WO2012090949A1 - Reflection sheet - Google Patents

Reflection sheet Download PDF

Info

Publication number
WO2012090949A1
WO2012090949A1 PCT/JP2011/080104 JP2011080104W WO2012090949A1 WO 2012090949 A1 WO2012090949 A1 WO 2012090949A1 JP 2011080104 W JP2011080104 W JP 2011080104W WO 2012090949 A1 WO2012090949 A1 WO 2012090949A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
porous
sheet
laminated
Prior art date
Application number
PCT/JP2011/080104
Other languages
French (fr)
Japanese (ja)
Inventor
根本 友幸
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to JP2012550942A priority Critical patent/JP6017962B2/en
Publication of WO2012090949A1 publication Critical patent/WO2012090949A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer

Definitions

  • the present invention relates to a reflection sheet used as a constituent member of a liquid crystal display device such as a TV or a portable terminal, a lighting fixture, and a lighting signboard.
  • reflection sheets have been used in fields such as reflectors for liquid crystal display devices, projection screens and planar light source members, reflectors for lighting fixtures, and reflectors for lighting signs.
  • Patent Document 1 proposes a reflection film obtained by adding a fine powder filler such as titanium oxide to an aliphatic polyester resin as a reflection film capable of realizing excellent light reflectivity.
  • Patent Document 2 discloses a white polyester film in which fine bubbles are formed in a sheet by stretching a sheet formed by adding a filler to an aromatic polyester resin, thereby causing light diffuse reflection.
  • Patent Document 3 discloses a porous sheet obtained by adding an inorganic filler to a polypropylene resin and stretching the polypropylene sheet. These reflective sheets impart optical reflection characteristics by forming pores between the filler and the matrix during stretching.
  • Patent Document 4 describes the first and second polymer materials that include at least a first and second different polymer materials that reflect at least 30% of incident light on the object. Including a sufficient number of alternating layers, wherein a substantial majority of each layer of the object has an optical thickness of 0.09 micrometers or less or 0.45 micrometers or more.
  • a reflective polymer body having a feature that the refractive indexes of the first and second polymer materials are different from each other by 0.03 or more has been proposed.
  • the present invention intends to provide a new reflection sheet that can be reduced in weight and thickness while maintaining sufficient reflection characteristics.
  • the present invention includes a porous resin layer A having pores having an average pore diameter of 0.01 ⁇ m or more and less than 1.00 ⁇ m in the major axis direction in the sheet cross section, and an average pore diameter in the major axis direction of the sheet section of 1.00 ⁇ m or more and 10.00 ⁇ m or less.
  • the reflective sheet of the present invention exhibits reflection characteristics mainly utilizing light reflection due to the difference in refractive index between the resin and the air in the pores, that is, light reflection due to diffuse reflection. It is possible to easily obtain the reflection characteristics as described above, and it is possible to reduce the weight and thickness while maintaining sufficient reflection characteristics.
  • (A) is the SEM photograph when the cross section of the laminated nonporous film-like material produced in Example 1 is observed at a magnification of 450 times.
  • (B) is the SEM photograph when the cross section of the laminated nonporous film-like material produced in Example 1 is observed at a magnification of 2000 times.
  • (A) is a SEM photograph when the cross section of the laminated porous film produced in Example 1 is observed at a magnification of 6000 times.
  • (B) is the SEM photograph when the cross section of the lamination
  • the present reflective sheet In the reflective sheet according to the present embodiment (referred to as “the present reflective sheet”), a porous resin layer A having many relatively small pores and a porous resin layer B having many relatively large pores are alternately arranged. It is a reflection sheet having a super multi-layer structure formed by laminating. In general, when the hole diameter is large, a high reflectance cannot be obtained, but the reflectance can be obtained from a short wavelength to a long wavelength. On the other hand, if the hole diameter is small, the reflectance on the short wavelength side can be significantly increased.
  • the reflectance over 400 to 800 nm can be improved in a well-balanced manner by adjusting the pore diameter, the porosity, and the number of laminated layers of each layer.
  • the refractive index of air is 1.0, when holes are formed in the resin layer, light reflection occurs at the interface between the resin and the holes.
  • the porous structure in the resin layer greatly affects the optical characteristics.
  • the porous resin layer A (hereinafter simply referred to as “A layer”) is a porous resin layer having pores having an average pore diameter in the major axis direction of 0.01 ⁇ m or more and less than 1.00 ⁇ m in the sheet cross section. If the pore size of the A layer is within such a range, the size is suitable for reflecting light in the visible light region (general visible light wavelength region is 380 to 750 nm), and particularly in the visible light wavelength region. In particular, the reflection characteristics of light on the short wavelength side can be improved more effectively.
  • the average pore diameter in the major axis direction in the sheet cross section is preferably 0.01 ⁇ m or more and less than 1.00 ⁇ m, more preferably 0.05 ⁇ m or more or 0.80 ⁇ m or less, and particularly 0.10 ⁇ m. It is preferable that it is above or 0.80 ⁇ m.
  • the base resin of the A layer that is, the resin constituting the main component is not particularly limited, and for example, a crystalline thermoplastic resin or an amorphous thermoplastic resin can be used.
  • thermoplastic resin examples include polyethylene, polypropylene, ionomer, polyethylene terephthalate, polyamide, polyacetal, polybutylene terephthalate, ultrahigh molecular weight polyethylene, polyphenylene sulfide, polyether ether ketone, polytetrafluoroethylene, or a copolymer thereof. And so on.
  • amorphous thermoplastic resin examples include polystyrene, rubber-reinforced polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, styrene-methyl acrylate copolymer, polymethyl acrylate, polymethyl methacrylate, polycarbonate, Polylactic acid, polyvinyl chloride, polyvinylidene chloride, vinyl chloride-ethylene copolymer, vinyl chloride-vinyl acetate copolymer, styrene-isoprene-styrene copolymer, styrene-ethylene / butylene-styrene copolymer, polybutadiene, Polyisoprene, polychloroprene, styrene-butadiene copolymer, ethylene- ⁇ olefin copolymer, ethylene-propylene-diene copoly
  • Polypropylene resins include homopolypropylene (propylene homopolymer), or ⁇ such as propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, etc. Examples thereof include block copolymers with olefins. Among these, homopolypropylene is more preferable in terms of heat resistance and rigidity.
  • the polypropylene resin preferably has an isotactic pendant fraction exhibiting stereoregularity of 80 to 99%.
  • the isotactic pendant fraction is 80% or more, the mechanical properties of the reflective sheet can be more effectively maintained.
  • the upper limit of the isotactic pendant fraction is defined by the upper limit value obtained industrially at present, but this is not the case when more regular resin is developed at the industrial level in the future. is not. From this point of view, the isotactic pendant fraction is more preferably 83 to 98%, and even more preferably 85 to 97%.
  • the isotactic pendart fraction is a three-dimensional structure in which all five methyl groups that are side chains are arranged in the same direction with respect to the main chain of carbon-carbon bonds composed of any five consecutive propylene units. It means structure or its proportion.
  • Signal assignment of the methyl group region is as follows. Zambelli et at al. (Macromol. 8, 687 (1975)).
  • Mw / Mn which is a parameter indicating the molecular weight distribution of the polypropylene-based resin
  • Mw / Mn which is a parameter indicating the molecular weight distribution of the polypropylene-based resin
  • the extrusion moldability is not deteriorated and it can be produced relatively easily industrially.
  • Mw / Mn is 10.0 or less
  • the Mw / Mn of the polypropylene resin is preferably 1.5 to 10.0. More preferably, it is 2.0 or more or 8.0 or less, and more preferably 2.0 or more or 6.0 or less.
  • Mw / Mn is obtained by GPC (Gel Poe Emission Chromatography) method.
  • the melt flow rate (MFR) of the polypropylene resin is usually preferably from 0.5 to 15 g / 10 minutes, and more preferably from 0.6 to 10 g / 10 minutes.
  • MFR melt flow rate
  • the melt viscosity of the resin at the time of the molding process does not become too high, and a decrease in productivity can be prevented.
  • the fall of the mechanical strength of a reflective sheet can be suppressed.
  • This MFR is a value measured under conditions of a temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210.
  • polypropylene resins examples include trade names “Novatech PP”, “WINTEC” (manufactured by Nippon Polypro), “Versify”, “Inspire” (manufactured by Dow Chemical), “Notio”, “Tuffmer” (Mitsui Chemicals) ), “Zeras”, “Thermorun” (Mitsubishi Chemical), “Sumitomo Noblen”, “Tough Selenium” (Sumitomo Chemical), “Prime TPO” (Prime Polymer), “Adflex”, “Adsyl” Commercially available products such as “HMS-PP (PF814)” (manufactured by Sun Allomer) can be used.
  • ⁇ crystal nucleating agent When a polypropylene resin is used as the base resin for the A layer, by adding a ⁇ crystal nucleating agent, the film forming property at the time of molding can be improved, and a thin film having fine pores can be formed more easily. can do.
  • the ⁇ crystal nucleating agent that can be used in the present reflective sheet is not particularly limited as long as it increases the formation and growth of ⁇ crystals of polypropylene resin, and two or more types may be mixed and used. it can.
  • ⁇ crystal nucleating agents include amide compounds; tetraoxaspiro compounds; quinacridones; iron oxides having a nanoscale size; potassium 1,2-hydroxystearate, magnesium benzoate or magnesium succinate, magnesium phthalate, etc.
  • alkali or alkaline earth metal salts of carboxylic acids aromatic sulfonic acid compounds represented by sodium benzene sulfonate or sodium naphthalene sulfonate; di- or triesters of dibasic or tribasic carboxylic acids; phthalocyanine blue Phthalocyanine pigments typified by: a two-component compound comprising a component a which is an organic dibasic acid and a component b which is an oxide, hydroxide or salt of a Group IIA metal of the periodic table; a cyclic phosphorus compound and magnesium Composition consisting of compounds And the like.
  • preferable ⁇ crystal nucleating agents include ⁇ crystal nucleating agent “NJESTER NU-100” manufactured by Shin Nippon Rika Co., Ltd., and specific examples of polypropylene resins to which ⁇ crystal nucleating agents are added include polypropylene “ Examples include Bepol B-022SP, Polypropylene “Beta ( ⁇ ) -PP BE60-7032” manufactured by Borealis, and Polypropylene “BNX BETAPP-LN” manufactured by Mayzo. Specific types of other nucleating agents are described in, for example, Japanese Patent Application Laid-Open No. 2003-306585, Japanese Patent Application Laid-Open No. 06-289656, Japanese Patent Application Laid-Open No. 09-194650, and the like.
  • the ratio of the ⁇ crystal nucleating agent added to the polypropylene resin needs to be appropriately adjusted depending on the type of the ⁇ crystal nucleating agent or the composition of the polypropylene resin.
  • the nucleating agent is preferably 0.0001 to 5.0 parts by mass, more preferably 0.01 parts by mass or more and 3.0 parts by mass or less, and particularly preferably 0.1 parts by mass or more. If the proportion of the ⁇ crystal nucleating agent is 0.0001 parts by mass or more with respect to 100 parts by mass of the polypropylene resin, the ⁇ crystals of the polypropylene resin can be sufficiently produced and grown at the time of production, Air permeability can be obtained. Moreover, if it is 5.0 mass parts or less, it becomes economically advantageous, and since troubles due to bleeding out of the ⁇ crystal nucleating agent are less likely to occur, it is preferable.
  • the polypropylene resin is preferably a polypropylene resin other than a random type.
  • the porous resin layer B (hereinafter simply referred to as “B layer”) is a porous resin layer having pores having an average pore diameter in the major axis direction of 1.00 ⁇ m to 10.00 ⁇ m in the sheet cross section. If the hole diameter in the cross section of the layer B is within such a range, the size is suitable for reflecting light in the visible light region (general visible light wavelength region is 380 to 750 nm). In particular, the reflection characteristics of light on the long wavelength side of the wavelength region can be improved more effectively.
  • the average pore diameter in the major axis direction in the sheet cross section is preferably 1.00 ⁇ m or more and 10.00 ⁇ m or less, more preferably 1.00 ⁇ m or more or 8.00 ⁇ m or less, and more preferably 3.00 ⁇ m or more. Alternatively, it is preferably 8.00 ⁇ m or less.
  • the base resin of the B layer that is, the resin constituting the main component is not particularly limited, and for example, a crystalline thermoplastic resin or an amorphous thermoplastic resin can be used.
  • the same type of resin as the base resin of the A layer may be used, or a different type of resin may be used.
  • the difference between the refractive index of the base resin of the porous resin layer A and the refractive index of the base resin of the porous resin layer B is preferably less than 0.2, particularly less than 0.1, and more preferably 0.03 Preferably it is less than.
  • it is a polyethylene-based resin from the viewpoint of easy formation of pores and rigidity.
  • the refractive indexes of polypropylene and polyethylene are both 1.5 to 1.6, and the difference between the two is less than 0.03.
  • a low-density polyethylene As the polyethylene-based resin used as the base resin of the B layer, a low-density polyethylene, a linear low-density polyethylene, a linear ultra-low-density polyethylene, a medium-density polyethylene, a high-density polyethylene, and a copolymer mainly composed of ethylene, that is, ⁇ -olefins having 3 to 10 carbon atoms such as ethylene and propylene, butene-1, pentene-1, hexene-1, heptene-1 and octene-1; vinyl esters such as vinyl acetate and vinyl propionate; methyl acrylate, A copolymer with one or more comonomers selected from unsaturated carboxylic acid esters such as ethyl acrylate, methyl methacrylate, ethyl methacrylate, and unsaturated compounds such as conjugated dienes and non-conjugated dienes, or A multi-component
  • At least one polyethylene resin selected from low-density polyethylene, linear low-density polyethylene, and high-density polyethylene is preferable in terms of ease of formation of pores and rigidity.
  • high density polyethylene is most preferable.
  • the density of the polyethylene resin is 0.910 ⁇ 0.970g / cm 3, more preferably 0.930 g / cm 3 or more, or 0.970 g / cm 3 or less, 0.94 g / cm it is more preferably 3 or more, or 0.970 g / cm 3 or less.
  • a density within the range is preferable because a porous structure can be easily formed.
  • the density in the present invention is a value measured according to JIS K7112 using a density gradient tube method.
  • the melt flow rate (MFR) of the polyethylene resin is not particularly limited, but usually the MFR is preferably 0.03 to 15 g / 10 min or less, preferably 0.3 g / 10 min or more or 10 g / 10. More preferably, it is less than or equal to minutes. If MFR is the said range, it will not become a problem on extrudability. In addition, this MFR is based on JIS K7210, and is a measured value on condition of temperature 190 degreeC and load 2.16kg.
  • the production method of the polyethylene resin is not particularly limited, and a known polymerization method using a known olefin polymerization catalyst, for example, a multi-site catalyst typified by a Ziegler-Natta type catalyst or a single typified by a metallocene catalyst.
  • a polymerization method using a site catalyst can be mentioned.
  • the ethylene-based copolymer having an MFR (conforming to JIS K7210, temperature: 190 ° C., load: 2.16 kg) of 0.1 g / 10 min to 10 g / 10 min is preferably used. If the MFR is 0.1 g / 10 min or more, the extrudability can be maintained satisfactorily. On the other hand, if the MFR is 10 g / 10 min or less, the strength of the film is hardly lowered.
  • ethylene-based copolymer examples include “Evaflex” (manufactured by Mitsui DuPont Polychemical), “Novatech EVA” (manufactured by Nippon Polyethylene), and ethylene-acrylic acid copolymer.
  • “NUC Copolymer” (manufactured by Nihon Unicar), “Lex Pearl EAA” (manufactured by Nippon Polyethylene), “Elvalloy” (manufactured by Mitsui DuPont Polychemical Co.) as an ethylene- (meth) -acrylic acid copolymer, “Lex “Pearl EMA” (manufactured by Nippon Polyethylene Co., Ltd.), “Lex Pearl EEA” (manufactured by Nippon Polyethylene Co., Ltd.) as an ethylene-ethyl acrylate copolymer, “Aclift” (manufactured by Sumitomo Chemical Co., Ltd.) as ethylene-methyl (meth) acrylic acid, “Bondyne” as a terpolymer of ethylene-vinyl acetate-maleic anhydride (Sumi (Chemicals Co., Ltd.), ethylene-glycidyl methacrylate copo
  • the A layer, the B layer, or both of these layers can contain a thermoplastic resin other than the polyethylene resin.
  • the “other thermoplastic resin” include styrene resins such as styrene, AS resin, or ABS resin, ester resins such as fluorine resin, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, and polyarylate; polyacetal, polyphenylene ether, Examples thereof include ether resins such as polysulfone, polyether sulfone, polyether ether ketone, and polyphenylene sulfide; polyamide resins such as 6 nylon, 6-6 nylon, and 6-12 nylon.
  • the A layer or the B layer, or both of these layers may contain what is called a rubber component such as a thermoplastic elastomer, if necessary.
  • a rubber component such as a thermoplastic elastomer
  • examples of the thermoplastic elastomer include styrene / butadiene, polyolefin, urethane, polyester, polyamide, 1,2-polybutadiene, polyvinyl chloride, and ionomer.
  • the A layer or the B layer, or both of these layers if necessary, a metal soap as a catalyst neutralizer, a synthetic hydrotalcite compound, and a phenol-based oxidation generally marketed as an antioxidant.
  • Antioxidants, phosphorus antioxidants, sulfur antioxidants, antistatic agents such as polyhydric alcohol aliphatic esters, alkyldiethanolamines, linear alkyl alcohols, polyoxyethylene alkylamine fatty acid esters, polyoxyethylene alkylamine compounds, etc.
  • a compound comprising one or more selected from the group consisting of hindered amine light stabilizers, weathering agents, antifogging agents, antiblocking agents, and other transparent nucleating agents.
  • the A layer or the B layer, or both of these layers may contain other additives or other components as long as the properties of the reflective sheet are not impaired.
  • the additive is not particularly limited, but recycled resin generated from trimming loss such as ears, inorganic particles such as silica, talc, kaolin and calcium carbide, pigments such as titanium oxide and carbon black, flame retardants, Weathering stabilizers, antistatic agents, crosslinking agents, lubricants, plasticizers, anti-aging agents, antioxidants, light stabilizers, UV absorbers, neutralizers, antiblocking agents, slip agents, colorants, and other additives Can be mentioned.
  • the A layer, the B layer, or both of these layers contain an inorganic filler or an organic filler, and the reflectance can be further increased by the difference in refractive index between these layers and the resin.
  • the organic fine powder include cellulose powders such as wood powder and pulp powder, polymer beads, and polymer hollow particles.
  • Inorganic fine powders include calcium carbonate, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate, calcium sulfate, zinc oxide, magnesium oxide, calcium oxide, titanium oxide, alumina, aluminum hydroxide, hydroxyapatite, silica, mica, talc , Kaolin, clay, glass powder, asbestos powder, zeolite, silicate clay and the like.
  • This reflective sheet has a super multi-layer structure in which the A layer and the B layer are alternately laminated from the viewpoint of improving the reflectance from a short wavelength to a long wavelength in a balanced manner, and has at least 25 B layers or more. It is preferable to have a super multi-layer structure, that is, a super multi-layer structure having 50 layers or more in total of the A layer and the B layer. If the A layer and the B layer are alternately laminated so as to have 25 layers or more, it is preferable to reflect the light in the visible light region due to the effect of increasing the scattering effect of the light reflected by the holes in the reflection sheet.
  • the B layer so as to have 50 layers or more, particularly 100 layers or more.
  • the upper limit of the number of layers is not particularly limited, but is preferably 1000 layers or less from the viewpoint of the thickness of the reflective film.
  • the control of the reflectivity by the super multi-layer structure in which a large number of different layers, that is, the A layer and the B layer are laminated utilizes the principle of interference reflection. That is, this is a method of controlling the reflectivity by stacking a large number of thin layers having different refractive indexes and interfering and strengthening the reflected light at the interface between these layers.
  • the reflectance can be set by selecting a resin in the resins A and B and adjusting the layer thickness. As described above, when at least 25 layers are stacked, the reflectance ranges from a short wavelength to a long wavelength. The reflectance can be increased in a well-balanced manner.
  • the structure in which the A layer and the B layer are alternately stacked preferably has a structure in which the A layer and the B layer are alternately stacked regularly in the thickness direction. That is, it is preferable that the thicknesses of the A layer and the B layer in the reflective sheet are not different, and the thickness of each layer is regular and alternately laminated.
  • the stacking ratio of the A layer and the B layer can be appropriately adjusted according to the purpose and is not particularly limited, but the B layer (the total thickness of the B layer) with respect to the total thickness 100
  • the ratio is preferably adjusted to 10 to 50, more preferably 15 or more.
  • the reflectivity of light in the visible light region (a general visible light wavelength region is 380 to 750 nm) can be sufficiently improved.
  • the total thickness of the other layers is preferably 0.01 to 0.05, more preferably 0.01 to 0.03, with respect to the thickness 1 of all layers.
  • the reflecting sheet has a porosity of 20.0 to 75.0%.
  • the reflection sheet causes light to be reflected at the interface between the resin composition and the holes by forming holes in the resin of each layer, thereby improving the optical reflection characteristics. Therefore, the porosity greatly affects the optical characteristics.
  • the porosity of the reflective sheet is within this range, the number of pores in the resin composition is suitable for imparting the property of reflecting light in the visible light region, and the number of interfaces between the resin composition and the pores is suitable. This is preferable because light is sufficiently reflected. More preferably, it is 35.0% or more or 70.0% or less, and particularly preferably 40.0% or more or 65.0% or less.
  • the reflection sheet may be flat or tube-shaped, but it is preferable from the viewpoint of productivity that several products can be taken. From the viewpoint of simplicity, a planar shape is more preferable.
  • the thickness of the reflective sheet is preferably from 100 ⁇ m to 1 mm, more preferably from 150 ⁇ m to 800 ⁇ m, and even more preferably from 188 ⁇ m to 750 ⁇ m. If the thickness is 150 ⁇ m or more, substantially sufficient optical reflection characteristics can be obtained, and if the thickness is 1 mm or less, substantially sufficient mechanical strength can be obtained.
  • the manufacturing method of this reflective sheet is divided roughly into the following three according to the order of perforation and lamination.
  • (I) A method of forming a porous layer of A layer and a porous layer of B layer, and then laminating at least the porous layer of A layer and the porous layer of B layer.
  • (Ii) A method of producing a non-porous membrane of A layer and B layer and then making the non-porous membrane porous.
  • Iii A method in which one of the two layers of the A layer and the B layer is made porous, and then laminated with another layer of a non-porous film to make it porous.
  • Examples of the method (i) include a method of thermally laminating the porous layer of layer A and the porous layer of layer B, and a method of laminating with an adhesive or the like.
  • a non-porous film of layer A and a non-porous film of layer B are prepared, and the non-porous film of layer A and the non-porous film of layer B are heated.
  • Examples thereof include a method of forming a porous layer after laminating with a laminate, an adhesive, or the like, or a method of forming a laminated nonporous film-like material having at least an A layer and a B layer by coextrusion and then forming a porous layer.
  • the A layer porous layer and the B layer non-porous membrane material, or the A layer non-porous membrane material and the B layer porous layer are laminated with a thermal laminate or an adhesive.
  • the method (b) is preferable from the viewpoint of simplicity of the process and productivity, and a method using coextrusion is more preferable.
  • the method for producing the laminated non-porous film-like material is not particularly limited, and a known method such as an extrusion casting method using a T die, a calendar method, an inflation method, or the like can be adopted, but is not particularly limited.
  • the extrusion casting method using a T die is preferable from the viewpoints of the film-forming property and stable productivity of the laminated non-porous film.
  • the molding temperature in the extrusion casting method using a T-die is appropriately adjusted depending on the flow characteristics and film forming properties of the composition, but is generally higher than the flow start temperature of the composition and lower than the flow start temperature + 100 ° C., preferably the flow start temperature. A range of + 30 ° C. to 80 ° C. is preferred.
  • the porosity forming method As a method for making the reflection sheet porous, various known production methods can be applied, and the method is not particularly limited as long as the gist of the present invention is not exceeded. Specific examples of the pore forming method include a chemical foaming method, a physical foaming method, a supercritical foaming method, a stretching method, and an extraction method. Among these, in the present reflective sheet, the stretching method is preferable from the viewpoints of film forming property, continuous productivity, stable productivity, and the like.
  • the stretching method include a roll stretching method, a rolling method, a tenter stretching method, and the like.
  • the roll stretching method and / or the tenter stretching method in the present invention has a wide selection range of stretching conditions, and therefore a method of stretching them in at least one direction alone or in combination is preferably used.
  • the stretching may be performed by a uniaxial stretching method that stretches in the machine direction (MD) by a roll stretching method or the like, a sequential biaxial stretching method that stretches in the transverse direction (TD) by a tenter stretching method after uniaxial stretching in the longitudinal direction, or a tenter.
  • Examples thereof include a simultaneous biaxial stretching method in which stretching is performed simultaneously in the longitudinal direction and the transverse direction using a stretching method. From the viewpoint of increasing the reflectance, biaxial stretching is preferable.
  • the A layer having an average pore diameter of 0.01 ⁇ m or more and less than 1.00 ⁇ m can be formed.
  • a method such as a supercritical foaming method or a stretching method, and in particular, a stretching method using the ⁇ nucleating agent described above. More preferably, it is formed.
  • the B layer having an average pore diameter of 1.00 ⁇ m or more and less than 10.00 ⁇ m can also be formed by the above-described porous method.
  • This reflective sheet can also form a metal thin film layer on the back side of the sheet (that is, the side opposite to the reflective surface).
  • the metal thin film layer can be formed by depositing a metal, and can be formed by, for example, a vacuum deposition method, an ionization deposition method, a sputtering deposition method, an ion plating method, or the like.
  • a vacuum deposition method As the vapor deposition metal material, any material having a high reflectance can be used without any particular limitation. In general, silver, aluminum, and the like are preferable, and among these, silver is preferable from the viewpoint of optical reflection characteristics. Is particularly preferred.
  • the metal thin film layer may be a metal single layer product or a laminate product, or a metal oxide single layer product or a laminate product of two or more layers of a metal single layer product and a metal oxide single layer product. But you can.
  • the thickness of the metal thin film layer varies depending on the layer forming method and the like, but usually it is preferably in the range of 10 nm to 300 nm, and more preferably in the range of 20 nm to 200 nm. A thickness of the metal thin film layer of 300 nm is preferable because production efficiency is good.
  • the metal thin film layer may be formed on the reflection sheet by metal vapor deposition.
  • a film in which a metal thin film layer is formed on an intermediate layer made of a resin film or the like is prepared in advance, and this film is made of a polystyrene-based resin porous film. And may be laminated.
  • the metal thin film layer and the reflection sheet of the produced film can be laminated, or the intermediate layer and the reflection sheet of the produced film can be simply laminated.
  • a bonding method a method of bonding by a known method using various adhesives, a known thermal bonding method, or the like can be used.
  • Examples of the layer structure in the case of having such a metal thin film layer include: reflection sheet / (optional anchor coat layer) / metal thin film layer / protective layer layer structure, or polystyrene-based resin porous film / intermediate layer / (If necessary, an anchor coat layer) / metal thin film layer / protective layer layer structure and the like can be mentioned.
  • the polystyrene resin porous film is preferably disposed on the side irradiated with light.
  • you may have another layer between these layers, and a reflective sheet, a metal thin film layer, etc. may each comprise multiple separately.
  • the reflection sheet can be formed by covering the reflection sheet with a metal plate or a resin plate.
  • This reflector is useful as a reflector used in liquid crystal display devices, lighting equipment, lighting signs, and the like. An example of how to manufacture such a reflector will be described.
  • a method of coating the reflective sheet on a metal plate or a resin plate a method using an adhesive, a method of heat-sealing without using an adhesive, a method of bonding via an adhesive sheet, a method of extrusion coating, etc.
  • an adhesive such as polyester, polyurethane, or epoxy can be applied to the surface of the metal plate or resin plate on the side where the reflection sheet is bonded, and the reflection sheet can be bonded.
  • a commonly used coating facility such as a reverse roll coater or a kiss roll coater is used, and the adhesive film thickness after drying on the surface of a metal plate or the like to which the reflective sheet is bonded is about 2 to 4 ⁇ m.
  • the expression “main component” includes the intention to allow other components to be contained within a range that does not interfere with the function of the main component, unless otherwise specified. Although the content ratio is not specified, the main component includes the meaning of occupying 50% by mass or more, preferably 70% by mass or more, particularly preferably 90% by mass or more (including 100% by mass) in the composition. It is.
  • X is preferably greater than X” or “preferably smaller than Y”, with the meaning of “X to Y” unless otherwise specified. Is also included.
  • X or more is an arbitrary number
  • Y or less is an arbitrary number
  • the various measured values and evaluation about the reflective sheet displayed in this specification were performed as follows.
  • the take-off (flow) direction of the reflection sheet from the extruder is referred to as the vertical direction (MD)
  • the orthogonal direction is referred to as the horizontal direction (TD).
  • NOVATEC PP FY6HA manufactured by Nippon Polypro Co., Ltd., refractive index 1.51, MFR: 2 g / 10 min
  • high density polyethylene (“Novatec HD HF560” manufactured by Nippon Polytechnic Co., Ltd., density: 0.963 g / cm 3 , refractive index 1.53, MFR: 7.0 g / 10 min. ) was used as the resin composition B1.
  • Resin compositions A1 and B1 were extruded at 200 ° C. with separate extruders, and A1 / B1 / A1 / B1 /... / A1 so that the A1 layer would be the front and back through a 65-layer feed block.
  • Split extrusion was then performed at 200 ° C. from a single-layer fishtail die having a base width of 300 mm and a lip gap of 2 mm.
  • a cross-sectional SEM photograph of the laminated non-porous membrane is shown in FIG.
  • the thickness of the A1 layer of the laminated non-porous film was about 6.0 ⁇ m, and the thickness of the B1 layer was about 1.5 ⁇ m.
  • the laminated nonporous film-like material was stretched 1.5 times in the machine direction at 20 to 100 ° C. by a roll stretching machine, and then stretched 3.0 times in the machine direction at 100 ° C., and the total machine draw ratio was 4.
  • a laminated porous film having a thickness of 35 ⁇ m was produced by sequentially biaxially stretching 2.75 times at 100 ° C. in the transverse direction with a tenter stretching machine.
  • the obtained laminated porous film was superposed by a dry lamination method to obtain a reflective sheet having a thickness of 175 ⁇ m and a laminated number of 325 layers (B layer number 160).
  • Table 1 An SEM photograph of the cross section of the laminated porous film is shown in FIG.
  • Example 2 A laminated nonporous membrane having a thickness of 250 ⁇ m was obtained in the same manner as in Example 1 until the laminated nonporous membrane was obtained.
  • the laminated film-like material is stretched by a roll stretching machine at 120 ° C. so as to be 3 times in the longitudinal direction, and then is sequentially biaxially stretched 3.0 times in the transverse direction at 100 ° C. so that the thickness becomes 115 ⁇ m.
  • a porous film was prepared, and the obtained laminated porous films were laminated by a dry lamination method to obtain a reflective sheet having a thickness of 315 ⁇ m and a number of laminated layers of 195 layers (number of B layers: 96). The results are summarized in Table 1.
  • Example 3 A laminated nonporous membrane having a thickness of 250 ⁇ m was obtained in the same manner as in Example 1 until the laminated nonporous membrane was obtained.
  • the obtained laminated film was stretched 1.5 times in the machine direction at 20 to 120 ° C. with a roll stretching machine, and then stretched 4.0 times in the machine direction at 120 ° C., for a total machine draw ratio of 6.
  • a laminated porous film having a thickness of 45 ⁇ m is prepared by longitudinal stretching so as to be 0 times, and the obtained laminated porous films are laminated by a dry lamination method, and the thickness is 450 ⁇ m and the number of laminated layers is 650.
  • a reflective sheet having a layer (number of B layers: 320) was obtained.
  • Example 4 A laminated nonporous membrane was obtained in the same manner as in Example 1 except that the thickness of the laminated nonporous membrane was adjusted to 95 ⁇ m by adjusting the film forming conditions, that is, the extrusion amount and the molding speed.
  • the SEM photograph of the cross section of the obtained laminated non-porous membrane is shown in FIG.
  • the thickness of the A1 layer of the laminated non-porous film is about 1.8 ⁇ m
  • the thickness of the B1 layer is about 0.6 ⁇ m.
  • the obtained laminated non-porous film-like material was stretched 4.0 times in multiple stages in the longitudinal direction at 80 ° C. with a roll stretching machine, and then sequentially biaxially stretched 2.0 times in the transverse direction at 100 ° C.
  • a laminated porous film having a thickness of 36 ⁇ m was prepared.
  • the obtained laminated porous film was laminated by a dry lamination method to obtain a reflective sheet having a thickness of 360 ⁇ m and a laminated number of 650 layers (B layer number 320).
  • Example 5 A laminated non-porous membrane part was obtained in the same manner as in Example 1 except that the thickness of the laminated non-porous membrane was adjusted to 95 ⁇ m by adjusting the film forming conditions, that is, the extrusion amount and the molding speed.
  • the obtained laminated non-porous membrane was longitudinally stretched 4.0 times in multiple stages in the longitudinal direction at 80 ° C. with a roll stretching machine to prepare a laminated porous film having a thickness of 50 ⁇ m.
  • the obtained laminated porous film was laminated by a dry lamination method to obtain a reflective sheet having a thickness of 500 ⁇ m and a number of laminated layers of 650 layers (number of B layers: 320). At this time, the alignment directions were aligned.
  • Resin composition A1 was obtained in the same manner as in Example 1. Except that the obtained resin composition A1 was extruded at 200 ° C. with a separate extruder and divided and extruded through a 65-layer feed block so as to be A1 / A1 / A1... / A1.
  • a laminated nonporous film-like material having a thickness of 250 ⁇ m and a thickness of 250 ⁇ m was obtained.
  • a laminated porous film having a thickness of 80 ⁇ m was prepared from the obtained laminated film-like material only of A1 under the same stretching conditions as in Example 2, and the obtained laminated porous film was obtained by a dry lamination method with three sheets. By superposing them, a laminated porous film having a thickness of 240 ⁇ m and substantially only A1 was obtained. It can be confirmed that the obtained reflection sheet of substantially only A1 has a reflectance lower than that of the film of Example 2.
  • Example 2 In the same manner as in Example 1, the resin composition B1 was extruded at 200 ° C. with a separate extruder and divided into B1 / B1 / B1... / B1 through a 65-layer feed block. Except for the extrusion, a laminated nonporous film-like material having a thickness of only 250 ⁇ m and a thickness of 250 ⁇ m was obtained in the same manner as in Example 1. The obtained laminated film-like material substantially containing only B1 was tried to be stretched under the same stretching conditions as in Example 2. However, the film was broken during stretching and a porous film could not be obtained.
  • the reflective sheets of Examples 1 to 6 had a reflectance of 96% or more and were excellent in optical reflection characteristics.
  • the porous sheet (Comparative Example 1) having substantially only the A layer did not exhibit desired reflection characteristics. From the above examples and the results of the tests conducted so far, the average pore diameter in the sheet cross section of the porous resin layer A having pores of 0.01 ⁇ m or more and less than 1.00 ⁇ m, and the average of the long diameter direction in the sheet cross section A reflective sheet having a configuration in which a large number of porous resin layers B having pores having a pore diameter of 1.00 ⁇ m or more and 10.00 ⁇ m or less are alternately laminated, and the porosity of the entire sheet is 20.0 to 75 If it is 0.0%, it can be considered that the desired reflection characteristics can be obtained, and that the weight and thickness can be reduced. In addition, regarding the number of layers, from the above examples and the results of the tests conducted so far, if the layer B has at least 25 layers, the same effect as the

Abstract

Provided is a novel reflection sheet, which has reduced thickness and weight, while having sufficient reflection characteristics. The reflection sheet has a configuration wherein porous resin layers (A), which have an average pore diameter equal to or more than 0.01 μm but less than 1.00 μm in the long diameter direction in the sheet cross-section, and porous resin layers (B), which have an average pore diameter not below 1.00 μm but not above 10.00 μm in the long diameter direction in the sheet cross-section, are alternately laminated. The reflection sheet is characterized in that the porosity of the whole sheet is 20-75%.

Description

反射シートReflective sheet
 本発明は、例えばTVや携帯端末などの液晶表示装置、照明器具、照明看板等の構成部材として使用される反射シートに関する。 The present invention relates to a reflection sheet used as a constituent member of a liquid crystal display device such as a TV or a portable terminal, a lighting fixture, and a lighting signboard.
 近年、液晶表示装置用の反射板、投影用スクリーンや面状光源の部材、照明器具用反射板、及び照明看板用反射板等の分野で、反射シートが使用されている。 In recent years, reflection sheets have been used in fields such as reflectors for liquid crystal display devices, projection screens and planar light source members, reflectors for lighting fixtures, and reflectors for lighting signs.
 この種の反射シートとして、例えば特許文献1には、優れた光反射性を実現しえる反射フィルムとして、脂肪族ポリエステル系樹脂に酸化チタン等の微粉状充填剤を加えてなる反射フィルムが提案されている。特許文献2には、芳香族ポリエステル樹脂に充填剤を添加して形成されたシートを延伸することによってシート内に微細な気泡を形成させ、光拡散反射を生じさせた白色ポリエステルフィルムが開示されている。また、例えば特許文献3には、ポリプロピレン樹脂に、無機充填剤を添加して延伸させた多孔性シートが開示されている。これらの反射シートは延伸時に充填剤とマトリックス間に空孔が形成されることにより光学反射特性を付与している。 As a reflection sheet of this type, for example, Patent Document 1 proposes a reflection film obtained by adding a fine powder filler such as titanium oxide to an aliphatic polyester resin as a reflection film capable of realizing excellent light reflectivity. ing. Patent Document 2 discloses a white polyester film in which fine bubbles are formed in a sheet by stretching a sheet formed by adding a filler to an aromatic polyester resin, thereby causing light diffuse reflection. Yes. For example, Patent Document 3 discloses a porous sheet obtained by adding an inorganic filler to a polypropylene resin and stretching the polypropylene sheet. These reflective sheets impart optical reflection characteristics by forming pores between the filler and the matrix during stretching.
 さらに、特許文献4には、少なくとも第1及び第2の別種ポリマー材を含む反射ポリマー体で、それが物体への入射光を30%以上反射するような前記第1及び第2のポリマー材による交互の層を充分な数を含んでおり、前記物体の各層のうち実質的に過半数が0.09マイクロメーター以下或いは0.45マイクロメーター以上の光学的厚みを持ち、更に、その際、前記第1及び第2ポリマー材の屈折率が、互いに0.03以上異なっているという特徴を持つ反射ポリマー体が提案されている。 Further, Patent Document 4 describes the first and second polymer materials that include at least a first and second different polymer materials that reflect at least 30% of incident light on the object. Including a sufficient number of alternating layers, wherein a substantial majority of each layer of the object has an optical thickness of 0.09 micrometers or less or 0.45 micrometers or more. A reflective polymer body having a feature that the refractive indexes of the first and second polymer materials are different from each other by 0.03 or more has been proposed.
WO2004/104077WO2004 / 104077 特開平4-239540号公報JP-A-4-239540 特開平11-174213号公報Japanese Patent Laid-Open No. 11-174213 特開平3-41401号公報Japanese Patent Laid-Open No. 3-41401
 近年、TVや携帯端末の小型化、薄型化が進むにつれて、反射シートにも軽量化及び薄型化することが求められている。しかし、反射特性を維持しつつ、反射シートの軽量化及び薄型化を図ることは容易なことではない。 In recent years, as TVs and mobile terminals have become smaller and thinner, it has been required that the reflective sheet be made lighter and thinner. However, it is not easy to reduce the weight and thickness of the reflection sheet while maintaining the reflection characteristics.
 そこで本発明は、充分な反射特性を維持しながら、軽量化及び薄型化を図ることができる、新たな反射シートを提供せんとするものである。 Therefore, the present invention intends to provide a new reflection sheet that can be reduced in weight and thickness while maintaining sufficient reflection characteristics.
 本発明は、シート断面における長径方向の平均孔径が0.01μm以上1.00μm未満の空孔を有する多孔質樹脂層Aと、シート断面における長径方向の平均孔径が1.00μm以上10.00μm以下の空孔を有する多孔質樹脂層Bとが交互に積層してなる構成を有する反射シートであって、シート全体の空孔率が20.0~75.0%であることを特徴とする反射シートを提案する。 The present invention includes a porous resin layer A having pores having an average pore diameter of 0.01 μm or more and less than 1.00 μm in the major axis direction in the sheet cross section, and an average pore diameter in the major axis direction of the sheet section of 1.00 μm or more and 10.00 μm or less. Reflective sheet having a structure in which porous resin layers B having pores are alternately laminated, wherein the porosity of the entire sheet is 20.0 to 75.0% Suggest a sheet.
 従来、この種の超多層構造の反射シートとしては、例えば特許文献4に記載されているように、屈折率の異なる別種ポリマー材からそれぞれ薄い樹脂層を形成してこれを交互に積層してなる超多層反射シートが知られていた。この種の超多層反射シートは、樹脂層間の屈折率差による光反射、すなわち鏡面反射を利用して反射特性を発揮するものであるため、目的とする反射特性を得るには、各層の厚みの制御が重要となるが、各層の厚み制御はかなり難しいことであった。
 これに対し、本発明の反射シートは、主に樹脂と空孔内の空気との屈折率差による光反射、すなわち拡散反射による光反射を利用して反射特性を発揮するものであるため、目的とする反射特性を容易に得ることができ、充分な反射特性を維持しながら、軽量化及び薄型化を図ることができる。
Conventionally, as a reflection sheet of this type of super multi-layer structure, as described in, for example, Patent Document 4, thin resin layers are formed from different polymer materials having different refractive indexes, and these are alternately laminated. Super multilayer reflective sheets were known. This type of super multi-layer reflective sheet exhibits light reflection characteristics by utilizing light reflection due to a difference in refractive index between resin layers, that is, specular reflection. Therefore, in order to obtain the desired reflection characteristics, the thickness of each layer Control is important, but it is quite difficult to control the thickness of each layer.
On the other hand, the reflective sheet of the present invention exhibits reflection characteristics mainly utilizing light reflection due to the difference in refractive index between the resin and the air in the pores, that is, light reflection due to diffuse reflection. It is possible to easily obtain the reflection characteristics as described above, and it is possible to reduce the weight and thickness while maintaining sufficient reflection characteristics.
(a)は、実施例1で作製した積層無孔膜状物の断面を倍率450倍で観察したときのSEM写真である。(b)は、実施例1で作製した積層無孔膜状物の断面を倍率2000倍で観察したときのSEM写真である。(A) is the SEM photograph when the cross section of the laminated nonporous film-like material produced in Example 1 is observed at a magnification of 450 times. (B) is the SEM photograph when the cross section of the laminated nonporous film-like material produced in Example 1 is observed at a magnification of 2000 times. (a)は、実施例1で作製した積層多孔性フィルムの断面を倍率6000倍で観察したときのSEM写真である。(b)は、実施例1で作製した積層多孔性フィルムの断面を倍率6000倍で、(a)とは異なる場所を観察したときのSEM写真である。(A) is a SEM photograph when the cross section of the laminated porous film produced in Example 1 is observed at a magnification of 6000 times. (B) is the SEM photograph when the cross section of the lamination | stacking porous film produced in Example 1 is 6000 times, and the place different from (a) is observed.
 以下、本発明の実施形態の一例について説明する。但し、本発明の範囲が、次に説明する実施形態に限定されるものではない。 Hereinafter, an example of an embodiment of the present invention will be described. However, the scope of the present invention is not limited to the embodiment described below.
<本反射シート>
 本実施形態に係る反射シート(「本反射シート」と称する)は、比較的小さな空孔を多数有する多孔質樹脂層Aと、比較的大きな空孔を多数有する多孔質樹脂層Bとが交互に積層してなる超多層構成の反射シートである。
 一般的に空孔径が大きければ、高い反射率は得られないが、短波長から長波長まで反射率を得ることができる。その一方、空孔径が小さければ、短波長側での反射率を顕著に高めることができる。よって、本反射シートにおいては、各層の空孔径と、空孔率と、積層数を調整することで、400~800nmに渡っての反射率をバランス良く高めることができる。
 平均屈折率が高い樹脂材料としては、ポリエーテルエーテルケトン=1.73が挙げられ、低い樹脂材料としては、ポリ四フッ化エチレン=1.35が挙げられるが、樹脂材料の平均屈折率の範囲は凡そ1.35~1.75である(引例:成形加工におけるプラスチック材料(シグマ出版))。一方、空気の屈折率は1.0であるため、樹脂層中に空孔が形成されると、樹脂と空孔の界面で光反射が生じる。このように、樹脂層中の多孔構造は光学特性に大きく影響する。
<This reflection sheet>
In the reflective sheet according to the present embodiment (referred to as “the present reflective sheet”), a porous resin layer A having many relatively small pores and a porous resin layer B having many relatively large pores are alternately arranged. It is a reflection sheet having a super multi-layer structure formed by laminating.
In general, when the hole diameter is large, a high reflectance cannot be obtained, but the reflectance can be obtained from a short wavelength to a long wavelength. On the other hand, if the hole diameter is small, the reflectance on the short wavelength side can be significantly increased. Therefore, in the present reflective sheet, the reflectance over 400 to 800 nm can be improved in a well-balanced manner by adjusting the pore diameter, the porosity, and the number of laminated layers of each layer.
Examples of the resin material having a high average refractive index include polyether ether ketone = 1.73, and examples of the low resin material include polytetrafluoroethylene = 1.35. Is approximately 1.35 to 1.75 (reference: plastic material in molding process (Sigma Publishing)). On the other hand, since the refractive index of air is 1.0, when holes are formed in the resin layer, light reflection occurs at the interface between the resin and the holes. Thus, the porous structure in the resin layer greatly affects the optical characteristics.
<多孔質樹脂層A>
 多孔質樹脂層A(以下、単に「A層」と称する)は、シート断面における長径方向の平均孔径が0.01μm以上1.00μm未満の空孔を有する多孔質樹脂層である。
 A層の空孔径がかかる範囲であれば、可視光領域の光(一般的な可視光の波長領域は380~750nm)を反射するのに好適な大きさであり、特に可視光の波長領域の中でも短波長側の光の反射特性をより効果的に高めることができる。
 このような観点から、A層においては、シート断面における長径方向の平均孔径が0.01μm以上1.00μm未満であるのが好ましく、中でも0.05μm以上或いは0.80μm以下、その中でも0.10μm以上或いは0.80μm以下であるのが好ましい。
<Porous resin layer A>
The porous resin layer A (hereinafter simply referred to as “A layer”) is a porous resin layer having pores having an average pore diameter in the major axis direction of 0.01 μm or more and less than 1.00 μm in the sheet cross section.
If the pore size of the A layer is within such a range, the size is suitable for reflecting light in the visible light region (general visible light wavelength region is 380 to 750 nm), and particularly in the visible light wavelength region. In particular, the reflection characteristics of light on the short wavelength side can be improved more effectively.
From such a point of view, in the layer A, the average pore diameter in the major axis direction in the sheet cross section is preferably 0.01 μm or more and less than 1.00 μm, more preferably 0.05 μm or more or 0.80 μm or less, and particularly 0.10 μm. It is preferable that it is above or 0.80 μm.
 なお、「シート断面における長径方向の平均孔径」とは、走査型電子顕微鏡(SEM)を用いて、反射シートのMD断面(Edge View)の中心付近を、観察倍率=3,000~10,000倍で観察し、観察像中の空孔の短径方向(厚み方向)と長径方向(幅方向)のサイズを画像処理により測定し、そのうちの長径方向の平均値として求められる孔径である。 The “average pore diameter in the major axis direction in the sheet cross section” means the observation magnification = 3,000 to 10,000 in the vicinity of the center of the MD cross section (Edge View) of the reflection sheet using a scanning electron microscope (SEM). This is a hole diameter obtained by observing at a magnification and measuring the size in the minor axis direction (thickness direction) and major axis direction (width direction) of the pores in the observed image by image processing, and obtaining the average value in the major axis direction.
(A層のベース樹脂)
 A層のベース樹脂、すなわち主成分をなす樹脂は、特にその種類を制限するものではなく、例えば結晶性熱可塑性樹脂や非晶性熱可塑性樹脂を用いることができる。
(Base resin for layer A)
The base resin of the A layer, that is, the resin constituting the main component is not particularly limited, and for example, a crystalline thermoplastic resin or an amorphous thermoplastic resin can be used.
 結晶性熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、アイオノマー、ポリエチレンテレフタレート、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、超高分子量ポリエチレン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、又はこれらの共重合体などを挙げることができる。 Examples of the crystalline thermoplastic resin include polyethylene, polypropylene, ionomer, polyethylene terephthalate, polyamide, polyacetal, polybutylene terephthalate, ultrahigh molecular weight polyethylene, polyphenylene sulfide, polyether ether ketone, polytetrafluoroethylene, or a copolymer thereof. And so on.
 非晶性熱可塑性樹脂としては、例えばポリスチレン、ゴム強化ポリスチレン、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、スチレン-メチルアクリレート共重合体、ポリメチルアクリレート、ポリメチルメタクリレート、ポリカーボネート、ポリ乳酸、ポリ塩化ビニル、ポリ塩化ビニリデン、塩化ビニル-エチレン共重合体、塩化ビニル-酢酸ビニル共重合体、スチレン-イソプレン-スチレン共重合体、スチレン-エチレン/ブチレン-スチレン共重合体、ポリブタジエン、ポリイソプレン、ポリクロロプレン、スチレン-ブタジエン共重合体、エチレン-αオレフィン共重合体、エチレン-プロピレン-ジエン共重合体、ポリエーテルスルフォン、ポリフェニレンオキサイド、ポリビニルアセテート、ポリフェニレンエーテル、液晶熱可塑性樹脂などを挙げることができ、これらの中でも耐熱性と剛性の点からポリプロピレンが好ましい。 Examples of the amorphous thermoplastic resin include polystyrene, rubber-reinforced polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, styrene-methyl acrylate copolymer, polymethyl acrylate, polymethyl methacrylate, polycarbonate, Polylactic acid, polyvinyl chloride, polyvinylidene chloride, vinyl chloride-ethylene copolymer, vinyl chloride-vinyl acetate copolymer, styrene-isoprene-styrene copolymer, styrene-ethylene / butylene-styrene copolymer, polybutadiene, Polyisoprene, polychloroprene, styrene-butadiene copolymer, ethylene-α olefin copolymer, ethylene-propylene-diene copolymer, polyether sulfone, polyphenylene oxide, polyvinylidene Acetate, polyphenylene ether, etc. can be mentioned liquid thermoplastic resin, polypropylene from the viewpoint of heat resistance and rigidity Among these, preferred.
 ポリプロピレン系樹脂としては、ホモポリプロピレン(プロピレン単独重合体)、又はプロピレンとエチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセンなどのαオレフィンとのブロック共重合体などを挙げることができる。この中でも耐熱性と剛性の点からホモポリプロピレンがより好適である。 Polypropylene resins include homopolypropylene (propylene homopolymer), or α such as propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, etc. Examples thereof include block copolymers with olefins. Among these, homopolypropylene is more preferable in terms of heat resistance and rigidity.
 また、ポリプロピレン系樹脂としては、立体規則性を示すアイソタクチックペンダット分率が80~99%であることが好ましい。アイソタクチックペンダット分率が80%以上であれば、反射シートの機械物性をより効果的に維持することができる。一方、アイソタクチックペンダット分率の上限については現時点において工業的に得られる上限値で規定しているが、将来的に工業レベルで更に規則性の高い樹脂が開発された場合においてはこの限りではない。かかる観点から、アイソタクチックペンダット分率は、83~98%であるのがより好ましく、中でも85~97%であるのがさらに好ましい。
 アイソタクチックペンダット分率とは、任意の連続する5つのプロピレン単位で構成される炭素-炭素結合による主鎖に対して側鎖である5つのメチル基がいずれも同方向に配意する立体構造或いはその割合を意味する。メチル基領域のシグナルの帰属は、A.Zambelli et at al.(Macromol.8,687(1975))に準拠している。
The polypropylene resin preferably has an isotactic pendant fraction exhibiting stereoregularity of 80 to 99%. When the isotactic pendant fraction is 80% or more, the mechanical properties of the reflective sheet can be more effectively maintained. On the other hand, the upper limit of the isotactic pendant fraction is defined by the upper limit value obtained industrially at present, but this is not the case when more regular resin is developed at the industrial level in the future. is not. From this point of view, the isotactic pendant fraction is more preferably 83 to 98%, and even more preferably 85 to 97%.
The isotactic pendart fraction is a three-dimensional structure in which all five methyl groups that are side chains are arranged in the same direction with respect to the main chain of carbon-carbon bonds composed of any five consecutive propylene units. It means structure or its proportion. Signal assignment of the methyl group region is as follows. Zambelli et at al. (Macromol. 8, 687 (1975)).
 また、ポリプロピレン系樹脂の分子量分布を示すパラメータであるMw/Mnが1.5以上であれば、押出成形性が低下することがなく、工業的に比較的容易に生産することができる。その一方、Mw/Mnが10.0以下であれば、低分子量成分が多過ぎることがなく、得られる反射シートの機械強度を維持することができる。
 かかる観点から、ポリプロピレン系樹脂のMw/Mnは、1.5~10.0であることが好ましい。より好ましくは2.0以上或いは8.0以下、中でも2.0以上或いは6.0以下であるのがさらに好ましい。Mw/MnはGPC(ゲルポーエミッションクロマトグラフィー)法によって得られる。
Moreover, if Mw / Mn which is a parameter indicating the molecular weight distribution of the polypropylene-based resin is 1.5 or more, the extrusion moldability is not deteriorated and it can be produced relatively easily industrially. On the other hand, if Mw / Mn is 10.0 or less, there are not too many low molecular weight components, and the mechanical strength of the resulting reflective sheet can be maintained.
From this point of view, the Mw / Mn of the polypropylene resin is preferably 1.5 to 10.0. More preferably, it is 2.0 or more or 8.0 or less, and more preferably 2.0 or more or 6.0 or less. Mw / Mn is obtained by GPC (Gel Poe Emission Chromatography) method.
 また、ポリプロピレン系樹脂のメルトフローレート(MFR)は、通常0.5~15g/10分であることが好ましく、0.6~10g/10分であることがより好ましい。MFRが0.5g/10分以上であれば、成形加工時の樹脂の溶融粘度が高くなり過ぎることがなく、生産性の低下を防ぐことができる。他方、15g/10分以下であれば、反射シートの機械強度の低下を抑えることができる。
 なお、本MFRは、JIS K7210に準拠して、温度230℃、荷重2.16kgの条件で測定される値である。
In addition, the melt flow rate (MFR) of the polypropylene resin is usually preferably from 0.5 to 15 g / 10 minutes, and more preferably from 0.6 to 10 g / 10 minutes. When the MFR is 0.5 g / 10 min or more, the melt viscosity of the resin at the time of the molding process does not become too high, and a decrease in productivity can be prevented. On the other hand, if it is 15 g / 10 minutes or less, the fall of the mechanical strength of a reflective sheet can be suppressed.
This MFR is a value measured under conditions of a temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210.
 ポリプロピレン系樹脂としては、例えば、商品名「ノバテックPP」、「WINTEC」(日本ポリプロ社製)、「バーシファイ」、「インスパイア」(ダウケミカル社製)、「ノティオ」、「タフマー」(三井化学社製)、「ゼラス」、「サーモラン」(三菱化学社製)、「住友ノーブレン」、「タフセレン」(住友化学社製)、「プライム TPO」(プライムポリマー社製)、「Adflex」、「Adsyl」、「HMS-PP(PF814)」(サンアロマー社製)など市販されている商品を使用できる。 Examples of polypropylene resins include trade names “Novatech PP”, “WINTEC” (manufactured by Nippon Polypro), “Versify”, “Inspire” (manufactured by Dow Chemical), “Notio”, “Tuffmer” (Mitsui Chemicals) ), “Zeras”, “Thermorun” (Mitsubishi Chemical), “Sumitomo Noblen”, “Tough Selenium” (Sumitomo Chemical), “Prime TPO” (Prime Polymer), “Adflex”, “Adsyl” Commercially available products such as “HMS-PP (PF814)” (manufactured by Sun Allomer) can be used.
(β晶核剤)
 A層のベース樹脂としてポリプロピレン系樹脂を用いる場合、β晶核剤を添加することにより、成形時の製膜性を向上させることができ、微細な空孔を有する薄膜フィルムをより一層容易に形成することができる。
(Β crystal nucleating agent)
When a polypropylene resin is used as the base resin for the A layer, by adding a β crystal nucleating agent, the film forming property at the time of molding can be improved, and a thin film having fine pores can be formed more easily. can do.
 本反射シートで使用することができるβ晶核剤は、ポリプロピレン系樹脂のβ晶の生成・成長を増加させるものであれば特に制限されるものではなく、2種類以上を混合して用いることもできる。
 β晶核剤としては、例えばアミド化合物;テトラオキサスピロ化合物;キナクリドン類;ナノスケールのサイズを有する酸化鉄;1,2-ヒドロキシステアリン酸カリウム、安息香酸マグネシウムもしくはコハク酸マグネシウム、フタル酸マグネシウムなどに代表されるカルボン酸のアルカリもしくはアルカリ土類金属塩;ベンセンスルホン酸ナトリウムもしくはナフラレンスルホン酸ナトリウムなどに代表される芳香族スルホン酸化合物;二もしくは三塩基カルボン酸のジもしくはトリエステル類;フタロシアニンブルーなどに代表されるフタロシアニン系顔料;有機二塩基酸である成分aと周期律表第IIA族金属の酸化物、水酸化物もしくは塩である成分bとからなる二成分化合物;環状リン化合物とマグネシウム化合物からなる組成物などを挙げることができる。
The β crystal nucleating agent that can be used in the present reflective sheet is not particularly limited as long as it increases the formation and growth of β crystals of polypropylene resin, and two or more types may be mixed and used. it can.
Examples of β crystal nucleating agents include amide compounds; tetraoxaspiro compounds; quinacridones; iron oxides having a nanoscale size; potassium 1,2-hydroxystearate, magnesium benzoate or magnesium succinate, magnesium phthalate, etc. Representative alkali or alkaline earth metal salts of carboxylic acids; aromatic sulfonic acid compounds represented by sodium benzene sulfonate or sodium naphthalene sulfonate; di- or triesters of dibasic or tribasic carboxylic acids; phthalocyanine blue Phthalocyanine pigments typified by: a two-component compound comprising a component a which is an organic dibasic acid and a component b which is an oxide, hydroxide or salt of a Group IIA metal of the periodic table; a cyclic phosphorus compound and magnesium Composition consisting of compounds And the like.
 好ましいβ晶核剤の具体例としては、新日本理化社製β晶核剤「エヌジェスターNU-100」、β晶核剤の添加されたポリプロピレン系樹脂の具体例としては、Aristech社製ポリプロピレン「Bepol B-022SP」、Borealis社製ポリプロピレン「Beta(β)-PP BE60-7032」、mayzo社製ポリプロピレン「BNX BETAPP-LN」などを挙げることができる。そのほかの核剤の具体的な種類については、例えば特開2003-306585号公報、特開平06-289566号公報、特開平09-194650号公報などに記載されている。 Specific examples of preferable β crystal nucleating agents include β crystal nucleating agent “NJESTER NU-100” manufactured by Shin Nippon Rika Co., Ltd., and specific examples of polypropylene resins to which β crystal nucleating agents are added include polypropylene “ Examples include Bepol B-022SP, Polypropylene “Beta (β) -PP BE60-7032” manufactured by Borealis, and Polypropylene “BNX BETAPP-LN” manufactured by Mayzo. Specific types of other nucleating agents are described in, for example, Japanese Patent Application Laid-Open No. 2003-306585, Japanese Patent Application Laid-Open No. 06-289656, Japanese Patent Application Laid-Open No. 09-194650, and the like.
 前記ポリプロピレン系樹脂に添加するβ晶核剤の割合は、β晶核剤の種類またはポリプロピレン系樹脂の組成などにより適宜調整することが必要であるが、ポリプロピレン系樹脂100質量部に対し、β晶核剤0.0001~5.0質量部が好ましく、より好ましくは0.01質量部以上或いは3.0質量部以下であり、中でも0.1質量部以上であるのが好ましい。β晶核剤の割合がポリプロピレン系樹脂100質量部に対して0.0001質量部以上であれば、製造時において十分にポリプロピレン系樹脂のβ晶を生成・成長させることができ、延伸により所望の透気性能が得られる。また5.0質量部以下であれば、経済的にも有利になるほか、β晶核剤のブリードアウトによるトラブルが発生しにくいため好ましい。 The ratio of the β crystal nucleating agent added to the polypropylene resin needs to be appropriately adjusted depending on the type of the β crystal nucleating agent or the composition of the polypropylene resin. The nucleating agent is preferably 0.0001 to 5.0 parts by mass, more preferably 0.01 parts by mass or more and 3.0 parts by mass or less, and particularly preferably 0.1 parts by mass or more. If the proportion of the β crystal nucleating agent is 0.0001 parts by mass or more with respect to 100 parts by mass of the polypropylene resin, the β crystals of the polypropylene resin can be sufficiently produced and grown at the time of production, Air permeability can be obtained. Moreover, if it is 5.0 mass parts or less, it becomes economically advantageous, and since troubles due to bleeding out of the β crystal nucleating agent are less likely to occur, it is preferable.
 なお、β晶核剤を添加する場合、ポリプロピレン系樹脂としては、ランダム型以外のポリプロピレン系樹脂であるのが好ましい。 In addition, when adding a β crystal nucleating agent, the polypropylene resin is preferably a polypropylene resin other than a random type.
<多孔質樹脂層B>
 多孔質樹脂層B(以下、単に「B層」と称する)は、シート断面における長径方向の平均孔径が1.00μm以上10.00μm以下の空孔を有する多孔質樹脂層である。
 B層の断面における空孔径がかかる範囲内であれば、可視光領域の光(一般的な可視光の波長領域は380~750nm)を反射するのに好適な大きさであり、特に可視光の中でも波長領域の長波長側の光の反射特性をより効果的に高めることができる。
 このような観点から、B層において、シート断面における長径方向の平均孔径は1.00μm以上10.00μm以下であるのが好ましく、中でも1.00μm以上或いは8.00μm以下、その中でも3.00μm以上或いは8.00μm以下であるのが好ましい。
<Porous resin layer B>
The porous resin layer B (hereinafter simply referred to as “B layer”) is a porous resin layer having pores having an average pore diameter in the major axis direction of 1.00 μm to 10.00 μm in the sheet cross section.
If the hole diameter in the cross section of the layer B is within such a range, the size is suitable for reflecting light in the visible light region (general visible light wavelength region is 380 to 750 nm). In particular, the reflection characteristics of light on the long wavelength side of the wavelength region can be improved more effectively.
From such a viewpoint, in the B layer, the average pore diameter in the major axis direction in the sheet cross section is preferably 1.00 μm or more and 10.00 μm or less, more preferably 1.00 μm or more or 8.00 μm or less, and more preferably 3.00 μm or more. Alternatively, it is preferably 8.00 μm or less.
(B層のベース樹脂)
 B層のベース樹脂、すなわち主成分をなす樹脂は、特にその種類を制限するものではなく、例えば結晶性熱可塑性樹脂や非晶性熱可塑性樹脂を用いることができる。
 この際、A層のベース樹脂と同じ種類の樹脂であってもよいし、異なる種類の樹脂であってもよい。
 中でも、多孔質樹脂層Aのベース樹脂の屈折率と、多孔質樹脂層Bのベース樹脂の屈折率の差が0.2未満であるのが好ましく、中でも0.1未満、その中でも0.03未満であるのが好ましい。
 最も好ましくは、空孔の形成のし易さと剛性の点から、ポリエチレン系樹脂である。ちなみに、ポリプロピレンとポリエチレンの屈折率はともに1.5~1.6であり、両者の差は0.03未満である。
(Base resin for layer B)
The base resin of the B layer, that is, the resin constituting the main component is not particularly limited, and for example, a crystalline thermoplastic resin or an amorphous thermoplastic resin can be used.
At this time, the same type of resin as the base resin of the A layer may be used, or a different type of resin may be used.
Among them, the difference between the refractive index of the base resin of the porous resin layer A and the refractive index of the base resin of the porous resin layer B is preferably less than 0.2, particularly less than 0.1, and more preferably 0.03 Preferably it is less than.
Most preferably, it is a polyethylene-based resin from the viewpoint of easy formation of pores and rigidity. Incidentally, the refractive indexes of polypropylene and polyethylene are both 1.5 to 1.6, and the difference between the two is less than 0.03.
 B層のベース樹脂として用いるポリエチレン系樹脂としては、低密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、中密度ポリエチレン、高密度ポリチレン及びエチレンを主成分とする共重合体、すなわち、エチレンとプロピレン、ブテン-1、ペンテン-1、ヘキセン-1、ヘプテン-1、オクテン-1などの炭素数3~10のα―オレフィン;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル;アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチルなどの不飽和カルボン酸エステル、共役ジエンや非共役ジエンのような不飽和化合物の中から選ばれる1種または2種以上のコモノマーとの共重合体または多元共重合体あるいはその混合組成物を挙げることができる。
 なお、エチレン系共重合体のエチレン単位の含有量は、通常50質量%を超えるものである。
As the polyethylene-based resin used as the base resin of the B layer, a low-density polyethylene, a linear low-density polyethylene, a linear ultra-low-density polyethylene, a medium-density polyethylene, a high-density polyethylene, and a copolymer mainly composed of ethylene, that is, Α-olefins having 3 to 10 carbon atoms such as ethylene and propylene, butene-1, pentene-1, hexene-1, heptene-1 and octene-1; vinyl esters such as vinyl acetate and vinyl propionate; methyl acrylate, A copolymer with one or more comonomers selected from unsaturated carboxylic acid esters such as ethyl acrylate, methyl methacrylate, ethyl methacrylate, and unsaturated compounds such as conjugated dienes and non-conjugated dienes, or A multi-component copolymer or a mixed composition thereof may be mentioned.
In addition, content of the ethylene unit of an ethylene-type copolymer usually exceeds 50 mass%.
 これらのポリチレン系樹脂の中では、空孔の形成のし易さと剛性の点で、低密度ポリエチレン、線状低密度ポリエチレン、高密度ポリエチレンの中から選ばれる少なくとも1種のポリエチレン系樹脂が好ましく、中でも高密度ポリエチレンが最も好ましい。 Among these polyethylene resins, at least one polyethylene resin selected from low-density polyethylene, linear low-density polyethylene, and high-density polyethylene is preferable in terms of ease of formation of pores and rigidity. Among these, high density polyethylene is most preferable.
 前記ポリエチレン系樹脂の密度は0.910~0.970g/cm3であることが好ましく、0.930g/cm3以上或いは0.970g/cm3以下であることがより好ましく、0.94g/cm3以上或いは0.970g/cm3以下であることが更に好ましい。
密度がかかる範囲内であれば多孔構造を形成しやすいために好ましい。本発明における密度は、密度勾配管法を用いてJIS K7112に準じて測定した値である。
Preferably the density of the polyethylene resin is 0.910 ~ 0.970g / cm 3, more preferably 0.930 g / cm 3 or more, or 0.970 g / cm 3 or less, 0.94 g / cm it is more preferably 3 or more, or 0.970 g / cm 3 or less.
A density within the range is preferable because a porous structure can be easily formed. The density in the present invention is a value measured according to JIS K7112 using a density gradient tube method.
 前記ポリエチレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常MFRは0.03~15g/10分以下であることが好ましく、0.3g/10分以上或いは10g/10分以下であることが更に好ましい。MFRが上記範囲であれば押出加工性上問題となることがない。なお、本MFRはJIS K7210に準拠し、温度190℃、荷重2.16kgの条件下での測定値である。 The melt flow rate (MFR) of the polyethylene resin is not particularly limited, but usually the MFR is preferably 0.03 to 15 g / 10 min or less, preferably 0.3 g / 10 min or more or 10 g / 10. More preferably, it is less than or equal to minutes. If MFR is the said range, it will not become a problem on extrudability. In addition, this MFR is based on JIS K7210, and is a measured value on condition of temperature 190 degreeC and load 2.16kg.
 ポリエチレン系樹脂の製造方法は特に限定されるものではまく、公知のオレフィン重合触媒を用いた公知の重合方法、例えば、チーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン触媒に代表されるシングルサイト触媒を用いた重合方法を挙げることができる。 The production method of the polyethylene resin is not particularly limited, and a known polymerization method using a known olefin polymerization catalyst, for example, a multi-site catalyst typified by a Ziegler-Natta type catalyst or a single typified by a metallocene catalyst. A polymerization method using a site catalyst can be mentioned.
 前記エチレン系共重合体は、MFR(JIS K7210準拠、温度:190℃、荷重:2.16kg)が0.1g/10分から10g/10分のものが好適に用いられる。MFRが0.1g/10分以上であれば、押出加工性を良好に維持でき、一方、MFRが10g/10分以下であればフィルムの強度低下を起こし難く好ましい。 The ethylene-based copolymer having an MFR (conforming to JIS K7210, temperature: 190 ° C., load: 2.16 kg) of 0.1 g / 10 min to 10 g / 10 min is preferably used. If the MFR is 0.1 g / 10 min or more, the extrudability can be maintained satisfactorily. On the other hand, if the MFR is 10 g / 10 min or less, the strength of the film is hardly lowered.
 前記エチレン系共重合体としては、エチレン-酢酸ビニル共重合体として「エバフレックス」(三井・デュポンポリケミカル社製)、「ノバテックEVA」(日本ポリエチレン社製)、エチレン-アクリル酸共重合体として「NUCコポリマー」(日本ユニカー社製)、「レクスパールEAA」(日本ポリエチレン社製)、エチレン-(メタ)-アクリル酸共重合体として「エルバロイ」(三井・デュポンポリケミカル社製)、「レクスパールEMA」(日本ポリエチレン社製)、エチレン-アクリル酸エチル共重合体として「レクスパールEEA」(日本ポリエチレン社製)、エチレン-メチル(メタ)アクリル酸として「アクリフト」(住友化学社製)、エチレン-酢酸ビニル-無水マレイン酸三元共重合体として「ボンダイン」(住友化学社製)、エチレン-メタクリル酸グリシジル共重合体、エチレン-酢酸ビニル-メタクリル酸グリシジル三元共重合体、エチレン-アクリル酸エチル-メタクリル酸グリシジル三元共重合体として「ボンドファースト」(住友化学社製)などが商業的に入手できる。 Examples of the ethylene-based copolymer include “Evaflex” (manufactured by Mitsui DuPont Polychemical), “Novatech EVA” (manufactured by Nippon Polyethylene), and ethylene-acrylic acid copolymer. “NUC Copolymer” (manufactured by Nihon Unicar), “Lex Pearl EAA” (manufactured by Nippon Polyethylene), “Elvalloy” (manufactured by Mitsui DuPont Polychemical Co.) as an ethylene- (meth) -acrylic acid copolymer, “Lex “Pearl EMA” (manufactured by Nippon Polyethylene Co., Ltd.), “Lex Pearl EEA” (manufactured by Nippon Polyethylene Co., Ltd.) as an ethylene-ethyl acrylate copolymer, “Aclift” (manufactured by Sumitomo Chemical Co., Ltd.) as ethylene-methyl (meth) acrylic acid, “Bondyne” as a terpolymer of ethylene-vinyl acetate-maleic anhydride (Sumi (Chemicals Co., Ltd.), ethylene-glycidyl methacrylate copolymer, ethylene-vinyl acetate-glycidyl methacrylate terpolymer, “bond first” (Sumitomo Chemical Co., Ltd.), ethylene-ethyl acrylate-glycidyl methacrylate terpolymer Are commercially available.
<その他の成分>
 A層又はB層、又はこれら両層は、ポリエチレン系樹脂以外の他の熱可塑性樹脂を含有することができる。
 当該「他の熱可塑性樹脂」としては、スチレン、AS樹脂、もしくはABS樹脂等のスチレン系樹脂、フッ素樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリアリレート等のエステル系樹脂;ポリアセタール、ポリフェニレンエーテル、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトンもしくはポリフェニレンサルファイド等のエーテル系樹脂;6ナイロン、6-6ナイロン、6-12ナイロン等のポリアミド系樹脂などを挙げることができる。
<Other ingredients>
The A layer, the B layer, or both of these layers can contain a thermoplastic resin other than the polyethylene resin.
Examples of the “other thermoplastic resin” include styrene resins such as styrene, AS resin, or ABS resin, ester resins such as fluorine resin, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, and polyarylate; polyacetal, polyphenylene ether, Examples thereof include ether resins such as polysulfone, polyether sulfone, polyether ether ketone, and polyphenylene sulfide; polyamide resins such as 6 nylon, 6-6 nylon, and 6-12 nylon.
 また、A層又はB層、又はこれら両層は、必要に応じて熱可塑性エラストマー等のゴム成分と呼ばれるものを含んでいてもよい。
 熱可塑性エラストマーとしては、スチレン・ブタジエン系、ポリオレフィン系、ウレタン系、ポリエステル系、ポリアミド系、1,2-ポリブタジエン、ポリ塩化ビニル系、アイオノマーなどを挙げることができる。
In addition, the A layer or the B layer, or both of these layers may contain what is called a rubber component such as a thermoplastic elastomer, if necessary.
Examples of the thermoplastic elastomer include styrene / butadiene, polyolefin, urethane, polyester, polyamide, 1,2-polybutadiene, polyvinyl chloride, and ionomer.
 また、A層又はB層、又はこれら両層は、上記の物質以外に必要に応じて触媒中和剤として金属石鹸や合成ハイドロタルサイト系化合物、酸化防止剤として一般に市販されているフェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、帯電防止剤として多価アルコール脂肪族エステル、アルキルジエタノールアミン、直鎖アルキルアルコール、ポリオキシエチレンアルキルアミン脂肪酸エステル、ポリオキシエチレンアルキルアミン系化合物などから選ばれた一種以上からなる化合物、ヒンダードアミン系光安定剤、耐候剤、防曇剤、アンチブロッキング剤、他の透明核剤を含むことができる。 In addition to the above substances, the A layer or the B layer, or both of these layers, if necessary, a metal soap as a catalyst neutralizer, a synthetic hydrotalcite compound, and a phenol-based oxidation generally marketed as an antioxidant. Antioxidants, phosphorus antioxidants, sulfur antioxidants, antistatic agents such as polyhydric alcohol aliphatic esters, alkyldiethanolamines, linear alkyl alcohols, polyoxyethylene alkylamine fatty acid esters, polyoxyethylene alkylamine compounds, etc. A compound comprising one or more selected from the group consisting of hindered amine light stabilizers, weathering agents, antifogging agents, antiblocking agents, and other transparent nucleating agents.
 また、A層又はB層、又はこれら両層は、反射シートの特性を損なわない範囲で他の添加剤または他の成分を含んでいてもよい。
 前記添加剤としては、特に制限を受けないが、耳などのトリミングロス等から発生するリサイクル樹脂やシリカ、タルク、カオリン、炭化カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、帯電防止剤、架橋剤、滑剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、アンチブロッキング剤、スリップ剤又は着色剤などの添加剤を挙げることができる。
In addition, the A layer or the B layer, or both of these layers may contain other additives or other components as long as the properties of the reflective sheet are not impaired.
The additive is not particularly limited, but recycled resin generated from trimming loss such as ears, inorganic particles such as silica, talc, kaolin and calcium carbide, pigments such as titanium oxide and carbon black, flame retardants, Weathering stabilizers, antistatic agents, crosslinking agents, lubricants, plasticizers, anti-aging agents, antioxidants, light stabilizers, UV absorbers, neutralizers, antiblocking agents, slip agents, colorants, and other additives Can be mentioned.
 さらに、A層又はB層、又はこれら両層は、無機充填材や有機充填材を含み、これらと樹脂との屈折率差により反射率をさらに高めることも可能である。
 この際、有機質微粉体としては、木粉、パルプ粉等のセルロース系粉末や、ポリマービーズ、ポリマー中空粒子等を挙げることができる。
 無機質微粉体としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸マグネシウム、硫酸バリウム、硫酸カルシウム、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化チタン、アルミナ、水酸化アルミニウム、ヒドロキシアパタイト、シリカ、マイカ、タルク、カオリン、クレー、ガラス粉、アスベスト粉、ゼオライト、珪酸白土等を挙げることができる。
Furthermore, the A layer, the B layer, or both of these layers contain an inorganic filler or an organic filler, and the reflectance can be further increased by the difference in refractive index between these layers and the resin.
In this case, examples of the organic fine powder include cellulose powders such as wood powder and pulp powder, polymer beads, and polymer hollow particles.
Inorganic fine powders include calcium carbonate, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate, calcium sulfate, zinc oxide, magnesium oxide, calcium oxide, titanium oxide, alumina, aluminum hydroxide, hydroxyapatite, silica, mica, talc , Kaolin, clay, glass powder, asbestos powder, zeolite, silicate clay and the like.
<積層構造>
 本反射シートは、短波長から長波長までの反射率をバランス良く高める観点から、前記A層とB層を交互に積層した超多層の構造を有するものであり、少なくともB層を25層以上有する超多層構造、すなわちA層及びB層の合計で50層以上有する超多層構造を備えているのが好ましい。
 B層を25層以上有するようにA層とB層が交互に積層すれば、反射シート内の空孔により反射した光の散乱効果が高まる作用により、可視光領域の光を反射するのに好しいことが確認されている。
 かかる観点から、B層を50層以上、中でも100層以上有するように積層するのが好ましい。積層数の上限について特に制約するものではないが、反射フィルムの厚み等の観点から1000層以下であることが好ましい。
<Laminated structure>
This reflective sheet has a super multi-layer structure in which the A layer and the B layer are alternately laminated from the viewpoint of improving the reflectance from a short wavelength to a long wavelength in a balanced manner, and has at least 25 B layers or more. It is preferable to have a super multi-layer structure, that is, a super multi-layer structure having 50 layers or more in total of the A layer and the B layer.
If the A layer and the B layer are alternately laminated so as to have 25 layers or more, it is preferable to reflect the light in the visible light region due to the effect of increasing the scattering effect of the light reflected by the holes in the reflection sheet. It has been confirmed that
From this point of view, it is preferable to stack the B layer so as to have 50 layers or more, particularly 100 layers or more. The upper limit of the number of layers is not particularly limited, but is preferably 1000 layers or less from the viewpoint of the thickness of the reflective film.
 このような異なる層、すなわちA層とB層とを多数積層した超多層構造による反射率の制御は、干渉反射の原理を利用したものである。つまり、屈折率が異なる薄い層を多数重ねて、これらの層の界面で反射光を干渉させ強め合うことで、反射率を制御する方法である。なお、通常、A層とB層を交互に積層した超多層構造において、層の表面にから垂直に光を入射したとき、積層界面では、次の式を満たす波長λ(nm)の光が反射する。
 したがって、反射率は、樹脂A、Bにおける樹脂の選択や、層厚みの調整により設定することができ、上記のように、少なくともB層を25層以上積層させると、短波長から長波長までの反射率をバランス良く高めることができるのである。
The control of the reflectivity by the super multi-layer structure in which a large number of different layers, that is, the A layer and the B layer are laminated utilizes the principle of interference reflection. That is, this is a method of controlling the reflectivity by stacking a large number of thin layers having different refractive indexes and interfering and strengthening the reflected light at the interface between these layers. Normally, in a super multi-layer structure in which A layers and B layers are alternately stacked, when light is incident vertically from the surface of the layer, light having a wavelength λ (nm) satisfying the following formula is reflected at the stack interface. To do.
Therefore, the reflectance can be set by selecting a resin in the resins A and B and adjusting the layer thickness. As described above, when at least 25 layers are stacked, the reflectance ranges from a short wavelength to a long wavelength. The reflectance can be increased in a well-balanced manner.
2×(n×d+n×d)=nλ
  n:樹脂層Aにおける樹脂Aの屈折率
  n:樹脂層Bにおける樹脂Bの屈折率
  d:(nm):樹脂層Aの厚み
  d:(nm):樹脂層Bの厚み
   n:反射の次数を表す自然数
2 × (n A × d A + n B × d B ) = nλ
n A : refractive index of resin A in resin layer A n B : refractive index of resin B in resin layer B d A : (nm): thickness of resin layer A d B : (nm): thickness of resin layer B n: A natural number representing the order of reflection
 ここで、A層とB層とが交互に積層した構造とは、A層とB層を厚み方向に規則的に交互に積層した構造を有していることが好ましい。すなわち、本反射シート中のA層とB層の厚みがバラバラではなく、各層の厚みが規則的で交互に積層されているのが好ましい。 Here, the structure in which the A layer and the B layer are alternately stacked preferably has a structure in which the A layer and the B layer are alternately stacked regularly in the thickness direction. That is, it is preferable that the thicknesses of the A layer and the B layer in the reflective sheet are not different, and the thickness of each layer is regular and alternately laminated.
 次に、A層とB層の積層比は、目的に応じ適宜調整することができ、特に制約を受けるわけではないが、全層の厚み100に対し、B層(B層の厚みの合計)の割合が10~50となるように調整するのが好ましく、中でも15以上であるのがより好ましい。かかる範囲であれば、可視光領域の光(一般的な可視光の波長領域は380~750nm)の反射性を充分高めることが可能となる。 Next, the stacking ratio of the A layer and the B layer can be appropriately adjusted according to the purpose and is not particularly limited, but the B layer (the total thickness of the B layer) with respect to the total thickness 100 The ratio is preferably adjusted to 10 to 50, more preferably 15 or more. Within such a range, the reflectivity of light in the visible light region (a general visible light wavelength region is 380 to 750 nm) can be sufficiently improved.
 また、必要に応じて他の機能を持つ層と組合わせて、3種3層のような形態も可能である。他の層と積層しても、適宜処理を施すなどしてもよく、A層とB層のみからなる積層構造に特に制限されるわけではない。
 A層及びB層以外の他の層が存在する場合、当該他の層はA層とB層の関係が前述した関係からはずれないように設けることが好ましい。他の層の厚みの合計は全層の厚み1に対して0.01~0.05が好ましく、より好ましくは0.01~0.03となるようにすることが好ましい。
Further, it is possible to adopt a form of three types and three layers by combining with layers having other functions as required. It may be laminated with other layers or may be appropriately treated, and is not particularly limited to a laminated structure consisting of only the A layer and the B layer.
When other layers other than the A layer and the B layer exist, it is preferable to provide the other layers so that the relationship between the A layer and the B layer does not deviate from the above-described relationship. The total thickness of the other layers is preferably 0.01 to 0.05, more preferably 0.01 to 0.03, with respect to the thickness 1 of all layers.
<空孔率>
 本反射シートは、空孔率が20.0~75.0%であることが重要である。
 本反射シートは、前述したように各層の樹脂中に空孔を形成させることで樹脂組成物と空孔の界面で光の反射を生じさせ、光学反射特性を向上させている。よって、空孔率は光学特性に大きく影響する。
 反射シートの空孔率がかかる範囲であれば、樹脂組成物中の空孔数が可視光領域の光を反射する特性を付与する上で好適となり、樹脂組成物と空孔の界面数での光の反射が充分行わるため好ましい。より好ましくは35.0%以上或いは70.0%以下であり、特に好ましくは40.0%以上或いは65.0%以下である。
<Porosity>
It is important that the reflecting sheet has a porosity of 20.0 to 75.0%.
As described above, the reflection sheet causes light to be reflected at the interface between the resin composition and the holes by forming holes in the resin of each layer, thereby improving the optical reflection characteristics. Therefore, the porosity greatly affects the optical characteristics.
If the porosity of the reflective sheet is within this range, the number of pores in the resin composition is suitable for imparting the property of reflecting light in the visible light region, and the number of interfaces between the resin composition and the pores is suitable. This is preferable because light is sufficiently reflected. More preferably, it is 35.0% or more or 70.0% or less, and particularly preferably 40.0% or more or 65.0% or less.
<反射シートの形態>
 本反射シートの形態としては、平面状、チューブ状の何れであってもよいが、製品として数丁取りが可能であることが生産性の観点から好ましく、更に内面コートなどの処理を施すのに簡便なことから平面状であるのがより好ましい。
<Form of reflection sheet>
The reflection sheet may be flat or tube-shaped, but it is preferable from the viewpoint of productivity that several products can be taken. From the viewpoint of simplicity, a planar shape is more preferable.
 本反射シートの厚みは、100μm~1mmが好ましく、より好ましくは150μm以上或いは800μm以下、更に好ましくは188μm以上或いは750μm以下である。厚みが150μm以上であれば、実質的に充分な光学反射特性を得ることができ、厚みが1mm以下であれば実質的に充分な機械強度を得ることができるため好ましい。 The thickness of the reflective sheet is preferably from 100 μm to 1 mm, more preferably from 150 μm to 800 μm, and even more preferably from 188 μm to 750 μm. If the thickness is 150 μm or more, substantially sufficient optical reflection characteristics can be obtained, and if the thickness is 1 mm or less, substantially sufficient mechanical strength can be obtained.
(製造方法)
 次に本反射シートの製造方法について説明するが、本発明は係る製造方法により製造される反射シートのみに限定されるものではない。
(Production method)
Next, although the manufacturing method of this reflective sheet is demonstrated, this invention is not limited only to the reflective sheet manufactured by the manufacturing method which concerns.
 本反射シートの製造方法は、多孔化と積層の順序によって、次の3つに大別される。
(i)A層の多孔質層とB層の多孔質層を作製し、ついで少なくともA層の多孔質層とB層の多孔質層を積層する方法。
(ii)A層とB層の無孔膜状物と作製し、ついで該無多孔膜状物を多孔化する方法。
(iii)A層とB層の2層のうちいずれか1層を多孔化したのち、もう1層の無孔膜状物と積層し、多孔化する方法。
The manufacturing method of this reflective sheet is divided roughly into the following three according to the order of perforation and lamination.
(I) A method of forming a porous layer of A layer and a porous layer of B layer, and then laminating at least the porous layer of A layer and the porous layer of B layer.
(Ii) A method of producing a non-porous membrane of A layer and B layer and then making the non-porous membrane porous.
(Iii) A method in which one of the two layers of the A layer and the B layer is made porous, and then laminated with another layer of a non-porous film to make it porous.
 前記(i)の方法としては、A層の多孔質層とB層の多孔質層を熱ラミネートする方法や接着剤等で積層化する方法を挙げることができる。
 前記(ii)の方法としては、A層の無孔膜状物とB層の無孔膜状物をそれぞれ作製し、A層の無孔膜状物とB層の無孔膜状物を熱ラミネートや接着剤等で積層化した後に多孔化する方法、または共押出でA層とB層を少なくとも有する積層無孔膜状物を作製したあとに多孔化する方法などを挙げることができる。
 前記(iii)の方法としては、A層の多孔質層とB層の無孔膜状物、又はA層の無孔膜状物とB層の多孔質層を熱ラミネートや接着剤等で積層化する方法を挙げることができる。
 本発明において、その工程の簡便さ、生産性の観点から(b)の方法が好ましく、共押出を用いる方法がより好ましい。
Examples of the method (i) include a method of thermally laminating the porous layer of layer A and the porous layer of layer B, and a method of laminating with an adhesive or the like.
In the method (ii), a non-porous film of layer A and a non-porous film of layer B are prepared, and the non-porous film of layer A and the non-porous film of layer B are heated. Examples thereof include a method of forming a porous layer after laminating with a laminate, an adhesive, or the like, or a method of forming a laminated nonporous film-like material having at least an A layer and a B layer by coextrusion and then forming a porous layer.
As the method (iii), the A layer porous layer and the B layer non-porous membrane material, or the A layer non-porous membrane material and the B layer porous layer are laminated with a thermal laminate or an adhesive. Can be mentioned.
In the present invention, the method (b) is preferable from the viewpoint of simplicity of the process and productivity, and a method using coextrusion is more preferable.
 前記積層無孔膜状物の作製方法は特に限定されず、公知の方法、例えばTダイを用いる押出キャスト法やカレンダー法、インフレーション法などを採用することができ、特に限定されるものではないが、積層無多孔膜状物の製膜性や安定生産性などの面からTダイを用いる押出キャスト法が好ましい。Tダイを用いる押出キャスト法での成形温度は、組成物の流動特性や製膜性等によって適宜調整されるが、概ね組成物の流動開始温度以上流動開始温度+100℃以下、好ましくは流動開始温度+30℃~80℃の範囲が好適である。 The method for producing the laminated non-porous film-like material is not particularly limited, and a known method such as an extrusion casting method using a T die, a calendar method, an inflation method, or the like can be adopted, but is not particularly limited. The extrusion casting method using a T die is preferable from the viewpoints of the film-forming property and stable productivity of the laminated non-porous film. The molding temperature in the extrusion casting method using a T-die is appropriately adjusted depending on the flow characteristics and film forming properties of the composition, but is generally higher than the flow start temperature of the composition and lower than the flow start temperature + 100 ° C., preferably the flow start temperature. A range of + 30 ° C. to 80 ° C. is preferred.
(多孔化方法)
 次に多孔化方法について説明する。
 本反射シートにおける多孔化方法としては、公知の各種の製造方法が適用でき、本発明の趣旨を超えなければ特に限定されるものではない。多孔化方法の具体例としては、化学発泡法、物理発泡法、超臨界発泡法、延伸法、抽出法などを挙げることができる。これらのうち本反射シートにおいては、製膜性や連続生産性や安定生産性などの面から延伸法が好ましい。
(Porosification method)
Next, the porosity forming method will be described.
As a method for making the reflection sheet porous, various known production methods can be applied, and the method is not particularly limited as long as the gist of the present invention is not exceeded. Specific examples of the pore forming method include a chemical foaming method, a physical foaming method, a supercritical foaming method, a stretching method, and an extraction method. Among these, in the present reflective sheet, the stretching method is preferable from the viewpoints of film forming property, continuous productivity, stable productivity, and the like.
 延伸方法の具体例としては、例えばロール延伸法、圧延法、テンター延伸法などを挙げることができる。これらのうち本発明においてはロール延伸法、及び/又はテンター延伸法が延伸条件の選択幅が広いためにこれらを単独であるいは組み合わせて少なくとも1方向に延伸する方法が好適に用いられる。
 該延伸は、ロール延伸法等により縦方向(MD)に延伸する一軸延伸法、縦方向への一軸延伸後引き続きテンター延伸法等により横方向(TD)に延伸する逐次二軸延伸法、又はテンター延伸法を用いて縦方向および横方向に同時に延伸する同時二軸延伸法を挙げることができる。
 なお、反射率を高める観点からは、二軸延伸するのが好ましい。
Specific examples of the stretching method include a roll stretching method, a rolling method, a tenter stretching method, and the like. Among these, the roll stretching method and / or the tenter stretching method in the present invention has a wide selection range of stretching conditions, and therefore a method of stretching them in at least one direction alone or in combination is preferably used.
The stretching may be performed by a uniaxial stretching method that stretches in the machine direction (MD) by a roll stretching method or the like, a sequential biaxial stretching method that stretches in the transverse direction (TD) by a tenter stretching method after uniaxial stretching in the longitudinal direction, or a tenter. Examples thereof include a simultaneous biaxial stretching method in which stretching is performed simultaneously in the longitudinal direction and the transverse direction using a stretching method.
From the viewpoint of increasing the reflectance, biaxial stretching is preferable.
 上記のような多孔化方法によって、平均孔径が0.01μm以上1.00μm未満の空孔径を有する上記A層を形成することができる。これらの中でも、生産性、空孔径の制御の容易さなどの観点から、超臨界発泡法、延伸法などの方法を採用することが好ましく、特に、上述したβ核剤を使用して延伸法で形成することがより好ましい。
 また、平均孔径が1.00μm以上10.00μm未満の空孔径を有する上記B層も上記のような多孔化方法によって形成することができる。これらの中でも、生産性、空孔の形成の容易さなどの理由から、化学発泡法、物理発泡法、延伸法などの方法を採用することが好ましく、特に、生産性の点から延伸法で形成することがより好ましい。
By the above-described porous method, the A layer having an average pore diameter of 0.01 μm or more and less than 1.00 μm can be formed. Among these, from the viewpoint of productivity, ease of control of the pore diameter, etc., it is preferable to employ a method such as a supercritical foaming method or a stretching method, and in particular, a stretching method using the β nucleating agent described above. More preferably, it is formed.
Further, the B layer having an average pore diameter of 1.00 μm or more and less than 10.00 μm can also be formed by the above-described porous method. Among these, it is preferable to adopt a chemical foaming method, a physical foaming method, a stretching method, etc. for reasons such as productivity and ease of formation of pores, and in particular, forming by a stretching method from the viewpoint of productivity. More preferably.
(金属薄膜層)
 本反射シートは、該シートの裏面側(すなわち反射使用面とは反対側)に、金属薄膜層を形成することもできる。
 金属薄膜層は、金属を蒸着することにより形成することができ、例えば、真空蒸着法、イオン化蒸着法、スパッタリング蒸着法、イオンプレーティング法等によって形成することができる。蒸着金属材料としては、反射率が高い材料であれば特に制限されることなく使用することができるが、一般的には、銀、アルミニウム等が好ましく、これらの中では光学反射特性の観点では銀が特に好ましい。
(Metal thin film layer)
This reflective sheet can also form a metal thin film layer on the back side of the sheet (that is, the side opposite to the reflective surface).
The metal thin film layer can be formed by depositing a metal, and can be formed by, for example, a vacuum deposition method, an ionization deposition method, a sputtering deposition method, an ion plating method, or the like. As the vapor deposition metal material, any material having a high reflectance can be used without any particular limitation. In general, silver, aluminum, and the like are preferable, and among these, silver is preferable from the viewpoint of optical reflection characteristics. Is particularly preferred.
 上記金属薄膜層は、金属の単層品や積層品、あるいは、金属酸化物の単層品や積層品でも、金属の単層品と金属酸化物の単層品との2層以上の積層体でもよい。
 金属薄膜層の厚みは、層を形成する材料は層形成法等によっても異なるが、通常は10nm~300nmの範囲内であることが好ましく、20nm~200nmの範囲内であることが更に好ましい。金属薄膜層の厚みが300nmであれば、生産効率が良好であるため好ましい。
The metal thin film layer may be a metal single layer product or a laminate product, or a metal oxide single layer product or a laminate product of two or more layers of a metal single layer product and a metal oxide single layer product. But you can.
The thickness of the metal thin film layer varies depending on the layer forming method and the like, but usually it is preferably in the range of 10 nm to 300 nm, and more preferably in the range of 20 nm to 200 nm. A thickness of the metal thin film layer of 300 nm is preferable because production efficiency is good.
 上記金属薄膜層は、反射シートに金属蒸着によって形成してもよいが、予め、樹脂フィルム等からなる中間層に金属薄膜層を形成したフィルムを作製しておき、このフィルムをポリスチレン系樹脂多孔フィルムと積層させてもよい。
 積層の仕方は、作製したフィルムの金属薄膜層と反射シートとを、あるいは、作製したフィルムの中間層と反射シートを、単に重ね合わせることにより積層することができる。
 接着方法としては、各種接着剤を用いて公知の方法により接着する方法、公知の熱接着法等を使用することができる。
The metal thin film layer may be formed on the reflection sheet by metal vapor deposition. However, a film in which a metal thin film layer is formed on an intermediate layer made of a resin film or the like is prepared in advance, and this film is made of a polystyrene-based resin porous film. And may be laminated.
As for the method of lamination, the metal thin film layer and the reflection sheet of the produced film can be laminated, or the intermediate layer and the reflection sheet of the produced film can be simply laminated.
As a bonding method, a method of bonding by a known method using various adhesives, a known thermal bonding method, or the like can be used.
 このような金属薄膜層を有する場合の層構成を例示すると、反射シート/(必要に応じて、アンカーコート層)/金属薄膜層/保護層の層構成、或いはポリスチレン系樹脂多孔フィルム/中間層/(必要に応じて、アンカーコート層)/金属薄膜層/保護層の層構成等を挙げることができる。ただし、ポリスチレン系樹脂多孔フィルムは光が照射される側に配置するのが好ましい。また、これらの層の間に、更に他の層を有してもよいし、反射シート、金属薄膜層などがそれぞれ独立に複数から構成してもよい。 Examples of the layer structure in the case of having such a metal thin film layer include: reflection sheet / (optional anchor coat layer) / metal thin film layer / protective layer layer structure, or polystyrene-based resin porous film / intermediate layer / (If necessary, an anchor coat layer) / metal thin film layer / protective layer layer structure and the like can be mentioned. However, the polystyrene resin porous film is preferably disposed on the side irradiated with light. Moreover, you may have another layer between these layers, and a reflective sheet, a metal thin film layer, etc. may each comprise multiple separately.
 また、本反射シートを、金属板または樹脂板に被覆して反射板を形成することができる。この反射板は、液晶表示装置、照明機器、照明看板等に用いされる反射板として有用である。いかにこのような反射板の製造方法について一例を挙げて説明する。 Also, the reflection sheet can be formed by covering the reflection sheet with a metal plate or a resin plate. This reflector is useful as a reflector used in liquid crystal display devices, lighting equipment, lighting signs, and the like. An example of how to manufacture such a reflector will be described.
 反射シートを金属板または樹脂板に被覆する方法としては、接着剤をしようする方法、接着剤を使用せずに熱融着する方法、接着性シートを介して接着する方法、押出しコーティングする方法等を挙げることができ、特に限定されるものではない。
 例えば、金属板または樹脂板の反射シートを貼り合わせる側の面に、ポリエステル系、ポリウレタン系、エポキシ系等の接着剤を塗布し、反射シートを貼り合わせることができる。この方法においては、リバースロールコーター、キスロールコーター等の一般的に使用されるコーティング設備をしようし、反射シートを貼り合わせる金属板等の表面に乾燥後の接着剤膜厚が2~4μm程度となるように接着剤を塗布した後、次いで、赤外線ヒーター及び熱風加熱炉により塗布面の乾燥及び加熱を行い、板の表面を所定の温度に保持しつつ、直にロールラミネーターを用いて、反射シートを被覆、冷却すればよい。
As a method of coating the reflective sheet on a metal plate or a resin plate, a method using an adhesive, a method of heat-sealing without using an adhesive, a method of bonding via an adhesive sheet, a method of extrusion coating, etc. There is no particular limitation.
For example, an adhesive such as polyester, polyurethane, or epoxy can be applied to the surface of the metal plate or resin plate on the side where the reflection sheet is bonded, and the reflection sheet can be bonded. In this method, a commonly used coating facility such as a reverse roll coater or a kiss roll coater is used, and the adhesive film thickness after drying on the surface of a metal plate or the like to which the reflective sheet is bonded is about 2 to 4 μm. Then, after applying the adhesive so that the coating surface is dried and heated by an infrared heater and a hot air heating furnace, while maintaining the surface of the plate at a predetermined temperature, directly using a roll laminator, It only has to be coated and cooled.
<用語の説明>
 本発明において、「主成分」と表現した場合には、特に記載しない限り、当該主成分の機能を妨げない範囲で他の成分を含有することを許容する意を包含し、特に当該主成分の含有割合を特定するものではないが、主成分は組成物中の50質量%以上、好ましくは70質量%以上、特に好ましくは90質量%以上(100質量%も含む)を占める意を包含するものである。
<Explanation of terms>
In the present invention, the expression “main component” includes the intention to allow other components to be contained within a range that does not interfere with the function of the main component, unless otherwise specified. Although the content ratio is not specified, the main component includes the meaning of occupying 50% by mass or more, preferably 70% by mass or more, particularly preferably 90% by mass or more (including 100% by mass) in the composition. It is.
 また、「X~Y」(X,Yは任意の数字)と表現した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
Further, when expressed as “X to Y” (X and Y are arbitrary numbers), “X is preferably greater than X” or “preferably smaller than Y”, with the meaning of “X to Y” unless otherwise specified. Is also included.
In addition, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it is “preferably greater than X” or “preferably less than Y”. Includes intentions.
 以下に実施例および比較例を示し、本発明の反射シートについてさらに詳しく説明するが、本発明は何ら制限を受けるものではない。なお、本明細書中に表示される反射シートについての種々の測定値および評価は次のようにして行った。ここで、反射シートの押出機からの引き取り(流れ)方向を縦方向(MD)、その直交方向を横方向(TD)と称する。 Examples and Comparative Examples are shown below, and the reflective sheet of the present invention will be described in more detail. However, the present invention is not limited at all. In addition, the various measured values and evaluation about the reflective sheet displayed in this specification were performed as follows. Here, the take-off (flow) direction of the reflection sheet from the extruder is referred to as the vertical direction (MD), and the orthogonal direction is referred to as the horizontal direction (TD).
(1) 平均孔径
 走査電子顕微鏡(日立製作所:S-4500)を用いて、得られた反射シートのMD断面の中心付近を観察倍率=3,000倍で観察した。得られた観察像中のすべての空孔の観察を行い、それぞれの空孔における長径方向(幅方向)の径を画像処理により計測し、全ての空孔の平均値を平均孔径(μm)として算出した。
 なお、一軸延伸した場合には、延伸方向の径、すなわち長径方向の径を画像処理により計測し、全ての空孔の平均値を平均孔径(μm)として算出した。
(1) Average pore diameter Using a scanning electron microscope (Hitachi, Ltd .: S-4500), the vicinity of the center of the MD cross section of the obtained reflection sheet was observed at an observation magnification of 3,000. Observe all the holes in the observed image, measure the diameter in the major axis direction (width direction) of each hole by image processing, and use the average value of all the holes as the average hole diameter (μm) Calculated.
In the case of uniaxial stretching, the diameter in the stretching direction, that is, the diameter in the major axis direction was measured by image processing, and the average value of all the pores was calculated as the average pore diameter (μm).
(2)反射率(%)
(株)日立製作所の分光光度計(U-4000)に積分球を取り付け、波長550nmの光に対する反射率を測定した。なお、測定前にアルミナ白板の反射率が100%となるよう光度計を設定し、測定を実施した。
(2) Reflectance (%)
An integrating sphere was attached to a spectrophotometer (U-4000) manufactured by Hitachi, Ltd., and the reflectance with respect to light having a wavelength of 550 nm was measured. Before the measurement, the photometer was set so that the reflectance of the alumina white plate was 100%, and the measurement was performed.
(3)フィルム厚み
 1/1000mmのダイヤルゲージを用い、得られたシートの面内を不特定に10箇所測定し、その平均値を算出した。
(3) Film thickness Using a dial gauge of 1/1000 mm, the surface of the obtained sheet was measured unspecifically at 10 locations, and the average value was calculated.
(4)空孔率
 得られた積層多孔性フィルムから、縦×横=10cm×10cmの試料をフィルム中央部から切り出し、その重量W(g)と厚さt(μm)を計測する。ついで、積層無孔膜状物の比重ρ(g/cm3)から次式により空孔率を算出した。
 空孔率(%)=[1-{W/(10×10×t×0.0001×ρ}]×100
(4) Porosity From the obtained laminated porous film, a sample of length × width = 10 cm × 10 cm is cut out from the center of the film, and its weight W (g) and thickness t (μm) are measured. Next, the porosity was calculated from the specific gravity ρ (g / cm 3 ) of the laminated non-porous film according to the following formula.
Porosity (%) = [1- {W / (10 × 10 × t × 0.0001 × ρ}] × 100
(実施例1)
 A層を構成する樹脂組成物として、ポリプロピレン系樹脂(日本ポリプロ社製「ノバテックPP FY6HA」、屈折率1.51、MFR:2g/10分)100質量部に対し、β晶核剤として、3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン0.3質量部を加え、東芝機械株式会社製の同方向二軸押出機(口径φ40mm、L/D=32)を用いて280℃にて溶融混練してペレット状に加工した樹脂組成物A1を得た。
 また、B層を構成する混合樹脂組成物として、高密度ポリエチレン(日本ポリエチ社製「ノバテックHD HF560」、密度:0.963g/cm3、屈折率1.53、MFR:7.0g/10分)を、樹脂組成物B1として用いた。
Example 1
As a resin composition constituting the A layer, 3 parts as a β crystal nucleating agent with respect to 100 parts by mass of a polypropylene resin (“NOVATEC PP FY6HA” manufactured by Nippon Polypro Co., Ltd., refractive index 1.51, MFR: 2 g / 10 min) , 9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, 0.3 parts by mass, A resin composition A1 melt-kneaded at 280 ° C. using a shaft extruder (caliber φ40 mm, L / D = 32) and processed into pellets was obtained.
Further, as the mixed resin composition constituting the B layer, high density polyethylene (“Novatec HD HF560” manufactured by Nippon Polytechnic Co., Ltd., density: 0.963 g / cm 3 , refractive index 1.53, MFR: 7.0 g / 10 min. ) Was used as the resin composition B1.
 樹脂組成物A1およびB1を別々の押出機にて200℃で押出し、65層のフィードブロックを通じてA1層が表裏面となるようにA1/B1/A1/B1/・・・/A1となるように分割押出し、その後、口金幅が300mm、リップギャップが2mmとなる単層用のフィッシュテールダイより200℃で押出しした。A1層とB1層の押出し比率は、全体の押出量がA1/B1=73/27質量%となるように押出した。その後、ラインスピードが3m/秒にて125℃のキャスティングロールに約30秒密着させることで冷却固化させ、厚み250μmの積層無孔膜状物を得た。積層無孔膜状物の断面SEM写真を図1に示す。積層無孔膜状物のA1層の厚みはおよそ6.0μm、B1層の厚みはおよそ1.5μmであった。 Resin compositions A1 and B1 were extruded at 200 ° C. with separate extruders, and A1 / B1 / A1 / B1 /... / A1 so that the A1 layer would be the front and back through a 65-layer feed block. Split extrusion was then performed at 200 ° C. from a single-layer fishtail die having a base width of 300 mm and a lip gap of 2 mm. The extrusion ratio of the A1 layer and the B1 layer was extruded so that the total extrusion amount was A1 / B1 = 73/27% by mass. Thereafter, the film was cooled and solidified by adhering to a casting roll at 125 ° C. for about 30 seconds at a line speed of 3 m / sec to obtain a laminated non-porous film having a thickness of 250 μm. A cross-sectional SEM photograph of the laminated non-porous membrane is shown in FIG. The thickness of the A1 layer of the laminated non-porous film was about 6.0 μm, and the thickness of the B1 layer was about 1.5 μm.
 前記積層無孔膜状物をロール延伸機にて20~100℃で縦方向に1.5倍に延伸した後に100℃で縦方向に3.0倍延伸し、トータルの縦延伸倍率が4.5倍となるように延伸した後、テンター延伸機にて横方向に100℃で2.75倍に逐次二軸延伸をして厚みが35μmとなる積層多孔性フィルムを作製した。得られた積層多孔性フィルムを5枚ドライラミ方式にて重ね合わせて、厚みが175μm、積層数が325層(B層数160)の反射シートを得た。その結果を表1にまとめた。積層多孔性フィルムの断面のSEM写真を図2に示す。 The laminated nonporous film-like material was stretched 1.5 times in the machine direction at 20 to 100 ° C. by a roll stretching machine, and then stretched 3.0 times in the machine direction at 100 ° C., and the total machine draw ratio was 4. After stretching to 5 times, a laminated porous film having a thickness of 35 μm was produced by sequentially biaxially stretching 2.75 times at 100 ° C. in the transverse direction with a tenter stretching machine. The obtained laminated porous film was superposed by a dry lamination method to obtain a reflective sheet having a thickness of 175 μm and a laminated number of 325 layers (B layer number 160). The results are summarized in Table 1. An SEM photograph of the cross section of the laminated porous film is shown in FIG.
(実施例2)
 積層無多孔膜状物までは実施例1と同様の方法にて厚み250μmの積層無孔膜状物を得た。前記積層膜状物をロール延伸機にて120℃で縦方向に3倍となるように延伸した後に100℃で横方向に3.0倍に逐次二軸延伸をして厚みが115μmとなる積層多孔性フィルムを作成し、得られた積層多孔性フィルムを3枚ドライラミ方式にて重ね合わせて、厚みが315μm、積層数が195層(B層数96)の反射シートを得た。その結果を表1にまとめた。
(Example 2)
A laminated nonporous membrane having a thickness of 250 μm was obtained in the same manner as in Example 1 until the laminated nonporous membrane was obtained. The laminated film-like material is stretched by a roll stretching machine at 120 ° C. so as to be 3 times in the longitudinal direction, and then is sequentially biaxially stretched 3.0 times in the transverse direction at 100 ° C. so that the thickness becomes 115 μm. A porous film was prepared, and the obtained laminated porous films were laminated by a dry lamination method to obtain a reflective sheet having a thickness of 315 μm and a number of laminated layers of 195 layers (number of B layers: 96). The results are summarized in Table 1.
(実施例3)
 積層無多孔膜状物までは実施例1と同様の方法にて厚み250μmの積層無孔膜状物を得た。得られた積層膜状物をロール延伸機にて20~120℃で縦方向に1.5倍に延伸した後に120℃で縦方向に4.0倍延伸し、トータルの縦延伸倍率が6.0倍となるように縦延伸をして厚みが45μmとなる積層多孔性フィルムを作成し、得られた積層多孔性フィルムを10枚ドライラミ方式にて重ね合わせて、厚みが450μm、積層数が650層(B層数320)の反射シートを得た。
(Example 3)
A laminated nonporous membrane having a thickness of 250 μm was obtained in the same manner as in Example 1 until the laminated nonporous membrane was obtained. The obtained laminated film was stretched 1.5 times in the machine direction at 20 to 120 ° C. with a roll stretching machine, and then stretched 4.0 times in the machine direction at 120 ° C., for a total machine draw ratio of 6. A laminated porous film having a thickness of 45 μm is prepared by longitudinal stretching so as to be 0 times, and the obtained laminated porous films are laminated by a dry lamination method, and the thickness is 450 μm and the number of laminated layers is 650. A reflective sheet having a layer (number of B layers: 320) was obtained.
(実施例4)
 成膜条件、すなわち押出量と成形速度を調整して積層無多孔膜状物の厚みを95μmとした以外は、実施例1と同様の方法にて積層無孔膜状物を得た。得られた積層無孔膜状物の断面のSEM写真を図3に示す。積層無孔膜状物のA1層の厚みはおよそ1.8μm、B1層の厚みはおよそ0.6μmである。
 得られた積層無孔膜状物をロール延伸機にて80℃で縦方向に多段にて4.0倍に延伸した後に100℃で横方向に2.0倍に逐次二軸延伸をして厚みが36μmとなる積層多孔性フィルムを作成した。得られた積層多孔性フィルムを10枚ドライラミ方式にて重ね合わせて、厚みが360μm、積層数が650層(B層数320)の反射シートを得た。
Example 4
A laminated nonporous membrane was obtained in the same manner as in Example 1 except that the thickness of the laminated nonporous membrane was adjusted to 95 μm by adjusting the film forming conditions, that is, the extrusion amount and the molding speed. The SEM photograph of the cross section of the obtained laminated non-porous membrane is shown in FIG. The thickness of the A1 layer of the laminated non-porous film is about 1.8 μm, and the thickness of the B1 layer is about 0.6 μm.
The obtained laminated non-porous film-like material was stretched 4.0 times in multiple stages in the longitudinal direction at 80 ° C. with a roll stretching machine, and then sequentially biaxially stretched 2.0 times in the transverse direction at 100 ° C. A laminated porous film having a thickness of 36 μm was prepared. The obtained laminated porous film was laminated by a dry lamination method to obtain a reflective sheet having a thickness of 360 μm and a laminated number of 650 layers (B layer number 320).
(実施例5)
 成膜条件、すなわち押出量と成形速度を調整して積層無多孔膜状物の厚みを95μmとした以外は、実施例1と同様の方法にて積層無孔膜状部を得た。得られた積層無多孔膜状物をロール延伸機にて80℃で縦方向に多段にて4.0倍に縦延伸をして厚みが50μmとなる積層多孔性フィルムを作成した。得られた積層多孔性フィルムを10枚ドライラミ方式にて重ね合わせて、厚みが500μm、積層数が650層(B層数320)の反射シートを得た。この際、配向方向をそろえて重ね合わせた。
(Example 5)
A laminated non-porous membrane part was obtained in the same manner as in Example 1 except that the thickness of the laminated non-porous membrane was adjusted to 95 μm by adjusting the film forming conditions, that is, the extrusion amount and the molding speed. The obtained laminated non-porous membrane was longitudinally stretched 4.0 times in multiple stages in the longitudinal direction at 80 ° C. with a roll stretching machine to prepare a laminated porous film having a thickness of 50 μm. The obtained laminated porous film was laminated by a dry lamination method to obtain a reflective sheet having a thickness of 500 μm and a number of laminated layers of 650 layers (number of B layers: 320). At this time, the alignment directions were aligned.
(比較例1)
 実施例1と同様の方法にて樹脂組成物A1を得た。得られた樹脂組成物A1を別々の押出機にて200℃で押出し、65層のフィードブロックを通じてA1/A1/A1・・・/A1となるように分割押出した以外は実施例1と同様に厚みが250μmの実質上A1のみの厚み250μmの積層無孔膜状物を得た。得られた実質A1のみの積層膜状物を、実施例2と同様の延伸条件にて厚みが80μmとなる積層多孔性フィルムを作成し、得られた積層多孔性フィルムを3枚ドライラミ方式にて重ね合わせて、厚みが240μm、実質上A1のみの積層多孔性フィルムを得た。得られた実質上A1のみの反射シートは反射率が実施例2のフィルムよりも低いことが確認できる。
(Comparative Example 1)
Resin composition A1 was obtained in the same manner as in Example 1. Except that the obtained resin composition A1 was extruded at 200 ° C. with a separate extruder and divided and extruded through a 65-layer feed block so as to be A1 / A1 / A1... / A1. A laminated nonporous film-like material having a thickness of 250 μm and a thickness of 250 μm was obtained. A laminated porous film having a thickness of 80 μm was prepared from the obtained laminated film-like material only of A1 under the same stretching conditions as in Example 2, and the obtained laminated porous film was obtained by a dry lamination method with three sheets. By superposing them, a laminated porous film having a thickness of 240 μm and substantially only A1 was obtained. It can be confirmed that the obtained reflection sheet of substantially only A1 has a reflectance lower than that of the film of Example 2.
(比較例2)
 実施例1と同様の方法にて、樹脂組成物B1を別々の押出機にて200℃で押出し、65層のフィードブロックと通じてB1/B1/B1・・・・/B1となるように分割押出した以外は実施例1と同様に厚みが250μmの実質上B1のみの厚みが250μmの積層無孔膜状物を得た。得られた実質上B1のみの積層膜状物を実施例2と同様の延伸条件にて延伸を試みたが、延伸時に破断が生じ多孔性フィルムを得ることが出来なかった。
(Comparative Example 2)
In the same manner as in Example 1, the resin composition B1 was extruded at 200 ° C. with a separate extruder and divided into B1 / B1 / B1... / B1 through a 65-layer feed block. Except for the extrusion, a laminated nonporous film-like material having a thickness of only 250 μm and a thickness of 250 μm was obtained in the same manner as in Example 1. The obtained laminated film-like material substantially containing only B1 was tried to be stretched under the same stretching conditions as in Example 2. However, the film was broken during stretching and a porous film could not be obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~6の反射シートは、反射率が96%以上となり、光学反射特性に優れていていることが分かった。これに対して、実質上A層のみの多孔性シート(比較例1)では、所望の反射特性を発現しない結果となった。
 以上の実施例とこれまで行った試験結果からすると、シート断面における長径方向の平均孔径が0.01μm以上1.00μm未満の空孔を有する多孔質樹脂層Aと、シート断面における長径方向の平均孔径が1.00μm以上10.00μm以下の空孔を有する多孔質樹脂層Bとが交互に多数積層してなる構成を有する反射シートであって、シート全体の空孔率が20.0~75.0%であれば、目的とする反射特性を得ることができ、しかも軽量化及び薄型化を図ることができるものと考えることができる。
 また、積層数に関しては、以上の実施例とこれまで行った試験結果からして、B層を少なくとも25層以上有していれば、上記実施例と同程度の効果を得ることができるものと考えることができる。
From Table 1, it was found that the reflective sheets of Examples 1 to 6 had a reflectance of 96% or more and were excellent in optical reflection characteristics. On the other hand, the porous sheet (Comparative Example 1) having substantially only the A layer did not exhibit desired reflection characteristics.
From the above examples and the results of the tests conducted so far, the average pore diameter in the sheet cross section of the porous resin layer A having pores of 0.01 μm or more and less than 1.00 μm, and the average of the long diameter direction in the sheet cross section A reflective sheet having a configuration in which a large number of porous resin layers B having pores having a pore diameter of 1.00 μm or more and 10.00 μm or less are alternately laminated, and the porosity of the entire sheet is 20.0 to 75 If it is 0.0%, it can be considered that the desired reflection characteristics can be obtained, and that the weight and thickness can be reduced.
In addition, regarding the number of layers, from the above examples and the results of the tests conducted so far, if the layer B has at least 25 layers, the same effect as the above examples can be obtained. Can think.

Claims (6)

  1.  シート断面における長径方向の平均孔径が0.01μm以上1.00μm未満の空孔を有する多孔質樹脂層Aと、シート断面における長径方向の平均孔径が1.00μm以上10.00μm以下の空孔を有する多孔質樹脂層Bとが交互に積層してなる構成を有する反射シートであって、シート全体の空孔率が20.0~75.0%であることを特徴とする反射シート。 A porous resin layer A having pores having an average pore diameter of 0.01 μm or more and less than 1.00 μm in the cross section of the sheet; and pores having an average pore diameter of 1.00 μm or more and 10.00 μm or less in the major axis direction of the sheet cross section. A reflective sheet having a structure in which the porous resin layers B are alternately laminated, wherein the porosity of the entire sheet is 20.0 to 75.0%.
  2.  多孔質樹脂層Aのベース樹脂の屈折率と、多孔質樹脂層Bのベース樹脂の屈折率との差が0.2未満であることを特徴とする請求項1記載の反射シート。 The reflective sheet according to claim 1, wherein the difference between the refractive index of the base resin of the porous resin layer A and the refractive index of the base resin of the porous resin layer B is less than 0.2.
  3.  前記多孔質樹脂層Aは、ポリプロピレン系樹脂をベース樹脂とし、且つ、β晶核剤を含有することを特徴とする請求項1又は2に記載の反射シート。 The reflective sheet according to claim 1 or 2, wherein the porous resin layer A comprises a polypropylene resin as a base resin and contains a β crystal nucleating agent.
  4.  前記多孔質樹脂層Bの厚みが、反射シート全層の厚みの10~50%を占めることを特徴とする請求項1~3の何れかに記載の反射シート。 The reflective sheet according to any one of claims 1 to 3, wherein the thickness of the porous resin layer B occupies 10 to 50% of the total thickness of the reflective sheet.
  5.  前記多孔質樹脂層Bは、ポリエチレン系樹脂をベース樹脂とすることを特徴とする請求項1~4の何れかに記載の反射シート。 The reflective sheet according to any one of claims 1 to 4, wherein the porous resin layer B uses a polyethylene resin as a base resin.
  6.  前記多孔質樹脂層Bを少なくとも25層以上有することを特徴とする請求項1~5の何れかに記載の反射シート。

     
    6. The reflection sheet according to claim 1, comprising at least 25 layers of the porous resin layer B.

PCT/JP2011/080104 2010-12-28 2011-12-26 Reflection sheet WO2012090949A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012550942A JP6017962B2 (en) 2010-12-28 2011-12-26 Reflective sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-293992 2010-12-28
JP2010293992 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090949A1 true WO2012090949A1 (en) 2012-07-05

Family

ID=46383049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080104 WO2012090949A1 (en) 2010-12-28 2011-12-26 Reflection sheet

Country Status (2)

Country Link
JP (1) JP6017962B2 (en)
WO (1) WO2012090949A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065199A (en) * 2012-09-25 2014-04-17 Sumitomo Bakelite Co Ltd Multilayer film and package
JP2014180853A (en) * 2013-03-21 2014-09-29 Sumitomo Bakelite Co Ltd Multilayer film and package
JP2018525669A (en) * 2015-07-24 2018-09-06 スリーエム イノベイティブ プロパティズ カンパニー Reflective laminate having a thermal diffusion layer
CN115047551A (en) * 2022-08-15 2022-09-13 深圳市光科全息技术有限公司 White reflecting film, preparation method thereof and projection curtain

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003136619A (en) * 2001-10-31 2003-05-14 Toray Ind Inc Fine bubble-containing film
JP2005054176A (en) * 2003-07-18 2005-03-03 Oji Paper Co Ltd Sheet-like foamed product and process for its production
JP2008107804A (en) * 2006-09-26 2008-05-08 Toray Ind Inc Light reflection film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004341067A (en) * 2003-05-13 2004-12-02 Mitsui Chemicals Inc Reflector, and illuminator and display device using reflector
JP4923378B2 (en) * 2003-05-16 2012-04-25 東レ株式会社 Light reflecting film and manufacturing method thereof
EP1674894B1 (en) * 2003-10-17 2009-08-19 Mitsubishi Plastics Inc. Reflecting film
JP2010224446A (en) * 2009-03-25 2010-10-07 Teijin Dupont Films Japan Ltd White film for reflection film of backlight unit of liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003136619A (en) * 2001-10-31 2003-05-14 Toray Ind Inc Fine bubble-containing film
JP2005054176A (en) * 2003-07-18 2005-03-03 Oji Paper Co Ltd Sheet-like foamed product and process for its production
JP2008107804A (en) * 2006-09-26 2008-05-08 Toray Ind Inc Light reflection film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065199A (en) * 2012-09-25 2014-04-17 Sumitomo Bakelite Co Ltd Multilayer film and package
JP2014180853A (en) * 2013-03-21 2014-09-29 Sumitomo Bakelite Co Ltd Multilayer film and package
JP2018525669A (en) * 2015-07-24 2018-09-06 スリーエム イノベイティブ プロパティズ カンパニー Reflective laminate having a thermal diffusion layer
US11125921B2 (en) 2015-07-24 2021-09-21 3M Innovative Properties Company Reflective stack with heat spreading layer
US11726238B2 (en) 2015-07-24 2023-08-15 3M Innovative Properties Company Reflective stack with heat spreading layer
CN115047551A (en) * 2022-08-15 2022-09-13 深圳市光科全息技术有限公司 White reflecting film, preparation method thereof and projection curtain
CN115047551B (en) * 2022-08-15 2022-11-29 深圳市光科全息技术有限公司 White reflecting film, preparation method thereof and projection curtain

Also Published As

Publication number Publication date
JPWO2012090949A1 (en) 2014-06-05
JP6017962B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP5887880B2 (en) Method for producing foam laminate and foam laminate
TWI364446B (en) Surface protective film
JP6017962B2 (en) Reflective sheet
WO2004013664A1 (en) Light-reflecting article
JP2023171764A (en) Laminate film
JP2004309804A (en) Light reflector
JP6093975B2 (en) Method for producing foam laminate and foam laminate
JP6331348B2 (en) Method for producing foam laminate and foam laminate
JP6123211B2 (en) Foam laminate
JP5050911B2 (en) Laminated body for foaming and foam
JP2013252645A (en) Biaxially-stretched multilayered polypropylene film
JP4578075B2 (en) Light reflector
CA2605363A1 (en) Permeable polypropylene film
JP2005099314A (en) Optical reflector and double-sided display type surface light source device using the same
KR101154590B1 (en) Polypropylene film and method for preparing the same
JP2018069683A (en) Laminate for foaming and foamed laminate
JP2007044930A (en) Biaxially stretched multilayered propylene polymer film
JP6326778B2 (en) Method for producing foam laminate and foam laminate
JP6572529B2 (en) BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a foam laminate having a thick foam layer and exhibiting excellent heat insulation properties with high production efficiency.
JP6897338B2 (en) Foaming laminate and foaming laminate
JP6331347B2 (en) Method for producing foam laminate and foam laminate
JP6747114B2 (en) Foam laminate and foam laminate
JP6672633B2 (en) Reflective sheet and reflector
KR20190139833A (en) Sealant Films &amp; Packaging
JP3621999B2 (en) Laminate manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550942

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854327

Country of ref document: EP

Kind code of ref document: A1