for preparing the phosphor coating liquid is not limited to the order of mixing silsesquioxane, solvent, phosphor, layered silicate mineral, and inorganic fine particles.
  • the order is not limited, but when using a hydrophilic layered silicate mineral that has not been surface-treated, first, the layered silicate mineral and water are premixed. Then, it is preferable from the viewpoint of obtaining a thickening effect that phosphor, inorganic fine particles, and ceramic precursor liquid are mixed thereafter.
  • the preferred viscosity of the mixed solution is 25 to 800 cP, and the most preferred viscosity is 30 to 500 cP.
  • the most preferable composition range of the phosphor coating solution is 2 to 10% by weight of silsesquioxane, 10 to 50% by weight of phosphor, 1 to 20% by weight of layered silicate mineral, and 1 to 40% by weight of inorganic fine particles.
  • a solvent or a mixture of a solvent and water is 20 to 80% by weight.
  • a thin film of a transparent ceramic layer that becomes the wavelength conversion section 6 is formed by the phosphor coating solution prepared by the above composition.
  • the formation of the transparent ceramic layer is not particularly limited.
  • the transparent ceramic layer is formed by spraying a phosphor coating solution onto the light emitting device 100.
  • FIG. 2 is a diagram for explaining a manufacturing apparatus for forming a transparent ceramic layer.
  • the manufacturing apparatus 10 mainly includes a movable table 20 that can move up and down, left and right, and back and forth, a spray device 30 that can spray the phosphor coating liquid 40 described above, and the chromaticity and luminance of the wavelength conversion unit 6. And an inspection device 50 capable of inspecting.
  • the spray device 30 is disposed above the movable table 20.
  • the spray device 30 has a nozzle 32 into which air is sent. Or the structure which sprays the fluorescent substance coating liquid 40 toward the upper direction may be sufficient as the spray apparatus 30 is installed under the moving stand 20.
  • the hole diameter at the tip of the nozzle 32 is 20 ⁇ m to 2 mm, preferably 0.1 to 0.3 mm.
  • the nozzle 32 can move up and down, left and right, and back and forth, like the moving table 20. Moreover, it is also possible to adjust the angle of the nozzle 32, and it can be made to incline with respect to the moving stand 20 (or LED board 1 installed in this).
  • the nozzle 32 has a built-in temperature adjustment mechanism, and can adjust the temperature of the ejected matter.
  • a tank 36 is connected to the nozzle 32 via a connecting pipe 34.
  • a phosphor coating liquid 40 is stored in the tank 36.
  • the tank 36 contains a stirrer. By constantly stirring the phosphor coating solution 40 with this stirrer, the phosphor having a large specific gravity is prevented from settling, and the phosphor is dispersed in the phosphor coating solution 40. Keep state.
  • a motor or the like is used as a drive source, and the phosphor coating liquid 40 is sprayed from the nozzle 32 by directly applying pressure to the phosphor coating liquid 40 in the tank 36. It is also possible to use a mechanism that performs or extrudes.
  • the inspection device 50 includes an LED element 52 and a color luminance meter 54.
  • the LED element 52 is an element that emits light similar to that of the LED element 3.
  • the color luminance meter 54 is a measuring instrument that measures the chromaticity and luminance of received light.
  • the wavelength conversion unit 6 When actually forming the wavelength conversion unit 6, a plurality of LED substrates 1 on which the LED elements 3 are mounted in advance are installed on the moving table 20, and the LED substrate 1 and the tip of the nozzle 32 are arranged to face each other. The distance between the LED substrate 1 and the tip of the nozzle 32 is 50 to 300 mm. Thereafter, while the LED substrate 1 and the nozzle 32 are moved relative to each other, the phosphor coating solution 40 is sprayed from the nozzle 32 to spray-coat the phosphor coating solution 40 onto the LED substrate 1. At this time, the spray amount of the phosphor coating liquid 40 is constant, and the phosphor amount per unit area is constant. And the film thickness of the wavelength conversion part 6 is determined by adjusting the injection time per unit area.
  • the moving base 20 is moved to inject the phosphor coating liquid 40 onto the glass plate 60, and chromaticity and luminance are inspected using the inspection device 50. By doing so, the injection amount can be adjusted.
  • the LED substrate 1 coated with the phosphor coating solution 40 is transferred to a firing furnace, and the phosphor coating solution 40 is baked.
  • the firing temperature at this time is set to such an extent that the LED element 3 is not damaged.
  • the firing temperature set in the present invention is 100 to 300 ° C, preferably 130 to 170 ° C, more preferably 140 to 160 ° C, and most preferably around 150 ° C.
  • the wavelength conversion part 6 is formed because the fluorescent substance coating liquid 40 is baked.
  • a layered silicate mineral, inorganic fine particles, and a phosphor liquid in which a phosphor is mixed with a solvent and a ceramic precursor liquid are separately prepared, and the phosphor liquid is applied first.
  • a two-component manufacturing method in which a ceramic precursor liquid is applied and fired to form a transparent ceramic film may be used.
  • the ceramic precursor liquid can be impregnated into the phosphor film by applying the ceramic precursor liquid, and then the ceramic precursor liquid can be sufficiently fired.
  • the wavelength converter 6 having a high intensity can be obtained.
  • the two-component manufacturing method is not limited to the above, and the ceramic precursor liquid may be applied without applying drying after the phosphor liquid is applied, or the ceramic precursor liquid and the phosphor liquid may be sprayed simultaneously. Good.
  • a thin film layer 7 for sealing the wavelength conversion unit 6 with a silicone resin is formed using a dispenser.
  • the wavelength conversion unit 6 is formed on the LED element 3 with the transparent ceramic material containing the phosphor, the emitted light from the LED element 3,
  • the transparent ceramic material has a silsesquiski having a composition formula represented by (R—SiO 3/2 ) n.
  • the thickness of the wavelength conversion part 6 is set to 5 to 200 ⁇ m, so that it is difficult to generate cracks, has high heat resistance, light resistance and translucency, and ensures the phosphor A light emitting device including a thin film that can be held can be obtained. Therefore, a high-luminance light-emitting device can be manufactured using such a light-emitting device.
  • the silsesquioxane contain the cage structure silsesquioxane, it is possible to obtain a light emitting device in which the peelability of the wavelength conversion unit 6 including the phosphor is suppressed.
  • the transparent ceramic material further contains a layered clay mineral and inorganic fine particles, thereby further suppressing the ease of peeling of the wavelength conversion unit 6 including the phosphor and further appropriately converting the phosphor to the wavelength conversion unit 6.
  • a light emitting device dispersed therein can be obtained.
  • the wavelength conversion part 6 is formed by spray-coating a solution obtained by diluting silsesquioxane with a predetermined solvent, light emission including the wavelength conversion part 6 that is easily uniform and excellent in heat resistance and does not cause cracks. A device can be obtained.
  • the transparent ceramic thin film (transparent ceramic layer) made of silsesquioxane encapsulating the phosphor can be protected. Can be further suppressed.
  • white light is emitted by applying a phosphor that emits yellow light fluorescence to a blue LED chip.
  • white light may be emitted by mixing and applying phosphors emitting red, blue, and green fluorescence to LED chips that emit ultraviolet light.
  • a phosphor coating solution was prepared by mixing the synthesized silsesquioxane with 5 times the weight of YAG phosphor and 10 times the weight of isopropyl alcohol. And this fluorescent substance coating liquid was apply
  • the layered silicate mineral is 0.3 times the weight of smectite and the inorganic fine particles by weight. After adding 0.3 times the amount of silicon oxide, transparent ceramic layers having a thickness of 10 ⁇ m and 100 ⁇ m were formed, respectively.
  • This silsesquioxane is 5 times the weight of YAG phosphor, 10 times the weight of isopropyl alcohol, 0.3 times the weight of smectite, and 0.3 times the weight ratio.
  • a phosphor coating solution was prepared by adding the above silicon oxide. This phosphor coating solution was applied onto an LED substrate provided with a blue LED by a spray gun.
  • the LED substrate coated with the phosphor coating solution was transferred to a firing furnace and baked at 130 ° C. for 30 minutes to form a transparent ceramic layer containing the phosphor.
  • the film thickness of the applied phosphor coating solution was changed by adjusting the spray time (spray time) and spray speed per unit area with a spray gun. Specifically, for Comparative Example 3, Examples 7 to 10, and Comparative Example 4, the film thicknesses were 3 ⁇ m, 5 ⁇ m, 10 ⁇ m, 100 ⁇ m, 200 ⁇ m, and 250 ⁇ m, respectively.
  • Example 11 In the step of forming the transparent ceramic layer in Example 9, a transparent ceramic layer having a thickness of 100 ⁇ m was formed without adding smectite and silicon oxide when preparing the phosphor coating solution.
  • Example 12 A phosphor coating solution was prepared by mixing 0.3 part by weight of smectite, 0.3 part by weight of silicon oxide, and 10 parts by weight of isopropyl alcohol with respect to 5 parts by weight of YAG phosphor. And this fluorescent substance coating liquid was apply
  • the LED substrate was transferred to a baking furnace and baked at 130 ° C. for 30 minutes, thereby forming a phosphor layer having a thickness of 100 ⁇ m.
  • silsesquioxane synthesized through the same steps as in Example 1 was applied from above the phosphor layer with a spray gun. This LED substrate was again transferred to a firing furnace and baked at 130 ° C. for 30 minutes, thereby forming a transparent ceramic layer having a thickness of 5 ⁇ m on the phosphor layer.
  • Summary Table 1 shows the film configuration of the transparent ceramic layer formed by the transparent ceramic layer forming steps of Examples 1 to 12 and Comparative Examples 1 to 6 and the evaluation of the film properties.
  • a light-emitting device having a transparent ceramic layer having suitable film properties can be obtained by forming a transparent ceramic layer containing phosphor in a range of 5 ⁇ m or more and 200 ⁇ m or less using silsesquioxane. Produced.
  • the present invention can be used for manufacturing a light emitting device using a light emitting element and a phosphor, and a light emitting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

Provided is a light emitting device which can be prevented from the occurrence of cracks during the formation of a sealing part. A light emitting device, which is provided with a light emitting element and a light-transmitting thin film that is formed on the light emitting element, and wherein: the light-transmitting thin film is configured of a ceramic material that contains a phosphor; the ceramic material is obtained by firing a silsesquioxane that has a composition formula represented by (R-SiO3/2)n; and the light-transmitting thin film has a thickness of 5-200 μm.

Description

発光装置、発光装置の製造方法、及び、塗布液LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE MANUFACTURING METHOD, AND COATING LIQUID
 この発明は、発光素子と蛍光体とを用いた発光装置、発光装置の製造方法、及び、塗布液に関する。 The present invention relates to a light emitting device using a light emitting element and a phosphor, a method for manufacturing the light emitting device, and a coating solution.
 近年、窒化ガリウム(GaN)系の青色LED(Light Emitting Diode:発光ダイオード)チップの近傍にYAG蛍光体などの蛍光体を配置し、青色LEDチップから出射される青色光と、蛍光体がこの青色光を受けて出射する黄色光とを混色することにより白色光を発する技術が広く用いられている。このような白色光を出射する白色LEDの用途は、様々な分野へと利用が拡大しつつあり、その中で、自動車のヘッドライトのような非常に高い輝度が求められる照明装置への適用が検討されている。 In recent years, phosphors such as YAG phosphors are arranged in the vicinity of a gallium nitride (GaN) -based blue LED (Light Emitting Diode) chip, and the blue light emitted from the blue LED chip and the phosphor are blue. A technique of emitting white light by mixing yellow light emitted upon receiving light is widely used. The use of such a white LED that emits white light is expanding to various fields, and among them, it is applied to a lighting device such as a headlight of an automobile that requires extremely high luminance. It is being considered.
 白色LEDでは、蛍光体粒子を内部に含有した透明樹脂を封止部材として用いて、LEDチップや実装部を封止する方法が一般的に用いられている。従来、透明樹脂の材料としては、高い色均一性を得ることができて、且つ、耐光性に優れるケイ素ポリマー、特に、ポリジメチルシロキサンといった2官能(D単位)のケイ素化合物を原料としたシリコーン樹脂が着目されてきた。しかしながら、LEDチップから出射される光の輝度が高くなると光エネルギーも増大し、この光エネルギーによって励起された蛍光体が発する熱量も増加する。この結果、蛍光体や高輝度LED素子から発生する熱量にシリコーン樹脂が耐え切れなくなり、シリコーン樹脂の劣化が進行して発光効率の低下や色度のバラつきが生じるという問題がある。 In white LEDs, a method of sealing LED chips and mounting parts using a transparent resin containing phosphor particles therein as a sealing member is generally used. Conventionally, as a transparent resin material, a silicon polymer that can obtain high color uniformity and excellent in light resistance, in particular, a silicone resin using a bifunctional (D unit) silicon compound such as polydimethylsiloxane as a raw material. Has been attracting attention. However, as the luminance of the light emitted from the LED chip increases, the light energy also increases, and the amount of heat generated by the phosphor excited by this light energy also increases. As a result, there is a problem that the silicone resin cannot withstand the amount of heat generated from the phosphor or the high-intensity LED element, and the deterioration of the silicone resin progresses, resulting in a decrease in luminous efficiency and chromaticity variation.
 そこで、特許文献1には、透明樹脂として4官能(Q単位)のケイ素化合物を用いることで耐光性を高める技術が開示されている。 Therefore, Patent Document 1 discloses a technique for improving light resistance by using a tetrafunctional (Q unit) silicon compound as a transparent resin.
特開2000-349347号公報JP 2000-349347 A
 しかしながら、4官能ケイ素化合物には、構造の柔軟性、加工性が乏しいので、縮合反応を用いて透明セラミック薄膜を形成する際に発生する応力に耐え切れず、蛍光体粒子を保持するのに十分な厚みを持った封止部を形成すると、クラックが発生しやすくなるという課題がある。 However, since tetrafunctional silicon compounds have poor structural flexibility and processability, they cannot withstand the stress generated when forming a transparent ceramic thin film using a condensation reaction, and are sufficient to hold phosphor particles. When a sealing portion having a sufficient thickness is formed, there is a problem that cracks are likely to occur.
 この発明の目的は、封止部の形成時にクラックが発生するのを防止することができる発光装置、発光装置の製造方法、及び、塗布液を提供することにある。 An object of the present invention is to provide a light-emitting device, a method for manufacturing the light-emitting device, and a coating liquid that can prevent cracks from being generated when a sealing portion is formed.
 上記目的を達成するため、本発明によれば、
 発光素子と、当該発光素子上に形成された透光性薄膜と、を備える発光装置において、
 前記透光性薄膜は、蛍光体を含有するセラミック材料により構成され、
 前記セラミック材料は、組成式が(R-SiO3/2で表されるシルセスキオキサンを焼成することにより得られたものであり、
 前記透光性薄膜の厚みは、5~200μmであることを特徴とする発光装置が提供される。ここで、Rは有機基であり、具体的には、アルキル基またはアリール基である。
 なお、本明細書において「シルセスキオキサン」という用語は、シルセスキオキサンが80%以上含まれているものを指し、シルセスキオキサンの合成処理において従来混入する程度の他成分が含まれているものを含む。
In order to achieve the above object, according to the present invention,
In a light-emitting device comprising a light-emitting element and a translucent thin film formed on the light-emitting element,
The translucent thin film is made of a ceramic material containing a phosphor,
The ceramic material is obtained by firing silsesquioxane whose composition formula is represented by (R—SiO 3/2 ) n .
A light-emitting device is provided in which the translucent thin film has a thickness of 5 to 200 μm. Here, R is an organic group, specifically an alkyl group or an aryl group.
In this specification, the term “silsesquioxane” refers to those containing at least 80% silsesquioxane, and includes other components that are conventionally mixed in the synthesis process of silsesquioxane. Including
 本発明によれば、高い耐光性を有し、形成時にクラックの生じない封止部により発光素子を封止可能な発光装置を得ることができる。 According to the present invention, it is possible to obtain a light emitting device having high light resistance and capable of sealing a light emitting element with a sealing portion that does not cause cracks during formation.
本発明の実施形態の発光装置の断面図である。It is sectional drawing of the light-emitting device of embodiment of this invention. 透明セラミック層を形成するスプレー装置を備えた発光装置の製造装置を説明する図である。It is a figure explaining the manufacturing apparatus of the light-emitting device provided with the spray apparatus which forms a transparent ceramic layer.
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は、発光装置の断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of the light emitting device.
 発光装置100は、断面凹状のLED基板1を有している。LED基板1の凹部(底部)にはメタル部2が設けられ、メタル部2上には直方体状のLED素子3が配置されている。このLED素子3は、所定波長の光を出射する発光素子の一例である。LED素子3のメタル部2に対向する面には、突起電極4が設けられており、メタル部2とLED素子3とが突起電極4を介して接続されている(フリップチップ型)。なお、ここでは、一つのLED基板1に対して一つのLED素子3が設けられる構成を図示しているが、一つのLED基板1の凹部に複数のLED素子3を設けることとしてもよい。 The light emitting device 100 has an LED substrate 1 having a concave cross section. A metal portion 2 is provided in a concave portion (bottom portion) of the LED substrate 1, and a rectangular parallelepiped LED element 3 is disposed on the metal portion 2. The LED element 3 is an example of a light emitting element that emits light of a predetermined wavelength. A protruding electrode 4 is provided on the surface of the LED element 3 facing the metal portion 2, and the metal portion 2 and the LED element 3 are connected via the protruding electrode 4 (flip chip type). Here, a configuration in which one LED element 3 is provided for one LED substrate 1 is illustrated, but a plurality of LED elements 3 may be provided in a concave portion of one LED substrate 1.
 本実施形態の発光装置100では、LED素子3として青色LED素子が用いられている。青色LED素子は、例えば、サファイア基板上にn-GaN系クラッド層、InGaN発光層、p-GaN系クラッド層、及び透明電極を積層してなる。 In the light emitting device 100 of the present embodiment, a blue LED element is used as the LED element 3. The blue LED element is formed, for example, by laminating an n-GaN-based cladding layer, an InGaN light-emitting layer, a p-GaN-based cladding layer, and a transparent electrode on a sapphire substrate.
 LED基板1の凹部には、LED素子3の周囲を封止するように波長変換部6が形成されている。波長変換部6は、透光性を有する透明セラミック材料の層(以降、透明セラミック層と記す)中に蛍光体が添加されて構成された透光性薄膜である。この透明セラミック層中に添加された蛍光体は、LED素子3の出射光中の所定の波長の光(励起光)により励起されて、励起光の波長とは異なる波長の蛍光を出射する。この波長変換部6の厚みは、好ましくは、5~200μmであり、より好ましくは、10~200μmであり、更に好ましくは、10~100μmである。ここで、波長変換部6は、LED素子3の上面及び側面のみに設けられる構成としてもよい。LED素子3の周囲のみに波長変換部6を設ける方法としては、波長変換部6を形成する際にマスクを設置する方法等が用いられる。 The wavelength conversion part 6 is formed in the recess of the LED substrate 1 so as to seal the periphery of the LED element 3. The wavelength conversion unit 6 is a translucent thin film formed by adding a phosphor to a layer of transparent ceramic material having translucency (hereinafter referred to as a transparent ceramic layer). The phosphor added to the transparent ceramic layer is excited by light having a predetermined wavelength (excitation light) in the emitted light of the LED element 3, and emits fluorescence having a wavelength different from the wavelength of the excitation light. The thickness of the wavelength converter 6 is preferably 5 to 200 μm, more preferably 10 to 200 μm, and still more preferably 10 to 100 μm. Here, the wavelength conversion part 6 is good also as a structure provided only in the upper surface and side surface of the LED element 3. FIG. As a method of providing the wavelength conversion unit 6 only around the LED element 3, a method of installing a mask when forming the wavelength conversion unit 6 is used.
 波長変換部6の上面及び側面には、更に、薄膜層7が形成されている。この薄膜層7は、従来LED素子3の周囲を封止するのに用いられている透明樹脂材料と同様の2官能(D単位)シロキサン化合物を用いて形成される。特に、ポリジメチルシロキサンなどの有機ケイ素ポリマーが好ましく用いられる。 Further, a thin film layer 7 is formed on the upper surface and side surfaces of the wavelength conversion unit 6. The thin film layer 7 is formed using a bifunctional (D unit) siloxane compound similar to the transparent resin material conventionally used for sealing the periphery of the LED element 3. In particular, organosilicon polymers such as polydimethylsiloxane are preferably used.
 次に、波長変換部6の構成について詳述する。
 波長変換部6は、後述するシルセスキオキサンと有機溶媒とを混合したゾル状の混合液(以降、セラミック前駆体液と記す)を加熱によりゲル状態とし、さらに焼成する、いわゆるゾル・ゲル法により形成された透明セラミック層(ガラス体)であって、その透明セラミック層中に蛍光体、層状ケイ酸塩鉱物(層状粘土鉱物)、及び、無機微粒子を含有するものである。
Next, the configuration of the wavelength conversion unit 6 will be described in detail.
The wavelength conversion unit 6 uses a so-called sol-gel method in which a sol-like mixed liquid (hereinafter referred to as a ceramic precursor liquid) obtained by mixing silsesquioxane and an organic solvent, which will be described later, is heated to a gel state and further fired. The formed transparent ceramic layer (glass body) contains a phosphor, a layered silicate mineral (layered clay mineral), and inorganic fine particles in the transparent ceramic layer.
(シルセスキオキサン)
 シルセスキオキサンは、蛍光体、層状ケイ酸塩鉱物、無機微粒子を封止するバインダとしての役割を果たして透明セラミック層となるものである。シルセスキオキサンは、3官能(T単位)のシロキサンであり、組成式(R-SiO3/2で表される。ここで、Rは、有機基であり、具体的には、アルキル基またはアリール基である。アルキル基としては、メチル基やエチル基が好ましく、アリール基としては、フェニル基が好ましい。
(Silsesquioxane)
Silsesquioxane serves as a binder for encapsulating phosphors, layered silicate minerals, and inorganic fine particles to form a transparent ceramic layer. Silsesquioxane is a trifunctional (T unit) siloxane and is represented by a composition formula (R—SiO 3/2 ) n . Here, R is an organic group, specifically an alkyl group or an aryl group. The alkyl group is preferably a methyl group or an ethyl group, and the aryl group is preferably a phenyl group.
 シルセスキオキサンには、カゴ型、はしご型、及び、ランダム型の立体構造をとるものがある。本実施形態のシルセスキオキサンは、堅牢性を有するカゴ型構造のシルセスキオキサンを含有することを特徴とする。カゴ型構造のシルセスキオキサンは、カゴ型形状の骨格をなすケイ素原子の数(偶数)によって更に分類され、例えば、n=8のケイ素原子によって骨格が形成される立方体状のカゴ型構造シルセスキオキサンは、T8構造と表現される。また、T6、T10、T12、T14のカゴ型構造シルセスキオキサンは、それぞれ、ケイ素原子が三角柱、五角柱、六角柱、七角柱の骨格をなす。 Silsesquioxanes have cage, ladder, and random three-dimensional structures. The silsesquioxane of this embodiment is characterized by containing a silsesquioxane having a cage structure having robustness. The cage-type silsesquioxane is further classified according to the number (even number) of silicon atoms forming the cage-shaped skeleton. For example, the cage-shaped silsesquioxane having a skeleton formed by n = 8 silicon atoms is used. Sesquioxane is expressed as a T8 structure. Further, in the cage structure silsesquioxanes of T6, T10, T12, and T14, the silicon atoms form a skeleton of a triangular prism, a pentagonal column, a hexagonal column, and a heptagonal column, respectively.
(蛍光体)
 蛍光体は、LED素子3からの出射光により励起されて、この出射光の波長とは異なる波長の蛍光を出射するものである。本実施形態では、青色LED素子から出射される青色光(波長420nm~485nm)により励起され、黄色光(波長550nm~650nm)を出射するYAG(イットリウム・アルミニウム・ガーネット)蛍光体を使用している。
(Phosphor)
The phosphor is excited by the emitted light from the LED element 3 and emits fluorescence having a wavelength different from the wavelength of the emitted light. In this embodiment, a YAG (yttrium aluminum garnet) phosphor that is excited by blue light (wavelength 420 nm to 485 nm) emitted from a blue LED element and emits yellow light (wavelength 550 nm to 650 nm) is used. .
 このような、YAG蛍光体を生成するには、先ず、Y、Gd、Ce、Sm、Al、La、Gaの酸化物、または高温で容易に酸化物となる化合物を使用し、これらを化学量論比で十分に混合して混合原料を得る。或いは、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶液からシュウ酸により共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して混合原料を得る。そして、得られた混合原料にフラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し、成形体を得る。得られた成形体を坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成して、蛍光体の発光特性を持つ焼成体を得る。 In order to produce such a YAG phosphor, first, an oxide of Y, Gd, Ce, Sm, Al, La, Ga, or a compound that easily becomes an oxide at a high temperature is used, and these are stoichiometrically converted. Thorough mixing is performed at a theoretical ratio to obtain a mixed raw material. Alternatively, a coprecipitated oxide obtained by firing a solution obtained by coprecipitation of oxalic acid from a solution obtained by dissolving rare earth elements of Y, Gd, Ce, and Sm in an acid at a stoichiometric ratio with aluminum oxide and gallium oxide Mix to obtain a mixed raw material. Then, an appropriate amount of fluoride such as ammonium fluoride is mixed with the obtained mixed raw material as a flux and pressed to obtain a molded body. The obtained compact is packed in a crucible and fired in the air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a fired body having the phosphor emission characteristics.
 ここで、蛍光体の粒径が大きいほど発光効率(波長変換効率)が高くなる反面、透明セラミック材料との界面に生じる隙間が大きくなって、形成された透明セラミック層の膜強度が低下する。従って、発光効率と、界面に生じる隙間の大きさとを考慮し、平均粒径が1μm以上50μm以下のものを用いることが好ましい。蛍光体の平均粒径は、例えばコールターカウンター法によって測定される。なお、本実施形態ではYAG蛍光体を使用しているが、蛍光体の種類は、これに限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体等の他の蛍光体を使用することもできる。 Here, the larger the particle size of the phosphor, the higher the light emission efficiency (wavelength conversion efficiency), but the gap generated at the interface with the transparent ceramic material increases, and the film strength of the formed transparent ceramic layer decreases. Therefore, it is preferable to use one having an average particle diameter of 1 μm or more and 50 μm or less in consideration of the light emission efficiency and the size of the gap generated at the interface. The average particle diameter of the phosphor is measured, for example, by a Coulter counter method. In this embodiment, the YAG phosphor is used, but the type of the phosphor is not limited to this, and other phosphors such as a non-garnet phosphor that does not contain Ce are used. You can also.
(層状ケイ酸塩鉱物)
 層状ケイ酸塩鉱物は、セラミック前駆体と蛍光体との混合液に添加されることで混合液の粘性を増加させ、蛍光体の沈降を抑制する働きをする。本発明に用いられる層状ケイ酸塩鉱物としては、雲母構造、カオリナイト構造、スメクタイト構造等の構造を有する膨潤性粘土鉱物が好ましく、膨潤性に富むスメクタイト構造を有するものが特に好ましい。スメクタイト構造は、後述するように、混合液中に水を添加することで層間に水が進入して膨潤したカードハウス構造をとるため、少量で混合液の粘性を大幅に増加させる効果を生じる。
(Layered silicate mineral)
The layered silicate mineral increases the viscosity of the mixed solution by being added to the mixed solution of the ceramic precursor and the phosphor and functions to suppress the precipitation of the phosphor. As the layered silicate mineral used in the present invention, a swellable clay mineral having a mica structure, a kaolinite structure, a smectite structure, or the like is preferable, and a swellable smectite structure is particularly preferable. As will be described later, the smectite structure has a card house structure in which water is added to the mixed solution and swells as the water enters between the layers, so that the viscosity of the mixed solution is greatly increased with a small amount.
 ここで、透明セラミック層中における層状ケイ酸塩鉱物の含有量が0.5重量%未満になると、混合液の粘性を増加させる効果が十分に得られない。一方、層状ケイ酸塩鉱物の含有量が20重量%を超えると、加熱により形成されるこの透明セラミック層の強度が低下する。従って、層状ケイ酸塩鉱物の含有量を0.5重量%以上20重量%以下とすることが好ましく、0.5重量%以上10重量%以下がより好ましい。 Here, when the content of the layered silicate mineral in the transparent ceramic layer is less than 0.5% by weight, the effect of increasing the viscosity of the mixed solution cannot be obtained sufficiently. On the other hand, when the content of the layered silicate mineral exceeds 20% by weight, the strength of the transparent ceramic layer formed by heating decreases. Accordingly, the content of the layered silicate mineral is preferably 0.5 wt% or more and 20 wt% or less, and more preferably 0.5 wt% or more and 10 wt% or less.
 なお、有機溶媒との相溶性を考慮して、層状ケイ酸塩鉱物の表面をアンモニウム塩等で修飾(表面処理)したものを適宜用いることもできる。 In addition, in consideration of compatibility with an organic solvent, a layered silicate mineral whose surface is modified (surface treatment) with an ammonium salt or the like can be used as appropriate.
(無機微粒子)
 無機微粒子は、透明セラミック材料と、蛍光体及び層状ケイ酸塩鉱物との界面に生じる隙間を埋める充填効果、加熱前の混合液の粘性を増加させる増粘効果、及び加熱後の透明セラミック層の膜強度を向上させる膜強化効果を有する。本発明に用いられる無機微粒子としては、酸化ケイ素、酸化チタン、酸化亜鉛等の酸化物微粒子、フッ化マグネシウム等のフッ化物微粒子等が挙げられる。特に、形成される透明セラミック層に対する安定性の観点から酸化ケイ素の微粒子を用いることが好ましい。
(Inorganic fine particles)
The inorganic fine particles have a filling effect that fills the gap formed at the interface between the transparent ceramic material, the phosphor and the layered silicate mineral, a thickening effect that increases the viscosity of the mixed liquid before heating, and a transparent ceramic layer after heating. It has a film strengthening effect that improves the film strength. Examples of the inorganic fine particles used in the present invention include oxide fine particles such as silicon oxide, titanium oxide and zinc oxide, and fluoride fine particles such as magnesium fluoride. In particular, it is preferable to use fine particles of silicon oxide from the viewpoint of stability with respect to the formed transparent ceramic layer.
 ここで、透明セラミック層中における無機微粒子の含有量が0.5重量%未満の場合では、上述したそれぞれの効果が十分に得られない。一方、無機微粒子の含有量が50重量%を超えると、加熱により形成されるこの透明セラミック層の強度が低下する。従って、透明セラミック層中における無機微粒子の含有量が0.5重量%以上50重量%以下であることが好ましく、1重量%以上40重量%以下がより好ましい。また、上述したそれぞれの効果を考慮して、無機微粒子の平均粒径が0.001μm以上50μm以下のものを用いることが好ましい。無機微粒子の平均粒径は、例えばコールターカウンター法によって測定される。 Here, when the content of the inorganic fine particles in the transparent ceramic layer is less than 0.5% by weight, the respective effects described above cannot be sufficiently obtained. On the other hand, when the content of the inorganic fine particles exceeds 50% by weight, the strength of the transparent ceramic layer formed by heating decreases. Therefore, the content of the inorganic fine particles in the transparent ceramic layer is preferably 0.5% by weight or more and 50% by weight or less, and more preferably 1% by weight or more and 40% by weight or less. In consideration of each of the above-described effects, it is preferable to use an inorganic fine particle having an average particle size of 0.001 μm to 50 μm. The average particle diameter of the inorganic fine particles is measured, for example, by a Coulter counter method.
 なお、シルセスキオキサンや有機溶媒との相溶性を考慮して、無機微粒子の表面をシランカップリング剤やチタンカップリング剤で処理したものを適宜用いることもできる。 In addition, in consideration of compatibility with silsesquioxane or an organic solvent, a material obtained by treating the surface of inorganic fine particles with a silane coupling agent or a titanium coupling agent can be used as appropriate.
(蛍光体塗布液)
 上記のように、シルセスキオキサンを有機溶媒と混合した(希釈した)セラミック前駆体液に蛍光体、層状ケイ酸塩鉱物、及び、無機微粒子を混合することで作製した蛍光体塗布液を、波長変換部6を形成する場所に塗布して加熱することで、透光性と蛍光性とを有する波長変換部6が形成される。また、この蛍光体塗布液中に水が存在すると、層状ケイ酸塩鉱物の層間に水が入り込んで蛍光体塗布液の粘性が増加するので、蛍光体の沈降を抑制する意味で好ましい。
(Phosphor coating solution)
As described above, a phosphor coating solution prepared by mixing phosphor, layered silicate mineral, and inorganic fine particles in a ceramic precursor solution in which silsesquioxane is mixed with an organic solvent (diluted) The wavelength conversion part 6 which has translucency and fluorescence is formed by apply | coating to the place which forms the conversion part 6, and heating. Further, when water is present in the phosphor coating solution, water enters between the layers of the layered silicate mineral to increase the viscosity of the phosphor coating solution, which is preferable in terms of suppressing the sedimentation of the phosphor.
 有機溶媒としては、脂肪族炭化水素、芳香族炭化水素、ハロゲン炭化水素、エーテル類、エステル類、アルコール類、ケトン類等を使用することができる。好ましくはメチルエチルケトン、テトラヒドロフラン、ベンゼン、クロロホルム、エチルエーテル、イソプロピルエーテル、ジブチルエーテル、エチルブチルエーテル、メタノール、エタノール、イソプロピルアルコール、エチレングリコール、プロピレングリコール、ブタンジオール、グリセロール、アセトンが用いられる。有機溶媒に対するシルセスキオキサンの混合量が5重量%未満になると、蛍光体塗布液の粘性を増加させることが困難となり、シルセスキオキサンの混合量が50重量%を超えると、重合反応が必要以上に速く進んでしまう。そのため、有機溶媒に対するシルセスキオキサンの混合量が5重量%以上50重量%以下であることが好ましく、8重量%以上40重量%以下がより好ましい。 As the organic solvent, aliphatic hydrocarbons, aromatic hydrocarbons, halogen hydrocarbons, ethers, esters, alcohols, ketones and the like can be used. Preferably, methyl ethyl ketone, tetrahydrofuran, benzene, chloroform, ethyl ether, isopropyl ether, dibutyl ether, ethyl butyl ether, methanol, ethanol, isopropyl alcohol, ethylene glycol, propylene glycol, butanediol, glycerol, and acetone are used. When the amount of silsesquioxane mixed with the organic solvent is less than 5% by weight, it becomes difficult to increase the viscosity of the phosphor coating solution. When the amount of silsesquioxane mixed exceeds 50% by weight, the polymerization reaction is caused. Proceeds faster than necessary. Therefore, the mixing amount of silsesquioxane with respect to the organic solvent is preferably 5% by weight or more and 50% by weight or less, and more preferably 8% by weight or more and 40% by weight or less.
 また、有機溶媒に水を加えることも蛍光体塗布液を増粘させる観点で好ましい。このとき、総溶媒量に対する水の割合が60重量%を超えると増粘効果よりも水の混合過多による粘度低下効果の方が大きくなるので60重量%以下とすることが好ましい。 It is also preferable to add water to the organic solvent from the viewpoint of increasing the viscosity of the phosphor coating solution. At this time, if the ratio of water with respect to the total amount of solvent exceeds 60% by weight, the effect of decreasing the viscosity due to excessive mixing of water is greater than the effect of increasing the viscosity.
 蛍光体塗布液の調製手順としては、シルセスキオキサンと溶媒と蛍光体と層状ケイ酸塩鉱物と無機微粒子とを混合する順序に制限はない。また、これらに水を添加する場合にも順序に制限はないが、表面処理されていない親水性の層状ケイ酸塩鉱物を用いる場合には、先ず、層状ケイ酸塩鉱物と水とを予備混合し、その後に蛍光体、無機微粒子、及びセラミック前駆体液を混合した方が増粘効果を得る観点で好ましい。混合液の好ましい粘度は25~800cPであり、最も好ましい粘度は30~500cPである。 The procedure for preparing the phosphor coating liquid is not limited to the order of mixing silsesquioxane, solvent, phosphor, layered silicate mineral, and inorganic fine particles. In addition, when water is added to these, the order is not limited, but when using a hydrophilic layered silicate mineral that has not been surface-treated, first, the layered silicate mineral and water are premixed. Then, it is preferable from the viewpoint of obtaining a thickening effect that phosphor, inorganic fine particles, and ceramic precursor liquid are mixed thereafter. The preferred viscosity of the mixed solution is 25 to 800 cP, and the most preferred viscosity is 30 to 500 cP.
 蛍光体塗布液の最も好ましい組成範囲は、シルセスキオキサンが2~10重量%、蛍光体が10~50重量%、層状ケイ酸塩鉱物が1~20重量%、無機微粒子が1~40重量%、溶媒または溶媒と水との混合液が20~80重量%である。 The most preferable composition range of the phosphor coating solution is 2 to 10% by weight of silsesquioxane, 10 to 50% by weight of phosphor, 1 to 20% by weight of layered silicate mineral, and 1 to 40% by weight of inorganic fine particles. %, A solvent or a mixture of a solvent and water is 20 to 80% by weight.
 上記組成により作製された蛍光体塗布液により、波長変換部6となる透明セラミック層の薄膜が形成される。透明セラミック層の形成は、特に限られないが、例えば、蛍光体塗布液を発光装置100にスプレー塗布することにより行われる。 A thin film of a transparent ceramic layer that becomes the wavelength conversion section 6 is formed by the phosphor coating solution prepared by the above composition. The formation of the transparent ceramic layer is not particularly limited. For example, the transparent ceramic layer is formed by spraying a phosphor coating solution onto the light emitting device 100.
 図2は、透明セラミック層を形成する製造装置について説明する図である。 FIG. 2 is a diagram for explaining a manufacturing apparatus for forming a transparent ceramic layer.
 製造装置10は、主に、上下、左右、前後に移動可能な移動台20と、上記で説明した蛍光体塗布液40を噴射可能なスプレー装置30と、波長変換部6の色度や輝度などを検査可能な検査装置50と、を有している。 The manufacturing apparatus 10 mainly includes a movable table 20 that can move up and down, left and right, and back and forth, a spray device 30 that can spray the phosphor coating liquid 40 described above, and the chromaticity and luminance of the wavelength conversion unit 6. And an inspection device 50 capable of inspecting.
 スプレー装置30は、移動台20の上方に配置されている。スプレー装置30は、エアーが送り込まれるノズル32を有している。或いは、スプレー装置30が移動台20の下方に設置され、上方に向かって蛍光体塗布液40を噴射する構成であってもよい。ノズル32の先端部の孔径は20μm~2mmであり、好ましくは0.1~0.3mmである。ノズル32は、移動台20と同様に上下、左右、前後に移動可能となっている。また、ノズル32の角度を調整することも可能であり、移動台20(または、これに設置されるLED基板1)に対し傾斜させることができるようになっている。ノズル32には温度調整機構が内蔵されており、噴射物の温度を調整することができる。 The spray device 30 is disposed above the movable table 20. The spray device 30 has a nozzle 32 into which air is sent. Or the structure which sprays the fluorescent substance coating liquid 40 toward the upper direction may be sufficient as the spray apparatus 30 is installed under the moving stand 20. The hole diameter at the tip of the nozzle 32 is 20 μm to 2 mm, preferably 0.1 to 0.3 mm. The nozzle 32 can move up and down, left and right, and back and forth, like the moving table 20. Moreover, it is also possible to adjust the angle of the nozzle 32, and it can be made to incline with respect to the moving stand 20 (or LED board 1 installed in this). The nozzle 32 has a built-in temperature adjustment mechanism, and can adjust the temperature of the ejected matter.
 ノズル32には、連結管34を介してタンク36が接続されている。タンク36には蛍光体塗布液40が貯留されている。タンク36には撹拌子が入っており、この攪拌子で蛍光体塗布液40を常に撹拌することで比重の大きい蛍光体の沈降を抑止して、蛍光体が蛍光体塗布液40中で分散した状態を保持する。 A tank 36 is connected to the nozzle 32 via a connecting pipe 34. A phosphor coating liquid 40 is stored in the tank 36. The tank 36 contains a stirrer. By constantly stirring the phosphor coating solution 40 with this stirrer, the phosphor having a large specific gravity is prevented from settling, and the phosphor is dispersed in the phosphor coating solution 40. Keep state.
 なお、スプレー装置30では、ノズル32にエアーを送り込むのに代えてモータなどを駆動源として利用し、タンク36の蛍光体塗布液40に直接圧力を加えてノズル32から蛍光体塗布液40を噴射するか、または押し出すような機構を用いることとしてもよい。 In the spray device 30, instead of sending air to the nozzle 32, a motor or the like is used as a drive source, and the phosphor coating liquid 40 is sprayed from the nozzle 32 by directly applying pressure to the phosphor coating liquid 40 in the tank 36. It is also possible to use a mechanism that performs or extrudes.
 検査装置50は、LED素子52と色彩輝度計54とを有している。LED素子52は、LED素子3と同様の光を発光する素子である。色彩輝度計54は、受光した光の色度や輝度を計測する計測器である。 The inspection device 50 includes an LED element 52 and a color luminance meter 54. The LED element 52 is an element that emits light similar to that of the LED element 3. The color luminance meter 54 is a measuring instrument that measures the chromaticity and luminance of received light.
 実際に波長変換部6を形成する場合には、LED素子3をあらかじめ実装した複数のLED基板1を移動台20に設置し、LED基板1とノズル32の先端部とを対向配置する。LED基板1とノズル32の先端部との距離は、50~300mmとする。その後、LED基板1とノズル32とを互いに相対移動させながら、ノズル32から蛍光体塗布液40を噴射してLED基板1に蛍光体塗布液40をスプレー塗布する。このとき、蛍光体塗布液40の噴射量を一定とし、単位面積当たりの蛍光体量を一定とする。そして、単位面積当たりの噴射時間を調整することによって波長変換部6の膜厚を決定する。ここで、波長変換部6が5μmより薄い場合には、蛍光体を適切に保持することができず、200μmより厚い場合には、成膜時にクラックを生じやすくなる。なお、LED基板1に蛍光体塗布液40を噴射する前に、移動台20を移動させてガラスプレート60に蛍光体塗布液40を噴射し、検査装置50を用いて色度や輝度の検査を行うことで、噴射量の調整を行うことができる。 When actually forming the wavelength conversion unit 6, a plurality of LED substrates 1 on which the LED elements 3 are mounted in advance are installed on the moving table 20, and the LED substrate 1 and the tip of the nozzle 32 are arranged to face each other. The distance between the LED substrate 1 and the tip of the nozzle 32 is 50 to 300 mm. Thereafter, while the LED substrate 1 and the nozzle 32 are moved relative to each other, the phosphor coating solution 40 is sprayed from the nozzle 32 to spray-coat the phosphor coating solution 40 onto the LED substrate 1. At this time, the spray amount of the phosphor coating liquid 40 is constant, and the phosphor amount per unit area is constant. And the film thickness of the wavelength conversion part 6 is determined by adjusting the injection time per unit area. Here, when the wavelength converter 6 is thinner than 5 μm, the phosphor cannot be appropriately held, and when it is thicker than 200 μm, cracks are likely to occur during film formation. Before injecting the phosphor coating liquid 40 onto the LED substrate 1, the moving base 20 is moved to inject the phosphor coating liquid 40 onto the glass plate 60, and chromaticity and luminance are inspected using the inspection device 50. By doing so, the injection amount can be adjusted.
 蛍光体塗布液40が塗布されたLED基板1は、焼成炉に移送されて蛍光体塗布液40が焼成される。このときの焼成温度は、LED素子3が破損しない程度に設定される。本発明で設定される焼成温度は、100~300℃、好ましくは130~170℃、より好ましくは140~160℃、もっとも好ましくは150℃前後である。そして、蛍光体塗布液40が焼成されることで、波長変換部6が形成される。 The LED substrate 1 coated with the phosphor coating solution 40 is transferred to a firing furnace, and the phosphor coating solution 40 is baked. The firing temperature at this time is set to such an extent that the LED element 3 is not damaged. The firing temperature set in the present invention is 100 to 300 ° C, preferably 130 to 170 ° C, more preferably 140 to 160 ° C, and most preferably around 150 ° C. And the wavelength conversion part 6 is formed because the fluorescent substance coating liquid 40 is baked.
 なお、上記の製造方法の他に、層状ケイ酸塩鉱物、無機微粒子、及び、蛍光体を溶媒と混合した蛍光体液と、セラミック前駆体液とを別個に用意し、蛍光体液を先に塗布して乾燥させることで蛍光体膜を形成した後に、セラミック前駆体液を塗布して焼成し、透明セラミック膜を形成する2液系の製造方法を用いることとしてもよい。蛍光体液を乾燥させて蛍光体膜を形成した後、セラミック前駆体液を塗布することで、蛍光体膜にセラミック前駆体液を含侵させることができ、その後にセラミック前駆体液を焼成することで、十分な強度を有する波長変換部6とすることができる。なお、2液系の製造方法は、上記に限らず、蛍光体液を塗布した後乾燥させずにセラミック前駆体液を塗布しても良いし、セラミック前駆体液と蛍光体液とを同時に噴射することとしてもよい。 In addition to the manufacturing method described above, a layered silicate mineral, inorganic fine particles, and a phosphor liquid in which a phosphor is mixed with a solvent and a ceramic precursor liquid are separately prepared, and the phosphor liquid is applied first. After forming the phosphor film by drying, a two-component manufacturing method in which a ceramic precursor liquid is applied and fired to form a transparent ceramic film may be used. After the phosphor liquid is dried to form a phosphor film, the ceramic precursor liquid can be impregnated into the phosphor film by applying the ceramic precursor liquid, and then the ceramic precursor liquid can be sufficiently fired. The wavelength converter 6 having a high intensity can be obtained. The two-component manufacturing method is not limited to the above, and the ceramic precursor liquid may be applied without applying drying after the phosphor liquid is applied, or the ceramic precursor liquid and the phosphor liquid may be sprayed simultaneously. Good.
 蛍光体塗布液40を焼成させた後に、ディスペンサを用いて波長変換部6をシリコーン樹脂で封止するための薄膜層7を形成する。この封止により、波長変換部6の経時的な劣化を抑制することができ、また、波長変換部6のLED基板1やLED素子3への接着性を向上させることができる。 After the phosphor coating liquid 40 is baked, a thin film layer 7 for sealing the wavelength conversion unit 6 with a silicone resin is formed using a dispenser. By this sealing, deterioration with time of the wavelength conversion unit 6 can be suppressed, and adhesion of the wavelength conversion unit 6 to the LED substrate 1 and the LED element 3 can be improved.
 以上のように、本発明の実施形態の発光装置100によれば、蛍光体を含有する透明セラミック材料によりLED素子3上に波長変換部6を形成し、LED素子3からの出射光と、当該出射光の波長とは異なる波長の前記蛍光体からの蛍光とを混色して出力する発光装置100において、透明セラミック材料は、組成式が(R-SiO3/2で表されるシルセスキオキサンを焼成することにより得られ、波長変換部6の厚みは、5~200μmに設定されるので、クラックが生じにくく高い耐熱性、耐光性及び透光性を有し、蛍光体を確実に保持可能な薄膜を備えた発光装置を得ることができる。従って、このような発光装置を用いて高輝度の発光装置を製造することが出来る。 As described above, according to the light emitting device 100 of the embodiment of the present invention, the wavelength conversion unit 6 is formed on the LED element 3 with the transparent ceramic material containing the phosphor, the emitted light from the LED element 3, In the light emitting device 100 that outputs a color mixture of fluorescence from the phosphor having a wavelength different from the wavelength of the emitted light, the transparent ceramic material has a silsesquiski having a composition formula represented by (R—SiO 3/2 ) n. It is obtained by baking oxane, and the thickness of the wavelength conversion part 6 is set to 5 to 200 μm, so that it is difficult to generate cracks, has high heat resistance, light resistance and translucency, and ensures the phosphor A light emitting device including a thin film that can be held can be obtained. Therefore, a high-luminance light-emitting device can be manufactured using such a light-emitting device.
 また、シルセスキオキサンには、カゴ型構造シルセスキオキサンが含まれるようにすることで、蛍光体を含む波長変換部6の剥離性を抑えた発光装置を得ることができる。 Further, by making the silsesquioxane contain the cage structure silsesquioxane, it is possible to obtain a light emitting device in which the peelability of the wavelength conversion unit 6 including the phosphor is suppressed.
 また、透明セラミック材料には、更に、層状粘土鉱物と無機微粒子とを含有させることで、蛍光体を含む波長変換部6の剥離容易性を更に抑えると共に、蛍光体をより適切に波長変換部6中に分散させた発光装置を得ることができる。 Further, the transparent ceramic material further contains a layered clay mineral and inorganic fine particles, thereby further suppressing the ease of peeling of the wavelength conversion unit 6 including the phosphor and further appropriately converting the phosphor to the wavelength conversion unit 6. A light emitting device dispersed therein can be obtained.
 また、シルセスキオキサンを所定の溶媒で希釈した溶液をスプレー塗布することにより波長変換部6を形成するので、容易にむらなく耐熱性に優れ、クラックを生じない波長変換部6を備えた発光装置を得ることができる。 Moreover, since the wavelength conversion part 6 is formed by spray-coating a solution obtained by diluting silsesquioxane with a predetermined solvent, light emission including the wavelength conversion part 6 that is easily uniform and excellent in heat resistance and does not cause cracks. A device can be obtained.
 また、波長変換部6の薄膜上に、更にシリコーン樹脂膜を設けることにより、蛍光体を封止したシルセスキオキサンによる透明セラミック薄膜(透明セラミック層)を保護することが出来るので、透明セラミック薄膜の劣化を更に抑えることができる。 Further, by providing a silicone resin film on the thin film of the wavelength conversion unit 6, the transparent ceramic thin film (transparent ceramic layer) made of silsesquioxane encapsulating the phosphor can be protected. Can be further suppressed.
 なお、本発明は、上記実施の形態に限られるものではなく、様々な変更が可能である。
 例えば、上記実施の形態では、青色LEDチップに対して黄色光の蛍光を出射する蛍光体を塗布することで白色光を放射させたが、これに限られない。例えば、紫外線を出射するLEDチップに対して、赤、青、緑の各蛍光を出射する蛍光体を混合して塗布することで白色光を放射することとしてもよい。
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, in the above-described embodiment, white light is emitted by applying a phosphor that emits yellow light fluorescence to a blue LED chip. However, the present invention is not limited to this. For example, white light may be emitted by mixing and applying phosphors emitting red, blue, and green fluorescence to LED chips that emit ultraviolet light.
 また、上記実施の形態では、スプレー装置を用いて蛍光体塗布液の塗布を行ったが、種々のコーターなど他の装置を用いて塗布することとしてもよい。
 その他、上記実施の形態で示した具体的な発光装置の形状や配置、数値などは、本発明の趣旨を逸脱しない範囲において適宜変更可能である。
Moreover, in the said embodiment, although the fluorescent substance coating liquid was apply | coated using the spray apparatus, it is good also as applying using other apparatuses, such as various coaters.
In addition, specific shapes, arrangements, numerical values, and the like of the light-emitting devices described in the above embodiments can be changed as appropriate without departing from the spirit of the present invention.
 次に、本発明の発光装置の例を以下の実施例に基づいて具体的に説明する。 Next, an example of the light emitting device of the present invention will be specifically described based on the following examples.
(1)サンプルの作製
(1.1)実施例1~4、比較例1、2
 実施例1~4、及び、比較例1、2の発光装置では、先ず、メチルトリエトキシシランを出発原料として用い、溶媒、モノマー濃度、塩基触媒、PH値、及び、反応温度をコントロールしながらシルセスキオキサンを合成した。この合成されたシルセスキオキサンを29Si-NMR(Si29の核磁気共鳴)やGPC(Gel Permeation Chromatography)等により分析することで、カゴ型構造シルセスキオキサンが含まれることが確認された。次に、合成されたシルセスキオキサンに対して、重量比で5倍量のYAG蛍光体、及び、重量比で10倍量のイソプロピルアルコールを混合することで、蛍光体塗布液を作製した。そして、この蛍光体塗布液をスプレーガンにより青色LEDチップが設けられたLED基板上に塗布した。最後に、蛍光体塗布液が塗布されたLED基板を焼成炉に移送し、130℃で30分間焼成することで、蛍光体を含有する透明セラミック層を形成した。このとき、スプレーガンによる単位面積当たりのスプレー時間(噴射時間)及び噴射速度を調整することで、塗布された蛍光体塗布液の膜厚を変更した。具体的には、比較例1、実施例1~4、比較例2について、それぞれ膜厚を3μm、5μm、10μm、100μm、200μm、及び、250μmとした。
(1) Sample preparation (1.1) Examples 1 to 4, Comparative Examples 1 and 2
In the light emitting devices of Examples 1 to 4 and Comparative Examples 1 and 2, first, methyltriethoxysilane was used as a starting material, and the solvent, monomer concentration, base catalyst, pH value, and reaction temperature were controlled while controlling the temperature. Sesquioxane was synthesized. The synthesized silsesquioxane was analyzed by 29Si-NMR (Si29 nuclear magnetic resonance), GPC (Gel Permeation Chromatography), etc., and it was confirmed that the cage structure silsesquioxane was contained. Next, a phosphor coating solution was prepared by mixing the synthesized silsesquioxane with 5 times the weight of YAG phosphor and 10 times the weight of isopropyl alcohol. And this fluorescent substance coating liquid was apply | coated on the LED board | substrate with which the blue LED chip was provided with the spray gun. Finally, the LED substrate coated with the phosphor coating solution was transferred to a firing furnace and baked at 130 ° C. for 30 minutes to form a transparent ceramic layer containing the phosphor. At this time, the film thickness of the applied phosphor coating solution was changed by adjusting the spray time (spray time) and spray speed per unit area with a spray gun. Specifically, the film thicknesses of Comparative Example 1, Examples 1 to 4 and Comparative Example 2 were 3 μm, 5 μm, 10 μm, 100 μm, 200 μm, and 250 μm, respectively.
(1.2)実施例5、6
 上記の実施例2及び実施例3における透明セラミック層の形成工程において、シルセスキオキサンに対し、更に、層状ケイ酸塩鉱物として重量比で0.3倍量のスメクタイト及び無機微粒子として重量比で0.3倍量の酸化ケイ素を加えた後に、それぞれ厚さ10μm及び100μmの透明セラミック層を形成した。
(1.2) Examples 5 and 6
In the step of forming the transparent ceramic layer in Example 2 and Example 3 above, with respect to silsesquioxane, the layered silicate mineral is 0.3 times the weight of smectite and the inorganic fine particles by weight. After adding 0.3 times the amount of silicon oxide, transparent ceramic layers having a thickness of 10 μm and 100 μm were formed, respectively.
(1.3)比較例3、4及び実施例7~10
 上記実施例における透明セラミック層の形成工程において、溶媒、モノマー濃度、塩基触媒、PH値、及び、反応温度を調整してカゴ型構造の存在しないシルセスキオキサンのみが含まれるシルセスキオキサンを得た。このシルセスキオキサンに対して重量比で5倍量のYAG蛍光体、重量比で10倍量のイソプロピルアルコール、重量比で0.3倍量のスメクタイト、及び、重量比で0.3倍量の酸化ケイ素を加えて蛍光体塗布液を作製した。この蛍光体塗布液をスプレーガンにより青色LEDが設けられたLED基板上に塗布した。最後に、蛍光体塗布液が塗布されたLED基板を焼成炉に移送し、130℃で30分間焼成することで、蛍光体を含有する透明セラミック層を形成した。このとき、スプレーガンによる単位面積当たりのスプレー時間(噴射時間)及び噴射速度を調整することで、塗布された蛍光体塗布液の膜厚を変更した。具体的には、比較例3、実施例7~10、比較例4について、それぞれ、膜厚を3μm、5μm、10μm、100μm、200μm、及び、250μmとした。
(1.3) Comparative Examples 3 and 4 and Examples 7 to 10
In the step of forming the transparent ceramic layer in the above embodiment, silsesquioxane containing only silsesquioxane having no cage structure by adjusting the solvent, monomer concentration, base catalyst, PH value, and reaction temperature Obtained. This silsesquioxane is 5 times the weight of YAG phosphor, 10 times the weight of isopropyl alcohol, 0.3 times the weight of smectite, and 0.3 times the weight ratio. A phosphor coating solution was prepared by adding the above silicon oxide. This phosphor coating solution was applied onto an LED substrate provided with a blue LED by a spray gun. Finally, the LED substrate coated with the phosphor coating solution was transferred to a firing furnace and baked at 130 ° C. for 30 minutes to form a transparent ceramic layer containing the phosphor. At this time, the film thickness of the applied phosphor coating solution was changed by adjusting the spray time (spray time) and spray speed per unit area with a spray gun. Specifically, for Comparative Example 3, Examples 7 to 10, and Comparative Example 4, the film thicknesses were 3 μm, 5 μm, 10 μm, 100 μm, 200 μm, and 250 μm, respectively.
(1.4)実施例11
 上記実施例9における透明セラミック層の形成工程において、蛍光体塗布液の調製時にスメクタイト及び酸化ケイ素を加えずに膜厚が100μmの透明セラミック層を形成した。
(1.4) Example 11
In the step of forming the transparent ceramic layer in Example 9, a transparent ceramic layer having a thickness of 100 μm was formed without adding smectite and silicon oxide when preparing the phosphor coating solution.
(1.5)比較例5
 上記実施例3における透明セラミック層の形成工程において、蛍光体塗布液の調製時にYAG蛍光体を加えずに膜厚が100μmの透明セラミック層を形成した。
(1.5) Comparative Example 5
In the step of forming the transparent ceramic layer in Example 3 above, a transparent ceramic layer having a thickness of 100 μm was formed without adding the YAG phosphor during the preparation of the phosphor coating solution.
(1.6)比較例6
 上記実施例6における透明セラミック層の形成工程において、蛍光体塗布液の調製時にYAG蛍光体を加えずに膜厚が100μmの透明セラミック層を形成した。
(1.6) Comparative Example 6
In the step of forming the transparent ceramic layer in Example 6 above, a transparent ceramic layer having a thickness of 100 μm was formed without adding the YAG phosphor during the preparation of the phosphor coating solution.
(1.7)実施例12
 YAG蛍光体5重量部に対し、0.3重量部のスメクタイト、及び、0.3重量部の酸化ケイ素、及び、10重量部のイソプロピルアルコールを混合し、蛍光体塗布液を作製した。そして、この蛍光体塗布液をスプレーガンにより青色LEDチップが設けられたLED基板上に塗布した。このLED基板を焼成炉に移送し、130℃で30分間焼成することで、厚さ100μmの蛍光体層を形成した。続いて、上記実施例1と同様の工程を経て合成されたシルセスキオキサンを、スプレーガンにより蛍光体層の上から塗布した。このLED基板を再び焼成炉に移送し、130℃で30分間焼成することで、蛍光体層の上部に、厚さ5μmの透明セラミック層を形成した。
(1.7) Example 12
A phosphor coating solution was prepared by mixing 0.3 part by weight of smectite, 0.3 part by weight of silicon oxide, and 10 parts by weight of isopropyl alcohol with respect to 5 parts by weight of YAG phosphor. And this fluorescent substance coating liquid was apply | coated on the LED board | substrate with which the blue LED chip was provided with the spray gun. The LED substrate was transferred to a baking furnace and baked at 130 ° C. for 30 minutes, thereby forming a phosphor layer having a thickness of 100 μm. Subsequently, silsesquioxane synthesized through the same steps as in Example 1 was applied from above the phosphor layer with a spray gun. This LED substrate was again transferred to a firing furnace and baked at 130 ° C. for 30 minutes, thereby forming a transparent ceramic layer having a thickness of 5 μm on the phosphor layer.
(2)膜物性の検査方法
 これらの実施例1~12及び比較例1~6の透明セラミック層が形成された発光装置のサンプルにおいて、以下のようにして透明セラミック層の膜物性を調べた。
(2) Method for Inspecting Film Physical Properties In the samples of the light emitting devices on which the transparent ceramic layers of Examples 1 to 12 and Comparative Examples 1 to 6 were formed, the film physical properties of the transparent ceramic layers were examined as follows.
(2.1)成膜時のクラック発生の観察
 実施例1~12及び比較例1~6において形成された各サンプルにおいて、透明セラミック層を顕微鏡で観察して、クラックの発生有無を確認し、以下のように分類した。
 ○:クラックが観察されなかった。
 ×:クラックが観察された。
(2.1) Observation of occurrence of cracks during film formation In each sample formed in Examples 1 to 12 and Comparative Examples 1 to 6, the transparent ceramic layer was observed with a microscope to confirm the presence or absence of cracks. The classification was as follows.
○: No crack was observed.
X: Cracks were observed.
(2.2)蛍光体保持性の測定
 形成された各発光装置100を高さ50cmから繰り返し5回落下させた。その後に、蛍光体の欠落状態を顕微鏡により観察し、以下のように分類した。
 ○:蛍光体の欠落が見られなかった。
 △:ごく僅かに蛍光体の欠落が見られるが、実使用上問題のないレベルであった。
 ×:蛍光体の欠落が多く見られ、実使用上問題の発生するレベルであった。
 -:評価未実施
(2.2) Measurement of phosphor retainability Each formed light emitting device 100 was repeatedly dropped 5 times from a height of 50 cm. Thereafter, the absence of the phosphor was observed with a microscope and classified as follows.
○: No loss of phosphor was observed.
(Triangle | delta): Although the loss | missing of the fluorescent substance was seen very slightly, it was a level which does not have a problem in actual use.
X: Many missing phosphors were observed, and this was a level where problems occurred in actual use.
-: Not evaluated
(2.3)テープ剥離試験
 形成された透明セラミック層にニチバン製セロテープ(登録商標)(24mm)を貼り付け、直ちに剥がす作業を20回繰り返して行った。そして、各回の作業毎に透明セラミック層の塗膜状態を顕微鏡により観察し、以下のように分類した。
 ◎:透明セラミック層の剥離が全く見られなかった。
 ○:15回繰り返した時点では全く剥離が見られなかったが、20回繰り返された後には僅かな剥離が見られた。
 △:10回繰り返した時点では全く剥離が見られなかったが、15回繰り返された後には僅かな剥離が見られた。
 -:評価未実施
(2.3) Tape Peeling Test The Nichiban cello tape (registered trademark) (24 mm) was applied to the formed transparent ceramic layer, and the peeling operation was repeated 20 times. And the coating state of the transparent ceramic layer was observed with the microscope for every operation | work, and it classified as follows.
A: No peeling of the transparent ceramic layer was observed.
○: No peeling was observed at the time of 15 repetitions, but slight peeling was observed after 20 repetitions.
(Triangle | delta): Although peeling was not seen at the time of repeating 10 times, slight peeling was seen after repeating 15 times.
-: Not evaluated
(3)まとめ
 上記実施例1~12及び比較例1~6の透明セラミック層形成工程により形成された透明セラミック層の膜構成と上記膜物性の評価とを表1に示す。
(3) Summary Table 1 shows the film configuration of the transparent ceramic layer formed by the transparent ceramic layer forming steps of Examples 1 to 12 and Comparative Examples 1 to 6 and the evaluation of the film properties.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、先ず、成膜時のクラックに関しては、形成された透明セラミック層の厚みが250μmまで増すと(比較例2、4)発生する。また、シルセスキオキサンに蛍光体が含まれていない場合(比較例5、6)には、100μmの厚さで透明セラミック層を形成した場合であっても、蛍光体が含まれる場合(実施例3、6)とは異なり、クラックが発生することが示された。 As shown in Table 1, first, cracks during film formation occur when the thickness of the formed transparent ceramic layer increases to 250 μm (Comparative Examples 2 and 4). In addition, when the phosphor is not contained in silsesquioxane (Comparative Examples 5 and 6), even when the transparent ceramic layer is formed with a thickness of 100 μm, the phosphor is contained (implementation) Unlike Examples 3 and 6), it was shown that cracks occurred.
 次に、蛍光体の保持性に関しては、形成された透明セラミック層の厚みが薄くなると悪化することが示された。具体的には、透明セラミック層の厚みを3μm(比較例1、3)にまで薄くすると、実使用上必要な蛍光体の保持性が得られないということが示された。 Next, it was shown that the retention of the phosphor deteriorates as the thickness of the formed transparent ceramic layer is reduced. Specifically, it was shown that when the thickness of the transparent ceramic layer was reduced to 3 μm (Comparative Examples 1 and 3), the phosphor retention required for practical use could not be obtained.
 また、テープ剥離試験に関しては、カゴ型構造シルセスキオキサンが含まれているケース(実施例3)と比較して、カゴ型シルセスキオキサンが含まれていない場合(実施例11)では、透明セラミック層が剥離しやすいということが示された。 In addition, regarding the tape peeling test, compared to the case where the cage-type silsesquioxane is included (Example 3), when the cage-type silsesquioxane is not included (Example 11), It was shown that the transparent ceramic layer is easy to peel off.
 これらの結果をまとめると、シルセスキオキサンを用いて、蛍光体を含んだ透明セラミック層を5μm以上200μm以下の範囲で形成することにより、好適な膜物性の透明セラミック層を備えた発光装置が作製される。 Summarizing these results, a light-emitting device having a transparent ceramic layer having suitable film properties can be obtained by forming a transparent ceramic layer containing phosphor in a range of 5 μm or more and 200 μm or less using silsesquioxane. Produced.
産業上の利用の可能性Industrial applicability
 この発明は、発光素子と蛍光体とを用いた発光装置、及び、発光装置の製造に利用することが出来る。 The present invention can be used for manufacturing a light emitting device using a light emitting element and a phosphor, and a light emitting device.
1     LED基板
2     メタル部
3、52      LED素子
4     突起電極
6     波長変換部
7     薄膜層
10   製造装置
20   移動台
30   スプレー装置
32   ノズル
34   連結管
36   タンク
40   蛍光体塗布液
50   検査装置
54   色彩輝度計
60   ガラスプレート
100 発光装置
DESCRIPTION OF SYMBOLS 1 LED board 2 Metal part 3, 52 LED element 4 Projection electrode 6 Wavelength conversion part 7 Thin film layer 10 Manufacturing apparatus 20 Moving stand 30 Spray apparatus 32 Nozzle 34 Connection pipe 36 Tank 40 Phosphor coating liquid 50 Inspection apparatus 54 Color luminance meter 60 Glass plate 100 light emitting device

Claims (12)

  1.  発光素子と、当該発光素子上に形成された透光性薄膜と、を備える発光装置において、
     前記透光性薄膜は、蛍光体を含有するセラミック材料により構成され、
     前記セラミック材料は、組成式が(R-SiO3/2で表されるシルセスキオキサンを焼成することにより得られたものであり、
     前記透光性薄膜の厚みは、5~200μmであることを特徴とする発光装置。
     ここで、Rは有機基である。
    In a light-emitting device comprising a light-emitting element and a translucent thin film formed on the light-emitting element,
    The translucent thin film is made of a ceramic material containing a phosphor,
    The ceramic material is obtained by firing silsesquioxane whose composition formula is represented by (R—SiO 3/2 ) n .
    The light-emitting device, wherein the translucent thin film has a thickness of 5 to 200 μm.
    Here, R is an organic group.
  2.  前記シルセスキオキサンにはカゴ型構造シルセスキオキサンが含まれることを特徴とする請求項1記載の発光装置。 The light-emitting device according to claim 1, wherein the silsesquioxane includes a cage structure silsesquioxane.
  3.  前記透光性薄膜には、更に、層状粘土鉱物及び無機微粒子が含有されていることを特徴とする請求項1又は2に記載の発光装置。 The light-emitting device according to claim 1 or 2, wherein the light-transmitting thin film further contains a layered clay mineral and inorganic fine particles.
  4.  前記透光性薄膜は、前記シルセスキオキサンと、前記蛍光体と、層状粘土鉱物と、無機微粒子とを所定の溶媒で希釈した溶液を塗布することにより形成されたものであることを特徴とする請求項1~3の何れか1項に記載の発光装置。 The translucent thin film is formed by applying a solution in which the silsesquioxane, the phosphor, the layered clay mineral, and the inorganic fine particles are diluted with a predetermined solvent. The light emitting device according to any one of claims 1 to 3.
  5.  前記透光性薄膜は、前記蛍光体と層状粘土鉱物及び無機微粒子とを所定の溶媒で希釈した溶液を塗布した以後に、前記シルセスキオキサンを塗布することにより形成されることを特徴とする請求項1~3の何れか1項に記載の発光装置。 The translucent thin film is formed by applying the silsesquioxane after applying a solution obtained by diluting the phosphor, layered clay mineral and inorganic fine particles with a predetermined solvent. The light emitting device according to any one of claims 1 to 3.
  6.  前記塗布がスプレー塗布であることを特徴とする請求項4又は5に記載の発光装置。 The light-emitting device according to claim 4 or 5, wherein the application is spray application.
  7.  前記透光性薄膜上には、シリコーン樹脂膜が設けられていることを特徴とする請求項1~5の何れか1項に記載の発光装置。 6. The light emitting device according to claim 1, wherein a silicone resin film is provided on the translucent thin film.
  8.  発光素子と、当該発光素子上に形成された透光性薄膜とを備える発光装置の製造方法であって、
     前記発光素子上に前記透光性薄膜を形成するステップは、
     組成式が(R-SiO3/2で表されるシルセスキオキサン(Rは有機基)と、蛍光体とを所定の溶媒で希釈した塗布液を厚さ5~200μmで前記発光素子上に塗布するステップと、
     塗布された前記塗布液を焼成するステップと、
     を含むことを特徴とする発光装置の製造方法。
    A method for manufacturing a light emitting device comprising: a light emitting element; and a translucent thin film formed on the light emitting element.
    Forming the translucent thin film on the light emitting element,
    The light-emitting element having a thickness of 5 to 200 μm and a coating solution obtained by diluting a silsesquioxane (R is an organic group) represented by a composition formula (R—SiO 3/2 ) n and a phosphor with a predetermined solvent Applying on top,
    Firing the applied coating solution;
    A method for manufacturing a light-emitting device, comprising:
  9.  前記塗布液は、層状粘土鉱物及び無機微粒子を含んで作製されることを特徴とする請求項8に記載の発光装置の製造方法。 The method for manufacturing a light-emitting device according to claim 8, wherein the coating liquid is prepared including a layered clay mineral and inorganic fine particles.
  10.  発光素子と、当該発光素子上に形成された透光性薄膜とを備える発光装置の製造方法であって、
     前記発光素子上に前記透光性薄膜を形成するステップは、
     前記蛍光体と、層状粘土鉱物及び無機微粒子と、を所定の溶媒で希釈した第1塗布液を塗布するステップと、
     前記第1塗布液の塗布以後に、組成式が(R-SiO3/2で表されるシルセスキオキサン(Rは有機基)を、前記透光性薄膜の厚さの合計が5~200μmとなるように塗布するステップと、
     塗布された前記第1塗布液及び前記シルセスキオキサンを焼成するステップと、
     を含むことを特徴とする発光装置の製造方法。
    A method for manufacturing a light emitting device comprising: a light emitting element; and a translucent thin film formed on the light emitting element.
    Forming the translucent thin film on the light emitting element,
    Applying the first coating solution obtained by diluting the phosphor, the layered clay mineral and the inorganic fine particles with a predetermined solvent;
    After application of the first coating solution, silsesquioxane (R is an organic group) represented by a composition formula (R—SiO 3/2 ) n is used, and the total thickness of the light-transmitting thin film is 5 Applying to be ~ 200 μm;
    Firing the applied first coating solution and the silsesquioxane;
    A method for manufacturing a light-emitting device, comprising:
  11.  発光素子と、当該発光素子上に形成された透光性薄膜と、を備える発光装置の前記透光性薄膜を形成する際に塗布される塗布液であって、
     組成式が(R-SiO3/2で表されるシルセスキオキサンと、蛍光体とを所定の溶媒で希釈した溶液であることを特徴とする塗布液。
     ここで、Rは有機基である。
    A coating liquid applied when forming the light-transmitting thin film of a light-emitting device comprising a light-emitting element and a light-transmitting thin film formed on the light-emitting element,
    A coating solution, which is a solution obtained by diluting a silsesquioxane represented by a composition formula (R—SiO 3/2 ) n and a phosphor with a predetermined solvent.
    Here, R is an organic group.
  12.  層状粘土鉱物と、無機微粒子とが更に含まれることを特徴とする請求項11に記載の塗布液。 The coating liquid according to claim 11, further comprising a layered clay mineral and inorganic fine particles.
PCT/JP2011/080122 2010-12-28 2011-12-26 Light emitting device, method for manufacturing light emitting device, and coating liquid WO2012090961A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012550949A JPWO2012090961A1 (en) 2010-12-28 2011-12-26 LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE MANUFACTURING METHOD, AND COATING LIQUID

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-291512 2010-12-28
JP2010291512 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090961A1 true WO2012090961A1 (en) 2012-07-05

Family

ID=46383061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080122 WO2012090961A1 (en) 2010-12-28 2011-12-26 Light emitting device, method for manufacturing light emitting device, and coating liquid

Country Status (2)

Country Link
JP (1) JPWO2012090961A1 (en)
WO (1) WO2012090961A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179384A (en) * 2013-03-13 2014-09-25 Mtek-Smart Corp Process of manufacturing led
WO2014170271A1 (en) * 2013-04-19 2014-10-23 Osram Opto Semiconductors Gmbh Method for producing a plurality of radiation-emitting semiconductor chips
JP2018056552A (en) * 2016-08-05 2018-04-05 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. Moisture-resistant chip scale packaging light-emitting device
EP3358381A4 (en) * 2015-09-29 2018-10-03 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion element and light emitting device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183843A (en) * 1985-02-08 1986-08-16 Hitachi Ltd Method of applying powder layer with improved optical adhesion
JPH10209505A (en) * 1997-01-17 1998-08-07 Stanley Electric Co Ltd Light emitting diode and its manufacture
JP2001181614A (en) * 1999-12-24 2001-07-03 Teikoku Tsushin Kogyo Co Ltd Fluorescent substance paste for el element and method for producing the same
WO2002059208A1 (en) * 2001-01-24 2002-08-01 Asahi Kasei Kabushiki Kaisha Polyphenylene ether resin compositions containing silicon compounds
JP2002374006A (en) * 2001-06-15 2002-12-26 Toyoda Gosei Co Ltd Light-emitting apparatus
JP2004153109A (en) * 2002-10-31 2004-05-27 Matsushita Electric Works Ltd Light emitting device and manufacturing method thereof
JP2005019662A (en) * 2003-06-26 2005-01-20 Nichia Chem Ind Ltd Light emitting device
JP2005089601A (en) * 2003-09-17 2005-04-07 Stanley Electric Co Ltd Thermosetting resin composition, light emitting diode with its light emitting element encapsulated by the same, and color conversion type light emitting diode encapsulated by the same
JP2009239242A (en) * 2007-06-22 2009-10-15 Mitsubishi Chemicals Corp Member forming liquid for semiconductor light emitting device, member for semiconductor light emitting device, member for aerospace industry, semiconductor light emitting device, and phosphor composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4421192B2 (en) * 2003-02-10 2010-02-24 スタンレー電気株式会社 Sealing resin composition for light emitting diode and surface mount light emitting diode using the same
JP4826160B2 (en) * 2005-07-28 2011-11-30 ナガセケムテックス株式会社 Optical element sealing resin composition
JP2007070600A (en) * 2005-08-11 2007-03-22 Asahi Kasei Corp Composition for sealing material and optical device
JP5211059B2 (en) * 2007-08-17 2013-06-12 パナソニック株式会社 Semiconductor optical device and transparent optical member

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183843A (en) * 1985-02-08 1986-08-16 Hitachi Ltd Method of applying powder layer with improved optical adhesion
JPH10209505A (en) * 1997-01-17 1998-08-07 Stanley Electric Co Ltd Light emitting diode and its manufacture
JP2001181614A (en) * 1999-12-24 2001-07-03 Teikoku Tsushin Kogyo Co Ltd Fluorescent substance paste for el element and method for producing the same
WO2002059208A1 (en) * 2001-01-24 2002-08-01 Asahi Kasei Kabushiki Kaisha Polyphenylene ether resin compositions containing silicon compounds
JP2002374006A (en) * 2001-06-15 2002-12-26 Toyoda Gosei Co Ltd Light-emitting apparatus
JP2004153109A (en) * 2002-10-31 2004-05-27 Matsushita Electric Works Ltd Light emitting device and manufacturing method thereof
JP2005019662A (en) * 2003-06-26 2005-01-20 Nichia Chem Ind Ltd Light emitting device
JP2005089601A (en) * 2003-09-17 2005-04-07 Stanley Electric Co Ltd Thermosetting resin composition, light emitting diode with its light emitting element encapsulated by the same, and color conversion type light emitting diode encapsulated by the same
JP2009239242A (en) * 2007-06-22 2009-10-15 Mitsubishi Chemicals Corp Member forming liquid for semiconductor light emitting device, member for semiconductor light emitting device, member for aerospace industry, semiconductor light emitting device, and phosphor composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179384A (en) * 2013-03-13 2014-09-25 Mtek-Smart Corp Process of manufacturing led
WO2014170271A1 (en) * 2013-04-19 2014-10-23 Osram Opto Semiconductors Gmbh Method for producing a plurality of radiation-emitting semiconductor chips
US9590151B2 (en) 2013-04-19 2017-03-07 Osram Opto Semiconductors Gmbh Method for producing a plurality of radiation-emitting semiconductor chips
EP3358381A4 (en) * 2015-09-29 2018-10-03 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion element and light emitting device
JP2018056552A (en) * 2016-08-05 2018-04-05 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. Moisture-resistant chip scale packaging light-emitting device

Also Published As

Publication number Publication date
JPWO2012090961A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5870923B2 (en) Method for manufacturing light emitting device
WO2013051281A1 (en) Led device manufacturing method and fluorescent material-dispersed solution used in same
JP2011238811A (en) Wavelength conversion element and light-emitting device
EP2940743A1 (en) Light emitting device
US20110278616A1 (en) Manufacturing method of wavelength conversion element, wavelength conversion element, and light emitting device
WO2013051280A1 (en) Phosphor dispersion liquid, and production method for led device using same
JP5869769B2 (en) Method for forming phosphor layer and method for manufacturing light emitting device
WO2012124426A1 (en) Method for manufacturing light emitting device and mixed phosphor solution
JP2014130871A (en) Light emitting device
JP2015153856A (en) Light emitting device and method for manufacturing the same
WO2013121903A1 (en) Wavelength conversion element and method for manufacturing same, and light-emitting device and method for manufacturing same
JP6076909B2 (en) Phosphor dispersion liquid and method for manufacturing LED device
WO2012090961A1 (en) Light emitting device, method for manufacturing light emitting device, and coating liquid
JP5803541B2 (en) LED device, manufacturing method thereof, and phosphor dispersion used therefor
JP5803940B2 (en) Light emitting device and manufacturing method thereof
JPWO2014030342A1 (en) LED device and manufacturing method thereof
JP2014019844A (en) Phosphor dispersion and method for manufacturing led device
JP2014003065A (en) Led device and method for manufacturing the same
JP5880566B2 (en) LED device
JP5729327B2 (en) Manufacturing method of LED device
KR101585814B1 (en) Light emitting device and coating liquid
JP2014160713A (en) Led device manufacturing method
WO2016024604A1 (en) Inorganic-microparticle-containing polysilsesquioxane composition, method for producing same, light-emitting device, and method for producing same
JP5803941B2 (en) Method for manufacturing light emitting device
WO2013187067A1 (en) Led device and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550949

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853981

Country of ref document: EP

Kind code of ref document: A1